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Summary
Operating district heating network using additional data with the traditional data extracted from
the SCADA system at the production is discussed. The benefits of including new data in daily
operation for the utility is demonstrated. For the past decade, more and more data is becoming
available for district heating utilities with the smart meters being installed in every home connected
to the district heating network. More local climate stations inside the city are also being installed,
and made accessible for everyone. In this report, data from smart meters are presented and how
they can be used to operate the network more efficiently. Also, weather forecast in cities is discussed
and how they can be improved by localizing them to the local climate using climate stations.

The case study in this report is a on-line operation of temperature control in Tingbjerg which is a
small area that is operated by HOFOR. HOFOR is a utility company in Copenhagen which handles
for example the district heating, and waste water. They also produce energy for the Copenhagen
area. The case study demonstrate how to localize heat demand forecast and operate closed-loop
temperature control for a small area. The result for the operation is compared to the previous
operation where it was done using open-loop temperature control, i.e. no feedback of the system.
The report emphasizes how current state-of-the-art methods can be improved by using newly
available data (e.g. smart meters as feedback of the network) and thereby enhancing the efficiency
of the operation.

The present report is followed by two other deliverables: the report ”Energy data: mapping, barriers
and value creation” and the report in Danish, entitled ”Digitalisering af fjernvarmen - erfaringer
der luner” (”Digitalization of district heating”).
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Chapter 1

Introduction

The IDASC, Intelligent Data-Anvendelse i Smart Cities (Intelligent Data Use in Smart Cities)
project’s goal is to investigate potentials from several different data sources that are now available
because of digitalization in district heating systems and generally in cities. The overall purpose is to
consider and combine all relevant data from meteorological services, city weather data, production
data, SCADA data, and end-user smart meter data to enhance the operation of a network. We
will evaluate the advantages of combining different data sources and analyze the improvements
compared to the typical situation today using only data from the SCADA system. Data from the
SCADA system are usually measurements measured at the production site, e.g. supply temperature,
return temperature, flow, and ambient air temperature. The focus is to demonstrate the potential
of how the new data sources can improve the operating district heating network, i.e. delivering heat
from production to consumers in a more optimal setting. In this study, we do not directly consider
how digitalization can lead to more optimal production of the heat; however, operating the network
efficiently will obviously also have a positive influence on the possibilities for optimized production
planning, hopefully lowering the production cost. Therefore, in this report, we only consider heat
demand forecast and temperature optimization to increase the operation of the district heating
network. The additional data used in this report are the smart meters at consumers in the area
where the heat is delivered and a local climate station that is located close to the area. In theory,
using this additional data will enhance the operation as it gives more detailed information on the
response characteristics of the network and the local climate in the area. We will demonstrate this
by using state-of-the-art and off the shelves algorithms for forecast and control provided by ENFOR,
an energy forecasting company. ENFOR is a spin-off company from DTU where the initial ideas of
these algorithms were established. We will show how to include the proposed additional data in the
algorithms and demonstrate the improvements in the operation of the district heating network. In
the case study, we will apply these digitalized methods in an on-line operation trial to analyze the
gain of using smart meters when used as feedback to obtain a closed-loop temperature control of
the network, and the importance of binding numerical weather prediction to a local climate using
a local weather station. The trial was conducted in Tingbjerg (Copenhagen), an area which is
operated by the district heating utility, HOFOR.

1.1 District Heating (DH) Operation
During the past decades, the district heating sector has been transformed from using primarily
traditional fossil fuels to using renewable heat sources and biomass. During the same period,
the DH systems have become more digitalized, e.g. with sensors in the district heating net-
work and smart meters at the consumers. At the same time, district heating is becoming a
crucial part of the overall integrated energy system because of its flexibility potential, e.g. by
storing excess energy as thermal energy [1, 2]. Hence, optimal operation of district heating is crucial.

The inherent flexibility of the DH system is highly valuable for the future integrated and low-carbon
energy system. An important aspect is a fact that DH systems can store energy when there is
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Figure 1.1: Simple schematic view of district heating; The heat production, the transmission
lines to heat exchangers then distribution lines that deliver the hot water to the consumer
substations.

a surplus of energy from intermittent renewable energy sources (e.g. wind and solar). However,
to maximize the flexibility potential of district heating, they would need to operate efficiently by
optimizing the production and the temperatures of the network. This report will focus on how to
improve the efficiency of operating an existing district heating network by applying data-driven
methods using additional data.

