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Abstract

We present a strong connection between quantum information and the theory of quantum
permutation groups. Specifically, we define a notion of quantum isomorphisms of graphs based
on quantum automorphisms from the theory of quantum groups, and then show that this is
equivalent to the previously defined notion of quantum isomorphism corresponding to perfect
quantum strategies to the isomorphism game. Moreover, we show that two connected graphs
X and Y are quantum isomorphic if and only if there exists x ∈ V (X) and y ∈ V (Y ) that
are in the same orbit of the quantum automorphism group of the disjoint union of X and
Y . This connection links quantum groups to the more concrete notion of nonlocal games and
physically observable quantum behaviours. In this work, we exploit this by using ideas and
results from quantum information in order to prove new results about quantum automorphism
groups of graphs, and about quantum permutation groups more generally. In particular, we
show that asymptotically almost surely all graphs have trivial quantum automorphism group.
Furthermore, we use examples of quantum isomorphic graphs from previous work to construct
an infinite family of graphs which are quantum vertex transitive but fail to be vertex transitive,
answering a question from the quantum permutation group literature.

Our main tool for proving these results is the introduction of orbits and orbitals (orbits
on ordered pairs) of quantum permutation groups. We show that the orbitals of a quantum
permutation group form a coherent configuration/algebra, a notion from the field of algebraic
graph theory. We then prove that the elements of this quantum orbital algebra are exactly the
matrices that commute with the magic unitary defining the quantum group. We furthermore
show that quantum isomorphic graphs admit an isomorphism of their quantum orbital algebras
which maps the adjacency matrix of one graph to that of the other.

We hope that this work will encourage new collaborations among the communities of quan-
tum information, quantum groups, and algebraic graph theory.

1 Introduction

We take our graphs to be undirected, loopless, and without multiple edges. An isomorphism of
graphs X and Y is function ϕ : V (X)→ V (Y ) which is bijective, preserves adjacency, and preserves
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non-adjacency. Whenever such a function exists we say that X and Y are isomorphic and write
X ∼= Y . An alternative definition of isomorphism can be stated in terms of the adjacency matrices
of X and Y . These are 01-matrices with a 1 in the entries corresponding to the edges of the graphs.
If X and Y have adjacency matrices A and B respectively, then they are isomorphic if and only if
there exists a permutation matrix P such that P TAP = B, or equivalently AP = PB.

The isomorphisms from a graph X to itself are called automorphisms and they form a group
called the automorphism group of X, denoted Aut(X). As with isomorphisms, the automorphisms
of a graph can be represented as permutation matrices. Furthermore, the automorphisms of X are
exactly those permutations whose corresponding permutation matrix commutes with the adjacency
matrix of X.

In [4], Banica introduced the quantum automorphism group of a graph1, generalizing Wang’s def-
inition of the quantum permutation group of a set [28], which itself used the formalism of Woronow-
icz’s compact quantum groups [30, 31]. Briefly, the idea is to consider the algebra of complex-valued
functions on the automorphism group of a graph. This algebra is commutative and can be generated
by finitely many elements satisfying certain relations depending on the graph. By dropping the
(explicit) commutativity requirement of these generators, one obtains a possibly different algebra
which is by definition the “algebra of continuous functions on the quantum automorphism group
of the graph”. The generators can be arranged in a matrix which is called a magic unitary, which
has the property that it commutes with the adjacency matrix of the graph.

More recently, a different approach was used to define quantum analogs of graph isomorphisms
which involved nonlocal games. A (2-party) nonlocal game is a game played by two players, Alice
and Bob, against a referee/verifier. The referee sends each of the players some question/input and
they must respond with some output. Whether the players win is determined by evaluating a binary
verification function that depends on the inputs and outputs of both players. The players have
full knowledge of the game beforehand: they know their input and output sets and the verification
function, as well as the probability distribution used to dispense the inputs. Their goal is to try to
win the game with as high probability as possible. In order to do this, they are allowed to agree
on whatever strategy they like beforehand, but are not allowed to communicate after receiving the
questions.

A classical strategy for a nonlocal game is one in which the only resource available to the players
is shared randomness. In a quantum strategy, the players are allowed to perform local quantum
measurements on a shared entangled state. This does not allow them to communicate, but can
sometimes increase their chance of winning. If players are able to win a given nonlocal game
with probability greater than what is possible classically, then this is evidence that they are doing
something genuinely quantum. Thus nonlocal games provide a way of certifying quantum behaviour
through the observation of only classical data: the inputs and outputs of the players. Such quantum
behaviour is known as nonlocality, and in the extreme case, when quantum players can win with
probability 1 but classical players cannot, the game is called a pseudotelepathy game [12].

In [2], along with others, the second and third authors introduced a family of nonlocal games
called graph isomorphism games, and investigated the classical and quantum strategies that win
the game perfectly (with probability 1). They showed that the game can be won perfectly by
a classical strategy if and only if the corresponding graphs are isomorphic. This motivated the
definition of quantum isomorphic graphs: those for which the game can be won perfectly by a

1We remark that a different version of the quantum automorphism group of a graph was previously introduced
by Bichon [10], but the definition of Banica is the one relevant for our work.
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quantum strategy. They characterized quantum isomorphism in terms of an object they referred
to as a projective permutation matrix. The entries of this matrix correspond to the quantum
measurement operators used to win the game. They showed that if the graphs used in the game
had adjacency matrices A and B respectively, then they were quantum isomorphic if and only if
there exists projective permutation matrix P such that AP = PB. This is a quantum analog of
the adjacency matrix formulation of classical isomorphism, since replacing P with a permutation
matrix P recovers the classical definition.

It turns out that the notions of magic unitaries and projective permutation matrices are es-
sentially the same. The only difference is that in the theory of quantum groups the entries are
allowed to be elements of any unital C∗-algebra, whereas in quantum information the entries are
required to be elements of a unital C∗-algebra that admits a trace. Thus, in this work we define a
relaxed notion of quantum isomorphism in which the required projective permutation matrix has
entries from some unital C∗-algebra, which does not necessarily admit a trace. This is the natural
extension of quantum automorphisms from quantum group theory to the setting of isomorphisms.
Surprisingly, we show that this is equivalent to the original notion: the existence of a perfect quan-
tum strategy for the isomorphism game. Moreover, we show that connected graphs X and Y are
quantum isomorphic if and only if there exists x ∈ V (X) and y ∈ V (Y ) that are in the same orbit
of the quantum automorphism group of the disjoint union of X and Y , in perfect analogy to the
classical case. Thus the quantum information theoretic notion of quantum isomorphisms can be
rephrased completely in terms of quantum automorphism groups.

We remark that the connection between quantum permutation groups and quantum isomor-
phisms has very recently been independently noted in [25]. However, the perspective in that work is
quite different from ours. While they develop a very broad, and elegant, categorical framework for
working with quantum permutations and other similar notions, here we are more focused on using
results and ideas from quantum information and algebraic graph theory to establish new results
in the theory of quantum permutation groups. Moreover, they focus on a slightly different notion
of quantum isomorphisms where the entries of projective permutation matrices are required to be
finite dimensional, and which is known to be different from the more general case we consider here.

1.1 Outline

Besides proving the equivalence of our new notion of quantum isomorphism with the notion arising
from isomorphism games, the main results of our work are as follows: (1) The orbitals of a quantum
permutation group form a coherent configuration; (2) the value of the Haar state of a quantum
permutation group on products of pairs of generators is determined by the orbitals; (3) if X and
Y are quantum isomorphic, then there is an isomorphism of their quantum orbital algebras that
maps the adjacency matrix of X to that of Y ; (4) there exist an infinite number of quantum vertex
transitive graphs which are not vertex transitive.

In Section 2, we provide background material on the isomorphism game, quantum permutation
groups, and coherent configurations/algebras, which are the three main ingredients of this work. In
Section 3 we define the orbits and orbitals of an arbitrary quantum permutation group. We then
show, in Section 3.1, that these definitions are equivalent to definitions based on the spaces of “fixed
points” of the action of the quantum permutation group, a notion studied in the quantum group
literature. Section 3.2 contains the proof of our first main result: that the orbitals of a quantum
permutation group Q form a coherent configuration. The span of the characteristic matrices of the
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classes in this configuration form a coherent algebra which we call the orbital algebra of Q. We also
show that the elements of this algebra are exactly those matrices which commute with the magic
unitary defining Q. The following Section 3.3 shows how to make this result practical by using the
coherent algebra of the graph, which can be computed in polynomial time.

Section 4 is concerned with quantum isomorphisms, and using pairs of non-isomorphic but
quantum isomorphic graphs to construct quantum vertex transitive graphs that fail to be vertex
transitive. It begins with Section 4.3 in which we prove our second main result: that any quan-
tum isomorphism of two graphs induces an isomorphism of their quantum orbital algebras which
maps the adjacency matrix of one to that of the other. In Sections 4.4 and 4.5 we introduce two
previously known constructions whose concatenation, when applied to any connected non-planar
graph Z, produces a pair of non-isomorphic graphs which are nevertheless quantum isomorphic.
In Section 4.6 we show that if the graph Z is vertex transitive, then at least one of the graphs
produced by this construction is vertex transitive. Finally, we put this all together in Section 4.7
to show how to construct an infinite family of quantum vertex transitive graphs that are not vertex
transitive. We end in Section 5 by discussing some possible future directions and interesting open
problems.

The idea to use coherent configurations/algebras, a topic from algebraic graph theory, to study
quantum automorphism groups is inspired by concurrent work of the second and third authors and
others [23]. They consider a semidefinite relaxation of quantum isomorphisms that they call doubly
nonnegative isomorphism. They show that any doubly nonnegative isomorphism of graphs X and
Y induces an isomorphism of the coherent algebras of X and Y that maps the adjacency matrix
of X to that of Y . Such an isomorphism of coherent algebras is called an equivalence of X and
Y , a previously studied notion [9]. Conversely, they show that any equivalence of X and Y can be
used to construct a doubly nonnegative isomorphism of X and Y . Therefore, these two relations
are equivalent. This result is what motivated the consideration of coherent algebras for this work.

2 Background

We begin by giving some background about each of the three main ingredients of this work: the
graph isomorphism game, quantum permutation groups, and coherent configurations/algebras.

2.1 The isomorphism game

In [2], a nonlocal game is introduced which captures the notion of graph isomorphism. In turn, by
allowing entangled strategies, this allows one to define a type of quantum isomorphism in a natural
way. We will give a brief description of this game and its classical/quantum strategies, but for a
more thorough explanation we refer the reader to [2].

Given graphs X and Y , the (X,Y )-isomorphism game is played as follows: a referee/verifier
sends each of two players (Alice and Bob) a vertex of X or Y (not necessarily the same vertex to
both), and tells them which graph it is from (this is necessary if the vertex sets are not disjoint).
Each of Alice and Bob must respond to the referee with a vertex of X or Y (and specify which
graph it belongs to). Alice and Bob win if they meet two conditions, the first of which is:

(1) If a player (Alice or Bob) receives a vertex from X, they must respond with a vertex from Y
and vice versa.
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Assuming this condition is met, Alice either receives or responds with a vertex of X, which we
will call xA, and either responds with or receives a vertex of Y , which we will call yA. We can
similarly define xB and yB for Bob. The second condition they must meet in order to win is then
given by

(2) rel(xA, xB) = rel(yA, yB), where rel is a function denoting the relationship of two vertices, i.e.,
whether they are equal, adjacent, or distinct non-adjacent.

The players know the graphs X and Y beforehand and can agree on any strategy they like,
but they are not allowed to communicate during the game. For simplicity we may assume that the
referee sends the vertices to the players uniformly at random. We only require that Alice and Bob
play one round of the game (each receive and respond with a single vertex), but we require that
their strategy guarantees that they win with probability 1. We say that such a strategy is a perfect
or winning strategy.

If ϕ : V (X)→ V (Y ) is an isomorphism, then it is not difficult to see that responding with ϕ(x)
for x ∈ V (X) and ϕ−1(y) for y ∈ V (Y ) is a perfect strategy for the (X,Y )-isomorphism game.
Conversely, any perfect deterministic classical strategy can be shown to have this form. This is
what was shown in [2] and it follows that there exists a perfect classical strategy for the (X,Y )-
isomorphism game if and only if X ∼= Y . In general, classical players could use shared randomness
but it is not hard to see that this would not allow them to win if they were not already able to
succeed perfectly using a deterministic strategy.

In a quantum strategy, Alice and Bob have access to a shared entangled state which they are
allowed to perform local quantum measurements on. This does not allow them to communicate,
but may allow them to correlate their actions/responses in ways not possible for classical players.
In [2], two different models for performing joint measurements on a shared state were considered:
the tensor product framework and the commuting operator framework. In the tensor product
framework, both Alice and Bob have their own Hilbert space on which they are allowed to make
measurements, and their shared state lives in the tensor product of their Hilbert spaces. We note
that for the isomorphism game, whenever there is a perfect quantum strategy in the tensor product
framework, there is one that is finite dimensional (this is not known to hold for general nonlocal
games, and is known not to hold if one considers non-perfect strategies [15]). In the commuting
operator framework, they share a single Hilbert space in which their shared state lives, but it is
required that all of Alice’s measurement operators commute with all of Bob’s. In either case, the
shared entangled state is specified by a vector and the measurement operators are positive operators
on the relevant Hilbert spaces. We remark that the commuting operator framework is the more
general of the two. This follows from the fact that any tensor product strategy can be made into
a commuting operator strategy by replacing each measurement operator E of Alice’s with E ⊗ I,
and each measurement operator F of Bob’s with I ⊗ F . However, if we restrict both frameworks
to finite dimensional Hilbert spaces then they are known to be equivalent.

