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Abstract: Resilience oriented network planning provides an effective solution to protect the distribution system 

from natural disasters by the pre-planned line hardening and backup generator allocation. In this paper, a multi-
disaster-scenario based distributionally robust planning model (MDS-DRM) is proposed to hedge against two 

types of natural disaster-related uncertainties: random offensive resources (ORs) of various natural disasters, 

and random probability distribution of line outages (PDLO) that are incurred by a certain natural disaster. The 

OR uncertainty is represented by the defined probability-weighted scenarios with stochastic programming, and 

the PDLO uncertainty is modeled as the moment based ambiguity sets. Moreover, the disaster recovery 

strategies of network reconfiguration and microgrid formation are integrated into the pre-disaster network 

planning for resilience enhancement in both planning and operation stages. Then, a novel primal cut based 

decomposition solution method is proposed to improve the computational efficiency of the proposed model. In 

particular, the equivalent reformulation of the original MDS-DRM is first derived to eliminate the PDLO-

related variables. Then, the reformulation problem is solved by the proposed primal cut based decomposition 

method and linearization techniques. Finally, Simulation results are demonstrated for IEEE 13-node, 33-node 
and 135-node distribution systems to validate the effectiveness of the proposed method in enhancing the 

disaster-induced network resilience.

Keywords: Distributionally robust method; resilience; network planning; power distribution system; stochastic 

programming; uncertainty.

NOMENCLATURE

1) Sets, Vectors, and Indices 

i, j Indices for buses 
k, Index for iterations of Algorithm 1 and 2 

s Index for natural disaster scenarios 
t Index of time periods 
s The ambiguity set for the distribution s
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n(i) ,m(i) Sets of all parent buses and children buses 
of bus i

s(Zs) Set of all probability distributions on Zs

S Set of natural disaster scenarios 
T Set of time periods 
Vs Set of binary variables in scenario s in 

Algorithm 2 

 The feasibility set of the planning decisions
Zs Set of damaged lines in scenario s
 s Set of damaged lines due to scenario s used 

in Algorithm 1 
B Set of branches 

N Set of Nodes 
a, b, c, 
d, e

Vectors of constants used in model 
abbreviation 

A, B, C, 
D, E, F

Matrixes of coefficients used in model 
abbreviation 

xs Vector of continuous variable in the 
operational stage after the scenario s

y Concatenation vector of planning decision 
variables yh 

ij  and yg 
i

zs Vector of attacker decision variable zs 
ij

vs Vector of binary variables in the operational 
stage after the scenario s

s,
sλ Vector of dual variables of the constraint in 

the scenario s 

2) Parameters

cg 
i Annual capital cost for placing B-DGs at 

bus i
ch 

ij Annual capital cost for hardening line ij
cl 

i Penalty costs for load shedding at bus i
G Budgets for the number of B-DG 

installation 
H Budget for the number of hardening lines 
Kave,s The expected number of the lines damaged 

by natural disaster s
Ks The maximum number of damaged lines in 

scenario s
M The big number used in model formulation 

and linearization 
Nbus The total number of buses 
pFIX,s

ij The estimated PDLO in scenario s , which 
is invariable in stochastic method 

pL,s 
ij The lower bound of the outage probability 

of line ij in scenario s
PL 

it , Q
L 
it   Active and reactive load at bus i and time t

Pmax 
i , Qmax 

i Active and reactive power limits of B-DG 
at bus i

Pmax 
ij , Qmax 

ij Active and reactive power limits of line ij
s The probability distribution of zs in scenario 

s

pU,s 
ij The upper bound of the outage probability 

of line ij in scenario s
Rij, Xij The resistance and reactance of line ij
U0 The reference voltage magnitude 
Umax 

i , Umin 
i Maximum and minimum voltage 

magnitudes of bus i
ρs Occurrence probability of scenario s

3) Variables

Fs 
ij The fictitious flow of line ij in the scenario 

s
Pg,s 

it ,Qg,s 
it  Active and reactive power output of DGs at 

bus i and time t in the scenario s
Ps 

ij,t, Q
s 
ij,t Active and reactive power flow of line ij at 

time t in the scenario s
Ps 

it Active load shedding at bus i at time t in the 
disaster scenario s

Qs 
it Reactive load shedding at bus i and time t in 

the scenario s
U s 

it Voltage amplitude at bus i and time t in the 
scenario s

vc1,s 
i , vc2,s 

i  Binary variables used in model linearization
vd,s 

ij Binary variable, with the value of 1 if line ij
is either hardened or not damaged in the 
scenario s, and 0 otherwise 

ve,s 
i The binary variable, the value is 1 if bus i is 

at one end of faulted lines in the scenario s, 
and 0 otherwise 

vq,s 
ij Binary variable, the value of 1 if the final 

status of line ij is normal in the scenario s, 
and 0 otherwise 

vr,s 
i Binary variable, the value is 1 if bus i is 

chosen as the root bus in the scenario s, and 
0 otherwise 

vw,s 
ij Binary variable, the value is 1 if the switch 

equipped in line ij is closed in the scenario 
s, and 0 otherwise 

yg 
i Binary variable, the value of 1 if a new B-

DG is placed at bus i, and 0 otherwise; 
yh 

ij Binary variable, the value of 1 if line ij is 
hardened, and 0 otherwise 

zs 
ij Binary variable, the value is 0 if line ij is 

damaged in scenario s, and 1 otherwise; 
 s Dual variable of the constraint in the 

scenario s
μs 

ij Supplementary variable used in model 
linearization 

4) Abbreviations

B-DG Backup distributed generator 
CCG Column-and-Constraint Generation
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CRM Conventional robust model 
DRM Distributionally robust model 
EEV Expected value of the EV solution 
EV Expected value solution 

MDS-DRM 
Multi-disaster-scenario distributionally 
robust planning model 

MILP Mixed integer linear programming 
OR Offensive resource 

PDLO Probability distribution of line outage 
PH Progressive hedging 
RL-CPM Reliability constrained planning model 
RP Recourse problem solution 
RS-OPM Resilience oriented planning model 
WS Wait-and-see solution 

I. Introduction 

Modern power distribution systems are vulnerable to natural disasters due to their 

environmentally exposed assets and infrastructure [1]. In 2008, a snow storm of Southern 

China caused 124,000 35kV and 10kV distribution line outages according to the 2008 
statistics report of the State Grid. In 2012, hurricane Sandy landed on the east coast of the 

United States and damaged nearly 900 transformers and 1000 poles. In addition, weather-
related outages in distribution systems will directly affect the continuity of power services to 
customers [2]. To mitigate power outages, the concept of power system resilience was 
introduced to highlight the necessity and develop strategies to protect the distribution systems 

against natural disasters [3]. 
Resilience is defined as the capability of power distribution system for anticipation, 

absorption and quickly recovery from extreme events, such as natural disasters [4]. 

Distribution network planning has been proved to be an efficient measure to enhance the 
power system resilience. However, the conventional planning models are generally 

insufficient to hedge against the extreme weather-related outages mainly due to two reasons. 
1) The conventional planning models determine the optimal placement of distribution system 
assets to meet the new and growing demand, such as construction or upgrade of substations, 

and installation of distributed generation [5]-[6]. However, these assets have no direct 
consideration of distribution system resilience from natural disasters. 2) The N-1 criteria is 
widely implemented in the conventional planning models to ensure the secure operation of 
distribution systems, known as the reliability constrained planning model (RL-CPM) [7]-[8]. 

The RL-CPM is efficient for the single fault in distribution systems, but insufficient for the 
extreme weather-related attacks which can damage multiple components simultaneously. In 
this case, it is necessary to protect distribution systems from natural disasters by allocating 

the defensive resources, such as hardening vulnerable distribution lines and allocating backup 
distributed generators (B-DGs) [9].  

Hardening distribution lines by undergrounding or reinforcing materials can make these 
lines less vulnerable to extreme weather events such as hurricanes, thereby can continuously 

supply the critical loads. Moreover, when a natural disaster attacks large area and causes 
multiple line outages, some islands will be created which are isolated from the main grid. In 

this case, the controllable generators with the self-start ability in these islands can be utilized 

to restore critical loads [10]-[12]. Therefore, the development of resilience oriented planning 
model (RS-OPM) for the optimal allocation of defensive resources can effectively alleviate 

the outage impacts from natural disasters.  
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However, the stochastic nature of natural disasters and their nonlinear impacts on system 
outages impose a considerable challenge on the RS-OPM design. There are generally two 

types of extreme weather-related uncertainties affecting the planning decisions:  the first 
type of uncertainty is from the offensive resources (ORs) of natural disasters, such as the 
force uncertainty of hurricanes, due to the inaccurate information to forecast natural disasters 

in the planning stage. The OR-related uncertainty indicates that distribution systems will 
suffer from natural disasters with the random intensity. The second type of uncertainty is the 
nonlinear impacts of a given natural disaster on the branches of distribution systems, such as 
the number and location of line outages represented as the probability distribution of line 

outages (PDLO), which are generally unavailable for network planning due to the random 
fragility of assets and their ambience. These uncertainties should be simultaneously 

considered in the RS-OPM.  