District heating consists of heat production, a network of pipes (transmission and distribution)
where the hot water is either delivered to substations (heat exchangers) at the consumers and
returned to the production facility, and the final component is the consumers. This is illustrated
in Figure 1.1. The supply temperature is generated at the production by heating the water, for
example, at a Combined Heat and Power (CHP) plant where the temperature is increased by
cooling the steam after it has generated electricity in the turbine. The mass flow in the pipes is
then controlled using pumps at the production plant. Frequently, additional pumps are required in
the network to maintain the desired pressure in the system. First of all, an optimal operation of
DH systems implies that the supply temperature and the network temperature should be kept as
low as possible without violating any requirements, e.g. supply temperature at a given outdoor
temperature. Lowering the supply temperature will reduce the heat loss in the network, and improve
the efficiency of the electricity production at CHP plants [3, 4]. Furthermore, a lower temperature
implies also more optimal use of, for instance, heat pumps.

Delivering the heat demand is controlled by varying the supply temperature [5]. Controlling the
operation of a district heating network rely on either an open-loop or a closed-loop controller to
estimate how the heat should be delivered, by regulating the supply temperature where the flow
is indirectly varied to meet the demand of the consumers. The open-loop controllers use either a
white-box simulation of the system to operate the supply temperature in the network or a simple
algorithm based on the knowledge of the system to regulate the temperature. Hence, the open-loop
operation does not have any feedback from sensors and data in the network and therefore such
controllers can not adapt to any disturbance in the system or changes to the network characteristics.
Thereby, they do not use the information from the network to adapt to achieve more optimal
operation.

There have been proposed control schemes that operate the supply temperature in a closed-loop
[5, 6]. Such a system typically uses a few measurement points located in the network. These
points are usually located in the network where the operator believes that the lowest (critical)
temperature is, i.e. where the largest temperature loss occurs. Therefore, the supply temperature at
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the production site is controlled to satisfy the requirements at these critical points. The controllers
also control the flow in the system to match the heat demand of the system, and therefore the
optimal operation is implemented with a sequence of controllers trying to deliver the heat while
keeping the supply temperature at a minimum.

The approach for temperature control in this report is found by lowering the supply temperature
while keeping the flow close to the operation limit of the system; see [7]. At the same time, a
lower supply temperature will enhance the efficiency of power generation at the CHP plant. Heat
demand forecasts are needed for production optimization, and these forecasts are also used for
finding the optimal supply temperature [8]. The heat demand is highly correlated with ambient air
temperature and therefore usually the forecast model uses numerical weather prediction (NWP)
of the ambient air temperature as input. Accurate NWP will be beneficial to the district heating
operation as they improve the heat demand forecast accuracy. In addition, both smart meter
and local climate station data can help to improve the closed-loop control of the system. The
models used are self-calibrating, and consequently, the models automatically adapt to network
characteristics as well as local climate conditions.

1.2 Structure of this Report
In Section 1.3, we will describe the case study used in this report. In Section 2, we will discuss how
to use data from smart meters and how it can lead to additional cost savings related to district
heating operations. Section 3 describes how Numerical Weather Predictions (NWPs) and local
climate data can be beneficial for the district heating operations. Heat demand forecasting is
characterised in Section 4, while control of district heating network temperatures is described in
Section 5. The report finally concludes in Section 6.

1.3 Case study: Tingbjerg district heating area
The case study used in this report is the district heating network located in Tingbjerg, which is a
small area with large apartment buildings located in the northwestern part of Copenhagen. The
area is supplied by heat from a heat exchanger that connects the central Copenhagen transmission
system operated by CTR to the distribution network in Tingbjerg operated by HOFOR. The
transmission system operated by CTR supplies heat to approximately 250.000 buildings in central
Copenhagen. HOFOR is the distribution network operator, and consequently, HOFOR is the
district heating supplier to buildings in central Copenhagen. There are 45 buildings connected to
the network inside the Tingbjerg area and 39 of them are equipped with a smart meter. Figure 1.2
shows the layout of the network in Tingbjerg.