In [2], they say that graphs X and Y are “quantum isomorphic” if there exists a perfect quantum
strategy for the (X,Y )-isomorphism game in the tensor product framework. Similarly, they say they
are “quantum commuting isomorphic” if there exists a perfect quantum strategy in the commuting
operator framework. They show that these relations are distinct, and the former is finer than the
latter, since the commuting framework is more general. In this work we additionally consider an
even more general notion of quantum isomorphism, that we simply call quantum isomorphism,
which corresponds to the isomorphism game having a perfect C∗-strategy as defined in [19]. This
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definition of quantum isomorphism extends the notion of quantum graph automorphisms of Banica.
Because of this, we will refer to the relation of being “quantum isomorphic” from [2] as being
quantum tensor isomorphic, and we will use the notation ‘∼=qt’ for this relation. We will keep the
terminology of quantum commuting isomorphism the same, and use ‘∼=qc’ for this.

Without going into the details of the proof, we present the following characterization of quantum
tensor isomorphism proven in [2]. Recall that an operator P is an (orthogonal) projection if P =
P ∗ = P 2.

Theorem 2.1. Let X and Y be graphs. Then X ∼=qt Y if and only if there exist projections Pxy
for x ∈ V (X), y ∈ V (Y ) on a finite dimensional Hilbert space satisfying

1.
∑

y∈V (Y ) Pxy = I for all x ∈ V (X);

2.
∑

x∈V (X) Pxy = I for all y ∈ V (Y );

3. PxyPx′y′ = 0 if rel(x, x′) 6= rel(y, y′).

The projections Pxy in the above theorem correspond to the measurement operators used by
Alice (Bob uses the transpose of these) in a perfect strategy for the isomorphism game. The element
Pxy corresponds to Alice replying with y upon receiving x. Intuitively, this is analogous to x being
mapped to y by an isomorphism of X and Y .

It is possible to “compose” strategies for isomorphism games. If Pxy are projectors as above
for the (X,Y )-isomorphism game, and Qyz are projectors for the (Y,Z)-isomorphism game, then
the construction Rxz :=

∑
y∈V (Y ) Pxy ⊗Qyz gives projections satisfying Conditions (1)–(3) for the

(X,Z)-isomorphism game (note the similarity to the definition of comultiplication in a quantum
permutation group given in Section 2.2). In terms of the game, this construction corresponds to
playing as follows: upon receiving x ∈ V (X), the player acts as if they were playing the (X,Y )-
isomorphism game and obtains some outcome y ∈ V (Y ). The player then acts as if y was their
input for the (Y,Z)-isomorphism game and obtains some output z ∈ V (Z) which they send to the
verifier. Thinking in terms of the gameplay like this can sometimes provide one with good intuition
for quantum isomorphisms.

An analogous characterization for quantum commuting isomorphism was also given in [2]:

Theorem 2.2. Let X and Y be graphs. Then X ∼=qc Y if and only if there exists a unital C*-
algebra A that admits a faithful tracial state, and projections Pxy ∈ A for x ∈ V (X), y ∈ V (Y )
which satisfy Conditions (1)–(3) of Theorem 2.1.

In Theorem 2.2 and in the following, we assume a unital C*-algebra to be nontrivial, i.e., such
that its unit 1 is different from the zero element. A state on a unital C*-algebra A is a linear
functional s : A → C such that s(1) = 1 and s(A∗A) ≥ 0 for all A ∈ A. The state is tracial if
s(AB) = s(BA) for all A,B ∈ A. The prototypical example of a tracial state is the unique tracial
state on the algebra Mn(C) of n× n complex matrices given by s(A) = Tr(A)/n.

In [2], it was noted that the projections from Theorem 2.1 could be used as the entries of a
matrix U = (Pxy) ∈Mn(A) that will satisfy AU = UB where A and B are the adjacency matrices
of X and Y respectively. Here and in the following, we canonically regard Mn(A) for a unital C*-
algebra A as an Mn(C)-bimodule. In other words, if A = (aij) ∈ Mn(A) and B = (bij) ∈ Mn(C),
then AB ∈Mn(A) is the matrix whose (i, j)-entry is

∑n
i=1 aikbkj , and BA ∈Mn(A) is the matrix

whose (i, j)-entry is
∑n

i=1 bikakj .
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It was also shown in [2] that the matrix U described above will necessarily be unitary. This
motivated the definition of what they called a “projective permutation matrix”, also known as
magic unitary in the quantum group literature:

Definition 2.3. A matrix U = (uij)i,j∈[n] whose entries uij are elements of some unital C*-algebra
is a magic unitary if uij is a projection for all i, j ∈ [n] and

∑
j′ uij′ = 1 =

∑
i′ ui′j for all i, j ∈ [n].

Any such matrix will be unitary, i.e., UU∗ = 1 = U∗U .

Note that in the case where the C*-algebra is C, a magic unitary is simply a permutation matrix.
The notion of projective permutation matrices/magic unitaries allows for the following formulation
of quantum tensor isomorphism that was given in [2]:

Theorem 2.4. Let X and Y be graphs with adjacency matrices A and B respectively. Then
X ∼=qt Y if and only if there exists a magic unitary U = (uxy)x∈V (X),y∈V (Y ) whose entries are
operators on a finite-dimensional Hilbert space such that AU = UB.

Since any C*-algebra admits a representation as an algebra of operators on a Hilbert space,
one can equivalently state Theorem 2.4 by saying that two graphs are quantum tensor isomorphic
if and only if there exists a unital C*-algebra A that has a finite dimensional representation and
magic unitary U = (uxy)x∈V (X),y∈V (Y ) with entries from A such that AU = UB. Though it was
not explicitly written in [2], the same reasoning allows for an analogous formulation for quantum
commuting isomorphism:

Theorem 2.5. Let X and Y be graphs with adjacency matrices A and B respectively. Then
X ∼=qc Y if and only if there exists a magic unitary U = (uxy) whose entries are elements of a
unital C*-algebra that admits a faithful tracial state such that AU = UB.

The two theorems above are quantum analogs of the fact that graphs X and Y are isomorphic
if and only if there exists a permutation matrix P such that AP = PB.

Remark 2.6. The faithfulness of the tracial state in Theorems 2.2 and 2.5 is not really necessary.
This is because given a (possibly not faithful) tracial state τ on a C∗-algebra A, one can always
replace A with its image under the GNS representation associated with τ , which is endowed with a
canonical faithful (vector) state.

2.2 Quantum permutation groups

Here we provide some background on quantum groups. Though we aim to give a brief but thorough
summary of quantum groups, the reader is not expected have have a mastery of these concepts in
order to understand this work. The essential points are the definitions of the quantum symmetric
group, the quantum automorphism group of a graph, and quantum permutation groups in general,
along with their comultiplications, antipodes, counits, and universal actions.

We adopt the following notation. For subsets X,Y of a C*-algebra A, we let XY be the set
{xy : x ∈ X, y ∈ Y }, and [X] be the closure of the linear span of X inside A. We denote by A⊗B
the minimal tensor product of C*-algebras A and B. Concretely, if A,B are realized as algebras
of operators on a Hilbert space H, then A ⊗ B can be identified with the algebra of operators on
H⊗H generated by the elementary tensors of the form a⊗ b for a ∈ A and b ∈ B.

A compact quantum group G is given by a unital C*-algebra C(G) together with a unital *-
homomorphism ∆ : C(G)→ C(G)⊗C(G) called comultiplication satisfying the following identities:
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� (∆⊗ id) ◦∆ = (id⊗∆) ◦∆;

� [∆ (C(G)) (1⊗ C(G))] = [∆ (C(G)) (C(G)⊗ 1)] = C(G)⊗ C (G).

Any (classical) compact group G gives rise canonically to a compact quantum group, where
C (G) is the C*-algebra of continuous complex-valued functions on G, and the comultiplication ∆
is the function induced by the multiplication operation by duality. In formulas, one has that, under
the identification of C(G)⊗C(G) with C(G×G), ∆(f) is the function G×G→ C, (s, t) 7→ f(st).
The compact quantum groups G that arise in this fashion are precisely those for which the C*-
algebra C(G) is commutative. In the general quantum setting, the compact quantum G does not
actually exist as a set of points, but it is defined implicitly by the unital C*-algebra C(G) together
with its comultiplication.

As a further example, one can consider a discrete group Γ, and let C∗(Γ) be the full group
C*-algebra. If one denotes by uγ for γ ∈ Γ the canonical generators of C∗(Γ) one can define a
comultiplication on C∗ (Γ) by

∆ (uγ) = uγ ⊗ uγ .

This defines a compact quantum group, which is the dual compact quantum group Γ̂ of the discrete
group Γ.

One can show that any compact quantum group G is endowed with a canonical state h : C(G)→
C, called the Haar state, which is invariant in the sense that (h⊗ id)◦∆ = (id⊗ h)◦∆ = h (where
we identify C with the scalar multiples of the identity in C(G)). In the case of classical groups, this
corresponds to integration with respect to the Haar probability measure.

A (unitary) representation of dimension n of a compact quantum group G is an n × n matrix
u = [uij ] ∈ Mn (C(G)) such that ∆ (uij) =

∑n
k=1 uik ⊗ ukj . One can also regard u as a linear

map u : Cn → Cn ⊗ C (G) defined by u (ei) =
∑n

j=1 ej ⊗ uji. A subspace K of Cn is invariant for
the representation u of G if u maps K to K ⊗ C(G). A finite-dimensional unitary representation
of G is called irreducible if it has no nontrivial invariant subspace. Every (finite-dimensional)
representation of G can be written as a direct sum of irreducible representations. We will denote
by Rep(G) the set of finite-dimensional unitary representations of G, and by Irr(G) ⊂ Rep(G) the
set of irreducible representations of G. For λ ∈ Rep(G) we let dλ be the corresponding dimension,
and uλ ∈Mdλ(C(G)) be the matrix defining the representation. The matrix coefficients of a unitary
representation λ of G are the elements of C(G) of the form uλξ,η = (id⊗ ξ∗)uλ(η)for ξ, η ∈ Cdλ .

One then lets O(G) be the subset of C(G) given by{
uλξ,η : λ ∈ Rep (G) , ξ, η ∈ Cdλ

}
,

which is a dense self-adjoint subalgebra of C(G) invariant under the comultiplication. If e1, . . . , edλ
is the canonical basis of Cdλ , then the comultiplication is defined by ∆(uλξ,η) = uλξ,e1 ⊗ uλe1,η +

· · ·+ uλξ,edλ
⊗ uλedλ ,η. The *-algebra O (G) is furthermore endowed with a canonical Hopf *-algebra

structure, which is determined, together with the comultiplication, by the counit ε : O(G)→ C and
antipode maps S : O(G)→ O(G)op given by ε(uλξ,η) = 〈ξ, η〉 and S(uλξ,η) = (uλη,ξ)

∗ for λ ∈ Rep(G)

and ξ, η ∈ Hλ. This means that ε is a *-homomorphism and S is a conjugate linear unital anti-
homomorphism satisfying

m ◦ (S ⊗ id) ◦∆ = m ◦ (id⊗ S) ◦∆ = ε
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and
(ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id,

where m : O (G) ⊗ O (G) → O (G) is the linear map induced by mulitplication, and where we
identify C with the scalar multiples of the identity within C (G).

In the case of C (G) for a classical group G, one has that C (G) = O (G), and the counit and
antipode are given by ε (f) = f (1G) and S (f) = f ◦ inv, where 1G is the identity element of G and
inv is the function from G to itself mapping each element to its inverse. A complete reference for
the theory of compact quantum groups can be found in [27].

Fix a finite set X. The quantum symmetric group on X, denoted QX , is a compact quantum
group defined by Wang [28], and can be regarded as the quantum analog of the group SX of
permutations ofX. By definition, such a compact quantum group is defined by letting C(QX) be the
universal C*-algebra generated by elements uxy for x, y ∈ X, subject to the relation that the matrix
U = (uxy) be a magic unitary, with comultiplication defined by setting ∆ (uxz) =

∑
y∈X uxy ⊗ uyz.

In this case, one has that C(QX) is the universal C*-algebra generated by O(QX), and the antipode
and counit extends from O(QX) to bounded linear maps on C(QX) defined by S (uxy) = uyx and
ε (uxy) = δxy. In this case, the antipode is an involutive *-linear map, which by definition means
that O(QX) is a Hopf *-algebra of Kac type. For comparison, one should consider the C*-algebra
C(SX) associated with the symmetric group SX . This can be seen as the universal C*-algebra
generated by elements uxy for x, y ∈ X subject to the relations that U = (uxy) be a magic unitary
with pairwise commuting entries. In this case, the canonical Hopf *-algebra structure is defined by
the same formulas as in the case of QX . The canonical generators uxy of C(SX) can be identified
with the elements given by the characteristic functions of the set of permutations mapping x to y
for x, y ∈ X. When X is a finite set with n elements, we also denote SX with Sn and QX with Qn.

The quantum symmetric group QX admits a natural universal property. Recall that a compact
quantum space X is given by a unital C*-algebra C (X). An action of a compact quantum group
G on X is given by a *-homomorphism α : C (X)→ C (X)⊗ C(G) satisfying:

� (α⊗ id) ◦ α = (id⊗∆) ◦ α;

� [(1⊗ C(G))α (C(X))] = C (X)⊗ C(G).

Given such an action of G on X, the quantum orbit space X/G is by definition the compact
quantum space such that C(X/G) is the C*-subalgebra C (X)G = {a ∈ C (X) : α (a) = a⊗ 1} of
C (X) (fixed point algebra). There is a canonical conditional expectation (nondegenerate C (X/G)-
bimodular completely positive map) EX/G : C (X) → C (X/G) given by EX/G = (id⊗ h) ◦ α. The
action α is called transitive or homogeneous if C (X/G) = C (X). More information concerning
actions of compact quantum groups on compact quantum spaces can be found in [16].