Certain research has been conducted to allocate the defensive resources by considering the 
weather-related uncertainties with multi-scenario based stochastic method [13]. In [14], the 
hardening decision-dependent uncertainty of line damage status was considered, and a novel 
modeling strategy was proposed to generate several representative scenarios. Hence, a two-

stage stochastic mixed integer problem was formulated to harden existing distribution lines 
and allocate B-DGs and automatic switches, i.e., the first stage determined the planning 

decisions and the second stage determined the operational strategies under multiple outage 

scenarios. In [15], the spatiotemporal correlation among various uncertainties was 
characterized with a hybrid independent stochastic process, including the random number, 

position and time of line outage, repair time, as well as the power demand. Then, a multi-
scenario based planning model was proposed to deploy defensive resources. The mobile 
energy storages in [16] and mobile emergency generators in [17] were pre-positioned 
strategically in distribution systems considering multiple outage scenarios, and these 

facilities will be further dispatched to restore critical loads and reconfigure provisional 
microgrids.  

The multi-scenario based stochastic method is effective to address the OR uncertainty 

because a given distribution system is assumed to be attacked by limited natural disasters. 
However, multiple probability-weighted scenarios should be generated under a predefined 

PDLO, as any inaccurate prediction for the PDLO would lead to a suboptimal or infeasible 

planning solution. Moreover, it can be a computational challenge to involve all outage 
scenarios in the optimization model [18]-[19]. For example, if 5 lines can be damaged by the 

natural disaster in a distribution system with 100 lines, there are scenarios with the number 
of almost 72 million to be considered, thereby making the computation impractical. Hence, 
the multi-scenario based stochastic method is unsuitable to model the nonlinear impacts of a 
given disaster on system outages due to the uncertainty of PDLO. 

Since there are inherent limitations concerning the accurate prediction for the PDLO in the 
multi-scenario based stochastic method, some efforts have made to deploy defensive 
resources with the robust optimization [20]-[21]. The robust optimization is modeled based 

on the worst case of weather-related outages in a given uncertainty set, and the uncertainty 
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set is generally formulated based on the N-K criteria, where the total number of facilities is 
N, and the number of damaged facilities is predefined as K [22]-[25]. For example, in [22] 

and [23], an N-K based conventional robust model (CRM) was proposed to enhance the 
planning and operation resilience of distribution systems. Furthermore, to capture the spatial 
and temporal dynamics of a given natural disaster, the traditional N-K criteria was extended 

to a multi-stage and multi-zone based uncertainty set in [26]. In [27], a predetermined PDLO 
was integrated in the uncertainty set based on the Claude Shannon’s information theory, and 
the corresponding uncertainty budget in this uncertainty set was pre-assumed as a constant. 
In [28], the errors of PDLO forecasting were considered based on an ambiguity set, and this 

ambiguity set contained all possible probability distributions with a distributionally robust 
model (DRM). In [29], an improved CRM was built for transmission line resilience. In 

particular, the different values of K were applied in the N-K based uncertainty sets to 

represent various ORs.  
In the CRM, the uncertainty set is developed with no requirement for the accurate PDLO, 

which shows practicality over the multi-scenario based stochastic method. However, the 
CRM overestimates the occurrence probability of the worst-case scenario, thereby resulting 

in an unnecessarily high capital cost, which is termed as conservativeness [30]-[31]. 
Furthermore, although the DRM in [27] is less conservative than the CRM because all 

possible PDLOs in the ambiguity set are considered in the DRM, a single ambiguity set is 

still insufficient to describe the random ORs [29]. Consequently, the CRM and DRM need 
to be improved to address various types of uncertainties with less conservativeness. 

TABLE I COMPARISONS BETWEEN THE PROPOSED MODEL WITH OTHER EXISTING MODELS

References

Targeted systems 
OR 

uncertainty

Nonlinear impact of natural disaster on 

braches 
Models 

Transmission Distribution
Line outage uncertainty 

(number/location) 

PDLO 

uncertainty 

[14]-[17]    Stochastic 

[22],[23],
[26],[27] 

 
Conventional 

robust 

[24],[25]  
Conventional 

robust 

[28]   
Distributionally 

robust 

[29]   
Improved 

robust 

This paper    
Improved 

distributionally 

robust 

According to the previously reviewed research, there is a research gap to model various 
weather-related uncertainties with effective methods in the RS-OPM. For this purpose, a 
multi-disaster-scenario based distributionally robust model (MDS-DRM) is proposed for 
power lines hardening and B-DGs allocation in distribution systems. In this model, the OR-
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related uncertainty and the random PDLO are simultaneously modelled based on their 
inherent characteristics. Specifically, the random PDLO is modeled as an ambiguity set based 
on the moment information, and this set can be developed independently of the outage 
probability’s accuracy. Then, the OR-related uncertainty is described with several 
probability-weighted scenarios. In these scenarios, different first-order moments are used to 
describe the random OR with corresponding probabilities.  Table 1 compares the proposed 
model with other existing planning models for resilience improvement. The model 
comparison demonstrates the novelty of this paper that is the first time to consider random 
ORs and PDLOs simultaneously in resilient distribution network planning. The key 
contributions of this paper are summarized as follows: 

1) A novel MDS-DRM is proposed for line hardening and DGs allocation in distribution 
systems, where weather-related uncertainties are addressed by combing the stochastic and 

distributionally robust model. 
2) An effective primal cut based decomposition method is proposed to solve the proposed 

multi-scenario two-stage distributionally robust model. In this scheme, the MDS-DRM is 

first reformulated to eliminate the PDLO-related variables, then the reformulation is 
transformed to the mixed integer linear problem, which can be solved by commercial solvers. 
Moreover, the proposed decomposition method can converge to the global optimal planning 
solution. 

3) In comparison with the stochastic programming, the proposed model can withstand the 
forecast errors of the outage probability and improve the computational efficiency and 

accuracy. In comparison with the robust optimization, the proposed model can withstand 

various types of uncertainties and overcome the conservativeness of the CRM. 
The remaining paper is organized as follows. In Section II, an overview of the improved 

distributionally robust model is introduced with the model structure. In Section III, the 
mathematical formulation of the MDS-DRM is developed. In Section IV, the solution method 
to solve the MDS-DRM is presented. Case studies are performed in Section V. The paper is 
concluded in Section VI. 

II. Overview of the improved distributionally robust model 

This section provides an overview of the proposed MDS-DRM. First, based on the 
conceptual resilience curve, it is necessary to integrate the event-related uncertainties and 
restoration strategies into the network planning to formulate the MDS-DRM. Then, the 
framework of the proposed MDS-DRM model is provided with clear model structure.  

A. Event dependent network planning 

The conceptual resilience curve consisting of 6 operational resilience states is provided in 
Fig.1 [4]. In the pre-event state, preventive strategies can be adopted to improve the system 
performance as the curve starting point, such as the network planning where this paper will 
focus. Then, the OR- and PDLO-related uncertainties exist in the event process and post-
event degraded state. Subsequently, operational strategies can be implemented to reconfigure 
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the microgrid systems and restore critical loads using the available resources, such as backup 
DGs. Last, the damaged components will be repaired in the infrastructure repair state, and 
the system will return to the normal state. 

According to the above analysis, the network planning is associated and interdependent 
with the OR/PDLO uncertainty and the operational strategies. Hence, the OR/PDLO 
uncertainty and the operational strategies need to be integrated into the planning model to 
improve the overall system performance during natural disasters. 

Fig.1 A conceptual resilience curve 

B. Framework 

The schematic diagram of the MDS-DRM model is presented in Fig. 2. The objective of 
the proposed model is to determine the optimal line hardening and B-DG allocation strategies 
for the resilient network planning. Multi-disaster scenarios are proposed where each scenario 
has its own ambiguity set to represent different ORs. Moreover, to model the random impacts 
of a disaster scenario to the line outages, all possible PDLOs incurred by this disaster scenario 
is considered in the corresponding ambiguity set. Last, in each disaster and line outage 

scenario, the respective optimal operational strategy is determined by the distribution system 
operator. It can be seen that the proposed MDS-DRM is a combination of: defender-attacker-
operator’s interaction, OR- and PDLO-related uncertainties, planning and operational 
strategies, and stochastic and distributionally robust programming. 

