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Data-driven approaches for cyber defense of battery energy storage systems 

Nina Kharlamova, Seyedmostafa Hashemi *, Chresten Træholt 
Technical University of Denmark, Copenhagen, Denmark   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Utility-scale battery energy storage sys-
tems are vulnerable to cyberattacks. 

• There is a lack of extensive review on 
the battery cybersecure design and 
operation. 

• We review the state-of-the-art battery 
attack detection and mitigation 
methods. 

• We overview methods to forecast system 
components behavior to detect an 
attack. 

• We discuss how ML and AI-based 
methods can support cyber defense of 
battery systems.  
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A B S T R A C T   

Battery energy storage system (BESS) is an important component of a modern power system since it allows 
seamless integration of renewable energy sources (RES) into the grid. A BESS is vulnerable to various cyber 
threats that may influence its proper operation, which in turn impacts negatively the BESS and the electric grid. 
The potential failure of a BESS can cause economic issues and physical damage to its components. To ensure 
cyber-secure and reliable BESS operation in grid-connected or islanded modes of the BESS operation, a cyber- 
defense strategy is needed. However, a comprehensive review on the requirements for the BESS design as 
well as the attack detection and mitigation methods is lacking. In this paper, we review state-of-the-art attack 
detection and mitigation methods for various BESS applications focusing on machine learning (ML) and artificial 
intelligence (AI)-based methods. In addition, the state-of-the-art methods for designing and operating a cyber- 
secure BESS are investigated. Based on the literature review, we identified gaps in the current research, 
defined the possible cyberattacks against the BESS that have not been considered before, and suggested the 
potential approaches to detect them.   

1. Introduction 

Nowadays, the battery energy storage system (BESS) has become an 
important component of the electric grid [1]. It can serve multiple ser-
vices such as frequency regulation, voltage control, backup, black start, 
etc. [2]. The inability to provide a requested service can compromise the 

reliability of electric grid operation, the drop of energy quality as well as 
the failure to supply energy, economic challenges and physical damage 
[3]. Moreover, inadequate BESS management can cause rapid battery 
degradation. The batteries integrated into smart grids are vulnerable to 
cyber threats. Cyberattacks can be divided into groups based on various 
features [4] such as based on the part of the system that they are targeted 
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at, or the jeopardized feature of data [5]. In this review, the latter 
classification is used. 

A BESS is vulnerable to various cyber threats [6]. Since it is con-
nected to the electric grid, cyberattacks against the smart grid might also 
jeopardize the work of the BESS and system in general. The BESS con-
tains several parts that are interconnected and in case one system 
component is attacked, the whole system operation is corrupted. For 
instance, the cyberattack on communication channels might result in the 
false state of charge (SOC) estimation and forming a false command for 
the BESS. It is important to take into account all BESS components in 
order to provide a reliable defensive strategy that includes detecting 
false data injection attack (FDIA) against sensing data, battery, and grid 
state estimation (SE), protecting sensing units and communication 
channels. 

The existing research related to the cyber security of batteries is 
mostly related to their applications in the electric vehicles (EV) domain 
[7–10]. Cyberattacks on certain BESS components such as battery 
management system (BMS) [11–13], SOC forecast [14–17], communi-
cation channels [11], and algorithms for attack vector development [18] 
are suggested in recent literature. Due to the digitalization of the electric 
grid, the technology of the internet-of-things (IoT) is applied for the 
electric grid, and the approaches for cyber-secure IoT system operation 
and encryption technologies can be used for the BESS as well [11,13,19]. 
Nevertheless, to the best of our knowledge, there is no comprehensive 
study reviewing and investigating the BESS cyber defense algorithms 
neither for the design nor operation stages. In addition, the reliability of 
system commands is not considered. The paper provides a comprehen-
sive overview of BESS cyber threats, both for design and operation 
stages. This work focuses on the techniques proposed for cyber-secure 
BESS design as well as online attack detection and mitigation methods 
in the operation stage. It aims at providing a path for a trustworthy and 
cyber-secure BESS operation. 

The paper is organized as follows. In Section 2, we survey BESS cyber 
threats that can result in the failure of ensuring data integrity, confi-
dentiality and availability of the system. We investigate the challenges 
of applying stolen data for designing more complex and hard-to-detect 
cyberattacks. In Section 3, we derive the approaches to design the 
BESS to curtail the possibility of a cyberattack. In Section 4, cyberattack 
detection methods are reviewed and analyzed, and in Section 5, the 
mitigation of cyberattacks is discussed. 

