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A B S T R A C T

This paper presents a validation of atmospheric reanalysis data sets for simulating onshore wind generation
time series for large-scale energy system studies. The three reanalyses are the ERA5, the New European Wind
Atlas (NEWA) and DTU’s previous generation European-level atmospheric reanalysis (EIWR). An optional
scaling is applied to match the microscale mean wind speeds reported in the Global Wind Atlas version
2 (GWA2). This mean wind speed scaling is used to account for the effects of terrain on the wind speed
distributions. The European wind power fleet for 2015–2018 is simulated, with commissioning of new wind
power plants (WPPs) considered for each year. A generic wake model is implemented to include wake losses
that are layout agnostic; the wake model captures the expected wake losses as function of wind speed given
the technical characteristics of the WPP. We validate both point measurement wind speeds and generation
time-series aggregated at the country-level. Wind measurements from 32 tall meteorological masts are used
to validate the wind speed, while power production for four years from twelve European countries is used to
validate the simulated country-level power production. Various metrics are used to rank the models according
to the variables of interest: descriptive statistics, distributions, daily patterns, auto-correlation and spatial-
correlation. We find that NEWA outperforms ERA5 and EIWR for the simulated wind speed, but, as expected,
no model is able to fully describe the auto-correlation function of the wind speed at a single point. The
mean wind speed scaling is found to be necessary to match the distribution of generation on country-level,
with NEWA-GWA2 and ERA5-GWA2 showing highest accuracy and precision for simulating large-scale wind
generation time-series.
1. Introduction

The generation of electricity from renewable sources is a key com-
ponent of the climate change mitigation plans worldwide. For the first
time in 2019, the renewable power generation grew faster than the
electricity demand [1]. But, the global share of renewable electricity
generation would need to increase to 28% by 2030 and 66% by 2050,
to keep the mean global temperature rise below 2 ◦C by the end of the
century [1]. In the European Union the share of renewable energies
reached 32% of electricity generation and a 18% of the total energy
consumption in 2018 [2], these shares are planned to grow to 50% of
the electricity and 32.5% of the total energy by 2030 [2].

Accurate simulation of wind energy generation time series are
needed in energy system design studies, such as the sector coupling
and transmission reinforcement designs in Europe [3] and in the North
Sea [4], as variability in wind power generation impacts electricity
prices, and correlations in generations between countries can impact

∗ Corresponding author.
E-mail address: jumu@dtu.dk (J.P. Murcia).

optimal transmission expansion. Long time series (tens of years) are
needed for system adequacy analyses [5]. Modeling temporal depen-
dencies in wind generation is important, e.g., when analyzing the
behavior of wind generation ramps in power system integration stud-
ies [6]. Regional aggregated wind generation time series can be ob-
tained using a reanalysis data set in two approaches: (1) a bottom-
up modeling of the details of each plant [7], i.e. installed capacity,
location, wind turbine type, hub height, rotor diameter, etc. (2) a
top-down approach that relies on historical generation observations
and calibration of transfer functions to be applied to future scenar-
ios [8]. Furthermore bias correction of either the wind speeds or wind
generation is usually needed and can be done without the use of
measurements, e.x. using the global wind atlas to correct mean wind
speeds [7] or based on calibration of wind speed correction to match
generation observations [9].
306-2619/© 2021 The Authors. Published by Elsevier Ltd. This is an open access ar
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Nomenclature

𝑢 Wind speed time-series at a location
𝐼 Turbulence intensity
𝑃 Country-level standardized wind genera-

tion time-series
𝑃WT Turbine rated power
𝑁WT Number of turbines in a plant
𝐷WT Rotor diameter
𝐴WPP Land-use area of the plant
𝑦 Variable holder for nomenclature, can be 𝑢

or 𝑃
𝑥 Variable holder for nomenclature, can be

either location for 𝑢, or country for 𝑃
𝑡 Time
𝛥𝑦 One hour ramps time-series for 𝑦: 𝛥𝑦 = 𝑦(𝑡+

1) − 𝑦(𝑡)
𝑦 Long-term mean of 𝑦, averaged over time

for the full period available
𝑦𝑀𝐷 Mean of 𝑦 at each month and each hour of

the day
𝑒 All errors are computed between a model

and observations
𝑒𝑦 Error in long-term mean 𝑦
𝑒𝑦𝑀𝐷 Error in normalized monthly-hourly mean

𝑦
𝑒𝐹 𝑦 Area between the model and observed

empirical cumulative density functions
MAE𝑦 Mean absolute error
RMSE𝑦 Squared root of the mean squared error
𝑟𝑦 Sample (or prediction) correlation coeffi-

cient
𝜌(𝑦1, 𝑦2) Correlation coefficient (Pearson’s) between

two time series
𝑒𝑦1 Error in 1h lag auto-correlation in 𝑦
𝑒𝑦𝑁𝑡

Mean error in the 𝑁𝑡 hours lag auto-
correlations in 𝑦

𝑒𝑋𝑦
Mean error in the spatial-correlation of
𝑦, i.e. correlation between time-series at
different locations

𝑒𝑋𝛥𝑦
Mean error in the spatial-correlation of
the one hour ramps of 𝑦, i.e. correla-
tion between ramp time-series at different
locations

WT Wind turbine
WPP Wind power plant

Validation of mean wind speed or predictions of annual energy
roduction for synthetic wind turbines was carried out in several stud-
es [10]. For energy system modeling, predicting the correct mean wind
peed or annual energy production is not enough, as it requires the
imulation of time series with the right distribution (probability den-
ity function, PDF), auto-correlation and spatial-correlation among the
ifferent locations. Individual reanalysis data sets have been validated
efore for MERRA and MERRA-2 [9], for MERRA with micro-scale
ind speed scaling from the Global Wind Atlas (GWA) [11], for ERA-

nterim with WRF dynamic scaling and GWA micro-scale wind speed
caling [7]. The ERA5 reanalysis was shown to give more accurate wind
eneration predictions in comparison to MERRA-2 [12]. Recently, a
alidation study of multiple weather data sets in France was published
y [13] and it concluded that (1) high resolution regional reanalysis
2

(COSMO-REA2) or high resolution weather models (AROME) tend to
have lower prediction errors, (2) ERA5 is very skilled in prediction
of regional wind generation despite its lower resolution and biases in
mean wind speed predictions in mountainous locations, and (3) NEWA
and MERRA-2 show problems with the diurnal cycle that translates into
larger biases in mean wind speed. New generation regional reanalyses
such as COSMO-REA2 have been shown to better correlate to both wind
speed measurements [14] and wind generation in France [13] and in
Switzerland [15]

The purpose of this paper is to assess the accuracy of several
reanalysis data sets for wind generation simulations in large scale
scenarios. Two validations data sets are presented in this paper: (1)
several years of measurements from 32 met masts and (2) reported
country-level wind energy generation for four years. Validation metrics
are defined for several variables of interest, and the models are ranked
according to each metric. Validation metrics are defined in terms
of prediction errors of descriptive statistics, mean daily cycle, auto-
correlation, spatial-correlation, and the cumulative density function
distance.

The hypothesis of this study is that it is possible to accurately
simulate the large-scale regional wind energy generation using the
global reanalysis ERA5 corrected with microscale wind speed effects
with the same accuracy as with time series from detailed mesoscale
reanalysis simulations. Mesoscale models are expected to show higher
accuracy for modeling individual sites.