Fig.2 The schematic diagram of the MDS-DRM 
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III. Mathematical formulation of MDS-DRM 

In this section, the mathematical formulation of the proposed MDS-DRM is presented, 
which consists of the OR and PDLO uncertainty model in Section III-A, the first-stage 
planning model considering line hardening and DG allocation in Section III-B, and the 
second-stage operational model considering network reconfiguration and microgrid 
formation in Section III-C.  

A. OR and PDLO uncertainty model (Attacker determination) 

In this section, a novel model combining the stochastic method and DRM is proposed to 
model the OR and PDLO uncertainties. First, the OR uncertainty is modeled as multiple 
disaster scenarios based on the stochastic programming. It is noted that certain disasters on a 
specific distribution system can be obtained from the historical data. Hence, it is reasonable 
and practical to model the OR uncertainty with the data-driven stochastic method. Then, the 
nonlinear impacts from a given natural disaster on the distribution line are uncertain, i.e., the 
random number and location of outages or even the random PDLO. Two moment based 
ambiguity sets is proposed to model the PDLO uncertainty, which involves the random 
number and location of outages. It is noted that all PDLOs are involved in the proposed 
ambiguity sets to achieve the distributional robustness in the planning model. 

Specifically, it is assumed that a distribution system will be faced with certain natural 
disasters, represented by s1, s2, ··· , sn with the occurrence probability of ρs1, ρs2, ··· , ρsn, 

respectively. Then, with a given disaster denoted as s, all PDLOs incurred by the disaster s

are included in an ambiguity set sF . Therefore, the scenario set, denoted as { 1sF , 2sF , ··· , 
snF }, can be formed to model the OR and PDLO uncertainty. 
To elaborate the ambiguity set, two samples are presented in this section as shown in (1a) 

and (1b). Specifically, the ambiguity set sF in (1a) shows the outage probability of line ij
within the defined confidence interval [pL,s 

ij , pU,s 
ij ], while the ambiguity set in (1b) constrains 

the expected number of damaged lines, i.e.,  Kave,s. It is noted that the first-order moment 
information, i.e. [pL,s 

ij , pU,s 
ij ] and Kave,s, can be obtained from the historical data [30].

 , ,( ) :  1   s

s s s s L s s U s
ij ij ijZ p z p      P

P
F P E (1a) 

 ,

( )

( ) :    s

B

s s s s s ave s
ij

i, j

Z z N K


    
  
P

P
F P E                              (1b) 

where s(Zs) represents the set of all probability distributions on Zs, and Zs is built based on 

the N-K criterion, as shown in (4). 

 ( )

 :  [1  (1 )(1 )] B

B

s s h s s
ij ij

i, j

Z y z N K



      z R                           (2) 

Moreover, in various natural disaster scenarios, the corresponding ambiguity sets have 
different outage lines such as Ks, different first-order moment information such as confidence 
intervals [pL,s 

ij , pU,s 
ij ], and different expected number of outage lines Kave,s. Such mathematical 
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differences indicate the randomness of offensive resources that various natural disasters 
possess.  

Last, the ambiguity set is used to model the uncertain PDLO, and the superiority of this 
DRM over other probability methods, such as uncertainty sets in stochastic and CRM, can 
be justified as shown in Table II (taking (1a) as an example), where pFIX,s 

ij  is the fixed PDLO 

value estimated in stochastic method. Specifically, in stochastic programming, the PDLO is 
fixed as a constant, and representative scenarios are sampled from the uncertainty set. 
However, the PDLO forecast errors cannot be well addressed in the stochastic method, and 
the model only can hedge against finite outage scenarios. In CRM, the PDLO is ignored, and 
only a specific scenario causing the most serious damage to distribution systems is considered. 
Therefore, the planning decision of CRM is generally conservative and expensive. 
Comparatively, the moment based ambiguity set of DRM contains all possible PDLOs, which 
is considered as optimal over the inherent disadvantages of stochastic and robust method in 
addressing PDLO. Consequently, the proposed ambiguity set is a more feasible method to 
represent the PDLO uncertainty. 

TABLE II COMPARISON OF STOCHASTIC METHOD, CRM AND DRM 

Stochastic Method DRM CRM 

Uncertainty Modelling 
Finite scenarios sampling 

from FIX,1  =s

s s
ij ijz p  P

E

Ambiguity Set
, ,1  s

L s s U s
ij ij ijp z p    P

E

Uncertainty Set

0 1  1s

s
ijz    P

E

Features 
Suboptimal, finite 

robustness 

Optimal, distributional 

robustness 

Suboptimal, conservative 

robustness 

B. Distribution network planning model (Defender decision) 

In the planning stage, the objective function minimizes the investment costs of line 
hardening, B-DG allocation and the expectation of load curtailments under the worst-case 
PDLO, shown as first, second and third part of (3) respectively. It is noted that the load 
curtailments are utilized to evaluate the system performance degradation during natural 
disasters, and this metric has been widely adopted to assess the power distribution system 
resilience [12]-[17]. The feasibility set Y defines the limits of the defensive resources, as 
expressed in (4).  

 ( )

min  sup  ( , )s
s s

B N

h h g g s s
ij ij i i

ij i s S

c y c y Q
    

       
y

y z
PY P F

E                           (3) 

 ( )

,  
B N

h g
ij i

ij i

y H y G
 

   yY                                             (4) 

where [ ]s P
E  is the expectation under distribution sP ; sF is the ambiguity set for the 

distribution sP ; and Q(y, zs) is defined as the minimum load shedding costs given y and zs

in the disaster s, which will be expressed in Section III-C. 

C. Network reconfiguration and microgrid formation (Operational strategy) 



10 

Under a given planning decision y and attacker determination zs in the natural disaster s, 
the resilience of distribution systems is further enhanced by post-disaster operational 
strategies of network reconfiguration and microgrid formation. Specifically, the objective 
function in the operational stage is to minimize the penalty costs for load shedding, as shown 
in (5a), and this function (5a) has been considered in the planning objective function (3) as 
load curtailments. 

,
( ,  )  min  

s s

N

s l s
i it

t T i

Q c P
 

  
x v

y z                                              (5a) 

The network reconfiguration and microgrid formation are integrated into the planning 
model to improve the operational resilience of distribution systems. These constraints are 
classified into operational constraints and topology constraints [23]. The operational 
constraints (5b)-(5g) are represented by the linearized DistFlow model [32], which is widely 
adopted in distribution system planning [23], [26], [27].  

,
, ,

( ) ( )

,
, ,

( ) ( )

( )

( )

s s g s L s
ij t ji t it it it

j m i j n i

Ns s g s L s
ij t ji t it it it

j m i j n i

P P P P P

i
Q Q Q Q Q

 

 

     
  

    


 

 
                       (5b) 

,
, , 0

,
, , 0

( ) / M(1 )
    ( )

( ) / M(1 )

s s s s q s
it jt ij ij t ij ij t ij

Bs s s s q s
it jt ij ij t ij ij t ij

U U R P X Q U v
ij

U U R P X Q U v

       
     

                     (5c) 

max , max ,
,

max , max ,
,

                                    ( )

q s s q s
ij ij ij t ij ij

Bq s s q s
ij ij ij t ij ij

P v P P v
ij

Q v Q Q v

    
  

                     (5d) 

, max , max0 ,  0                       g s g g s g
it i i it i i NP P y Q Q y i                             (5e) 

0 ,  0                                   s L s L
it it it it NP P Q Q i                   (5f) 

min maxs
i it i NU U U i                           (5g) 

where Eqs. (5b) and (5c) are the linearized DistFlow model; Eq. (5d) constrains the line 
power flow; Eq. (5e) constrains the load curtailment; Eq. (5f) is the DG output constraint; 
and Eq. (5g) constrains the nodal voltage. Additionally, vq,s 

ij  is the binary variable, with the 

value of 1 if the final status of line ij is in-service in the scenario s, and 0 otherwise. In 
addition, the final status of line ij, i.e., vq,s 

ij , is determined by the line hardening decision yh 
ij , 

damaged status zs 
ij  and switch status vw,s 

ij , and their relationship can be illustrated in Fig. 3. 
Specifically, if the line ij is either hardened (yh 

ij =1) or not damaged (zs 
ij=1) in the scenario s, 

the line ij will be available (vd,s 
ij =1) in the operational stage to restore critical loads. The 

relationship of vd,s 
ij , yh 

ij  and zs 
ij is modeled in (5h-1). Moreover, the available line ij (vd,s 

ij =1) is 
further defined as “normal line” (vq,s 

ij =1) if the available line ij is switched on (vw,s 
ij =1) by the 

operational strategies. These relationships are formulated as the nonlinear equation (5h-2), 
and (5h-2) can be linearized as the linear constraints (5h-3). 
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Fig.3 The state of line ij in planning and operation stages

, ,                                    ( )d s h s h s
ij ij ij ij ij Bv y z y z ij                              (5h-1) 

, , , ,                                              ( )q s d s w s
ij ij ij Bv v v ij                (5h-2) 

, , , , , , ,,  ,  1      ( )q s d s q s w s q s d s w s
ij ij ij ij ij ij ij Bv v v v v v v ij      ，                         (5h-3) 

where vd,s 
ij  is the binary variable, with the value of 1 if line ij is either hardened or not 

damaged in the scenario s, and 0 otherwise; and vw,s 
ij  is the binary variable, the value is 1 if 

line ij is switched on in the scenario s, and 0 otherwise. 
To improve the network resilience, distribution systems are operated radially by 

introducing the topology constraints. The distribution network is radial if and only if: a) the 
number of closed branches equals to the number of buses minus the number of islands, and 
b) the connectivity in islands is guaranteed [33]. To match these conditions, a single-
commodity flow method [12] is adopted here. Specifically, Eq. (5i) and (5j) are formulated 
to meet conditions a) and b), respectively. 

, ,

( ) B N

q s r s
ij bus i

ij i

v N v
 

   (5i) 

, ,

( ) ( )

, ,

( ) ( )

, ,

1 M  ( )        

1 M  ( )        

M M                                    

s s r s g e s
ij ji i i i N

j m i j n i

s s r s g e s
ij ji i i i N

j m i j n i

q s s q s
ij ij ij B

F F v y v i

F F v y v i

v F v ij

 

 

         

         

      

 

                          (5j) 

In Eq. (5i), each provisional microgrid (i.e., island) must contain one root bus. Hence, the 
summation of vr,s 

i  is identical to the number of islands. In Eq. (5j), it is assumed that there is 

the fictitious load of “1” at all non-root-buses. In this case, all non-root-buses should be 
connected to the root buses to meet the fictitious power balance in (5j). Moreover, the bus i
is qualified for the root bus if one of the following conditions is met: 1) a B-DG is located at 
bus i; 2) bus i is at one end of faulted lines. In this paper, (yg 

i +ve,s 
i ) is introduced to indicate 

whether bus i has potential to be chosen as the root bus in the scenario s, and it constrains the 
value of vr,s 

i as shown in (5l) and Fig. 4. Specifically, if yg 
i +ve,s 

i =0, the value of the binary 
variable vr,s 

i  is 0 according to (5l), and the fictitious load of “1” exists at bus i according to 
(5j). If yg 

i +ve,s 
i =1, the node i is qualified, and the node i will be further selected as the root bus 

when vr,s 
i =1. 
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Fig.4 The selection of the qualified root bus
, ,r s g e s

i i i Nv y v i    (5k) 

The value of ve,s 
i  is determined by the availability status of line ij. Specifically, if the line 

ij is unavailable (i.e., vd,s 
ij =0), ve,s 

i = ve,s 
ji =1; Otherwise, ve,s 

i = ve,s 
ji =0. Therefore，the mathematical 

formulation of ve,s 
i  can be modeled as shown in (5l). 

, , ,(1 ) / M (1 )     
N N

d s e s d s
ij i ij N

j j

v v v i
 

                                       (5l) 

Next, there are nonlinear relationships in (5j), i.e., vr,s 
i ve,s 

i  and vr,s 
i yg 

i . Consequently, binary 
variables vc1,s 

i and vc2,s 
i  are introduced to linearize vr,s 

i ve,s 
i  and vr,s 

i yg 
i , respectively, as shown in 

(5m). Then, (5j) can be transformed to a linear form as shown in (5n). 

1, , 1, , 1, , ,

2, , 2, 2, ,

,  ,  1       

,  ,  1       

c s r s c s e s c s r s e s
i i i i i i i N

c s r s c s g c s r s g
i i i i i i i N

v v v v v v v i

v v v y v v y i

       


      
                         (5m) 

1, 2,

( ) ( )

1, 2,

( ) ( )

, ,

1 M  M     

1+M  M      

M M                                

s s c s c s
ij ji i i N

j m i j n i

s s c s c s
ij ji i i N

j m i j n i

q s s q s
ij ij ij B

F F v v i

F F v v i

v F v ij

 

 

         

        

      

 

                           (5n) 

Consequently, the optimal dispatch model with network reconfiguration and provisional 
microgrid formation is formulated as a mixed integer linear programming (MILP), as shown 
in (5o). 

Objective:                      (5a)

Opeartional constraints: (5b)-(5g)

Topology constraints:    (5h),(5i),(5k)-(5n)







                                  (5o) 

In this paper, we mainly focus on the reliable B-DGs with the controllable startup ability, 
such as gas turbines. The uncontrollable wind power generators are generally insufficient to 
restore critical customers independently after natural disasters because: 1) the wind power 
generators are lack of black startup ability; and 2) the wind power quality cannot be 

guaranteed due to the uncertain and fluctuant output of wind generators. Hence, we focus on 
the allocation of traditional and practical B-DGs, and the wind generators are not considered 
as the suitable black start candidates in this paper. 
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However, the wind generators in the distribution system can cooperate with other allocated 
B-DGs to restore critical loads [34], [35]. In the cooperation scheme, the wind generators can 
be energized by the allocated B-DGs after multiple outages. Then, the B-DGs can serve as 
the master generator to control the frequency and voltage in the provisional microgrid, and 
the wind generators can act as the slave generators to provide surplus electricity power [36]. 
Hence, the operational resilience can be improved by integrating the wind power generator 
into the load restoration framework. 

The proposed MDS-DRM can be extended to consider the wind generators and the wind-
related uncertainty by the following steps. First, the wind-related uncertainty can be modeled 
by the stochastic methods, such as the scenario-based stochastic model that characterizes the 
correlation of wind-, solar irradiation-, and demand-uncertainty in [7], so that the 
deterministic model in the operational stage can be reformulated as a stochastic model. Then, 
the cooperation scheme of the B-DGs and wind power generators in the operational stage can 
be modeled and integrated into the planning model. Last, the efficient solution method can 
be designed for the improved MDS-DRM with wind uncertainty. However, this paper 
focuses on the B-DG allocation and the natural-disaster-related uncertainties. Therefore, the 
cooperation scheme of B-DG and wind generators for load restoration, as well as the 
improved MDS-DRM with the wind uncertainty will be investigated as the future work. 

IV. Solution algorithm 

The MDS-DRM is a multi-scenario based two-stage distributionally robust model which 
includes binary variables y and vs, continuous variable xs and probability distribution 

variables sP , and these characteristics pose a considerable challenge to solve the model. A 
novel primal cut based decomposition method is proposed to solve the MDS-DRM with 
guaranteed convergence and global optimality, and the flowchart is shown in Fig. 5. 
Specifically, the original MDS-DRM is firstly reformulated to eliminate the probability 
distributed variables. Then, the two-step proposed decomposition method is employed to 
solve the equivalent reformulation. First, the reformulation model is decomposed to an upper-
level minimization problem (10) and several lower-level max-min problems with respect to 
natural disaster scenarios (11). It is noted that the primal cuts are generated from the lower-
level problems and fed back to the upper-level to refine the planning decision. Subsequently, 
each lower-level problem is solved individually based on the Column-and-Constraint 

Generation (CCG) algorithm [37], [38]. 
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Model reformulation (9)

Solve upper-level problem (10), update LB

Scenario 1

Solve lower-level subproblem 
(13), update LLB1

Solve lower-level maser 
problem (14), update ULB1

Scenario s

Solve lower-level subproblem 
(13), update LLBs

Solve lower-level maser 
problem (14), update ULBs

Update UB by (12)

|(UBLB)/LB|≤ε1

Output the optimal planning strategy

•••

•••

•••

•••

Yes Yes

Yes

No

No

No

|(ULB1-LLB1)/LLB1|≤ε2

Input system data and MDS-DRM formulation

Primal cuts

|(ULBs-LLBs)/LLBs|≤ε2

Fig.5 The flowchart of solution method implementation 

A. MDS-DRM model reformulation 

The original MDS-DRM is reformulated in (6a)-(6d). Specifically, Eq. (3) and (4) are 
reduced to (6a) and (6b), and Eq. (1) is reduced to (6c). Moreover, (6d) corresponds to the 
model (5o). 