Previously, HOFOR has operated Tingbjerg as an open-loop system using the TERMIS tool to
simulate and adjust the supply temperature and flow from the heat exchanger. Thus, they had
no knowledge of what temperature consumers were receiving, i.e. how the system was working
except when consumers complained because of too low temperatures. However, each apartment
building in Tingbjerg has a smart meter that is connected to the district heating side. These smart
meters can provide the forward temperature, return temperature, flow, and energy consumption for
each building. HOFOR also needs a heat demand forecast to regulate the temperature for the heat
exchanger, which they get by scaling demand forecasts for a larger area that contains Tingbjerg
heating demand. The scaling factor is the ratio between the larger area’s historical demand and
the historical demand from Tingbjerg.

Therefore, Tingbjerg is an ideal case for demonstrating how the operation of an existing network
can be improved with data-driven methods and digitalization. In this study, the smart meters
will be used to provide feedback for closed-loop control using the data from the smart meters to
increase the efficiency of the network operations and to show potential savings by lowering the
supply temperature at the heat exchanger while satisfying all requirements. Heat demand forecast
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Figure 1.2: Layout view of the district heating network in Tingbjerg. The heat exchanger
is located where the box with the TBW text is located. The other three shows the status
of the smart meters used to give feedback.

for the Tingbjerg area will be created based on the historical demand and NWPs that will be
localized to the area by using a local climate station that is close by. We will then demonstrate
the benefits of using automated feedback techniques from an on-line operation use of our setup.
The period from the start of the on-line operation trial from 1st of November 2020 until 1st of
April 2021 will be used to compare the new data-driven approaches with the methods used previously.
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Chapter 2

Smart Meters in DH systems

This chapter introduces smart meters in district heating and their role in transforming district
heating systems into the digital age. We will also discuss how smart meters can give value for
both consumers, where they are installed, as well as for the district heating utility by enhancing
the network performance. This report will focus on using smart meter data as feedback to the
production and use the response of the network to improve the performance, as the objective of
this report is to increase operational savings for the utility using additional data.

Smart meters are and have been installed at district heating consumers in Europe for the past
decade because of requirements from the European Union. The requirement is that consumers that
are connected to district heating networks have to be equipped with smart meter devices where
feasible [9]. This enables the consumer to be more aware of their current energy consumption and
allows linking the consumption to the billing from the utility. They can now see their consumption
on higher resolution and even in some cases, they have it available on-line. This has prompted a
different payment schema from the district heating operator. For example, consumers are penalized
with a fine if their daily average return temperature in a period is higher than a certain limit because
it is costly to the system. District heating utilities attempt to recover these costs by penalizing
consumers that have a bad cooling effect in their buildings and hence a higher return temperature.
A higher return temperature implies extra heat loss in the return pipes, higher pumping costs, and
less efficient production at the plant [10, 5]. Hence, the large amount of data that is now available
due to the smart meters, that can be used to identify the energy performance of buildings and the
network. This can be used to give valuable insights into the network performance and building
energy efficiency, i.e. leakage in the system or insufficient cooling of the water from inlet to outlet
in some buildings.

Current studies that use smart meter data often only have the building’s energy performance
improvements as the center of attention. Kristensen and Petersen [10] use smart meter data to
derive three heating efficiency indicators of buildings and give an overview of the smart meters
system at the district heating utility in Aalborg in Denmark. The three heating efficiency indicators
are annual heating energy use intensity, daily heat load variation, and cooling efficiency. Thilker
et al. [11] demonstrate that it is possible to lower the operation cost by 10% by a date-driven
control of the heating system of a Danish school building, and they use model predictive control to
estimate future set-points of the thermostats of the radiators to lower the return temperature of
the district heating to the school. Bacher et al. [12] suggest a method to separating the heat load
used to hot tap water from the load needed for space heating. Most of the research is focused on
individual building energy performance. Improving the aggregated performance of a larger network
using smart meters is usually not investigated except for identifying bad coolers in the network, i.e.
high return temperature from substations. Lowering the return temperature from substations in
the building is immensely important for district heating, especially networks that have combined
heat and power production (CHP). As also stated in Arvastson [4] a higher return temperature
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Figure 2.1: Supply temperature and flow from smart meters at Tingbjerg visualized. The
coloured lines are the meters that were selected to be used as feedback for the temperature
optimization.

from the network to the condenser will decrease the efficiency of the operation of the CHP plant.
Lower return temperature will also lower the heat loss in the return pipes. It also implies a lower
necessary flow rate or supply temperature for the given energy.

