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Abstract

Energy demand-side management, especially empowered by the fine-grained smart meter data, plays a significant role

in the rational allocation of energy, monitoring, and supervision of energy consumption behaviors. Through the in-

depth demand analysis including quantification of energy consumption dynamics and consumer preferences, energy

decision-makers can develop reasonable and forethoughtful energy efficiency plans and demand-response programs.

Previous work in energy-demand behavioral research has relied primarily on ideal socio-economic models or data-

driven approaches, both of which lack flexibility, intuition and interpretability. This paper proposes novel spatio-

temporal visual analysis approach for urban energy consumption pattern discovery in order to identify energy-saving

potentials, plan energy supply and improve efficiency. In this approach, energy consumption time series are embeded

into a two-dimensional scatterplot for coordinated visual exploration. Users can interactively explore and discover

different patterns for decision-making purposes. In addition, we propose the method for modeling energy demand

shift patterns based on potential flow method and integrate it into a pattern exploration tool. The proposed approach is

comprehensively evaluated through empirical studies using the real-world electricity consumption data from Pudong

district, Shanghai. We identify five typical energy consumption patterns and demand shift patterns across different

geographical locations, which can be well interpreted by the knowledge of energy consumption in the area of interest.

The results demonstrate the effectiveness of the proposed approach and the tool. This tool approach can be integrated

into smart energy systems for a better understanding of energy demand behaviors.

Keywords: Visual analysis, Pattern discovery, Energy consumption, Pattern explorer, Spatio-temporal patterns

1. Introduction

Urban energy consumption accounted for 70% of the global energy supply in 2015. The International Energy

Agency (IEA) also forecasts that 90% of global energy growth will be in cities, according to the official report [1]. The
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demand analysis of energy, including the form of electricity, heating, cooling, industry, buildings, and transportation

to the identification of more achievable and affordable solutions to the transformation into future renewable and

sustainable energy solutions is essential to the future energy systems [2, 3, 4]. Energy demand or energy consumption

analysis lays the prerequisites for energy planning and policy-making in modern countries [5, 6], thus also aligns and

supports the energy strategy and industrial innovation target of the sustainable development goals (SDG) of United

Nations [7]. Traditionally, energy consumers’ preferences were usually reduced to an ideal socioeconomic metric, and

conduct empirical studies such as analysis energy data of a particular region or period of specific citizens, businesses,

and industries. We develop a visual analysis based approach which allows users to investigate energy consumption

patterns combining their expertise with observable/discoverable visual patterns. We propose an spatio-temporal joint

analysis framework and develop a web-based user interface linked to energy data to support smart energy consumption

management.

Energy demand behavioral research can improve the understanding of consumption patterns, be constructive for

demand management, and impact relevant policy decisions [6]. With a thorough demand-side analysis, such as quanti-

fied energy consumption, understood energy consumption behaviors and preferences, the smart energy users or energy

planners to make proper energy efficiency responses. Previous work in this field mainly use ideal socioeconomic mod-

els or data-driven models and has lacked the flexibility, intuition and interpretability. Economists prefer to employ

several socioeconomic metrics computed from coarse-grained data, statistical measurements, and empirical numerical

models to assist decisions. Such metrics are useful to understand trends or patterns but have difficulty revealing the

reasons behind the phenomenon. The fast development of the Internet of things in smart metering and remote sens-

ing technologies in energy systems accumulated massive fine-grained energy data. The data-driven approach utilizes

machine learning technologies including frequent pattern discovery, clustering algorithms, and others, are borrowed

to energy communities to discover, query, and understand the nontrivial, hidden, but potential useful patterns in the

fine-grained energy data. However, such approaches usually require a in-depth understanding the energy domain

problems, simultaneously grasping the machine learning algorithms and programming capability. This is challenging

for the majority of energy domain researchers and industry analysts.

We fill this gap by bringing a visual analytics based approach for the energy demand analysis. The energy

consumers’ location information, energy consumption fluctuations over time, and consumption patterns are visualized

coordinately in the same web-based tool, Power Consumption Pattern Explorer (PCP). With the tool, smart system

users can explore the hidden patterns from overview to fine details through an intuitive way without requiring machine

learning background knowledge. They may obtain insights into the complex energy problems by amplifying domain

expert’s expertise with interactive knowledge discovery; such an approach is more flexible than machine learning based

approach, as the smart system users can interactively analyze the crow energy demand behavior by mouse brushing

and observing the spatial and temporal energy demand results coordinately; it has sufficient interpretability owing to

the embedding algorithm can preserve global and local data structure and reveal semantics. As we are heading toward

the era of Artificial Intelligence 2.0, hybrid intelligence with domain knowledge in the analysis can be an effective
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approach for shooting complex energy problems [8]. We believe that visual analysis will become an indispensable

component for the next generation of smart energy systems, e.g., preventing, diagnosing and addressing the emerging

challenges.

In summary, this paper makes the following contributions:

− A visual pipeline for energy consumption pattern analysis is proposed, and a user-friendly tool is implemented

to support knowledge discovery by user interactions.

− The methods for identifying typical pattern and for spatio-temporal pattern analysis are proposed. The typical

patterns can help understand user consumption behaviors, while the shift patterns can help balance the energy

supply across different geographical locations. The typical patterns and demand dynamics can be explored

intuitively and interactively.

− A visual analysis framework is proposed and the user-friendly tool is implemented. This paper evaluates the

proposed method by an empirical case study using the real-world electricity consumption data from Shanghai

Pudong district. Five typical consumption patterns are identified, as well as different spatio-temporal shift

patterns. The case study validates the effectiveness of the proposed visual analysis framework in discovering

spatio-temporal patterns at an urban scale.

