Photochemical Behavior of Microbial Extracellular Polymeric Substances in the Aquatic Environment

Zhou, Shaofeng; Liao, Zhiyang; Zhang, Beiping; Hou, Rui; Wang, Yi; Zhou, Shungui; Zhang, Yifeng; Ren, Zhiyong Jason; Yuan, Yong

Published in:
Environmental Science & Technology (Washington)

Link to article, DOI:
10.1021/acs.est.1c02286

Publication date:
2021

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Photochemical Behavior of Microbial Extracellular Polymeric Substances in the Aquatic Environment

Shaofeng Zhou, Zhiyang Liao, Beiping Zhang, Rui Hou, Yi Wang, Shungui Zhou, Yifeng Zhang, Zhiyong Jason Ren, and Yong Yuan*

*Correspondence: yuanyong@soil.gd.cn (Y. Yuan).

Authors Contributions

S. Zhou and Z. Liao contributed equally to this paper.
Abstract

Microbially derived extracellular polymeric substances (EPS) occupy a large portion of dissolved organic matter (DOM) in surface waters, but the understanding of the photochemical behaviors of EPS is still very limited. In this study, the photochemical characteristics of EPS from different microbial sources (Shewanella oneidensis, Escherichia coli, and sewage sludge flocs) were investigated in terms of the production of reactive species (RS), such as triplet intermediates (3EPS*), hydroxyl radicals (•OH), and singlet oxygen (1O$_2$). The steady-state concentrations of •OH, 3EPS*, and 1O$_2$ varied in the range of $2.55-8.73 \times 10^{-17}$, $3.01-4.56 \times 10^{-15}$, and $2.08-2.66 \times 10^{-13}$ M, respectively, which were within the range reported for DOM from other sources. The steady-state concentrations of RS varied among different EPS isolates due to the diversity of their composition. A strong photochemical degradation of the protein-like components in EPS isolates was identified by excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), but relatively, humic-like components remained stable. Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) further revealed that aliphatic portion of EPS was resistant to irradiation, while other portions with lower H/C ratios and higher O/C ratios were more susceptible to photolysis, leading to the phototransformation of EPS to higher saturation and lower aromaticity. With the phototransformation of EPS, the RS derived from EPS could effectively promote the degradation of antibiotic tetracycline. The findings of this study provide new insights into the photoinduced self-evolution of EPS and the interrelated photochemical fate of contaminants in the aquatic environment.
Keywords: extracellular polymeric substances, reactive species, triplet intermediates, phototransformation, tetracycline, dissolved organic matter

Synopsis: Extracellular polymeric substances show great photochemical activity for inducing their phototransformation and driving degradation of organic pollutants.
TOC
INTRODUCTION

Extracellular polymeric substances (EPS) secreted from biological processes are a significant source of dissolved organic matter (DOM) ubiquitous in both terrestrial and aqueous environments. It has been reported that greater than 40% of the total DOM in marine environment consists of EPS. EPS is a complex mixture of polymers that primarily contain proteins, polysaccharides, humic substances and DNA. Recently studies have discovered the important effects of EPS on biofilm adhesion, quorum sensing/quenching, mass/electrons transference and the self-protection of cells. In addition, EPS is also a source of the natural carbon pool in water systems and ubiquitously participates in various bio- and chemical reactions in the aquatic environments. Therefore, it is imperative to gain more understanding of the environmental impacts of EPS.

DOM is an active photosensitizer that may undergo a series of reactions triggered upon sunlight illumination. Owing to the absorption of photons, DOM could be photoactivated to form its triplet-excited state DOM (3DOM*), which is one of the important sources for the further generation of reactive radical species, such as hydroxyl radicals (•OH) and singlet oxygen (1O$_2$). The potential photoactivity of DOM provides new insights into the process of natural carbon circulation, yet the photochemical behaviors of EPS and their environmental implications are largely uncharacterized in spite of the fact that EPS is a main DOM discharged into waterbody from wastewater utilities. As one of the most active moieties in EPS, humic substances have been shown to be susceptible to natural sunlight. Attempts have been made to investigate the effects of EPS on the valence alternation of metal ions. For instance, the positive effects of EPS on silver nanoparticle formation from Ag$^+$ has been shown to occur.
under both visible-light and ultraviolet irradiation. In this case, light-induced hydrated electrons (reducing agents) could be activated from functional groups, such as aromatic compounds, hydroxyls and phenolic-OH of humic substances in the reduction of silver ions. Previous work has also advanced photochemistry research in EPS, but they only evaluated EPS as a mixture of photosensitive clusters in which functional groups and distinct subcomponents may affect the photoproperties. The phototransformation of EPS at the molecular level is largely unknown, so the understanding of the correlation between EPS photochemical behaviors and their associated environmental implications are needed.

This study isolated three types of EPS from pure culture *Shewanella oneidensis* MR-1, *Escherichia coli*, and mixed culture sewage sludge flocs (termed M-EPS, E-EPS and S-EPS, respectively) and compared them as research models to test the following research hypotheses: (1) how photochemical behavior of EPS vary among different sources; (2) to what extent does an EPS respond under sunlight illumination at the molecular level; and (3) how do these soluble microbial productions that act as light harvesters function on the attenuation of contaminants that co-exist in aquatic environments? Specifically, the phototransformation of EPS was revealed via a suite of mass spectrometry and fluorescence analyses. Additional investigation with regards to the possible reaction mechanisms between EPS and an antibiotic that co-exist in aquatic environment was also conducted and discussed.