Data from smart meters have not previously been used to enhance the operation of the network, i.e.
used as feedback of the temperature of the network to the temperature optimization at production.
Until now, for closed-loop temperature control, only data from a few measurement points in
wells have been used. These measurement points are called critical points and selected where the
operators believe to have the highest temperature loss. The temperature control uses the feedback
of the system as input to estimate the model parameters and time delay of the system to control
the supply temperature and flow with the objective of keeping the temperature as low as possible
[5]. Hence, smart meters can be used as a feedback signal to the controller either by estimating
the supply temperature in the street pipe using groups of smart meters or by using a single smart
meter from a large apartment building where the heat loss in the service pipe to the building is
negligible because of the high flow [13].

The smart meter data used in this report will be introduced in Section 2.1 and a more detailed
description of using the smart meter as feedback to the control will be given in Section 2.2.

2.1 Smart meter data
The smart meter data comes from the case study area, Tingbjerg where HOFOR provided access
to on-line smart meter data from 39 meters located in large apartment buildings from January
2020. In the beginning, the data was sent only at 09:00 each morning where the data had an hourly
resolution. These readings contained data from each smart meter for the past 24 hours. However,
by the end of November 2020, the resolution was updated to 15 minutes and the data was sent
each hour containing the past four data readings. Table 2.1 shows the variables that are logged by
the smart meter. Usually, the utility companies use this information to bill the consumers based on
their energy consumption. Moreover, if the return temperature is too high then there could be a
penalty payment scheme in place as discussed before. Otherwise, the data is often not analyzed
further.
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Variables Units

Time Date, Time
Cumulative Energy MWh
Cumulative Volume m3

Supply Temperature °C
Return Temperature °C

Table 2.1: Variables from the smart meters.

Figure 2.1 shows the supply temperature and flow from the smart meters in Tingbjerg. The flow
rate is computed from the cumulative volume by taking the difference between the volume at each
time-step and divide with the corresponding time in seconds between, resulting in a flow rate in cubic
meters per second. Notice, the difference between the readings in the summer and winter periods.
The winter period consists of stable temperatures, it has a quite constant variation and does not drift
off towards zero. In the summer period, the temperature is noisier and fluctuates more. For some
of the meters, the temperature seems to drift off towards zero. The reason for this is the low heat
demand during the summer when there is almost no need for space heating in Denmark because the
ambient air temperature is around 20 °C. Only domestic hot water usage is needed during warm peri-
ods. This seasonal variation of the heating demand can be seen in the flow plot as the flow decreases
over the summer periods. Therefore, when there is no heating consumption, the water in the service
pipe to the building becomes still and the temperature starts to drop because of the heat loss to the
surroundings [13]. Thus, the readings from smart meters over the summer period are more unreliable
compared to the winter periods as they do not give an accurate representation of the temperature of
the hot water in the distribution pipes. When selecting smart meters to be used as feedback to the
controller, this needs to be considered. The selected smart meters need to have a very stable and
constant flow during the summer period, or create an algorithm that addresses the temperature drop.

During a short period at the end of November 2020, readings from the smart meters are missing.
This is happening when HOFOR increased the resolution of the readings from hourly to 15 minutes
and updated the frequency of the readings. Therefore, the period from 2020-11-15 to 2020-11-22 has
almost no information. We also see frequent spikes in the data for both high and low temperatures.
These can be faulty readings in the meters as the figures present the raw data (instantaneous values),
i.e. no quality check of the values has been conducted. There is also a significant peak period in
the flow, just before September 1st, 2020. The peak could be a consequence of the fact that the
ambient temperature dropped rather quickly and the heating demand therefore increased while
the supply temperature at the production has not increased. Notice also that after the increase in
resolution the data seems to be more volatile compared to the hourly resolution period. Higher
resolution leads to an increased risk of outliers and also that we are able to see more dynamics in
the heating demand than before.

2.2 Smart meter data used in the feedback loop
The main objective of this report is to demonstrate the value of smart meter data for operating
the district heating network. More specifically, we will use smart meter data as feedback to
temperature optimization. The feedback will be used to give the controller signal on how the
network is reacting to changes in the supply temperature, and hence creating a closed-loop con-
troller. Previous closed-loop controllers used measurement wells in the network as feedback. This
replacement of a well measurement with the use of meter data constitutes a digital transformation
of the closed-loop control as demonstrated in Figure 2.2. This digital transformation reduces the
need for measurement wells in the network and reduces the maintenance effort. We think that
this gives significant savings potential for the district heating operator as it reduces the cost of
having feedback control for operators without the need of installing measurement wells in the system.
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Figure 2.2: A sketch of DH network demonstrating that the production site uses feedback
from smart meters for the temperature control, instead of the measurement wells (critical
points).