2. Classification of Cyber Threats for the BESS 

Cyber threats of the BESS might have a different nature: the attack 
can be carried out physically or remotely. There are three major re-
quirements for system data that are integrity, confidentiality, and 
availability. Data integrity implies that the measurements or commands 
were not modified, the confidentiality stands for the absence of data 
leakage since no unauthorized party can retrieve it. The availability 
means that an authorized party can access the data at any time needed. 
Possible attacks on the system are presented in Fig. 1. Based on 
described data features we apply the classification of cyberattacks that is 
depicted in Fig. 2. Table 1 summarizes the literature sources depending 
on the type of the attack they consider. 

2.1. Integrity attack 

The integrity attack modifies, delays, or replays data to manipulate 
system parameters [5]. The attack can be not targeted or targeted to 
achieve some particular goal. FDIA is an integrity attack since they 
imply the injection of false data to the system. Every system component 
is vulnerable to integrity attacks. Adding physical protection of system 
layers on the design stages diminishes the possibility of the attack. In this 
section, we describe data integrity attacks. 

2.1.1. FDIA attacks 
FDIA results in data manipulation and depending on the knowledge 

of the attacker about the system, its topology, and retrospective data, 
these attacks are divided into multiple groups. We categorize FDIA as 
purely data integrity-based that does not use any system data to form an 
attack vector and a confidentiality-based data integrity attack that ap-
plies previously stolen data to complicate the FDIA detection. 

As mentioned above, we consider battery cells to be a black box in 
which measurement units, BMS, and control system are physically 
protected by the battery producer. Thus, we limit the possibilities of 
FDIAs against the BESS to battery and electric grid SE as well as com-
mand attacks. The concept of cyberattack against the electric grid that 
can be carried out unnoticed for the bad data detector (BDD) was firstly 
introduced by Liu in 2009 [32]. Since then the topic of FDIA against the 
electric grid gained wide attention of researchers [33]. There are also 
examples of the cyberattacks that happened in Pakistan [34] and 
Ukraine [35], and have cause economical damage to the grid. In [36], 
authors describe two attack scenarios in which the attack is targeted 
against all sensors of the system or it is assumed that there are physically 
protected sensors that cannot be hacked. 

2.1.2. FDIA against electric grid SE 
The FDIA against the electric grid is the most frequent attack in the 

electrical energy domain. The measurements within the electric grid are 
connected physically depending on the Kirchhoff laws and system to-
pology. Physical dependencies are used to detect the FDIA. The attacker 
has to take into account these dependencies for the attack to not be 
easily detected. Replay attacks are the type of FDIA that are based on 
real data and, therefore, are hard to detect. In addition, zero-dynamic 
attacks use unstable zero bugs to attack meters [20,21]. FDIA can be 
aimed to achieve a certain goal, e.g., to sabotage frequency or voltage 
control system. There are FDIA attacks that can be targeted against 
various parts of the system [37]. For example, supervisory control and 
data acquisition (SCADA) system can be damaged or totally disturbed by 
cyberattacks [38]. Moreover, the attacker can utilize retrospective sys-
tem data to construct attacks that are more challenging to detect as 
highlighted in [38]. Coordinated attacks are aimed to cover the real 
operation conditions of the system in order to distract its operation [39]. 
For example, the physical attack against a transmission line can be 
hidden by means of cyberattack [40]. The actions of control system can 
be further manipulated by hiding system failure that was not caused by 
attacker to avoid the correct work of protection system (e.g. in case of 
the shortcut) or replaying the data obtained during the shortcut while 
there are no system failures in the reality [41]. The example of FDIA 
based on the system data obtained through confidentiality attack is 
described in details in Section 2.2.2. 

Fig. 1. The cyber threats of the BESS.  
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2.1.3. FDIA against battery SE 
Cyberattack can be targeted at any system component including the 

BESS [42]. The distributed nature of BESS expands the possibilities of 
cyberattacks against it and required the application of cyber defense 
mechanism to minimize the possibility of such an attack [4]. The attack 
can potentially corrupt the battery’s SE that contains the data about 
SOC, state of health (SOH), based on the measurements obtained in 
battery cells since these parameters cannot be measured directly [43]. In 
this paper, we use the definition of SOC provided in [16] that is the ratio 
between the available to rated battery capacity. SOH represents battery 
degradation in order to estimate the change in the battery capacity due 
to the aging process. Inaccurate SOC and SOH evaluation results in 
forming corrupted control command that might lead to the battery 
overcharge causing the degradation and physical damage and financial 
losses [23,24] as well as failure to provide the required service. In the 
frame of the EV battery application, an undetected cyberattack accel-
erates battery degradation. Battery capacity decreases within the life-
time of the battery cell due to degradation. It is important to take this 
change into account since otherwise the system operator (SO) or local 
management unit does not possess reliable battery capacity data to 
manage the power supply. This might lead to the BESS being unable to 
act according to the control commands. 