The remainder of the paper is structured as follows: Section 2 reviews the related work. Section 3 presents the

framework. Section 4 evaluates the framework through an empirical case study. Section 5 discusses the related issues.

Section 6 concludes the paper and presents the future work.

2. Related Work

2.1. Data-driven energy demand analysis

With the demand-side analysis, utilities can provide energy efficiency recommendations and personalized services

(aka. energy demand side management). Since the seminal work of data-driven energy demand analysis in 1984 [6],

the majority of the research have been focused on energy consumption pattern analysis and demand forecasting.

Unsupervised learning based approaches have received an increasing attention in the energy consumption pattern

analysis, due to the good interpretability. Algorithms, such as clustering, frequent pattern extraction, etc., help to

uncover interesting patterns to better understand the underlying behaviors of the crowd. Whilst the energy demand

forecasting relies heavily on supervised learning algorithms. It is estimated that more than half of the work (more

exactly about 72%) in the energy sector utilize shallow learning algorithms, including artificial neural networks and

support vector machine [9]. Recently, with the rapid advance of the deep neural network, some popular deep learning

frameworks including LSTM, RNN and their derivatives [10] have been widely used for energy demand forecasting.
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Pattern analysis was introduced to diverse energy consumer behaviorial analysis tasks. Hunt et al. create an

energy demand model considering the trends and seasonal effects [11]. Gaussian distribution and the Kullback-

Leibler divergence-based clustering method can be used to analyze household characteristics based on consumption

patterns [12]. An association rule mining based quantitative approach is proposed to analyze residential electricity

consumption patterns [13]. As occupant behavior is closely related to energy consumption, the frequent pattern

mining is used to analyze variations of human behavior in [14], including variation in energy consumption, time and

appliance use. Markov chains are extensively used to model occupant behavior and then to estimate energy demand

and its fluctuations [15]. However, Markov chains have limitations in accurately capturing occupants’ coordinated

behavior and are prone to overfitting. Rich features related to the activities of coordinated occupants can be used to

compare the behaviors between an occupant and its neighbourhood [16]. The customers with a similar load pattern

can represent that they may have similar household structure or living habits. Therefore, load pattern analysis can be a

crucial component for effective energy operation and management. Utilities can use segmentation analysis to improve

their operations, design demand-response programs and provide personalized services. To date, clustering is one of

the most used methods for customer segmentation analysis, by which time series are converted into reduced feature

vectors and then grouped into different groups according to their distances [17].

2.2. Visual analysis for energy management

Visualization and visual analysis is an emerging interdisciplinary subject for analysis, reasoning, and decision-

making through interactive visual interfaces [18]. Users can use visual analysis tools and technologies to obtain

knowledge from massive, dynamic, uncertain or even conflicting data. Visual analysis enables users to detect expected

information, explore unknown content, provide rapid, testable and understandable evaluations, and propose effective

methods for evaluating communication. Visual visualization and visual analysis mainly include [19]: analytical rea-

soning that provides users with in-depth knowledge to directly support assessment, planning and decision-making;

visual representations and interactions that use the high-bandwidth channel directly connecting the human visual sys-

tem to the brain, and provide users with technical support to simultaneously observe, explore and understand a large

amount of information; data representations and transformations that transform diverse data containing conflicting

content and dynamic changes into data representations that can support visualization and analysis; supporting the

production, presentation and dissemination of analysis results (Production, Presentation and Dissemination) - visual

analysis results are transformed into communication information in the background to achieve an effective exchange

of information with different audiences. The methodology has received an increasing research interest as it focuses on

analytical reasoning facilitated by interactive user interfaces, and as a problem-driven data analysis technique, it helps

users focus on the exciting aspects of data and improve data exploration efficiency, thus potentially extend human

cognitive ability [20, 21, 22]. Using a variety of visualization techniques, humans can perform effective cognitive

analysis, extract knowledge and reveal patterns from data. Visualization and visual analysis have been introduced in

different application domains such as in public opinion analysis [23], research hotspot evolution [24], air pollution
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source analysis [25], financial risk management [26, 27] and many others. Usually built on top of the statistical analy-

sis or data mining layers, visual analysis adopts a human-machine interaction methodology to help target users such as

decision makers, interactively gain insight into complex problems by combining them with domain knowledge. Since

we consider energy demand as a problem in the analysis of spatio-temporal patterns, we briefly present the related

work.

The visualization of spatio-temporal data has been extensively researched and applied in different fields [28, 29].

A majority of the studies are trajectory analysis [30, 31, 32]. Pattern extraction can be applied to obtain significant

latent patterns from the movement data. Space-time cube representation is an information visualization technique

where spatio-temporal data points are mapped into a cube [33, 34]. AirVis is designed to assist domain experts to

efficiently capture and interpret the uncertain propagation patterns of air pollution based on graph visualizations [35].

Multidimensional spatio-temporal data are modeled as tensors and then decomposed to extract the latent patterns for

comparison and visual summarization [36]. Flow maps are used to track clustering behavior, and direction maps

draw on the orientation of vectors, are used to precisely identify the location of events [37]. Kim et al. proposed a

gravity-based flow extraction model by extending a density difference model, which can effectively separate human

movement from spatio-temporal data without using trajectory information [38]. A population-based vector field was

proposed to visualize the dynamics of temporal and geographical demand. By representing transportation systems as

vector fields that share the same spatio-temporal domain, demand can be projected onto the systems to visualize the

relationships between them [39]. Miller et al. introduced the DayFilter process for building performance evaluation,

which uses a set of temporal data mining techniques including SAX, clustering and visual analysis [40]. Within the

system, discrepancies, or irregular daily patterns are filtered and marked for in-depth and detailed analysis for potential

energy saving opportunities. Motifs are detected and grouped using k-means clustering algorithm.