This paper presents a new optic of the validation of reanalysis data
focused on the specific need of large-scale wind generation simula-
tions, and compares multiple weather data sets including microscale
downscaling in European level. Compared to previous works where
bias correction of wind speeds was done based on measured generation
data per country [9] or as a global wind speed correction factor to
better match capacity factors [12], in this paper downscaling is based
on microscale wind speed data (Global Wind Atlas, GWA). Measured
power generation is not used as part of the model calibration, which
allows model validation in the power generation domain to be fully
independent of the measured generation data. A more detailed wake
loss model differentiates this study from [11]. When microscale effects
and wake losses are considered, the resulting power generation times
series show strong agreement with measured data, which indicates that
measured generation data is not required in the model calibration;
and in general shows improved modeling results than applying wind
speed corrections such as [16]. Compared to [10], this paper adds the
comparison of spatio-temporal dependencies in wind time series.

Section 2 describes the reanalysis data sets and the measurements
evaluated in this paper. Sections 3 and 4 presents the modeling methods
and the validation metrics. Section 5 presents the results for the two
validation cases. Sections 6 and 7 discuss and conclude the paper.

2. Data

2.1. Reanalysis data sets

Data from three atmospheric reanalysis are compared: ERA5 [17],
DTU’s previous generation European level weather reanalysis simula-
tion performed using the Weather Research and Forecasting (WRF)
model [18] and the New European Wind Atlas (NEWA) [19]. Addition-
ally, a mean wind speed scaling is applied to each reanalysis data set
to match the mean wind speed reported by the Global Wind Atlas v2
(GWA2) micro-scale resource assessment, see Section 3.2 for details on
this scaling. Resolutions and periods of availability for each data set are
presented in Table 1.
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Fig. 1. Locations of the wind speed measurements.
able 1
escription of the reanalysis data sets. ∗Wind speed were interpolated from the model

evels to model height above ground level.
ERA5 NEWA EIWR GWA2

Institution ECMWF DTU DTU DTU
References [17] [10] [18,20] [7]
Model IFS Cy41r2 WRF WRF WAsP
Boundary conditions – ERA5 ERA-Interim –
Spatial coverage Global Europe Europe Global
Horizontal grid spacing 0.25◦ ≈ 30 km 3 km 3 km 250 m
Vertical levels [10 25 50 75 [50 100 [50 80 100 [50

100 150 200 250]∗ 150 200] 120 150] 100]
Time coverage 1979–2018 2006–2018 1982–2018 –
Time resolution 1 h 30 min 1 h –

2.2. Wind speed measurements

Data from 32 sites were collected from different sources and pro-
cessed, see Table B.9. Time series of wind speed measured at the level
closest to 100 m height, originally at 10 min averaged resolution, were
aggregated to hourly resolution. Gaps are identified and discarded from
the models in the validations. All data sets were subjected to an adapted
version of the quality control routine described in [21] and a rough
attempt was made to minimize the effect of flow distortion caused by
the mast on the wind speed measurements. The observations cover
different time periods from 1996 to 2019 with at least one full year,
see Table B.9. The locations of the masts are shown in Fig. 1.

2.3. European wind energy fleet

We use the database of wind plant installations in Europe from [22].
This database includes locations, hub height, installed capacity, com-
missioning year and turbine type among other parameters for each
wind power plant in Europe. Additionally, the database includes the
power curves for most turbine manufacturers and turbine models. In-
dividual installation scenarios are run for each production year within
[2015–2018], the plants expected to be operating are selected accord-
ingly to the commissioning year, and an assumed plant lifetime of
25 years. Plants within 2 km of each other are merged into a single
plant to consider the plant-to-plant wake losses. As the WPP data set
sometimes reports even single turbines as plants, this merging gives
a more unified specification of WPP sizes across Europe. Plant-to-
plant wakes are in particular important for countries in Central and
Western Europe where plants (and individual turbines) are sited in
close proximity to each other. In this study three different wind turbine
spacings were used: 6 rotor diameters for the Nordic countries, 3 rotor
diameters for Germany and France, and 10 rotor diameters for South
European countries. The difference in WT spacing follows the trends on
installation density in Germany presented in [23]. An overview of the
country level aggregated WPP characteristics is given in Table 2 (see
3

Fig. 2).
Fig. 2. Location of wind power plants operating in 2018.

2.4. Country-level wind generation measurements

Hourly resolution onshore wind generation data from the ENTSO-
E Transparency platform are obtained from [24]. Hourly installed
capacity data from [24] for Germany, Denmark and Sweden is used
for calculating standardized generation time series for these countries.
For the other countries, annual installed onshore wind capacity data
from [25] is used with linear interpolation of the annual values to
estimate the standardized generation.

A comparison of annual capacity factors from several sources is
presented in Table 3. IRENA is calculated using both annual onshore
wind generation and installed capacity from [25]. ENTSO-E considers
generation from [24] and onshore wind installed capacity directly
from [26]. Mean of start-of-year and end-of-year installed capacity is
used to approximate the annual installed capacity.

Curtailment is also presented in Table 3 for Germany and Ireland,
where data is available from [27] and [28], respectively. For Germany,
curtailment shares are available for 2015 and 2016; 2017 and 2018 cur-
tailment are modeled by taking mean of the 2015 and 2016 values. On
average for the period 2015–2018, curtailment share of 4.8% is found
for Germany, and 4.2% for Ireland. As curtailment data is available only
on annual level, it is not applied on the hourly time series, however,
it is reported in this article to show the challenges of finding accurate
measured data to validate the large-scale simulations.

The resulting capacity factors in Table 3 show that for some coun-
tries, e.g., Austria, Denmark and Italy, the sources give approximately
the same capacity factors. However, significant differences can be seen
in e.g. Ireland and France. For Germany, standardized generation time
series used in this article show much higher capacity factor than the

other two sources.
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Table 2
Fleet aggregated statistics for wind energy installations for 2018. Weighted average parameters are given with respect to the installed capacity of each plant (wm).

Country Installed
capacity
[MW]

WPP number WT rated
power [MW]

WT diameter
(D) [m]

Hub height
[m]

WT number WPP land-use
area [km2]

WT power
density
[W m2]

Efficiency WT spacing
[D]

(wm) (wm) (wm) (wm) (wm) (wm) (wm) (wm)

Austria 2726 117 2.4 89 112 25 1.88 390 0.95 6
Denmark 3449 788 1.7 71 66 7 0.41 390 0.95 6
Finland 1624 88 3.2 119 129 14 1.80 290 0.95 6
France 13008 854 2.2 88 85 11 0.19 370 0.95 3
Germany 52930 3646 2.0 83 102 19 0.28 380 0.95 3
Ireland 3143 139 2.0 78 73 27 1.50 410 0.95 6
Italy 10007 364 1.6 75 71 33 4.26 360 0.95 10
Norway 1116 21 2.6 93 84 35 2.85 390 0.95 6
Poland 4732 193 2.2 92 97 22 1.70 330 0.95 6
Portugal 5279 186 2.1 81 78 33 5.69 410 0.95 10
Spain 20732 573 1.5 72 68 57 7.55 360 0.95 10
Sweden 4660 507 2.2 92 96 18 1.70 330 0.95 6
t
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Table 3
Measured capacity factors (mean of 2015–2018) as reported from different sources and
from the measured time series used in this paper. Expected capacity factor without
curtailment in brackets.