Any classical compact Hausdorff space X can in particular be regarded as a compact quantum
space, by considering the algebra C (X) of continuous complex-valued functions on X. If G is a
classical compact group, then any classical action of G on X yields an action as defined above,
and all the actions arise in this fashion. In this case, C (X/G) coincides with the algebra of
continuous functions on the quotient space X/G defined in the usual way as the space of G-
orbits endowed with the quotient topology. Furthermore, the canonical conditional expectation
EX/G : C (X)→ C (X/G) is given by averaging the G-action with respect to the Haar probability
measure on G.
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In the particular case when X is a finite space, one has that C (X) ∼= CX . The symmetric group
SX admits a canonical action on X which has the following universal property: for every compact
group G and action of G on X, there exists a unique group morphism G→ SX that intertwines the
actions. Similarly, the quantum symmetric group QX admits a canonical action αu on X, defined
by αu : CX → CX ⊗C (QX), ex 7→

∑
y ey ⊗ uyx, where (ex)x∈X denotes the canonical basis of CX .

As shown in [28], such an action satisfies an analogous universal property within the class of actions
of compact quantum groups on X. If G is a compact quantum group, and α is an action of G on X,
then there exists a quantum group morphism from G to QX that intertwines α and αu, i.e., a unital
*-homomorphism ϕ : C(QX)→ C(G) such that ∆ ◦ ϕ = (ϕ⊗ ϕ) ◦∆ and α ◦ ϕ = (id⊗ ϕ) ◦ αu.

One can generalize such a construction to define the quantum automorphism groups of graphs.
Suppose now that X is a finite graph with vertex set V (X) and adjacency matrix A. The (classical)
automorphism group Aut (X) of X is the subgroup of SV (X) consisting of permutations that map
pairs of adjacent vertices in X to pairs of adjacent vertices in X. One can see that the algebra
C (Aut (X)) of continuous functions on Aut (X) can be regarded as the universal C*-algebra gener-
ated by elements uxy for x, y ∈ V (X) subject to the relation that U = (uxy) is a magic unitary with
pairwise commuting entries such that AU = UA. The latter relation is equivalent to uxyux′y′ = 0
for vertices x, x′, y, y′ of X such that rel(x, x′) 6= rel(y, y′), as shown in [17].

The quantum automorphism group of X, which we denote by Qut(X), is a compact quantum
group defined by letting C (Qut (X)) be the universal C*-algebra generated by elements uxy for
x, y ∈ V (X), subject to the relations that U = (uxy) is a magic unitary such that AU = UA, with
comultiplication given by ∆ (uxz) =

∑
y∈V (X) uxy ⊗ uyz for x, z ∈ V (X). Clearly, in the particular

case when X is the graph on n vertices without edges, Qut (X) recovers the quantum symmetric
group QV (X). We also denote C (Qut (X)) by A (X), and call it the quantum symmetry algebra of
the graph X. Again, in this case one has that C (Qut (X)) is the universal C*-algebra generated
by O (Qut (X)), and the counit and antipode of O (Qut (X)) extends to bounded linear maps on
C (Qut (X)). Furthermore, in this case the antipode is a *-linear map, i.e., Qut (X) is of Kac type.
In particular, this implies that the Haar state on Qut (X) is tracial.

The canonical surjective unital *-homomorphism from C(QV (X)) to C (Qut (X)) commutes
with the comultiplication, and witnesses that Qut (X) is a quantum subgroup of QV (X). For similar
reasons, the (classical) automorphism group Aut (X) is a quantum subgroup of Qut (X). More
generally, given a finite set X, we say that a compact quantum group G is a quantum permutation
group acting on X if it is a closed quantum subgroup of QX , i.e., there exists a surjective unital
*-homomorphism C(QX) → C (G) that is covariant with respect to the coproducts of QX and G.
In this case, we call the image of the canonical generators of C(QX) inside C(G) the canonical
generators of C(G). We remark that these form a magic unitary u = (uxy), which we call the
magic unitary generating C(G). The universal action u of G on X is the action of G on X given
by u : CX → CX ⊗ C(G), ex 7→

∑
y∈X ey ⊗ uyx.

One says that a finite graph X has no quantum symmetry if Aut (X) = Qut (X), i.e., the
canonical unital *-homomorphism from C (Qut (X)) onto C (Aut (X)) is injective. This is equiv-
alent to the assertion that C (Qut (X)) is a commutative C*-algebra. It is shown in [28] that, for
n ∈ {1, 2, 3} the graph with no edges and n vertices has no quantum symmetry, i.e., Qn = Sn.
However, already for n = 4 one has that the group Qn is not classical, and in fact C(Qn) is non-
commutative and infinite-dimensional. For n ≤ 3, the lack of any quantum symmetry follows from
the fact that the entries of the magic unitary necessarily commute. This is trivial for n = 1, and it
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remains straighforward for n = 2 since any 2× 2 magic unitary has the form(
p 1− p

1− p p

)
For n = 3, most papers claim that the proof is “tricky” and makes use of the Fourier transform
over Z3 and the universal action. However, here we present a short elementary proof. Another
elementary, but longer proof, can be found in [21], where it is shown that the operators used to
“quantum 3-color” the endpoints of an edge must commute.

Suppose that U = (uij)i,j∈[3] is a magic unitary. It suffices to show that uij and u`k commute
for i 6= ` and j 6= k, because all other pairs must commute (their product in either direction is zero)
by the definition of magic unitaries. Since we can permute the rows and columns of a magic unitary
independently and always produce a magic unitary, it suffices to show that u11u22 = u22u11. We
have that

u11u22 = u11u22(u11 + u12 + u13) = u11u22u11 + u11u22u13,

but
u11u22u13 = u11(1− u21 − u23)u13 = u11u13 = 0.

Therefore u11u22 = u11u22u11 and thus u22u11 = u11u22 by applying ∗ to this equation.

2.3 Coherent configurations/algebras

A coherent configuration [20] on a set X is a partition R = {Ri : i ∈ I} of X×X into the relations
(or classes) Ri satisfying the following:

1. There is a subset D ⊆ I of the index set such that {Rd : d ∈ D} is a partition of the diagonal
{(x, x) : x ∈ X}. These are called the diagonal relations.

2. For each Ri, its converse {(y, x) : (x, y) ∈ Ri} is a relation, say Ri′ , in R. Note that Ri′ = Ri
is possible.

3. For all i, j, k ∈ I and any (x, z) ∈ Rk, the number of y ∈ X such that (x, y) ∈ Ri and
(y, z) ∈ Rj is a constant pkij that does not depend on x and z. We refer to the pkij as the
intersection numbers of R.

The motivation here is that the orbits on X ×X of any permutation group acting on X gives
a coherent configuration, but the converse does not necessarily hold.

Given any coherent configuration, one can construct the matrices Ai for i ∈ I such that

Aix,y =

{
1 if (x, y) ∈ Ri
0 otherwise.

We will refer to the matrices Ai as the characteristic matrices of the configuration. One can consider
the linear span of the matrices Ai, and it turns out that this will be a coherent algebra: a self-
adjoint, unital algebra containing the all ones matrix and which is closed under Schur (entrywise)
product. It is easy to see that most of these properties follow from the definition of a coherent
configuration, with the possible exception of the fact that the span of the Ai is indeed closed under
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matrix multiplication. This closure follows from property (3) above which can be written in terms
of the characteristic matrices as AiAj =

∑
k p

k
ijA

k for all i, j ∈ I.
Conversely, it is a short exercise to show that any coherent algebra necessarily has a unique

basis of 01-matrices (this follows from being closed under Schur product) which define a partition
of X × X (since a coherent algebra contains the all ones matrix). It is then straightforward to
check that this partition satisfies the conditions of being a coherent configuration. Thus, coherent
configurations and coherent algebras are really just two perspectives on the same idea.

An important case of coherent configurations/algebras is the coherent algebra of a graph. It is
not difficult to see that the intersection of two coherent algebras is again a coherent algebra. In
terms of coherent configurations, the intersection of the algebras corresponds to the join (in the
sense of partitions) of the two initial coherent configurations. Because of this, there is a unique
smallest coherent algebra containing the adjacency matrix of a given graph, and this is called the
coherent algebra of the graph. In terms of configurations, this is the coarsest coherent configuration
such that the edge set of the graph is a union of its relations. We remark that this coherent algebra
can be computed in polynomial time via the (2-dimensional) Weisfeiler-Leman method [29].

3 Quantum orbits and orbitals

Given a group Γ acting on a finite set X via the action (γ, x) 7→ γ · x, one can define its orbit
equivalence relation ∼ on X as x ∼ y if there exists γ ∈ Γ such that γ ·x = y. It is easy to see that
this is an equivalence relation whose equivalence classes are the orbits of Γ. Moreover, the action
of Γ on X induces diagonal action on X ×X given by γ · (x, y) = (γ · x, γ · y). One can similarly
define the orbits of this action, and these are often referred to as the orbitals of the Γ-action on
X. We aim to define and investigate analogs of orbits and orbitals for the quantum automorphism
groups of graphs.

Definition 3.1. Suppose X is a finite set and Q is a quantum permutation group acting on X.
Let U = (uxy)x,y∈X be a magic unitary defining C(Q). Define the relations ∼1 and ∼2 on X and
X ×X respectively as follows:

� x ∼1 y if uxy 6= 0;

� (x, x′) ∼2 (y, y′) if uxyux′y′ 6= 0.

Of course, x ∼1 y is meant to be analogous to there being some permutation that maps x to
y, and similarly (x, x′) ∼2 (y, y′) is meant to be analogous to there being some permutation that
maps x to y while also mapping x′ to y′. We will see that the analogy is fairly strong.

We will show that ∼1 and ∼2 are equivalence relations, and then define the orbits/orbitals of
Q on X as their equivalence classes. In the course of the proof, we will use the Hopf *-algebra
structure of O(Q) and the fact that the canonical generators uxy belong to O(Q).

Lemma 3.2. Given a quantum permutation group Q acting on a finite set X, the relation ∼1

defined above is an equivalence relation.

Proof. To see that ∼1 is reflexive, recall that the counit, ε, of a quantum permutation group is
given by ε(uxy) = δxy, and is a ∗-homomorphism. Therefore, ε(uxx) = 1 implies that uxx 6= 0.
Therefore x ∼1 x.

12



To see that ∼1 is symmetric, recall that the antipode S of Q is given by S(uxy) = uyx, and it
is an involutive anti-homomorphism. Therefore, if uxy 6= 0, then S2(uxy) = uxy 6= 0 implies that
uyx = S(uxy) 6= 0. In other words, x ∼1 y implies that y ∼1 x.

Now suppose that uxy 6= 0 and uyz 6= 0. Recall that the comultiplication ∆ : C(Q)→ C(Q)⊗
C(Q) of Q is a ∗-homomorphism defined as ∆(uxz) =

∑
w uxw ⊗ uwz. Thus

(uxy ⊗ uyz)∆(uxz) = (uxy ⊗ uyz)
∑
w

uxw ⊗ uwz

=
∑
w

uxyuxw ⊗ uyzuwz = uxy ⊗ uyz 6= 0.

Therefore ∆(uxz) 6= 0 and so uxz 6= 0. This shows that if x ∼1 y and y ∼1 z, then x ∼1 z, i.e., the
relation ∼1 is transitive.

Altogether, the above implies that ∼1 is an equivalence relation as desired.

The above lemma allows us to give the following definition:

Definition 3.3. Given a quantum permutation group Q acting on a finite set X, the orbits of Q
are the equivalence classes of the relation ∼1 defined above. In the case where Q is the quantum
automorphism group of a graph X, we will sometimes refer to its orbits as the quantum orbits of
X, in order to distinguish them from the orbits of its (classical) automorphism group.

We remark that orbits of quantum permutation groups were independently introduced and
studied by Banica and Freslon in the recent paper [8]. To our knowledge, this is the first time that
orbitals have been considered in the quantum setting.

Now we will show that ∼2 is an equivalence relation as we did for ∼1.

Lemma 3.4. Given a quantum permutation group Q acting on a finite set X, the relation ∼2

defined above is an equivalence relation.

Proof. Since ε(uxxuyy) = ε(uxx)ε(uyy) = 1 · 1 = 1, we have that uxxuyy 6= 0. Therefore (x, y) ∼2

(x, y), i.e., ∼2 is reflexive.
If (x, x′) ∼2 (y, y′), then uxyux′y′ 6= 0 and hence ux′y′uxy = (uxyux′y′)

∗ 6= 0. Since the antipode
S is an involution, this implies that

0 6= S(ux′y′uxy) = uyxuy′x′

and thus (y, y′) ∼2 (x, x′). So we have shown that ∼2 is symmetric.
Now suppose that (x, x′) ∼2 (y, y′) and (y, y′) ∼2 (z, z′), i.e., that uxyux′y′ 6= 0 6= uyzuy′z′ . Then

∆(uxzux′z′) = ∆(uxz)∆(ux′z′) =

(∑
w

uxw ⊗ uwz

)(∑
w′

ux′w′ ⊗ uw′z′
)

=
∑
w,w′

uxwux′w′ ⊗ uwzuw′z′ .

Therefore,

(uxy ⊗ uyz)∆(uxzux′z′)(ux′y′ ⊗ uy′z′) =
∑
w,w′

uxyuxwux′w′ux′y′ ⊗ uyzuwzuw′z′uy′z′

= uxyux′y′ ⊗ uyzuy′z′ 6= 0
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since each factor in the tensor product is nonzero by assumption. This implies that ∆(uxzux′z′) 6= 0
and therefore uxzux′z′ 6= 0, i.e., (x, x′) ∼2 (z, z′). This shows that ∼2 is transitive and thus we have
shown it is an equivalence relation.