In the energy sector, the visualizations such as graphs and bar charts have been extensively used to comparable

energy consumption over time. The seminal literature presents several power system visualization techniques to help

analyze the relationships between network power flows using animation, contouring of bus and transmission line flow

values, and interactive 3D visualization [41]. Coincidence factor-based heatmap is the visualization method used to

identify peak demand charges and avoid power outage [42]. Calendar-type pixel visualizations, with color enhance-

ment of anomaly scores, integrated with the spiral visualization, line graph and trees, are designed to detect anomalies

of energy consumption data [43]. FigureEnergy is an interactive visualization that allows users to annotate and ma-

nipulate a graphical representation of their electricity consumption data; and annotate their past energy consumption

by understanding when and how. To do so, a certain amount of energy was used in [44]. Operational performance is

integrated with building information modeling (BIM) as a visualization dashboard to support the building energy man-

agement [45]. Ambient and artistic visualization for residential energy use feedback is explored, where Phyllotaxis

design, Hive design and Pinwheel design in energy use are discussed [46]. Matches, Mismatches, and Methods for

Multiple-View workflows for energy portfolio analysis are discussed [47]. Mosaic groups mapping encoded by house-

hold energy use combines with geodemographics to enable a better understanding energy user types in the UK [33].
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GreenGrid is designed to explore the planning and monitoring of the Electricity Infrastructure. Geographic layout

coming with a weighted network interface is designed to quickly identify where the system would be most likely to

separate if an uncontrolled islanding event were to occur [48]. Liu et al. developed a data pipeline [49, 50] and a

dashboard, SMAS [51], to streamline the whole process of smart meter data analysis, including data pre-processing,

cluster scaling, segmentation and visualization on a map.

This paper aims to analyze and discover energy demand shift patterns through our proposed novel interactive visual

analysis framework. The discovery of shift patterns focuses on investigating the effects of the crowds’ spatial mobility

on energy consumption over time. The shift pattern analysis has received much less research focus than typical

consumption pattern analysis. Most of the current work focuses on the spatial variability of energy consumption,

sources and aggregation. They differ substantially from the method proposed in this paper, which discovers the

spatio-temporal shift patterns of energy demand. This involves analyzing the dynamics of energy demand shifts on

both spatial and temporal dimensions.

3. Problem Statement and Methods

This section first provides an overview of the visual analysis framework, then describes the pattern recognition

methods, and finally introduces the visual analysis tool.

3.1. Overview

The proposed visual analysis framework has a three-layer architecture, consisting of a data layer, a visualization

layer, and an exploration analysis layer, as shown in Figure 1.

In the data layer (left in Figure 1), the energy consumption data is collected and pre-processed before stored in the

database. The raw data are usually not ready for subsequent analysis, e.g., with abnormal and missing values. Thus,

data pre-processing is crucial in ensuring data quality for the subsequent pattern detection. The well-prepared data is

then forwarded to the next layer, where visual analysis is performed.

The visualization layer consists of temporal and spatio-temporal pattern analysis components (middle in Figure 1).

Clustering high dimensional data is usually time-consuming and difficult to achieve good results [52]. Therefore, in

this paper, t-SNE [53] is used to reduce the time series dimensionality before pattern analysis. It segments house-

holds according to the similarities of energy consumption patterns. In comparison, the potential flow-based modeling

algorithm can capture the spatial shift patterns over time, including spatial shifts of energy demand and peak load.

According to the shift pattern, the supply-side energy flexibility potential can be determined, and utilities can better

plan energy supply at different temporal and spatial scales.

The exploration analysis layer is to gain knowledge from the visualization layer (right in Figure 1). This layer

provides a visual analysis interface where users can get insight into the data by interactions. Users can explore data

in various ways, ask different questions, and answer their questions through visual analysis results on the view. The
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Figure 1: Overview of the proposed visual analysis framework

visual analysis tool, PCP, is designed to answer the following two classic questions, “What is the consumption trend

or pattern over time?” and “Does the crowd mobility affect energy demand?”. The analysis process consists of three

steps: data exploration through user interactions, idea verification and knowledge acquisition.

3.2. Data

The data used in this paper are daily resolution electricity consumption data from Pudong District in Shanghai,

China. We collaborated with the Shanghai National Grid Company and collected the data from 2015 to 2018. The

data comprise approximate 10,000 household energy customers, which were obtained by uniformly sampling from

the full set of the customers, which is over one million. Notably, the data we obtained is all residential. Geographical

coordination is also available to these customers. Table 1 shows a sample of the data consisting of customer identity

(customerID), time series attributes (pap r (total demand of the day), pap r1 (peak period demand of the day,

ranging from 6:00 to 22:00) and pap r2 (off-peak period demand of the day, ranging from 22:00 to second day

6:00)), the measuring date (Date) and the geographical coordinate (Latitude and Longitude).

Table 1: Sample rows of the daily-grained energy demand data
CustomerID pap r pap r1 pap r2 Date Latitude Longitude

1100216777 6.03 5.17 0.86 2017-11-25 31.121.05 121.55181

1100216777 32.48 21.31 11.16 2017-07-17 31.121.05 121.55181

1100216777 5.77 4.90 0.87 2017-09-15 31.121.05 121.55181

1100216777 22.16 13.90 8.25 2017-08-25 31.121.05 121.55181

1100216777 13.81 6.67 7.14 2017-07-16 31.121.05 121.55181

1100216777 6.74 6.00 0.75 2017-11-12 31.121.05 121.55181
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3.3. Data preprocessing

The spatio-temporal analysis of energy consumption data enables a better understanding of the environment’s

effects and consumer behaviors over time. The first step of data analysis is data preprocessing, as the data may have

quality issues, e.g., with noise, irregularities and missing values. Data quality can affect the results of visual analysis.