Country IRENA ENTSO-E 𝑃

Austria 0.24 0.25 0.25
Denmark 0.26 0.26 0.26
Finland 0.31 0.29 0.28
France 0.23 0.20 0.21
Germany 0.20 (0.21) 0.19 (0.20) 0.25 (0.27)
Ireland 0.29 (0.30) 0.38 (0.40) 0.29 (0.30)
Italy 0.21 0.22 0.21
Norway 0.32 0.30 0.30
Poland 0.28 0.25 0.26
Portugal 0.28 0.28 0.27
Spain 0.25 0.24 0.24
Sweden 0.30 0.33 0.32

3. Methods

The overall simulation model chain is depicted in Fig. 3.

3.1. Wind speed interpolation

Cubic-spline interpolation is used for horizontal interpolation of
wind speeds. Power law interpolation between the two closest heights
available in the reanalysis is used for vertical wind speed interpolation.
This approach is equivalent to a piece-wise linear interpolation in log–
log scale. Note that the wind speeds are interpolated for every time
step, without applying any smoothing or filter.

3.2. Mean wind speed scaling

The long-term mean wind speed maps are pre-computed for every
reanalysis data set at the available heights. The mean wind speed from
GWA2 is averaged over the land-use area of the plant in order to have a
representative wind speed for the full plant and the value at the center
point of the plant. The scaling factor is computed between the long-
term mean wind speed from the reanalysis and the mean wind speed
from the GWA2. Both mean wind speeds are interpolated using the
methodology described in 3.1. This methodology was used in several
studies such as [7,11,29]. Fig. 4 depicts the scaling factors at the WPP
installation locations in 2018.

3.3. Wake modeling

The layout information is not available for any of the plants in
this study, therefore a generic wake model was developed to capture
the wake losses as a function of the wind speed (𝑢), mean turbulence

𝐼), turbine rated power (𝑃 ), number of turbines
4

intensity at the site ( WT
(𝑁WT), rotor diameter (𝐷WT) and area of the plant (𝐴WPP). The long-
term mean turbulence intensity over Europe is estimated using NEWA’s
turbulent kinetic energy.

𝐖̃𝐋 ≈ 𝐖𝐋(𝑢, 𝐼, 𝑃WT, 𝑁WT, 𝐷WT, 𝐴WPP) (1)

A database of 1000 statistically representative WPP is generated
o cover the variation observed in the European installed fleet of the

PP parameters (𝐼, 𝑃WT, 𝑁WT, 𝐷WT, 𝐴WPP). For each WPP, 10 different
ayouts are obtained using a space filling algorithm that maximizes
he turbine spacing within the plant area. Wake losses as a function
f wind speed are then computed for the 10 layouts at various wind
irections using the Bastankhah Gaussian wake model [30] available
n pywake [31]. This wake model consists of a Gaussian wind speed
eficit, with linear wake expansion and a squared-sum wake superpo-
ition. To generalize the wind direction and layout dependencies in the
ake losses, an average wake loss over the layouts and wind directions

s used producing a database of wind speed dependent wake loss factors
or each of the generic WPPs.

Using the database of wake loss factors and the generic WPP char-
cteristics (𝐼, 𝑃WT, 𝑁WT, 𝐷WT, 𝐴WPP), an artificial neural network (ANN)
ith 7 hidden layers is trained. The performance of the resulting ANN

s then validated on wake loss factors computed for actual WPPs in
urope. Details of the ANN architecture selection along with the results
f the validation can be found in [32].

.4. Wind generation and aggregation

WPP wind generation is obtained by interpolating the wake affected
ind plant power curve at the wind speed for every time step. Note that

he WPP database used in this article [22], includes a database of power
urves of the turbines installed in Europe. A WPP efficiency of 0.95 is
ssumed for all plants, which includes 0.97 for availability and 0.98 of
lectrical and additional losses, as reported in [33]. Finally, the indi-
idual WPP generation time-series are aggregated into a country-level
tandardized generation time-series.

. Validation metrics

Traditional validation metrics are used for comparing the observed
subscript 𝑂) and modeled (subscript 𝑀) time series such as: (1) bias
r error of the mean (𝑒𝑦 = 𝑦𝑀 − 𝑦𝑂), (2) mean absolute error, MAE,

(3) square root of the mean squared error, RMSE, and (4) sample
or prediction correlation coefficient 𝑟𝑦 = 𝜌(𝑦𝑀 , 𝑦𝑂). Here, and in the
following error metric definitions, 𝑦 represents either the wind speed

at a location (𝑢) or the standardized wind generation of a country (𝑃 ).
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Fig. 3. Simulation model chain. Mean wind speed scaling is omitted for some models.
Fig. 4. Ratio between the mean wind speeds at the locations of the 2018 WPP installations: (top) 𝑢GWA2∕𝑢ERA5 (bottom) 𝑢GWA2∕𝑢NEWA.
4.1. New error metrics

This article introduces several new error metrics for wind speed
or country-level wind generation time-series validation. The first error
metric diagnoses diurnal cycle errors and is the error in the normalized
5

mean wind speed at each hour on each month (𝑢𝑀𝐷) over the mean
wind speed, or the equivalent for standardized generation (𝑃𝑀𝐷):

𝑒𝑦𝑀𝐷 =
(

𝑦𝑀𝐷
)

−
(

𝑦𝑀𝐷
)

(2)

𝑦 𝑀 𝑦 𝑂
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Table 4
Wind speed distribution error metric statistics across all sites. Bold text indicates the best performing model per metric.
Model 𝑒𝑢 MAE𝑢 RMSE𝑢 𝑟𝑢 𝑒𝑢𝑀𝐷

× 103 𝑒𝐹𝑢

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

ERA5 −0.06 0.87 1.34 0.38 1.73 0.42 0.92 0.03 1.35 4.71 0.68 0.60
EIWR 0.30 0.73 1.94 0.26 2.55 0.30 0.80 0.04 0.40 3.13 0.61 0.56
NEWA 0.14 0.69 1.68 0.26 2.22 0.29 0.85 0.04 1.01 5.89 0.52 0.54
ERA5_GWA2 −0.36 0.56 1.25 0.19 1.63 0.22 0.92 0.03 1.35 4.71 0.60 0.37
EIWR_GWA2 −0.37 0.57 1.86 0.24 2.44 0.31 0.80 0.04 0.40 3.13 0.65 0.35
NEWA_GWA2 −0.35 0.56 1.63 0.18 2.16 0.23 0.85 0.04 1.01 5.89 0.61 0.36
The second metric quantifies the difference between the modeled
nd measured distributions of wind speed or wind generation. It con-
ists in computing the area between the cumulative density functions
𝐹 (𝑥)), note that this error metric is only positive and will take the
alue of the error of the mean if there is a bias in two equally
istributed time series, for more information refer to [19]:

𝑒𝐹 𝑦 = ∫

∞

0
|𝐹 (𝑦𝑀 ) − 𝐹 (𝑦𝑂)| 𝑑𝑦 (3)

Four additional validation metrics are used for comparing the time-
series properties. Two metrics are used to compare the auto-correlation
functions on a given location (𝑥) or of a single country (𝑥): one metric
focuses on the auto-correlation function errors for 1 h lag:

𝑒𝑦1 = 𝜌 ( 𝑦(𝑥, 𝑡), 𝑦(𝑥, 𝑡 + 1) )𝑀 − 𝜌 ( 𝑦(𝑥, 𝑡), 𝑦(𝑥, 𝑡 + 1) )𝑂 (4)

while the other metric computes the mean of the errors in the auto-
correlation function between 1 and 𝑁𝑙 hours lag:

𝑒𝑦𝑁𝑙
= 1

𝑁𝑙

𝑁𝑙
∑

𝑖=1
𝜌 ( 𝑦(𝑡), 𝑦(𝑡 + 𝑖) )𝑀 − 𝜌 ( 𝑦(𝑡), 𝑦(𝑡 + 𝑖) )𝑂 (5)

The last two metrics quantify the errors in the correlations of a
point pair (𝑥𝑖, 𝑥𝑗) (or country pair). The first error metric consists in
computing the mean error in the spatial-correlation:

𝑒𝑋𝑦
= 2

𝑁𝑙(𝑁𝑙 − 1)
∑

𝑖

∑

𝑗<𝑖
𝜌
(

𝑦(𝑥𝑖, 𝑡), 𝑦(𝑥𝑗 , 𝑡)
)

𝑀

− 𝜌
(

𝑦(𝑥𝑖, 𝑡), 𝑦(𝑥𝑗 , 𝑡)
)

𝑂

(6)

while the last error metric computes the error in the correlation of one
hour ramps, 𝛥𝑦(𝑥, 𝑡) = 𝑦(𝑥, 𝑡 + 1) − 𝑦(𝑥, 𝑡) between two points or two
countries:

𝑒𝑋𝛥𝑦
= 2

𝑁𝑙(𝑁𝑙 − 1)
∑

𝑖

∑

𝑗<𝑖
𝜌
(

𝛥𝑦(𝑥𝑖, 𝑡), 𝛥𝑦(𝑥𝑗 , 𝑡)
)

𝑀

− 𝜌
(

𝛥𝑦(𝑥𝑖, 𝑡), 𝛥𝑦(𝑥𝑗 , 𝑡)
)

𝑂 .
(7)

Finally, in order to characterize the spatial-correlation from each
data set a characteristic length (L) is computed by fitting the following
correlation to distance model, see Eq. (8); [34] presents several addi-
tional spatial-correlation models. Here the correlation between either
a pair point wind speeds or 1h wind speed ramps is noted as 𝜌𝑖𝑗 ,
while the distance between the points is 𝑑𝑖𝑗 . The length scale is the
distance in which the correlation takes a value of 1∕𝑒, or using the fitted
coefficients: 𝐿 = 𝛼−1∕𝛽 .

𝜌𝑖𝑗 = exp(−𝛼 𝑑𝛽𝑖𝑗 ) (8)

5. Results

5.1. Wind speed

An example of the simulated wind speed time-series is presented
in Fig. 5. All the simulations capture the larger scale trends in the
wind speed, but fail to capture the specific times in which wind speed
fluctuations occur. This is a well know behavior of such data sets [35].

The overall results of the validation of the wind speed simulations
are presented in Tables 4 and 5, The mean and standard deviation
6

across all sites are also reported for every error metric and model in the
Table 5
Wind speed time-series error metric statistics across all sites. Bold text indicates the
best performing model per metric.

Model 𝑒𝑢1 𝑒𝑢10 𝑒𝑋𝑢
𝑒𝑋𝛥𝑢

Mean Std Mean Std Mean Std Mean Std

ERA5 0.034 0.015 0.053 0.026 0.062 0.050 0.074 0.122
EIWR 0.029 0.014 0.032 0.019 0.038 0.052 0.042 0.074
NEWA 0.018 0.012 0.034 0.018 0.048 0.046 0.010 0.025

tables. Fig. 6 shows the model versus measurements for the relevant
variables used in the definition of error metrics focused on the wind
speed distribution. The bias in the mean wind speed is smaller for ERA5
and NEWA than for the mean wind speed scaled models. However,
the standard deviation of the errors (or the model uncertainty) are
smaller for the GWA-scaled models than for using reanalysis data
sets directly. The wind speed measurement locations cover mostly
offshore and coastal areas; thus, the results can be expected to vary
if more onshore wind speed measurement locations would be added
to the analysis. ERA5 with GWA scaling (ERA5_GWA2) has the best
traditional error metrics over all models, lowest mean MAE, lowest
mean and standard deviation of RMSE, and the highest mean prediction
correlation values with its lowest standard deviation across locations.
NEWA_GWA2 has the lowest standard deviation of MAE across sites,
with a value very close to ERA5_GWA2. EIWR has the lowest mean and
standard deviation of errors in the normalized diurnal cycle, see Fig. 6
center. Nevertheless, all models show the same order of magnitude in
accuracy to predict the normalized diurnal cycle with errors in the
order of 10−3. This means that all models capture reasonably well the
diurnal and seasonal variability over the mean wind speed conditions.
Note that GWA2 scaled models are omitted in the daily cycle figure
as they provide the same normalized diurnal cycles results as the non-
scaled models. NEWA has the lowest mean 𝑒𝐹𝑢 , while EIWR_GWA2 has
its lowest standard deviation across sites; but in general, all models
show similar mean error in wind speed distribution over all the sites,
while the standard deviation over all sites are lower for the models with
mean wind speed scaling. This means that the mean wind speed scaling
does improve the model accuracy to predict the wind speed distribution
at a site.

Auto-correlation error metrics are presented in Table 5 and visu-
alized in Fig. 7 for some example sites and the overall wind speed
auto-correlation model versus measurements (for aligned lags) for all
sites. All models over-predict the auto-correlations, with the models
with lower horizontal resolution having larger errors: ERA5, followed
by EIWR and NEWA. Note that the GWA-scaled models are omitted as
the correlation is the same as the non-scaled version of the model.

The spatial-correlations over distances for all sites are presented in
Fig. 8, as well as the characteristic length of the correlation to distance
model fit. Table 5 presents the mean and standard deviation of the
different error metrics across all sites. All models are able to capture
the spatial-correlation of wind speeds with small over-estimation of cor-
relations of the order of 3%–6%. The characteristic length scale of the
wind speed spatial-correlation for all models tends to be larger than the
one estimated from the measurements, 13% for EIWR, 17% for NEWA
and 21% for ERA5. The spatial-correlation of 1 h ramps of wind speed
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Fig. 5. Example wind speed time series for January 2011 at Østerild in the observations (O) and various reanalyses.
Fig. 6. Model (𝑀) versus measurements (𝑂) scatter plots: (left) mean wind speed, (center) mean wind speed at hour per month normalized by mean wind speed, (right) cumulative
density function of the wind speed at specific values of [1, 2, . . . ,25] [m s−1].
Fig. 7. Model and observations (O) wind speed auto-correlation for two example locations (left and center), and overall model versus measured auto-correlations at the same lags
for all sites.
are better modeled by NEWA, while ERA5 largely over-estimates the
spatial-correlations of 1 h ramps over all distances. The characteristic
length scale of the 1 h ramp wind speed spatial-correlation is largely
overestimated by the models.

5.2. Wind energy generation

An example of the country-level generation time-series is presented
in Fig. 9. All the simulations capture the larger scale trends in the
wind generation, but the GWA-scaled models tend to better follow the
observed production.