2.1.4. Random delay attack 
A random delay attack stands for an attack that adds a delay into the 

sequence of measurements or control commands. This attack can disturb 
the work of the grid. The additional complexity is added due to the 
inability of cryptography to protect the system from cyberattacks [22]. 
The cyberattacks on batteries are mostly discussed in the frame of the EV 
domain. Therefore, we use the research carried out in the EV sector to 

describe attacks to which the BESS can be potentially vulnerable. Po-
tential and real cyberattacks were considered in the literature [23,24]. 
The most straightforward attack against SOC is to inject higher values of 
SOC in the situation of low charge. The defense strategy is to form an 
acceptable range of SOC between the minimum and maximum value. In 
this case, the attacker cannot increase SOC more than the fixed 
maximum parameters. To prevent an attack detection, the adversary can 
form false SOC so that it satisfies physical constraints and increases the 
value of SOC gradually, removing an attack as soon as the boundary 
condition is met and inject it back within the attack period is reached to 
further add false data once the boundary is reset. In addition, the tar-
geted attack against the electric grid or battery SE causes rapid degra-
dation and loss of efficiency [25]. In this case, an attack vector formed to 
decline battery lifetime and decrease battery capacity. 

2.2. Confidentiality attack 

Confidentiality is the feature of data that implies that data can be 
accessed only by authorized parties [44]. A confidentiality attack is an 
attack in which system data is recorded and stolen by an unauthorized 
party. Some researchers state that confidentiality is not necessary for the 
system data [45]. However, although this attack might seem less 
dangerous for a system, the data retrieved during this attack might be 
implemented to design a more complex FDIA. In this section, the attacks 
that violate system data confidentiality are discussed. 

2.2.1. Cyber threats for the BESS confidentiality 
The data can be retrieved from the system in various ways. Firstly, 

sensing units or communication channels, as well as system specific data 
such as grid topology, can be stolen physically (e.g. physical theft, 
manipulating meters on the consumer side, dumpster diving). Besides, 
the data can be stolen without physical access to it through direct 
download, passive monitoring, unauthorized user access to the data, 
spyware malware, phishing, and cross-site scripting [18]. Confidenti-
ality attacks can be targeted at sensors, communication channels, and 
data storage. The man-in-the-middle attack is a type of attack against 
data confidentiality that records data that is transferred through a 
communication channel by placing an unreliable user between two 
nodes [26]. Confidentiality attacks on battery are mostly studied in 
electric vehicle (EV) domain [46]. 

2.2.2. Confidentiality attack based FDIA 
One of the threats of confidentiality attacks is the ability of an 

attacker to utilize obtained data to construct another attack. An adver-
sary can spam storage with stolen data [13], as well as injecting it back 

Fig. 2. The classification of cyber threats for the BESS.  

Table 1 
Literature review for each type of cyberattack.  

Source Integrity 
Attack 

Confidentiality 
attack 

Availability 
attack 

Detection 

[5] X X   
[20,21] X    
[22] X X   
[23,24] X   X 
[25] X    
[18]  X   
[26]  X   
[13,27] X X   
[5] X X  X 
[28–30]   X  
[31]   X   
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to the system making a replay attack. 
The major threat of confidentiality-based FDIA is that since the 

attack is based on seized historical data or system topology it is chal-
lenging to detect and can be confused with unusual but unspoiled system 
measurements. Moreover, the attacker can follow a particular goal, e.g. 
to manipulate the system state. To be successfully injected into the 
system, confidentiality attack based FDIA requires carrying out integrity 
and confidentiality attack simultaneously. Confidentiality attacks 
enable the attacker to carry out coordinated attacks that are capable of 
causing more harm than ordinary FDIA. For instance, the attacker can 
organize the replay attack in such a manner that the system disturbance 
is unnoticed by the control system [40]. 

The replay attack is one of the examples of confidentiality-based 
FDIA that include stealing sensing data and repeatedly broadcasting in 
[20]. Furthermore, some FDIAs are based on full or partial knowledge of 
historical data or system topology. Detecting the attack is one of the 
challenges tackled in the electric grid domain [5]. Resonance attacks 
manipulate system SE by adjusting system measurements [27]. 