However, data preprocessing is a non-trivial task that involves several cleansing steps. In this paper, these steps are

performed to make the data ready for subsequent visual analysis, including anomaly removal, normalization, and

dimensionality reduction, as described below.

Window-based convolution smoothing is used to smooth time series before further analysis. The smoothing

operation creates an approximation function by removing noisy data and reconstructing the curve through interpolation

to follow the trend of time series and capture the significant pattern. Smoothing can reduce random variations of a

time series and provide a more accurate and intuitive view for potential patterns.

Z-Score is used to normalize energy consumption time series [54]. The Z-score is a signed fraction of a standard

deviation by which the value of an observation or data point is higher than the average of the observed or measured

values. The observations above the mean have a positive standard score, while the observations below the mean have a

negative standard score. After calculating the standard score, the normalized energy consumption is plot into a uniform

normal distribution, by which the impact of abnormal variations on the trend of a time series can be minimized.

3.4. Temporal pattern discovery for energy consumption

This section presents the embedding method to visualize energy consumption patterns that can be used, for exam-

ple, to investigate consumer behaviors, segment customer groups, and design targeting demand-response programs.

Embedding technologies usually project high dimensional data into a lower space while keeping the global and

local data relative structures. The most widely used embedding technologies are Principal Component Analysis

(PCA) [48], a linear dimensionality reduction technology due to its efficiency and convenience. However, it usually

deals well with data samples with lower than ten attributes and has difficulty processing real high-dimensional data

sample features. Nonlinear dimensionality reduction techniques are also widely used. The representative nonlinear

dimensionality reduction techniques include t-distributed Stochastic Neighbor Embedding (t-SNE) [53] and Uniform

Manifold Approximation and Projection (UMAP) [55]. In this paper, t-SNE has an on par performance with UMAP

on the energy consumption data (see Experiments), thus we choose t-SNE as the representative method and report the

results.

Formally, t-SNE can be described as follows: given a set of n high dimensional data objects x1, ..., xn, the proba-

bility of similarity for two data objects, xi and x j, is represented as Pi j. According to [53], the similarity of x j to xi

is a conditional probability, Pi| j. Whether x j will be picked as xi’s neighbor or not is determined by the probability

density under the Gaussian distribution centered at xi. The conditional probability Pi| j is defined as follows:

Pi| j =

exp
(
−

∥∥∥xi − x j

∥∥∥2
/2σ2

i

)
∑

k,i exp
(
− ‖xi − xk‖

2 /2σ2
i

) (1)
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where σi is the bandwidth of the Gaussian kernel, ‖·‖ is the distance. Pi j can then be calculated by the following

formula:

Pi j =
P j|i + Pi| j

2n
(2)

Besides, the similarity probability of a data object to itself is set to 0. The purpose of t-SNE is to obtain a low

dimensional spatial distribution reflecting the similarity Pi j as much as possible through iterative learning. To achieve

this, it uses the method that is similar to obtain Pi j to calculate the similarity probability of the low dimensional data

objects yi and y j, which is defined as follows:

Qi j =

(
1 +

∥∥∥yi − y j

∥∥∥2
)−1

∑
k,l

(
1 + ‖yk − yl‖

2
)−1 (3)

where y1, ..., yN are the data objects in a low dimensional space, ‖·‖ is the distance, k and l are between 1 and N. Here,

the heavy-tailed Student t-distribution [56] (with one degree of freedom as same as the Cauchy distribution) is used to

calculate the similarity between low-dimensional points, so that different objects can be placed further apart in a low

dimensional space. The similarity probability of a data object to itself is set to zero.

Last, the position of the data point in the low dimensional space is minimized by Kullback-Leibler divergence

between the probability distribution P of the high-dimensional space and the probability distribution Q of the low-

dimensional space, which is defined as follows:

KL (P ||Q) =
∑
i, j

Pi j log
Pi j

Qi j
(4)

The Kullback-Leibler divergence is minimized using the Stochastic Gradient Descent (SGD) method [57].

In this paper, Euclidean distance is used as the distance metric to measure the similarity of data points in t-

SNE [58]. The distance between two points in Euclidean space is the length of a line segment between them, defined

as

d (p, q) =
√

(q.x − p.x)2 + (q.y − p.y)2 (5)

where p, q are two data points shaped like (x, y).

With a visual analysis tool, users can interactively select nearby points and highlight time series patterns by su-

perimposing them in a line graph. The position of scattered location icons (or points) on the map can help users

understand the geographic distribution of objects with similar patterns. In this way, customers with similar consump-

tion behavior can be discovered interactively using the tool.

3.5. Spatio-temporal demand shift modeling for energy consumption

Understanding the spatio-temporal patterns of energy consumption can help utilities improve operations, develop

energy strategies and offer personalized services. For electricity consumption data, we found that there exist demand

shifts across different geographical locations over time. This raises an interesting question about how to visualize these
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Figure 2: Schematic diagram of energy demand shift modeling. The procedure for modeling the energy demand shift can be divided into three

steps: 1) The locality data is weighted by the energy consumption at each moment; 2) Strength maps of the energy demand for each moments are

calculated through kernel density estimation; 3) Modeling and visualization of the Energy demand shift based on potential-flow (see Section 3.5).

demand shifts in a user-friendly way to help utilities balance energy supply and improve flexibility. This section will

describe the potential flow-based approach proposed to model energy demand dynamics across spatial and temporal

dimensions.