Tables 6 and 7 present the overall results of the validation of the
country-level wind generation statistics, while Fig. 10 depicts the model
versus measurements for the relevant variable used in the definition of
the different error metrics. The bias and standard deviation of errors
in the capacity factor (mean standardized power) are smaller for the
GWA-scaled models. Even though the distribution of prediction error
7

for the capacity factors seems widely spread, the bias in CF is within
0.01–0.02. Individual country generation distributions are presented in
the appendix in Fig. A.13. ERA5_GWA2 is consistently the best perform-
ing model in terms of mean and standard deviation across countries
for MAE, RMSE and prediction correlation. Individual country-level
prediction correlations are reported in the appendix in Table A.8.

All models show similar mean errors for predicting the diurnal
cycle of generation in the order of 0.4 × 10−2, while GWA2 scaled
reanalyses have a slightly lower standard deviations of around 0.3 ×
10−2. This indicates that improvements need to be done in the time
dependent wind-to-power transformation to reach the same accuracy
levels seen in the wind speed diurnal cycle. ERA5 shows the largest
deviations over multiple countries which demonstrates the need for
mesoscale/microscale modeling. All the GWA2 scaled models show
lower mean 𝑒𝐹𝑢 error metric and standard deviations compared to using
the reanalysis data directly.

The mean and standard deviation of the different error metrics
across all countries for auto-correlation and spatial-correlation of the
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Fig. 8. (left) Measurement (O) and model wind speed spatial-correlation versus distance. (right) Measurement and model 1 h wind speed ramp spatial-correlation versus distance.
Fig. 9. Example of normalized wind energy generation time series for January 2018 aggregated for all Germany.
Table 6
Normalized wind power distribution error metric statistics across all countries. Bold text indicates the best performing model per metric.
Model 𝑒𝑃 MAE𝑃 RMSE𝑃 𝑟𝑃 𝑒𝑃𝑀𝐷

× 102 𝑒𝐹𝑃

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

ERA5 −0.05 0.07 0.08 0.04 0.10 0.05 0.94 0.04 0.26 0.60 0.07 0.05
EIWR 0.12 0.04 0.14 0.03 0.17 0.04 0.87 0.06 −0.41 0.34 0.12 0.04
NEWA 0.06 0.03 0.08 0.03 0.11 0.03 0.93 0.04 −0.00 0.40 0.06 0.03
ERA5_GWA2 0.02 0.03 0.05 0.02 0.07 0.02 0.96 0.03 0.09 0.35 0.03 0.02
EIWR_GWA2 0.01 0.03 0.07 0.02 0.10 0.03 0.89 0.05 −0.31 0.36 0.03 0.02
NEWA_GWA2 0.02 0.03 0.06 0.02 0.09 0.02 0.93 0.03 0.04 0.39 0.03 0.02
Fig. 10. Model versus measurements: capacity factor or mean standardized power (left), mean standardized power at hour per month normalized by mean standardized power
(center), and cumulative density function of the standardized power at specific values [0, 0.125, . . . ,1] (right).
8



Applied Energy 305 (2022) 117794J.P. Murcia et al.
Fig. 11. Measurement and model wind speed auto-correlation for three individual countries (Denmark, France and Germany, Ireland and Spain), and overall for all sites.
Fig. 12. (left) Measurement (O) and model country-level normalized wind generation spatial-correlation versus distance. (right) Measurement and model country-level normalized
wind generation 1 h ramp spatial-correlation versus distance.
country-level wind generation simulations are presented in Table 7.
There is no clear over-all best performing model in terms of auto- and
cross-correlations. All models have small bias in the auto-correlation
metrics, while the standard deviations tend to decrease for the GWA2
scaled models. All models are able to capture the spatial-correlation
of wind generation (and its 1 h ramps) on the country-level, but
GWA2 scaled models show similar across-site standard deviation of
spatial-correlation errors as their correspondent non-scaled model (see
Fig. 12).

Fig. 11 presents example auto-correlation functions and the over
all model versus measurement auto-correlation plot. NEWA and EIWR
(both models that use WRF) show growing errors with a 24 h period-
icity, which indicates that there is a drifting trend from the boundary
conditions given by the ERA5 or ERA-Interim reanalyses.

6. Discussion

As expected from previous studies [10,13], the errors in the predic-
tion of mean wind speed are unbiased with WRF without microscale
9

downscaling. On the contrary, the microscale mean wind speed scaling
is necessary to decrease the uncertainty in the prediction of mean
wind speed (standard deviation of mean wind speed errors) and to
obtain an unbiased predictions of the country-level capacity factor. The
over-prediction of mean wind speeds by NEWA in northern Europe
is not reported in other studies [10,19]; however, this can be due to
the lack of reliable validation data onshore in Denmark and Germany
(two countries with the largest installed capacities). Nevertheless, other
authors have reported a similar trend of over-prediction of mean wind
speeds in Northern Europe and under-prediction of mean wind speeds
in southern Europe [9,36], see Fig. 4.

The obtained prediction correlation with ERA5_GWA2 is larger
than the ones reported in the literature with the previous generation
reanalyses [11] and similar to the studies that rely on calibrating the
generation distribution using the measurements [9]. For example, the
prediction correlation of ERA5_GWA2 standardized wind generation
(𝑟𝑃 ) for Germany in this study is .984, while it is .981 in [9] or .97-
.985 in [11]; for Spain 𝑟 is .962 in this study while it is .917 in [11];
𝑃
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Table 7
Normalized wind power time-series error metric statistics across all countries. Bold text indicates the best performing model per metric.
Model 𝑒𝑃1

× 100 𝑒𝑃10
× 100 𝑒𝑋𝑃

× 100 𝑒𝑋𝛥𝑃
× 100

Mean Std Mean Std Mean Std Mean Std

ERA5 0.02 0.25 −1.08 2.04 −0.34 3.46 0.77 3.57
EIWR −0.08 0.32 −3.43 3.50 −0.13 3.01 9.35 6.52
NEWA −0.04 0.22 −0.09 2.03 3.18 3.29 7.67 6.92
ERA5_GWA2 0.00 0.31 −0.87 1.96 −0.51 3.13 1.44 4.08
EIWR_GWA2 0.06 0.28 −2.25 3.25 0.70 2.65 6.82 5.22
NEWA_GWA2 −0.00 0.21 0.28 1.97 3.52 3.07 6.97 6.77
for France 𝑟𝑃 it is .983 in this study while it is 0.976-.986 using high
esolution regional reanalyses in [13]. This shows that ERA5 with a
ean wind speed scaling (GWA2) and a simple wake modeling can

chieve similar accuracy levels as those models that rely in the use of
easured generation for calibration or high resolution reanalyses. The
resent bottom-up approach has the advantages of not needing mea-
urements and being applicable for varying future wind installations
ithout modifications, while the top-down approach needs to assume

hat the transfer function calibrated on an specific installation capacity
ill be the same in future fleets. The main disadvantage of the present
pproach is the high requirements on the technical data of the WT and
PP, even more WPP technical information is needed in comparison

o [11] due to the wake modeling. The prediction correlation for
ortugal for ERA5-based models is significantly lower compared to the
ther countries and compared to other models; the reasons for this
hould be investigated in future work.

We chose not to apply a Gaussian filtering of the single turbine
ower curve as done in [9,13] because the inclusion of wake and plant
hutdown modeling are able to capture the distributions of country-
evel power production. Furthermore, we did not apply age dependent
osses as suggested by [37] but instead used a total efficiency of
.95. Age-dependent losses were considered, but applying them did not
rovide additional accuracy, so they were not applied.