2.3. Availability attack 

Availability of data is the ability of the authorized parties to access 
data upon the request. The loss of this data quality can be caused by 
multiple factors including power supply loss, operating system or 
application problems, cyberattacks, compromised system, etc. [47,48]. 
The failure to provide data availability results in the absence of system 
observability. According to [47], the availability attack can be also 
caused by integrity attack when the configuration file that is in charge of 
managing the particular service behavior is accessed and altered; 
therefore, the service availability might be affected by changing the 
content of the file. One of the most common attacks against data 
observability is a denial of service (DoS) attack in which physical or 
network connections are overloaded [49]. The attack disturbes the 
operation of communication channels [28–30] and might be especially 
dangerous for the islanded grid in which the BESS might be a major 
power supply source [30]. Besides, secondary frequency control might 
be vulnerable towards this kind of an attack [31]. DoS can potentially 
disturb the work of the smart grid. The latency attack delays dispatch 
signal in order to modify system characteristics and harm the reliable 
operation. This attack can be difficult to detect since it can be confused 
with system latency. Being cost-effective, this attack is efficient from the 
viewpoint of the resources needed to maximize the negative influence 
on the system [50]. 

3. Design of cyber-threats-aware BESS 

While we cannot eliminate the possibility of a cyberattack, the 
proper design of the BESS allows us to minimize the chance of successful 
cyber arracks. In this section, we overview existing approaches for 
cyber-secure aware smart grid and BMS design to provide a list of tools 
to consider while designing the BESS. The main steps of the BESS design 
include choosing the system architecture, communication channel pro-
tection methods, user authentication, as well as physical methods. The 
steps are depicted in Fig. 3. 

3.1. Architecture 

Depending on the system architecture, the system vulnerability to-
wards cyberattacks may vary. An electric grid with multiple BESS can be 
controlled through decentralized, centralized, and distributed control 
architectures. The centralized architecture allows us to realize the 
collaborative control strategies through utilizing central controller that 
collects data from each BESS and finds the global optimum that cannot 
be computed for each BESS separately. The vulnerability of such ar-
chitecture is the single failure point since in case the central controller is 
corrupted, operation of all BESSs in the system will be disturbed [4]. The 

decentralized architecture (that is also referred to as a flat architecture 
[51]) does not have this weakness; however, since each BESS gathers 
measurements locally, the work of BESS cannot be optimized in a 
centralized way [52]. This type of architecture provides the highest level 
of security [51]. The additional drawback of the centralized approach is 
the high cost since it requires a fast and highly reliable communication 
network [53]. 

The distributed control architecture (that is also referred to as hier-
archical or cluster architecture [51]) combines the benefits of the two 
above-mentioned approaches and is recommended for the imple-
mentation in case the hybrid solution is necessary [51]. Each BESS is 
presented as an autonomous agent connected to multiple neighbors to 
exchange information for operation mode calculus. In this way, the 
distributed architecture enables us to reach a common objective while 
managing multiple BESSs and widen the surface of an attack. One of the 
most secure architectures of distributed systems is blockchain that is the 
system that register each transaction by means of multiple devices 
connected in a peer-to-peer network [4]. Distributed topology formation 
algorithms allow mitigating the negative influence of DoS attack since it 
allows to isolate attacked nodes so that they are circumvent and the 
algorithm successfully converges in the distributed manner while mul-
tiple nodes of the system are attacked by DoS [31]. 

3.2. Communication channels and user authentification 

Smart grid experiences cyber threats of a different kind such as un-
authorized software updates or IoT devices that can potentially cause 
havoc [54] and inadequate battery management resulting in battery 
damage. Confidentiality of the data can be disturbed mainly through 
communication channels. The probability of the availability attack that 
mostly is related to the DoS can be diminished by adding physical pro-
tection of communication channelś security as well as data encryption 
and user authentication. Although in this paper, we consider cyber se-
curity from the BESS perspective assuming that the methods to provide 
cyber security for the electric grid are set by default, we overview the 

Fig. 3. The stages of the cyber-secure BESS design process.  
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existing approaches in order to detect which of them might be adapted 
for implementation in the BESS framework. 

There are numerous approaches to secure communication channels 
in the literature including, e.g., security protocols, data encryption, 
blockchain technologies implementation, security protocols. Applicable 
authentication mechanisms (e.g. LoadAP, S3PAP-C, etc.) and encryption 
methods are overviewed in detail in [55]. The applicability of the pro-
tocol depends on the level of data security that is required for the 
particular implementation. For example, some network protocols such 
as MQTT and HTTP that are widely implemented and not secure enough 
might cause a failure of ensuring secure management of the system; 
however, they are widely used by browsers (e.g. Opera, Google Chrome, 
etc.). HTTP also provides the possibility of introducing the security 
protocol. Various protocols that use encryption can be ranked depending 
on the security and configurability [56]. The variations of security level 
come from the difficulty of hacking the encryption key that can be 
symmetric or asymmetric [57]. The symmetric key is used for both 
encrypting and decrypting data, while asymmetric key is used only for 
one purpose. In centralized a architecture, the central controller has to 
provide security keys to all the members and to monitor system safety. 
The centralized architecture is less secure than decentralized and 
distributed one since if the attacker is able to disturb a few transactions 
from central controller, the entire network can be isolated [51]. 