Now we can consider the following:

Definition 3.5. Given a quantum permutation group Q acting on a finite set X, the orbitals of
Q are the equivalence classes of the relation ∼2 defined above. In the case where Q is the quantum
automorphism group of a graph X, we will sometimes refer to its orbitals as the quantum orbitals
of X.

Remark 3.6. Using the fact that u2xy = uxy, we have that the relation ∼1 “agrees” with ∼2, when
X is identified with the diagonal of X ×X. Since the diagonal is invariant with respect to ∼2, one
can say that the orbits are precisely the orbitals contained in the diagonal.

3.1 An equivalent definition

In this section, we verify that the notion of quantum orbits from the previous subsection coincides
with the usual notion of quantum orbits for an action of a compact quantum group on a compact
(quantum) space. This has also been shown in [8]. Here we additionally provide an analogous
characterization of the orbitals. This might be surprising, as in general the “quantum orbital
space” of a compact quantum group action is not well defined, as there does not exist in general a
quantum analog of the “diagonal action” associated with a given action.

LetQ be a quantum permutation group on a setX, and let U = (uij) be the magic unitary whose
entries are the canonical generators of C(Q). Recall that the universal action u : CX → CX⊗C(Q)
of Q is the linear map defined on the standard basis vectors as

u(ei) =
∑
j∈X

ej ⊗ uji.

The corresponding quantum orbit space is given by the selfadjoint subalgebra (CX)Q of CX
defined as those elements f ∈ CX such that u(f) = f ⊗ 1. We say that (CX)Q is trivial if it
only contains the scalar multiples of 1 ∈ CX (the vector with all entries equal to one). As u is a
∗-homomorphism, (CX)Q is a C*-subalgebra of CX , and therefore has a unique basis of 01-vectors
which corresponds to a partition of X. We will show that the classes of this partition are precisely
the orbits of Q as defined in the previous section. We note that (CX)Q can be also seen as the
space Hom(1, u) of intertwiners from the trivial representation 1 to u.

Lemma 3.7. Let Q be a quantum permutation group on a set X, with universal action u. Then
u(f) = f ⊗ 1 is equivalent to f being constant on the orbits of Q.

Proof. Letting fi be the ith component of f , we have that

u(f) =
∑
i

fiu(ei) =
∑
i,j

fiej ⊗ uji =
∑
j

ej ⊗

(∑
i

fiuji

)
;

f ⊗ 1 =
∑
j

ej ⊗ fj1.
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These two expressions are equal if and only if
∑

i fiuji = fj1 for all j ∈ X. Multiplying both sides
of this equation by ujk for some fixed k ∈ X, we see that a necessary condition for it holding is
that fkujk = fjujk for all k ∈ X. This implies that fk = fj must hold for all j, k such that ujk 6= 0,
i.e., that f must be constant on the orbits of Q.

On the other hand, if f is constant on the orbits of Q, then fi = fj unless uji = 0. Therefore,∑
i fiuji =

∑
i fjuji = fj

∑
i uji = fj1 for all j ∈ X. Thus we have proven the lemma.

As a special case of the above, we see that the notion of transitivity of a quantum permutation
group coincides with the more combinatorial definition of there being a single orbit.

Corollary 3.8. Let Q be a quantum permutation group acting on a finite set X. The following
are equivalent:

1. Q acts transitively on X, i.e., the fixed point algebra (CX)Q is trivial;

2. Q has only one orbit on X;

3. there exists x ∈ X such that uxy 6= 0 for all y ∈ X;

4. uxy 6= 0 for all x, y ∈ X.

We can also prove an analog of Lemma 3.7 for orbitals as well. For this, we need to consider
the tensor square of the representation u, which is the representation u⊗2 of Q on CX ⊗CX defined
on the standard basis elements by:

u⊗2(ei ⊗ ei′) =
∑
j,j′

(ej ⊗ ej′)⊗ ujiuj′i′ .

The space of fixed points of u⊗2 is defined in the same manner as for u:

Hom(1, u⊗2) = {f ∈ CX ⊗ CX : u⊗2(f) = f ⊗ 1}.

Such a representation can be seen as the analog of the diagonal action, even though u⊗2 is not
in general an action. Nonetheless, we will show that Hom(1, u⊗2) is a selfadjoint subalgebra of
CX ⊗ CX , whose corresponding equivalence relation on X ×X has the orbitals as classes.

Lemma 3.9. Let Q be a quantum permutation group on a set X, with universal action u. Then
u⊗2(f) = f ⊗ 1 if and only if f is constant on the orbitals of Q.

Proof. We have that

u⊗2(f) =
∑
x,x′

fxx′u(ex ⊗ ex′) =
∑

x,x′,y,y′

fxx′(ey ⊗ ey′)⊗ uyxuy′x′ =
∑
y,y′

(ey ⊗ ey′)⊗

∑
x,x′

fxx′uyxuy′x′

 ;

f ⊗ 1 =
∑
y,y′

(ey ⊗ ey′)⊗ fyy′1.

These two expressions are equal if and only if
∑

x,x′ fxx′uyxuy′x′ = fyy′1 for all y, y′ ∈ X. Multi-
plying both sides of this equation on the left by uyz and on the right by uy′z′ for some z, z′ ∈ X,
we see that a necessary condition for it to hold is that fzz′uyzuy′z′ = fyy′uyzuy′z′ for all z, z′ ∈ X.
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This implies that fzz′ = fyy′ whenever uyzuy′z′ 6= 0, i.e., whenever (y, y′) and (z, z′) are in the same
orbital of Q. This proves that if u⊗2(f) = f ⊗ 1, then f is constant on the orbitals of Q.

Conversely, if f is constant on the orbitals of Q, then fxx′ = fyy′ whenever uyxuy′x′ 6= 0.
Therefore, ∑

x,x′

fxx′uyxuy′x′ =
∑
x,x′

fyy′uyxuy′x′ = fyy′
∑
x,x′

uyxuy′x′ = fyy′1

as desired.

3.2 A coherent configuration

Given a group Γ acting on a set X, it is well known that the orbitals of Γ form a coherent configu-
ration on X. Indeed, this was part of the original motivation for studying coherent configurations.
Here we will show that the same holds for the orbitals of a quantum permutation group.

Theorem 3.10. Let Q be a quantum permutation group Q acting on a set X, and let U =
(uxy)x,y∈X be the magic unitary defining Q. Then for a scalar matrix M we have that MU = UM
if and only if M is constant on the orbitals of Q. As a consequence, the orbitals of Q form a
coherent configuration.

Proof. Consider the canonical linear isomorphism from CX⊗CX to End(CX) taking ex⊗ey 7→ exe
T
y .

By Frobenius reciprocity this restricts to a linear isomorphism from Hom(1, u⊗2) to EndQ(U) =
{M ∈ End(CX) : MU = UM}. By Lemma 3.9, it immediately follows that M ∈ EndQ(U) if and
only if M is constant on the orbitals of Q. Thus we have proven the first claim.

For the second claim, first note that if M,N ∈ EndQ(U), then (MN)U = MUN = U(MN)
and thus MN ∈ EndQ(U). Moreover, EndQ(U) is obviously closed under linear combinations and
contains the identity, thus EndQ(U) is a unital algebra. Next, a consequence of the first claim
is that EndQ(U) is the linear span of the characteristic matrices of the orbitals of Q. As these
are 01-matrices, this implies that EndQ(U) is closed under Schur product. We also have that the
constant matrix J is necessarily constant on the orbitals of Q, and thus J ∈ EndQ(U). Lastly,
if M ∈ EndQ(U), then M∗U = (U∗M)∗ = (U∗MUU∗)∗ = (U∗UMU∗)∗ = (MU∗)∗ = UM∗, i.e.,
M∗ ∈ EndQ(U). Together these properties show that EndQ(U) is a coherent algebra, and thus its
unique basis of 01-matrices form the characteristic matrices of a coherent configuration. But by
the first claim we have that this coherent configuration is precisely the set of orbitals of Q.

Due to the above theorem, we give the following definition:

Definition 3.11. Let X be a graph with quantum automorphism group Qut(X). We define the
quantum orbital configuration/algebra of X as the coherent configuration/algebra produced by the
orbitals of Qut(X) acting on V (X).

We will similarly refer to the coherent configuration/algebra produced by the orbitals of Aut(X)
as the orbital configuration/algebra of X. We note that the orbital configuration is a (possibly triv-
ial) refinement of the quantum orbital configuration or, equivalently, the quantum orbital algebra is
a subalgebra of the orbital algebra. This follows from the fact that Aut(X) is a quantum subgroup
of Qut(X). More concretely, for any σ ∈ Aut(X) the mapping uxσ(x) 7→ 1 and uxy 7→ 0 for all
y 6= σ(x) gives a representation of the quantum symmetry algebra of X. Thus if σ(x) = y and
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σ(x′) = y′, then uxyux′y′ 6= 0 since its image is nonzero in this representation. Therefore, if (x, x′)
and (y, y′) are in the same (classical) orbital of X, they are in the same quantum orbital as well.

We remark here that the coherent configuration of a graph can “detect” many properties of the
graph. More precisely, the classes of the configuration can detect properties of the pairs of vertices
they correspond to. For instance, if X is a graph with adjacency matrix A, then for all ` ∈ N the
power A` of A is in the coherent algebra of X, and the entries of A` record the number of walks of
length ` between pairs of vertices. Thus if two pairs of vertices have a different number of walks of
length ` between them, then they must be in different classes of the coherent configuration (since
A` must lie in the span of the characteristic matrices of the classes). It is not too hard to see
that this also means that pairs of vertices at different distances cannot be in the same class, and
one can similarly find many other properties of pairs of vertices that are detected by the coherent
configuration of the graph. For instance, this implies the adjacency matrix of the d-distance graph
of X is contained in its coherent algebra for all d. Since this holds for the coherent configuration
of X, it also holds for the quantum orbital configuration of X. It is an interesting question what
additional properties are detected by the latter configuration.

We also remark that, in the classical case, the permutations in the automorphism group of
a graph can be represented as permutation matrices. These permutation matrices are exactly
those that commute with the adjacency matrix of the graph, but they will also commute with the
characteristic matrices of the orbitals of the automorphism group. In fact, the orbital algebra of X
is exactly the commutant of Aut(X) when considered as a subgroup of the permutation matrices.
Of course Theorem 3.10 represents the quantum analog of this fact.

We cannot help but mention that Higman introduced coherent algebras in order to ‘do group
theory without groups’, and here we are constructing coherent algebras from quantum groups,
which are another approach to studying group theory without groups.

3.3 Using the coherent algebra of a graph

One purpose of the Theorem 3.10 is to provide more information about the quantum automorphism
group of a graph. However, one might argue that it could be difficult or impossible to determine
the quantum orbitals of a given graph, and so Theorem 3.10 may not be of much use. But, as we
mentioned previously, one can efficiently compute the coherent configuration of a graph. In this
section we will see that this is a useful tool for studying the quantum automorphism group of a
graph.

Recall from the end of Section 3.2, that the quantum orbital algebra of a graph X is a subalgebra
of the orbital algebra of X, i.e., the orbital configuration of X is a refinement of the quantum orbital
configuration of X. On the other hand, the quantum orbital algebra of a graph must contain its
adjacency matrix, since (x, x′) ∼2 (y, y′) (i.e. uxyux′y′ 6= 0) is not possible if one of the pairs form
an edge and the other does not. Therefore, the quantum orbital algebra of a graph X must contain
the coherent algebra of X, and thus the classes of the coherent configuration of X must be unions
of the orbitals of Qut(X). From this we obtain the following two corollaries:

Corollary 3.12. Let X be a graph with adjacency matrix A. Then a magic unitary U that com-
mutes with A also commutes with every element of the coherent algebra of X.

Corollary 3.13. Let X be a graph with adjacency matrix A. If U is a magic unitary that commutes
with A, then uxyux′y′ = 0 unless (x, x′) and (y, y′) are in the same class of the coherent configuration
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of X.

Using the second corollary above, we can show that almost all graphs have trivial quantum
automorphism group.

Theorem 3.14. Let X be a random graph on n vertices. The probability that X has nontrivial
quantum automorphism group goes to zero as n goes to infinity.

Proof. Let U be the magic unitary defining Qut(X). It is known (it follows from Theorem 4.1 of [3]
for instance) that almost all graphs have coherent algebras equal to the full matrix algebra. As
the coherent algebra of a graph is contained in its quantum orbital algebra, the latter is also the
full matrix algebra for almost all graphs. This implies that the magic unitary U defining Qut(X)
commutes with any scalar matrix and thus U = 1⊗1 by the double commutant theorem. It follows
that Qut(X) is trivial.

Though the above result is not surprising (it is well known that it holds for classical automor-
phisms), it is not immediately obvious how to prove this in the quantum case. Thus the above
theorem exhibits the usefulness of coherent configurations/algebras in the study of quantum per-
mutation groups. In Section 5, we will discuss a possible application of Theorem 3.10 for showing
that certain graphs have no quantum symmetry.

4 Quantum Isomorphism

In Section 2.1, we introduced the notions of quantum tensor isomorphism and quantum commuting
isomorphism. Here we will define a notion of quantum isomorphism that fits naturally with the
already existing notion of quantum automorphism.

Definition 4.1. We say that graphs X and Y with adjacency matrices A and B are quantum
isomorphic, and write X ∼=q Y , if there exists a Hilbert space H, a magic unitary U = (uxy) with
uxy ∈ B(H) for all x ∈ V (X), y ∈ V (Y ) such that AU = UB or, equivalently, uxyux′y′ = 0 if
rel(x, x′) 6= rel(y, y′).