This paper might provide an explanation to the results presented
n [13] in terms of NEWA incorrectly simulating the wind speed daily
ycle. NEWA shows a periodic discrepancy in the wind generation
uto-correlation with respect the measurements with a 24 h period.
his indicates that there are problems in the daily cycles in France
nd Germany even though NEWA has no bias and a similar model
ncertainty in predicting the relative daily cycle of wind as the other
ata sets studied, including ERA5.

Larger standard deviation errors in generation diurnal cycle than
ind speed diurnal cycle indicates that future improvements can be
chieved by implementing a more accurate wind-to-power transfor-
ation. Time varying wake losses driven by the stability time series

vailable in the different reanalysis data sets might be the missing
iurnal-seasonal component of the generation.

We demonstrate that it is possible to accurately simulate large-scale
egional wind energy generation using the GWA-scaled ERA5 data set
nd a generic wake model; here accuracy is understood as being able
o simulate the distribution of wind generation and to produce time-
eries that have the right auto-correlations and spatial-correlations.
n the country-level aggregation, the high-frequency variability in the
easurements is smoothed out and thus compares well to ERA5 in

erms of the country-level auto- and spatial-correlation statistics. We
ighlight that ERA5 is available starting from 1950 up to nowadays
ith releases occurring in almost real-time, a significantly larger period

han NEWA/EIWR. This coverage will enable extreme event studies
uch as power fluctuation in storms [6] or modeling of the influence
f wind in power outtakes. Regarding wake modeling the authors plan
o make a new generation generic surrogate model to consider wind
irection as well as stability dependent wake losses as time-series.

There are several limitations with the GWA scaling approach as the
icro-scale resource assessment used. The GWA2 downscaling relies on
10

he linear flow model WAsP, which is known for over-predicting wind
speeds in complex terrain [10]. The approach proposed in this paper
is not sufficient to simulate individual plant wind generation because
the mean wind speed scaling does not take into account the effects of
terrain in the wind direction time-series. Also, detailed wake modeling
will require knowledge of the turbine layout, which is not available,
and time dependent wake losses that are driven by the atmospherically
stability and turbulence time-series.

The temporal properties of the ERA5 time series are significantly
worse than those from NEWA for the prediction of wind speeds at indi-
vidual locations or WPPs. This is a well known problem: the resulting
time-series from WRF or coarser reanalysis data set are too smooth in
comparison to individual point measurements. Stochastic models based
on experimental missing wind speed spectra can be applied to simulate
the missing high frequency component of the wind speed and wind
generation [38–40].

7. Conclusions

Even though there is still room for improvement in terms of res-
olution, the ERA5 reanalysis can successfully be used for simulating
large-scale wind energy production with similar levels of accuracy as
using higher resolution weather mesoscale modeling. However, this is
only true if the mean wind speed bias is corrected based on a high
resolution micro-scale modeling and if wake losses are considered, at
least in an approximated way. The combination of ERA5 and the Global
Wind Atlas (GWA) shows good agreement with measured country-level
generation data. The presented bottom-up approach can achieve similar
levels of prediction-correlation with the measured country-level wind
generation than simulations that rely on a period of measurements for
calibration.

Due to the reduced coverage of the mean wind speed validation lo-
cations, the mean wind speed error distribution presented in this paper
is biased towards offshore sites, therefore it does not represent southern
Europe sites. For the available wind speed validation data, ERA5 shows
the lowest bias in mean wind speed measurements, while GWA scaled
models show the lowest standard deviations for mean wind speeds and
lower area between the observed and modeled wind speed cumulative
density function, 𝑒𝐹𝑢 . All models are able to capture the daily cycles
over the months with similar levels of precision and accuracy. In terms
of auto- and spatial-correlation, the New European Wind Atlas (NEWA)
shows the best fits to measurements but as expected there is missing
high frequency variability in all models.
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Appendix A. Individual country wind generation comparison

Individual country wind generation prediction correlations are pre-
sented for all models in Table A.8, while wind generation distribution
are presented in Figs. A.13 and A.14 for the GWA2 scaled mean wind

speed data sets, and the CF are reported. ERA5_GWA2 shows the best
Fig. A.13. (First part) Distribution of normalized country-level generation for individual countries for GWA2 scaled models and for measurements (MEAS).
able A.8
rediction correlation 𝑟𝑃 of standardized country-level generation for individual countries for all models.

Austria Denmark Finland France Germany Ireland Italy Norway Poland Portugal Spain Sweden

ERA5 0.934 0.970 0.954 0.984 0.984 0.935 0.896 0.920 0.977 0.830 0.926 0.960
EIWR 0.727 0.868 0.874 0.912 0.891 0.942 0.843 0.868 0.882 0.853 0.919 0.919
NEWA 0.826 0.934 0.917 0.945 0.954 0.948 0.912 0.903 0.947 0.937 0.932 0.953
ERA5_GWA2 0.942 0.970 0.956 0.983 0.986 0.968 0.953 0.924 0.978 0.880 0.962 0.970
EIWR_GWA2 0.756 0.882 0.884 0.941 0.927 0.935 0.850 0.870 0.911 0.854 0.911 0.921
NEWA_GWA2 0.831 0.939 0.921 0.949 0.958 0.945 0.913 0.906 0.951 0.937 0.933 0.955
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results for almost all countries except Portugal and France. It can be
observed that the distributions are well captured by all models for
most countries. Specifically, south European countries (Italy, Portugal
and Spain) tend to have larger errors as expected from the complex
terrain of their wind installations, and are better modeled by ERA5-
GWA2. Norway, Sweden and France tend to have larger errors than
other countries, which could be due to less coverage or more errors in
the technical data of installation database [7].
12
Appendix B. Wind speed measurements technical data

The technical data from the wind speed measurements including
the respective heights used, time period, type of location and type of
measurement device are listed in Table B.9. Anonymized stations were
named according to the location: Northern North Sea (NNS), Central
North Sea (CNS), South North Sea (SNS) and Western Baltic Sea (WBS).
Fig. A.14. (continuation) Distribution of normalized country-level generation for individual countries for GWA2 scaled models and for measurements (MEAS).
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Table B.9
Observational data sets. Type: meteorological masts (M), LIDAR (L); location: coastal (C); land (L); offshore (S); forest (F). Data sources:
a[41], b[42], c[43], d[44], e[45], f[21], g[46] and h commercial site. Availability [%] refers to the valid data within time coverage
after the quality control.
Name Height [m] Time coverage Availability [%] Type Location