In Tingbjerg, the operation in the past did not allow for a closed-loop installation as the area does
not have any measurement wells in the network to send feedback. In this study, Tingbjerg will
be operated using a closed-loop controller and demonstrate the benefits of having a closed-loop
by comparing the result to the open-loop operation. The controller will use feedback from the
network using data from smart meters at large apartment buildings. The methodology behind the
temperature control is described in more detail in Section 5. However, in short, district heating
systems are complex non-stationary and time-varying systems therefore methods for tracking the
time-varying parameters are needed as a part of the modeling process. In practice, the parameters
are updated based on different input data, and here the feedback from the network data is essential
due to how the system reacts to different flows, e.g. how the time delay varies. Thus, we have to
select smart meters that send reliable signals to guarantee suitable feedback for real-time estimation
of the parameters of the model. As mentioned before, three smart meters were selected as feedback.
More meters could have been used however the Tingbjerg district heating network is rather small
and three feedback or critical points are considered to be sufficient.

Finding suitable meters to be used as feedback is critical. An obvious first task is to identify a
set of meters that we consider ideal for representing the entire district heating area. Ideal meters
are meters that during the summer period, they have a stable supply temperature which implies
that the flow is usually high during longer periods. From this group of ideal meters, three meters
were selected based on a few numbers of missing values and seemed ideal to be used as feedback
as historically they have sent reliable data and usually constant flow, i.e. heating of the house
was not stopped by closing the flow of the water. Figure 2.1 shows data from all of the meters
and the three meters are highlighted with bolder colored lines. Other meters from the ideal group
could also have been used. In the future, other meters can replace the current feedback meters
if deemed necessary for being able to include the lowest temperature in the network at all points
in time. The three selected meters are shown in color in Figure 2.1 to visualize their reliable
signal. The meters were selected without knowing their exact location in Tingbjerg. Knowing the
location of the meters gives additional useful information, as selecting meters that are placed the
furthest away from the production could be ideal for the feedback loop. Usually, the consumers
with the highest transportation time have also the largest temperature loss in the system however
it could be that some part of a network is older and the efficiency of the pipes insulation has been
reduced. Therefore, having larger temperature loss even though they are closer than other areas.
By satisfying the requirements of the consumers with the highest temperature loss (which are the
critical points in the network), the other consumers’ requirements are also therefore fulfilled. An
exception is if other buildings have faulty service pipes into the houses or leakages, but these issues
can be quickly discovered and fixed when investigating the smart meter data.

8 Digitalisering af fjernvarmen



Chapter 3

Weather Forecasting for Cities

District heating is mostly applied in urban areas therefore in this section, we will introduce the
climatic characteristics inside cities and highlight the effects of climate variables on heat consumption.
Numerical Weather Predictions (NWPs) are also introduced as they are critical for district heating
operations. They are needed to forecast the future, concerning demands, temperatures, and
production planning, or in short; everything that district heating operates needs weather forecast
as input in order to operate the systems efficiently. We will discuss the advantages of localizing
NWPs to cities, and more specifically, we will look into enhancing short-term heat demand forecast
in cities. The heat demand forecast accuracy is improved by correcting the short-term weather
forecast using real-time measurements of the climate from a local station. Hence, increasing the
accuracy of the short-term forecast is highly desirable for temperature control.

3.1 Urban Heat Island effects
Temperature optimization in the district heating network depends on obtaining reliable and relevant
monitored outdoor air temperature data. The more accurate the air temperature around the district
heating network and the more frequent the temperature measurements, the more accurate the
temperature optimization model can be. Research has shown that the outdoor air temperature can
vary across a large district heating network and it is therefore also important to obtain temperature
data across the network - if possible Steeneveld et al. [14]. Outdoor temperature data are historically
monitored in rural areas at sites where measuring the correct temperature has been easiest. Airports
have been a good choice because they are in a rural setting, where the only impact is from the
natural environment including lack of woody vegetation and directly exposed to natural rain, sun,
and wind. Historically, temperature data from airports are often used as input for the temperature
optimization in operating the district heating network, simply because they are available from the
meteorological institutes. Recently data from other sources are becoming available, e.g. Danish
Meteorological Institute recently started to give the public access to their climate station that
are located everywhere in Denmark. However, it is important to notice that the air temperature
measured in the airports may deviate from the temperature insides cities, where the air temperature
is exposed to human activities and the built environment.