The blockchain was initially introduced as a financial transaction 
(TX) protocol. However, since this technology provides the high level of 
security since it uses cryptographic security benefits e.g. distributed 
architecture, asymmetric keys in the combination with user authenti-
cation, it was implemented in other domains [58]. In addition, the data 
can be encrypted and decrypted in the distributed manner, which means 
that the data cannot be read or introduced into the system by hacking 
only one node [58]. Blockchain is a promising technology for imple-
mentation in BMS design. It ensures network, data storage, software, 
onboard interface security as well as hardware security [11] as an 
alternative to the state of the art. The main advantage of the blockchain 
is the decentralized structure. Each user has access to the historical data 
only through the agreement with other users. The data are encrypted 
with an asymmetrical key that tangles the data-stealing. In addition, 
each user is going through the authentication procedure to avoid un-
authorized access to the data [59]. 

Adapting blockchain technology for the BESS management results in 
using more light-weight security protocols minimizing the computa-
tional cost and memory size comparing with state-of-the-art strategies 
[19]. Data storage security is maintained by applying the distributed 
architecture of blockchain [58]. Blockchain provides authorized identity 
management to avoid the access of unauthorized users from sending 
commands and retrieving data. However, there are additional chal-
lenges of adapting blockchain technology such as limitations by the 
memory size of embedded systems since all nodes have to store complete 
blockchain ledgers, limited randomness of private keys, and scalability 
issues. Nevertheless, due to the specific requirements of BESS, these 
challenges do not have a significant impact on the high potential of 
blockchain technology in BESS management. Thus, the technology is 
suggested for the implementation by multiple sources [4,11] to safe-
guard cyber-secure communication between the SO and BESS, data 
storage, reliable battery control. 

3.3. Additional protection 

In the smart grid domain, the numerical attack detection methods are 
combined with utilizing the equipment and physical features of signal to 
complicate the cyberattack. One of the state-of-the-art approaches to 
detect FDIA for electric grid SE is to combine the cyberattack detection 
algorithm with physical protection of the part of sensors [60]. Moreover, 
the measuring units within the utility-scale BESS are protected physi-
cally from cyberattack, and, consequently, the data can be jeopardized 
only through communication channels. Although there is a physical 

possibility to protect each part of the system using the secure equipment, 
it raises the installation cost; therefore, the engineers are required to find 
the balance between utilizing the equipment to minimize the possibility 
of cyberattack and numerical algorithms to detect and mitigate it. 

As to communication channels security, blockchain is suggested for 
the implementation in the BESS cyber defense to reduce the possibility 
of understanding stolen data and injecting FDIA (by using data 
encryption and distributing the keys across multiple nodes so that 
hacking one user is not enough to encrypt and decrypt data). Moreover, 
the system can be protected using the equipment. For example, dark 
(unlit) fiber that is not connected to the internet or managed by the SO 
can be used as a communication channel. 

Random delay attacks can be detected by adjusting signal features. If 
the control signal frequency is high, the control period exceeds the delay 
introduced into the system. In this case, the attack can be mitigated by 
dropping timeout control packets [22]. 

4. Detection Methods of BESS Cyberattacks 

To ensure cyber-secure operation of the BESS, it is important to carry 
out online detection of possible cyberattacks on sensing measurements 
[14,61]. The detection methods are presented in Fig. 4. 

4.1. Manipulated battery SE attack detection 

The dataset of the proper size and quality is required to obtain a 
sufficient detection accuracy. Due to the EV being a spread application 
of batteries, most battery SOC forecast methods are tested on EV data-
sets. One of the common datasets described in the literature are Federal 
Urban Driving Cycles (FUDS), and US06. The efficiency of machine 
learning (ML) and ANN approaches application on different datasets is 
highlighted in [62]. However, there is no state-of-the-art attack detec-
tion algorithm for industrial implementation. 

It is worth mentioning that the utility-scale BESS has a different 
working cycle from the EV. Despite there are many EV-related datasets 
available and various forecast approaches tested on them, we cannot 
fully rely on the test results due to the difference in the datasets. We can 
adjust methods used for EV datasets data preprocessing to increase the 
forecast accuracy with the regard to the differences between datasets. 

BMS is used to manage the BESS taking into account battery pa-
rameters e.g. SOC. Based on the measurements, the battery can achieve 
better performance, slow down degradation, and provide a safe opera-
tion. Sensing units are placed in battery cells to control voltage, current, 
and temperature. In this work, we assume that the sensing units in 
batteries are protected and, therefore, the possibility of FDIA is elimi-
nated. To prevent the attack against battery SOC, the forecasting 
methods can be applied. 