Because of the correspondence between C∗-algebras and algebras of bounded linear operators
on a Hilbert space, the above is easily seen to be equivalent to the definition of quantum commuting
isomorphism given by Theorem 2.5, except without the requirement of a tracial state. Therefore,
X ∼=qc Y implies X ∼=q Y for any graphs X and Y . We have already mentioned that X ∼=qt Y ⇒
X ∼=qc Y , and so we have the following chain of implications:

X ∼= Y ⇒ X ∼=qt Y ⇒ X ∼=qc Y ⇒ X ∼=q Y.

The fact that the first two implications cannot be reversed was proven in [2]. In Section 4.2,
we will show that the last implication can be reversed, thus quantum isomorphism and quantum
commuting isomorphism are the same relation.

It also follows from the above that the non-isomorphic but quantum tensor isomorphic graphs
constructed in [2] provide us with examples of non-isomorphic but quantum isomorphic graphs. We
do not contribute anything more on this front, but we will see later that we can use these examples
to construct graphs which are quantum vertex transitive but not vertex transitive, answering a
question from the quantum permutation group literature. First, we will show that if two graphs
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are quantum isomorphic, then there is an isomorphism of their quantum orbital algebras that maps
the adjacency matrix of one to that of the other. This result is inspired by results in an upcoming
work [23] of Varvitsiotis and the second and third authors, in which they show that a certain
semidefinite relaxation of quantum tensor/commuting isomorphism is equivalent to the existence
of an isomorphism of the coherent algebras of two graphs which maps the adjacency matrix of one
to the other.

4.1 The Haar state

In this section, we will compute the value of the Haar state of a quantum permutation group on
products of pairs of generators. We will see that the value depends only on the sizes of the orbitals
of the quantum permutation groups.

Theorem 4.2. Let Q be a quantum permutation group on a set X. Let U = (uxy) be the magic
unitary defining C(Q) and let h denote the Haar state on C(Q). If R1, . . . , Rm ⊆ X ×X are the
orbitals of Q on X, then

h(uxyux′y′) =

{
1/|Ri| if (x, x′), (y, y′) ∈ Ri;
0 if (x, x′) 6∼2 (y, y′).

Proof. Note that the (x, x′) 6∼2 (y, y′) case is trivial since in this case uxyux′y′ = 0 by definition.
So suppose that (x, x′), (y, y′), (z, z′) ∈ Ri. We will show that h(uxyux′y′) = h(uxzux′z′), i.e.,

changing the second indices to another pair of vertices in the same orbital does not change the
value of h. Recall from Section 2.2 that (h⊗ id)∆ = (id⊗ h)∆ = h(·)1. Therefore, we have that

h(uxzux′z′)1 = (h⊗ id)∆(uxzux′z′) = (h⊗ id)∆(uxz)∆(ux′z′)

= (h⊗ id)

((∑
w∈X

uxw ⊗ uwz

)(∑
w′∈X

ux′w′ ⊗ uw′z′
))

= (h⊗ id)

 ∑
w,w′∈X

uxwux′w′ ⊗ uwzuw′z′


= (h⊗ id)

 ∑
(w,w′)∈Ri

uxwux′w′ ⊗ uwzuw′z′


=

∑
(w,w′)∈Ri

h(uxwux′w′)uwzuw′z′ .

Multiplying this equation on the left by uyz and on the right by uy′z′ , we obtain

h(uxzux′z′)uyzuy′z′ = h(uxyux′y′)uyzuy′z′ .

Since (y, y′), (z, z′) ∈ Ri, we have that uyzuy′z′ 6= 0, and therefore h(uxzux′z′) = h(uxyux′y′). This
shows that for (x, x′) ∈ Ri, we have that h(uxwux′w′) is constant for all (w,w′) ∈ Ri (and is zero
otherwise).
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Now, again fixing (x, x′)(y, y′) ∈ Ri, we have that

1 = h(1) = h

 ∑
w,w′∈X

uxwux′w′

 =
∑

w,w′∈X
h(uxwux′w′) =

∑
(w,w′)∈Ri

h(uxwux′w′) = |Ri|h(uxyux′y′).

Thus h(uxyux′y′) = 1/|Ri|, and (x, x′), (y, y′) were arbitrary elements of Ri so we are done.

As a consequence of the above and Remark 3.6, we have the following:

Corollary 4.3. Let Q be a quantum permutation group on a set X. Let U = (uxy) be the magic
unitary defining C(Q) and let h denote the Haar state on C(Q). If O1, . . . , Om ⊆ X are the orbits
of Q on X, then

h(uxy) =

{
1/|Oi| if x, y ∈ Oi;
0 if x 6∼1 y.

4.2 Quantum isomorphism and quantum commuting isomorphism are the same

In the beginning of Section 4, we noted that X ∼=qc Y implies that X ∼=q Y for any graphs X and
Y . Here we will show that this implication can be reversed, thus proving that these two relations
are equivalent.

Theorem 4.4. Let X and Y be graphs. Then X ∼=q Y if and only if X ∼=qc Y .

Proof. We only need to show that if X ∼=q Y , then X ∼=qc Y . So suppose that the former holds. By
taking complements if necessary, we may assume that X is connected. It follows from Corollary 4.7
that Y is also connected. Let Z = X ∪ Y be the disjoint union of X and Y . Also, let U = (uwz)
for w, z ∈ V (Z) be the magic unitary defining C(Qut(Z)). We will show that uxyux′x′′ = 0 for all
y ∈ V (Y ) and x, x′, x′′ ∈ V (X).

Since X is connected, the distance in Z between x, x′ ∈ V (X) is finite. On the other hand, there
is no path between y and x′′ in Z. This implies that (x, x′) and (y, x′′) cannot be in the same class
of the coherent configuration of Z (see the discussion at the end of Section 3.2). Since the classes
of the quantum orbital configuration are refinements of the classes of the coherent configuration,
we see that (x, x′) and (y, x′′) cannot be in the same orbital of Qut(Z). Therefore, uxyux′x′′ = 0 as
desired.

Now, for each x ∈ V (X), define the projection px =
∑

y∈V (Y ) uxy. We will show that px = px′

for all x, x′ ∈ V (X). From the above, we have that

px(1− px′) = px

 ∑
x′′∈V (X)

ux′x′′

 = 0.

So px = pxpx′ , and similarly we can show that px′ = pxpx′ . Thus px = px′ as desired. Similarly, we
can define py =

∑
x∈V (X) uxy, and these will all be equal. Next we want to show that px = py. We

have that
|V (X)|px =

∑
x∈V (X)

px =
∑

x∈V (X),y∈V (Y )

uxy =
∑

y∈V (Y )

py = |V (Y )|py.
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This implies that px is proportional to py, but since they are both projections, we must have that
px = py. Since all of these projections are equal, we will refer to them simply as p from now on.

Next, we want to show that p 6= 0. Since X ∼=q Y , we have that there are operators vxy for
x ∈ V (X), y ∈ V (Y ) on some Hilbert space such that the matrix V = (vxy) is a magic unitary
and vxyvx′y′ = 0 whenever rel(x, x′) 6= rel(y, y′). Then it is easy to see that mapping uxy to vxy
for x ∈ V (X), y ∈ V (Y ) and mapping all other uwz to zero is a representation of C(Qut(X)).
Moreover, in this representation, the element p is mapped to

∑
y∈V (Y ) vxy = 1. Since p is mapped

to a nonzero element in this representation, we have that p 6= 0 in C(Qut(Z)). Note that this
implies that for any x ∈ V (X), there exists some y ∈ V (Y ) such that x and y are in the same orbit
of Qut(Z).

Now let A be the C∗-subalgebra of C(Qut(Z)) generated by the elements uxy for x ∈ V (X),
y ∈ V (Y ). Note that p is the identity in A, since

uxyp = uxy
∑

y′∈V (Y )

uxy′ = u2xy = uxy,

and similarly puxy = uxy. This means that the matrix Û = (uxy) for x ∈ V (X), y ∈ V (Y ) is
a magic unitary over A. Moreover, we have that uxyux′y′ = 0 if rel(x, x′) 6= rel(y, y′), since this

was true in C(Qut(Z)). Thus, Û is a magic unitary such that AÛ = ÛB where A and B are the
adjacency matrices of X and Y respectively. This only shows that X ∼=q Y , which we had already
assumed, and so we still need to construct a tracial state on A.

Let h be the Haar state on C(Qut(Z)), and recall that this is tracial, i.e., h(ab) = h(ba) for all
a, b ∈ C(Qut(Z)). It is easy to see that the restriction of h to A satisfies all of the conditions of
being a tracial state on A, except that it may not evaluate to one on the identity p. Recall from
above that for any x ∈ V (X) there is some y ∈ V (Y ) such that x and y are in the same orbit of
Qut(Z). Thus, by definition of p and Corollary 4.3 we have that h(p) > 0, and so we can define
ĥ(·) = h(·)/h(p). This is our tracial state on A, and so by Theorem 2.5 and Remark 2.6 we are
done.

Note that in the above, the only place where we used the fact that X ∼=q Y was to assume
without loss of generality that X and Y are both connected and to show that p 6= 0. The latter
happens if and only if there exists x ∈ V (X) and y ∈ V (Y ) such that uxy 6= 0. Therefore, we
immediately have the following:

Theorem 4.5. Let X and Y be connected graphs. Then X ∼=qc Y if and only if there exists
x ∈ V (X) and y ∈ V (Y ) that are in the same orbit of Qut(X ∪ Y ).

Since any graph is either connected or has a connected complement, and connected graphs
can only be quantum isomorphic to connected graphs, the above reduces the question of quantum
isomorphism to the determination of the orbits of a quantum permutation group, which is exactly
analogous to the classical case.

4.3 Isomorphisms of coherent algebras

Given coherent algebras C and C′, an isomorphism Φ : C → C′ is a linear bijection which, for any
M,N ∈ C, satisfies

� Φ(MN) = Φ(M)Φ(N);

21



� Φ(M∗) = Φ(M)∗;

� Φ(M ◦N) = Φ(M) ◦ Φ(N), where ◦ denotes Schur product;

� Φ(I) = I and Φ(J) = J .

Consider the coherent configurations R = {Ri : i ∈ I} and R′ = {R′i : i ∈ I ′} corresponding to
C and C′. Suppose that R and R′ have intersection numbers pkij for i, j, k ∈ I and qkij for i, j, k ∈ I ′
respectively. It is well known and not too difficult to see that an isomorphism from C to C′ is

equivalent to a bijection f : I → I ′ such that pkij = q
f(k)
f(i)f(j) for all i, j, k ∈ I. The corresponding

isomorphism Φ will then map the characteristic matrix of Ri to that of R′f(i) for all i ∈ I.
It is obvious that isomorphic graphs have isomorphic orbital algebras. The isomorphism is

given by conjugation with a permutation matrix encoding the isomorphism of the two graphs.
However, the converse does not hold: there are graphs with isomorphic orbital algebras which are
not isomorphic themselves. An example would be the Paley and Peisert graphs of the same order.

Here we show that quantum isomorphic graphs have isomorphic quantum orbital algebras, in
analogy with the fact for isomorphic graphs.

Theorem 4.6. Suppose that X and Y are quantum isomorphic graphs with adjacency matrices A
and B. Then there exists an isomorphism Φ of their quantum orbital algebras such that Φ(A) = B.

Proof. Let R = {Ri : i ∈ I} and R′ = {R′i : i ∈ I ′} be the quantum orbital configurations of X
and Y respectively, with intersection numbers pkij and qkij . Let V = (vxy) be the magic unitary
witnessing the quantum isomorphism of X and Y . Assume that V (X) and V (Y ) are disjoint and
define a relation ∼v on (V (X)×V (X))∪(V (Y )×V (Y )) by (x, x′) ∼v (y, y′) if vxyvx′y′ 6= 0. We will
think of this relation as defining a bipartite graph W with parts V (X)× V (X) and V (Y )× V (Y ).
We will show that this relation gives rise to a bijection f : I → I ′ that provides us with the required
isomorphism.

First, we will use our quantum isomorphism of X and Y to construct a magic unitary that
commutes with A. Let U = (uyy′) for y, y′ ∈ V (Y ) be the magic unitary defining the quantum

symmetry algebra of Y . Consider the matrix V̂ = (v̂xx′) for x, x′ ∈ V (X) defined as

v̂xx′ =
∑

y,y′∈V (Y )

vxy ⊗ uyy′ ⊗ vx′y′ .

Intuitively, this is capturing the idea of composing an isomorphism from X to Y with an auto-
morphism of Y and then followed by an isomorphism from Y back to X. It is easy to see that
v̂xx′ = v̂∗xx′ for all x ∈ x′ ∈ V (X). Moreover,

v̂2xx′ =
∑

y,y′,w,w′∈V (Y )

vxyvxw ⊗ uyy′uww′ ⊗ vx′y′vx′w′ =
∑
y,y′

vxy ⊗ uyy′ ⊗ vx′y′ = v̂xx′ ,
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since vxyvxw = 0 unless w = y and vx′y′vx′w′ = 0 unless w′ = y′. We also have that∑
x′∈V (X)

v̂xx′ =
∑

x′∈V (X),y,y′∈V (Y )

vxy ⊗ uyy′ ⊗ vx′y′

=
∑

y,y′∈V (Y )

vxw ⊗ uyy′ ⊗

(∑
x′

vx′w

)

=
∑

y∈V (Y )

vxy ⊗

∑
y′

uyy′

⊗ 1

=
∑

y∈V (Y )

vxy ⊗ 1 = 1,

and similarly
∑

x v̂xx′ = 1. Thus V̂ is a magic unitary.
Now suppose that rel(x′, x′′) 6= rel(x∗, x∗∗). Then

v̂x′x∗ v̂x′′x∗∗ =
∑

y′,y∗,y′′,y∗∗∈V (Y )

vx′y′vx′′y′′ ⊗ uy′y∗uy′′y∗∗ ⊗ vx∗y∗vx∗∗y∗∗ = 0,

since any nonzero term in the sum would require rel(x′, x′′) = rel(y′, y′′) = rel(y∗, y∗∗) = rel(x∗, x∗∗),
a contradiction. Therefore, AV̂ = V̂ A as desired.