MATERIALS AND METHODS

EPS Extraction. The chemicals used for all the experiments were provided in the Supporting Information, S1. Microbial EPS from *S. oneidensis* and *E. coli* were collected using a modified
heating extraction. Briefly, the cultured bacteria solutions (Supporting Information, S1) were used for bacterial pellets harvest after 24 h of cultivation using duplicate centrifugations (4500 × g, 5 min) to remove the residual medium prior to re-suspension in 50 mM phosphate buffer and heated in a water bath at 60°C for 30 min. Then the supernatant was obtained as a raw EPS solution using a final centrifugation at 10,000 × g for another 25 min. To remove the unsettled cells and residual salts, the solutions were filtered through 0.22-μm membrane filters and dialyzed in several dialysis bags (500 Da, MD 34, Union Carbide, U.S.A.) in sequence. The EPS from the sewage sludge (S-EPS) was collected following the same procedure, except for the bacterial cultivation. All of the EPS solutions were stored in the dark at 4 °C prior to use.

EPS Characterization. The procedures for EPS compositions (proteins, humic substances and polysaccharide) analysis were described in Supporting Information, S2. The total organic carbon (TOC) contents of the EPS samples were measured using a TOC analyzer (TOC-L CPH, Shimadzu, Japan). A fluorescence spectrophotometer (FLS 1000, Edinburgh Instruments, U.K.) was used to obtain the three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopic results for analyzing possible structure changes of the three EPS samples (Supporting Information, S3). Specific ultraviolet absorbance at 254 nm (SUVA$_{254}$, the ratio of absorbance at 254 nm to TOC concentration) and Fluorescence index (FI, the ratio of Intensity at Ex/Em = 370/470 to Intensity at Ex/Em = 370/520) were also calculated. A parallel factor (PARAFAC) analysis was conducted on the MATLAB 2017 software, as previously reported. The freeze-dried EPS samples were mixed with KBr for Fourier transform infrared spectroscopy (FTIR) measurements, using an FTIR spectrometer (Nicolet 6700, Thermo-Fisher, USA.).
Photochemical Characterizations. A cylindrical quartz vessel (100 mL in total volume) with a water-circulating jacket was employed for all of the photochemical analyses (Figure S1). EPS solution samples were prepared at 50 mL aliquots with a concentration of 20 mg C/L. In addition, EPS solution was further diluted to 10 mg C/L for the detection of triplet intermediates involving 2,4,6-trimethylphenol (TMP), because this TMP has been reported sensitive to dissolved organic carbon. The vessel was sealed after it was flushed with nitrogen gas to maintain an oxygen-free headspace during triplet intermediates detection. Natural sunlight was simulated using a 300 W Xenon lamp system (XE300, Redmatrix Co., China). The illumination below a wavelength of 280 nm was blocked using a light filter (ZJB280, Fulei Co., China). The intensity of the light (7.2×10^{-7} einstein L$^{-1}$ s$^{-1}$) was confirmed using a ferrioxalate actinometer. The light source was vertically settled at a distance of 20 cm above the liquid surface. The temperature of the irradiation solutions was maintained at 30 ºC.

RS Detection. An electron paramagnetic resonance (EPR) analysis (EMXplus, Bruker, Germany) was conducted for the detection of RS in illumination process. The 5,5-dimethyl-1-pyrroline-oxide (DMPO) and 2,2,6,6-tetramethylpiperidine (TEMP) (both prepared in 100 mM) were employed as spin-trapping agents for •OH and $^{1}\text{O}_2$, respectively (Scheme S1). The yields of $^{1}\text{O}_2$ and the triplet reactive intermediates (termed $^{3}\text{EPS}^*$, in this case) were quantified by the consumption of furfuryl alcohol (FFA, 0.2 mM at the initial concentration) and TMP (1 mM at the initial concentration), respectively, which was determined using the HPLC (Essentia LC-16, Shimadzu Co., Japan). Terephthalate (TPA), a non-fluorescent probe compound, with an initial concentration of 1 mM, was used for detecting the formation of •OH. The calculations of the steady state •OH, $^{1}\text{O}_2$, and $^{3}\text{EPS}^*$ concentrations are detailed in Supporting
Information, S4. The quantum yields (Φ) of 3EPS*, •OH, and 1O$_2$ were calculated using the following equations, modified from previously work by D. Wan et al.12

$$\Phi_i = \frac{R_i}{R_a} \quad (1)$$

$$R_a = \sum_{\lambda=280}^{700} E_0^\lambda (1-10^{-\varepsilon_b\text{[EPS]}}) \quad (2)$$

Where R_i (mol L$^{-1}$ s$^{-1}$) is the yield rate of RS ($i = ^3$EPS*, •OH, or 1O$_2$), R_a (Einstein L$^{-1}$ s$^{-1}$) is the rate of light adsorption, E_0^λ (Einstein cm$^{-2}$ s$^{-1}$) is the spectra photon irradiance which was calculated by intensity of the light (7.2×10^{-7} Einstein L$^{-1}$ s$^{-1}$) multiplying the depth of water (3 cm). The $[\text{EPS}]$ is the TOC value of EPS (10 mg L$^{-1}$ for 3EPS* or 20 mg L$^{-1}$ for •OH, or 1O$_2$), b (cm) is the length of light path and ε (L mg$^{-1}$ cm$^{-1}$) is the absorption coefficient of EPS at a specific wavelength.