The state-of-the-art FDIA against the electric grid detection method 
is based on comparing the SE forecast with the sensing data. If the dif-
ference between the estimation and measurements that is called residual 
exceeds the given threshold, the FDIA is considered to be detected. BDD 
is based on the residual method. It applies the weighted least square 
criterion (WLS) for FDIA detection [61]. The drawback of this method is 
that with some limited amount of hacked sensors the FDIA can stay 
undetected. To ensure that the detection of FDIA is possible, physical 
protection of sensors is used [32]. 

The measurement forecast is necessary for residual-based method 
implementation. Therefore, we overview the methods to forecast SE in 
Section V. The ML and artificial intelligence (AI) methods are suggested 
to use for battery SE forecast since they have a high potential for forecast 
implementation due to their robustness and accuracy. 

Data preprocessing algorithm has to be improved to meet the needs 
of data-driven approaches due to high requirements to initial data. 
Model adjustment (e.g. adjusting hyperparameters, activation function), 
and work under uncertainties (e.g. battery degradation) further com-
plicates the issue of the attack detection and requests further 
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exploration. 
Since the performance of the ML and AI-based approach is critical for 

system safety, it is vital for the detection algorithm to be understandable 
[63]. The transparency of the AI algorithms is not only critical for 
evaluating the method performance but also useful for cyberattacks 
studying by engineers [64]. Despite the articles mentioned above did not 
take into account the transparency of the decision making process as a 
criterion for performance evaluation, there are studies related to 
improving discussed methods transparency. The problem of trans-
parency of cyberattack detection mechanism is studied by various re-
searchers in different domains [64], e.g. EV [63]. The main aim of 
explainable AI (XIA) is to detect the main features based on which the 
decision is made. These features’ relevance for the output forming can 
be evaluated using domain knowledge so that the XIA algorithm’s per-
formance is evaluated. There are multiple libraries (e.g. Lime, What-if 
Tool, etc.) that are used to visualize the importance of each feature for 
the output. However, most of these libraries are applicable in case of test 
or image processing, while it is more challenging to visualize this pro-
cess for time series processing [65]. One of the proposed solutions is 
hybrid oracle-explainer intrusion detection system that visualized the AI 
decision-making process [64]. 

4.2. System commands attack detection 

Due to the constant data exchange between the BESS and the electric 
grid, possible cyberattacks against the smart grid might influence the 
integrity of commands that the BESS receives. In this paper, we define a 
novel type of attack on the BESS data integrity employing FDIA against 
the grid. The detection of the system cyberattack from the BESS view-
point is a challenging problem that does not have an accepted solution 
yet. 

The BESS is managed with the regard to the needs and requirements 
of the system it is connected to. Therefore, there is a possibility of a 
cyberattack on the integrity and confidentiality of control commands as 
well as the combination of those since the data stolen during the 
confidentiality attack might be applied to create an undetectable 
integrity attack. There is no widely accepted solution regarding control 
commands FDIA detection in the BESS domain. In the section, we 
overview potential solutions for this attack detection. 

Distributed methods were introduced in the smart grid domain in 
order to carry out the cyberattack detection in decentralized systems. 
Guan and Ge in [66] introduced a distributed cyberattack detection 
method for wireless sensor networks applying design desired resilient 
attack detection estimators. The primary idea of the method is to form a 
residual signal and to determine a residual evaluation function that is 
compared to the predefined threshold. Distributed FDIA detection is 
split into multiple groups that are statistical-based, data time-stamps 
based, and estimation residuals based [49]. A decentralized consensus 

strategy is the type of statistical-based one. It includes a distributed 
average consensus algorithm and distributed receding-horizon control 
[67]. The residual-based methods are based on state-of-the-art FDIA 
detection on SE [68]. It includes juxtaposing the sensing and forecasted 
data [32], the difference should not exceed a given threshold. A reliable 
forecast is needed for the residual-based approach application. 

Local measurements are necessary to improve the quality of the SE 
forecast to take into account the type of service. Mashlakov et al. [69] 
propose SOC forecasting algorithm for the BESS that works for fre-
quency control. The algorithm is tested on different datasets to study the 
features of frequency control and the system’s dynamics. In [14], the 
forecast of SOC is carried out utilizing the frequency measurements to 
manage the BESS. 