Research shows that the outdoor air temperature typically is higher in urban areas than in rural
areas Steeneveld et al. [14]. The effect is termed urban heat island (UHI). An urban heat island
(UHI) is an urban area that is warmer than its surrounding rural areas due to human activities or
build human infrastructures. Research related to UHI has recently got more attention because of
the concern that climate change with an average temperature increase of 2 to 3 K will cause more
heat waves, becoming more severe in the future, causing significant stress to the urban population.
That problem is however only relevant for hotter climates where there is no district heating or at
least it happens outside of the heating season. It is though still relevant for the energy sector as a
whole with significant cooling demand during a heat wave. Unfortunately, there is not the same
interest in studying temperature differences between urban and rural areas during winter which
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would be relevant for the district heating sector.

The variation of outdoor air temperature data is both spatial and temporal. A number of studies
point towards a typical difference in urban and rural temperatures of 2-3 K. In a study in Barcelona
the city centre was 2.9 K warmer than the airport during nighttime, but during the day the centre is
slightly cooler than the periphery. Annually and overall, Barcelona centre is 1.4 K warmer than the
airport. With regard to the average differences between the minimum at the two places, all are over
2.5 K, reaching 3 K in November and March [15]. Solecki et al. [16] examined the UHI mitigation
potential of two highly urbanized places in the state of New Jersey, areas in and around the cities
of Newark and Camden. Each city and surrounding suburbs included a set of neighborhoods with
widely varying characters. The UHI effect in Newark is estimated to be on average about 3.0
K and for Camden between 1.0 and 1.5 K. Steeneveld et al. [14] has in a comprehensive study
collected data from both private weather enthusiasts and weather stations to determine UHI in
the Netherlands. They report a temperature difference of 2.5K. However, the paper focuses on
UHI and its effects during warm seasons. There is no seasonal evaluation of the differences. It is
therefore not certain that the same temperature difference occurs during the heating season. A
review of research studies and data found that in the United States, the heat island effect results
in daytime temperatures in urban areas about 1–7°F higher than temperatures in outlying areas
and at nighttime temperatures are about 2–5°F higher. Humid regions (primarily in the eastern
United States) and cities with larger and denser populations experience the greatest temperature
differences [17].

For most cities, the difference in temperature between the urban and surrounding rural areas is
largest at night. Throughout the daytime, particularly when the skies are cloudless, urban surfaces
are warmed by the absorption of solar radiation. Surfaces in the urban areas tend to warm faster
than those of the surrounding rural areas. By virtue of their high heat capacities, urban surfaces
act as a giant reservoir of heat energy. As a result, the large daytime surface temperature within
the UHI is easily seen via thermal remote sensing [18]. The typical temperature difference is several
degrees between the center of the city and surrounding fields. The annual mean air temperature
of a city with 1 million people or more can be 1.0–3.0 K warmer than its surroundings. In the
evening, the difference can be as high as 12 K. [17]. This is also shown in the Barcelona study [15].
At night, the situation reverses. The absence of solar heating leads to the decrease of atmospheric
convection and the stabilization of the urban boundary layer which traps urban air near the surface,
and keeping surface air warm from the still-warm urban surfaces, resulting in warmer nighttime
air temperatures within the UHI. Furthermore, the heat retention properties of urban areas, the
nighttime maximum in urban canyons could also be due to the blocking of ”sky view” during
cooling: surfaces lose heat at night principally by radiation to the comparatively cool sky, and
this is blocked by the buildings in an urban area. Radiative cooling is more dominant when wind
speed is low and the sky is cloudless, and indeed the UHI is found to be largest at night in these
conditions [19]. The outdoor air temperature changes from hour to hour, minute to minute, and
even second to second. A change in wind and clouds can change the air temperature very rapidly.

During the last 100 years, cities have not been built with the UHI impact in mind. The main
cause of the urban heat island effect is from the modification of land surfaces, which traps heat
during the day. Waste heat is produced by energy usage as a secondary contributor. Dark surfaces
such as roads and buildings absorb significantly more solar radiation, which causes increased heat
absorption in cities more than suburban and rural areas during the day [16]. Materials commonly
used in urban areas for pavement and roofs, such as concrete and asphalt, have significantly different
thermal bulk properties (including heat capacity and thermal conductivity) and surface radiative
properties (albedo and emissivity) than the surrounding rural areas. This causes a change in the
energy budget of the urban area, often leading to higher temperatures than surrounding rural areas
[20]. It is therefore also clear that mitigating strategies can be applied in city planning to reduce
the UHI. Using lighter, more reflective materials in the built environment will reduce the UHI effect
as well as planting trees will reduce the UHI effect [19].