In fluid dynamics, the potential flow describes the velocity field as the gradient of a scalar function: the velocity

potential. As a result, a potential flow is characterized by an irrotational velocity field, which is a valid approximation

for several applications. Therefore, we can observe that the geospatial energy demands change continuously over time,

and thus the demand is a continuum occupying a simply connected region in the time dimension with an irrotational

characteristic. Inspired by the advancement of fluid dynamics and continuum mechanics, the continuum can be

modeled as a potential flow [59].

This potential flow-based modeling algorithm is explained by the schematic diagram in Figure 2. First, the energy

consumption data are collected and sampled using the weighted sampling method [60]. This sampling method is used

because it can effectively minimize bias [60]. Weighted sampling is defined as adding weights to the original data to

measure its significance. The higher the weight of a data point, the more critical it is in the data set. What’s more,

the weighted sampled data will make the results of the kernel density estimation more accurate. In this step, the data

points are defined as a ternary vector containing the latitude and longitude of each user as well as the average power

consumption as weights. The dynamics of the energy demand over time is visualized as a scatter plot at different

times, e.g. t1 and t2 in Figure 2a.

Then, the weighted sampled data are fed into the kernel density estimation algorithm, and the kernel density

estimation matrix is calculated for different moments, and each value in the matrix corresponds to the strength of

energy demand with a different GPS coordinate. We encode the matrix values as gradient colors to show the different

energy demand strengths, as shown in Figure 2b. In the end, generated by the difference obtained by subtracting the

kernel density estimation matrix at different times, a graph of energy demand variation encodes the energy demand

dynamics in both spatial and temporal dimensions, as shown in Figure 2c.
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By calculating the gradient of this matrix, we obtained the direction of the energy demand shift, which is the offset

(dx, dy) for the original GPS coordinates. Original GPS coordinates (x, y) correspond to the arrow’s tail coordinates,

and the head coordinates of the arrow are (x+dx, y+dy). The length of the arrow
√

(dx)2 + (dy)2, is the rate of energy

demand shift. The longer the length of the arrow, the more rapid the demand changes. Such a flow map describes how

energy demand shifts in space and time, quantitatively and qualitatively.

To model the spatial energy demand, a kernel density estimation based approach is proposed to encode discrete

household energy consumption into a continuous representation. Such an operation can efficiently generate a smoother

vector field. In detail, let x1, ..., xn be the samples of energy customers who are the GPS locations in this study. Each

sample is a 2d-variable random vector drawn from a common distribution described by a force function S . The

following formula is used to estimate the energy demand strength of the population.

Ŝ h(x) =
n∑

i=1

ciKH(x − xi) (6)

where x = (lon, lat)T , xi = (loni1, lati2)T , i = 1, ..., n, are 2D vectors; ci is a normalized value of average energy con-

sumption used to re-weight demand strength with respect to geographic distribution; H is bandwidth (or smoothing), a

d × d matrix, which is symmetrical and positive definite; K is the kernel function, which is a symmetrical multivariate

density. The kernel function is defined as follows:

KH (x) =
1
n
|H|−1/2 KH

(
H−1/2x

)
(7)

In this paper, the Gaussian kernel is chosen to estimate the strength of demand because it provides a reasonable

estimate for a small data set. However, for a large or medium data set, the Epanechnikov kernel can be a better option

for its lower computational complexity [61].

With the kernel density matrix (strength map), the temporal dynamics of the energy demand over the time from

t1 to t2 can be modeled by Equation 8. The temporal dynamics can be obtained by calculating the gradient of the

demand strength difference.

Shiftt1,t2 = ∇(S t2 − S t1 ) (8)

The vector flow fields (the arrows) represent the shifts in energy demand, which are visualized and analyzed by

the visual analysis tool developed in this paper.

3.6. Visualization and visual analysis user interface

This section presents the visual analysis tool, Power Consumption Pattern Explorer (PCP) 2. The user interface

design follows Shneiderman’s mantra [20] of “Overview first, zoom and filter, then details-on-demand”. Figure 3

shows the user interface, which consists of the following three coordinated views:

2https://pcp.scicloud.site
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Figure 3: The user interface of PCP. A user can select different clusters using the interactive scatter plot function of View C, then observe energy

consumption patterns (View B) and geographical distribution (View A) to find the user’s clusters of interest.

− View A. This view displays the spatial information of the sampled customers on a map. It supports users in

selecting different map types, displaying the customers’ geographic locations via markers, and visualizing the

spatial distribution density via a heatmap and the energy demand shift via vector flow fields.

− View B. This view supports to display the energy consumption time series for the customers selected in View C.

− View C. This view is the temporal behavioral navigator that allows users to examine different energy consump-

tion patterns or demand shift patterns. The closer the points are to each other, the more similar patterns they

have.

The implementation of PCP follows a three-tier architecture, data layer, analysis layer and visualization layer

(note that this is a software architecture that is different from the layered architecture of the visual pipeline presented

in Section 3.1). In the data layer, PCP currently uses CSV files as the underlying database, but it would be preferable

to use a data management system, which will be future work. Time series in the data layer is read and visualized in the

web-based user interface. In the analysis layer, all algorithms are implemented in Python, including dimensionality

reduction, consumption pattern, and shift pattern discovery algorithms. The user-interactive analysis can generate

intermediate data, such as the flow field arrows (Scalable Vector Graphics (SVG)) and the associated latitude and

longitude coordinates. These intermediate data are saved as a GeoJSON file in the data layer. In the visualization

layer, HTML5, CSS, and JavaScript are used to implement the user interface. The JavaScript library, Leaflet.js [62]

is used for map visualization and d3.js [63] is used to visualize time series and scatter plots as well as for interaction
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design.