Boergluma 31.5 2006/06–2019/06 98.0 M C
Cabauwb 140 2001/01–2018/12 99.8 M L
CNS1c 108 2011/06–2012/05 93.6 L S
CNS2c 70 2003/12–2009/12 87.7 M S
CNS3c 102 2011/03–2012/05 71.0 L S
CNS4c 105 2010/06–2011/07 37.8 L S
CNS5c 106 2009/06–2011/08 84.3 L S
DockingShoald 90 2006/06–2013/04 87.5 M C
FINO1e 90.3 2004/01–2018/12 87.8 M S
FINO2e 92.4 2008/03–2017/11 91.1 M S
FINO3e 90.5 2010/01–2018/11 91.1 M S
GwyntYMord 69 2000/09–2011/03 68.3 M S
Hovsorea 100 2004/03–2019/03 97.6 M C
Hyytialaf 67 1996/01–2003/08 91.4 M F
Ijmuideng 115 2012/01–2015/12 94.9 M S
Lillgrunda 65 2009/01–2009/12 99.9 M C
Lindenbergf 98 1999/01–2016/12 99.4 M L
LondonArrayd 82 2004/12–2011/12 70.7 M S
NNS1c 105.5 2010/11–2011/11 88.4 L S
NNS2c 100 2009/09–2011/09 59.6 L S
Oesterilda 106 2015/02–2019/03 97.0 M L
OesterildSa 44 2010/04–2011/09 95.6 M L
Omoea 50.6 2002/08–2005/06 96.7 M C
Puijof 75 2006/01–2015/12 94.4 M L
Risoea 125.2 2012/01–2019/03 99.4 M L
Ryningsnaasa 138 2010/11–2012/02 92.1 M F
SNS1c 116 2005/07–2010/12 83.2 M S
SNS2c 72.5 2006/01–2010/07 98.2 M S
SNS3c 110 2010/02–2011/03 85.9 L S
Soroea 43 2007/01–2011/11 87.6 M F
Tystoftea 39 2000/01–2016/11 88.2 M L
WBS1h 50 2006/06–2009/09 97.7 M C
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[19] Hahmann A, Sīle T, Witha B, Davis N, Dörenkämper M, Ezber Y, García-
Bustamante E, González-Rouco J, Navarro J, Olsen B, Söderberg S. The making
of the New European Wind Atlas – part 1: Model sensitivity. Geosci Model Dev
2020;13(10):5053–78. http://dx.doi.org/10.5194/gmd-13-5053-2020.

[20] Dee DP, Uppala SM, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U,
Balmaseda M, Balsamo G, Bauer dP, et al. The ERA-interim reanalysis: Config-
uration and performance of the data assimilation system. Q J R Meteorol Soc
2011;137(656):553–97. http://dx.doi.org/10.1002/qj.828.

[21] Ramon J, Lledó L, Pérez-Zanon N, Soret A, Doblas-Reyes FJ. The tall tower
dataset: a unique initiative to boost wind energy research. Earth Syst. Sci. Data
2020;(12):429–39. http://dx.doi.org/10.5194/essd-12-429-2020.

[22] The wind power: Onshore wind farm database. 2019, URL https://thewindpower.
net. [Accessed 15 Aug 2019].

[23] Erichsen G, Schülting O, Kather A. Making use of analytical wake models for
large scale power system models by generation of generic efficiency fields.
In: 18th wind integration workshop, October 16-18, 2019, Dublin. 2019, http:
//dx.doi.org/10.15480/882.2449.

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Apr/IRENA_Global_Renewables_Outlook_2020.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Apr/IRENA_Global_Renewables_Outlook_2020.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Apr/IRENA_Global_Renewables_Outlook_2020.pdf
https://www.iea.org/reports/european-union-2020
http://dx.doi.org/10.1016/j.energy.2018.06.222
http://dx.doi.org/10.1016/j.energy.2018.06.222
http://dx.doi.org/10.1016/j.energy.2018.06.222
http://dx.doi.org/10.1016/j.energy.2019.116512
http://dx.doi.org/10.1016/j.energy.2019.116512
http://dx.doi.org/10.1016/j.energy.2019.116512
http://www.diva-portal.org/smash/record.jsf?pid=diva2:1336561
http://www.diva-portal.org/smash/record.jsf?pid=diva2:1336561
http://www.diva-portal.org/smash/record.jsf?pid=diva2:1336561
http://dx.doi.org/10.5194/wes-2020-95
http://dx.doi.org/10.1016/j.epsr.2020.106638
http://dx.doi.org/10.1016/j.epsr.2020.106638
http://dx.doi.org/10.1016/j.epsr.2020.106638
http://dx.doi.org/10.1016/j.renene.2014.10.024
http://dx.doi.org/10.1016/j.renene.2014.10.024
http://dx.doi.org/10.1016/j.renene.2014.10.024
http://dx.doi.org/10.1016/j.energy.2016.08.068
http://dx.doi.org/10.1016/j.energy.2016.08.068
http://dx.doi.org/10.1016/j.energy.2016.08.068
http://dx.doi.org/10.5194/gmd-13-5079-2020
http://dx.doi.org/10.1016/j.apenergy.2017.04.066
http://dx.doi.org/10.1016/j.apenergy.2017.04.066
http://dx.doi.org/10.1016/j.apenergy.2017.04.066
http://dx.doi.org/10.1016/j.renene.2018.03.056
http://dx.doi.org/10.5194/asr-17-63-2020
http://dx.doi.org/10.1016/j.renene.2019.09.138
http://dx.doi.org/10.1088/1748-9326/ab70bd
http://dx.doi.org/10.1088/1748-9326/ab70bd
http://dx.doi.org/10.1088/1748-9326/ab70bd
http://dx.doi.org/10.1016/j.apenergy.2017.08.217
http://dx.doi.org/10.1016/j.apenergy.2017.08.217
http://dx.doi.org/10.1016/j.apenergy.2017.08.217
http://dx.doi.org/10.1002/qj.3803
http://dx.doi.org/10.1016/j.renene.2017.11.039
http://dx.doi.org/10.5194/gmd-13-5053-2020
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.5194/essd-12-429-2020
https://thewindpower.net
https://thewindpower.net
https://thewindpower.net
http://dx.doi.org/10.15480/882.2449
http://dx.doi.org/10.15480/882.2449
http://dx.doi.org/10.15480/882.2449


Applied Energy 305 (2022) 117794J.P. Murcia et al.
[24] Open power system data. 2020. Data package time series. Version 2020-10-
06. 2020, URL http://dx.doi.org/10.25832/time_series/2020-10-06. [Accessed
15 Nov 2020].

[25] IRENA Query tool. 2020, URL https://www.irena.org/Statistics/Download-Data.
[Accessed 15 Nov 2020].

[26] ENTSO-E transparency platform. 2020, URL https://transparency.entsoe.eu.
[Accessed 15 Nov 2020].

[27] Joos M, Staffell I. Short-term integration costs of variable renewable energy:
Wind curtailment and balancing in Britain and Germany. Renew Sustain Energy
Rev 2018;86:45–65. http://dx.doi.org/10.1016/j.rser.2018.01.009.

[28] EirGrid and SONI. Annual renewable energy constraint and curtailment re-
port 2019. 2020, URL http://www.eirgridgroup.com/site-files/library/EirGrid/
Annual-Renewable-Constraint-and-Curtailment-Report-2019-V1.2.pdf. [Accessed
1 Dec 2020].

[29] Gruber K, Klöckl C, Regner P, Baumgartner J, Schmidt J. Assessing the global
wind atlas and local measurements for bias correction of wind power generation
simulated from MERRA-2 in Brazil. Energy 2019;189:116212. http://dx.doi.org/
10.1016/j.energy.2019.116212.

[30] Bastankhah M, Porté-Agel F. A new analytical model for wind-turbine
wakes. Renew Energy 2014;70:116–23. http://dx.doi.org/10.1016/j.renene.2014.
01.002.

[31] Pedersen MM, van der Laan P, Friis-Möller M, Rinker J, Réthoré P-
E. DtuWindEnergy/PyWake: PyWake. 2019, http://dx.doi.org/10.5281/zenodo.
2562662.

[32] Als ML. Generic wind farm wake losses for large scale simulations. (Master’s
thesis), Technical University of Denmark; 2020.

[33] Danish Energy Agency. Technology Catalogue, 2020. Tech. Rep., 2020,
URL https://ens.dk/en/our-services/projections-and-models/technology-
data/technology-data-generation-electricity-and. [Accessed 1st Feb 2020].

[34] Martin CMS, Lundquist JK, Handschy MA. Variability of interconnected wind
plants: correlation length and its dependence on variability time scale. Env-
iron Res Lett 2015;10(4):044004. http://dx.doi.org/10.1088/1748-9326/10/4/
044004.

[35] Mehrens AR, Hahmann AN, Larsén XG, von Bremen L. Correlation and
coherence of mesoscale wind speeds over the sea. Q J R Meteorol Soc
2016;142(701):3186–94. http://dx.doi.org/10.1002/qj.2900.
14
[36] Monforti F, Gonzalez-Aparicio I. Comparing the impact of uncertainties on
technical and meteorological parameters in wind power time series modelling in
the European union. Appl Energy 2017;206:439–50. http://dx.doi.org/10.1016/
j.apenergy.2017.08.217.

[37] Staffell I, Green R. How does wind farm performance decline with age? Renew
Energy 2014;66:775–86. http://dx.doi.org/10.1016/j.renene.2013.10.041.

[38] Larsén XG, Ott S, Badger J, Hahmann AN, Mann J. Recipes for correcting the
impact of effective mesoscale resolution on the estimation of extreme winds. J
Appl Meteorol Climatol 2012;51(3):521–33. http://dx.doi.org/10.1175/JAMC-D-
11-090.1.

[39] Larsén XG, Larsen SrE, Petersen EL. Full-scale spectrum of boundary-layer
winds. Bound-Lay Meteorol 2016;159(2):349–71. http://dx.doi.org/10.1007/
s10546-016-0129-x.

[40] Koivisto M, Jónsdóttir GM, Sørensen P, Plakas K, Cutululis N. Combination of
meteorological reanalysis data and stochastic simulation for modelling wind gen-
eration variability. Renew Energy 2020;159:991–9. http://dx.doi.org/10.1016/j.
renene.2020.06.033.

[41] DTU. Technical university of Denmark - online data. 2020, URL http://rodeo.
dtu.dk/rodeo/. [Accessed 15 Dec 2020].

[42] CESAR. Cabauw experimental site for atmospheric research. 2020, URL https:
//ruisdael-observatory.nl/cesar/. [Accessed 15 Dec 2020].

[43] Hasager CB, Stein D, Courtney M, na AP, Mikkelsen T, Stikland M, Oldroyd A.
Hub height ocean winds over the North Sea observed by the NORSEWInD lidar
array: Measuring techniques, quality control and data management. Remote Sens
2013;(5):4280–303. http://dx.doi.org/10.3390/rs5094280.

[44] Marine data exchange. 2020, URL http://www.marinedataexchange.co.uk/.
[Accessed 15 Dec 2020].

[45] FINO – research platforms in the north sea and baltic sea. 2020, URL https:
//www.fino-offshore.de/en/. [Accessed 15 Dec 2020].

[46] Kalverla PC, Steeneveld G-J, Ronda RJ, Holtslag AA. An observational clima-
tology of anomalous wind events at offshore meteomast IJmuiden (North Sea).
J Wind Eng Ind Aerodyn 2017;(165):86–99. http://dx.doi.org/10.1016/j.jweia.
2017.03.008.

http://dx.doi.org/10.25832/time_series/2020-10-06
https://www.irena.org/Statistics/Download-Data
https://transparency.entsoe.eu
http://dx.doi.org/10.1016/j.rser.2018.01.009
http://www.eirgridgroup.com/site-files/library/EirGrid/Annual-Renewable-Constraint-and-Curtailment-Report-2019-V1.2.pdf
http://www.eirgridgroup.com/site-files/library/EirGrid/Annual-Renewable-Constraint-and-Curtailment-Report-2019-V1.2.pdf
http://www.eirgridgroup.com/site-files/library/EirGrid/Annual-Renewable-Constraint-and-Curtailment-Report-2019-V1.2.pdf
http://dx.doi.org/10.1016/j.energy.2019.116212
http://dx.doi.org/10.1016/j.energy.2019.116212
http://dx.doi.org/10.1016/j.energy.2019.116212
http://dx.doi.org/10.1016/j.renene.2014.01.002
http://dx.doi.org/10.1016/j.renene.2014.01.002
http://dx.doi.org/10.1016/j.renene.2014.01.002
http://dx.doi.org/10.5281/zenodo.2562662
http://dx.doi.org/10.5281/zenodo.2562662
http://dx.doi.org/10.5281/zenodo.2562662
http://refhub.elsevier.com/S0306-2619(21)01129-6/sb32
http://refhub.elsevier.com/S0306-2619(21)01129-6/sb32
http://refhub.elsevier.com/S0306-2619(21)01129-6/sb32
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-generation-electricity-and
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-generation-electricity-and
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-generation-electricity-and
http://dx.doi.org/10.1088/1748-9326/10/4/044004
http://dx.doi.org/10.1088/1748-9326/10/4/044004
http://dx.doi.org/10.1088/1748-9326/10/4/044004
http://dx.doi.org/10.1002/qj.2900
http://dx.doi.org/10.1016/j.apenergy.2017.08.217
http://dx.doi.org/10.1016/j.apenergy.2017.08.217
http://dx.doi.org/10.1016/j.apenergy.2017.08.217
http://dx.doi.org/10.1016/j.renene.2013.10.041
http://dx.doi.org/10.1175/JAMC-D-11-090.1
http://dx.doi.org/10.1175/JAMC-D-11-090.1
http://dx.doi.org/10.1175/JAMC-D-11-090.1
http://dx.doi.org/10.1007/s10546-016-0129-x
http://dx.doi.org/10.1007/s10546-016-0129-x
http://dx.doi.org/10.1007/s10546-016-0129-x
http://dx.doi.org/10.1016/j.renene.2020.06.033
http://dx.doi.org/10.1016/j.renene.2020.06.033
http://dx.doi.org/10.1016/j.renene.2020.06.033
http://rodeo.dtu.dk/rodeo/
http://rodeo.dtu.dk/rodeo/
http://rodeo.dtu.dk/rodeo/
https://ruisdael-observatory.nl/cesar/
https://ruisdael-observatory.nl/cesar/
https://ruisdael-observatory.nl/cesar/
http://dx.doi.org/10.3390/rs5094280
http://www.marinedataexchange.co.uk/
https://www.fino-offshore.de/en/
https://www.fino-offshore.de/en/
https://www.fino-offshore.de/en/
http://dx.doi.org/10.1016/j.jweia.2017.03.008
http://dx.doi.org/10.1016/j.jweia.2017.03.008
http://dx.doi.org/10.1016/j.jweia.2017.03.008

	Validation of European-scale simulated wind speed and wind generation time series
	Introduction
	Data
	Reanalysis data sets
	Wind speed measurements
	European wind energy fleet
	Country-level wind generation measurements

	Methods
	Wind speed interpolation
	Mean wind speed scaling
	Wake modeling
	Wind generation and aggregation

	Validation metrics
	New error metrics

	Results
	Wind speed
	Wind energy generation

	Discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Individual country wind generation comparison
	Appendix B. Wind speed measurements technical data
	References