The Barcelona study [15] also illustrated that the higher outdoor air temperature occurred at the
city center. The further out the less dense the city is and the more trees are part of the build
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Figure 3.1: Urban Heat Island: Copenhagen demonstrated using three climate stations
located with different proximity to the center of Copenhagen; The center (Frederiksberg),
in the outskirts (Jægersborg), and in a rural area (Sjælsmark) as shown in the map and
the plot showing the difference in the average monthly temperature for the three stations.

environment. In cities where the UHI effect is taken into account in the city planning, it is likely
that the impact of the UHI is lower in the newer build districts.

Although as a rule of thumb the temperature is higher in urban areas than in rural areas where the
outdoor temperature data is measured - it is also likely that the temperature difference between
urban and rural is not so high in the outer districts of the city. It is therefore reasonable to have a
number of temperature measurement stations implemented across the city.

3.2 Urban Heat Island: Copenhagen
As discussed, researchers have shown that there is a temperature difference within cities and
between urban and rural areas. We would like to confirm this phenomenon in Copenhagen and
investigate the magnitude of the difference. Our goal is also to discuss the impact on district heating
operations due to different climates within the city. This will be done using three local climate
stations. The data was extracted from the Open Meteorological Data provided by the Danish
Meteorological Institute (DMI) [21]. Figure 3.1 shows a map of Copenhagen and the locations of the
climate stations as red points, also the average monthly temperature from the stations is visualized
in a plot. One climate station, Frederiksberg, is located very close to the city center, a densely
populated area. The Jægersborg climate station is located in the outskirt of Copenhagen, while
Sjælsmark is located in a rural place north of Copenhagen. The past hourly mean temperature was
extracted from January 2004 to December 2020 from each climate station. The monthly average
ambient temperature was then computed over the period. The temperature plot in Figure 3.1
demonstrates the UHI effect in Copenhagen. The temperature difference between the stations
illustrates a significantly higher average temperature in stations that are located closer to the city,
with more population and building mass. The difference is close to 1 K during the heating season
and 1.5 K during summer periods. The difference between the season could be due to the solar
radiation which heats up the buildings, streets while in the rural area, the terrain does not absorb
as much solar gain, thus the temperature average increases over summer. The difference during
heating seasons could be because of the heat from the buildings, transportation, and people as
mentioned in Section 3.1.

Figure 3.2 shows hourly temperature average for four different months computed using same period.
We can see that the climate has a time-varying process, both a diurnal variation and yearly. For
example, comparing the result from July shows that the average temperatures in the mornings are
very similar. However, as time progress, it differs, with higher temperature difference in the city
and during the night it gets colder at the rural side, Sjælsmark. Thus, the city does not lose heat
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Figure 3.2: Urban Heat Island: Copenhagen, where four months are used to demonstrate
time-varying climate for each station and between them. The plot shows the average
temperature per hour for four months computed from the period, January 2004 to December
2020.

as fast as the rural part. January has quite a constant offset between the stations, except during
the day when the temperature at Sjælmark is almost the same as at Jægersborg.

3.3 Numerical Weather Prediction in Cities
We have exemplified that the UHI phenomenon is relevant in Copenhagen where the temperature
inside the city is different compared to the rural areas because of dense population and different
environments (e.g. buildings, roads, etc) which entraps heat in cities. Three climate stations located
in different areas in Copenhagen were used to demonstrate the phenomenon that exhibits higher
temperatures closer to the city. Thus, the climate differs between locations. In Section 5, we will
discuss that the temperature operation of district heating is heavily dependent on the most recent
climate variables, where the ambient temperature is the most important. The climate where the
district heating system is located needs to be analyzed to operate the network in an optimal setting.
District heating is an efficient way to provide heat to buildings in densely populated areas. It
therefore means that it is highly important to have localized climate data that can be used to
analyze the heating demand dependency. For example, see Figure 4.2, to see heating demand vary
over time. The variation can be explained both from the climate variation over time, e.g. high sea
temperature in October contributes to higher ambient temperature during the night, see Figure 4.3.
Hence, we have seen that ambient temperature differs depending on the location, building mass,
sea temperature, i.e. there are many factors that contribute to the temperature. This holds also for
other climate variables like wind and solar radiation. Climate variables are an important factor for
analyzing heating consumption. In Nielsen and Madsen [22] and Madsen et al. [23] suggest that the
climate variables: ambient temperature, solar radiation, and wind speed (including direction) have
the most effect on the heating demand. They are also arranged in decrease importance. Nielsen
and Madsen [22] give a detail description on how these climate variables interact with the heating
consumption based on physical consideration, i.e. stationary relations. Here is a short summary of
the findings;