Ultrahigh-resolution ESI FT-ICR MS Analysis. The EPS samples extracted before and after 5 h of illumination were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with a 9.4 T conducting magnet (Bruker Daltonics, Germany) coupled to an electrospray ionization source (ESI) in negative mode. The detailed procedure of the sample extraction is presented in Supporting Information, S5. The samples were injected at 180 μL/h. The FT-ICR MS operation was followed by the procedure previously described.26 Detected peaks that had a signal-to-noise ratio (S/N) ≥ 5 and a mass accuracy of ≤ 0.6 ppm were imported for correcting the molecular formulas. The peaks that were found in the blank samples were excluded. Data processing and analysis were performed in Compass DataAnalysis 5.0 (Bruker). As salts were excluded in the pretreatments, the formulas that contained carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) were interpreted in this work. Data calculations were described in Supporting Information, S5.
and the chemical rules for the formulas generations were followed the previously provided instructions.

Tetracycline (TC) Degradation and Transformation Products. A total of 40 mg/L of tetracycline (TC) was prepared along with the M-EPS solution mentioned above. A 0.5-mL aliquot of each sample was mixed with 0.5 mL of methanol for determination of the TC concentration via high-performance liquid chromatography (HPLC). Quenching experiments were conducted with the addition of 20 mM of tert-butyl alcohol for •OH and nitrogen gas for ¹⁰₂. All of the solutions were prepared at a pH of 7.0 ± 0.3 without buffer and continuously stirred at 300 rpm during the tests. All of the experiments were conducted in triplicate. The procedures for determination of the TC concentration and its transformation intermediates are described in Supporting Information, S6.

RESULTS AND DISCUSSION

Composition Properties of the EPS Isolates Varied from Different Sources. The EPS isolates obtained from the three different sources showed various contents of main components such as proteins, humic substances and polysaccharides. Specifically, the S-EPS showed the highest humic substance (15.7 mg/L) and the lowest protein content (6.36 mg/L), while M-EPS had the highest protein (19.36 mg/L) and lowest humic substance (5.39 mg/L) content (Table 1). SUVA₂₅₄ was used to evaluate the aromaticity of EPS samples, and the results indicated S-EPS had highest aromaticity based on the highest SUVA₂₅₄ values among all EPS samples (Table 1) while the differences in fluorescence index (FI) values of three EPS samples potentially indicated different compositions or chemical structure in humic substances.

27. Tetracycline (TC) Degradation and Transformation Products. A total of 40 mg/L of tetracycline (TC) was prepared along with the M-EPS solution mentioned above. A 0.5-mL aliquot of each sample was mixed with 0.5 mL of methanol for determination of the TC concentration via high-performance liquid chromatography (HPLC). Quenching experiments were conducted with the addition of 20 mM of tert-butyl alcohol for •OH and nitrogen gas for ¹⁰₂. All of the solutions were prepared at a pH of 7.0 ± 0.3 without buffer and continuously stirred at 300 rpm during the tests. All of the experiments were conducted in triplicate. The procedures for determination of the TC concentration and its transformation intermediates are described in Supporting Information, S6.

28. SUVA₂₅₄ was used to evaluate the aromaticity of EPS samples, and the results indicated S-EPS had highest aromaticity based on the highest SUVA₂₅₄ values among all EPS samples (Table 1) while the differences in fluorescence index (FI) values of three EPS samples potentially indicated different compositions or chemical structure in humic substances.
fluorescence analysis provided more details on the composition properties of the EPS isolates. Separated regions of each composition visualized in the EEM spectra are classified in Figure S2 and Table S1. The fluorescence signals showed the existence of aromatic-amino substances like tyrosine (Ex/Em of 225/300) in region I and II of the EEM spectra for S-EPS and M-EPS, but this could be barely recognized in the E-EPS. The highest fluorescence signals of region I and II were found in the S-EPS sample as the aromatic protein-like substances, which is consistent to previous reports that such components were responsible for the stability of microbial structures. The fluorescence signals at Ex/Em of 350/450 nm and 275/410 nm were attributed to a visible humic-like peak and UV humic-like peak, respectively. Although there was little difference in the peak intensity of the visible humic-like substances among the three EPS samples, both S-EPS and E-EPS contained more UV humic-like substance that basically composed of hydrophobic acids. Furthermore, the E-EPS sample also showed the strongest intensity of peak E in region III (Ex/Em of 235/410), which could be assigned to fulvic-like substance. Thus, this diversity in composition might potentially contribute to the different photochemical behaviors of each EPS.