In addition, ML and AI-based FDIA methods are applied to detect 
cyberattacks locally. Deep learning is widely implemented in FDIA 
detection, e.g. feed forward deep neural network (NN), convolutional 
NN, deep NN, recurrent NN, deep belief network, restricted Boltzmann 
machine, deep auto-encoder, deep migration learning, self-taught 
learning, and replicator NN [70]. The paper analyzed the results of 
the listed above methods application with the system features as an 
input and the data about the reliability of measurement as an output. 
The case studies described in the paper showed that deep learning de-
tects cyberattacks with the sufficient accuracy above 98%. Based on the 
literature review, the authors prove that deep learning is a robust and 
efficient tool for cyberattack detection. In [71], the application of deep 
learning for IoT local attack detection is overviewed. It was defined that 
deep learning algorithm shows higher accuracy than ordinary machine 
learning approaches and raises the accuracy up to 99%. The training set 
for the deep learning algorithm can be obtained through simulations 
[72] or from the existing databases [62]. 

The clustering approach is unsupervised algorithm widely used for 
typical load profiles [73,74] might be adapted for system commands 
forecast that does not require labelled data. In [74], probabilistic neural 
networks (PNNs) are applied to cluster consumers based on their load 
profile to form a typical load profile. The number of clusters is estimated 
by the “knee” criterion. This criterion is described in [74], and the 
optimal number of clusters is such a number for which the value of 
objective function representing cluster validity measure reaches its’ 
knee. 

5. Mitigation methods of BESS cyberattacks 

Once the attack is detected, its influence on BESS operation has to be 
mitigated. In this step, we are aware that some system data are not 
reliable; however, we are not able to obtain the accurate measurements. 
An undetected FDIA might result into jeopardizing historical data 
applied for the training purposes and corrupting the forecast. For that 
reason, we generate pseudo-measurements to feel the gap generated by a 

Fig. 4. The methods for the BESS cyberattacks detection.  
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cyberattack. With no regard to the type of an attack, there is a cyber 
insurance option in which the responsibility on the system integrity 
protection and mitigation of the possible negative impact is given to the 
third party [75]. In this section, two major mitigation methods that are 
pseudo-measurements generation [73] and SE forecast are considered. 
The methods are summarized in Fig. 5. 

5.1. Pseudo-measurements generation 

In order to mitigate the negative influence of cyberattacks on the 
BESS, pseudo-measurements are generated to fill the gaps caused by 
unreliable data. Active and reactive energy consumption pseudo- 
measurements generation is a widespread task. Consumption can be 
potentially forecasted through nonlinear functions of measurements 
available at the main substations. Nevertheless, this approach is not 
widely implemented due to its low scalability. Thus, researchers apply 
data-driven approaches to tackle this problem. In [76] the artificial 
neural network (ANN) is applied for direct current SE. The input is real 
power flow, while the output is a forecast. The training set contains an 
annual offline system SE with various profiles. One of the spread ap-
proaches is forecasting the consumption by clustering typical load pro-
files using labeled data [73,74]. In [74], the authors use PNNs to form a 
typical load profile by clustering consumers into groups based on their 
behavior, where an input data is labeled using domain knowledge. The 
number of clusters can vary. It is chosen depending on the “knee” cri-
terion. In [74], the frequency-based clustering is applied to forecast the 
behavior of consumers that are not equipped with smart meters based on 
those that are equipped. In [77] parallel distributed processing networks 
(PDP) are implemented to forecast loads. The method was proved to 
resist the errors in sensing data and the temporary failure of the 
communication system [78]. 

The above-mentioned methods can be potentially adapted for the 
generation of the pseudo measurements for battery SE FDIA. Summa-
rizing the state-of-the-art, we derive that the forecast methods form the 
core of pseudo-measurements generation. In the following section, we 
provide a detailed review of the existing methods for battery SE 
prediction. 

5.2. Battery SE forecast 

5.2.1. Model-based methods for battery SE 
Battery SE parameters such as SOC cannot be measured directly. 

They are estimated from current, voltage, and temperature measure-
ments of the battery. Despite coulomb counting and equivalent circuit 
model (ECM) being the state-of-the-art approaches for SOC forecast, 
these methods have significant drawbacks. The data related to the initial 
cell state is required for coulomb counting. The inaccuracy in the initial 

data caused by model and sensor errors results in further mistakes in the 
forecast. ECM does not take into account the physicochemical processes 
that appear in the battery cell. Besides, comprehensive empirical 
parameterization is required. 

Kalman filter (KF) was initially used for experimental data process-
ing. Plett adapted KF for Li-ion cells modeling [12]. In addition, he 
suggested combining the extended Kalman filter (EKF) with the dynamic 
cell model to dynamically estimate SOC. The typical estimation error is 
within a few percent. Despite the complexity of the method imple-
mentation compared to coulomb counting, it diminishes the accumu-
lative error comparing with the state-of-the-art battery test equipment 
(an Aerovironment ABC-150). EKF provides an accurate forecast for the 
short tests of several hours. The ambient temperature below 0C in-
creases the forecast error of EKF [12]. 