Now suppose that (x1, x
′
1), (x2, x

′
2) ∈ V (X)× V (X) and that there exist (y1, y

′
1), (y2, y

′
2) in the

same quantum orbital of Y such that both (x1, x
′
1) ∼v (y1, y

′
1) and (x2, x

′
2) ∼v (y2, y

′
2). In other

words, we have that vx1y1vx′1y′1 6= 0, vx2y2vx′2y′2 6= 0, and uy1y2uy′1y′2 6= 0. Then

v̂x1x2 v̂x′1x′2 =
∑

y,y′,w,w′∈V (Y )

vx1yvx′1w ⊗ uyy′uww′ ⊗ vx2y′vx′2w′ ,

and thus

(vx1y1 ⊗ 1⊗ vx2y2)
(
v̂x1x2 v̂x′1x′2

)(
vx′1y′1 ⊗ 1⊗ vx′2y′2

)
= vx1y1vx′1y′1 ⊗ uy1y2uy′1y′2 ⊗ vx2y2vx′2y′2 6= 0.

Therefore we have that v̂x1x2 v̂x′1x′2 6= 0 and so (x1, x
′
1) and (x2, x

′
2) must be in the same quantum

orbital of X.
So we have shown that if we fix a quantum orbital, say R′i, of Y , then the elements of R′i can

be adjacent in W only to elements of Rj for some fixed j. It can similarly be shown that the
same holds with X and Y swapped. Moreover, every vertex of Y has at least one neighbor since∑

y1,y2
vxy1vx′y2 =

∑
x1,x2

vx1yvx2y′ = 1 for all x, x′ ∈ V (X) and y, y′ ∈ V (Y ). Thus there is a
bijection f : I → I ′ such that the elements of Ri are adjacent in W only to elements of R′f(i), i.e.,

vxyvx′y′ = 0 unless (x, x′) ∈ Ri and (y, y′) ∈ R′f(i) for some i ∈ I.

Now we must show that the function f has the property that pkij = q
f(k)
f(i)f(j) for all i, j, k ∈ I.

Suppose that (x, x′) ∈ Rk for some k ∈ I, and let i, j ∈ I. Define S = {w ∈ V (X) : (x,w) ∈
Ri, (w, x

′) ∈ Rj}, and note that |S| = pkij . There must exist y, y′ ∈ V (Y ) such that vxyvx′y′ 6= 0
and furthermore we must have that (y, y′) ∈ R′f(k). Define S′ = {z ∈ V (Y ) : (y, z) ∈ R′f(i), (z, y

′) ∈
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R′f(j)} and note that |S′| = q
f(k)
f(i)f(j). We see that

pkijvxyvx′y′ = vxy

(∑
w∈S

1

)
vx′y′

= vxy

 ∑
w∈S,z∈V (Y )

vwz

 vx′y′

= vxy

 ∑
w∈S,z∈S′

vwz

 vx′y′
(

here we used z 6∈ S′ ⇒ vxyvwz = 0 or vwzvx′y′ = 0
)

= vxy

 ∑
w∈V (X),z∈S′

vwz

 vx′y′

= q
f(k)
f(i)f(j)vxyvx′y′ .

Since vxyvx′y′ 6= 0 by assumption, we have that pkij = q
f(k)
f(i)f(j) as desired.

Let Ai and Bi be the characteristic matrices of the relations Ri and R′i respectively. Letting Φ
be linear extension to span{Ai : i ∈ I} of the map taking Ai to Bf(i) gives the isomorphism of the
coherent algebras corresponding to R and R′. The fact that Φ(A) = B is immediate from the fact
that vxyvx′y′ = 0 when rel(x, x′) 6= rel(y, y′) and thus f maps indices corresponding to edges of X
to indices corresponding to edges of Y and vice versa.

As with the classical case, we do not expect that the converse of the above theorem holds. In
fact, following the initial submission of this work, it was shown in [11] and [22] that in order to
go in the other direction one must assume an isomorphism of all intertwiner spaces of the graphs
X and Y , whereas the quantum orbital algebra is only the space of (1, 1)-intertwiners. With this
additional assumption one obtains an equivalence with quantum isomorphism. Moreover, one can
use the work of [22] to show that the Paley and Peisert graphs on 49 vertices are not quantum
isomorphic since they contain a different number of complete subgraphs of order four. However,
there is an isomorphism of the orbital algebras of these graphs mapping the adjacency matrix of one
to the other, and moreover the orbital algebras of these graphs are equal to their coherent algebras
and thus to their quantum orbital algebras. Thus these two graphs form an explicit counterexample
to the converse of Theorem 4.6.

The above theorem gives us a necessary condition for two graphs to be quantum isomorphic.
However, as with Theorem 3.10, it may be difficult or impossible to make use of this since we may
not be able to compute the quantum orbitals of a given graph. But as we did before, we can fall
back on the coherent algebras of the graphs to find a more useable necessary condition.

Corollary 4.7. Suppose that X and Y are quantum isomorphic graphs with adjacency matrices A
and B. Then there exists an isomorphism Φ of their coherent algebras such that Φ(A) = B.

Proof. Let Φ be the isomorphism of the quantum coherent algebras of X and Y satisfying Φ(A) = B
guaranteed by Theorem 4.6. It is easy to see that the restriction Φ̂ of Φ to the coherent algebra of
X has as its image a coherent algebra. Moreover, since Φ(A) = B, we have that this image must
contain the coherent algebra of Y . If the image of Φ̂ is strictly larger than the coherent algebra
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of Y , then the image of the restriction of Φ−1 to the coherent algebra of Y would necessarily be
strictly smaller than the coherent algebra of X. However, this is a contradiction since this image
must contain the coherent algebra of X by the same reasoning as with the image of Φ̂. Therefore,
Φ̂ is an isomorphism of the coherent algebras of X and Y such that Φ̂(A) = B.

As mentioned in the introduction, the existence of an isomorphism Φ of the coherent algebras
of X and Y which maps A to B is a previously studied relation known as graph equivalence [9], and
the map Φ is said to be an equivalence of X and Y . It is also known that two graphs are equivalent
if and only if they cannot be distinguished by the (2-dimensional) Weisfeiler-Leman algorithm.
Since this algorithm runs in polynomial time, this provides us with an efficiently testable necessary
condition for quantum isomorphism.

Graphs X and Y being equivalent implies further necessary conditions. For instance, it is
known that such graphs must be cospectral, not just with respect to their adjacency matrices, but
with respect to several other matrices often associated to graphs such as the Laplacian, signless
Laplacian, normalized Laplacian, etc. In fact, if Φ is an equivalence of X and Y , then for any
Hermitian matrix M in the coherent algebra of X, the matrix Φ(M) will be cospectral to M .
Equivalent graphs must also have the same diameter and radius, and share many other structural
properties [18]. Also, an equivalence of graphs X and Y maps the adjacency matrix of the d-
distance graph of X to that of Y , and this further implies that these distance graphs are equivalent.
Similarly, quantum isomorphic graphs have quantum isomorphic d-distance graphs. This last fact
follows from similar techniques as those presented here, but we do not give a full proof.

Recall that the relation of graph equivalence has been shown to be equivalent doubly nonnegative
isomorphism, a semidefinite relaxation of quantum tensor/commuting isomorphism defined in [23].
The above corollary shows that this is also a relaxation of quantum isomorphism. They also
show in [23] that doubly nonnegative isomorphism is not equivalent to quantum tensor/commuting
isomorphism. We remark here that the same proof shows that it is not equivalent to quantum
isomorphism as defined here.

We note here that the notion of quantum isomorphism can be used to find graphs that are
quantum vertex transitive but not vertex transitive. First, one should observe that there exist
graphs X,Y , one of which is vertex transitive, that are quantum isomorphic but not isomorphic.
This will be proved later in this section. Granted this, one can take their disjoint union, which will
be quantum vertex transitive but not vertex transitive.

4.4 Linear Binary Constraint Systems

A linear binary constraint system (LBCS) is simply a system of linear equations (constraints) over
F2. More formally, an LBCS F consists of a family of binary variables x1, . . . , xn and constraints
C1, . . . , Cm, where each C` takes the form

∑
xi∈S` xi = b` for some S` ⊆ {x1, . . . , xn} and b` ∈ F2.

An LBCS is said to be satisfiable if there is an assignment of values from F2 to the variable xi such
that every constraint C` is simultaneously satisfied.

x1 + x2 + x3 = 0 x1 + x4 + x7 = 0

x4 + x5 + x6 = 0 x2 + x5 + x8 = 0(1)

x7 + x8 + x9 = 0 x3 + x6 + x9 = 1
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where we stress again that the equations are over F2. It is not too difficult to see that the LBCS
above is not satisfiable. This is because every variable appears in exactly two constraints and thus
adding up all of them we obtain 0 = 1.

There is an important alternative formulation of LBCS’s that we will briefly mention. One can
replace each constraint

∑
xi∈S` xi = b` with

∏
xi∈S` xi = (−1)b` , and allow the variables to take

values in {−1, 1} to obtain an equivalent system of equations which we will call the multiplicative
form of the LBCS. This form is used in the work of Cleve and Mittal [14], where they construct a
nonlocal game based on LBCS’s (actually they do it even for nonlinear binary constraint systems).
In the game, Alice is asked a constraint and Bob a variable in her constraint. In order to win,
Alice must respond with an assignment of values to all of the variables in her constraint such that
it is satisfied, and Bob must assign his variable a value so that it agrees with Alice. Cleve and
Mittal show that this game can be won perfectly with a quantum strategy in the tensor product
framework if and only if there exists a finite dimensional operator solution to the (multiplicative
form of the) LBCS. An operator solution is an assignment of selfadjoint operators Xi on some
Hilbert space H to the variables xi such that X2

i = I for all i ∈ [n], and such that all of the
operators appearing in a constraint commute with each other (this removes any ambiguity in the
order of the multiplication in the constraint). Furthermore, on the right-hand sides the (−1)b` is
replaced with (−1)b`I. Such an operator solution is finite-dimensional if H is finite-dimensional.
The nonlocal game corresponding to the LBCS in (1) is the well known Mermin-Peres magic square
game [24], which can be won perfectly with a quantum strategy, and thus such a finite-dimensional
operator solution does in fact exist.

The results of [14] were extended to the quantum commuting framework in [13]. Specifically,
they showed that the game corresponding to an LBCS has a perfect quantum strategy in the
commuting framework if and only if the LBCS has a possibly infinite dimensional operator solution.

In [2], the authors introduce a construction that takes any LBCS F and produces a graph
X(F). They show that, if F0 is the LBCS obtained from F by changing the right-hand side of
every constraint in F to 0 (known as the homogeneous version of F), then the graphs X(F) and
X(F0) are quantum commuting isomorphic if and only if F has an operator solution, and quantum
tensor isomorphic if and only if F has a finite-dimensional operator solution. Moreover, X(F)
and X(F0) are isomorphic if and only if F is satisfiable. This allowed them to construct non-
isomorphic graphs which are nevertheless quantum tensor/commuting isomorphic. This is (part
of) the construction we will use to find quantum vertex transitive graphs which are not vertex
transitive, thus we now give a description of this construction.

Let F be an LBCS with constraints C` given by
∑

xi∈S` xi = b` for ` ∈ [m]. Then the graph
X(F) has as its vertices pairs (`, f) where ` ∈ [m] and f : S` → F2 is an assignment of values to
the variables in C` such that it is satisfied. There is an edge between two vertices (`, f) and (k, f ′)
if they are inconsistent, i.e., if there exists xi ∈ S` ∩ Sk such that f(xi) 6= f ′(xi). Note that this
implies that the vertices of the form (`, f) for fixed ` ∈ [m] form a clique in X(F).

Letting F be the LBCS in (1), one obtains the two graphs from figures 1 and 2, which were
first considered in [2], and are quantum tensor isomorphic but not isomorphic. As was mentioned
in [2], both of these graphs are vertex transitive, and even Cayley graphs. Moreover, if one re-
moves the edges among the cliques corresponding to each constraint, the graphs remain quantum
isomorphic but not isomorphic, and also become arc transitive (the automorphism groups act tran-
sitively on ordered pairs of adjacent vertices). In the next section we will introduce a construction
of Arkhipov [1] which takes a connected non-planar graph and produces a LBCS with a (finite
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dimensional) operator solution but no classical solution. This construction is the other half of our
construction of quantum vertex transitive graphs that are not vertex transitive.

x1 + x2 + x3 = 0

000 011 101 110

x1 + x4 + x7 = 0

000 011 101 110

x4 + x5 + x6 = 0

000 011 101 110

x2 + x5 + x8 = 0

000 011 101 110

x7 + x8 + x9 = 0

000 011 101 110

x3 + x6 + x9 = 1

111 100 010 001

Figure 1: X(F) for the Mermin magic square game (1).

4.5 The construction of Arkhipov

In [1], Arkhipov finds a correspondence between graphs and LBCS’s in which every variable appears
in exactly two equations. In the case of connected graphs, he shows that the corresponding LBCS
is never satisfiable, but has an operator solution if and only if the graph is non-planar, in which case
the operator solution is in finite dimension (even dimension at most eight). The construction is as
follows: Let Z be a connected graph with vertex set [m] and label the edges 1, . . . , n := |E(X)|.
Pick a vertex `∗ ∈ [m]. Create an LBCS F which will have a constraint C` for each ` ∈ [m] and
variable xi for each edge i ∈ [n]. Let S` = {xi : edge i is incident to vertex `}, and define C` to be
the constraint

∑
xi∈S` xi = 0 for all ` 6= `∗, and define C`∗ to be

∑
xi∈S`∗ xi = 1.

We remark that though the LBCS constructed depends on the choice of `∗, the satisfiability
(classical or quantum) does not. In fact Arkhipov showed that the satisfiability only depends on
the parity of the number of constraints whose right-hand side is 1. We will mainly be interested
in the case where the graph Z used to construct the LBCS is vertex transitive, so even the LBCS
will not depend on the choice of `∗ (up to relabelling).

The two prototypical non-planar graphs are the complete graphK5 and complete bipartite graph
K3,3. For Z = K3,3, the corresponding LBCS is the Mermin-Peres magic square one from (1). For
Z = K5, the LBCS corresponds to the related magic pentagram game.

To construct quantum vertex transitive graphs which are not vertex transitive, we will con-
catenate Arkhipov’s construction of an LBCS with the reduction from [2] of an LBCS to graph
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x1 + x2 + x3 = 0
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x4 + x5 + x6 = 0
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x2 + x5 + x8 = 0

000 011 101 110

x7 + x8 + x9 = 0

000 011 101 110

x3 + x6 + x9 = 0

000 011 101 110

Figure 2: X(F0) for the Mermin magic square game (1).

isomorphism. It is thus helpful to give a direct description of the resulting two graphs based on
the input graph to Arkhipov’s construction.

Definition 4.8. Given a connected graph Z with marked vertex `∗, we define two graphs X(Z, `∗)
and X0(Z) as follows. The vertices of X(Z, `∗) are ordered pairs (`, S) where ` ∈ V (Z) and S is a
subset of edges incident to ` which has even parity if ` 6= `∗ and odd parity otherwise. Two vertices
(`, S) and (k, T ) are adjacent if ` and k are adjacent and the edge `k is in exactly one of S and T .
The graph X0(Z) is defined in the same way except that the subset S must have even parity for all
vertices (`, S) of X0(Z) (thus it does not depend on `∗). In cases where the choice of `∗ is not of
particular importance, such as when Z is vertex transitive, we will sometimes simply write X(Z).

The following is merely the concatenation of results from [1] and [2]:

Theorem 4.9. Let Z be a connected non-planar graph. Then the graphs X0(Z) and X(Z, `∗) are
quantum tensor isomorphic but not isomorphic for any choice of `∗ ∈ V (Z).

4.6 Vertex transitivity of X0(Z)

In this section we will show that if Z is vertex transitive, then X0(Z) is also vertex transitive. The
first lemma shows that the automorphisms of Z can be used to construct certain automorphisms
of X0(Z). To state this lemma as simply as possible, we will use the convention that if e = `k is
an edge of Z and σ an automorphism of Z, then σ(e) is defined as the edge σ(`)σ(k). Moreover, if
S is a subset of edges, then σ(S) := {σ(e) : e ∈ S}.
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Lemma 4.10. Let Z be a connected graph. If σ ∈ Aut(Z), then the map (`, S) 7→ (σ(`), σ(S)) is
an automorphism of X0(Z).

Proof. Let us call the map described in the lemma statement σ̂. First, we must show that this
maps vertices of X0(Z) to vertices of X0(Z). However, this is clear since if e is an edge incident
to `, then e = `k for some k ∈ V (Z) and then σ(e) = σ(`)σ(k) is incident to σ(`). Thus σ(S) is a
subset of edges incident to σ(`) whenever S was a subset of edges incident to `. Moreover, σ is a
bijection on the vertices as well as the edges, and thus |σ(S)| = |S|. So σ(S) has the same parity as
S. This shows that the map σ̂ does in fact map vertices of X0(Z) to vertices of X0(Z). Moreover,
this map is a bijection, which is straightforward to see.

Next we must show that it preserves the adjacency of vertices in X0(Z). For this, suppose that
(`, S) and (k, T ) are adjacent. Then e = `k is an edge of Z and without loss of generality we have
that e ∈ S \ T . From here we see that σ(e) = σ(`)σ(k) is an edge of Z and that σ(e) ∈ σ(S) \ σ(T )
since σ is a bijection on the edges of Z. Therefore, (σ(`), σ(S)) is adjacent to (σ(k), σ(T )) in X0(Z).
Since σ̂ is a bijection that preserves adjacency, it also preserves non-adjacency and is therefore a
bijection.

The above lemma shows that if there is an automorphism of Z mapping ` to k, then there is
an automorphism of X0(Z) which maps the subset of vertices with first coordinate ` to the subset
of vertices with first coordinate k. The next lemma shows that we can use the even subgraphs of
Z to construct some automorphisms of X0(Z) which fix the first coordinate. An even subgraph
is a subgraph in which every vertex has even degree. We use the notation S4T to denote the
symmetric difference of sets S and T . We will also use E(`) to denote the set of edges incident to
the vertex `.

Lemma 4.11. Let Z be a connected graph and F the edge set of some even subgraph of Z. Then
the map (`, S) 7→ (`, S4(E(`) ∩ F )) is an automorphism of X0(Z).

Proof. Let f denote the map describe in the lemma statement. The idea here is the even subgraphs
of Z correspond exactly to the solutions to the homogeneous version of the LBCS constructed from
Z via Arkhipov’s method. The sum of two solutions to a homogeneous LBCS is a solution, and
this addition corresponds to symmetric difference in subset language.

First we show that f is indeed a map from the vertices of X0(Z) to the vertices of X0(Z). Since
F is the edge set of an even subgraph of Z, we have that E(`)∩F has even parity for all ` ∈ V (Z).
Therefore, if S is an even subset of E(`), then S4(E(`)∩F ) must have even parity since the parity
of the symmetric difference is the sum of the parities. Thus f is a map from V (X0(Z)) to itself,
and then it is easy to see that it must be a bijection, since taking symmetric difference with a fixed
set is a bijection on subsets. In fact, f is a bijection on the vertices with fixed first coordinate.

Next we must show that f preserves adjacency. For this suppose that (`, S) and (k, T ) are
adjacent vertices of X0(Z). As in the proof of the previous lemma we have that e = `k is an edge
of Z and without loss of generality we have that e ∈ S \ T . Note that e ∈ E(`) and e ∈ E(k).
If e 6∈ F , then e /∈ E(`) ∩ F and thus e ∈ S4(E(`) ∩ F ) but e 6∈ T4(E(k) ∩ F ). If e ∈ F , then
e ∈ E(`) ∩ F and e ∈ E(k) ∩ F , thus e 6∈ S4(E(`) ∩ F ) but e ∈ T4(E(k) ∩ F ). In either case we
see that (`, S4(E(`) ∩ F )) is adjacent to (k, T4(E(k) ∩ F )), and so f preserves adjacency and we
are done.
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In the case where Z has no cut-vertex, we can use the above to show that any vertex (`, S) of
X0(Z) can be mapped to a vertex of the form (`, T ) by an automorphism of X0(Z). A cut-vertex
of a connected graph is a vertex whose removal disconnects the graph.

Lemma 4.12. Let Z be a connected graph with no cut-vertex. If (`, S) and (`, T ) are two vertices
of X0(Z), then there is an automorphism σ of X0(Z) such that σ(`, S) = (`, T ).

Proof. First we will show that the lemma holds when |S4T | = 2. One can then compose such
automorphisms to prove the result for any |S4T |.

Suppose that S4T = {e, f} for edges e, f incident to `, and let j, k ∈ V (Z) be such that
e = `j and f = `k. Consider the graph Z ′ obtained from Z by removing vertex `. Since ` is not
a cut-vertex by assumption, the graph Z ′ is connected, and therefore there exists a path P from j
to k in Z ′. This path does not contain any edge incident to ` since these edges are not in Z ′. In Z,
the path P along with edges e, f and vertex ` form a cycle C. Let F be the edge set of this cycle
and note that E(`) ∩ F = {e, f}. Since C is a cycle, it is an even subgraph of Z. Therefore, by
Lemma 4.11, the map (k,R) 7→ (k,R4(E(k)∩ F )) is an automorphism of Z. It is easy to see that
S4(E(`) ∩ F ) = S4{e, f} = T , and therefore this automorphism maps (`, S) to (`, T ) as desired.

For |S4T | > 2, we will still have that this cardinality is even (since S and T are even), and
so we can partition S4T into pairs {ei, fi} for i = 1, . . . , |S4T |/2. Defining S0 = S and letting
Si = Si−14{ei, fi}, it is easy to see that |Si−14Si| = |{ei, fi}| = 2 for all i, and S|S4T |/2 = T .
Therefore we can compose automorphisms mapping (`, Si−1) to (`, Si) guaranteed by the above
argument to obtain an automorphism mapping (`, S) to (`, T ).

We actually only needed to assume that ` was not a cut-vertex in the above lemma, but the
statement as is suffices for our results.

So Lemma 4.10 provides us with automorphisms of X0(Z) that change the first coordinate (and
possibly the second coordinate), and Lemma 4.11 provides us with automorphisms that fix the first
coordinate but change the second coordinate. Combining these we can prove the following:

Theorem 4.13. Let Z be a connected vertex transitive graph. Then X0(Z) is vertex transitive.

Proof. We must prove that Z has no cut-vertex and then it will follow easily from the above lemmas.
Since Z is connected, it has a spanning tree T . Consider a leaf (vertex of degree 1) ` of T , which
must exist. Removing ` from T creates a smaller tree T ′ which must be connected since it is a
tree. Since T ′ is a subgraph of the graph Z ′ obtained by removing ` from Z, we have that Z ′ must
be connected as well. Therefore, ` was not a cut-vertex. However, Z is vertex transitive, so if ` is
not a cut-vertex, then no vertex of Z is a cut-vertex.

Now consider vertices (`, S) and (k, T ) of X0(Z). Since Z is vertex transitive, there exists an
automorphism σ ∈ Aut(Z) such that σ(`) = k. By Lemma 4.10, there is an automorphism σ1 of
X0(Z) such that σ1(`, S) = (k, T ′) where T ′ = σ(S). Now, since Z has no cut-vertex, Lemma 4.12
says that there is an automorphism σ2 of X0(Z) such that σ2(k, T

′) = (k, T ). Therefore, the
composition σ2 ◦ σ1 is an automorphism of X0(Z) that maps (`, S) to (k, T ). Since these vertices
were arbitrary, this implies that X0(Z) is vertex transitive as desired.

Corollary 4.14. If Z is a connected vertex transitive non-planar graph, then X(Z, `∗) is quantum
vertex transitive for any choice of `∗.
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Proof. Under these conditions, the graphs X0(Z) and X(Z) are quantum isomorphic by Theo-
rem 4.9. This implies that they have the same number of quantum orbits. However, X0(Z) is
vertex transitive by Theorem 4.13 and so it has only one orbit and therefore only one quantum
orbit. Thus X(Z) has one quantum orbit, i.e., is quantum vertex transitive.

It would be interesting to find a connected non-planar graph Z such that exactly one of X0(Z)
and X(Z) was vertex transitive.

4.7 Quantum vertex transitivity of the disjoint union

In this section we aim to show that if Z is a connect non-planar vertex transitive graph, then the
disjoint union of X0(Z) and X(Z) is quantum vertex transitive but not vertex transitive. To begin
we need the following lemma:

Lemma 4.15. Let X and Y be quantum isomorphic graphs which are both quantum vertex transi-
tive. Then the disjoint union of X and Y is quantum vertex transitive.

Proof. We denote by AX and AY the adjacency matrices of X and Y , respectively. Let Z denote
the disjoint union of X and Y , and let U = (uxx′) and V = (vyy′) be the magic unitaries whose
entries are the canonical generators of A(X) and A(Y ) respectively. Define W = (wzz′) = U ⊕ V
as

wzz′ =


uzz′ ⊗ 1A(Y ), if z, z′ ∈ V (X)

1A(X) ⊗ vzz′ , if z, z′ ∈ V (Y )

0, otherwise.

It is easy to see that this is a magic unitary. Now we show that it commutes with the adjacency
matrix of the disjoint union of X and Y . The adjacency matrix of this disjoint union is A :=
AX ⊕AY , and thus

AW = (AX ⊕AY )(U ⊕ V ) = AXU ⊕AY V = UAX ⊕ V AY = (U ⊕ V )(AX ⊕AY ) = WA,

where we have used the fact that U and V commute with AX and AY respectively. Since W
commutes with A, if wzz′ 6= 0, then z ∼1 z

′, i.e., z and z′ are in the same quantum orbit of Z.
By assumption we have that both X and Y are quantum vertex transitive, i.e., have one quantum
orbit. Therefore, uxx′ 6= 0 for all x, x′ ∈ V (X) and vyy′ 6= 0 for all y, y′ ∈ V (Y ). Therefore wxx′ 6= 0
for all x, x′ ∈ V (X) and wyy′ 6= 0 for all y, y′ ∈ V (Y ), i.e., every vertex of X is in the same quantum
orbit of Z and every vertex of Y is in the same quantum orbit of Z.

It now only remains to show that x ∼1 y for some x ∈ V (X) and y ∈ V (Y ). Since we assumed
that X and Y are quantum isomorphic, there exists a unital C*-algebra A and magic unitary
Ŵ = (ŵxy) for x ∈ V (X), y ∈ V (Y ) such that AXŴ = ŴAY . We define

W̃ =

(
0 Ŵ

Ŵ ∗ 0

)
.

Then,

AW̃ =

(
AX 0
0 AY

)(
0 Ŵ

Ŵ ∗ 0

)
=

(
0 AXŴ

AY Ŵ
∗ 0

)
=

(
0 ŴAY

Ŵ ∗AX 0

)
,
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as AY Ŵ
∗ = (ŴAY )∗ = (AXŴ )∗ = Ŵ ∗AX . Further,

W̃A =

(
0 Ŵ

Ŵ ∗ 0

)(
AX 0
0 AY

)
=

(
0 ŴAY

Ŵ ∗AX 0

)
.

Therefore, W̃ is a magic unitary which commutes with A. Moreover, by its definition, for any
vertex x ∈ V (X), there must be at least one vertex y ∈ V (Y ) such that w̃xy 6= 0. Thus these two
vertices are in the same quantum orbit, and combining this with the above we see that there is
only one quantum orbit of Z, i.e, it is quantum vertex transitive.

We can now prove our main result of this section:

Theorem 4.16. Let X and Y be quantum vertex transitive graphs which are quantum isomorphic
but not isomorphic. Then the disjoint union of X and Y are quantum vertex transitive but not
vertex transitive.

Proof. By Lemma 4.15, we have that the disjoint union of X and Y is quantum vertex transitive.
So it is only left to show that it is not vertex transitive. It is easy to see that a graph is vertex
transitive if and only if all of its connected components are vertex transitive and isomorphic to each
other (since automorphism must map connected components to connected components). Thus, if
the disjoint union of X and Y is vertex transitive, then X and Y must have both been the disjoint
union of (a possibly different) number of copies of a common connected vertex transitive graph Z.
However, since we assumed that X and Y were not isomorphic, this implies that the number of
copies of Z used was different for X and Y . This implies that X and Y have a different number of
vertices, and therefore cannot be quantum isomorphic, a contradiction to our assumption. Therefore
the disjoint union of X and Y cannot be vertex transitive and we are done.

As a corollary we obtain the following which allows us to construct an infinite number of graphs
which are quantum vertex transitive but not vertex transitive.

Corollary 4.17. Let Z be a connected, vertex transitive, non-planar graph. Then the disjoint
union of X0(Z) and X(Z) is quantum vertex transitive but not vertex transitive.

The smallest possibility for Z in the above corollary is the graph K5, but the resulting graphs
X0(Z) and X(Z) are actually larger (40 vertices) than those obtained from letting Z = K3,3 which
have 24 vertices and are shown in Figures 1 and 2. By Kuratowski’s theorem, any other non-planar
graph must contain one of K3,3 or K5 as a minor and so these are indeed the smallest graphs
that can be obtained by this construction. As we mentioned previously, if one removes the edges
contained in the cliques corresponding to the constraints of the LBCS, then the graphs in Figures 1
and 2 remain quantum isomorphic but not isomorphic, and now become arc-transitive. Therefore,
their disjoint union will be quantum arc-transitive, but not arc-transitive, or even edge-transitive.

There are infinitely many connected, vertex transitive, non-planar graphs and so the above
corollary does in fact give us infinitely many examples of graphs which are quantum vertex transitive
but not vertex transitive. Indeed, any vertex transitive graph with degree at least six is non-planar
since it is known that any planar graph has some vertex of degree less than six.

We remark that if one would prefer an example of a connected graph which is quantum vertex
transitive but not vertex transitive, then they may simply take the complement of the examples
generated by Corollary 4.17.
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As we mentioned, the above corollary answers an unresolved question raised (at least implicitly)
in the quantum permutation group literature (see e.g. [4, 5]). Perhaps the examples provided by
this corollary will have some new interesting quantum permutation groups. Unfortunately it seems
that the currently known techniques to compute quantum automorphism groups are not sufficient
to handle graphs of this size. Hopefully this will change with the increased interest in this area
from members of the quantum information and graph theory community, which we hope this work
encourages.

5 Discussion

Here we discuss some possible further directions and open questions.

No quantum symmetry. In the study of quantum automorphism groups of graphs, it seems an
important case is when the graph has no quantum symmetry, i.e., its quantum symmetry algebra
is commutative. Indeed, many of the small graphs whose quantum automorphism groups have
been computed [6, 7] have this property. The most direct way to show this is to show that all of
the entries uij of the magic unitary U defining the given quantum automorphism group commute.
However, in the known examples a different strategy is followed. The most common technique
seems to be to use the universal action.

Suppose that Q is a quantum permutation group on the set [n] with universal action u. It
was shown in [4] that the magic unitary U commutes with the projection onto a subspace K of
Cn if and only if K is invariant for u, i.e. u(K) ⊆ K ⊗ C(Q). If Q = Qut(X) for some graph X
with adjacency matrix A, then the corresponding magic unitary U commutes with A and therefore
any polynomial expression in A. This includes the projections onto the eigenspaces of A. Thus
if f1, . . . , fd is a basis of one of these eigenspaces, then u(fj) =

∑d
i=1 fi ⊗ aij for some elements

aij ∈ C(Q). Since the image of u is dense in Q, if all of the aij (as well as those for the other
eigenspaces) commute, then Q is commutative and therefore X has no quantum symmetry. Our
results show that one does not necessarily need to consider the eigenspaces of the adjacency matrix,
but instead could use any Hermitian matrix in the coherent algebra of the graph. This will often
allow for smaller eigenspaces than considering the adjacency matrix alone.

The above method has been particularly useful for circulants: graphs X with vertex set Zn
such that i ∼ j if i− j ∈ C for some inverse closed subset C ⊆ Zn \ {0}. The reason this approach
works so well for these graphs is because they always have a basis of eigenvectors that is closed
under entrywise product. Specifically, if f ∈ Cn is the vector whose ith entry is ωi for a primitive
nth root of unity ω, then the entrywise powers f j for j = 0, . . . , n − 1 are an orthonormal basis
of Cn consisting of eigenvectors of (the adjacency matrix of) X. It is known that the vectors f j

and fn−j always correspond to the same eigenvalue for these graphs. It was shown in [4] that if
these are the only common eigenvalues among the vectors f j for j = 0, . . . , n − 1 then the graph
X has no quantum symmetry (unless n = 4). Here again, our results could be of use. In the case
of circulants, the resulting coherent algebra only contains symmetric matrices, and therefore is a
symmetric association scheme. This means that all of its elements commute and therefore have a
common eigenbasis. In fact the common eigenbasis is exactly the one described above consisting of
the f j . It is known that there will be a matrix in the coherent algebra with different eigenvalues
for f j and f i whenever i 6∈ {j, n − j} if and only if there are bn/2c + 1 classes in the coherent
algebra. In this case the classes are exactly the distance relations of the cycle of length n. Thus, if
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the coherent configuration of a circulant has bn/2c + 1 classes then the circulant has no quantum
symmetry.

Unfortunately, using coherent algebras does not provide any further information for a certain
class of graphs: strongly regular graphs. The coherent configurations of these graphs have only
three classes: the vertices, edges, and non-edges. Thus the coherent algebra is simply the span of the
identity I, the adjacency matrix A, and the adjacency matrix of the complement A = J−I−A. This
means that Corollary 3.13 is just a restatement of the relations defining the quantum automorphism
group. It may be possible that the quantum orbitals are finer than this, but we do not know how
to compute these in general. Moreover, it is possible that the classes of the coherent configuration
and the (classical) orbitals of the graph coincide, and therefore so do the quantum orbitals.

Higher order orbits. In this work we defined the orbits of a quantum permutation group on
points and ordered pairs of points. One could also define a relation ∼m on ordered m-tuples of
points such that (x1, . . . , xm) ∼m (y1, . . . , ym) whenever ux1y1 . . . uxmym = 0, and then used this to
define orbits of m-tuples for quantum permutation groups. We could have defined such a relation,
but even for m = 3 we do not see how to show that it would be transitive (and do not believe it will
be in general). It seems that things work for m ≤ 2 because we can multiply on both the left and
the right, but for m ≥ 3 we cannot multiply “in the middle” since we do not have commutativity.
But what about the equivalent definitions of orbits and orbitals given in Section 3.1 using the
canonical action? Is it possible to extend this in order to define orbits on m-tuples for m ≥ 3?

Let U = (uij) be a magic unitary whose entries are the canonical generators of C(Q) from
some quantum permutation group Q. The m-th tensor power of the action u of Q is a linear map
u⊗m : (Cn)⊗m → (Cn)⊗m ⊗ C(Q) defined on the standard basis vectors as

u⊗m(ei1 ⊗ . . .⊗ eim) =
∑

j1,...,jm

(ej1 ⊗ . . .⊗ ejm)⊗ uj1i1 . . . ujmim .

As with u and u⊗2, we can consider the space of fixed points of u⊗m:

Hom(1, u⊗m) = {f ∈ (Cn)⊗m : u⊗m(f) = f ⊗ 1}.

In the case of m = 2, we saw that Hom(1, u⊗2) is a selfadjoint subalgebra of CX ⊗ CX , and the
same holds for m = 1 since u is an action. Moreover, we could define the orbits as the parts of the
partition corresponding to Hom(1, u), and the orbitals as the parts of the partition corresponding
to Hom(1, u⊗2). Unfortunately, we do not know whether Hom(1, u⊗m) is a selfadjoint subalgebra
of (CX)⊗m. Thus we leave it as an open question how to define orbits of a quantum permutation
group on m-tuples for general m.

Quantum groups vs. quantum behaviour. Let Z be the graphs consisting of a single edge
plus two additional isolated vertices. In [26] it is shown (and it is not hard to see) that the quantum
symmetry algebra of Z is generated by a magic unitary of the form

a 1− a 0 0
1− a a 0 0

0 0 b 1− b
0 0 1− b b
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where a and b are free projectors. Obviously, this is not commutative since a and b do not commute
in general. Thus the graph Z has some “non-classical” automorphisms. Does this mean that we
can construct a perfect quantum strategy for the (Z,Z)-isomorphism game (henceforth referred
to as the Z-automorphism game) which is not classical? It depends on what exactly it means
for a strategy to not be classical. For any choice of finite dimensional projectors a and b, we can
construct a perfect strategy for the Z-automorphism game in which the measurements used by
the players will correspond to the rows and columns of the magic unitary above, and the shared
state will be the maximally entangled state. This is of course not a classical strategy since it uses
quantum measurements, but this does not mean that the corresponding behaviour of the players,
i.e., the correlations of their inputs and outputs in the game, cannot be explained classically.

To be more precise, any fixed strategy (classical, quantum, or otherwise) for a nonlocal game
has a corresponding correlation or joint conditional probability distribution. This is a function p
mapping tuples of Alice and Bob’s inputs and outputs to [0, 1], where p(y, y′|x, x′) is the probability
that Alice and Bob reply with y and y′ respectively, upon receiving x and x′. In the deterministic
case, this is either 0 or 1, but access to shared randomness allows classical players to construct
strategies whose correlations are any convex combination of deterministic ones. In the quantum
commuting framework, the probability p(y, y′|x, x′) is given by the value of a tracial state s on the
product of the the projector corresponding to Alice outputting y upon receiving x and the projector
corresponding to Bob outputting x′ upon receiving y′. In the case of the Z-automorphism game,
this means that all of the correlation probabilities are determined by the value of s(ab) ∈ [0, 1].
We do not present the proof here, but we have shown that no matter what value is chosen for
this, the resulting correlation can be obtained by a classical strategy. Therefore, there is no perfect
quantum strategy for the Z-automorphism game which actually exhibits non-classical behaviour in
this sense.

One could therefore consider the problem of which graphs not only have quantum symmetries,
but such quantum symmetries that give rise to strategies for the automorphism game of the graph
whose corresponding correlations can not be obtained via a classical strategy. Such a quantum
strategy is said to exhibit nonlocality, since its behavior cannot be explained by a local hidden
variable model. There are three different degrees of nonlocality that can be exhibited by a quantum
correlation p: nonlocality, logical nonlocality, and pseudotelepathy/strong nonlocality. The first is
as we defined it above: there is no classical strategy that produces p. Logical nonlocality occurs
when there is no classical correlation q such that q(y, y′|x, x′) = 0 if and only if p(y, y′|x, x′) = 0.
Strong nonlocality is defined as there being no classical correlation q such that q(y, y′|x, x′) = 0
whenever p(y, y′|x, x′) = 0, even allowing for q to be zero in places where p is not. For any quantum
correlation p exhibiting strong nonlocality, one can construct a nonlocal game which is won perfectly
by p but by no classical strategy: define the game so that the players lose on input/output tuples
where p is 0. This ability to perfectly win a game which has no perfect classical strategy is what
motivates the term pseudotelepathy, since it appears as if the players are telepathic.

In the case of the isomorphism game, pseudotelepathy occurs exactly when there is a pair of
non-isomorphic graphs X,Y that are quantum tensor/commuting isomorphic. This means that the
X-automorphism game is never a pseudotelepathy game, since every graph has the trivial auto-
morphism. However, it is possible for an automorphism game to exhibit nonlocality. Computations
by the third author and Robert Šámal show that already the complete graph on five vertices (and
thus any larger number of vertices) admits quantum tensor automorphisms whose correlations are
not classical. We do not know whether the complete graph on four vertices has this property.
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It is also possible for an automorphism game to exhibit logical nonlocality. This happens exactly
when there are pairs of vertices (x, x′) and (y, y′) that are in different (classical) orbitals of X, but
there is a quantum correlation p which wins the automorphism game perfectly and p(y, y′|x, x′) > 0.
Since the Haar state is tracial, the correlation p(y, y′|x, x′) = h(uxyux′y′) is quantum commuting
correlation which wins the X-automorphism game perfectly. Moreover, by Theorem 4.2, we have
that h(uxyux′y′) 6= 0 if and only if uxyux′y′ 6= 0 if and only if (x, x′) and (y, y′) are in the same
orbital of Qut(X). Thus the correlation arising from the Haar state for Qut(X) exhibits logical
nonlocality if and only if the orbitals and quantum orbitals of X differ. Examples of such graphs can
be constructed by taking the disjoint union of any pair of non-isomorphic but quantum isomorphic
graphs.
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