• Ambient Temperature: The ambient temperature affects the indoor climate through heat
conduction in the outer walls and windows, also through ventilation. It has been shown that
the outdoor temperature affects the indoor temperature with a low-pass filter, a transfer
function to model the variations in the outdoor temperature to variations in the indoor
temperature.

• Solar Radiation: The solar radiation affects the indoor climate based on the angle of beams
hitting the building, where the orientation of the beams through the windows and the window
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area are most important. Basis functions are used to translate the non-linear dynamics of
the solar radiation to its contribution to heating consumption.

• Wind Speed: The wind speed and the direction of the wind affect the indoor climate as
natural ventilation, the effect is depending on the quality of the insulation. The wind speed
also affects the convection heat coefficient on the outside of the buildings. It is therefore
modeled as a low-pass filter as the contribution to the consumption.

Hence, to use these climate variables to describe the heating demand to estimate future supply
temperatures then a forecast of them is needed. NWP is computed as a physical model of the
atmosphere and ocean to predict climate variables. They are computed over a grid of the earth and
are then interpolated together to a specific location where weather predictions are needed. However,
NWPs have problems adjusting to the local climate in cities due to the local climate phenomenon.
Thus, the models seem to have trouble adjusting to local heat contributions, e.g. solar heat in the
street, heat from buildings, etc. District heating relies heavily on NWP to operate their system
efficiently therefore it is important to correct them before using them as input. Especially, for
temperature control of the system as it is done on a short-term horizon (between hourly and 24
hours) and is heavily dependent on the current local climate. Using local climate station to localize
the NWP, corrects the short term NWP forecast by adapting them to the climate using real-time
climate measurement [22]. Hence, this yields an optimal weather forecast for a certain area that can
be used to operate the temperature control in the most optimal setting. This is discussed in more
detailed in Section 4 where local climate station improved heat demand forecast and in Section 5
to improve the temperature control.

3.4 Localize Numerical Weather Prediction
We have discussed that it is important to localize numerical weather prediction to enhance the
operation of district heating systems. Combining weather forecast to a local climate have been
studied for many decades as it can be highly desired to have an accurate forecast to yield optimal
operation. Incorporating certain local climate features into the forecasts is done to adjust the
systematic errors from the NWP model. Glahn and Lowry [24] propose Model Output Statistics
(MOS) to bind NWP to local climate stations observations, e.g. localize the forecasts. The MOS is
a simple technique that uses linear regression where the observed climate variable is the response
variable and predictors are the NWP variables which therefore bind the NWP to the local climate.
It is a simple and frequently used method that will reduce systematic bias in the NWP if there is
any. Crochet [25] propose using an adaptive method to reduce the systematic bias and lowering the
RMSE of the NWP. A Kalman filter is used to localize NWP to the local area. It was demonstrated
that the proposed methods decreased the systematic bias and reduced the error in areas where
systematic bias is high. If there was no systematic bias then the Kalman filter does not significantly
improve the forecast. The Kalman filter also gives useful information about the uncertainty of the
local predictions when localizing the NWP to climate stations. The uncertainty from the weather
forecast can be useful information for both temperature control of the network and production
planning of the plant.
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Chapter 4

Heat Demand Forecasts

Operating a district heating production facility and controlling the network efficiently is a difficult
process. Both tasks need to consider multiple inputs to deliver a feasible production plan and
accurate controller. One of these inputs is the heating demand of the consumers. Satisfying the
consumers’ heating consumption need is the most important requirement for the district heating
utility. To meet these demands, the production planning needs to know the heating demand up
to months ahead, e.g. scheduling biomass purchases to be able to deliver the required demand
(long-term) [26]. While the temperature control of the network tries to meet these demands by
regulating the supply temperature, Ts,t and the mass flow of the water is indirectly varied to satisfy
the demand, ