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Abstract

This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry
program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals,
along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The
many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along
with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods.
Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for de-
scribing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and
several different energy decomposition analysis techniques. High-performance capabilities including multithreaded
parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community
of well over 100 active academic developers and the continuing evolution of the software is supported by an “open
teamware” model and an increasingly modular design.
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I INTRODUCTION

The era of electronic computing began with the ENIAC
machine, developed at the University of Pennsylvania be-
ginning in 1943,1 and the first commercial machines be-
gan to be produced around 1950. Although originally de-
veloped for military applications, molecular physics was
not far behind.2 The existence of these machines in uni-
versities led to the first development of quantum chem-
istry software starting in the mid- to late-1950s.3 Prog-
nosticating on the future of electronic structure theory in
his 1966 Nobel Lecture, Robert S. Mulliken stated that4

...the era of computing chemists, when hundreds
if not thousands of chemists will go to the com-
puting machine instead of the laboratory for in-
creasingly many facets of chemical information,
is already at hand.

However, he did caution that

...at the present time the rapid progress which
could be made even with existing machine pro-
grams is not being made, simply because avail-
able funds to pay for machine time are far too
limited.

In the ensuing half-century, the problem of inadequate
funds was resolved by the revolution in inexpensive com-
puter hardware that traces its origin to the invention of
the integrated circuit in the late 1950s and the micropro-
cessor in the mid-1970s. Perhaps ironically, a desire for
realistic simulation in computer games has led to such a
massive market for high-performance hardware that to-
day’s laptop computers have the power of the world’s
most powerful supercomputer from the mid-1990s, as
shown in Fig. 1. It is also worth noting that the roughly
100 W power consumption of today’s 8-core laptop is an
impressive 5,000× times smaller than the corresponding
supercomputer (e.g., the Fujitsu Numerical Wind Tunnel
Computer, which was #1 in 1996, consumes 500 kW)!
At the other extreme, computing resources well into the
terascale are routinely available on computer clusters, and
leadership supercomputing is in the midst of a transition
from petascale towards exascale computing.

This revolution in computer hardware is only mean-
ingful to practicing chemists if corresponding software
is available to enable straightforward and realistic sim-
ulation of molecules, molecular properties, and chemical
reaction pathways. The first electronic structure codes
were already working at the time of Mulliken’s Nobel ad-
dress, and indeed Charles Coulson had warned in 1959
of a growing split between theoretical chemists who were
numerical simulators (primarily early code developers),
and those who developed chemical concepts.5 Today one
would rather say that quantum chemistry calculations
are simulations whose results represent numerical exper-
iments. Just like real experiments, results from these in

Fig. 1: Development of leading edge computer capabilities, as doc-
umented through the performance of the world’s top 500 supercom-
puters, as measured on dense linear algebra in units of double pre-
cision floating-point operations per second (Flops/s). The data are
adapted from Top500.org and compared against the performance of
an 8-core laptop, which evidently has performance comparable to
the world’s fastest supercomputer of the mid- to late-1990s.

silico experiments (even if reliable) must still be under-
stood in conceptual terms, to the extent possible. The as-
pirations of early electronic structure codes are reflected
in program names such as polyatom,6 and such efforts
rarely achieved useful accuracy, or else did so via fortu-
itous cancellation of errors.7 However, today there are
many useful program packages including ≈ 20 that are
actively developed and supported.8

One of those is the Q-Chem project, which began in
late 1992.9 Since its inception, Q-Chem has operated as a
large collaboration that defines its genre as open teamware
scientific software.9,10 The Q-Chem source code is open
to a large group of developers that currently includes
more than 100 individuals in at least 9 countries. De-
velopers can submit their contributions for inclusion in
the official releases as long as the changes do not violate
the integrity of the overall package and are scientifically
sound. In addition, several Q-Chem modules are dis-
tributed as open source software.11–17 Figure 2 illustrates
some statistics regarding developer activity derived from
the Q-Chem source code repository logs. These data pro-
vide clear evidence of the sustained growth of the devel-
oper community and the code itself over the past decade.

The Q-Chem collaboration has delivered useful and
reliable quantum chemistry software over the course of
five major releases (as documented in earlier review ar-
ticles),18–20 and ≈ 15 minor releases. The present paper
addresses progress made since 2015 by the relatively large
team of academic developers and the relatively small team
of professional programmers who contribute to the pack-
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Fig. 2: Statistics showing Q-Chem developer activity since 2006. Top: Total number of code commits, organized chronologically by
month. The color of each monthly entry indicates the number of individual developers who made commits. (Light blue is single-digit
numbers and the January 2021 peak represents about 50 developers committing code that month.) Bottom: Growth of the developer
base broken down into existing developers versus those who committed code for the first time. The inset depicts the total number of
commits by the 50 most prolific developers.

age. The authors of this papera represent contributors to
Q-Chem v. 4 and v. 5, while contributors to earlier ver-
sions are recognized in overview articles describing v. 2,18

v. 3,19 and v. 4.20

The remainder of this paper is organized as follows.
Section II provides an overview of density functional the-
ory (DFT) capabilities in Q-Chem, including a survey
of the 200+ exchange-correlation functionals that are
presently available (Section II.A).21 A variety of excited-
state DFT capabilities are described in Section II.C, in-
cluding time-dependent (TD-)DFT in both its linear-
response and its explicitly time-dependent (“real-time”)
versions. Next, Section III describes single-reference cor-
related wave function methods and other many-body
capabilities, while Section IV describes multireference
methods. Section V highlights some specialty features
including methods for computing core-level (x-ray) exci-
tation spectra, methods for describing metastable reso-
nance states, methods for computing vibronic lineshapes,
and finally the nuclear–electronic orbital method for de-
scribing proton quantum effects. Section VI describes
methods for describing a molecule’s extended environ-
ment (e.g., QM/MM, dielectric continuum, and embed-
ding methods). Energy decomposition analysis meth-

aThe author list is organized in five categories: major con-
tributors (Epifanovsky–White); middle contributors (Coons–Zhu,
ordered alphabetically); minor contributors (Alam–Zuev, ordered
alphabetically); senior supervising contributors (Aspuru-Guzik–
Zimmerman, ordered alphabetically); board members (Faraji–
Krylov).

ods are described in Section VII. Section VIII describes
the Q-Chem software development environment and Sec-
tion IX provides an overview of high-performance capabil-
ities, including multithreaded parallelism and algorithms
that exploit graphics processing units (GPUs). Finally,
Section XI provides a wrap-up and a glimpse toward the
future.

II DENSITY FUNCTIONAL THEORY

Standard quantum mechanics, including wave function-
based quantum chemistry, employs an approximate N -
electron wave function |Ψ〉 to evaluate the energy,
E = 〈Ψ|Ĥ|Ψ〉. By contrast, DFT is founded on the
Hohenberg-Kohn theorems,22–25 which assert that the
ground state energy E can be expressed as a functional
of the electron density, E = E[ρ(r)]. While the exact
functional is unknown and is almost certainly unknowable
in explicit form, tremendous progress has been made to-
wards achieving useful approximations. After some min-
imal background, this section summarizes recent aspects
of that progress that are available in Q-Chem.

A Exchange-correlation functionals

Nearly all modern density functionals are of the Kohn-
Sham type,23–26 in which the density is constructed from
an auxiliary Slater determinant |Φs〉 composed of Kohn-
Sham molecular orbitals (MOs), {φk}. The determinant
|Φs〉 describes a system of noninteracting electrons (or
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Fig. 3: Illustration of the ladder-based classification of density
functionals. Also shown at each rung are the top-performing
functionals (out of 200 DFAs from rungs 1–4), as assessed us-
ing the MGCD84 database containing nearly 5,000 data points.21

Adapted with permission from N. Mardirossian and M. Head-
Gordon, Mol. Phys. 115, 2315 (2017). Copyright 2017 Taylor &
Francis.

partially interacting electrons,27 for rungs 4 and 5 on the
hierarchy in Fig. 3), which has the same density as the
physical system of interest. This ensures so-called N -
representability,24,25 and is also used to exactly evaluate
the noninteracting kinetic energy, Ts = − 1

2 〈Φs|∇̂
2|Φs〉.

The Kohn-Sham DFT energy is expressed as

E = Ts + Vext + EJ + EXC , (1)

where the electron–nuclear attraction term (or “external
potential”, Vext) and the classical Coulomb mean-field
energy (EJ) are known functionals of ρ(r). This leaves
only the non-classical exchange-correlation (XC) energy
(EXC) as unknown, and density functional approxima-
tions (DFAs) represent models for EXC.

Given a DFA, the energy is obtained by minimizing
the energy of Eq. (1) with respect to the density ρ(r) =∑N
k |φk(r)|2. This minimization is equivalent to solving

the Kohn-Sham eigenvalue equation

F̂ φk(r) = εk φk(r) . (2)

This is a one-electron analogue of the time-independent
Schrödinger equation. By analogy to the single-
determinant Hartree-Fock approach in wave function the-
ory,28 the effective one-electron Hamiltonian F̂ [{φk}] is
known as the Fock operator, and it depends on its own
eigenfunctions (as in Hartree-Fock theory). The power
of Kohn-Sham DFT is that that solution of the self-
consistent field (SCF) problem in Eq. (2) would be equiv-
alent to solving the full N -electron Schrödinger equation,
if the exact functional EXC were available.

While that is sadly not the case, the lack of an exact
XC functional happily keeps electronic structure theorists
gainfully employed and there are many useful DFAs that
far exceed the accuracy of the cost-equivalent Hartree-
Fock method. The manner in which different DFAs de-
pend on various descriptors of the density ρ(r) leads to

five broadly-recognized categories of density functionals
that are commonly visualized as rungs of the metaphor-
ical “Jacob’s Ladder”.29,30 The rungs are illustrated in
Fig. 3 together with some common examples on each
rung. From lowest to highest, the rungs correspond to:

1. Local Spin Density Approximation (LSDA).
The LSDA functional EXC[ρ(r)] depends strictly on
the density and solves the model problem of a uni-
form electron gas. Common fits to the uniform elec-
tron gas data are known as VWN31 and PW92,32

which are quite similar.33 Most higher rungs of Ja-
cob’s Ladder introduce corrections based on LSDA
as a starting point.

2. Generalized Gradient Approximations
(GGAs). GGAs add a dependence on ∇̂ρ(r)
to EXC, making the ansatz potentially exact for
slowly-varying electron densities, not just uniform
ones. Many useful GGAs have been developed in-
cluding PBE,34 BLYP,35,36 and B97-D.37 Q-Chem 5
also includes the nonseparable gradient approxi-
mation, GAM.38 It is nowadays standard to add
empirical dispersion corrections (of the -D, or -D3
or -D4 form, for example) to these functionals,39 in
order to improve their performance for non-bonded
interactions.

3. Meta-GGAs. These functionals incorporate an
additional dependence on the kinetic energy den-
sity, τ(r). Functionals on this rung are still un-
der active development and noteworthy recent meta-
GGAs include SCAN,40 B97M-V,41 and revM06-
L.42 The “-V” suffix in B97M-V indicates that the
functional also includes a nonlocal correlation func-
tional (VV10),43 which can (at least in principle) ac-
count for dispersion interactions for the right phys-
ical reasons,44 whereas “semilocal” functionals that
depend only on ρ(r), ∇̂ρ(r), and/or τ(r) lack the
nonlocality to describe correlated density fluctua-
tions between nonoverlapping densities.

4. Hybrid functionals. Hybrid DFAs include some
portion of the “exact” (or Hartree-Fock) exchange
energy associated with the Kohn-Sham determinant.
The traditional approach has used a fixed fraction
of exact exchange, and such functionals are known
as “global” hybrid functionals. Popular examples
include B3LYP,35,36 PBE0,45 and M06-2X,46 while
some more recent and noteworthy examples of global
hybrids include SCAN0,47 MN15,48 and revM06.49

A popular alternative to global hybrids uses a vari-
able fraction of exact exchange that typically in-
creases with inter-electron distance, r12. These are
known as range-separated hybrid (RSH) functionals,
and notable older examples include ωB97X50 and
ωB97X-D51, while newer examples include ωB97X-
V52 and ωB97M-V.53 More specialized RSH func-
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tionals are also widely used for time-dependent DFT
calculations of excited states; see Section II.C.

5. Double-Hybrid (DH) functionals. Hybrid DFAs
depend only on the occupied Kohn-Sham orbitals,
but DH-DFAs add an additional dependence on the
virtual (unoccupied) Kohn-Sham MOs, which facil-
itates description of nonlocal electron correlation,
as in second-order Møller-Plesset perturbation the-
ory (MP2). DH-DFAs have undergone rapid re-
cent development,54,55 and established models such
as B2PLYP-D3,56 XYG3,57 and ωB97X-258 have
been joined by promising new DH-DFAs including
ωB97M(2),59 and a slew of “DSD” and “DOD”
functionals that involve empirical scaling of the
MP2 spin components.60–62 Relative to the lower
rungs of the ladder, the prospect of higher accuracy
from DH-DFAs also comes with the cost of signif-
icantly higher computational demands, and signifi-
cantly slower convergence of the results towards the
complete basis set limit.

With respect to DFT, the most important feature of
Q-Chem is that an exceptionally rich set of density func-
tionals are supported: well over 200 functionals are avail-
able for a user to choose between.21 A closely related
feature is that Q-Chem contains a very complete set
of methods for accurate treatment of dispersion interac-
tions. These include Grimme’s -D,37 -D3,63,64 and -D4
corrections,65 a variety of non-local correlation and van
der Waals functionals,43,66–68 the exchange dipole model
(XDM),69,70 the Tkatchenko-Scheffler (TS) model,71 and
the many-body dispersion (MBD) model.72–74 In addi-
tion, for calculations on large molecules using the small
def2-SVPD basis set,75,76 a built-in geometric coun-
terpoise correction method (the so-called DFT-C ap-
proach77) is available. Q-Chem also has analytic nuclear
gradients and Hessians for most of this long list of func-
tionals, through rung 4. Some modern DFAs are more
challenging to integrate than older ones, and a set of mod-
ern quadrature grids is available,78 with sensible defaults.

This broad selection of available functionals is a per-
haps unfortunate necessity due to the fact that the “best”
functional often depends on the problem at hand. Ac-
cording to Pople’s concept of a theoretical model chem-
istry,79,80 one should validate candidate approximations
using known results that are related (as closely as pos-
sible) to the desired area of chemical application, then
proceed to make predictions for related but unknown sys-
tems. The best functional(s) for modeling hydrogen stor-
age in a host material,81 for example, may differ signifi-
cantly from the best functional(s) to describe elementary
steps in a CO2 reduction catalyst,82 or the best func-
tional may even differ from one catalyst to another,83 as
dictated by the need to get reduction potentials in rea-
sonable agreement with experiment. (Excited-state cal-
culations bring in a host of other considerations,84–89 as
discussed in Section II.C.) Problem-specific validation of

the choice of DFA for a given application is therefore a
good idea, particularly if there is good available data to
benchmark several candidate DFAs.

To bring some order to this situation, it is important to
recognize that there are general classes of energy differ-
ences that are common to most applications in chemistry.
Such classes include non-covalent interactions, thermo-
chemical energy differences, isomerization energies, and
reaction barrier heights. The large main-group chem-
istry database (MGCDB84) developed by Mardirossian
and Head-Gordon is categorized along these lines and con-
tains 84 distinct subsets and almost 5,000 data points.21

The top-ranked functional at each rung of Jacob’s ladder,
according to this data set, is shown in Fig. 3.

The GMTKN55 data set is another large, diverse set of
benchmarks for main-group chemistry,90 and Fig. 4 sum-
marizes the performance of a large range of functionals for
this data set. Consistent with the Jacob’s Ladder taxon-
omy, the performance of the best functional improves at
each rung of the ladder, showing that the inclusion of ad-
ditional physical content does indeed improve accuracy.
While it is often (correctly) stated that DFT results on
a given molecule are not systematically improvable by
switching from one functional to another, these results
illustrate that in a statistical sense, DFT does systemati-
cally improve when represented by the best functional at
each rung of the ladder. The same need not be true if
one considers worse-performing functionals at each level,
as the additional flexibility associated with higher rungs
on Jacob’s ladder makes it quite possible to overfit com-
plicated functional forms using limited data, especially
where meta-GGA functionals are concerned.

Diving a bit deeper into the data shown in Fig. 4 reveals
a variety of other interesting observations.

• LSDA (rung 1) is essentially useless for chemical ap-
plications. A good GGA such as B97-D3 is the sim-
plest and lowest-cost DFT method that is useful for
chemistry.

• A good meta-GGA, as exemplified by B97M-V, offers
striking improvements over the best GGA across all
categories. It is clear that meta-GGAs can deliver
significantly higher accuracy than GGAs.

• Significant further improvement is delivered by the
best hybrid functionals, exemplified by ωB97X-V
as a RSH-GGA, and ωB97M-V as a corresponding
RSH-meta-GGA. This improvement arises primar-
ily from better accuracy for barrier heights, thermo-
chemistry, and isomerization energies. There is good
reason for hybrids to be a default choice for chemical
modeling.

• The best DH-DFAs offer further improvements in the
same categories where hybrids improve over meta-
GGAs: barrier heights, thermochemistry and isomer-
ization energies. However the significantly higher
cost of DH-DFAs means that they are often used
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Fig. 4: Weighted errors (in kcal/mol) for a range of functionals, assessed using the GMTKN55 dataset and arranged according to the
rungs of Jacob’s Ladder in Fig. 3. The figure is adapted from Ref. 90 but includes additional data from Refs. 91 and 62. Adapted with
permission from L. Goerigk et al., Phys. Chem. Chem. Phys. 19, 32184 (2017). Published by the PCCP Owner Societies.

only for single-point energy calculations at stationary
points optimized at lower levels of theory. Q-Chem
includes the efficient occ-RI-K algorithm92 to signif-
icantly reduce the additional compute cost of DH-
DFAs. Some parallel timings are given in Section IX.

• The gap in accuracy between DFT and the best wave
function theories remains quite substantial. For both
bonded and non-bonded interactions, errors associ-
ated with coupled-cluster (CC) methods that include
triple excitations [CCSD(T) or better] are on the
order of 5× smaller than those for the best rung-5
density functionals.59 Therefore, despite the much
higher computational costs, there remains strong in-
centive to perform CC calculations when possible.
Some of Q-Chem’s CC capabilities are described in
Section III.

Further details regarding the combinatorial design
strategy used to obtain the best functionals at rungs 3,
4, and 5 can be found in the work of Mardirossian and
Head-Gordon.41,52,53,59 It should be noted that statistical
assessments of DFAs are only as transferable as the data
they are built upon. The transferability of the conclu-
sions discussed above to similar systems is supported by
the fact that broadly similar conclusions can be drawn
from other large-scale data assessments, e.g., compar-
ing MGCDB84 versus GMTKN55 for main-group com-
pounds. It is a separate issue to investigate the perfor-
mance of density functionals for very different classes of
molecules, such as transition metal compounds. (These
have been the target of several other recent benchmark
studies.93,94) Similarly, interest in the quality of densities
derived from DFT must be separately assessed, either di-
rectly,95 or via properties such as electrical moments.96–99

Similar considerations apply to other molecular proper-
ties such as polarizabilities,100 NMR chemical shifts,101

etc.

B Thermally-assisted-occupation DFT

Systems with strong static correlation remain very
challenging for conventional Kohn-Sham DFT.
Q-Chem 5 contains thermally-assisted-occupation
(TAO-)DFT,102–104 an efficient means to explore
ground-state properties of large electronic systems with
strong static correlation. Unlike Fermi smearing105

(also supported by Q-Chem), which is a convergence
aid for small-gap systems, TAO-DFT aims to access
densities beyond those obtainable from a single Kohn-
Sham determinant. TAO-DFT is similar to Kohn-Sham
DFT in computational complexity but represents the
ground-state electron density in terms of orbitals with
fractional occupation numbers governed by a Fermi-Dirac
distribution at a fictitious temperature that is related
to the strength of static correlation. In TAO-DFT,
static correlation can be approximately described by
the entropy contribution,102 even when semilocal102,103

or hybrid104 density functionals are employed. A
self-consistent scheme defining the fictitious temperature
has been recently developed for diverse applications.106

By combining computational efficiency with reasonable
accuracy, TAO-DFT is well positioned to investigate
the ground-state properties of electronic systems at
the nanoscale, especially those possessing strong static
correlation effects.107–111 TAO-DFT has recently been
combined with ab initio molecular dynamics.112

C Excited-state DFT methods

The TDDFT approach113,114 extends ground-state DFT
to electronically excited states via the linear response
(LR) formalism,115,116 incorporating electron correlation
at a computational cost equivalent to its uncorrelated
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Hartree-Fock analogue, the configuration-interaction sin-
gles (CIS) method.114 This relatively low cost makes LR-
TDDFT (Section 1) the most widely-used method for
computing vertical excitation spectra, and for exploring
excited-state potential energy surfaces (computational
photochemistry, Section 2). An alternative to the LR
formalism is “real-time” TDDFT,117,118 also known as
time-dependent Kohn-Sham (TDKS) theory,119–121 which
is discussed in Section 3 and which can be used to com-
pute broadband excitation spectra. Finally, an altogether
different category of DFT-based excited-state methods is
the ∆SCF formalism, which is a state-specific approach
that fully accounts for orbital relaxation in the excited
state and can be used to describe challenging problems
such as excited-state charge separation and states with
double-excitation character, thereby sidestepping known,
systemic problems with LR-TDDFT while retaining SCF
cost. The ∆SCF approach is discussed in Section 4.

1 LR-TDDFT

Despite its popularity, LR-TDDFT does have systemic
problems for certain classes of excited states, the most
infamous of which is its dramatic underestimation of
excitation energies having charge-transfer (CT) charac-
ter.85–87,122–127 Nevertheless, this method often achieves
an impressive statistical accuracy of 0.2–0.3 eV for low-
lying valence excitation energies,128 giving it a wide do-
main of applicability despite recognized shortcomings.

The CT problem, in particular, can be largely amelio-
rated through the use of long-range corrected (LRC) func-
tionals,84–89 which are RSH functionals in which the frac-
tion of Hartree-Fock exchange is required to go to unity
as r12 → ∞. The most popular such functional is LRC-
ωPBE,87,129 along with its short-range hybrid cousin,
LRC-ωPBEh,126 although other variants are available in-
cluding LRC-µBLYP and LRC-µBOP.86,88,130 In addi-
tion to these LRC-GGAs, Q-Chem 5 also includes the
relatively new revM11 functional,131 a LRC-meta-GGA
functional specifically optimized for long-range CT exci-
tations.

For best results, the range-separation parameter (ω or
µ) is often “tuned”, in order to set the frontier energies
based on the molecule’s own (∆SCF) ionization energy
(IE),89,132–134

IE(ω) = −εHOMO(ω) . (3)

In Q-Chem 5, an alternative “global density-dependent”
(GDD) tuning procedure is available.135–137 Following a
standard SCF calculation with a functional such as LRC-
ωPBE, the GDD procedure automatically determines a
new, tuned value (ωGDD) based on the size of the ex-
change hole. This approach appears to avoid system-size-
dependent problems with the value of ω tuned according
to Eq. (3).137

2 Exploring excited-state potential surfaces

Q-Chem 5 contains new tools that enable the explo-
ration of excited-state potential energy surfaces with
LR-TDDFT, including algorithms for locating minimum-
energy crossing points (MECPs) along conical seams. For
a molecule with nvib = 3natoms − 6 vibrational degrees
of freedom, the conical seam (or “conical intersection”)
is a (nvib − 2)-dimensional subspace within which two
electronic states are exactly degenerate. Conical inter-
sections serve as photochemical funnels for nonadiabatic
dynamics,138,139 so locating the MECP (i.e., the lowest-
energy point within the degenerate subspace) can help to
rationalize excited-state dynamics by providing a single
chemical structure to represent the whole seam space.140

Orthogonal to the conical seam is the two-dimensional
branching space, within which any infinitesimal displace-
ment lifts the degeneracy between electronic states |ΨJ〉
and |ΨK〉.138,141 The branching space is spanned by two
(nonorthogonal) vectors,

gJK =
∂EJ
∂R

− ∂EK
∂R

(4)

and

hJK =

〈
ΨJ

∣∣∣∣∂Ĥ∂R

∣∣∣∣ΨK〉 , (5)

where R indicates the nuclear coordinates. Opera-
tionally, the gradient difference (“g-vector”) is easily com-
puted using any excited-state method for which ana-
lytic gradients are available, but the nonadiabatic cou-
pling (“h-vector”) is less routinely available. Analytic
h-vectors are available in Q-Chem 5 for both CIS and
LR-TDDFT,141–145 which greatly facilitates efficient op-
timization of MECPs by means of a projected-gradient
algorithm that optimizes directly in the seam space.146

Alternatively, for excited-state methods where analytic
gradients (and therefore gJK) are available but ana-
lytic derivative couplings (hJK) are not, Q-Chem pro-
vides a branching-plane updating algorithm to optimize
MECPs.140,147 This is significantly more efficient140 than
alternative penalty-function methods,148 which can also
be used in the absence of hJK . The projected-gradient
algorithm is the most efficient approach of all, however,
converging in fewer steps while computation of hJK adds
a modest 10–20% overhead to the cost of computing the
gradients for states J and K.142,149,150 For molecules with
intersystem crossing, analytic gradients and derivative
couplings at the CIS and LR-TDDFT levels are available
within both the spin-diabatic and spin-adiabatic repre-
sentations.151,152

Nonadiabatic trajectory simulations at the LR-TDDFT
level are available in Q-Chem and take advantage of these
analytic derivative couplings. These simulations can be
performed using Tully’s “fewest switches” surface hop-
ping (FSSH) algorithm,153,154 or using an “augmented”
FSSH algorithm that includes decoherence effects on the
electronic amplitudes.155,156 These corrections are neces-
sary in order to maintain detailed balance and to describe
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c

o {
v

o-o

c-o o-v c-v

Fig. 5: Illustration of the spin-flip TDDFT excitation space for a
(4e,4o) model, starting from a high-spin triplet reference. Proper
spin eigenfunctions can be formed from the four determinants in
the o-o subspace but the remaining determinants are missing one
or more complementary spin functions. Adapted with permission
from X. Zhang and J. M. Herbert, J. Chem. Phys. 143, 234107
(2015). Copyright 2015 American Institute of Physics.

both short- and long-time relaxation dynamics, including
Marcus theory.157–159 A Python framework for perform-
ing FSSH simulations using Q-Chem is also available.160

A systematic shortcoming of LR-TDDFT that is rel-
evant here is an incorrect description of the topol-
ogy around any conical intersection that involves the
ground state; in such cases, the branching space pre-
dicted by LR-TDDFT is one-dimensional rather than
two-dimensional.141,161 This problem has its roots in the
fact that any excited-state method based on response
theory treats the “reference state” (usually the ground
state) in a fundamentally different manner as compared
to the “response” (excited) states. This can cause diffi-
culties when the reference state becomes quasi-degenerate
with the lowest excited state, and in the context of
nonadiabatic trajectory simulations this imbalance can
manifest as SCF convergence failure in the vicinity of
a conical intersection.162 The “spin-flip” approach to
LR-TDDFT163–165 resolves this problem,141,142 by us-
ing a reference state with a different spin multiplicity
as compared to the target states of interest. An ex-
ample is shown in Fig. 5, which depicts the excitation
space for a case where a high-spin triplet reference state
is used to generate determinants for singlet states, in-
cluding the closed-shell S0 ground state. The spin-flip
single-excitation manifold contains a subset of the possi-
ble determinants that are doubly-excited with respect to
S0, including the one (in the “o-o” subspace in Fig. 5)
that is necessary to provide proper topology at the S0/
S1 conical intersection.142,161 In Q-Chem 5, nonadiabatic
coupling vectors hJK are available for both conventional
and spin-flip variants of LR-TDDFT.142

While the spin-flip approach rigorously cures the topol-
ogy problem at conical intersections,141,142 it unfortu-
nately exacerbates problems with spin contamination.
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Fig. 6: Potential energy curves for the singlet N [(π)2(π∗)0], V
[(π)1(π∗)1], and Z [(π)0(π∗)2]states of C2H4, twisting along the
C–C axis, computed using various spin-flip methods in comparison
to multireference benchmarks. Both SA-SF-TDDFT and SA-SF-
CIS correctly describe the topology around a conical interaction
but the latter lacks dynamical correlation and therefore excitation
energies are not accurate. Adapted with permission from X. Zhang
and J. M. Herbert, J. Chem. Phys. 143, 234107 (2015). Copyright
2015 American Institute of Physics.

This is especially true as one moves away from the Franck-
Condon region and starts to break bonds, for which sin-
glet and triplet states often become comparable in energy,
and may necessitate the use of state-tracking algorithms
to ensure that a geometry optimization or dynamics tra-
jectory remains on a potential surface of consistent spin
multiplicity.166–169 At the heart of this problem is the
fact that each of the determinants in the c-o, o-v, and c-v
subspaces in Fig. 5 is missing one or more of the comple-
mentary determinants170–172 needed to form an Ŝ2 eigen-
state. The missing determinants are absent because they
cannot be generated from the reference state via a sin-
gle excitation combined with a single α → β spin flip.
However, these determinants can be generated, in an au-
tomated manner that does not increase the formal com-
putational scaling of LR-TDDFT, by means of a tensor
equation-of-motion formalism.169,173–175 This formalism
has been used to develop a “spin-adapted spin-flip” (SA-
SF) TDDFT method,169 which preserves proper topol-
ogy at conical intersections but also restores spin mul-
tiplicity as a good quantum number. Figure 6 shows
that SA-SF-TDDFT results are close to multireference
benchmarks for the challenging problem of twisting ethy-
lene by 90◦ about its C–C axis. Analytic gradients for
SA-SF-TDDFT are not yet available, but this method
can be used to check the veracity of any heavily spin-
contaminated results that are obtained with other flavors
of LR-TDDFT.

SF-TDDFT methods are also suitable for treating other
types of electronic structure that not accessible by the
standard Kohn-Sham DFT, such as polyradicals and
single-molecule magnets.163,164,176,177
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3 “Real-time” TDDFT

The term “TDDFT” is used almost universally to refer
specifically to LR-TDDFT, which despite its name is a
strictly frequency-domain theory with no explicit time
dependence, at least not within the ubiquitous adiabatic
approximation that is used in all practical implemen-
tations.114,115 However, just as the ground-state Kohn-
Sham problem is based on a one-electron analogue of the
time-independent Schrödinger equation [Eq. (2)], at the
foundation of TDDFT is a one-electron analogue of the
time-dependent Schrödinger equation, which governs the
time evolution of |Φs〉 and thus the Kohn-Sham MOs.
The latter evolve in time according to

i~
dφk(r, t)

dt
= F̂ φk(r, t) . (6)

Using this TDKS equation, the MOs can be propagated
in time following a perturbation of the ground state den-
sity at t = 0 that generates a (non-stationary) super-
position of excited states. Information about electronic
excitation energies is encoded into the time evolution of
this superposition state, and an entire broad-band exci-
tation spectrum can be obtained via Fourier transform of
the time-dependent dipole moment function, with a spec-
tral resolution that improves upon further time propa-
gation.117,178 This approach has been given the unwieldy
moniker of “real-time” TDDFT,117,118 although calling it
TDKS theory avoids confusion with the more widespread
LR-TDDFT approach.119–121

In the limit of a weak perturbation at t = 0, prop-
agated to t → ∞ to obtain narrow spectral lines,
TDKS spectra are equivalent to those obtained using
LR-TDDFT,178 but the TDKS approach need not be
limited to the weak-field LR regime and can be used
to explore strong-field dynamics,179 strong-field ioniza-
tion,180–183 and high-harmonic spectra,120,184–187 for ex-
ample. (Ionization requires the use of complex absorb-
ing potentials, which are described in more detail in Sec-
tion B. These are available for use in TDKS simula-
tions as well,120,121 along the lines of the atom-centered
potentials described in Refs. 180–183.) In this way,
TDKS simulations can describe time-dependent electron
dynamics beyond the Born-Oppenheimer approximation,
where the electrons are out of equilibrium with the nu-
clei. At present, Q-Chem’s implementation of the TDKS
method120,121 is limited to clamped-nuclei simulations,
meaning electron dynamics only.

Time propagation according to Eq. (6) is complicated
by the fact that F̂ depends on the MOs and thus the ef-
fective Hamiltonian is time-dependent. The most widely-
used propagation algorithm is the modified-midpoint
method,188 for which the cost of one time step is the
same as the cost of one SCF cycle of a ground-state cal-
culation. (It should be noted that for electron dynamics,
the fundamental timescale is attoseconds and therefore
time steps ∆t ∼ 0.04 a.u. = 10−18 s are typical.119)
Q-Chem’s implementation of the TDKS approach also
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Fig. 7: Absorption spectra of methionine at the oxygen K-edge,
computed at the level of SRC1-R1189/def2-TZVPD.75,76 A broad-
band TDKS calculation is shown along with two LR-TDDFT spec-
tra using different numbers of roots. The former is obtained from
7.3 fs of time propagation with ∆t = 0.02 a.u. The LR-TDDFT
calculations use an active space consisting of all virtual MOs but
only the O(1s) orbitals from the occupied space. Features below
531 eV in the TDKS spectrum correspond to N(1s) → continuum
transitions that excluded by this active-space approximation. Data
are taken from Ref. 121.

contains several predictor/corrector algorithms as alter-
natives to the modified-midpoint approach.119 These are
stable over longer time steps ∆t, and furthermore facili-
tate on-the-fly detection of instabilities that can lead to
spurious peak-shifting but are not always evident simply
by monitoring energy conservation, which is a necessary
but not a sufficient condition for accurate integration of
Eq. (6).119

Figure 7 illustrates a TDKS calculation of a broadband
excitation spectrum, corresponding to x-ray absorption
at the oxygen K-edge above 530 eV.120,121 This spec-
trum was obtained from 7.3 fs of time propagation with
∆t = 0.02 a.u. (meaning 15,140 time steps), using Padé
approximants to accelerate convergence of the Fourier
transform.120,121,190 Also shown are two LR-TDDFT ex-
citation spectra computed using the same functional and
basis set, which reproduce the same basic features how-
ever hundreds of excited states are required in order to get
beyond the near-edge peak, corresponding to the O(1s)
→ LUMO transition. In the TDKS approach, the car-
bon or nitrogen K-edge spectra (at lower excitation en-
ergies) are obtained from the same calculation, although
the sulfur K-edge appears at significantly higher energy
(above 2,400 eV) and requires a smaller time step. In con-
trast, LR-TDDFT excitation spectra must be computed
in terms of individual eigenstates; frozen occupied or-
bitals are required in order to make core-level excitations
emerge as the lowest-energy states and even so, hundreds
of eigenstates are required to converge the features of the
spectrum. For the LR-TDDFT calculations in Fig. 7, only
the two O(1s) orbitals of the methionine molecule were
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active from the occupied space. Despite this restriction,
several hundred states are required in order to access ex-
citation energies above the first near-edge features and
this quickly becomes prohibitive for large molecules, es-
pecially in terms of memory. These requirements for the
LR-TDDFT calculation can be reduced by judicious use
of frozen orbitals,191,192 and much larger examples (e.g.,
C70) have been reported using Q-Chem’s LR-TDDFT
code.191 However, the memory requirement for TDKS
(without approximation) is a mere 2× the memory for
a ground-state SCF calculation, which is quite minimal.
That said, whereas LR-TDDFT naturally provides CIS-
like excitation amplitudes that characterize each excited
state, from TDKS calculations it is more difficult to ex-
tract information regarding the specific MOs that con-
tribute to various spectral features, although some ideas
to this end have been put forward.190,193

Some of these same considerations apply when many-
body methods are used to compute x-ray spectra, as de-
scribed in Section VA. The LR-TDDFT approach to core-
level spectroscopy is discussed alongside these approaches
in that section.

4 ∆SCF and ROKS methods

LR-TDDFT tends to fail systematically for excited states
that involve a significant change in the density, including
the aforementioned CT excitations but also states with
double-excitation character,194 which are often either
missing entirely from the LR-TDDFT excitation spec-
trum, or else are badly in error. Both types of states are
characterized by significant orbital relaxation. Indeed, it
has recently been argued that much of what passes for
double-excitation character (e.g., in the well-known case
of the 21Ag state of butadiene) is simply orbital relax-
ation, and that double excitations are required within a
single-reference CI formalism simply because the optimal
excited-state MOs are very different from those optimized
for the ground state.195 In such cases, it may make sense
to optimize the MOs for the excited state directly. This
is the basis for the “∆SCF” approach to excitation en-
ergies, in which one uses an orbital-relaxed, non-aufbau
Slater determinant as an approximation for the excited-
state wave function. In general these non-aufbau solutions
are saddle points (rather than local minima) in the space
of MO coefficients, and orbital optimization runs the risk
of variational collapse to the ground-state solution.

A popular means to overcome this limitation is
the maximum overlap method (MOM) of Gill and co-
workers,196–198 which has been improved in Q-Chem 5 by
addition of an “initial MOM” (IMOM) variant.198 Start-
ing from a user-specified non-aufbau electron configura-
tion (using MOs determined from a previous calculation),
the MOM and IMOM algorithms attempt to preserve the
character of this state at each SCF orbital optimization
procedure. While the IMOM algorithm tends to be more
robust as compared to the original MOM, neither one is

guaranteed to avoid variational collapse. Q-Chem 5 of-
fers two new algorithms that are much more reliable in
this capacity: squared-gradient minimization (SGM),199

and state-targeted energy projection (STEP).200

The SGM algorithm converts the unstable saddle-point
search associated with excited-state orbital optimiza-
tion into a simpler minimization problem, by consider-
ing the squared-gradient ‖∂L/∂θ‖2 of an excited-state
Lagrangian L(θ), where θ is a vector of orbital-rotation
variables. SGM is far more robust than either MOM or
IMOM, although it is a few times more expensive (per
iteration) as compared to the ground-state SCF technol-
ogy that underlies MOM,199 and furthermore not every
local minimum of ‖∂L/∂θ‖2 corresponds to a physically-
meaningful state.200 An alternative is the STEP algo-
rithm, which has the same cost as MOM but tends to be
more robust.200 This approach uses a level-shift in order
to optimize a determinant containing an occupied “hole”,
using nothing more than the ground-state machinery of
iterative Fock-matrix diagonalizations.

Both the SGM and STEP algorithms succeed in a vari-
ety of cases where MOM and IMOM suffer variational col-
lapse.199,200 For a challenging database of doubly-excited
states,201 ∆SCF excitation energies computed with the
B97M-V functional are only 0.15 eV away from theoreti-
cal best estimates, with a maximum error < 0.5 eV.199,200

(Errors for the same data set at the CC3 level are
∼ 1 eV,201 despite the inclusion of triple excitations.)
The ∆SCF approach can also be used for ionization ener-
gies, to access the full valence photoelectron spectrum by
systematically removing an electron from orbitals below
the HOMO.200 Because the ∆SCF approach is based on
ground-state machinery, analytic nuclear gradients and
even analytic Hessians are available for many different
density functionals. Geometry optimization can be per-
formed in the presence of a valence hole, in order to com-
pute the adiabatic ionization energy for ionization below
the HOMO.200

As a showcase of the ∆SCF approach, Fig. 8(a) shows
a computed absorption spectrum for the chlorin moiety of
chlorophyll a.200 In accordance with Gouterman’s four-
orbital model,203 the ∆SCF calculation includes the four
excitations that are shown in Fig. 8(b), and the result is
in semiquantitative agreement with a recent gas-phase
experimental spectrum.202 It is worth noting that the
∆SCF approach uses a single Slater determinant to de-
scribe the excited-state wave function, but for an open-
shell singlet a minimum of two determinants is required
in order to obtain a spin eigenstate. It is therefore not
unusual for the ∆SCF wave functions to exhibit 〈Ŝ2〉 ≈ 1
(in units of ~2), indicating approximately equal mixture
of singlet and triplet. A simple spin-purification proce-
dure,204,205

Esinglet ≈ 2Emixed − Etriplet , (7)

can be used as an a posteriori correction that requires
only the triplet energy (Etriplet) in addition to the spin-
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Fig. 8: (a) Absorption spectra of the Mg-chlorin chromophore
of Chl a (structure shown), comparing a gas-phase experimental
spectrum202 to a ∆SCF calculation at the B97M-V/def2-TZVPD
level, which is then spin-purified using Eq. (7).200 (b) Four-orbital
model demonstrating the states that were targeted using the STEP
algorithm and included in the excitation spectrum shown in (a).
Adapted with permission from K. Carter-Fenk and J. M. Herbert,
J. Chem. Theory Comput. 16, 5067 (2020). Copyright 2020 Amer-
ican Chemical Society.

contaminated energy Emixed.

A more elaborate method is to optimize the orbitals di-
rectly using Eq. (7) as the total energy expression, which
forms the basis of the restricted open-shell Kohn-Sham
(ROKS) formalism.206,207 ROKS has been found to be
effective in predicting energies of excited states of small
molecules,207 as well as charge-separated excited states
of OLED materials,208, to an accuracy of ∼ 0.2–0.3 eV.
In conjunction with the SGM algorithm, the ROKS ap-
proach can be used to predict core-level excitation en-
ergies to an accuracy of 0.2–0.3 eV,209 as described in
Section V.A.A. Nuclear gradients for ROKS are avail-
able in Q-Chem,207 permitting geometry optimizations
and (finite-difference) frequency calculations in the ex-
cited state. Finally, note that Eq. (7) is only appro-
priate in the case of two unpaired electrons, and more
elaborate treatments are necessary in more complicated
cases.210–212

III MANY-BODY METHODS

Whereas Jacob’s Ladder of DFT provides a hierarchy of
methods that are improvable only in a statistical sense,
meaning that the best functionals on a given rung are
usually (but not always) better than the ones on the
rung below, many-body approaches to the electron cor-
relation problem provide a systematic and rigorous way
to approach the exact solution for any given molecule.213

Particularly powerful are the hierarchical approximations
built upon the Møller-Plesset (MP) perturbation theory
and coupled-cluster (CC) frameworks,214 which do not
involve system-specific parameterization. Q-Chem of-
fers fast and efficient implementations of the standard
many-body approaches including MP2, MP3, CCSD,
and CCSD(T). These codes exploit shared-memory par-
allelism (OpenMP) as well as numerous cost-reduction
and resource-reduction techniques. Among these are
resolution-of-identity approximations (also known as den-
sity fitting),215 Cholesky decomposition of the electron
repulsion integrals,215,216 frozen natural orbitals,217,218

and efficient tensor libraries.12,13 Mixed-precision CC
and EOM-CC calculations are also available for ener-
gies, properties, and gradients219. Q-Chem 5 also fea-
tures mixed precision (T) calculation. A combination of
these techniques enabled calculations of magnetic prop-
erties of single-molecule magnets and even infinite spin-
chains at the CC/EOM-CC level of theory177,220–223. A
new object-oriented implementation of the MP2 energy
and gradient, and of MP3 energies (including orbital-
optimized variants) requires no storage of amplitudes or
four-index electron repulsion integrals, and is optimized
for OpenMP parallelism.

Single-reference wave function methods can be ex-
tended to tackle many problems traditionally described
as “multi-reference”. For example, many types of open-
shell and electronically-excited species can be handled by
equation-of-motion (EOM)-CC methods,224–226 as well as
by methods based on the algebraic diagrammatic con-
struction (ADC).227 At the same time, Q-Chem also
contains methods based on the CI formalism, including
active-space methods for the treatment of strong correla-
tion. Those methods are described in Section IV, whereas
the present section highlights some examples of new de-
velopment in MPn and CC methods.

A Extensions of MPn theory

MPn theory is traditionally applied to the Hartree-Fock
determinant, on the assumption that it is the best single-
determinant approximation to the correlated wave func-
tion, an assumption that may not be valid for open-shell
systems or cases where static correlation is important.
Deficiencies of Hartree-Fock orbitals include excessive
spin polarization (i.e., artificial symmetry breaking)228

and charge distributions that are slightly too diffuse and
too polar.229 These deficiencies can be addressed using
orbital-optimized (OO) approaches in which the orbitals
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are determined by minimizing correlated energy expres-
sion. In the context of MP2, this can be done using either
the opposite-spin correlation energy230 or the total MP2
correlation energy.231,232 However, OOMP2 exaggerates
correlation effects and this can lead to artifacts, especially
when orbital energy gaps become small.233 This issue is
addressed by an improved version of OOMP2, termed κ-
OOMP2,234 which applies a novel energy-dependent reg-
ularization to the electron repulsion integrals:

〈ij||ab〉(κ) = 〈ij||ab〉
[
1− exp(−κ∆ab

ij )
]
. (8)

This removes divergences associated with small denomi-
nators ∆ab

ij = εa + εb − εi − εj in the κ-OOMP2 energy
expression,

E = E0 −
∑
i<j

∑
a<b

[
〈ij||ab〉(κ)

]2
∆ab
ij

. (9)

With the recommended choice of κ = 1.45 a.u., κ-
OOMP2 significantly improves upon standard MP2 for
thermochemical properties, non-covalent interactions,
and reaction barrier heights.

Use of κ-OOMP2 orbitals also sidesteps artificial sym-
metry breaking, and in this capacity the method can
be useful for diagnosing the presence of strong correla-
tion. By design, κ-OOMP2 includes a simple treatment
of dynamical (or weak) correlation but zero contribution
in the strongly-correlated limit.235 In molecules without
strong correlation, spin symmetry-breaking (SSB) exhib-
ited by Hartree-Fock orbitals is dramatically reduced by
κ-OOMP2, signifying that the SSB in question was “ar-
tificial”, caused by the absence of dynamic correlation.
In molecules with strong correlation, Hartree-Fock SSB is
preserved in the κ-OOMP2 orbitals, signifying the pres-
ence of essential SSB associated with multireference char-
acter.

This approach helped to resolve a controversy236,237 re-
garding the character of electron correlations in fullerenes.
Hartree-Fock theory shows dramatic SSB in C60, with the
global-minimum solution exhibiting complex and general
symmetry breaking, which has been interpreted as a sig-
nature of strong correlation and polyradical character.
However, the κ-OOMP2 global-minimum orbitals remove
this artificial SSB and are spin-pure, thus establishing
that C60 is not a strongly correlated system, which is con-
sistent with other observables.235 By contrast, more reac-
tive fullerenes such as C30 do exhibit essential SSB in κ-
OOMP2. In conjunction with other observables, this con-
firms the presence of strong correlations in their ground
states. By using κ-OOMP2 with either spin projection or
complex orbitals, one can treat large diradicaloid systems,
on the size scale of the reactive fullerenes.238

The κ-OOMP2 energy and gradient are implemented
in Q-Chem 5 within a modern MPn suite that includes
MP3. The long-neglected MP3 ansatz, when used with
orbitals from either κ-OOMP2 or a good DFA, can de-
liver accuracy comparable to that of CCSD but is 20–

Fig. 9: RMS errors (in kcal/mol) relative to benchmark CCSD(T)
values, for seven different datasets assessed using MP2, MP3, and
CCSD methods. Reprinted with permission from L. Bertels, J. Lee
and M. Head-Gordon, J. Phys. Chem. Lett. 10, 4170 (2019). Copy-
right 2019 American Chemical Society.

30× faster.239,240 Figure 9 illustrates improvement of κ-
OOMP2 relative to MP2, as well as the dramatic improve-
ment in MP3 when using κ-OOMP2 orbitals instead of
Hartree-Fock orbitals.

B CC/EOM-CC and ADC methods for open-shell
and electronically-excited species

Q-Chem contains an ever-growing suite of many-body
methods for describing open-shell molecules and ex-
cited states.172 The EOM-CC224–226 and ADC227,241 for-
malisms are two powerful approaches for describing multi-
configurational wave functions within a black-box single-
reference formalism. Target states |Ψex〉 are described as
excitations from a reference state |Ψ0〉,

|Ψex〉 = R̂|Ψ0〉 , (10)

where R̂ is an excitation operator parameterized via am-
plitudes that are determined by solving an eigenvalue
problem. In EOM-CC these amplitudes are eigenvectors
of the effective Hamiltonian

H̄ = e−T̂ ĤeT̂ , (11)

in which T̂ is either the CC or the MP2 operator for the
reference state. Currently, EOM-CCSD and EOM-MP2
models are available. In ADC, an effective shifted Hamil-
tonian is constructed using perturbation theory and the
intermediate state representation (ISR) formalism,227,241

similar to Eq. (10), to afford

M = 〈Ψex|Ĥ − E0|Ψex〉, (12)

where E0 is the energy of the MPn reference state.
Diagonalization of the Hermitian matrix M yields ex-
citation energies, and the ADC eigenvectors give ac-
cess to the excited-state wave function. Second-order
standard ADC(2), extended ADC(2)-x, and ADC(3) are
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IP

DIP

EA

DEA

EE

SF

Fig. 10: Schematic representation of the manifolds of target states
that are accessed within various EOM-CC and ADC formalisms, by
combining particular choices of reference state and excitation oper-
ator in Eq. (10). For example, in the EE models for electronically
excited states, the reference |Ψ0〉 is the closed-shell ground-state

wave function and the operator R̂ conserves the number of α and
β electrons in generating a target manifold of correlated excited-
state basis functions. Non-particle-conserving operators (IP, EA,
DIP, and DEA) and spin-flipping operators (SF) open a route to
the multi-configurational wave functions encountered in radicals, di-
radicals, triradicals, and bond-breaking processes. Reprinted with
permission from D. Casanova and A. I. Krylov, Phys. Chem. Chem.
Phys. 22, 4326 (2020). Published by the PCCP Owner Societies.

available.241 For the second-order ADC schemes, spin-
opposite-scaled (SOS) variants are also implemented.242

Various EOM-CC and ADC models are defined by the
the choice of reference state |Ψ0〉 and excitation opera-
tor R̂, as illustrated in Fig. 10. The following models
are available:224,227,241 EE (excitation energies); IP (ion-
ization potentials); EA (electron affinities); SF (spin-flip,
for triplet and quartet references); 2SF (double SF, for
quintet references); DIP (double IP); and DEA (double
EA). At present, the 2SF, DIP and DEA variants are only
available in combination with an EOM treatment.243

Analytic gradients244,245 and properties246–248 are
available for most of these models, including transition
properties between different target states (e.g., transi-
tion dipoles, angular momentum, and electronic circu-
lar dichroism rotatory strengths);249 nonadiabatic cou-
plings;250 spin-orbit couplings;220,251,252, as well as non-
linear optical properties including two-photon transi-
tion moments and (hyper)polarizabilities for both ground
and excited states.253–256 Extensions of these theories to
metastable states257 (resonances) and to core-level exci-
tations258–260 are also available and are highlighted in

State 1, hole (dyz)

ω = 0.88

State 1, hole (dyz)

State 1, particle (dxz)

ω = 0.87

State 1, particle (dz2)

Fig. 11: Spinless NTOs for selected transitions between two quin-
tet (d)6 states in a tris(pyrrolylmethyl)amine Fe(II) single-molecule
magnet,263 which are responsible for its large (158 cm−1) spin-
reversal barrier. Q-Chem’s efficient EOM-CC implementation using
the spin-orbit mean-field approximation and the Wigner-Eckart the-
orem enables calculations for medium-size molecules such as the one
shown here. The computed spin-reversal barrier is within 1 cm−1

of the experimental value.252 The key object, the spinless triplet
transition density matrix, provides valuable information about the
nature of spin-orbit coupling and the related properties. Spinless
NTOs (shown here) allow one to quantify and validate El-Sayed’s
rules.252 Reprinted with permission from P. Pokhilko and A. I.
Krylov, J. Phys. Chem. Lett. 10, 4857 (2019). Copyright 2019
American Chemical Society.

Section V.

The IP and EA variants of these models afford spin-
pure descriptions of ground and excited doublet states
and are useful for modeling charge-transfer processes.
EOM-SF and SF-ADC methods are suitable for treat-
ing diradicals, triradicals, and conical intersections. The
DEA and DIP ansätze further expand the scope of ap-
plicability.243 Spin-flip methods can be used to treat
strongly-correlated systems within an effective Hamil-
tonian formalism,221,261,262 with applications to single-
molecule magnets and even infinite spin chains.222

For visualization purposes, both Dyson orbitals264

and natural transition orbitals265 (NTOs) are avail-
able,15,88,220,266–269 including NTOs of the of the re-
sponse density matrices for analyzing two-photon absorp-
tion270 and resonant inelastic X-ray scattering271. Fig-
ure 11 highlights the application of these tools to model
magnetic properties and spin-forbidden chemistry. Exci-
ton analyses,267,268,272–274 bridging the gap between the
quasiparticle and MO pictures of excited states, enables
the calculation and visualization of electron–hole correla-
tion.89,267,268,272,273

IV ACTIVE-SPACE METHODS FOR
STRONG CORRELATION

The applicability of single-reference methods rests on an
assumption that the wave function is dominated by a sin-
gle Slater determinant. While justified for ground states
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of well-behaved, closed-shell molecules, this assumption
is inappropriate for systems exhibiting strong (or static)
correlation, where many Slater determinants may make
comparable contributions. Examples of multiconfigu-
rational systems include organic polyradicals and tran-
sition metals.275,276 While certain classes of multicon-
figurational wave functions can be effectively described
by single-reference methods such as EOM-CC and ADC
(Section III.B), more general treatments are sometimes
desirable.

The exact solution to the finite-basis, Born-
Oppenheimer electronic structure problem is the
full configuration interaction (FCI) wave function, but
factorial scaling generally limits its applicability to very
small systems. It is thus more effective to solve the FCI
problem within an active space of chemically-relevant
orbitals that contains the strong correlations, leaving
the other orbitals to be described via mean-field theory.
Although the introduction of an active space imparts
an arbitrariness, which is undesirable for a theoretical
model chemistry,79 the necessity of active-space methods
cannot be denied, despite the need to carefully validate
the active-space selection for each particular system and
process.

This complete active-space (CAS-)CI ansatz can be
used on it own,277 but is more commonly combined with
orbital optimization, which defines the popular CASSCF
method,278,279 also known as the fully-optimized reaction
space (FORS).280 Both CASCI and CASSCF are avail-
able in Q-Chem 5, including analytic nuclear gradients.

The CASCI problem still exhibits factorial scaling with
respect to the size of the active space. The total number
of Slater determinants in an active space with M spatial
orbitals is

Ndet =

(
M

Nα

)(
M

Nβ

)
, (13)

where Nα and Nβ are the number of α- and β-spin elec-
trons. This equates to Ndet ∼ 5 × 1011 for M = 22
and Nα = Nβ = 11, which is close to the practical up-
per limit and is only feasible within a massively-parallel
framework.281 With more typical resources, the limit is
M ≤ 18. On the other hand, the overwhelming majority
of these determinants make only a miniscule contribution
to the energy,282,283 This enables development of approx-
imate active-space methods that attempt to identify the
most important determinants in an automated way, with-
out solving the full CASCI problem, and are thus extensi-
ble to much larger active spaces than conventional CASCI
or CASSCF methods. The ability to deploy large active
spaces helps to reduce the dependence on the active-space
choice and affords more robust performance, including a
more balanced treatment of dynamic and non-dynamic
correlation. Two such methods, adaptive CI and incre-
mental FCI, are described in this section.

The CASCI method can be extended by adding elec-
tronic excitations beyond the active space, as in the re-

stricted active space CI (RAS-CI) with single excita-
tions into (hole) and out of (particle) the active space284.
This method has been implemented in Q-Chem follow-
ing an integral-driven algorithm with exact integrals285

and using the RI approximation286. Similar to EOM-
CC and ADC methods, target RAS-CI wave functions
can be constructed with a general excitation-type oper-
ator (EE, nIP, nEA or nSF, see Fig. 10). The intrin-
sic lack of dynamic correlation within the RAS-CI fam-
ily can be addressed by means of multi-reference per-
turbation theory (RAS-CI(2))287, or by the use short-
range density functional correlation energy (RAS-CI-
srDFT)288,289. Q-Chem RAS-CI implementation affords
computing state and transition properties, including tran-
sition dipole moments and spin–orbit couplings290.

A CI with adaptive selection

“Selected” CI (SCI) methods aim to exploit the sparsity
of the Hilbert space by identifying important determi-
nants and diagonalizing the Hamiltonian only within the
space of important configurations. Although formulated
long ago,291–296 these methods have re-emerged recently
due to breakthroughs in efficient search of the determi-
nantal space.297–304 Q-Chem 5 contains an implemen-
tation of the adaptive sampling configuration interaction
(ASCI) method,304–306 which efficiently selects important
configurations to yield compact CI wavefunctions that ac-
count for most of the correlation energy. Based on the
computer resources available, the user selects a maximum
number of determinants t to keep in the variational CI
wave function, and a cutoff of the top c determinants in
this list to generate new determinants that are iteratively
considered to replace the least significant members of
the t-list. While still exponential-scaling, the ASCI algo-
rithm permits dramatically larger FCI calculations than
the standard approach. To correct for missing configu-
rations, ASCI can be complemented with a second-order
perturbation theory correction for the missing configura-
tions, to approach chemical accuracy of ∼ 1 kcal/mol.

While the “soft exponential” scaling of ASCI is a
tremendous improvement over conventional FCI, it is still
critically important to minimize the size of the FCI prob-
lem if the ASCI algorithm is to obtain chemical accu-
racy. ASCI can be used as an approximate CASCI solver
for CASSCF calculations, with the resulting ASCI-SCF
method extending the applicability of CASSCF to prob-
lems as large as CAS(50,50), so that periacenes or iron
porphyrin can be handled in this way.307 The differ-
ence between this and the conventional “hard exponen-
tial” limit of around CAS(18,18) illustrates the utility of
the ASCI-SCF method for extending the scale of feasible
chemical applications. ASCI-SCF nuclear gradients for
geometry optimizations are also available in Q-Chem 5.
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SOMO #1 SOMO #2

Fig. 12: A challenging case of strong and weak correlation: the
[(µOCH3)VO(ma)]2 dimer complex and its two singly-occupied
MOs. The three-body iFCI yields a singlet–triplet gap to within
30 cm−1 of experiment.317

B Incremental full CI

The method of increments308–310 provides an alternative
means to approach the FCI solution without the associ-
ated exponential scaling, via an incremental expansion of
correlation energy:311

Ec =
∑
p

εp +
∑
p<q

∆εpq +
∑
p<q<r

∆εpqr + · · · . (14)

Q-Chem 5 contains an incremental FCI (iFCI) method
based on this idea,312–317 using occupied MOs for the
indices p, q, r, . . .. Successive n-body contributions to
Eq. (14) can be computed in a manner that is highly
parallelizable, and iFCI recovers both static and dynamic
correlation with polynomial scaling. Both the cost and
the fraction of Ec that is recovered depend upon the level
of truncation in Eq. (14); tests have shown that a three-
body expansion (through εijk) recovers most of the cor-
relation energy but a four-body expansion is needed to
reproduce full CI to within ∼ 10−3 Eh. Equally impor-
tant to systematic convergence is the use of a localized
orbital basis, which greatly speeds up the recovery of dy-
namic correlation. The generalized valence bond perfect-
pairing (GVB-PP) method in Q-Chem318 suits this pur-
pose well, providing localized bonding/antibonding pairs
of orbitals for iFCI.314 When applied to butadiene and
benzene, which are two standard test cases for FCI-level
approaches,319 the four-body iFCI method provides to-
tal energies that are within 10−3 Eh of other bench-
marks.314,317

The iFCI method has also provided solutions equiva-
lent to the largest CI problems to date, including a recent
study of transition metal complexes.317 For example the
vanadium maltolato dimer, [(µOCH3)VO(ma)]2, was ex-
amined to quantify its singlet–triplet gap (Fig. 12). The
unpaired electrons of the vanadium atoms are coupled
through a µ-oxo bridge, making for a complicated corre-
lation problem involving both static and dynamic corre-
lation. A three-body iFCI approach, correlating all 142
electrons in the 444 orbital space, affords a singlet–triplet
gap within a few tens of cm−1 of experiment. To achieve
this result, a systematic truncation scheme was used to
eliminate over 90% of the three-body contributions, based
on selecting incremental terms that do not significantly
affect the gap.317

C Other methods

Q-Chem contains several novel active-space methods
that blend together aspects of CC and valence bond (VB)
theories.320–325 These CCVB methods separate n elec-
tron pairs into arbitrary radical fragments, such that the
dissociation energy matches CASSCF but the computa-
tional cost is only polynomial. However, these methods
are difficult to use in practice due to a nonlinear wave
function ansatz and a lack of orbital invariance, which
leads to a challenging multiple-minimum problem in the
orbital optimization. The CCVB-SD method326 restores
invariance with respect to orbital mixing within the core,
active-occupied, active-virtual, and inactive-virtual sub-
spaces, while retaining the desirable formal features of
the CCVB expansion. Q-Chem 5 contains a production-
level implementation of the CCVB-SD energy and gra-
dient,327 using the same tensor tools used in Q-Chem’s
efficient implementation of other CC methods.12 As such,
the cost of CCVB-SD is nearly identical to CCSD but the
former can tackle strongly-correlated systems. It is nat-
ural to use CCVB-SD with an active space, because it
can describe both strong and weak correlations but not
simultaneously. See Ref. 327 for recent applications of
CCVB-SD.

Direct variational determination of the two-electron re-
duced density matrix (2RDM) provides an efficient de-
scription of many-electron systems that naturally cap-
tures strong correlation effects. The variational 2RDM
(v2RDM) approach can be used as a driver for ap-
proximate CASSCF calculations with polynomial scal-
ing.328,329 Q-Chem 5 supports v2RDM-driven CASSCF
calculations in which the active-space 2RDM is con-
strained to satisfy two-particle (“PQG”) positivity con-
ditions,330 partial three-particle conditions,331 or else
full three-particle N -representability conditions.332 Us-
ing PQG conditions only, v2RDM-driven CASSCF can
be applied to systems with active spaces as large as
(64,64).333 Analytic energy gradients are available for
v2RDM-CASSCF calculations with all three choices of
N -representability conditions.334

V SPECIALIZED METHODS

This section highlights some specialized features of con-
temporary interest. Quantum chemistry is witnessing
a surge of interest in x-ray spectroscopy,192,335–339 fu-
eled by advanced light sources and free-electron lasers,
as well as the recent availability of tabletop laser sources
with femtosecond time resolution.340–344 For that reason,
we highlight Q-Chem’s capabilities for core-level spec-
troscopy in Section A. Q-Chem also features a suite of
methods for describing metastable resonances, which are
more often handled with specialized scattering codes and
Q-Chem’s functionality here is unique amongst widely-
used electronic structure packages. Unlike bound states,
resonance wave functions are not square-integrable and
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their description requires specialized methods based on
non-Hermitian quantum mechanics,345 which are sum-
marized in Section B. Methods for vibronic lineshapes
are described in Section C, and Section D describes the
nuclear–electronic orbital method for the description of
proton quantum effects.

A Modeling core-level spectroscopy

Various core-level (x-ray) processes are illustrated
schematically in Fig. 13. These include x-ray absorption
(XAS), x-ray emission (XES), resonant inelastic x-ray
scattering (RIXS), and x-ray photoelectron spectroscopy
(XPS). The relaxation of the core-level states can also
result in secondary ionization, giving rise to Auger spec-
troscopy. These techniques correspond to photon en-
ergies above 200 eV, such that core-to-valence excita-
tions are embedded in an ionization continuum. Standard
quantum chemistry approaches require modification in or-
der to deal with these highly energetic excitations,192,335

especially in models with double (and higher) excita-
tions that allow core-level states to decay. Because core-
level states are Feshbach resonances that decay via two-
electron processes, attempts to solve unmodified EOM-
CCSD or ADC equations for core-level states lead to the
same physically correct but practically disastrous behav-
ior as attempts to describe transient anions (e.g., N−2 ,
CO−2 ) by standard bound-state methods.257,346 In both
cases, the solutions depend strongly on a basis set (which
affects how the continuum is discretized),346 and in the
limit of the complete basis set these states dissolve into
the continuum.257,346,347

The ionization continuum can be projected out using
the core/valence separation (CVS) scheme,348 which en-
tails pruning the target Fock space by removing the con-
figurations that do not engage the core electrons. By
doing so, CVS effectively blocks the ionization channels,
artificially making core-excited states bound with respect
to electron loss. In addition, CVS removes the large man-
ifold of valence excited states so that core-level excita-
tions appear at the bottom of the excited-state manifold,
within easy reach of standard iterative eigensolvers. Un-
contracted or otherwise specialized basis sets are some-
times required,192,197,349–354 because standard Gaussian
basis sets are designed for valence chemistry and may
not describe the strong orbital relaxation induced by the
creation of the core holes. (TDDFT is considerably less
sensitive in this regard, however.121,351) In addition, rela-
tivistic effects and spin-orbit coupling become important
for L- and M-edge excitations.338

Q-Chem offers a variety of methods for computing
transitions involving core orbitals and the corresponding
spectroscopic properties. These can be classified as fol-
lows.

• Calculations based on orbital eigenvalue differences,
often using fractional orbital occupations.355–359

XAS XES RIXSXPS

Fig. 13: Schematic illustrations of core-level phenomena. The
XAS and XPS processes involve excitation into a virtual bound
molecular orbital or into the continuum, respectively, whereas the
XES signal is produced by radiative relaxation of a valence electron
into a core hole. The nonlinear RIXS phenomenon can be described
as a coherent combination of XAS and XES transitions.

• State-specific ∆SCF methods197,200,337 (or ∆MP2,
etc.), and spin-recoupled ROKS methods,209,211

based on a non-aufbau determinant containing an
orbital-relaxed core hole.

• Non-orthogonal CIS (NOCIS), which employs re-
laxed core holes and returns a spectrum of core ex-
citation energies.360–362

• LR-TDDFT calculations using a restricted excita-
tion window.189,191,337,363 In conjunction with a non-
aufbau reference determinant, this approach can also
be used to simulate XES.364

• Real-time TDDFT calculations of an entire broad-
band excitation spectrum (Section 3).

• Correlated methods within the CVS scheme, such as
CVS-ADC,258,259 and CVS-EOM-CC,260,365–367 for
XAS, XPS, XES, x-ray electronic circular dichroism
(or simply XCD), RIXS, and Auger spectroscopy.
These may also be used with a non-aufbau refer-
ence determinant to simulate excited-state XAS and
XPS, as needed in the context of time-resolved ex-
periments.364,368–370

With the exception of real-time TDDFT, each of these
methods invokes some sort of decoupling from the va-
lence continuum. Neglecting the valence continuum is
an approximation, which can affect the position of the
core-level resonances. Apart from fully time-dependent
treatment, the effect of the continuum can also be incor-
porated via the Feshbach-Fano formalism, by combining
the CVS treatment with the continuum orbitals,371 or
with other non-Hermitian methods described in Section
B.

Methods based on SCF eigenvalue differences εa − εi
have their origins in Slater’s transition method,372,373
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which is based on a proof that εa − εi is the leading-
order approximation to a true excitation energy if the
SCF calculation is performed with fractional occupation
numbers ni = 1/2 = na. Due to the impracticality of
computing an entire spectrum state-by-state, in practice
it is often assumed that the potential generated by placing
1/2 electron in the LUMO will approximately mimic that
obtained by placed 1/2 electron into a higher-lying vir-
tual orbital, so that only a single fractional-electron SCF
calculation is required. This approach is usually known as
the transition potential method.355–357 Other occupancy
schemes have sometimes been considered,359,374,375 with
names like “half core-hole”, “full core-hole”, and “excited
core-hole”.375

The state-specific ∆SCF approach was described in
Section II.C.4. Here, the requisite non-aufbau determi-
nant (containing a core hole) can be optimized using one
of several algorithms that are available in Q-Chem, in-
cluding MOM,197 IMOM,198 SGM,199 or STEP.200 This
approach accounts for orbital relaxation and works very
well for core-level ionization (XPS), but in the context of
XAS it suffers from the same impracticality that limits
Slater’s transition method. State-specific calculations are
most commonly performed at DFT levels of theory (hence
∆SCF), but in principle a non-aufbau Hartree-Fock de-
terminant could be used as a reference state for a subse-
quent wave function treatment of correlation, e.g., ∆MP2
or ∆CCSD.197,200 It should be kept in mind that non-
aufbau determinants do suffer from spin-contamination
(see Section II.C.4) and sometimes from artificial sym-
metry breaking. The convergence of CC methods can
sometimes be problematic when using a highly-excited
reference state.376

Regarding LR-TDDFT, it is worth noting that
workhorse functionals for the ground-state SCF prob-
lem, which might be accurate to 0.2–0.3 eV for valence
excitation energies,128 afford much larger errors where
core-level excitation energies are concerned, e.g., shifts
> 10 eV are typically required using B3LYP.377 (That
said, a recent benchmark study suggests that these large
shifts do not dramatically affect the precision of LR-
TDDFT excitation energies,378 such that the features of
a shifted spectrum might be acceptable.) To improve
the absolute accuracy, early studies suggested increasing
the fraction of Hartree-Fock exchange in B3LYP to 50–
70%,189,364,379–381 in order to balance core and valence
self-interaction, but such severe modification makes these
functionals inappropriate for application to valence chem-
istry.

An alternative is to use range separation to dial in
a large fraction of exact exchange on very short length
scale (< 1 Å), preserving the balance of semilocal ver-
sus Hartree-Fock exchange at larger distances. This is
the basis of short-range corrected (SRC) functionals de-
veloped specifically for x-ray spectroscopy,189,388 which
afford an absolute accuracy of ∼ 0.3 eV for core-level
excitations of second-row elements when used with LR-

Fig. 14: Carbon K-edge spectra for several large molecules, com-
puted with LR-TDDFT (SRC2 functional189 and 6-31G* basis
set,382,383 in black) in comparison to experimental near-edge x-ray
absorption fine structure (NEXAFS, in red). The experimental data
are from Refs. 384–387. Reprinted with permission from N. A.
Besley, J. Chem. Theory Comput. 12, 5018 (2016). Copyright 2016
American Chemical Society.

TDDFT. Q-Chem has the capability to perform LR-
TDDFT calculations that are optimized for XAS, reduc-
ing both the computational time and memory require-
ments.191,192 Examples of what is feasible with this ap-
proach, using a restricted excitation window approxima-
tion (analogous to the CVS approximation) at the carbon
K-edge, are shown in Fig. 14. These spectra were com-
puted at the TD-SRC2189/6-31G*382,383 level of theory
and are compared directly to experiment,384–387 without
empirical shifts.

Whereas ∆SCF calculations are a single-determinant
approximation for the excited state, ROKS calculations
provide a spin-pure treatment of open-shell singlet ex-
cited states, as discussed in Section II.C.4, while also
providing full core-hole relaxation. ROKS with Hartree–
Fock orbitals attains root-mean-square error (RMSE) of
0.6 eV for K-edge excitations of second-row elements,212

without any correlation, highlighting the importance of
orbital relaxation in describing core-level states. Inclu-
sion of dynamic correlation via DFT can lead to better
results, with the modern SCAN meta-GGA40 affording a
RMSE of ∼ 0.2 eV for K-edge excitations of C, N, O and
F.209 Similarly small errors are obtained at the L-edges of
third-row elements.209 The relatively low computational
scaling of the semilocal SCAN functional (as compared to
hybrid DFAs) makes this approach particularly appealing
for larger systems. While it might appear tedious to op-
timize each possible excitation individually with ROKS,
the suite of excited state orbital optimization methods
in Q-Chem permits explicit computation of a full spec-
trum without too much difficulty. This is demonstrated
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Fig. 15: Carbon K-edge spectra of adenine obtained using (a)
LR-TDDFT with the CAM-B3LYP functional,389 versus (b) state-
specific ROKS calculations using the SCAN functional. All calcu-
lations used a mixed basis set consisting of aug-cc-pCVTZ390 on
the core-excited atom and aug-cc-pVDZ391,392 on all other atoms.
The LR-TDDFT calculations require a 10.4 eV shift to align the
low-energy edge of the calculated spectrum with experiment,393

whereas the ROKS spectrum is unshifted.

in Fig. 15, which depicts the carbon K-edge spectrum of
adenine computed via ROKS using the SCAN functional
and the SGM algorithm.

It is also possible to compute multiple excited states
simultaneously while accounting for core-hole relaxation.
The non-orthogonal CIS (NOCIS) approach achieves this
by performing CIS with the relaxed orbitals for the core-
ionized state.360,362 Specifically, NOCIS computes opti-
mal core-ionized orbitals for each possible atomic core-
excitation site, builds all singly-excited configurations
that preserve the desired core hole, then diagonalizes the
Hamiltonian within the subspace spanned by these (non-
orthogonal) determinants. Some additional considera-
tions involving ∆SCF states are necessary to extend NO-
CIS to open-shell systems,361,362 and the lack of dynamic
correlation leads to small (0.5–1.0 eV) overestimation of
excitation energies. However, these drawbacks should be
balanced against the ability to compute multiple excited
states simultaneously, which is not possible with the more
accurate ROKS approach. Much efficiency is gained and
almost no accuracy is lost by restricting the CI space to
individual atoms.362

Finally, many-body methods including ADC227 and
EOM-CC224 provide the means to compute core-excited
transitions with systematically improvable accuracy.
These methods include both orbital relaxation and elec-
tron correlation in a single computational step, within
a multi-state formalism that naturally affords transition
properties. These methods are naturally spin-adapted
when used with a closed-shell reference determinant.
Q-Chem 5 facilitates calculation of XPS, XAS, and
XES using the CVS-EOM-IP-CCSD approach,260,366 and
XAS using either CVS-EOM-EE-CCSD260,366 or CVS-
EE-ADC.259,394,395

CVS-EOM methods combined with spin–orbit cou-
pling have been used to compute L-edge XPS,369 as
in Fig. 16(a). Time-resolved variants of XPS or XAS
can be modeled by using a non-aufbau reference deter-
minant366,368,370 or directly as transitions between tar-
get ADC/EOM states,260,368 as illustrated in Fig. 16(b).
Nonlinear spectra including RIXS can also be computed
with correlated methods,367,399 as in Fig. 16(c). Features
such as Dyson orbitals,264,366 attachment/detachment
densities,400 and NTOs15,88,266,267,401 facilitate analysis
and interpretation of the computed spectra. A unique
feature of Q-Chem is the ability to compute Auger decay
rates and Auger spectra using Feshbach-Fano formalism
combined with CVS-EOM-CC and an explicit description
of the free electron,371 as illustrated in Fig. 16(d).

B Methods for metastable resonances

Electronic resonances, meaning states that are unstable
with respect to electron loss, are ubiquitous in energetic
environments such as plasmas, combustion, and in the
presence of ionizing radiation.257,345 Resonances are also
relevant to condensed-phase processes under milder con-
ditions, e.g., plasmonic catalysis,402 and may play a role
in radiation-induced damage to living tissue.403 Because
resonances lie in the continuum, their wave functions are
not square-integrable and cannot be described using stan-
dard quantum-chemical methods designed for isolated
bound states. Naive application of bound-state quantum
chemistry to metastable states does not capture genuine
resonances but rather “orthogonalized discretized contin-
uum states”,346 where the metastable state behaves like
poor approximation to a plane wave, trapped by a finite
Gaussian basis set, with properties that are artificial and
prone to change erratically as the basis set is changed,
especially if additional diffuse functions are introduced.

This computational predicament is elegantly circum-
vented within non-Hermitian quantum mechanics based
on complex-variable techniques,345 which generalizes and
extends concepts from bound-state quantum chemistry
to the case of electronic resonances.257,345,346 Within this
modified formulation, electronic resonances can be de-
scribed as square-integrable, quasi-stationary states al-
beit with complex-valued energies, E = ER− iΓ/2, where
ER is the resonance position and Γ is the resonance width,
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(c) RIXS/REXS (d) Auger spectroscopy
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Fig. 16: Exemplary applications of CVS-EOM-CCSD methods to x-ray spectroscopy. (a) Sulfur L-edge XPS spectra of thiophene with
and without spin-orbit coupling, computed at the fc-CVS-EOM-CCSD/u6-311+G(3df) level. The notation u6-311+G(3df) indicates an
uncontracted version197,353 of 6-311+G(3df).396–398 (b) Oxygen K-edge XAS spectra of uracil in S0, S1, and S2 states, computed at
the fc-CVS-EOMEE-CCSD/6-311++G** level. Intensity of the excited state bands has been reduced assuming 15% population. NTOs
of the 1s → SOMO transition in S1 are also shown. (c) RIXS/REXS two-dimensional energy-loss spectrum of benzene versus pumping
frequency ωex, computed at the fc-CVS-EOM-CCSD/u6-311(2+,+)G** level. Intensities are on a logarithmic scale. (d) Illustrations
of various Auger effects: (1) regular Auger decay, (2) resonant (participator) decay, and (3) resonant (spectator) decay. Regular Auger
decay is relevant for XPS, whereas resonant Auger processes occur in XAS. These processes can be modeled within the Feshbach-Fano
framework using CVS-EOM-CC to describe the initial core-excited or core-ionized state and EOM-IP-CC or DIP-CC to describe the final
state. Panel (a) is adapted with permission from M. L. Vidal et al., J. Phys. Chem. Lett. 11, 8314 (2020). Copyright 2020 American
Chemical Society. Panel (b) is adapted from M. L. Vidal et al., J. Chem. Theory Comput. 15, 3117 (2019). Copyright 2019 American
Chemical Society. Panel (c) is reproduced with permission from K. Nanda et al. Phys. Chem. Chem. Phys. 22, 2629 (2020). Published
by the PCCP Owner Societies. Panel (d) is reproduced with permission from W. Skomorowski and A. I. Krylov, J. Chem. Phys. 154,
084124 (2021). Copyright 2021 American Institute of Physics.

the latter of which arises from lifetime broadening.

Q-Chem offers three different complex variable tech-
niques: complex coordinate scaling (CS),346,404–409 com-
plex basis functions (CBFs),410–413, and complex absorb-
ing potentials (CAPs).414–417 The CS approach regu-
larizes the resonance wave function by rotating all co-
ordinates in the Hamiltonian into the complex plane,
x → xeiθ. This approach has a rigorous mathemat-
ical foundation but is not compatible with the Born-
Oppenheimer approximation, limiting its applicability
to atoms, whereas CBFs and CAPs are applicable to
molecules. (The latter approaches can be considered as
approximations to “exterior” CS.418,419) CBF methods
utilize mixed bases sets in which the exponents of the
most diffuse functions are complex-scaled, whereas the

CAPs simply add an imaginary potential to the molecu-
lar Hamiltonian Ĥ0:

Ĥ = Ĥ0 + iW (x) . (15)

The CAP serves to absorb the non-normalizable tail of the
resonance wave function, and several functional forms for
W (x) are available in Q-Chem. Although there is some
arbitrariness associated with the details of the CAP, these
methods are generally easier to use as compared to alter-
native “stabilization” methods,346,420,421 in which Gaus-
sian exponents or atomic numbers are modified in order
to stabilize the resonance (making it amenable to stan-
dard bound-state methods), with the results then extrap-
olated back to the physical system of interest. If applied
carefully, both the stabilization and CAP methods afford
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useful results,422 however the CAP approach is more rig-
orous and more straightforward to extend to other molec-
ular properties.

The CS, CBF, and CAP techniques can each be com-
bined with the full EOM-CCSD suite of methods imple-
mented in Q-Chem. The CAP technique is also available
for all ADC methods,248 implemented via a subspace pro-
jection approach.423 The EOM-EA or EA-ADC variants,
for example, are appropriate for treating metastable radi-
cal anions of closed-shell molecules, whereas super-excited
states of neutral molecules and metastable excited states
of closed-shell anions are best described using EOM-EE
or EE-ADC.
Q-Chem offers several functionalities for the charac-

terization of electronic resonances beyond their positions
and widths, including:

• first-order one-electron state properties and tran-
sition moments for all complex-variable EOM-CC
methods;415,424

• Dyson orbitals for all complex-variable EOM-CC
methods;424–426

• NTOs for CAP-EOM-CC methods;427 and

• analytic gradients for CAP-EOM-CC methods.428

These tools are useful for investigating the spectroscopy
and chemical reactivity of electronic resonances. Dyson
orbitals and NTOs, for example, provide compact rep-
resentations of changes in the wave function upon elec-
tron attachment or electronic excitation. Since complex-
valued Hamiltonians are not Hermitian but rather
complex-symmetric, these quantities conform to a modi-
fied metric in which the real part of the complex electron
density integrates to the number of electrons while its
imaginary part integrates to zero.406 Related results hold
for density matrices, transition density matrices, orbitals,
and wave functions, all of which also feature a real and an
imaginary part. Analogous to the case of bound states,
a singular value decomposition of the one-electron transi-
tion density matrix affords pairs of NTOs, which facilitate
the interpretation of an electronic excitation in terms of
MO theory.269

Further analysis of NTOs and exciton wave functions
can be accomplished based on the Feshbach formalism,429

wherein a resonance is described as a bound state coupled
to a continuum of scattering states. This analysis demon-
strates that the real part of the excitonic wave function
describes changes in the electron density corresponding
to the bound part of the resonance, while the imaginary
component of the wave function can be interpreted as
virtual states that facilitate one-electron decay into the
continuum.427 Singular values associated with particu-
lar NTOs can be related to the partial widths of the re-
spective decay channels. As an example, Fig. 17 illus-
trates NTOs for the 1Σ+ resonance in C7N−, a chain-like
cyanopolyyne anion relevant to astrochemistry.430

real imaginary

real imaginary

real imaginary

σ = 0.57

σ = 0.57

σ = 0.34

σ = 0.14

σ = 0.05

σ = 0.05

Fig. 17: Real and imaginary NTOs for the 1Σ+ resonance in
C7N−. This state has mixed π → π∗ and σ → σ∗ character, as
apparent from the participation ratio PRNTO(γRe) ≈ 3. Based on
the singular values σIm

K , the total width of 0.13 eV can be sepa-
rated into two contributions, ΓΣ = 0.10 eV and ΓΠ = 0.03 eV,
corresponding to the two decay channels in which the C7N radical
is either formed in the 2Σ+ or the 2Π state. Reprinted with permis-
sion from W. Skomorowski and A. I. Krylov, J. Phys. Chem. Lett.
9, 4101 (2018). Copyright 2018 American Chemical Society.

Analytic gradients enable the search for special points
on the complex-valued potential surfaces of polyatomic
resonances. Algorithms are available for equilibrium
structures,428,431 for crossings between resonances and
their parent states,432 and for crossings between two res-
onances,433 the latter of which are known as exceptional
points. These critical points govern the nuclear dynam-
ics following the formation of a resonance state and, if
that resonance is long-lived enough, can be connected to
features in electron transmission and energy-loss spec-
tra. In particular, exceptional points may be consid-
ered the non-Hermitian analogues of conical intersections
(Section II.C.2), and play a similar role for electron-
induced chemistry as conical intersections do for photo-
chemistry.433 An example involving a dissociative elec-
tron attachment process434–436 is considered in Fig. 18,
in which a (π∗)− resonance anion state is accessible at
the equilibrium structure of the neutral parent molecule,
chloroethylene.433 The dissociative state has (σ∗)− char-
acter but is too high in energy to be accessed directly,
and the reaction proceeds via nonadiabatic transition be-
tween the two resonances, along a seam of exceptional
points. The complex-valued potential surfaces for the
(σ∗)− and (π∗)− resonances around the minimum-energy
exceptional point are shown in Fig. 18, computed using
CAP-EOM-EA-CCSD.

C Calculation of vibronic lineshapes

The vibrational structure of electronic transitions encodes
rich information about molecular structure, in both linear
spectroscopies (UV-Vis, XAS, XPS, etc.) and nonlinear
ones (2PA, RIXS, resonance Raman, etc.). Quantitative
modeling of these spectra combines calculations of elec-
tronic structure and nuclear wave functions, via either a
static (time-independent) or a dynamic (time-dependent)
formalism.437–443 Q-Chem 5 provides several capabilities
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Fig. 18: (a) Schematic representation of dissociative electron at-
tachment to chloroethylene. The exceptional point is marked by a
blue circle. (b) Real and imaginary part of the potential surfaces
in the vicinity of the minimum-energy exceptional point between
the π∗ and the σ∗ states of chloroethylene anion, plotted above the
plane spanned by the real gradient difference vector (xRe) and the
imaginary gradient difference vector orthogonalized to xRe (x′Im).
Reprinted with permission from Z. Benda and T.-C. Jagau, J. Phys.
Chem. Lett. 9, 6978 (2018). Copyright 2018 American Chemical
Society.

to calculate the vibrationally-resolved spectra and certain
types of electronic cross sections.

Within the dipole approximation, the probability of
transition between an initial state (i) and a final state
(f) is proportional to the square of the transition dipole
matrix element,

Pif ∝
(∫

Ψi(r,R) µ̂ Ψf (r,R) dr dR

)2

, (16)

when the photon is resonant with the energy gap. Here,
µ̂ is the electronic dipole moment operator and coordi-
nates R and r represent nuclei and electrons, respectively.
Within the Born-Oppenheimer approximation,444,445 the
wave functions Ψ(r,R) can be factored into a nuclear
wave function χ(R) and an electronic wave function
ψ(r; R), so that

Pi′f ′′ ∝
(∫

ψi(r; R)χi′(R) µ̂ ψf (r; R)χf ′′(R) dr dR

)2

.

(17)
Indices i′ and f ′′ denote the vibrational states of the two
electronic states. Within the Born-Oppenheimer approx-
imation, the vibrational wave functions are determined
solely from the nuclear Schrödinger equation with poten-
tial defined by the electronic Schrödinger equation. Inte-
gration over the electronic coordinates in Eq. (17) affords
the electronic transition dipole moment for the i → f
transition:

µif (R) =

∫
ψi(r; R) µ̂ ψf (r; R) dr . (18)

The transition probability can therefore be written

Pi′f ′′ ∝
(∫

χi′(R) µif (R) χf ′′(R) dR

)2

. (19)

Equation (19) is the basis for modeling the spectrum. It
contains an electronic transition moment µif (R) in addi-
tion to vibrational wave functions for the initial and final
states.

Within the Condon approximation,446 it is assumed
that µif (R) depends weakly on the nuclear coordinates
so can be evaluated at a fixed nuclear geometry, e.g., at
the equilibrium geometry Re of the initial state. Then

Pi′f ′′ ∝
∥∥µif (Re)

∥∥2
(∫

χi′(R) χf ′′(R) dR

)2

. (20)

The overlap integrals between the two nuclear wave func-
tions is called a Franck-Condon factor (FCF),441,446–448

which is directly related to the intensities of vibrational
progressions via Eq. (20).

FCFs for various spectroscopic transitions (photoelec-
tron, UV-Vis, etc.) can be computed in a post-processing
step using the ezFCF module of the stand-alone soft-
ware ezSpectra,449 which implements FCFs within the
double-harmonic approximation both with or without
consideration of Duschinsky rotation,441,450 i.e., changes
in the normal modes between the ground and excited
electronic states. These calculations require optimized
structures and normal mode analysis for both electronic
states but are completely agnostic regarding the level
of electronic structure theory at which these calcula-
tions are performed. ezSpectra also contains a mod-
ule ezDyson, which can be used to compute total and
angular-resolved photoelectron spectra. This requires
Dyson orbitals that can be computed using Q-Chem.

To go beyond the Condon approximation, one can
invoke the Herzberg-Teller (HT) normal mode expan-
sion of µif (R) around the equilibrium nuclear geome-
try,440,441,451 in order to account for geometry-dependent
changes in the transition dipole moment. Although the
Condon approximation is generally accurate for strongly
allowed transitions, for weak or forbidden transitions the
Franck-Condon term [Eq. (20)] is nearly or exactly zero,
and therefore higher-order terms may become important.
These give rise to the HT effect.440,441

Raman scattering is a two-photon process (see Fig. 19)
and resonance Raman scattering (RRS) is a particular
type of vibrational Raman spectroscopy in which the in-
cident laser frequency lies close to an electronic transi-
tion.452,453 In RRS, an incident photon with frequency
ωL (the laser frequency) is absorbed and another with
frequency ωS is emitted, with the difference correspond-
ing to a vibrational level spacing. The differential photon
scattering cross section is given by442,454–456

σ(ωL, ωS) ∝ ωLω
3
SS(ωL, ωS) (21)
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Fig. 19: Schematic diagram for one-photon absorption and one-
photon emission (left), and for resonance Raman scattering (RRS,
at right).

where

S(ωL, ωS) =
∣∣〈ψf |M̂ |ψi〉∣∣2δ(ωS − ωL + ωfi) (22)

and the transition operator

M̂ =
∑
k

[
µ̂ · e2|ψk〉〈ψk|µ̂ · e1

ωL − ωki
− µ̂ · e1|ψk〉〈ψk|µ̂ · e2

ωS + ωki

]
(23)

involves a sum over virtual vibronic states k. In the RRS
process, the initial (i) and final (f) electronic states both
correspond to the ground state so ~ωfi represents a dif-
ference between ground-state vibrational energy levels, as
depicted in Fig. 19. When the energy gap ωk−ωi between
the k state and the i state is close to the laser frequency
ωL, the intermediate state k (a vibrational level of an
excited electronic state) dominates the scattering cross
section and non-resonant contributions can be neglected.

The formalism described above is inconvenient, even
in the resonant case, because even in the resonance case
where only a single excited electronic state is important,
Eq. (23) still requires a sum over vibrational levels on
that state. An alternative strategy is based on time-
dependent formalism,457,458 which circumvents evalua-
tion of the multidimensional integrals that appear when
FCFs are computed beyond the parallel-mode approxi-
mation, i.e., when Duschinsky rotation is included. In
this approach, matrix elements of M̂ (which generates
the polarizability tensor) are avoided and the scattering
cross section is expressed in terms of the Fourier trans-
form of a time correlation function representing the over-
lap between the final state |ψf 〉 and the time-evolving
wave function |Ψ(t)〉 following excitation to the upper
electronic state:

σ(ωL) ∝
∫ ∞

0

eiωL−Γt〈ψf |Ψ(t)〉 dt+ NRT . (24)

(Here, “NRT” denotes the non-resonant terms that can be
neglected in RRS and Γ is a damping factor.) A detailed
theoretical background is given in Ref. 442.