EPS Efficiently Produced Reactive Species (RS) under Illumination. The photochemical activity of the studied EPS samples was investigated by using probe molecules (HTPA, FFA and TMP) for •OH, ^1^O_2_, and ^3^EPS* detection, respectively. Figure 1 shows the concentration variations of the three probing agents as a function of irradiation time for the accumulation and kinetics of RS in the EPS solutions. As shown in Figure 1a, the S-EPS accumulated a larger portion of HTPA (1.28 μM) and leveled off gradually during illumination. However, a peak in the HTPA concentration in the third hour was identified in both M-EPS and E-EPS solutions.
(0.32 and 0.63 μM, respectively), while in S-EPS solution the HTPA concentration continued increasing throughout irradiation tests. Though small part of HTPA might undergo direct photolysis upon extended irradiation, it is still reasonable to conclude that S-EPS was more responsive than its counterparts in the generation of •OH (Figure 1d and Table 1). It is known that the generation of •OH has a close relationship with hydrophilic humic substance which was known as a good source for •OH with high photoactivity, so the lowest [•OH]ss in M-EPS could be explained by the limited humic substance concentration as indicated in the EEM spectra (Figure S2). Interestingly, although E-EPS presented lower [•OH]ss than S-EPS, the Φ (•OH) of the E-EPS was slightly higher than that of S-EPS (Table 1), indicating that •OH precursor in E-EPS was more photo-sensitive so as to form more •OH via the adsorption of per photon. While the lower [•OH]ss in E-EPS was explicable that some proteins, they might potentially be an extra sink of •OH along with other organic matters in EPS. The photo-induced generation of •OH from EPS was further confirmed by EPR spectra using DMPO as the probe molecule. As presented in Figure S3a, the peaks corresponding to the DMPO-•OH adducts with a typical intensity ratio of 1:2:2:1 were clearly recognized in all the EPS solutions, providing the evidence of •OH presence in the system. In contrast, no such signals were found in the group without EPS. Although the exact mechanisms of •OH formation from triplets as precursors are not yet fully understood, the two pathways that involve the oxidation process of OH⁻ and/or abstraction of an H atom from water or direct photolysis from H₂O₂ generated by irradiated DOM are still under debate. In our case, the H₂O₂-related pathway was not significant, as illustrated in Figure S4. The catalase was used to quench H₂O₂ to diminish the H₂O₂ impact on •OH generation. Although decreases in [•OH]ss were observed in all three EPS
samples in the presence of catalase (Figure S4a), the \(\text{H}_2\text{O}_2 \)-related pathway was contributed to 23.4\%-27.9\% of \([\cdot\text{OH}]_{ss}\) in EPS solutions (Figure S4b).

For singlet oxygen generation, in the initial stages there was a slightly faster production of \(^1\text{O}_2 \) (in loss of FFA) in the M-EPS than that in the E-EPS (Figure 1b), which was converse to the \(\cdot\text{OH} \) yield. Note that in the EEM spectra (Figure S2), the M-EPS was advantageous in proteins content and specifically rich in aromatic proteins/amino acids, such as tryptophan and tyrosine (regions I and II in the EEM)\(^{35}\). These constituents, basically, were shown to be active sources where \(^1\text{O}_2 \) was photoexcited.\(^{12, 32}\) The same conclusion is also applicable to the yield of \(^1\text{O}_2 \) in the S-EPS obtained from its EEM spectra with the highest fluorescence intensity in regions I and II (Figure S2). This resulted in the highest \([^1\text{O}_2]_{ss}\) at \(2.66 \times 10^{-13} \text{ M} \) compared with those of the M-EPS and E-EPS (\(2.08 \times 10^{-13} \text{ and } 2.11 \times 10^{-13} \text{ M} \), respectively) (Table 1).

This finding was in accordance with the quantum yields of \(^1\text{O}_2 \) in other types of DOM (Table S2), indicating that EPS was an appropriate photosensitizer that might share a similar process for \(^1\text{O}_2 \) generation with other DOM. The generation of \(^1\text{O}_2 \) from EPS was also confirmed by EPR spectra with TEMP as the probe molecule. The characteristic triplet spectrum with equal intensities (1:1:1) was clearly observed in the EPS-TEMP solution of the three EPS samples (Figure S3b), corresponding to oxidized TMPO by \(^1\text{O}_2 \).\(^{36}\) This intuitively evidenced that EPS could be photo-triggered to the production of singlet oxygen. Since the \(^1\text{O}_2 \) generation mainly involved energy-transfer process with an energy gap of 94 kJ/mol,\(^{37}\) the difference in energy-transfer capabilities within three EPS samples need to be extracted. In this case, energy distributions in EPS triplets were examined in the presence of high concentration of sorbic alcohol (SA, i.e., 2,4-hexadienoic alcohol) as a high-energy triplet quencher (\(E_p > 250 \)
An apparent $^1\text{O}_2$ quantum yield of high-energy EPS triplet ($\Phi_{\text{H-EPS}}$) and contribution (f_H) was calculated (eq 3 and 4) based on the loss of FFA in the presence of sorbic alcohol and results were presented in Figure S5.

$$f_H = \frac{\Phi_{\text{H-EPS}}}{\Phi_{1^2\text{O}_2\text{EPS}}}$$ \hspace{1cm} (3) $$\Phi_{\text{H-EPS}} = \Phi_{1^2\text{O}_2\text{EPS}} - \frac{d[\text{FFA, SA}]/dt}{\sum_\lambda \lambda^{1002_{\text{H}\text{EPS}}}} (1 - 10^{-\varepsilon_b[\text{EPS}]})$$ \hspace{1cm} (4)

Where $\Phi_{1^2\text{O}_2\text{EPS}}$ is apparent $^1\text{O}_2$ quantum yield without sorbic alcohol, [FFA, SA] is the FFA concentration variation in the presence of sorbic alcohol. As shown in Figure S5, significant decreases were observed in the apparent $^1\text{O}_2$ quantum yield for all EPS samples after quenching by sorbic alcohol. The contribution of high-energy triplets for $^1\text{O}_2$ generation was calculated to be 55–70%, which was quite higher than those of terrestrial-origin DOM (~20%-38%) and comparable to those of effluent/wastewater organic matter (~65%). Thus, it could be suspected that EPS and effluent/wastewater organic matter triplets have a similar process of energy transfer to yield $^1\text{O}_2$. It was reported that aromatic ketone moieties within DOM were the main ingredients of higher-energy triplets. A highest $\Phi_{\text{H-EPS}}$ of 70% was observed in the S-EPS solution, which was in accordance with the highest aromaticity among three EPS samples as revealed by the SUVA254. Meanwhile, the high-energy triplet states were dominant in S-EPS, which indicated that S-EPS might be more photochemical active relative to that of M-EPS and E-EPS.

The photogeneration of the triplet intermediates ($^3\text{EPS}^*$) was also quantified using the reduction loss of TMP (Figure 1c). Note that this test was operated under oxygen-depleted condition since oxygen might act as a triplet quencher causing inaccurate assessment of triplets steady-state concentration and quantum yields (Figure S6). The order of quantum yields Φ...
(3EPS*) for the three EPS was E-EPS > S-EPS > M-EPS (Table 1), while the steady-state concentrations of 3EPS* presented a slightly different trend. The [3EPS*]ss of the three EPS solutions were calculated as 3.68 × 10^{-13}, 4.56 × 10^{-13} and 3.01 × 10^{-13} M for M-EPS, E-EPS, and S-EPS, respectively. In contrast to •OH generation, there was little difference in the TMP loss between the M-EPS and E-EPS solutions, while the S-EPS presented the lowest triplet yield (Figure 1f). The triplet radicals could participate in photoreactions as a primary transient for the generation of •OH and ¹O₂ via electron-transfer and energy-transfer reactions, respectively.⁴⁰,⁴¹ Although the formation of ¹O₂ is expected to be the primary photoreaction of triplet intermediates, as relatively low energy is required for starting deactivation of triplet intermediates by dissolved O₂.²⁵ However, this deactivation by oxygen was blocked since the solution was deaerated. Therefore, 3EPS* was believed largely consumed for the generation of •OH, leading to the lowest [3EPS*]ss detected in the S-EPS. Other than •OH, ¹O₂, and 3EPS*, the possible generation of another important RS (superoxide radicals, O₂⁻) was also investigated. However, there was no remarkable O₂⁻ detected during EPS illumination, which was discussed in Supporting Information, S7.

The structure of EPS was Significantly Altered by Illumination. It appeared that simulated solar irradiation could not significantly lead to mineralization of EPS because the averaged TOC removal efficiencies of the three EPS solutions were less than 10% (Figure S7). Thus, further analysis was conducted to reveal the phototransformation of EPS. The EEM spectra provided primary information on the phototransformation of EPS (Figure S2). The decay of the fluorescence intensity in regions I and II of all three EPS samples indicated a probable decomposition fate of such aromatic proteins during illumination. However, the fluorescence
intensities at Ex/Em = 350/450 (humic parts) barely decreased, except for that of E-EPS. It is reasonable to hypothesize that the photosensitivity of EPS was attributed to only certain parts. As such, the variations of main compositions in the EPS during illumination were further detailed using a PARAFAC analysis. As illustrated in Figure 2 (a-f), three main components (component 1 at Ex/Em = 220/320 nm and 280/320 nm, component 2 at Ex/Em = 280/350 nm and component 3 at Ex/Em = 250/460 and 300/460) were identified by the EEM-PARAFAC analysis. Among them, two components (components 1 and 2) were related to aromatic amino acids-like components (tyrosine-like and tryptophan-like components, respectively). These protein-like substances demonstrated a decreasing trend in all three EPS samples during illumination, confirming a strong photodegradation of such protein-like substances in EPS. It was not surprising that those highly aromatic substances could be oxidized due to their electron-rich moieties. However, the component C was related to humic-like substances, and its peak intensities remained relatively stable. The slight increase of component 3 in the M-EPS and S-EPS could be attributed to the formation of phenolic-like intermediates from the oxidation of the macro aromatic structure of other portions (e.g., aromatic proteins) in EPS. Therefore, the contribution of those main components to the photoactivity of EPS was confirmed using the PARAFAC analysis.

The variations of FTIR spectra clearly provided the evolution of several EPS functional groups during illumination (Figure 2g~i). Three apparent oxygen-containing functional groups (C-O-C at 1080 cm$^{-1}$, C=O at 1620 cm$^{-1}$, and phenolic-OH at 1401 cm$^{-1}$) were recognized. In total, those functional groups experienced a decrease in both three EPS samples during illumination. It could be supportive that oxygen-containing compositions were sensitive to
irradiation and thus directed the photo-transformation of EPS to lower O/C and higher saturation. The phototransformation in the molecular compositions of the EPS samples after illumination was further analyzed using FT-ICR MS.