5.2.2. Data-driven methods for battery SE 
The robustness of data-driven forecast algorithms and their ability to 

detect implicit correlations between parameters attracted researchers’ 
attention. These algorithms were suggested for the implementation of 
the SOC forecast in the EV domain and can be potentially exploited for 
other BESS applications [7,9]. 

Data-driven algorithms for SOC estimation can be divided into 
multiple groups [62]. There are multiple classifiers applied for SOC 
forecast in the literature. One of the most commonly implemented is 
ANN: feed-forward neural network (NN), recurrent NN for sequential 
data processing [31], deep NN (e.g. deep belief NN) [16]; fuzzy logic, 
and the combination of ANN and fuzzy logic that is adaptive neuro-fuzzy 
inference system. Support vector machine (SVM), Gaussian process 
regression, random forest as well as hybrid algorithms are implemented. 
ANN is the most widely mentioned approach. We highlight that in the 
literature the high emphasis is put on the application of feed-forward 
NNs that are the simplest type of ANN. 

The results of ANN implementation for SOC forecasts are widely 
presented in the literature. Despite the conclusion regarding the most 
suitable approach for the SOC forecast cannot be derived based on the 
literature review since the methods were tested on different datasets, we 
distinguish that normally the maximum SOC error is between 2 and 8 %. 
The minimum-maximum SOC error was obtained using the RF but this 
does not imply that this method is normally more accurate than com-
petitors. It is vital to highlight that in most cases the forecast was carried 
out for the implementation in EVs, while in this work we are focused on 
the utility-scale BESS implementation [62]. Consequently, an additional 
numerical evaluation is required to choose the most suitable method for 
SOC forecast of utility-scale BESS. 

There can be a combination of reasons for the anomaly, such as the 
difference between batteries’ features due to lot-to-lot variation together 
with the cyberattack that may increase the complexity of forecast to 

Fig. 5. The methods for the BESS cyberattacks mitigation.  
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detect the attack. The SOH influences the SOC forecast that adds addi-
tional complexity to the problem. It is critical to detect not only short- 
term anomalies utilizing battery operation forecast but also long term 
anomalies such as anomalous degradation [79] since some cyberattacks 
are designed to damage the BESS in the long run. 

6. Conclusions 

BESS is becoming an important part of power systems, and cyber 
security of BESS has to be provided in both design and operation stages. 
In addition, cyberattacks on electric grids that can influence the work of 
the BESS have to be considered. We reviewed recent work in the field 
and concluded that blockchain and physical protection methods are the 
main approaches proposed to diminish the possibility of cyberattacks in 
the design stage. Regarding the operation stage, various FDIAs detection 
and mitigation methods are proposed in the literature, and a compre-
hensive review of related papers was presented in this paper. We 
concluded that the application of data-driven algorithms including AI 
has a high potential in the domain of sensor measurement forecast and 
has been widely discussed in the recent literature. Likewise, these ap-
proaches are adapted to forecast battery SE such as SOC and SOH. In the 
future work, the reviewed methods are to be compared on the same 
dataset of a utility-scale BESS. 

We also conclude that with no regard for the implementation, data 
preprocessing is necessary to form a reliable training set for ML algo-
rithms. The integrity of training data is specifically important for 
ensuring the forecast accuracy. Thus, the algorithms for FDIA detection 
should be applied to the training dataset as well. According to the recent 
literature, we concluded that the clustering method for FDIA detection, 
residual-based method combined with the ML-based forecast, and 
distributed FDIA detection methods can be adapted for this purpose. 
According to the analyzed literature, the share of ML-based algorithms 
for BESS cyber defense is expected to enlarge. An additional research is 
required to define a more comprehensive cyber defense algorithm to 
ensure the reliable utilization of BESS along with the approaches that 
would be the most suitable for the applications in BESS cybersecurity. 
Nevertheless, based on the current literature review, it is suggested to 
apply clustering for the cyberattack detection since it might be able to 
identify the unknown attack along with deep learning utilized as a 
forecast tool to apply residual-based cyberattack detection mechanism. 
Due to cyber security domain being a safety-critical application, it is 
vital for the cyber defense algorithm to have a transparent decision- 
making process. The paper reviewed existing methods for improving 
AI transparency and detects the lack of the research related to the al-
gorithm transparency connected to the particular method. This is 
another concern that is to be addressed in the future research to provide 
a list of tools for cyber defense strategy development. 

It is worth mentioning that the majority of state-of-the-art papers in 
the field of BESS cybersecurity are focused on the cyberattacks on BMS 
communication channels or EV domain, and there is a lack of compre-
hensive research focusing on the unreliable command that can be sent 
from the SO or third parties to the BESS. Therefore, current solutions are 
not sufficient to ensure the cyber-secure operation of BESS in renewable 
energy systems. 
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