min   sup  ( , )s
s s

s s

s S

Q
 

    a y y z
•

P
P F

E                                        (6a) 

s.t.  Ay b                                                           (6b) 

  ( ) :      s

s s s s s sZ s S    Bz cP
P

F P E                             (6c) 

T

,
( ,  )  min        

s s

s s

s s s

Q s S

s S

   

      

x v
y z d x

Cy Dz Ex Fv e

                               (6d) 

Next, the worst-case expectation of sup ( , )s

sQ  y z
P

E  is reformulated to an optimization 

problem, as shown in (7). 

  sup  ( , ) max ( , ) (d )

s.t.    (d )     :           

        (d ) 1           :           

ss
ss s

s

s

s s s s

Z

s s s s s

Z

s s s

Z

Q Q





   











y z y z z

Bz z c α

z

P PP F

E P

P

P

                                 (7) 
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where s and  s are dual variables. In further, (7) is transformed to the dual equation of (8) 
based on the standard duality, and the derivation procedure is provided in Appendix-A. 

0,
min  ( )  

s.t.    ( ) ( , )            

s s

s s s

s s s s s sQ Z







 

   
α

c α

α Bz y z z

•

•
                                 (8) 

Then, (8) is integrated into (6), and the equivalent reformulation of (6) is obtained with 
none probability distribution variables, as shown in (9). 

, 0,

T

,

  min    [( )  ]

s.t.           

             ( , )  ( )     

             ( ,  )  min         

s s

s s

s s s s

s S

s s s s s s

s s

s s s

Q Z s S

Q s S

s S


 



 
   



     

  

     



，

y α

x v

a y c α

Ay b

y z α Bz z
y z d x

Cy Dz Ex Fv e

• •

•                             (9) 

B. The decomposition solution method to solve MDS-DRM 

In this section, the formulation (9), which is a multi-scenario two-stage robust nonlinear 
optimization model, is solved with a novel primal cut based decomposition method and linear 
techniques. First, the formulation (9) is decomposed to an upper-level minimization problem 
(10) and several lower-level max-min problems with respect to different natural disasters 
(11), as shown in Algorithm 1. 

Algorithm 1 The primal cut based decomposition solution method

0. Initialization. Set the upper bound UB0=+∞, the lower bound LB0=-∞, optimality gap 
tolerance 1 and the iteration index  =1. Define a set of outages in scenario s, i.e.,  s =Ø. 

1. Solve the upper-level problem (10) with given  s. Record the current optimal planning 

solution, denoted as (y,  s,, s,), and set LB= ObjU, where ObjU is the optimal 

objective value of (10), and the second and third constraints in (10) are the primal cuts

from the lower-level problems. 

, 0,

T

min    [( )  ]

s.t.        

          Primal cut 1:  ( )         

          Primal cut 2:        

s s

s s s s

s S

s s s s s s

s s s s s

s S

s S


 

 



 
   



     

       


y α

a y c α

Ay b

d x α Bz z
Cy Dz Ex Fv e z

• •

•
                 (10) 

2. Based on the obtained (y,  s,, s,), solve the lower-level optimization (11) for each 

scenario s. Record the optimal solution, denoted as zs, , and add zs, to  s. Record the 

optimal value of (11), denoted as ObjLs, .  



16 

T ,

,
max{ min   ( ) }

s.t.                 

s ss s

s s s

Z

s s s







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x vz

d x α Bz

Dz Ex Fv e Cy

•

                                   (11) 

3.  Update UB based on (12). 

,-1 ,min{ ,   }
ss s s

s S s S

UB UB ObjU ObjL
     

 
                             (12) 

4.  If |(UBLB)/LB|≤1, terminate the process; otherwise, set  =+1, and go to step 1. 

Convergence: The primal cut based decomposition solution method can be finitely 
converged to an optimal solution, and the number of iterations is bounded by Zs in (2). The 
proof for the guaranteed convergence is provided in Section Appendix. C. 

In the step 2 of Algorithm 1, the lower-level optimization (11) for each scenario s is a 
mixed integer two-level max-min optimization programming, and this problem cannot be 
solved directly by current commercial solvers. In this case, the CCG algorithm is employed 
to decompose (11) in each scenario into a master problem and a sub-problem. The detailed 
procedure is shown in Algorithm 2. 

Algorithm 2 The CCG Algorithm

 0. Initialization. Set the upper bound of (11) ULBs=+∞, the lower bound of (11) LLBs=-∞, 
optimality gap tolerance 2, the iteration index k =1, and zs,k=1. Define a set of binary 
variables, i.e., Vs= Ø. 

1. Fix zs of (11) as zs,k, and a MILP problem (13) is formed, denoted as the subproblem of 
(11). Then, solve (13), and add the optimal solution vs,k into Vs. Next, record the optimal 
objective value of (13) as ObjLLs,k, and set LLBs= max{ LLBs , ObjLLs,k }. 

T , ,

,

,

 min   ( )

s.t.      

s s

s s s k

s s s k







   
x v

d x α Bz

Ex Fv e Cy Dz

•

                                         (13) 

2. Based on the given Vs, the master problem of (11) is formed as (14). Then, solve (14), and 
record the optimal attack decision as zs,k+1. In addition, set ULBs= ObjLUs,k , where 
ObjLUs,k  is the objective value of (14). 

,max{  ( ) }
s s

s s s

Z





z

α Bz•                                                 (14a) 

T      s.t.     min                       
s

s s s sV   
x

d x v                              (14b) 

s s s s sV     Ex e Cy Fv Dz v                            (14c) 

3.  If |(ULBsLLBs)/ LLBs |≤2, terminate the process and set zs, =zs,k; otherwise, set k=k+1, 

and go to step 1. 
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In Algorithm 2, the sub-problem (13) is a MILP problem which can be solved by 
commercial solvers such as CPLEX. However, the master problem (14) is a max-min 
problem which cannot be solved directly. Hence, (14) is further transformed to a single level 
problem (15) based on the strong duality theory. 

,max{  ( ) }
s s

s s s

Z





z

α Bz•                                                   (15a) 

s.t.  (  )          s s s s s sV       e Cy Fv Dz λ v•                            (15b) 
T s s sV   E λ d v                              (15c) 
s s sV  λ 0 v                              (15d) 

where sλ is the dual variable of (14c). Then, to transform (15) to an MILP problem, the 

bilinear term (Dzs)฀⸱λs of (15c) is linearized with a big “M” method, as shown in (16).  

M M

M (1 ) M (1 )

s s s
j ij j

s s s s s
i ij j ij i ij j

z z

D z D z



  

    


       
                                 (16) 

where μs 
ij is a supplementary variable which equals to λs 

i ⸱Dij⸱zs 
j , and λs 

i , Dij and zs 
j are elements 

in λs, D and zs, respectively. Consequently, (14) is transformed to an MILP problem, and the 
MDS-DRM is finally decomposed to several MILPs.  

It is noted that the decomposition method and the CCG method dynamically update the 
lower and upper boundaries of (9) and (11), respectively. Therefore, these algorithms can 
converge to a global optimal solution [37], [38]. In addition, the model simplification and 
equivalent reformulation are capable of addressing complex nonlinear problems with no 
compensation on accuracy. Consequently, a global optimal planning strategy can be obtained 
by applying the proposed solution methods. 

The primal cut based solution method decomposes the MDS-DRM into several MILP 
problems. Hence, the computational efficiency of the solution method mainly depends on the 
size and complexity of these MILPs. In general, MILP problems might be NP-hard due to 
the inevitable binary variables. However, there are several advanced commercial solvers and 

effective solution methods to solve the large-scale MILP problems, such as the Branch & 
Bound algorithm embedded in the CPLEX and Gurobi. In addition, the size of some MILPs, 
such as (15) of the CCG algorithm, can grow with the iteration number and increase the 
computational burden. However, the iteration number of the CCG method has been proven 
to be limited and acceptable in several studies [22], [23], [38], and the effectiveness of the 
CCG method will be further demonstrated in the numerical tests of this paper. Moreover, 
some techniques can be utilized to reduce the computational burden. First, not all branches 
are critical to be hardened, and only certain nodes can serve as the candidates for the B-DG 
allocation. Hence, non-critical lines or non-allocable nodes can be pre-excluded by the risk 
analysis method [39], and the suitable candidate nodes for the B-DG allocation can be chosen 
according to the site, access and facility requirements. By doing this, the number of binary 
variable can be reduced to improve the computational efficiency. Then, some computing 
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methods can be utilized, such as the cloud computing method, which can solve the large-
scale MILPs within seconds. 

The proposed primal cut based solution method is more efficient than the candidate 
solution methods in the existing literature, such as the progressive hedging (PH) algorithm 
for the multi-scenario based stochastic method [14], and the CCG method for the robust 
optimization [34]. The PH methods aims to decompose the stochastic model into multiple 
sub-problems to reduce the computational burden. However, the PH algorithm is based on 
the assumption that the number and location of damaged lines are pre-determined in all 
scenarios. This assumption is challenged by the MDS-DRM because only the PDLO 
information is utilized. The CCG method is effective for the two-stage robust optimization. 
However, the CCG method is only efficient for the uncertainty set concerning a single natural 
disaster, but not applicable to the ambiguity sets with multiple independent disasters.   

V. Case studies 

In this section, case studies are performed in the modified 13-node, 33-node and 135-node 
distribution systems to validate the effectiveness of the proposed MDS-DRM. All 
simulations are implemented using GAMS 23.7/CPLEX 12.3 platform on a computer with a 
core i5, 3.2 GHz processor and 4 GB RAM. 

A. Case study in IEEE 13-node distribution system 

In the modified IEEE 13-node distribution system, lines 6, 10 and 13 are added [22]. The 
active power demand at each node is shown in Fig.6 with total load of 1155.35 kW (shown 
as italics numbers in the figure). DGs with 100 kW capacities are served as candidates to be 
allocated. It is assumed the capital cost of DGs is $1500 /kW [9], hardening cost for each line 
is $ 400 [23], and will be valid for 10 years. The penalty cost for load shedding is $14/kWh 
[9].A natural disaster is considered with the duration of 24h, so that the simulation horizon 
is set as 24h in this paper. 

The case study in 13-node distribution system is organized as follows. First, the 
implementation of MDS-DRM with simulation results are provided. The combination 
method of the stochastic model and DRM is explained. Then, the superiority of the joint 
consideration of random OR and PDLO is verified by comparative experiments in the second 

section. Subsequently, the sensitivity of planning decisions to the OR and PDLO is studied 
in the third section. Last, the effectiveness of the network planning and operational strategy 
to enhance the system resilience is demonstrated in the fourth section. 

Fig.6 The modified IEEE 13-node distribution system 
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1) Implementation of the MDS-DRM 

First, the proposed model is implemented in the IEEE 13-node distribution system. We set
Case 1: H=3, G=1, and the ambiguity set (3b) is employed. In addition, two natural disasters 
are considered where Ks1=2, Kave,s1=1, ρs1=0.7; and Ks2=5, Kave,s2=2.5, ρs2=0.3; denoted as 
s1=(2,1,0.7) and s2=(5,2.5,0.3). The difference between s1 and s2 indicates the different 
offensive resources and occurrence probability of two natural disasters. By applying the 
proposed model and solution method, the simulation results, as shown in Table III, can be 
obtained after 200 seconds, which is a practical time for the network planning. With the 

obtained planning measures, the load curtailments expectation is 243.19 kW, which is the 
probability-weighted sum of the expected load curtailments in each scenario, i.e., 
157.17×0.7+ 443.90×0.3. Therefore, 78.95% of load can be restored by employing the 
proposed method. Furthermore, in s1, two sets of line outages are detected, and the expected 
number of line contingencies Kave,s1=1 is met, i.e. 2×0.5+0×0.5. Moreover, the expected load 
curtailments under the worst probability distribution of outages are 157.17 kW and 443.90 
kW for each disaster denoted as s1 and s2. Consequently, the proposed model considers all 
possible PDLOs and is able to withstand the worst PDLO in each disaster scenario. 

TABLE III SIMULATION RESULTS OF CASE 1

Load curtailments expectation (kW) 243.19 
Hardening lines Lines 1, 2 and 15 
DGs placement Node 12 

Natural disaster scenarios s1=(2,1,0.7) s2=(5,2.5,0.3) 

The sets of the worst line outages and corresponding probability 
in each s

(11,14),0.5 
(None),0.5 

(None),0.167 
(3,4,8),0.833 

Expected load curtailments in each s (kW) 157.17 443.90 

Then, the implementation of MDS-DRM with ambiguity set (3a) is demonstrated, denoted 
as Case 2. Specifically, according to simulation results of Case 1, five critical lines, i.e., lines 
3, 4, 8, 11 and 14, are selected, and their outage probability is limited in the confidence 
interval [0, 0.1] in scenario s3, and interval [0, 0.2] in scenario s4, respectively. Moreover, 
the following parameters are set for s3 and s4: Ks3=2, ρs3=0.7, Ks4=5 and ρs4=0.3, denoted as 
s3=(2,[0,0.1],0.7) and s4=(5,[0,0.2],0.3). Under these pre-defined conditions, the simulation 
results are shown in Table IV. The load curtailments expectation is 252.26 kW which is 
probability-weighted sum of the expected load curtailments in each scenario, i.e. 
184.57×0.7+ 410.21×0.3. The contingency probabilities of critical lines (3, 4, 8, 11, 14) are 

(0.1, 0.1, 0, 0, 0.1) in s3 and (0.2, 0.2, 0.2, 0.134, 0.2) in s4, respectively, and these findings 
correspond to the preset confidence intervals. Consequently, the proposed approach is 
effective to improve the system resistance by incorporating the ambiguity set (3a). 

TABLE IV SIMULATION RESULTS OF CASE 2

Load curtailments expectation(kW) 252.26 
Hardening lines Lines 1,2 and 15 
DGs placement None 

Natural disaster scenarios s3 s4

The sets of the worst line outages and corresponding (3,9),0.1 (5,6,7,9,10),0.667 
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probability in each s (4,7),0.1 
(9,10),0.7 
(12,14),0.1 

(4,8,10,12,14),0.133 
(3,5,8,11,13),0.067 
(3,6,9,11,14),0.067 
(3,4,7,9,12),0.067 

Expected load curtailments in each s (kW) 184.57 410.21 

2) Superiority over existing methods 

In this section, to validate the advantages of the joint consideration of the random OR and 
PDLO, the simulations are conducted to compare the proposed method with existing methods. 
First, the proposed MDS-DRM is compared with the method only considering the random 
PDLO, i.e., the DRM, to clarify the necessity to consider the OR uncertainty with the 
stochastic programming. For this purpose, Case 3 including two simulations with the 
deterministic realization of OR uncertainty is designed as follows: 1) DRM-1, only the 
scenario s1 with the maximum occurrence probability is considered; and 2) DRM-2, the most 
serious scenario s2 is considered. The simulation results are compared in Table V. 
Specifically, the first and second columns are planning decisions in Case 1 and Case 3. The 
3rd~5th columns are the load curtailments when applying the corresponding planning 
decisions. The last column is the expected cost totaling the planning cost and penalty for load 
curtailments under the corresponding planning decisions. It can be seen that when the 
uncertainty related to the OR is ignored for different type of disasters in Case 3, DRM-1 is 
only robust and resilient against disaster s1 (121.34<157.17 in s1, but 907.35>443.9 in s2),
thereby resulting in more expected load curtailments of 113.95kW and higher expected costs 
of $23.29×103 than the MDS-DRM. Similar analysis can be conducted for the comparison 
between the MDS-DRM and DRM-2 in Table V. Consequently, the involvement of OR 
uncertainty into the planning strategies can effectively hedge against various natural disasters 
with different ORs.  

TABLE V COMPARATION RESULTS BETWEEN CASE 1 AND CASE 3

Hardening lines DGs placement 
Load curtailments (kW) Expected 

cost (103$) s1 s2 Expected 

MDS-DRM Lines 1,2,15 Node 12 157.17 443.90 243.19 96.83 
DRM-1 Lines 1,14,15 None 121.34 907.35 357.14 120.12 
DRM-2 Lines 1,2,8 Node 11 185.50 431.67 259.35 102.16 

In addition to clarify the necessity to consider the OR uncertainty with the stochastic 
programming, we also quantitatively assess the stochastic solution by some well-known 
indicators. First, we provide the models to calculate the value of expected value solution 
(EV), recourse problem solution (RP), expected result of EV (EEV) in the Appendix-B 
section. Then, the performance indicators, i.e., EEV-EV and EEV-RP in this paper, are 
evaluated and shown in Table VI. The value of EEV can be utilized to assess the solution 
quality of the deterministic model. A large value of EEV-EV ($60.88×103) means the poor 
quality of the deterministic model, thereby highlight the necessity to model the OR 
uncertainty with the stochastic method. EEV-RP measures the expected increase in value 
from solving the stochastic version of a model rather than the simpler deterministic one. A 
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large value of EEV-RP ($23.28×103) indicates that it is a valuable work to solve the 
stochastic model instead of the simpler deterministic one. It is noted that the wait-to-see 
solution (WS) is also used to assess the stochastic solution in some literatures. However, it is 
meaningless to our model because: 1) the planning decisions must be applied previously to 
the occurrence of natural disasters; and 2) the ORs are inevitably varied for a distribution 
system, so that there is no sense to evaluate the perfect information of the OR. Consequently, 
the WS and the WS-related indicator, such as the value of perfect information RP-WS, are 
not adopted to assess the stochastic solution in this paper.   

TABLE VI THE VALUE OF PERFORMANCE INDICATORS 

Indicator EV EEV RP EEV-EV EEV-RP 

Value (103$) 59.23 120.11 96.83 60.88 23.28 

TABLE VII SIMULATION RESULTS OF CASE 4

DRM-3 DRM-4 CRM 

Hardening lines Line 1,2,15 Line 1,2,15 Line 1,2,8 
DGs placement none none Node 11 

The worst scenarios 
(none),0.25 
(12,14),0.75 

(4,8,10),0.2;(10,12,14),0.2 
(3,9,13),0.2; (9,10,12),0.4 

(5,12,13),1 

Expected cost 
(×103$) 

s5 104.53 104.53 123.73 

s6 92.52 92.52 154.90 

K=3 179.22 179.22 139.78 

In further, the necessity to consider the random PDLOs with DRM is validated by 
performing the comparative simulations on Case 4 as follows: (1) DRM-3: only the scenario
s5=(3,1.5,1) is considered, i.e., Ks5=3, Kave,s5=1.5, ρs5=1; (2) DRM-4: only the scenario 
s6=(3,[0,0.2],1) is considered, i.e., Ks5=3, pL,s 

ij =0, pU,s 
ij =0.2, ρs5=1; and (3) CRM: the N-K 

criterion is considered where K=3. Then, the simulation results are shown in Table VII. 
Compared with the DRM, the CRM optimizes the planning measures only based on the 
worst-case outage scenario, i.e. damaged lines 5, 12 and 13. However, this scenario has low 
occurrence probability, so the decision from the CRM is too conservative which incurs higher 
expected cost to withstand the worst-case scenario. To conclude, the employment of the 
moment-based ambiguity sets makes the planning decisions less conservative than the 
traditional CRM method.  

3) Sensitivity analysis to the OR and PDLO 

In this section, the sensitivity of planning decisions to the OR and PDLO is studied. First, 
taking the ambiguity set (3a) as an example, Case 5 is designed to study the sensitivity to the 
OR from the aspect of the occurrence probability. Case 5 is shown as follows: the 

probabilities of (s1, s2) vary from {0, 1} to {1, 0}, and other conditions are same with Case 

1. The expected costs under different probabilities are shown in Fig. 7. It can be seen that the 
expected cost is reduced with the decrease of the probability of s2 due to its more detrimental 
impact on the system. Moreover, it is shown in both Fig.7 and Table VIII that the planning 
decisions of hardening lines and DGs placement are sensitive to the disaster probability in 
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some cases, such as the reduction of s2 probability from 0.8 to 0.6 changes the planning 
decisions. Therefore, it is necessary to estimate the likelihood of natural disasters precisely 
in these cases, and prepare two planning strategies according to the probabilities of natural 
disasters. In contrast, in other cases, e.g., {0.6, 0.4}, the planning decision is identical to {0.4, 
0.6) and {0.8, 0.2}. In these cases, the planning decision can hedge against the forecast error 
on disaster probabilities. Furthermore, the MDS-DRM degrades to DRM when the 
probability is {0, 1} and {1, 0} which shows the relationship between the MDS-DRM and 
the DRM.  
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TABLE VIII PLANNING DECISIONS OF CASE 5

{0,1} {0.2,0.8} {0.4,0.6} {0.6,0.4} {0.8,0.2} {1,0} 

Hardening lines 1,2,8 1,2,8 1,2,15 1,2,15 1,2,15 1,14,15 
DGs placement 11 11 12 12 12 none 

Case 6 shows the sensitivity analysis to the different PDLOs as follows. Case 6: the value 
of Kave,s1 varies from 0.4 to 2 with the increment of 0.4, and the value of Kave,s2 varies from 1 

to 5 with the increment of 1, with other conditions the same as Case 1. The simulation results 
are shown in Fig.8. It can be seen that the expected costs become higher with the increase of 
Kave,s1 and Kave,s2. Besides, with the given expected costs, e.g., $100×103 as shown in Fig. 8, 
this sensitivity analysis can be utilized to search for the upper limit of ORs that the 
distribution system can withstand. In addition, when Kave,s1=Ks1 and  Kave,s2=Ks2, the 
ambiguity set degrades to the N-K criteria, and thus the DRM degrades to the CRM.  

4) Effectiveness of planning and operational measures 

In this section, the effectiveness of planning and operational measures is demonstrated. 
First, we carry out the simulation on Case 7 to validate the efficiency of planning measures 
in hedging against natural disasters as shown in Fig. 9. Case 7: (H, G) varies from {0, 0} to 
{5, 3} with other conditions identical to Case 1. It can be seen that the expected costs are 

significantly reduced with the increase of planning budgets. Moreover, by fixing the budget 
for the number of DGs placement, e.g., G=0, the expected costs are also reduced by the 
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increase of the line hardening budgets H. The marginal influence of expected cost is relatively 
steep when H is approaching 0, because the security of some lines such as lines 1 and 2 is 
critical for load supplying that have priority to be hardened. Besides, the effectiveness of 
DGs placement is also critical, especially when the distribution system is damaged seriously, 
e.g., H=0. Finally, with given expected costs, e.g., 100×103 $ in Fig.9, the lower bounds of H
and G can be identified, which implies the minimum resources that the defender should 
prepare for natural disasters by employing both line hardening and DG allocation 

The effectiveness of operational measures is verified by conducting the simulations on 
Case 8. Case 8: G=2 and the value of H varies from 0 to 5 with and without applying the 
operational measures, respectively, and other conditions are identical to Case 1. The 
simulation results are shown in Fig.10. In this case, significant economic benefits of more 
than 159.81×103 $ can be achieved by applying the operational measures when H=1, because 
the distribution system operator can restore critical loads by network reconfiguration and 
microgrids formation after a natural disaster based on the proposed strategies in equations 
(5o). Consequently, combining the planning and operational measures can efficiently 
improve the resilience of distribution systems. 
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B. Case studies in 33-node and 135-node distribution system 

In this section, the effectiveness of the proposed MDS-DRM to larger scaled systems is 
demonstrated. Then, the precision of the linearized DistFlow model is validated by the 
comparative simulations with the AC model in load shedding, power loss and voltage 
amplitude. Last, the effectiveness of the proposed solution algorithm is verified. 

1) Effectiveness to 13-node and 135-node systems
The adaptation of the proposed method to larger scaled systems is demonstrated based on 

the 33-node [40] and 135-node [41] distribution system. First, taking the ambiguity set (3b) 

as an example, Case 9 and Case 10 are studied for the 33-node and 135-node system, 
respectively. In Case 9, two natural disasters are considered based on the MDS-DRM, i.e., 
s1=(2, 1, 0.7), s2=(5, 2.5, 0.3). In addition, the budgets for planning resources are set as H=3 
and G=2, and DGs with 400 kW capacities serve as candidates to be allocated. Similarly, in 
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Case 10, DGs with 200 kW capacities serve as candidates to be allocated, H=30 and G=5. 
Moreover, two natural disasters are considered based on the MDS-DRM, i.e., s3=(6, 3, 0.7), 
s4=(8, 4, 0.3). The computation time of the MDS-DRM implemented in the 33-node and 
135-node system is 870 seconds and 2.5 hours, respectively, and the computation time is 
feasible for the distribution network planning. The planning and operational strategies are 
shown in Fig. 11 and Fig. 12, and the load curtailments and costs are listed in Table IX.  

TABLE IX SIMULATION RESULTS OF CASE 9 AND CASE 10

Load curtailments (kW) 
Capital cost (×103 $) Expected cost (×103 $) 

s1(s3) s2(s4) Expected 

Case 9 255.00 2604.17 959.75 60.12 382.60 

Case 10 1459.51 1901.67 1592.157 151.20 686.16 

Then, the effectiveness of the network planning in hedging against natural disasters can be 
further validated in the post-event operational stage by network configuration and provisional 
microgrid formation. Specifically, the critical lines being hardened provide the guarantee for 
the electricity supply to customers, such as the line 1-2, 2-3 in Fig.11, and the main branches 
in Fig.12. Moreover, the backup DGs can be utilized to energy the provisional microgrids, 

which are isolated from the main grid due to the line outages. For example, 6 provisional 
microgrids are formed due to the damaged lines 10-11, 23-24, 48-52, 63-64, 78-79 and 103-
105, and these microgrids lose the support from the main grid. However, 5 microgrids, i.e., 
MG1, MG2, MG3, MG4 and MG5, are still energized by the allocated backup DGs, thereby 
reducing the load curtailments. Consequently, the combination of planning and operational 
strategies can effectively improve the distribution system against natural disasters. 

Fig.11 Planning and operational strategies in 33-node system 

Fig.12 Planning and operational strategies in 135-node system 
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2) Effectiveness of the linearized DistFlow model 

In this section, the effectiveness of the linearized DistFlow model is validated by the 

comparative simulations with the AC model. In the 13-node system, it is assumed the lines 
13 and 15 are damaged by the natural disaster. In the 33-node and 135-node system, the 
damaged lines are shown in Fig.11 and Fig.12. In this case, the power loss and load shedding 
obtained from the linearized DistFlow model and the AC model with the planning decisions 
are shown in Table X. Moreover, the gap of the voltage amplitude between the linearized 
DistFlow model and the AC model is shown in Fig.13-a, Fig.13-b, and Fig.13-c. It can be 
seen that, although some simplification techniques are applied in the linearized DistFlow 
model, such as ignoring the power loss, the precision of the linearized DistFlow model can 
be acceptable. Specifically, the load shedding in the linearized DistFlow model, which is our 
focus to reduce, is almost same with that in the AC model. Moreover, the maximum 

difference of the voltage amplitude between the linearized DistFlow model and the AC model 

is 3×10-3 p.u., and this difference has little effect on the precision of the proposed model. 

Consequently, according to the comparative simulations with the AC model, the precision of 
the linearized DistFlow model can be sufficient for the planning problem in this paper. 

TABLE X COMPARISON BETWEEN THE LINEARIZED DISTFLOW MODEL AND THE AC MODEL

System
The percentage of the power loss to loads (%) The load shedding (kWh) 

The linearized Distflow method The AC method The linearized Distflow method The AC method

13-node 0 0.28 5704 5704 

33-node 0 1.27 34800 34802 

135-node 0 1.33 64817 64884 
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3) Effectiveness of the solution method 

In this section, the effectiveness of the solution method is demonstrated. The gap is set to 
be 10-5. The value of LB and UB in Case 1, Case 9 and Case 10 is shown in Fig.14-a, Fig.14-
b and Fig.14-c, respectively. It can be seen that the primal cut based solution method and 
dynamically refine the value of LB and UB, thereby generating an optimal solution. 
Moreover, the system size has little effect on the iteration number of the solution method, 
hence the effectiveness of the solution method to the large systems can be guaranteed.  Then, 
the performance of the CCG method is evaluated, as shown in Fig. 15-a for Case1 s1, and 
Fig. 15-b for Case 1 s2. It is noted that the CCG algorithm is implemented at each iteration 
of the primal cut based solution method. Hence, the times of the CCG implementation are 
identical to the iteration number of the primal cut based solution method. It can be seen from 
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Fig. 15-a and Fig. 15-b that, the CCG method can converge to the optimal solution within 5 
iterations for all cases, which indicates the effectiveness of the CCG method for the model 
(11). 
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VI. Conclusion 

This paper proposes a novel resilience-oriented planning model which is based on multi-
disaster-scenario and distributionally robust model (MDS-DRM) for line hardening and DG 
allocation in distribution systems. The consideration of the OR uncertainty with the 
stochastic method makes the planning strategy more robust against various natural disasters. 
The consideration of the PDLO uncertainty enables the planning model to address the random 
and nonlinear effect of the natural disasters to distribution systems. Compared with the 
existing methods, the proposed MDS-DRM can hedge against natural disasters in a more 

effective and less conservative manner. Besides, a novel primal cut based decomposition 
method is proposed to solve the multi-scenario two-stage distributionally robust 
programming model. The proposed solution method can converge to an optimal solution 
within finite iterations in all test distribution systems. In practical, the proposed method can 
be utilized to advise planning decisions to safeguard distribution systems from natural 
disasters. 

Appendix

A. Derivation procedure from (7) to (8) 

It is noted that Zs is formulated as a discrete and finite set containing all outage scenarios. 
In this case, the integral forms in (7) can be reformulated as the summation forms: 
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Then, the summation form of (7) can be obtained by integrating (A1), (A2) and (A3) into 
(7) as follows, where the decision variable is the probability of all outage scenarios. 
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It is noted that the decision variable in the linear programming (A4) is the occurrence 
probability of all outage scenarios in Zs, which is continuous variable ranging from 0 to 1. 
Hence, (A4) can be transformed to the dualization form (A5) based on the standard duality. 
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B. The model for calculating the performance indicators 

The proposed MDS-DRM wishes to minimize the expected cost over all possible ORs. 
According to the definition in [42], [43], the proposed MDS-DRM is actually the recourse 
problem, and the optimal solution is called the recourse problem solution (RP). 

If we could wait and see what the random OR would occur before we make the planning 
decision, then we could choose ys for the specific realization of the OR uncertainty. Then, 
the wait-and-see solution (WS) can be defined as: 

 WS min  sup  ( , )s
s s

s s s s

s S

Q
 

      a y y z
•

P
P F

E

s.t.    ,        s s S  Ay b

  ( ) :      s

s s s s s sZ s S    Bz cP
P

F P E                          (B1) 

T

,
( ,  )  min        

s s

s s s

s s s s

Q s S

s S

   

      

x v
y z d x

Cy Dz Ex Fv e

The expected value solution (EV) can be obtained by solving the expected value problem, 
where all OR-related random variables are replaced by their expected values, thereby solving 
a deterministic program: 

 EV min  sup  ( , )Q


 a y y z
•

P
P F

E

s.t.  Ay b

  ( ) :    ( ),     ( )  s s s s
s S s S

s S

Z  


    Bz c c cP
P

F P E E E               (B2) 

T

,
( ,  )  min  Q 


   

x v
y z d x

Cy Dz Ex Fv e

Let y  be an optimal solution to (B2), called the expected value solution. The expected 

value of using the EV solution (EEV) can be obtained by: 

EEV= min   sup  ( , )

. .    Constraints (6c), (6d)

s
s s

s s

s S

Q

s t


 

    a y y z•

P
P F

E
                                 (B3) 

C. The proof for the Guaranteed Convergence

It is first claimed that any repeated zs, in the solution procedure implies the optimality of 

(9), i.e., LB= UB. Then, Zs in (2) is a finite set. 
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Suppose at iteration , zs, can be obtained from (11), which leads to optimal xs,  and 

ObjLs,. It follows that: 
, T , , , T , , ( )  ( ) ,s s s s s s s sObjL          d x α Bz d x α Bz x• • (C1) 

According to (12), it can be obtained that: 
,,

,,        =   ( )   

ss s s

s S s S

ss s s s

s S s S

UB ObjU ObjL

ObjL

  

 

  

 

 

 

    

    

 

 a y c α• •
                            (C2) 

If zs, has been identified in a previous iteration s with 1 ≤s ≤, then according to the 

primal cut 1 in (10),  it can be obtained that , ,s sObjL    by: 
,, T T , T , , , , ( )  ( )  ( )sss s s s s s s s s sObjL            d x α Bz d x α Bz d x α Bz• • •      (C3) 

Hence, according to the model (10), it can be derived that: 
, ,

,,

  [( )  ]

                         ( )   

s s s s

s S

ss s s s

s S s S

LB ObjU

ObjL

    

 

 

 



 

     

     



 

a y c α

a y c α

• •

• •
                   (C4) 

Then, based on (C2), (C4), and the fact that UB≥LB, it follows that UB=LB. The 

proof of convergence is completed. 
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