In general, the peak distributions of the EPS in the mass spectra taken before and after illumination showed similarities to some extent (Figure S8). Subsequently, compounds (isotopic isolates were not included) corresponding to the identified peaks (S/N ≥ 5) between 150 to 700 m/z were effectively visualized in the van Krevelen diagrams of the three EPS samples (Figure 3, Figure S9 and S10). The points in these diagrams were related to specific formulas that were classified into four major subcategories: CHO, CHON, CHONS, and CHOS compounds. Basically, these three sources of EPS shared similar subcategory compositions. Specifically, there was little difference on the abundance of CHON and CHONS compounds in the EPS samples. However, the abundance of CHOS compounds in M-EPS was higher than those in other two EPS samples, while CHO compounds went otherwise. According to Figure 3b, taking M-EPS as an example, selectivity was observed among different classes of organics during illumination. The CHOS compounds that contained C, H, O and S made up a relatively small proportion of the EPS, and its relative abundance continued to decrease after illumination. In particular, the disappearance of CHOS compounds primarily took place at lower H/C (< 1.5). Thus, these compounds with high levels of aromaticity could be more sensitive to photolysis. Although the relative abundances of the CHO compounds were able to remain stable, it was still difficult to tell whether this group was resistant to photocatalysis, as the CHO-contained formula could also be daughter intermediates from other groups. However, when comparing between the two van Krevelen diagrams, the CHO compounds showed a
tendency to move to a lower O/C structure, indicating unsaturated components with a high O/C
could be more easily removed. Additionally, although they might be photolysis intermediates
of other subcategories, there was also a possibility that they would experience losses of oxygen
functional groups, as in dehydration.

According to previously reported rules for the boundaries of regions in the van Krevelen
diagrams, these compounds in the four subcategories were divided into several regions as
marked in Figure 3a, and their variations of contribution are summarized in Figure 3c. In
general, decreases were revealed in the contributions of those classified as carbohydrates,
aromatic structures, and CRAM-like classes, which were mostly from higher O/C or lower H/C
regions. Specifically, CRAM-like groups are complex biopolymers that contain carbonyl
species with isolated aliphatic ketones and several carboxyl groups. Considering that the
loss of CHO compounds was largely observed in the CRAM-like regions and aromatic
structures, it was speculated that unsaturated aliphatic acid was preferentially removed during
the photolysis process of EPS.

In addition, the intensity weighted averaged (wa) values of X/C (X represents H, O, N, and
S) and double bond equivalent (DBE) were further calculated and summarized in Table S3 and
Text S5. The intensity weighted averaged values of the M-EPS samples were 1.409, 0.356, and
7.620 for H/C\text{wa}, O/C\text{wa}, and DBE/C\text{wa}, respectively. Compared with those values (1.066, 0.497,
and 9.450 or H/C\text{wa}, O/C\text{wa}, and DBE/C\text{wa}, respectively) obtained from the NOM sample of the
Suwannee River in another study, the relatively lower O/C\text{wa} and DBE/C\text{wa} along with the
higher H/C\text{wa} strongly suggested there was more saturated matter in the M-EPS samples over
the natural DOM. In contrast, the DBE/C\text{wa} further decreased and a slightly higher H/C\text{wa} was
observed in the M-EPS sample after illumination. This indicated that photoreactions in the EPS might be inclined to occur in aromatic, oxidized, and unsaturated components, which was consistent with the conclusions drawn from the van Krevelen diagrams. Similarly, the FT-ICR MS results of the E-EPS and S-EPS indicated that similar conclusions could be drawn regarding the photo-transformation process (Figure S9-S10 and Table S3). The direction from unsaturation to saturation of the EPS phototransformation process was confirmed.

The RS Generated from EPS could Induce the Degradation of Tetracycline. TC is considered as one of most consumed antibiotics that typically finds its way into natural environment through wastewater plant effluent. In this study, the photocatalytic capacity of EPS on the transformation of TC was evaluated. As shown in Figure 4a, the direct photolysis mineralization of TC without EPS was quite difficult (an approximate 6.6% removal efficiency under 5 h of illumination) (Supporting Information, S8), and TC was also relatively stable with EPS in the dark (approximately a 7.2% loss in concentration). In contrast, the phototransformation of TC mediated by EPS was significantly enhanced, with nearly 95.7% of degradation. This suggested that the photochemical behaviors of EPS played a key role in this pollutant attenuation. The concentration loss of TC exhibited a pseudo-first-order kinetic with a rate constant (k_{obs}) of $0.644 \pm 0.013 \ \text{h}^{-1}$ and a half-life period of 1.076 h (Figure 4), which were both were greater than those of groups without either illumination or the EPS addition.

The roles of each RS in the phototransformation of TC were further explored using a series of quenching experiments, and the results are presented in Figure S11. Compared with the group without any scavengers, the TC removal efficiencies were reduced by 11.6% and 28.5% in the presence of 20 mM tert-butyl alcohol (•OH quencher) and nitrogen gas (inhibit $^{1}\text{O}_2$
generation), respectively. The inhibition effects of TBA and nitrogen gas confirmed the nonnegligible effects of •OH and $^{1}\text{O}_2$ in the TC transformation. Comparatively, the TC degradation seemed more sensitive to the presence of $^{1}\text{O}_2$. Although •OH was featured in the non-selective reactions with most of contaminants, the concentration of •OH was apparently several orders of magnitude lower than that of $^{1}\text{O}_2$, as aforementioned. That was because, as discussed above, the EPS itself acted as an •OH quencher that strongly inhibited the apparent yield and subsequently the oxidation capacity of •OH (Figure S12). In addition, $^{1}\text{O}_2$ has been reported as a typical electrophilic reactant that favorably attacks electron-rich organic substrates. In this context, the characteristic amino and phenolic-like structures in TC were probably favored and more vulnerable to the attack of $^{1}\text{O}_2$. In this case, ground-state oxygen served as terminal for energy transfer to form $^{1}\text{O}_2$, but also a triplet quencher from the perspective of $^{3}\text{EPS}^*$. The loss of oxygen, thereafter, led to the accumulation of $^{3}\text{EPS}^*$ but simultaneous deficit of $^{1}\text{O}_2$, which lowered the TC degradation presented. In summary, singlet oxygen rather than the hydroxyl radical might contribute more in the photodegradation of TC. This trend was also consistent with that found in previous studies that have focused on other antibiotic isolates that underwent phototransformation in DOM-containing natural waters.

The intermediates of TC formed during the illumination process were analyzed and identified using UPLC-Q-Orbitrap MS. Based on the mass spectra of these intermediates (Figure S13), the TC photoinduced transformation pathways were deciphered, as shown in Figure S14. First, the product 1 (P1, m/z 427) was generated via the dehydration of TC due to the attack of radicals. Instead of the loss of the hydroxyl in the carbon-ring C, as previous
In this case, the hydroxyl located between rings A and B was displaced according to the mass spectra of P2 (m/z 428). The molar mass of P2 was 1 Da higher than that of P1, which was attributed to the replacement of the amino by an hydroxyl group at ring A. Notably, TC could be directly deaminated and oxidized without dehydration (P3 m/z 446). The $^1\text{O}_2$ acting as an electrophilic substance might be the key in the oxidation reaction, since amino groups could be fragile due to their electron-rich property. As shown in Figure S14, the common fragments like 4-(dimethylamino)-2-formyl-3-hydroxybut-3-enal and 8,10-dimethyl-3,4-dihydroanthracene-1,2-diol were detected, which were likely the follow-up degraded compounds of P1-P3. Another primary transformation product (P4, m/z 462), a hydroxylated product of TC, was also identified. The double-bond at ring B was reported as a susceptible site under the attack of $^\cdot\text{OH}$. The product 5 (P4, m/z 437) was generated via the N-demethylation of P4. Thus, the phototransformation of TC was enhanced by the RS generated by the co-existed EPS during illumination.

Environmental Implications. This study characterized the photochemical behaviors of EPS from three microbial sources, which is a significant component of effluent organic matters no matter in natural and engineered surface waterbodies. The pathways of natural EPS evolution under solar illumination were summarized in Scheme 1. The EPS, as a photosensitizer similar to DOM, could be photoactivated for RS generation (triplet intermediates, $^\cdot\text{OH}$, and $^1\text{O}_2$), which accelerated the phototransformation of EPS. At the molecular level, the EPS components tended to evolve to lower aromatic structures and less oxygen-containing functional groups. The photochemistry of EPS might contribute to the natural digestion of trace organics co-existing in aquatic conditions. In this study, tetracycline was tested as a model.
pollutant, as it is one of the most widely used antibiotics and is frequently found in downstream water systems primarily in the form of effluent from agricultural water effluent.62, 63 TC could be effectively decomposed via the mediation of RS derived from EPS. Although the hybrid effects of illumination and EPS on contaminant removal is unlikely on par with the efficiency of normal water-remediation technologies (e.g., the advanced oxidation process), this process that mimics natural phototransformation could be of fundamental and practical interest, especially for the generation of RS. In water ecological systems, like estuaries and wetlands, that involve massive amounts of EPS,64 the photochemical sensitivity of EPS will enhance the capability of natural attenuation of the waterbody, and open up new opportunities in research with regards to the transformation fate of natural organics. However, it must be pointed out that the photochemical activation of EPS may also stem from various metal ions, so further study is needed. One recent study presented a static and dynamic quenching theory regarding the suppression of prerequisite triplet radicals (the precursor of RS) caused by metal ions, and even heavy metal ions showed more detrimental effects.12 Overall, the results of this study provide significant new insights on the unrecognized photochemical pathways of EPS, especially in natural waters, and it will direct further research in this important field.

\section*{ACKNOWLEDGMENTS}

This work was supported by Natural Science Foundation of China (41877045, 21876032, 21906028 and 41907122).

\section*{SUPPORTING INFORMATION}
Descriptions for chemicals, EPS compositions analysis, EPS fluorescence analysis, calculation of steady-state concentrations, sample extraction for FT-ICR MS, determination of TC concentration and its transformation, the discussion on superoxide radicals (O$_2^-$) and the degradation of TC via direct photolysis (Text S1-S8). Tables for identification principles of EEM spectra, steady state concentrations comparison and profiles of intensity weighted averaged (wa) values (Table S1-S3). Scheme for photogeneration of radicals and their probing reactions (Scheme S1). Figures for experimental setup, EEM spectra, EPR spectra, comparisons of two •OH formation pathways, the effects of high-energy triplets on yield of singlet oxygen, comparisons of the yield of 3EPS*, $[^3$EPS*]$_{ss}$, quantum yield of 3EPS* in open-air or anaerobic conditions, TOC removal efficiencies, negative ion mass spectra of M-EPS, FT-ICR MS analysis of S-EPS and E-EPS, effects of scavengers on TC degradation, fluorescence intensity changes of S-EPS, mass spectra of TC and photo-transformation products and proposed pathways of TC (Figure S1-S14).