Q-Chem 5 includes a built-in implementation of the
time-dependent correlation function approach at the LR-
TDDFT level, which enables calculation of vibrationally-
resolved one-photon and two-photon absorption and
emission spectra462,463 and RRS spectra440 within the
double-harmonic approximation, including both Duschin-
sky rotation and HT effects in the time domain. To il-
lustrate the capabilities of the theory, Fig. 20 compares
calculate FC and FC-HT spectra for benzyl radical to ex-
periment. The absorption and fluorescence spectra arise
from the D0 → D3 and D1 → D0 transitions, respec-
tively. Especially for the stimulated emission and the
RRS spectra, agreement with experiment improves upon
inclusion of the HT terms.

For semiquantitative calculations, a short-time ap-
proximation to Eq. (24) can be used, which turns out
to be equivalent to the “independent mode, displaced
harmonic oscillator” model,438,456,464 in which it is as-
sumed that equilibrium displacements of the vibrational
normal modes change upon electronic excitation but
not the modes themselves or their frequencies. Un-
der those assumptions, the dimensionless displacement
∆k = (ωk/~)1/2∆Qk for normal mode Qk can be related
to the excited-state gradient, i.e., the derivative ∂Ω/∂Qk
of the electronic excitation energy, Ω:465,466

∆k =
1√
~ω3

k

(
∂Ω

∂Qk

)
. (25)

The relative resonant enhancement in the intensity of
mode Qj versus mode Qk is466

Ij
Ik

=

(
ωj∆j

ωk∆k

)2

. (26)

Within this approximation, the resonant enhancement in
RRS (as compared to normal Raman scattering) consists
of the excited-state gradient projected onto ground-state
normal modes {Qk}, so this approach has also been called
the excited-state gradient approximation.465,467 It has
been implemented in Q-Chem 5 for CIS and LR-TDDFT
excitation energies, and used to compute the resonance
Raman spectra of complex systems such as e−(aq).466

This approach has also been combined with ab initio
molecular dynamics to simulate transient (excited-state)
RRS,468 which are measurable via the emerging technique
of femtosecond stimulated Raman spectroscopy.469,470

D Nuclear–Electronic Orbital Methods

Nuclear quantum effects are essential in many chemi-
cal and biological processes such as proton transfer and
proton-coupled electron transfer reactions. The nuclear–
electronic orbital (NEO) method provides a framework
for the accurate and computationally efficient incorpora-
tion of the significant nuclear quantum effects within an
electronic structure calculation.471,472 In this approach,
all electrons and specified nuclei are treated quantum me-
chanically alongside the MO description of the electrons,
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Fig. 20: (a) Absorption spectra, (b) emission spectra, and (c) RRS spectra of benzyl radical, comparing experimental results to
calculations within the FC approximation (in blue) versus the FC-HT approximation (in red). A damping factor of Γ = 300 cm−1 and
temperature T = 298 K were used for the absorption spectrum, versus Γ = 20 cm−1 and T = 0 K for the emission spectrum. For the
RRS spectrum, a damping factor of 100 cm−1, Lorentzian broadening of Γ = 20 cm−1, and T = 298 K are used. All electronic structure
calculations are performed at the (TD-)B3LYP/6-311G** level. To make the simulated spectra consistent with experiment,459–461 the
adiabatic energy gap is shifted by 0.04 eV for absorption, −0.34 eV for emission, and −0.11 eV for RRS. The wavelength of incident light
for RRS simulation is 315 nm, as in the experiment.460

thereby avoiding the Born-Oppenheimer separation be-
tween the electrons and quantum nuclei. Treating at
least two nuclei classically prevents complications with
translations and rotations. Typically the quantum nu-
clei are chosen to be protons or deuterons, although the
NEO method has also been applied to positrons.473,474

For simplicity, the formalism presented below assumes
quantum protons. A significant advantage of the NEO
method is that anharmonicity, proton delocalization, and
zero-point energy are included directly in energies, geome-
try optimizations, reaction paths, and molecular dynam-
ics. Both wave function and DFT methods have been
developed within the NEO framework for the accurate
description of nuclear quantum effects in the ground and
excited states of molecular systems.474–490

The NEO Hamiltonian operator is471

ĤNEO = T̂ e + V̂ e + V̂ ee + T̂ p + V̂ p + V̂ pp + V̂ ep, (27)

where T̂ e, V̂ e, and V̂ ee are the conventional electronic op-
erators corresponding to kinetic energy, electron–nuclear
attraction (for the classical nuclei only), and electron–
electron repulsion, respectively. Operators T̂ p, V̂ p, and
V̂ pp represent the analogous quantities for the quan-
tum protons. Finally, V̂ ep is the operator correspond-
ing to the electron–proton Coulomb interaction. Simul-
taneous mean-field descriptions of both the electrons and
the quantum protons results in the NEO-Hartree–Fock
ansatz,471 but unfortunately the omission of electron–
proton correlation effects makes this model inadequate
for predictions of reliable energies or geometries.472 The
rest of this section describes DFT-based alternatives.

1 NEO-DFT

The NEO-DFT method is a multicomponent extension of
the conventional electronic DFT formalism, in which dif-
ferent types of particles (e.g., electrons and protons) are
treated quantum mechanically.491–493 Similar to NEO-
HF, the NEO-DFT Kohn-Sham wave function is the

product of electronic and protonic Slater determinants
composed of the Kohn-Sham spin orbitals. The NEO-
DFT energy is

E[ρe, ρp] = Eext[ρ
e, ρp] + Eref[ρ

e, ρp] + Eexc[ρe]

+ Epxc[ρp] + Eepc[ρe, ρp] . (28)

Here, Eext[ρ
e, ρp] is the interaction of the electronic and

protonic densities, ρe and ρp, with the external potential
created by the classical nuclei. The term Eref[ρ

e, ρp] con-
tains the electron–electron, proton–proton, and electron–
proton classical Coulomb energies, as well as the non-
interacting kinetic energies of both electrons and quan-
tum protons. The final three terms are electron–electron
XC, proton–proton XC, and electron–proton correlation
functionals. Variational minimization of the NEO-DFT
energy with respect to the densities leads to two sets of
coupled Kohn-Sham equations for electrons and protons,
which are strongly coupled and must be solved together
self-consistently.

Implementation of the NEO-DFT method requires the
functionals in Eq. (28). Within this framework, any
conventional electron-electron XC functional can be em-
ployed.477 Due to the local nature of the quantum protons
in molecular systems, the proton–proton XC energies are
negligible,472 but Hartree-Fock proton–proton exchange
is included. The electron–proton correlation (epc) func-
tional is essential for accurate calculations of proton den-
sities and energies. The epc17 (LDA form)475,476 and
epc19 (GGA form)478 functionals were formulated as
extensions of the Colle-Salvetti formalism for electron–
electron correlation494,495 to the case of electron–proton
correlation. These functionals are designed to accurately
describe proton densities and energies of molecular sys-
tems.

The importance of electron–proton correlation for the
prediction of accurate proton densities is shown in Fig. 21
for the FHF− molecular ion, where results from NEO-
DFT with several different electron-proton correlation
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0

(a) on-axis

(b) off-axis

Fig. 21: (a) On-axis and (b) off-axis proton density for FHF− com-
puting using NEO-DFT with no electron-proton correlation and two
different electron-proton correlation functionals, in comparison to a
grid-based reference calculation. All calculations use the B3LYP
electronic functional, def2-QZVP electronic basis set,75 and the
even-tempered 8s8p8d protonic basis set. Adapted with permis-
sion from F. Pavošević, T. Culpitt and S. Hammes-Schiffer, Chem.
Rev. 120, 4222 (2020). Copyright 2020 American Chemical Society.

treatments are compared to a near-exact result com-
puted using the Fourier grid method.496–498 In the ab-
sence of electron–proton correlation (NEO-DFT/no-epc
in Fig. 21), the proton density is much too localized, sim-
ilar to NEO-HF results. Inclusion of electron–proton cor-
relation using either the epc17-2 functional475,476 or the
epc19 functional478 significantly improves the proton den-
sities.

In addition to accurate proton densities, these two epc
functionals were shown to predict accurate proton affini-
ties for a diverse set of molecules composed of amines,
carboxylates, aromatics, and inorganic species.476,478 Be-
cause the NEO-DFT method inherently includes the zero-
point energy contributions from the quantum protons, the
proton affinity of molecule A is simply

PA(A) = EA − EHA+ + 5
2RT, (29)

where EA is the energy of A computed with conventional
DFT and EHA+ is the energy of the protonated species
calculated using NEO-DFT. This procedure does not re-
quire the calculation of computationally expensive Hes-
sians because the zero-point energy contributions from
the other nuclei have been shown to be negligible due
to cancellation.480 Moreover, the NEO-DFT method in-
cludes the anharmonic effects associated with the quan-
tized proton.

Analytic geometry gradients for the NEO-DFT method
with the epc17-2 and epc19 functionals allow geometry
optimizations that include the effects of proton delocal-
ization, anharmonicity, and zero-point energy. Figure
22 shows that the NEO-DFT/epc17-2 method accurately
predicts the increased F–F bond length in the FHF− ion,

reference
NEO-DFT/epc17-2
conventional DFT

Fig. 22: Energy as a function of F–F distance for FHF−, compar-
ing conventional DFT and NEO-DFT results to a grid-based ref-
erence. Quantization of the proton increases the equilibrium F–F
distance. These calculations were performed using the B3LYP elec-
tronic functional, the def2-QZVP electronic basis set, and the even
tempered 8s8p8d protonic basis set. Data are from Ref. 476.

which is shifted by ≈ 0.02 Å due to proton quantiza-
tion.476 The NEO-DFT/epc17-2 method has been used
to optimize the geometries of protonated water tetramers
with all nine protons treated quantum-mechanically, and
correctly predicts the energetic ordering of the four iso-
mers.490

The NEO-HF, NEO-DFT/no-epc, NEO-DFT/
epc17-2, and NEO-DFT/epc19 methods are available
in Q-Chem 5, in both restricted and unrestricted
formalisms. The quantum protons are always assumed
to be high-spin. Analytic gradients are available for each
of these methods, enabling geometry optimizations. The
user must specify the quantum protons, the electronic
and protonic basis sets,475,483,499 and the electronic and
electron–proton correlation functionals.

2 NEO-TDDFT

NEO-TDDFT is a multicomponent extension of conven-
tional electronic LR-TDDFT that allows for the simulta-
neous calculation of electronic and proton vibrational ex-
citation energies,479 as depicted in Fig. 23. The formalism
follows from the linear response of the NEO Kohn-Sham
equations to an external perturbation, and NEO-TDDFT
excitation energies Ω are obtained by solving the follow-
ing multicomponent equation:479

Ae Be C C
Be Ae C C
C† C† Ap Bp

C† C† Bp Ap




Xe

Ye

Xp

Yp



= Ω


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




Xe

Ye

Xp

Yp


(30)

The matrices Ae, Be, Xe, and Ye are analogous to the
orbital Hessians (A and B) and response amplitudes (X
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(a) (b)

Fig. 23: (a) Schematic depiction of the electronic and proton vi-
brational excitations obtained from a single NEO-TDDFT calcu-
lation. (b) Transition densities for the bend and stretch modes of
FHF−. Panel (a) is reproduced with permission from Y. Yang,
T. Culpitt, and S. Hammes-Schiffer, J. Phys. Chem. Lett. 9, 1765
(2018). Copyright 2018 American Chemical Society. Panel (b) is
reproduced with permission from T. Culpitt et al., J. Chem. Phys.
150, 201101 (2019). Copyright 2019 American Institute of Physics.

and Y) that appear in conventional LR-TDDFT,114,115

albeit with an additional term associated with electron–
proton correlation in Ae and Be. The quantities Ap, Bp,
Xp, and Yp are their protonic counterparts. The quantity
C is a coupling matrix that includes terms associated
with electron–proton Coulomb interactions and electron–
proton correlation.

NEO-TDDFT predicts accurate proton vibrational ex-
citation energies that are in a good agreement with grid-
based reference values for the fundamental vibrational
modes.483,484 The electronic excitation energies for the
lower electronic states are similar to those obtained with
conventional electronic LR-TDDFT,479 but vibronic mix-
ing is found to impact the electronic excitation energies
for some of the higher electronic states.486 The Tamm-
Dancoff approximation114 can be applied to Eq. (30),
eliminating the Ye and Yp amplitudes, though the re-
sulting NEO-TDA method tends to significantly overes-
timate the proton vibrational frequencies.479

The NEO-TDDFT, NEO-TDHF, NEO-TDA, and
NEO-CIS methods are available in Q-Chem 5, in both re-
stricted and unrestricted versions. The quantum protons
are always assumed to be high-spin. These methods pro-
vide electronic, proton vibrational, and electron–proton
(vibronic) excitation energies.

VI MODELING THE ENVIRONMENT

Most chemistry occurs in the condensed phase and 21st-
century quantum chemistry is characterized by a vari-
ety of increasingly sophisticated theoretical models to de-
scribe the extended environment around a smaller part
of the system that is modeled in detail using electronic
structure theory. The simplest approach to modeling

a solution-phase molecule is to replace vacuum bound-
ary conditions with dielectric continuum boundary condi-
tions.500,501 Section A highlights some continuum meth-
ods that are new in Q-Chem 5, including capabilities for
describing solvent effects on spectroscopy (vertical exci-
tation and ionization energies) and for using a continuum
model to describe an anisotropic solvation environment
such as an air/water or aqueous/organic interface.

Hybrid quantum mechanics/molecular mechanics
(QM/MM) methods represent a higher degree of sophis-
tication that allows the environment to have atomistic
structure, although this necessitates sampling over those
atomistic degrees of freedom, at increased cost. Available
QM/MM functionality, including interfaces with various
MM software packages, is described in Section B. Taking
this one step further, one can imagine “QM/QM”
methods that describe the environment at a lower but
still quantum level of theory. Historically this was often
accomplished via a “subtractive” approaches,502,503 as
pioneered by Morokuma and co-workers in the “ONIOM”
scheme,504 but more recently there is growing interest
in QM/QM embedding schemes that stitch together two
levels of theory in a potential more natural way. For this
purpose, Q-Chem contains a version of projection-based
embedding505,506 that is described in Section C. Finally,
for a homogeneous QM description of a system that is
too large to be tackled in a straightforward way one can
turn to fragmentation methods,507 a few of which are
described in Section E.

A Continuum solvation models

Dielectric continuum models represent a form of implicit
solvation that sidesteps configurational averaging over
solvent degrees of freedom, as that averaging is contained
(implicitly) within the value of the solvent’s static or
zero-frequency dielectric constant, ε0. Within quantum
chemistry, the oldest of these models are the polariz-
able continuum models (PCMs),508 but historically the
best black-box solvation models are the “SMx” models
developed by Cramer, Truhlar, and co-workers.509 Con-
sult Refs. 501 and 510 for a discussion of the similar-
ities, differences, and nuances of these various models.
Q-Chem 5 contains a range of these models,511 built
upon a smooth discretization procedure for the cavity
that defines the interface between the atomistic solute
and the structureless continuum.511–515 This procedure
eliminates numerical artifacts such as discontinuities in
the potential energy surface, which can appear in some
implementations.511–513

1 Models for solvation energies

Q-Chem includes the SM8,516 SM12,517 and SMD518

variants of SMx, of which SMD is perhaps the most inter-
esting because it uses density-based electrostatic interac-
tions based on a PCM, and is available (with analytic gra-
dient) in arbitrary basis sets. In addition to these models,
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Table 1: Mean unsigned errors (MUEs) for hydration energies
∆hydG

◦ using continuum solvation models.a

Data Setb Ndata
MUE (kcal/mol)

SM12 SMD CMIRS
neutrals 274 1.3 0.8 0.8
cations 52 3.5 3.4 1.8
anions 60 3.8 6.3 2.8
all ions 112 3.7 4.7 2.4

aComputed at the B3LYP/6-31G* level, from Ref. 501.
bMinnesota solvation database.518,524,525

Q-Chem 5 also includes the CMIRS model developed by
Pomogaeva and Chipman,519–522 as modified by You and
Herbert.523 CMIRS is designed as a less-empirical con-
tinuum solvation model and uses dramatically fewer pa-
rameters as compared to the SMx, although the trade-off
is that it is presently parameterized for only a few sol-
vents. For the important case of aqueous solvation, error
statistics (versus experiment) for small-molecule hydra-
tion energies ∆hydG

◦ are provided in Table 1 and these
statistics demonstrate that CMIRS outperforms the SMx
models for ions in aqueous solution. The data set is the
Minnesota solvation database,518,524,525 for which the er-
ror bars on the single-ion hydration energies are estimated
to be ±3 kcal/mol.525 This means that the CMIRS model
has reached the limit of the accuracy of the experimen-
tal data against which all of the models in Table 1 were
parameterized.

CMIRS uses an isocontour of the solute’s electron den-
sity ρ(r) to define the cavity surface,526 which is there-
fore defined in terms of a single empirical parameter and
is pleasantly free of other parameters such as atomic van
der Waals radii. The disadvantage is that the isoden-
sity construction lacks analytic energy gradients, which
are available in Q-Chem 5 for SMD. In Q-Chem, the
self-consistent reaction field problem defined by the con-
tinuum model can be iterated to self-consistency with any
SCF level of theory. For post-Hartree–Fock methods, the
use of solvent-polarized MOs in the subsequent electron
correlated calculation affords a “zeroth-order” correction
for solvation effects that is probably accurate to within
the limitations of the continuum approach itself.501

There is significant confusion in the literature regarding
terminology for continuum solvation models.501,510 PCMs
themselves are electrostatics-only models,501 which must
be augmented with nonelectrostatic contributions (Pauli
repulsion, dispersion, cavitation, etc.) in order to model
solvation energies. Models for these nonelectrostatic con-
tributions to ∆solvG

◦ are included as part of the SMx
and CMIRS solvation models but are not included in
PCMs. Even relatively sophisticated electrostatics treat-
ments such as the “integral equation formulation” (IEF-
PCM)508 and the closely-related “surface and simula-
tion of volume polarization for electrostatics” [SS(V)PE]
model527,528 are electrostatics-only descriptions of solva-
tion, as is the much simpler “conductor-like screening

model” (COSMO),529,530 which often affords results quite
similar to IEF-PCM and SS(V)PE.531 All of these mod-
els are available in Q-Chem; see Ref. 501 for a detailed
comparison of them. While not appropriate for comput-
ing ∆solvG

◦, a PCM alone can still be useful for spec-
troscopic applications, where the frontier orbital energy
levels are modified by the dielectric continuum and this
is reflected in the computed excitation energies. Applica-
tion of PCMs to solvatochromic shifts is discussed next.

2 Nonequilibrium models for vertical excitation
and ionization

What is the appropriate manner to describe a sudden
change in the solute’s electron density, such as occurs
upon electronic excitation or ionization, within a contin-
uum representation of the solvent? A simple approach
is to partition the solvent polarization into “fast” (elec-
tronic) and “slow” (nuclear) components and assume that
the former responds instantaneously but that the latter
is frozen and remains polarized with respect to the ini-
tial state.532–535 The slow polarization is therefore out
of equilibrium with the solute’s electrons and such ap-
proaches are known as nonequilibrium solvation mod-
els.501 Within this approach, the solvent’s frequency-
dependent permittivity ε(ω) is modeled using only its
ω = 0 limit (the static dielectric constant, ε0), and its
ω →∞ limit (the “optical” dielectric constant, ε∞). The
latter is equal to the square of the solvent’s index of refrac-
tion (ε∞ = n2

ref), with values in the range ε∞ = 1.8–2.5
for common solvents.501

For an electronic transition from initial state |Ψ0〉 to
final state |Ψk〉, the Schrödinger equation that one would
like to solve is(

Ĥvac + R̂s
0 + R̂f

k

)
|Ψk〉 = Ek|Ψk〉 (31)

where Ĥvac is the vacuum Hamiltonian and R̂k = R̂s
0+R̂f

k

is the reaction-field operator, partitioned into a “slow”
initial-state component R̂s

0, representing polarization us-
ing wave function |Ψ0〉 and dielectric constant ε0, and
a “fast” final-state component R̂f

k, representing polar-
ization using wave function |Ψk〉 and dielectric con-
stant ε∞.501 The state-specific nature of the Hamilto-
nian in Eq. (31) is problematic, however.536 A simple
solution is to treat R̂f

k using first-order perturbation
theory, in a basis of mutually-orthogonal eigenstates of
Ĥ0 = Ĥvac + R̂s+f

0 . This has been called the perturbation
theory state-specific (ptSS) approach to nonequilibrium
solvation.537–539 When applied to the CIS-like eigenvalue
problem that defines LR-TDDFT, the ptSS approach is
closely related to the “corrected LR” approach of Cari-
cato et al.;540 see Ref. 501 for details.

The ptSS model for solvatochromic shifts is available
in Q-Chem 5 for LR-TDDFT537,538 and ADC meth-
ods.538,539 Figure 24 shows some results for a set of ni-
trobenzene derivatives, with excitation energies computed
at the ADC(2) level. The ptSS-PCM solvatochromic
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Fig. 24: Solvatochromic shifts in lowest 1ππ∗ state for derivatives of nitrobenzene (PhNO2) in different solvents, comparing experimental
values to those computed at the ADC(2) level using the ptSS-PCM approach.538 The PTE, PTD, and PTD∗ variants represent slightly
different ways of treating the correlated excited-state density.501,539 Adapted with permission from Mewes et al., J. Phys. Chem. A 119,
5446 (2015). Copyright 2015 American Chemical Society.

shifts compare very well with experiment, and the details
of how electron correlation contributions are included in
the excited-state density (iteratively alongside the PCM
correction or not) matter very little.539 In conjunction
with LR-TDDFT, the ptSS-PCM approach can also be
applied to emission and photoelectron spectroscopies.537

In the latter case, nonequilibrium effects of 0.5–1.0 eV
on vertical ionization energies (VIEs) have been docu-
mented.541–543 The nonequilibrium corrections are not
yet available for other kinds of excited-state methods
(such as EOM-CC), but in those cases one can still include
zeroth-order solvation effects simply by using solvent-
polarized Hartree-Fock orbitals in the correlated calcu-
lation.

3 Poisson-Boltzmann approach for arbitrary di-
electric environments

The solvation models discussed above are designed for the
isotropic environment of a bulk solvent, in which case the
solvent is characterized by a scalar dielectric constant and
Poisson’s equation (which defines the continuum electro-
statics problem) can be replaced by a more efficient PCM
formalism.501 However, if the environment is anisotropic
(at an interface, for example), then the continuum elec-
trostatics problem is defined instead by the generalized
Poisson equation

∇̂ ·
[
ε(r)∇̂ϕtot(r)

]
= −4πρsol(r) , (32)

in which ε(r) is an inhomogeneous permittivity func-
tion and ρsol(r) is the charge density (nuclei + electrons)
of the atomistic solute that is described using quantum
chemistry. Solution of Eq. (32) is more expensive than
a PCM calculation because it requires discretization of
three-dimensional space, but an advantage of the three-
dimensional approach is that it provides an exact solution
(within the model problem defined by a continuum envi-
ronment) for the “volume polarization” that arises when
the tail of the solute’s charge density penetrates beyond
the cavity.501,544,545 Equation (32) can also be modified to
include the effects of ionic strength (Poisson-Boltzmann
equation).501,546
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Fig. 25: Illustration of an anisotropic permittivity function ε(r)
for the air/water interface. The atomistic solute is ClO−3 (H2O)30,
which amounts to two solvation shells around the ion. Adapted with
permission from J. M. Herbert, Wiley Interdiscip. Rev.: Comput.
Mol. Sci. e1519 (2021). Copyright 2021 John Wiley & Sons.

Q-Chem 5 includes a generalized Poisson equation
solver (PEqS) for Eq. (32) and the analogous Poisson-
Boltzmann equation.542,546 For isotropic solvation, ε(r)
can be designed to interpolate smoothly across the atomic
van der Waals radii, between a “vacuum” value ε = 1 in
the atomistic (quantum chemistry) region, and a bulk sol-
vent value outside of that region. A similar construction
can be used to obtain a continuum model for the air/water
interface,541–543 as shown schematically in Fig. 25. Other
permittivity models ε(r) have been constructed to de-
scribe host/guest systems, where the inside of a molecular
capsule screens a guest molecule from the high-dielectric
solvent outside, with consequences for the spectroscopy
of the guest.547

The nonequilibrium ptSS formalism for ionization537

(Section 2) has also been formulated for use with gener-
alized Poisson boundary conditions,541,542 and this ptSS-
PEqS approach has been used to compute solution-phase
VIEs, including those for ions at the air/water inter-
face.541–543 These applications require the use of some
explicit water molecules in the atomistic QM region, as
shown in Fig. 25. However, whereas aqueous VIEs are no-
toriously slow to converge, often requiring > 500 explicit
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water molecules,548–555 use of continuum boundary con-
ditions leads to converged results using only about two
solvation shells of explicit water.541,543 Importantly, only
the nonequilibrium version of continuum solvation affords
VIEs in agreement with experiment.501,543 Equilibrium
PCM approach may be adequate for adiabatic ionization
energies but lack the correct physics to describe vertical
excitation or ionization.501

B QM/MM methods

By itself, Q-Chem contains some limited functionality
for QM/MM simulations using standard non-polarizable
force fields. This functionality does include periodic
boundary conditions for solution-phase QM/MM cal-
culations,556,557 and these features have been used to
simulate the electronic spectroscopy of aqueous chro-
mophores,558 including solvated electrons and other aque-
ous radicals.466,557,559–562 A QM/MM model for ph-
ysisorption, inspired by dispersion-corrected DFT, is new
in Q-Chem 5.563

For QM/MM calculations with polarizable force fields,
Q-Chem can perform calculations using the effective frag-
ment potential (EFP) method,564 a QM-derived polariz-
able force field.564–566 QM/EFP calculations can be per-
formed through an interface between Q-Chem and the
open-source libefp library.11,565 As in previous versions
of Q-Chem, QM/EFP calculations are supported at QM
levels of theory including EOM-CC, CIS(D), and LR-
TDDFT for excited-state calculations;567 in Q-Chem 5,
support has been added for ADC/EFP,568 and for two-
photon absorption calculations using EOM-CC/EFP.569.

Even more flexibility with respect to polarizable force
fields is provided by the polarizable embedding (PE)
framework,570 calculations with which are enabled via an
interface between Q-Chem and the open-source cppe li-
brary.14 PE/SCF calculations are currently enabled for
all ground-state SCF methods, and excited-state calcu-
lations can be performed at the PE/ADC level.14 The
latter method has been used to tackle excited states of
large biomolecular systems.571

For many biomolecular QM/MM applications, it is cru-
cial to have sophisticated tools for visualization and ma-
nipulation of coordinates and trajectory data, as well as
access to advanced methods for sampling potential energy
surfaces. For these purposes, Q-Chem includes interfaces
to several popular MM software packages, which serve
as front-end drivers to Q-Chem’s computational quan-
tum chemistry engine. An interface to the charmm pro-
gram572 has long been a part of Q-Chem,573 which can
also be accessed via the “charmming” web portal.574,575

New in Q-Chem 5 are interfaces to the gromacs576 and
namd577 classical molecular dynamics programs. The
gromacs interface in particular supports nonadiabatic
trajectory surface-hopping simulations at the CIS and
LR-TDDFT levels of theory, including SF-TDDFT (see
Section II.C.2), with gromacs as the driver for the dy-

namics. Some tools for “QM-cluster” modeling578 of en-
zyme active sites are also available in Q-Chem itself.579

C Embedding methods

Taking one step further than QM/MM, one can employ
a cost-effective QM theory to describe the environment.
The projection-based QM embedding theory505,506 pro-
vides a robust and formally exact approach to partition a
chemical system into two subsystems (A and B) that are
treated at two different levels of QM theory. Typically,
a small, chemically-important part of the system (A) is
described by a correlated wave function theory (WFT,
e.g., MPn or CC), while its environment (subsystem B)
is described using DFT. This scheme goes beyond the
electrostatic embedding formalism that is commonly in
ONIOM-style treatments,504 as the interaction between
the two subsystems is described at the DFT level and
is therefore fully quantum-mechanical. Q-Chem 5’s im-
plementation of projection-based embedding supports the
use of a myriad of WFT/DFT combinations, thanks to its
broad coverage of these two families of electronic struc-
ture methods.

A WFT(A)-in-DFT(B) calculation comprises the fol-
lowing steps:

• Converge the SCF calculation for the full system at
the DFT level of theory

• Partition the occupied orbitals by localizing the
canonical MOs and assigning the localized MOs to
subsystems A and B

• Perform the WFT calculation for the embedded sub-
system A, which means performing a Hartree-Fock
calculation followed by a correlated wave function
calculation using the MOs for A.

In the final step of this procedure, the MOs assigned to
subsystem B remain frozen and are employed to construct
a projection operator that enforces the orthogonality be-
tween the MOs of A and B when the former’s MOs are be-
ing re-optimized. Meanwhile, the “environment” subsys-
tem (B) affects the QM calculation of A by contributing
an embedding potential to the one-electron Hamiltonian
of A, which comprises the Coulomb and XC interactions
between two subsystems.

Compared to the original formulation of the projection-
based embedding theory,505 the implementation in
Q-Chem 5 has (i) replaced the use of a somewhat
arbitrary level-shift parameter with a strict projection
scheme; (ii) implemented the subsystem-projected atomic
orbital decomposition (SPADE) partition of the occupied
space,580 which is more robust than the original scheme
based on the Pipek-Mezey localization procedure;581 and
(iii) includes a “concentric localization” scheme to trun-
cate the virtual space with systematically-improvable ac-
curacy.582 Truncation of the virtual space is essential to
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reducing the cost of a WFT-in-DFT calculation (rela-
tively to a full WFT treatment), especially for CC meth-
ods whose cost increases steeply with the number of vir-
tual orbitals.

Besides the projection-based embedding theory, other
notable QM/QM embedding schemes that are available
in Q-Chem 5 include frozen-density embedding,583–587

embedded mean-field theory,588 and the related polarized
many-body expansion scheme.589

D Molecules under pressure

Q-Chem includes methods to incorporate the effects of
hydrostatic pressure or mechanical forces on molecular
structures in geometry optimizations and ab initio molec-
ular dynamics simulations. The application of mechani-
cal forces to molecules is modeled by the “external force
is explicitly included” approach.590 Application of pres-
sure can be modeled either by the hydrostatic compres-
sion force field approach,591 in which forces point towards
the molecular centroid, or via a more refined algorithm
in which mechanical forces are applied perpendicular to
the molecular van der Waals surface.592 These methods
can be deployed in combination with any electronic struc-
ture method for which nuclear gradients are available,
with no additional computational overhead. Benchmarks
show that physically sound geometries are retained even
at high pressure.592 A more sophisticated approach for
applying pressure to chemical systems is the Gaussians
on surface tesserae simulate hydrostatic pressure (GOST-
SHYP) algorithm.593 This approach uses Gaussian poten-
tials that are distributed evenly on the discretized molec-
ular van der Waals surface to compress the electron den-
sity and affords accurate results for energies, structural
parameters, dipole moments and chemical reactions un-
der pressure.593 GOSTSHYP energies and gradients are
currently implemented only at the SCF level, enabling
Hartree-Fock and DFT calculations of compressed atoms
and molecules.

E Fragment-based methods

Fragmentation methods507 seek to sidestep the steep non-
linear scaling of traditional quantum chemistry by sub-
dividing a large system into small pieces that can be tack-
led more tractably by means of distributed computing.
Although a plethora of approaches have been discussed
in the literature,507,594 they are most often implemented
at the level of external scripts or driver programs and only
a few of them are tightly-integrated with Q-Chem itself.
A few of these are discussed in the present section includ-
ing a general-purpose n-body expansion for ground-state
energies, an ab initio exciton model for representing de-
localized excited states in a basis of fragment-localized
excitations, and finally a scheme for computing energy-
transfer couplings. The energy decomposition methods
that are described in Section VII can also be considered

as examples of fragment-based methods but are discussed
separately.

1 Many-body expansion

A simple and straightforward method is the many-body
expansion (MBE),595–601

E =
∑
I

EI +
∑
I<J

∆EIJ +
∑

I<J<K

∆EIJK + · · · , (33)

which accounts incrementally for two-body interactions
(∆EIJ = EIJ − EI − EJ), three-body interactions
(∆EIJK), etc. Both the MBE and its analytic gradi-
ent are available in Q-Chem 5, for ground-state energies
of fragments that are not covalently bonded to one an-
other. MBE calculations can be parallelized using either
OpenMP (across a node) or MPI, though not both.

Careful analysis of the n-body expansion suggests
that ostensibly slow convergence is sometimes an arti-
fact of basis-set superposition error (BSSE).598–600,602–604

To avoid this, many-body counterpoise corrections are
available,598,599 which are consistent order-by-order with
Eq. (33).

2 Ab initio exciton model

The Frenkel exciton model605 is an old idea to represent
collective, delocalized excitations in multi-chromophore
systems using direct-product basis states in which a single
monomer is excited:

|ΞI〉 =

monomers∑
X

CXI |ΨA〉|ΨB〉 · · · |Ψ∗X〉 · · · |ΨN 〉 . (34)

The advantage of this “site-basis” is that ground-
and excited-state monomer wave functions (|ΨX〉 and
|Ψ∗X〉, respectively) can be computed independently
of one another and applications to very large aggre-
gates are feasible by means of distributed comput-
ing.141 The model is completed by computing matrix
elements between the direct-product basis states, e.g.,
〈Ψ∗AΨBΨC |Ĥ|ΨAΨ∗BΨC〉, and also the corresponding over-
lap integrals 〈Ψ∗AΨBΨC |ΨAΨ∗BΨC〉 because basis func-
tions computed on different monomers are not orthog-
onal. Addition of higher-lying excited states |Ψ∗∗X 〉 adds
variational flexibility to the ansatz in Eq. (34), and one
solves a generalized eigenvalue problem whose dimension
is a few times the number of sites, depending on how
many excitations are included per monomer.

Historically, it is common to invoke a dipole-coupling
approximation to evaluate matrix elements of Ĥ, and
this approximation continues to be made even in mod-
ern implementations.606–608 The dipole approximation
may be satisfactory to describe energy transfer between
well-separated chromophores but is questionable under
crystal-packing conditions, as in organic photovoltaic ma-
terials. The dipole-coupling approximation is not re-
quired, and in the ab initio Frenkel exciton model de-
veloped by Morrison and Herbert,141,609–611 these matrix
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elements are evaluated exactly, with a single-excitation
ansatz for the monomer excited states:

|Ψ∗X〉 =
∑
ia

tXia |ΦiaX 〉 . (35)

Here, |ΦiaX 〉 represents a singly-excited Slater determinant
composed of MOs on monomer X. This is consistent with
either a CIS or a TDDFT calculation for each monomer,
incorporating as many individual states |Ψ∗X〉 as desired.
In this way, the ab initio exciton model can be viewed as
a specialized form of nonorthogonal configuration inter-
action in a customizable diabatic basis.

Using this flexibility, the ab initio exciton model has
been used to study the singlet fission process in organic
photovoltaics,89,611,612 meaning the spin-allowed forma-
tion of a pair of triplet charge carriers (T + T) via one-
photon excitation:

S0
hν−→ S1

singlet−−−−−→
fission

1(TT)→ T + T . (36)

The intermediate “multi-exciton” state 1(TT), involving
triplet states on two different chromophores that are spin-
coupled to a singlet, is challenging to describe using stan-
dard quantum chemistry because it involves a true double
excitation,613,614 and such states are absent from con-
ventional LR-TDDFT.194 Within the ansatz in Eq. (34),
however, the 1(TT) state simply involves a pair of single
excitations with appropriate Clebsch-Gordan coefficients
to couple them.89,612 The importance of charge-transfer
excitons can be interrogated as well, simply by including
basis states |Ψ±A Ψ∓B ΨC〉 involving ionized monomers.612

In this way, the ab initio exciton model allows one to
construct a tailored diabatic basis, letting Schrödinger’s
equation decide which basis states are important. Cal-
culations on cluster models of crystalline pentacene have
helped to resolve a long-standing debate about the pres-
ence of charge-separated states in the low-energy optical
spectrum of this material.89

Analytic derivative couplings 〈ΞI |(∂/∂x)|ΞJ〉 between
excitonic states are also available.611 The key ingredient
in these couplings are derivatives of the matrix elements
of Ĥ in the exciton site-basis, e.g.,

H
[x]
AB =

∂

∂x

〈
Ψ∗AΨBΨC

∣∣Ĥ∣∣ΨAΨ∗BΨC

〉
. (37)

Following a transformation from nuclear Cartesian coor-

dinates to normal modes (x → Q), the quantities H
[Q]
AB

are essentially the linear exciton–phonon coupling param-
eters gABθ that appear in the phenomenological Holstein-
Peierls Hamiltonian.615 The diagonal coupling parame-
ters gAAθ are the “Holstein couplings” that describe how
the site energies are modulated by phonons θ, whereas
the off-diagonal couplings gABθ are the “Peierls couplings”
that quantify how the energy-transfer integrals HAB are
coupled to the phonons.611 Often these are treated as phe-
nomenological parameters but the ab initio exciton model

affords a means to compute them from first principles.
This can be used for a priori identification and charac-
terization of the vibrational modes that couple strongly
to excitation energy transfer. An example is shown in
Fig. 26 for crystalline tetracene, a singlet fission material,
where the ab initio exciton model identifies several local-
ized vibrational models on the tetracene monomers that
strongly modulate the energy-transfer dynamics.611,612

3 Excitation energy transfer couplings

The ab initio exciton model described above repre-
sents one means to compute excitation energy trans-
fer (EET) couplings, but alternative methods exist.616

One of these is the fragment excitation difference (FED)
scheme, an extension of the fragment charge difference
(FCD) method.617 In the FED approach, the charge den-
sity difference in FCD is replaced by an excitation dif-
ference density operator (i.e., the sum of electron and
hole densities created upon excitation). Within a sin-
gle excitation theory such as the CIS, one can easily ob-
tain analytic expressions for the matrix elements of the
excitation density. However, for multi-excitation wave-
functions no simple expressions exist for the off-diagonal
elements. To circumvent this problem, a new scheme was
developed known as θ-FED.618,619 In this approach, the
diabatic states are assumed to be functions of a mixing
angle θ, thus the difference density ∆x depends on θ as
well. In order to obtain “ideal” diabatic states, the angle
θ is scanned from −π/4 to π/4 in order to maximize the
difference of the excitation:

θmax = argmax
−π/4<θ<π/4

∥∥∆xi(θ)−∆xf (θ)
∥∥ , (38)

with i and f indicating the initial and final diabatic
states. The corresponding θ-dependent coupling can then
be written as

Vθ-FED = 1
2 (Em − En) sin(2θmax), (39)

where Em and En are the excitation energies for the two
adiabatic states in question.

For wave functions consisting only of single excita-
tions it has been demonstrates that this generalized θ-
FED scheme provides results identical to the original
FED,618 but the former can be extended beyond CIS. In
Q-Chem 5, the θ-FED scheme is implemented for both
CIS and XCIS,620 as well as RAS-CI.285

VII ANALYSIS

Q-Chem offers numerous tools to aid interpretation of
ab initio calculations and to provide conceptual insights.
Some of the more popular ones include natural bond or-
bital (NBO) analysis,621 along with wave function (or-
bital and density matrix) analysis,88,269,622 provided by
the libwfa module.15 Some recent applications of these
tools have been highlighted in Section III.B, so the present
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Fig. 26: Holstein coupling parameters for crystalline tetracene, obtained from an ab initio exciton calculation of H
[x]
AB for the unit cell

projected onto phonon modes from a periodic DFT calculation. The couplings are plotted as relaxation energies g2
AAθ/2ωθ, where ωθ is

the phonon frequency, and indicate several modes that strongly modulate the site energies. Peierls couplings for this system are several
orders of magnitude smaller; see Ref. 611. Adapted with permission from A. F. Morrison and J. M. Herbert, J. Chem. Phys. 146, 224110
(2017). Copyright 2017 American Institute of Physics.

section will focus specifically on a different topic, namely,
methods for energy decomposition analysis (EDA).

Successful quantum chemistry calculations are akin to
numerical experiments, whose physical or chemical inter-
pretation remains a separate problem. To address this
problem in the context of intermolecular interactions,
EDA methods seek to partition the intermolecular inter-
action energy between a collection of molecules (or “frag-
ments”, as in Section VI.E) into physically-meaningful
components. Two separate approaches for intermolecular
EDA are available in Q-Chem 5, one based on variational
minimization with constraints, via absolutely-localized
MOs (the ALMO-EDA scheme,623 Section A), and an-
other based on symmetry-adapted perturbation theory
(SAPT),624 as described in Section B.

A ALMO-EDA method

The ALMO-EDA scheme identifies contributions to the
intermolecular interaction energy by performing varia-
tional minimization of the supramolecular DFT energy,
in the presence of constraints that first prevent polariza-
tion and charge transfer (CT), then prevent only CT, and
finally with all constraints released. The total DFT in-
teraction energy for a collection of fragments F ,

∆EINT = EFULL −
∑
F

EF , (40)

is partitioned according to

∆EINT = ∆EGD + ∆EFRZ + ∆EPOL + ∆ECT . (41)

The geometric distortion energy (∆EGD ≥ 0) is the
penalty to distort the fragments from their isolated struc-
tures to the geometry of the intermolecular complex. The
frozen energy change (∆EFRZ) is the net effect of per-
manent electrostatics, Pauli repulsion, and dispersion.
∆EPOL is the energy lowering due to electrical polariza-
tion (constrained to prevent charge delocalization). Fi-
nally ∆ECT is the stabilization due to electron delocaliza-
tion from one fragment to another,625 which is automati-
cally corrected for BSSE in Q-Chem. Key advantages of

the variational supramolecular approach include (i) im-
munity from any convergence questions of perturbation
theory, and (ii) the ability to select the best density func-
tional for the problem at hand (the theory is applicable,
in principle, to the exact density functional, though sadly,
it remains unavailable).

Q-Chem 5 contains the latest (second-generation) ver-
sion of the ALMO-EDA,626,627 which includes several
significant improvements over the original version.628,629

A detailed discussion of the theory can be found else-
where,623 but two major improvements warrant specific
mention:

1. The polarization energy is defined in a new way
that is largely independent of details of the atomic
orbital basis set and has a useful complete-basis
limit. Intra-fragment relaxation of the frozen or-
bitals is accomplished by allowing them to mix
with fragment-specific electric response functions
(FERFs).630 These are the virtual orbitals that ex-
actly describe the linear response of the frozen or-
bitals to uniform electric fields (which requires three
dipolar FERFs per occupied orbital) and the spa-
tial gradients of those fields (which requires an addi-
tional five quadrupolar FERFs per occupied orbital).
The mixing between frozen orbitals and FERFs on
each fragment minimizes the energy of the complex
subject to the constraint of no charge flow between
fragments, using the SCF for molecular interactions
(SCF-MI) procedure.631

2. The frozen energy change can be decomposed into
contributions from its three underlying components:
permanent electrostatics, Pauli repulsion, and dis-
persion.632 The dispersion contribution is separated
with the aid of a “dispersion-free” density functional,
e.g., Hartree-Fock theory in the case that an RSH
functional such as ωB97X-V or ωB97M-V is used
to compute EFULL. Electrostatics can be separated
using the traditional quasi-classical definition of the
electrostatic interaction between isolated fragments,
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Fig. 27: ALMO-EDA(solv) results for the additional binding
of CO2 when two positively charged substituents (TMA and an
imidazolium-carrying group denoted as ”imid”) are introduced at
the ortho position of the meso-phenyl group in FeTPP, a promising
molecular catalyst for CO2 reduction. Compared to unsubstituted
FeTPP, the o-TMA groups stabilize CO2 mainly by alleviating the
Pauli repulsion between CO2 and the FeTPP core while the o-imid
groups stabilize CO2 primarily through attractive Coulomb inter-
actions. The solvent is acetonitrile (modeled using C-PCM with
ε = 35.88), and the calculations were performed at the ωB97X-V/
def2-TZVPP level of theory.636.

and what remains is identified as Pauli repulsion.633

This traditional approach may be appropriate for
force field assessments because fragment densities
do not change as the complex is rearranged, but a
quantum-mechanically correct alternative definition
is also available, wherein the fragment densities de-
form so as to sum to the total frozen density.632

The well-behaved breakdown of an interaction energy
into physically interpretable contributions has permit-
ted use of the ALMO-EDA to assess polarizable force
fields,633,634 and, recently, to develop a highly accurate
polarizable force field for water.635

An important new capability is that the ALMO-EDA
is properly integrated with Q-Chem’s polarizable contin-
uum models (PCM) of solvent,511–513 specifically C-PCM
and IEF-PCM which are electrostatics-only, and SMD518

(see Section VI.A.1). This ALMO-EDA(solv) model636 is
a significant new capability because the solvent can exert
both qualitative and quantitative effects on the binding of
a complex. For example, electrostatic interactions may be
screened by high-dielectric solvents such as water, whose
polarity may also permit larger polarization and/or CT
interactions by stabilizing the resulting deformed densi-
ties. An example of the application of ALMO-EDA(solv)
to a CO2 reduction catalyst (in acetonitrile solution) is
presented in Fig. 27, illustrating the effects of different
substituent groups towards stabilizing binding of an acti-
vated CO2 substrate.636

In addition, many useful visualization tools are avail-
able in conjunction with the ALMO-EDA calculations,
including the automatic generation of significant comple-
mentary occupied-virtual pairs (COVPs)629,637 for char-
acterizing charge transfer between fragments, and elec-
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Fig. 28: Adiabatic EDA (aEDA) for the water dimer. (a) Compar-
ison of aEDA components versus the conventional (vertical) EDA
components. (b) Illustration of the water dimer showing two of the
key geometric parameters, whose values at each level of the aEDA
are reported in (c). It is striking that linearity of the hydrogen
bond is already present at the frozen energy optimization (i.e., it is
not critically dependent on polarization or CT), and also striking
that the redshift in the proton donor O–H stretch can be directly
associated with CT.

tron density difference (EDD) plots between different in-
termediate stages of ALMO-EDA and its further parti-
tion into natural orbitals for chemical valence (NOCV)
pairs.638 Beyond SCF methods, the ALMO-EDA is
also available at the MP2 level for both closed- and
open-shell reference determinants.639–641 Beyond ground
states, ALMO-EDA can be used to analyze excited states
of intermolecular complexes (excimers and exciplexes) at
the level of either CIS or LR-TDDFT.642,643

One of the traditional criticisms of EDA techniques is
that the energy components themselves are not observ-
ables,644,645 so there is some arbitrariness in their def-
initions. A substantive step to address this issue has
been taken with the introduction of an adiabatic EDA
(aEDA),646 where observable quantities such as struc-
ture, vibrational frequencies, etc., are computed on the
potential energy surface belonging to each constrained en-
ergy. These include the frozen energy (EFRZ), the polar-
ized energy (EPOL), and the individual fragment energies,
{EF }, as well as the final, unconstrained supramolecu-
lar energy EFULL. This enables calculation of negative
semidefinite aEDA energy components:

∆EINT = ∆Ead
FRZ + ∆Ead

POL + ∆Ead
CT . (42)

The components in Eq. (42) are given as the energy differ-
ence between the optimal structures in each consecutive
pair of states. For example, if the optimized structures
on the FRZ and POL surfaces are denoted as RFRZ and
RPOL, then

∆Ead
POL = EPOL(RPOL)− EFRZ(RFRZ) . (43)

Shifts in structures, vibrational frequencies, etc., can be
associated with each of the EDA components, so that for
example the difference RPOL − RFRZ demonstrates the
effect of polarization on geometry. The example in Fig. 28
illustrates that the redshift of the hydrogen-bonded O–H
stretch in water dimer is primarily associated with CT.

Closely related to the aEDA is the possibility of sepa-
rately assessing the energetic and observable effects of for-
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Fig. 29: Bond fingerprint in terms of energy components (PREP,
FRZ+SC, POL, CT) for several single bonds, showing the contrast
between a conventional covalent bond (H3C–CH3), a polar covalent
bond (HCl), the strongest single bond (F3Si–F), a charge-shift bond
(F2), and an ionic bond (LiF). PREP is the generalization of the
geometric distortion (GD) energy of Eq. (41) to include electronic
hybridization, while the energy lowering due to spin-coupling (SC)
between the two radical electrons upon bond-formation is grouped
with the frozen (FRZ) energy of Eq. (41).647

ward and backward CT, which can be accomplished via
a variational forward–backward (VFB) scheme.641 The
VFB approach uses a generalized SCF-MI method that
can disable either forward- or back-donation effects in
DFT calculations, thus enabling one to assess the indi-
vidual role of each, on both the interaction energy but
also structure and vibrational frequencies (by perform-
ing optimization on the constrained surfaces, as in the
aEDA).646 This VFB approach is a powerful tool that
has been applied to assess the character of a variety of in-
teresting bi-directional metal-ligand interactions includ-
ing the novel ligand BF (iso-electronic to CO and N2),
and also BeO and BeCO3 interactions with CO.641

Finally, the ALMO-EDA can be employed for analy-
sis of single chemical bonds,647,648 yielding a fingerprint
picture of the chemical bond in terms of energy compo-
nents. Development of the bonded ALMO-EDA required
generalization of the frozen orbital interaction to include
the energy lowering associated with spin-coupling of two
unpaired electrons, generalization of the geometric dis-
tortion term (to become a “preparation energy” that in-
cludes the electronic energy cost of hybridizing the or-
bitals), and finally generalization of the polarization term
to include the energy lowering associated with orbital
contraction. The latter requires the use of monopolar
FERFs.649 One interesting use of the bonded ALMO-
EDA is to clarify how the fingerprints of exotic chemical
bonds compare to those of more familiar bonds, as il-
lustrated in Fig. 29. As one example, the Zn(I)–Zn(I)
bond in dizincocene (Cp−Zn−Zn−Cp) emerges as a con-
ventional covalent chemical bond, analogous to H2. By
contrast, the Mn(0)–Mn(0) bond in (CO)5Mn−Mn(CO)5

behaves as a charge-shift bond650 that is more similar to
F2 than to H2. An interesting recent application of the
bonded ALMO-EDA was to investigate the role of kinetic
energy lowering in chemical bond formation.651 The re-

sults are controversial because in contrast to the decrease
in kinetic energy upon spin coupling in H2 (as a result of
greater electron delocalization), the bonded EDA shows
that kinetic energy rises upon spin-coupling to make cova-
lent single bonds such as H3C−CH3 due to Pauli repulsion
with core electrons.

B Symmetry-adapted perturbation theory

Symmetry-adapted perturbation theory (SAPT) offers an
alternative kind of EDA for intermolecular interactions,
which is at the same time designed for accurate calcula-
tion of interaction energies.624,652,653 Unlike supramolec-
ular calculations, the interaction energy Eint is not com-
puted by energy difference [as in Eq. (40)] and SAPT is
therefore free of BSSE. Instead, Eint is computed directly
from perturbation theory, using isolated-monomer wave
functions as an unperturbed basis, in a manner that nat-
urally partitions into physically-meaningful components
including electrostatics, Pauli repulsion (“exchange”), in-
duction, and dispersion. Through second order in the in-
termolecular Coulomb operators and the antisymmetrizer
that brings in Pauli repulsion, this affords

ESAPT0
int = E

(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind

+ E
(2)
disp + E

(2)
exch-disp + δEHF .

(44)

Here, δEHF is an optional correction to account for
higher-order induction, based on a counterpoise-corrected
dimer Hartree-Fock calculation.652 If Hartree-Fock wave
functions are used to describe the monomers, then this
second-order approach is known as “SAPT0”,653 because
it is zeroth-order in the Møller-Plesset fluctuation po-
tentials, i.e., it neglects monomer electron correlation
effects. These can be incorporated using perturbation
theory, albeit at rather high cost.652,653 A low-cost al-
ternative is to use Eq. (44) in conjunction with Kohn-
Sham wave functions for the monomers, in a method
known as SAPT(KS), although care must be taken only
to use functionals with correct asymptotic behavior, else
the anomalously-small Kohn-Sham gaps wreak havoc
with second-order dispersion.654,655 As such, SAPT(KS)
should only be used in conjunction with tuned LRC
functionals.655 In Q-Chem 5, this tuning can be per-
formed in an automated way during the SCF calcula-
tion, via a global density-dependent (GDD) tuning pro-
cedure.135–137

Missing from Eq. (44) is a CT term, because CT is
contained within the induction energy in the traditional
formulation of SAPT.656,657 The two can be separated,
in a manner that is well-defined and stable, by using con-
strained DFT (cDFT) to define CT-free reference states
for the monomers.658–661 The SAPT0 induction energy,

ESAPT0
ind = E

(2)
ind + E

(2)
exch-ind + δEHF , (45)

can thereby be separated into a part that represents
“pure” or CT-free polarization, along with a CT energy
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Fig. 30: Total interaction potential (Eint) for F−(H2O) along a
relaxed radial scan of the XOH angle, θ. Also shown is a SAPT/
cDFT-EDA decomposition of Eint into a CT component (ECT)
and a CT-free interaction energy, Eint − ECT. As the ion circum-
scribes the water molecule, ECT turns on sharply in the vicinity of
quasi-linear hydrogen bonds. Removal of CT stabilization results
in a C2v-symmetric structure, in disagreement with experiment,662

although the “dipolar” C2v structure can still be found in many
undergraduate textbooks, e.g., Ref. 663. Adapted with permission
from J. M. Herbert and K. Carter-Fenk, J. Phys. Chem. A 125,
1243 (2021). Copyright 2021 American Chemical Society.

that is defined as the energy lowering upon lifting the
cDFT charge constraint.

Figure 30 presents an example in which the combined
SAPT/cDFT-EDA is used to understand halide–water
hydrogen bonding.661 Whereas the textbook picture of
anion–water interactions imagines a C2v-symmetric struc-
ture for X−(H2O),663 with X− at the positive end of the
H2O dipole moment, gas-phase vibrational spectroscopy
convincingly demonstrates the incorrectness of this pic-
ture.662 According to SAPT/cDFT-EDA analysis,661 the
existence of quasi-linear hydrogen bonds is driven primar-
ily by CT, which turns on sharply in the vicinity of linear
X− · · ·H–O angles but is negligible at the C2v “dipolar”
geometry.

The SAPT interaction formula in Eq. (44) is tradi-
tionally understood to apply to dimers but has been
extended to clusters of molecules through a combi-
nation with the “XPol” self-consistent charge embed-
ding scheme,654,664–667 which is used to capture many-
body polarization effects. The combined method,
“XSAPT”,136,624,654,666–672 is a many-body extension of
SAPT that is currently available exclusively in Q-Chem,
for both closed- and open-shell systems.

Although useful for qualitative and perhaps semi-
quantitative purposes, second-order SAPT0 is not a
benchmark-quality method,653,669 primarily due to the
limitations of second-order dispersion,

ESAPT0
disp = E

(2)
disp + E

(2)
exch-disp . (46)

SAPT0 calculations are often performed using a limited
basis set such as jun-cc-pVDZ673 in order to affect some
error cancellation.653 An alternative is to seek replace-
ments for ESAPT0

disp , and two such methods are available in
Q-Chem:

• XSAPT+aiD,136,624,668,669 which adds an ab initio
dispersion potential in place of ESAPT0

disp . Although

similar in form to “+D” corrections in DFT+D,674

the +aiD correction is fitted to pure dispersion
data from SAPT2+ and SAPT2+(3) calculations,
which provide CCSD(T)-quality interaction energies
but remain separable into components.652,653 Tak-
ing advantage of the separability of the SAPT in-
teraction energy, XSAPT+aiD avoids the double-
counting that is inherent in DFT+D.674 (As a re-
sult, the +D corrections in DFT+D should never be
interpreted as genuine dispersion.37,659) The third-
generation +aiD3 correction is the latest and most
accurate.624

• XSAPT+MBD,667,672 which incorporates a mod-
ified form672 of the many-body dispersion (MBD)
model.72–74 As compared to XSAPT+aiD, this is
much closer to a first-principles model and also more
accurate.

Although designed as intermolecular EDAs, XSAPT
methods are also amongst the most accurate quantum
chemistry methods for predicting intermolecular interac-
tion energies, as demonstrated by error statistics for the
L7 data set,675 Fig. 31(a). MP2-based methods dramati-
cally overestimate these dispersion-dominated interaction
energies, with the exception of the “attenuated” att-MP2
method,676 which is also available in Q-Chem. The selec-
tion of DFT methods in Fig. 31(a) is chosen carefully to
focus on those that do well for non-covalent interactions.
Hence it is impressive that XSAPT+MBD approaches the
MAE of the best density functional tested, B97M-V, and
has lower MAX error. The combination of benchmark-
quality energies with physically-meaningful decomposi-
tion is one reason that SAPT-based methods are used to
parameterize physically-motivated force fields.677 These
desirable properties have also been used to make fun-
damental inquiries regarding the nature of π–π interac-
tions.678,679 The latter studies demonstrate, for example,
that the textbook680 Hunter-Sanders model (quadrupo-
lar electrostatic) model of π-stacking is simply wrong.678

The frequently-asked question,681 “is π-stacking a unique
form of dispersion?” can be answered in the affirma-
tive, using XSAPT+MBD calculations, although a de-
tailed analysis suggests that stacking is driven by molec-
ular shape rather than by aromaticity per se, in what
has been called the “pizza-π” model of stacking interac-
tions.679

Notably, XSAPT calculations are considerably less
expensive than supramolecular DFT, due to the
monomer-based nature of XSAPT. For XSAPT+aiD and
XSAPT+MBD, the rate-limiting step is O(n3) with re-
spect to monomer size (n), rather than supersystem size.
All terms in Eq. (44) can be implemented efficiently in
the atomic orbital basis,136 and a new XPol embedding
scheme based on CM5 charges,682 available in Q-Chem 5,
offers almost 2× speedup over earlier versions;667 see
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Fig. 31: (a) Errors in interaction energies for the L7 set of large dispersion-bound dimers,675 as predicted by a variety of quantum-
chemical methods in comparison to complete-basis set (CBS) CCSD(T) benchmarks. Gray bars indicate maximum errors whereas
colored bars indicate mean absolute errors. The latter are color-coded according to computational cost, with O(Np) indicating pth-order
scaling with respect to the size N of the supramolecular complex, whereas O(n3) means cubic scaling with respect to the size n of the
largest monomer. These comparisons were originally reported in Ref. 672 but the XSAPT+MBD statistics have been updated to reflect
modifications reported in Ref. 667. (b) Timing breakdown for an XSAPT+aiD calculation of the C60@C60H28 “buckycatcher” complex
(4,592 basis functions), on a single 28-core node. The left bar in each pair uses the original XPol embedding based on ChElPG charges654

and the right bar is a new implementation based on CM5 charges. 667. Panel (a) is adapted with permission from K. Carter-Fenk, K. U.
Lao, K.-Y. Liu, and J. M. Herbert, J. Phys. Chem. Lett. 10, 2706 (2019). Copyright 2019 American Chemical Society. Panel (b) is
reproduced with permission from K.-Y. Liu, K. Carter-Fenk, and J. M. Herbert, J. Chem. Phys. 151, 031102 (2019). Copyright 2019
American Institute of Physics.

(a) (b)

Fig. 32: Model systems for drug binding: (a) DNA/ellipticine
intercalation complex (157 atoms) and (b) the protease inhibitor
molecule indinavir, situated in a model of HIV-2 protease (323
atoms). The table shows XSAPT+MBD energy components from
Ref. 667.

Fig. 31(b). Cost savings relative to supramolecular DFT
is most pronounced in systems that can be divided into
more than two fragments, such as the DNA intercalation
complex that is shown in Fig. 32(a). For this system, a
counterpoise-corrected interaction energy calculation at
the level of ωB97M-V/def2-TZVPPD (4,561 basis func-
tions) requires 3 × 13 h on a 40-core compute node, i.e.,
13 h for each of the three supramolecular calculations that
are needed to compute Eint = EAB − EA − EB. In con-
trast, an XSAPT+MBD calculation using the same basis
set requires 7 × 6 h running on the same hardware.672

Like the fragment methods discussed in Section E (of
which XSAPT can be considered an example), these 7
constituent calculations can be run independently on dif-
ferent compute nodes.

Figure 32 shows two pharmacologically-relevant exam-
ples of ligand–macromolecule binding, along with the
XSAPT+MBD energy decomposition for each.667 One of
these is a DNA intercalation complex [Fig 32(a)], em-
blematic of π-stacking interactions, but the other does
not exhibit any obvious dominant binding motif, yet
has a dispersion energy that is almost twice as large as
that of the DNA intercalation complex. In the HIV +
indinavir system, which is considerably larger, disper-
sion arises from a large number of small contributions
that must be treated carefully. Notably, for the DNA/
ellipticine complex the XSAPT+MBD interaction energy
(reported as −40.7 kcal/mol or −41.7 kcal/mol, depend-
ing on the details of the charge embedding667) is in bet-
ter agreement with the complete-basis CCSD(T) bench-
mark (−38.6±2.2 kcal/mol683) than is an earlier quantum
Monte Carlo estimate (−33.6± 0.9 kcal/mol684).

VIII SOFTWARE ENGINEERING

This article focuses primarily on the diverse scientific ad-
vances made by the research groups that comprise the
Q-Chem developer community. Figure 2 is a convinc-
ing demonstration of sustained energetic growth of the
software and the developer community over the past 10+
years. Despite its age, the Q-Chem software shows no
signs of aging.

As a software development platform, Q-Chem comes

34

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
55

52
2



with many challenges for developers and maintainers.
Many features are contributed by novice coders without
much prior training for whom Q-Chem is their first soft-
ware development project. This is coupled with an enor-
mous body of computer code that no single person can
fully grasp. Software developed by scientists is often no-
torious for its poor quality assurance and software en-
gineering practices,685–688 and thus Q-Chem developers
benefit from the network effect and the stability that the
Q-Chem platform provides. The Q-Chem core team and
experienced developers provide training and assistance to
new community members. Events such as regular devel-
oper workshops and webinars, visits to the Q-Chem office
in California, and a “Summer at Q-Chem” program fa-
cilitate networking, encourage cross-pollination, and help
to integrate new developers.

Below, we describe some of the software engineering
practices that help to maintain productivity with such a
large group of developers.

A Software development environment

The Q-Chem code began in the early 1990s as a set of
individual components that communicated through tem-
porary files. These components were soon linked together
for better performance (by avoiding file-based commu-
nication involving large amounts of data), becoming a
monolithic code, but while this new structure delivered
performance gains it became difficult to read and main-
tain over time. The problem is easy to recognize but
the optimal solution is far from obvious. Should we give
up, abandon the legacy code, and rewrite the software
from scratch? Or should we continue to develop around
the old infrastructure and simply adjust to its idiosyn-
crasies? Following a discussion amongst the developers,
around 2003, a decision was made to pursue slow mod-
ernization: continuous code refactoring, gradual rewrit-
ing and quick adoption of newly created component re-
placements. This strategy has proven to be effective and
Q-Chem’s code has undergone significant improvement
while continuing to serve the computational chemistry
community. One by one, legacy modules are rewritten
and replaced by modern versions with improved perfor-
mance and enhanced capabilities. Importantly, this pro-
cess simultaneously preserves the rich functionality of the
software, which is essential for applications, while provid-
ing a platform for developing new features.

Many Q-Chem developers now choose to begin work-
ing on new capabilities within development packages, i.e.,
small code-development environments with a minimal set
of components required to enable a new feature. (The
concept is very similar to package management in the
context of software development in other languages.) De-
velopment packages are very quick to compile and link,
which cannot be said of Q-Chem as a whole with its > 10
million lines of compilable code. New features are first
verified via unit testing and then, following their integra-

tion into the Q-Chem package, as end-to-end Q-Chem
jobs.

B Infrastructure

A small team of software maintainers at Q-Chem pro-
vides a number of systems for code and documentation
version control, issue tracking, merge requests, continuous
integration, and quality control. Q-Chem contributors
follow the standard workflow of developing and testing
new features, enhancements, and bugfixes on a branch,
followed by submission of a merge request. The auto-
mated code merge procedure incorporates the changes
into the main line of development and executes a suite
of pre-commit tests. If any of the tests fails, the merge
is rejected and the developer is requested to resolve any
issues with assistance from the core Q-Chem team when
necessary.

This automated approach provides Q-Chem’s large de-
veloper community with assurance that their features will
be rolled into release versions in a predictable way. In-
deed, Q-Chem software is released on a time-based sched-
ule, with one major release and two minor releases per
year. Beyond automation, the Q-Chem developer com-
munity is encouraged to interact via an online forum, and
typically there is an in-person developer meeting once a
year. These mechanisms help to minimize issues that can
arise in a sizable development community over overlap-
ping or even duplicative contributions.

The back-end infrastructure is a complex system that
is largely hidden from the developers. It utilizes a com-
bination of open source, proprietary, and in-house de-
veloped software running on premises as well as in the
cloud. Continuous integration and deployment is pow-
ered by Jenkins equipped with automated pipelines for
software builds, testing, benchmarking, and other rou-
tine tasks. Version control is provided by Subversion.
Software testing and performance benchmarking is auto-
mated using CTest, and results can be visualized with
specialized tools. Trac is used as a wiki-based program-
mer’s reference, issue tracker, and release planning tool.

C Third-party components

Q-Chem makes use of several software libraries devel-
oped outside of our own developer community. For exam-
ple, the Armadillo C++ library689 provides convenient
template-based C++ application programming interfaces
for linear algebra. If requested by the user, libecpint (a
C++ library for the evaluation of effective core poten-
tials,690 based on Gauss-Chebyshev quadrature) can be
used instead of Q-Chem’s internal algorithms.691
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IX HIGH PERFORMANCE COMPUTING

A Platforms

Computational quantum chemistry spans a diverse range
of myriad calculation types, ranging from exploratory
qualitative analysis to high-accuracy calculations based
on many-body theory, and furthermore spans a range
from large-scale calculations on hundreds of atoms
to high-throughput calculations on thousands of small
molecules. Different researchers may therefore use
Q-Chem in very different modes of operation, and our
vision is to provide all of them with a versatile and flexi-
ble software engine that can meet these needs. Q-Chem
runs effectively on a variety of architectures, from laptops
and desktops to leadership-class supercomputers, and is
also now available for cloud computing, for which we pro-
vide a ready-to-deploy machine image for use on Amazon
Web Services. Users can interact with the Cloud via a
Linux shell or by using either IQmol or WebMO.

To enable this versatility, we rely on a variety of tech-
niques for reducing the memory footprint of the software,
using flexible rebalancing tools for disk versus in-core
storage, and effective shared-memory (OpenMP) paral-
lelization of key software elements such as integrals and
tensors. That said, Q-Chem to date has focused most
performance optimization effort on enabling efficient use
of mid-scale computing resources for a single job. Lead-
ership computing or supercomputing resources can then
be effectively leveraged via workflows (i.e., job-level par-
allelism). With this in mind, Q-Chem has placed empha-
sis on OpenMP (shared memory parallel) capabilities and
use of GPU resources associated with a single node. Be-
low, we discuss some recent advances in these capabilities
and present example timings.

B Improved OpenMP parallel capabilities

OpenMP is a standard paradigm for shared memory par-
allel computing. Efficient OpenMP parallelism is thus
the key to enabling significantly reduced time-to-solution
for single jobs using mid-range computing, where the sin-
gle job can take as much as an entire single node of a
computer cluster or the entire resources of a workstation.
Typical modern compute nodes consist of 16–64 cores but
nodes with as many as 128 cores are already available.
OpenMP parallel capabilities for DFT calculations were
already quite good at the time of the review article de-
scribing Q-Chem 4,20 but progress since that time has
been continuous and significant. Below, some represen-
tative snap-hots of current OpenMP parallel capabilities
for DFT and MP2 are reported. Q-Chem also has excel-
lent OpenMP parallel computing capabilities at the CC/
EOM-CC and ADC levels, which have been documented
elsewhere.12,13,215,219

OpenMP parallel speedups for DFT calculations are
summarized in Fig. 33. For single-point energy evaluation
on naphthalene in a large basis (M06-2X/def2-QZVPPD

Fig. 33: Illustration of OpenMP parallel scaling for DFT calcula-
tions. The first example is an single point energy evaluation in a
large basis set (M06-2X/def2-QZVPPD, blue diamonds), as might
be performed after structure optimization in a smaller basis set.
The other two examples are for evaluation of the DFT energy and
gradient in a triple-ζ basis, as often used for geometry optimiza-
tion. One case is with a semilocal functional (B97M-V/def2-TZVP,
orange circles) and the other uses a hybrid functional (ωB97M-V/
def2-TZVP, gray squares). All calculations were performed on a 32
core dual-socket Intel Xeon CPU E5-2697A server.

level of theory), it is evident that Q-Chem’s parallel ef-
ficiency is very high indeed, with speedups of 16× on 16
cores and 27× on 32 cores. The parallel efficiency is also
very good, although noticeably lower, for the two energy
+ gradient examples in the medium-sized def2-TZVP ba-
sis set, performed on anthracene dimer (C28H20, 988 ba-
sis functions). Using the B97M-V functional, a parallel
speedup of 22× is obtained on 32 cores, versus 12.7× us-
ing 16 cores; the 32-core calculation requires only 516 sec-
onds of wall time. Energy and gradient evaluation at the
ωB97M-V/def2-TZVP level of theory exhibit similar scal-
ing. The overhead associated with RSH functionals is not
excessive for this calculation: the 32-core job requires 787
seconds, which is only 50% more than the corresponding
pure (semilocal) functional.

Q-Chem’s new fully object-oriented code for MP2 en-
ergies and gradients (as well as the other advanced meth-
ods discussed in Section IIIA) requires no storage of am-
plitudes or four-center electron repulsion integrals, and is
optimized for OpenMP parallelism. To illustrate the per-
formance of the code, Fig. 34 shows the parallel scaling
of the MP2 gradient for three different molecules ranging
from 5 to 64 heavy atoms. For all three cases, the results
indicate good OpenMP performance all the way out to 32
cores, with speedups of ≈ 22× (69% parallel efficiency)
on 32 cores and somewhat higher efficiency (79%) on 24
cores.

C GPU capabilities

A new capability in Q-Chem 5 is the ability to build
and diagonalize the Fock matrix using graphics processing
units (GPUs). This is achieved through a partnership
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Fig. 34: Illustration of OpenMP parallel scaling for evaluation of
the MP2 energy and gradient for three molecules: dichloromethyl
ethene (C3H4Cl2) in aug-cc-pVQZ,391,392 a hydrogen-bonded com-
plex between adenine and guanine (C10N10H10O) in the aug-cc-
pVTZ basis,391,392 and a circumcoronene complex with adenine
(C59N5H23) in the VDZ basis.692 The calculations were performed
using SCF with exact integrals and MP2 with standard auxiliary
(resolution-of-identity or density fitting) basis sets,693 with a frozen
core approximation. All timings were obtained on a 32 core dual
socket Intel Xeon CPU E5-2697A server.

with StreamNovation Ltd., producers of the BrianQC
module,694 which functions as an add-on to Q-Chem for
calculation of electron repulsion integrals (ERIs).

ERI computation in Q-Chem exploits a variety of al-
gorithms depending on properties of the Gaussian basis
set such as the angular momentum classes and the degree
of contraction, with an optimal strategy selected based
upon the “PRISM” meta-algorithm.695 The BrianQC
module implements several standard ERI algorithms as
well including McMurchie-Davidson,696 Head-Gordon–
Pople,697 Obara-Saika,698,699 and Rys quadrature,700,701

and these are controlled by a “BRUSH” meta-algorithm
that is optimized for use with GPUs.702

In contrast to PRISM and other approaches that were
optimized for central processing units (CPUs), the com-
putational power of GPUs is often quite different for
single- versus double-precision operations, and quantum
chemistry integrals calculations often require the lat-
ter. For that reason, precision and speed requirements
are balanced carefully in BrianQC and integrals are
evaluated in single or double precision based on a pre-
computed strict Cauchy upper bound on their mag-
nitude.703 The BRUSH algorithm automatically deter-
mines the best possible approach to compute each type
of ERI, selecting from amongst various algorithms and
(in the GPU case) between mixed-precision implementa-
tions.702,703 Each route to ERIs has been implemented
and optimized for each supported type of GPU, using
computer algebra to automatically generate the GPU ker-
nels. (Automatic code generation of this kind is increas-
ingly popular in GPU-based quantum-chemistry code de-
velopment.704) The BrianQC system has its own inter-

Fig. 35: Speedup obtained for single-point B3LYP/cc-pVDZ cal-
culations with BrianQC, for randomly-generated branched alka-
nes. Hardware: Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz (2x8
core); NVIDIA GeForce GTX 1080 Ti, 1070, 980 Ti, RTX 2080 Ti,
2070; Micron 9ASF1G72PZ-2G3B1 DDR4 2400 MHz 8x8GB; ASUS
Z10PG-D16 Series Motherboard. For the K80 and M60 GPUs,
Amazon Web Service p2.xlarge and g3.4xlarge instances were used;
in case of P100 and V100 GPUs, Google Cloud instances were
used with similar parameters. All CPU timings were obtained with
Q-Chem 5.2.2. All GPU timings were obtained using BrianQC 1.0
+ Q-Chem 5.2.2.

nal representation for the scalar and tensor expressions
that naturally arise in quantum chemistry calculations.

The BrianQC GPU-based ERI engine highlights the
following features:

• Optimized for large molecules;

• Supports s, p, d, f , and g basis functions;

• Support all NVIDIA GPU architectures (Kepler,
Maxwell, Pascal, Volta, and Turing);

• Support for 64-bit Linux and Windows operating sys-
tems;

• Mixed-precision implementation with double-
precision accuracy;

• Multi-GPU and supercomputer support.

The BrianQC module speeds up every Q-Chem calcu-
lation that uses Coulomb and/or exchange integrals and
their first derivatives, including Hartree-Fock and DFT
energies and geometry optimizations for most functionals.
Figure 35 shows speedups versus a CPU-only implemen-
tation for B3LYP/cc-pVDZ calculations on a test set of
alkanes and Fig. 36 presents speedups for M06-2X/def2-
QZVP calculations on a set of organometallic complexes.

X GRAPHICAL USER INTERFACES

Q-Chem jobs can be set up and deployed by WebMO,705

a popular web-based interface to quantum chemistry pro-
grams, and Q-Chem results can also be visualized using a
variety of third-party software including MolDen, Jmol,
and Gabedit. In this section, we focus on two especially
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Fig. 36: Wall times for DFT (M06-2X/def2-QZVP) energy calculations using Q-Chem with BrianQC. Hardware details can be found
in the caption to Fig. 35.

fully-featured graphical front ends, IQmol17 and Spar-
tan.

A IQmol visualizer

IQmol is an open-source molecular visualization pack-
age17 that has been developed within the Q-Chem com-
munity and is designed to facilitate the Q-Chem work-
flow: building molecular structures, generating Q-Chem
input files, submitting calculations, and visualizing the
results.

Molecular structures can be built from the included
molecule library, by entering the SMILES ID for simple
molecules, or by using the free-form builder. Tools are
included that enable structures to be quickly optimized
using molecular mechanics, and to symmetrize geometries
to ensure they have the desired point-group symmetry.

Setting up Q-Chem jobs is made easier by an input
generator that is aware of the many Q-Chem options and
settings, and presents these in a hierarchical fashion to
avoid overwhelming the new user. Once generated, these
inputs can be submitted to either the local machine, a
compute server running scheduling software such as PBS
or SLURM, or to a freely-accessible demonstration server.
The latter is a service provided by Q-Chem, Inc. and
allows access to Q-Chem’s full functionality, with only
a time restriction. This service has been used to great
effect in undergraduate and graduate teaching programs

in universities around the world.

Results from the Q-Chem output file and associated
formatted checkpoint file can be analyzed and visualized
in a range of ways depending on the type of calculation.
IQmol recognizes and can plot a range of molecular sur-
faces such as densities and orbitals including localized or-
bitals, NTOs, NBOs, and Dyson orbitals. Animations can
be generated for vibrational frequencies and pathways, in-
cluding optimization, intrinsic reaction coordinates, and
ab initio molecular dynamics trajectories. Visual repre-
sentations of spectroscopic data are also available includ-
ing model spectra for IR, UV, and NMR.

IQmol uses OpenGL shaders to provide a range of
appealing and configurable visual effects out of the box,
as shown for example in Fig. 37. In addition, IQmol
supports the export of cube file data346 and POV-Ray
formatted files for import into third-party software
for complete control over the appearance of molecular
structures and surfaces.

B Integration into Spartan

The Spartan program was first introduced in 1991 and
since 2000 has provided easy-to-use access to the major-
ity of functionality available in Q-Chem. This includes
Hartree-Fock as well as a full range of DFT and wave
function-based correlated models, coupled with a wide se-
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Fig. 37: IQmol provides convenient front-end and visualization
tool for Q-Chem users.

lection of basis sets. Molecular mechanics models (MMFF
and Sybyl) and a selection of semi-empirical models are
implemented in Spartan as well.

Multiple molecules (or sets of molecules) may be open
in Spartan and multiple molecules may be submitted
to Q-Chem from Spartan. Interface operations and
compute tasks are independent. Once a job is “submit-
ted”, either locally or to a remote server, it is marked
as “read only” and the interface is free to deal with
other molecules. Upon completion, the job is “unlocked”.
Queuing logic allows full control of local and remote re-
sources.

Spartan provides 2D sketching and 3D building tools
for organic, organometallic and inorganic molecules as
well as specialized 3D builders for polypeptides and
polynucleotides. It also accesses a wide selection of 2D
and 3D molecular formats. Guesses for transition states
may be obtained with the aid of an internal database by
adding “curly arrows” to reactant or product structures.
Tools are available for generating regio- and stereoiso-
mers, tautomers, conformers of flexible cyclic and non-
cyclic molecules, and for aligning molecules. Job selection
(task, method, basis set, and requests for spectra or other
properties) is accomplished via simple but open-ended di-
alogs. Composite tasks, for example, required for the G3
and G4 thermochemical recipes,706,707 or for calculation
of a Boltzmann-averaged NMR spectrum, are available.

Output for Spartan includes not only text from the
Q-Chem output file but also an easy-to-read summary
of “important” calculated quantities, e.g., atomic charges
and NMR chemical shifts and J-couplings. IR, Raman,
UV/visible and NMR spectra (both 1- and 2D) may
be plotted and visually compared to experimental spec-
tra. NMR chemical shifts from selected density-functional
models may be empirically corrected.

Spartan seamlessly accesses a variety of experimental
databases, including the Cambridge Structural Database
(CSD) of over a million x-ray crystal structures, the NIST
thermochemical database, and the NMR shift database.
CSD is under license while the latter two are freely

available. In addition, Spartan accesses the Spartan
Structure and Properties database (SSPD), a collection
of 300,000 organic and organometallic molecules with
ωB97X-V/6-311+G(2df,2p) energies obtained at ωB97X-
D/6-31G* equilibrium geometries and EDF2708/6-31G*
vibrational frequencies that facilitate calculation of ther-
mochemical quantities (∆H, ∆S and ∆G). Proton and
13C NMR spectra computed at the ωB97X-D/6-31G* are
included in SSPD as well. A databases of calculated nat-
ural product structures that includes experimental chem-
ical shifts is also provided.

Spartan is released on a two-year schedule with a ver-
sion number corresponding to the calendar year. The lat-
est version is Spartan’20. Further details about Spar-
tan are available from Wavefunction Inc.709

XI CONCLUSIONS AND OUTLOOK

This article has surveyed the broad range of new capabil-
ities developed in Q-Chem over the past 6 years. Both
the author list and the length of the paper itself attest to
the strength of the community that has coalesced around
contributions to the code. It is this community of de-
velopers that has enabled the large majority of the new
features and most of the new innovations in methodol-
ogy reported here. At the same time, support for this
community is delivered by a small core group of Q-Chem
scientists who have themselves created and tuned crit-
ical features, including the substantial modernization of
the software development infrastructure to adopt modern
best practices of object-oriented programming. This syn-
ergy has been critical to the ongoing development of the
code: academic developers of Q-Chem have the advan-
tage of using a well-supported infrastructure upon which
to build new features, while Q-Chem scientists can focus
on commercially critical developments and optimizations.
While open source is a powerful movement whose value is
unquestioned, the idea that the large community of end
users should contribute to the sustainability of the code
through a modest purchase price is central to Q-Chem’s
approach. However there is no boundary between the two
classes of Q-Chem customers—developers and end-users.
It is worth reiterating that anyone or any group that pur-
chases Q-Chem is eligible to join the development com-
munity and help contribute to future advances. We hope
that recent accomplishments reviewed here will help to
inspire future contributions to the code, as well as in-
spiring myriad chemical applications of this full-featured
electronic structure program package.
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617. A. A. Voityuk and N. Rösch, “Fragment charge difference
method for estimating donor-acceptor electronic cou-
pling: Application to DNA π-stacks”, J. Chem. Phys.,
117, 5607–5616 (2002).

618. K. Y.Kue, G. C. Claudio, and C.-P. Hsu, “Hamiltonian-
independent generalization of the fragment excitation
difference scheme”, J. Chem. Theory Comput., 14, 1304–
1310 (2018).

619. H.-H. Lin, K. Y. Kue, G. C. Claudio, and C.-P. Hsu,
“First principle prediction of intramolecular singlet fis-
sion and triplet triplet annihilation rates”, J. Chem. The-
ory Comput., 15, 2246–2253 (2019).

620. D. Maurice and M. Head-Gordon, “On the nature of elec-
tronic transitions in radicals: An extended single excita-
tion configuration interaction method”, J. Phys. Chem.,
100, 6131–6137 (1996).

621. F. Weinhold, C. R. Landis, and E. D. Glendening, “What

is NBO analysis and how is it useful?”, Int. Rev. Phys.
Chem., 35, 399–440 (2016).

622. P. Kimber and F. Plasser, “Toward an understanding
of electronic excitation energies beyond the molecular
orbital picture”, Phys. Chem. Chem. Phys., 22, 6058–
6080 (2020).

623. Y. Mao, M. Loipersberger, P. R. Horn, A. Das, O. De-
merdash, D. S. Levine, S. P. Veccham, T. Head-Gordon,
and M. Head-Gordon, “From intermolecular interaction
energies and observable shifts to component contribu-
tions and back again: A tale of variational energy decom-
position analysis”, Annu. Rev. Phys. Chem., 72, 641–666
(2021).

624. K. U. Lao and J. M. Herbert, “Accurate and efficient
quantum chemistry calculations of noncovalent interac-
tions in many-body systems: The XSAPT family of
methods”, J. Phys. Chem. A, 119, 235–253 (2015).

625. Y. Mao, Q. Ge, P. R. Horn, and M. Head-Gordon, “On
the computational characterization of charge-transfeer
effects in noncovalently bound molecular complexes”,
J. Chem. Theory Comput., 14, 2401–2417 (2018).

626. P. R. Horn, Y. Mao, and M. Head-Gordon, “Prob-
ing non-covalent interactions with a second generation
energy decomposition analysis using absolutely local-
ized molecular orbitals”, Phys. Chem. Chem. Phys., 18,
23067–23079 (2016).

627. Y. Mao, D. S. Levine, M. Loipersberger, P. R. Horn,
and M. Head-Gordon, “Probing radical–molecule in-
teractions with a second generation energy decomposi-
tion analysis of DFT calculations using absolutely local-
ized molecular orbitals”, Phys. Chem. Chem. Phys., 22,
12867–12885 (2020).

628. R. Z. Khaliullin, E. A. Cobar, R. C. Lochan, A. T. Bell,
and M. Head-Gordon, “Unravelling the origin of inter-
molecular interactions using absolutely localized molec-
ular orbitals”, J. Phys. Chem. A, 111, 8753–8765 (2007).

629. R. Z. Khaliullin, A. T. Bell, and M. Head-Gordon,
“Analysis of charge transfer effects in molecular com-
plexes based on absolutely localized molecular orbitals”,
J. Chem. Phys., 128, 184112 (2008).

630. P. R. Horn and M. Head-Gordon, “Polarization contribu-
tions to intermolecular interactions revisited with frag-
ment electric-field response functions”, J. Chem. Phys.,
143, 114111 (2015).

631. R. Z. Khaliullin, M. Head-Gordon, and A. T. Bell, “An
efficient self-consistent field method for large systems of
weakly interacting components”, J. Chem. Phys., 124,
204105 (2006).

632. P. R. Horn, Y. Mao, and M. Head-Gordon, “Defining the
contributions of permanent electrostatics, Pauli repul-
sion, and dispersion in density functional theory calcu-
lations of intermolecular interaction energies”, J. Chem.
Phys., 144, 114107 (2016).

633. Y. Mao, O. Demerdash, M. Head-Gordon, and T. Head-
Gordon, “Assessing ion–water interactions in the
AMOEBA force field using energy decomposition analy-
sis of electronic structure calculations”, J. Chem. Theory
Comput., 12, 5422–5437 (2016).

634. O. Demerdashh, Y. Mao, T. Liu, M. Head-Gordon, and
T. Head-Gordon, “Assessing many-body contributions to
intermolecular interactions of the AMOEBA force field

61

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
55

52
2



using energy decomposition analysis of electronic struc-
ture calculations”, J. Chem. Phys., 147, 161721 (2017).

635. A. K. Das, L. Urban, I. Leven, M. Loipersberger, A. Al-
dossary, M. Head-Gordon, and T. Head-Gordon, “Devel-
opment of an advanced force field for water using varia-
tional energy decomposition analysis”, J. Chem. Theory
Comput., 15, 5001–5013 (2019).

636. Y. Mao, M. Loipersberger, K. J. Kron, J. S. Derrick, C. J.
Chang, S. M. Sharada, and M. Head-Gordon, “Consis-
tent inclusion of continuum solvation in energy decompo-
sition analysis: Theory and application to molecular CO2

reduction catalysts”, Chem. Sci., 12, 1398–1414 (2021).

637. S. P. Veccham, J. Lee, Y. Mao, P. R. Horn, and M. Head-
Gordon, “A non-perturbative pairwise-additive analysis
of charge transfer contributions to intermolecular inter-
action energies”, Phys. Chem. Chem. Phys., 23, 928–943
(2021).

638. A. Michalak, M. Mitoraj, and T. Ziegler, “Bond orbitals
from chemical valence theory”, J. Phys. Chem. A, 112,
1933–1939 (2008).

639. J. Thirman and M. Head-Gordon, “An energy decom-
position analysis for second-order Møller–Plesset pertur-
bation theory based on absolutely localized molecular
orbitals”, J. Chem. Phys., 143, 084124 (2015).

640. J. Thirman and M. Head-Gordon, “Efficient implemen-
tation of energy decomposition analysis for second-order
Møller–Plesset perturbation theory and application to
anion–π interactions”, J. Phys. Chem. A, 121, 717–728
(2017).

641. M. Loipersberger, Y. Mao, and M. Head-Gordon, “Vari-
ational forward–backward charge transfer analysis based
on absolutely localized molecular orbitals: Energetics
and molecular properties”, J. Chem. Theory Comput.,
16, 1073–1089 (2020).

642. Q. Ge, Y. Mao, and M. Head-Gordon, “Energy decom-
position analysis for exciplexes using absolutely localized
molecular orbitals”, J. Chem. Phys., 148, 064105 (2018).

643. Q. Ge and M. Head-Gordon, “Energy decomposition
analysis for excimers using absolutely localized molec-
ular orbitals within time-dependent density functional
theory and configuration interaction with single excita-
tions”, J. Chem. Theory Comput., 14, 5156 (2018).

644. J. Andrés, P. W. Ayers, R. A. Boto, R. Carbó-Dorca,
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692. A. Schäfer, H. Horn, and R. Ahlrichs, “Fully optimized
contracted Gaussian basis sets for atoms Li to Kr”,
J. Chem. Phys., 97, 2571–2577 (1992).

693. F. Weigend, A. Kohn, and C. Hättig, “Efficient use of
the correlation consistent basis sets in resolution of the
identity MP2 calculations”, J. Chem. Phys., 116, 3175–
3183 (2002).

694. https://www.brianqc.com; accessed April 2021.

695. P. M. W. Gill, “Molecular integrals over Gaussian basis
functions”, Adv. Quantum Chem., 25, 141 (1994).

696. L. E. McMurchie and E. R. Davidson, “One- and two-
electron integrals over Cartesian Gaussian functions”,
J. Comput. Phys., 26, 218–231 (1978).

697. M. Head-Gordon and J. A. Pople, “A method for two-
electron Gaussian integral and integral derivative evalu-
atioon using recurrence relations”, J. Chem. Phys., 89,
5777–5786 (1988).

698. S. Obara and A. Saika, “Efficient recursive computa-
tion of molecular integrals over Cartesian Gaussian func-
tions”, J. Chem. Phys., 84, 3963–3974 (1986).

63

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
55

52
2



699. S. Obara and A. Saika, “General recurrence formulas for
molecular integrals over Cartesian Gaussian functions”,
J. Chem. Phys., 89, 1540–1559 (1988).

700. M. Dupuis, J. Rys, and H. F. King, “Evaluation of molec-
ular integrals over Gaussian basis functions”, J. Chem.
Phys., 65, 111–116 (1976).

701. J. Rys, M. Dupuis, and H. F. King, “Computation of
electron repulsion integrals using the Rys quadrature
method”, J. Comput. Chem., 4, 154–157 (1983).

702. A. Rák and G. Cserey, “The BRUSH algorithm for two-
electron integrals on GPU”, Chem. Phys. Lett., 622, 92–
98 (2015).

703. G. J. Tornai, I. Ladjánszki, A. Rák, G. Kis, and
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