4. Experiments

This section will describe the used data and report the empirical studies of energy consumption patterns and shift

pattern discovery using the proposed visual analysis method.

4.1. Empirical study and exploratory data analysis

This subsection reports the data statistics of the household electricity consumption data. Figure 4 shows the

household spatial distribution by a heatmap of energy consumption density. The figure shows that the northern part of

the Pudong district has a higher household density than the southern part. The following number confirms this visual

analysis result. According to the census data collected in 2010, 2/3 of the population lives in the northern area, close

to the city center, while 1/3 of the population lives in the Southern area. The visualization result validates that it was

plausible to obtain the data using the uniform sampling method.

Figure 4: Visualization of household spatial distribution by heatmap

The distribution of electricity consumption is presented by frequency histogram. Figure 5 and 6 show the distri-

bution of the daily and annual consumption of households, respectively. Note that the abnormal hourly consumption

values were removed by Tukey’s range test [64] before this visual analysis is performed (α = 0.05), which results in

1.2% of the rejected values, i.e., anomalies. The hourly and yearly consumption values both show a positive skewed

distribution with a long tail, which means that most customers’ consumption is to the left of the average. From the

results, 1/4 of households consume less than 2.40 kWh per day and 3/4 less than 8.67 kWh per day; 1/4 of households

consume less than 1,145 kWh per year and 3/4 less than 3,016 kWh per year. The zero value frequency is high in
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both figures, representing that no energy was consumed on a particular day or household. It may be for the reason that

people are away or the home is not occupied.

Figure 5: The distribution of daily electricity consumption of households

Table 2 summarizes the yearly and daily consumption data statistics, which include min-max values, mean value,

quantities, variance, standard deviation, skewness and tailedness (Kurtosis). The last two measures quantify the skew-

ness of the values visually confirmed by the distribution figures. Next, the aggregated daily electricity consumption

of all customers and the weather temperature time series (high and low) are plotted on the same figure (see Figure 7)

to investigate their correlation. The electricity consumption has a bimodal pattern, suggesting that more energy was

consumed in summer and winter. This pattern can result from high-temperature days with air conditioning for cooling,

and low-temperature days for heating. Nevertheless, there is a comfort zone between 15°C and 25°C, where there is

neither heating nor cooling. In addition, the figure indicates that electricity consumption decreased during the first

week of October. It is because this week is an extended holiday, China’s national holiday. Many people were traveling

and only baseload was consumed, for example, refrigerators.
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Figure 6: The distribution of annual electricity consumption of households

With the visual analysis tool, PCP, users can interactively explore hidden, implicit and useful information. The

next subsection will describe how to discover typical energy consumption patterns with this tool.

4.2. Method selection: a comparison of embedding algorithms for energy data

The embedding algorithms t-SNE and UMAP have become the two most popular methods for data dimensionality

reduction. Both methods work similarly to minimize the loss function by using gradient descent, which similar data

points get closer, while different data points get further apart [65]. However, if the algorithm choice can make the

computation results optimal when the data are different remains questionable.

To investigate suitable dimensionality reduction algorithms for our data, we use Euclidean distance as the similar-

ity measure of dimensionality reduction algorithms in our experiments to compare and analyze the results of t-SNE

and UMAP with different initialization (see Figure 8). From the figure, it can be seen that both algorithms can iden-

tify similar energy consumption patterns. The algorithm can identify several different clusters in the scatterplots.

However, the UMAP results are more compact and compressed in terms of distribution and have a larger empty area.
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Table 2: Summary of the electricity consumption data statistics

Statistics Yearly (kWh) Daily (kWh)

Minimum 0.00 0.00

Mean Value 2142 6.60

Maximum 9825 31.45

Q1 (Quantile 25%) 1145 2.40

Q2 (Median value) 2027 4.55

Q3 (Quantile 75%) 3016 8.67

Variance 1.83e+06 38.06

Standard deviation 1353 6.17

Mean absolute deviation 1084 4.60

Skewness 0.62 1.65

Kurtosis 0.56 2.54

Figure 7: The correlation between total daily electricity consumption and weather temperature. As indicated, the dashed line of energy consumption

is, to some extent, correlated with the weather temperature. For example, in summer, energy consumption peaks when the temperature rises.

As a result, the clusters of different patterns may overlap and the boundaries are unclear, making visual interaction

difficult. In addition, this affects the aesthetics of the graph. In our data, the effect of the different initialization of
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Figure 8: Comparison of dimensionality reduction algorithms. We used random and PCA initialization for t-SNE (sklearn v0.24.0); and random

and LE initialization for UMAP (umap-learn v0.5.0). As for UMAP, all other parameters were kept as default, except the number of iterations

(n epochs = 1000). For t-SNE, all parameters were kept as default, except the early exaggeration (early exaggeration = 4), the learning rate

(learning rate = 1000) and the number of iterations (n iters = 1000).

the algorithms on the results can be seen in the difference of the scatter layout, but this does not affect the ability of

pattern discovery.

4.3. Semantic analysis for energy consumption patterns through t-SNE projection

The visual analysis method for discovering typical temporal patterns is presented in the following. The dimensions

of time series are reduced to a 2D space using the t-SNE algorithm, which is visualized as a scatter point in the

scatter plot view. The time series of electricity consumption with similar patterns are tightly bundled. Therefore,

typical patterns can be discovered interactively by selecting the points placed closely in the view. Figure 9 shows

the interactive view of the visual analysis system, in which five typical patterns were discovered, which are described

below.

(i) Idle pattern. The points representing the idle patterns are aggregated at the bottom of the view like an ellipse

(see Figure 9). The idle pattern is characterized by year-round electricity consumption of almost zero. However, after

zooming in with the exploration tool, at a fixed date each month, some slight variations can be observed for some

households, meaning that these homes are possibility unoccupied but regularly inspected. In contrast, the homes with

zero consumption maybe unoccupied throughout the year, e.g., new apartments.

(ii) Bimodal consumption pattern. It is a major pattern with two surge energy consumption periods in winter and

summer. The bimodal pattern is most closely related to weather temperature changes (see the correlation in Figure 7).
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Figure 9: Typical temporal power demanding patterns by tSNE

This is a classic universal power pattern resulting from seasonal temperature changes, as residential electricity con-

sumption varies with temperature. This pattern implies that more electricity is used in summer and winter, while less

in spring and autumn. This is mainly due to the use of air conditioning for cooling in summer and heating in winter.

The temperature in Pudong district is usually above 30◦C in summer. According to our investigation, we found that

more people tend to turn on air conditioning in summer than in winter, which explains why the peak of consumption

in summer is higher than in winter.

(iii) Constant high consumption pattern. There is a cluster with a continuous high consumption mode sepa-

rated from the main body, located in the upper left corner of the view. This mode is characterized by constant high

consumption pattern throughout the year and small fluctuations within a fixed range. In contrast to the electricity

consumption with a bimodal model, the consumption with this pattern is higher than the average daily consumption

on most days. This pattern can occur for several reasons, for example, a household with low-efficiency equipment or

a big apartment.

(iv) Power-saving pattern. The clusters with this pattern are in the bottom corner of the view, like a fish tail. The

power-saving pattern has approximately the same shape as the bimodal pattern, but its consumption is much lower

than the bimodal pattern. The peak in winter is almost the same as in spring and fall, and the summer peak season

is relatively short, mainly in August. This pattern may be that these families live in new apartments equipped with
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energy-efficient appliances, or that they are low-income families who are very cautious about using too much energy.

(v) Suspicious pattern. The clusters with this pattern can be found in the lower central part of the view. This

pattern is characterized by a low stable consumption before the fall. However, the consumption after September

becomes high and fluctuates irregularly. The daily consumption is much higher than average, which can be considered

abnormal. There are many reasons for this, for example, it can be caused by irregular living habits. Although it is

difficult to determine the real reason, the pattern can provide users the tip for a tracking purpose.

4.4. Discovery of energy-demand shift pattern by potential-flow

This section will examine the shift pattern of electricity demand in Pudong District using the quiver plot method.

For better visualization, the quiver plots in the following subsections show only those changes where the difference in

demand strength is greater than 55% (see definition in Equation 8).

4.4.1. Demand shift pattern at the daily scale

The Pudong district’s power consumption shift pattern is visualized by the quiver plot method shown in Figure 10.

The result only shows the shifts on the daily temporal scale, but the method can also support the analysis of other

temporal scales if a more acceptable resolution of the data is used.

The quiver plot shows that the high energy demand changes from commercial to residential areas when people go

home after work. The arrows’ tails point to the high demand area during the day, while the arrows’ heads point to the

area with a high demand after the shifts. The length of arrows encodes the shifts’ demand strength-the shorter length

of an arrow, the slower the shift rate.

The two residential areas are marked with light red belts. The left red belt covers several popular residential areas,

including Sanlin Town, Zhoupu Town, Weifangxin Town, and Lujiazui Town. Both sides of the left belt are the main

commercial areas, including Huangpu River district to the left and Zhangjiang HiTech park to the right. The Huangpu

River district homes many industrial companies, while the Zhangjiang HiTech Park homes many office buildings. The

energy demand in both commercial areas is shifting to the residential area after work. The right red belt is also a

residential area, and most of the people living there work in the Zhangjian HiTech Park. Therefore, a similar shift

pattern can be seen in Figure 10.

4.4.2. Demand shift pattern at the quarterly or annual scale

This subsection examines the shift pattern of high energy demand on a quarterly or annual scale. Figure 11 shows

the shift pattern of the energy demand over the quarters of 2017 using the full set of the sampled data, d. The length

of an arrow is proportional to the strength of the electricity demand shift. Accordingly, the shifts of the electricity

demand first deviate from Q1 to Q2 from the commercial area (arrow tails) to the residential area (arrow heads) (see

Figure 11a). The shifts on the right-hand side converge from the residential area (arrow tails) back to the commercial

area (arrow heads) from Q2 to Q3 (see Figure 11b). However, the shifts of the electricity demand deviate from the
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Figure 10: The demand shift pattern at the daily scale

Figure 11: The demand shift pattern at the quarterly scale

commercial area (arrow tails) to the residential area (arrow heads) again from Q3 to Q4, like from Q1 to Q2 with little

difference (see Figure 11c).

The following explains these shift patterns. First, the shift pattern depicted in Figure 11a may be caused by the

traditional Chinese holidays in Q1, including the long Chinese Spring Festival (about two weeks), when most people
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stay at home and consume more energy than usual. Second, the shift pattern shown in Figure 11b may be caused by

the opening of Shanghai Disneyland in Q3 at the location near the residential area. Third, Figure 11c may be due to

the fact that Shanghai gradually entered the winter season. If the weather gets colder, more people will prefer to stay

indoors, which will consume more energy. This is especially the case in residential areas.

Figure 12 shows the shift pattern over a yearly interval, i.e., from Q1 2017 to Q1 2018 or from Q2 2017 to Q2

2018. Interestingly, although the shift strength difference threshold is set far below 55%, no significant shift in demand

is observed, which means that the shift caused by the crowd behavior in a high granular time interval is negligible. It

might also be dominated by the high-consumption customers, which will be discussed in the next subsection.

Figure 12: The demand shift pattern at the yearly scale

4.4.3. Sensitivity analysis

The shift in demand is mainly caused by the difference in energy consumption between different spatial areas.

Since customers can be classified according to their consumption intensity, it is interesting to examine the shift pattern

sensitivity of different customer groups according to the consumption intensity. This study will divide the customers

into several groups by percentile concerning their annual consumption. For simplicity, the full set of sampled data d

is split into d′ and d′′ with respect to i-th percentile (see Figure 13). In the following, the 90-th percentile is used for

partitioning the data.

Figure 14 shows the shift pattern of the two divided data sets, corresponding to a high and a low consumption

group, respectively. The results indicate that the density maps of electricity demand strength have a very similar

shape for both data sets, only with a subtle difference of density distribution. This makes it difficult to distinguish and

interpret them plausibly. However, the dynamics of the density maps can be interpreted by the flow fields generated
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d

d’ d’’i-th percentile

Figure 13: The data sets partitioned according to percentile

for them (see the third sub-figure on the left). Although both flow fields show a convergent trend to the central blank

area, the flow map with anomalies shows an obvious divergence center and a convergence center on the map; while

the flow map without anomalies has several convergent regions of the demand shifts, including a big cross-region shift

and five small local shifts.

a) Flow map using the data set, d

b) Flow map using the data set, d’

t1 t2

Figure 14: The impact of consumption values on shift pattern
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Figure 15: Quarterly demand shift pattern using the data set, d′

Figure 16: Quarterly demand shift pattern using the data set, d′′

For further investigation, the quarterly shift patterns for the data sets d, d′ and d′′ are shown in Figure 11, 15 and

16, respectively. By comparison, the number of local spatial shifts in Figure 15 and Figure 16 have little difference in

scale, different from Figure 11. However, the number of local spatial shifts in Figure 16 is closer to the spatial shifts

depicted in Figure 11. After reviewing the data, it was found that the customers with high consumption can easily

dominate the trend of spatial demand shifts. Therefore, the consumption variation over time for high-consumption

customers is not as obvious as for low-consumption customers, but their consumption has a significant impact on

the results of the potential flow-based modeling algorithm. Perhaps by removing the data for high-consumption

customers, we get a general pattern of daily energy consumption.
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5. Discussion

The above section evaluated the proposed visual analysis framework and the PCP tool using a real-world case

study from Pudong District in Shanghai. Some interesting points remain to be discussed. Although visual analysis or

visual data mining has been around for a decade, it is mainly used in physics, bioinformatics and network security. The

application to the energy sector is still in its infancy, but it has great potential, especially for understanding consumer

behavior, fault diagnosis, interrelationships, etc.

First, this paper attempts visual analysis application in the energy domain and demonstrates its ability to detect

typical energy consumption patterns and analyze spatio-temporal shift patterns of energy demand. Second, user

interaction is the core of visual analysis, and therefore a user-friendly interface becomes an indispensable component

for performing effective visual analysis. This paper introduces the visual analysis tool, PCP, which allows users to

examine different patterns guided by their cognition and knowledge. In this empirical study, five typical patterns were

discovered representing different consumption habits of customers. Domain knowledge helps visual analysis, such as

asking relevant questions, performing useful analysis, and discovering meaningful results through user interactions.

Third, there is room for the improvement of the proposed methods and the tool listed in future work. Although this

tool supports the exploration of different time-granular data, as this study uses the daily resolution data, the study can

only demonstrate the capabilities of discovering patterns in high resolution.

Ideally, pattern dynamics should be visualized by regular updates when finer granular data are available, and real-

time changes can be detected. Last, the spatio-temporal shift pattern can be an essential tool for utilities to balance

energy supply between different spatial locations. According to the sensitivity analysis presented in section 4.4.3, it is

necessary to identify different customer groups according to their consumption intensity to capture local shift patterns

better.

6. Conclusions and future work

Digitization of energy systems requires novel tools and methods that can help for energy demand-side manage-

ment. This paper presented a visual analysis framework supporting both spatial and temporal pattern analysis using

energy consumption data. The paper first described the technique of dimensionality reduction, t-SNE, and discussed

how to reduce high dimensional data to a low dimensional space and visualize them. The paper then presented the

process for discovering typical consumption patterns, making it possible to recognize different customer groups with

different consumption behaviors or living habits. The paper proposed the demand-shift pattern discovery method

that supports the detection of demand changes according to spatial and temporal dimensions. To facilitate the use,

the paper also implemented a web-based tool to support interactive visual analysis by users. In the end, the paper

evaluated the proposed visual analysis framework and the tool by a real-world case study of pattern discovery using

the electricity consumption data from Pudong district in Shanghai. The empirical study successfully identified five
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typical consumption patterns, and the demand-shift patterns across time and space. The experimental results validated

the plausibility of the proposed method and its robustness.

There are several directions for future work. First, the framework for spatio-temporal analysis of energy demand

can be combined more seamlessly. The current system supports an exploratory analysis of both temporal analysis

and geospatial shifts of demand, but the analysis is separate and the coupled information has been inadvertently lost.

It will be preferable to support the analysis for a unified model of analysis of both spatial and temporal dimensional

information. Second, the computation of the geospatial shift of power demand is essentially based on the strength of

local distribution changes, which mainly reflects partial dynamics, whereas in practice there is not only local dynamics

but also a global trend. We seek to improve the flow generation algorithm and to provide a more accurate geospatial

shift of demand. Third, we plan to apply our approach to analyze the data of more energy types and to improve the

approach accordingly.
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