AUTHOR INFORMATION

Corresponding Author

Yong Yuan - Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Email: yuanyong@soil.gd.cn

Authors

Shaofeng Zhou - Guangdong Key Laboratory of Environmental Catalysis and Health Risk
Yifeng Zhang - Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark

Zhiyong Jason Ren - Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA

REFERENCES

20. Yin, Y.; Liu, J.; Jiang, G., Sunlight-Induced reduction of ionic Ag and Au to metallic

Table 1 Composition properties, RS steady-state concentrations and quantum yields of the three EPS samples.

<table>
<thead>
<tr>
<th></th>
<th>M-EPS</th>
<th>E-EPS</th>
<th>S-EPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins (mg/L)</td>
<td>19.36 ± 1.26</td>
<td>11.43 ± 0.58</td>
<td>6.36 ± 0.67</td>
</tr>
<tr>
<td>Polysaccharides (mg/L)</td>
<td>15.23 ± 0.86</td>
<td>17.28 ± 0.74</td>
<td>19.25 ± 0.99</td>
</tr>
<tr>
<td>Humic substances (mg/L)</td>
<td>5.39 ± 0.59</td>
<td>6.77 ± 0.44</td>
<td>15.70 ± 1.32</td>
</tr>
<tr>
<td>SUVA_{254}</td>
<td>2.81 ± 0.71</td>
<td>1.32 ± 0.59</td>
<td>4.43 ± 0.97</td>
</tr>
<tr>
<td>FI</td>
<td>0.69 ± 0.09</td>
<td>1.52 ± 0.11</td>
<td>1.31 ± 0.24</td>
</tr>
<tr>
<td>[•OH]_{ss} (10^{-17} M)</td>
<td>2.55 ± 0.26</td>
<td>5.18 ± 0.42</td>
<td>8.73 ± 0.38</td>
</tr>
<tr>
<td>[^{1}O_{2}]_{ss} (10^{-13} M)</td>
<td>2.08 ± 0.21</td>
<td>2.11 ± 0.18</td>
<td>2.66 ± 0.42</td>
</tr>
<tr>
<td>[^{3}EPS*]_{ss} (10^{-15} M)</td>
<td>3.68 ± 0.33</td>
<td>4.56 ± 0.48</td>
<td>3.01 ± 0.61</td>
</tr>
<tr>
<td>Φ (•OH) (10^{-5})</td>
<td>0.43 ± 0.05</td>
<td>2.20 ± 0.19</td>
<td>1.94 ± 0.12</td>
</tr>
<tr>
<td>Φ (^{1}O_{2}) (10^{-2})</td>
<td>4.01 ± 0.33</td>
<td>4.08 ± 0.29</td>
<td>7.40 ± 0.18</td>
</tr>
<tr>
<td>Φ (^{3}EPS*) (10^{-4})</td>
<td>3.74 ± 0.28</td>
<td>11.71 ± 0.72</td>
<td>3.90 ± 0.22</td>
</tr>
</tbody>
</table>
Figure 1
(a) Hydroxyl radical (•OH) generation (in the form of HTPA increase) and the depletion of (b) FFA and (c) TMP, indicating the generation of singlet oxygen (¹O₂) and triplet intermediates (³EPS*), respectively, as a function of irradiation time. Cₜ and C₀ were the FFA or TMP concentrations at before and after illumination, respectively. (d) ~ (f) First order kinetics of the •OH, ¹O₂ and ³EPS* generation, respectively. ([EPS]₀ = 20 mg TOC/L, [FFA]₀ = 0.2 mM, [TPA]₀ = [TMP]₀ = 1 mM. Note that [EPS]₀ was diluted to 10 mg TOC/L and the reactor was kept in oxygen-deleted condition for TMP experiment.
Figure 2

(a) 500
(b) 500
(c) 500
(d) 10
(e) 10
(f) 12
(g)
(h)
(i)

Figure 2 (a)~(c) The EEM spectra of three main components (1, 2 and 3, respectively) in EPS extracted from PARAFAC analysis, (d)~(f) their corresponding peaks intensities of the EEM spectra at different illumination time, and changes in FTIR spectra of EPS samples with increasing illumination time. (g) *S. oneidensis* EPS, (h) *E. coli* EPS and (i) Sludge EPS.
Figure 3

(a) Van Krevelen diagrams of CHO, CHON, CHOS, CHONS of M-EPS compositions before and after illumination of simulated solar light, (b) the contribution of four major subcategories and (c) major classes of compounds separated by black lines in Van Krevelen diagrams of two samples. (CRAM: carboxylic rich alicyclic molecules)
Figure 4 (a) Efficiency of tetracycline removal during 5-hour illumination. Experimental conditions: [M-EPS] = 20 mg TOC/L and [TC]_{initial} = 40 mg/L in non-buffer solution at 30 °C (pH ~ 7.0), (b) pseudo-first-order kinetics plotted as ln(C_t/C_0) as a function of illumination time for TC degradation.
Scheme 1 Photochemical behaviors of EPS and its environmental impact.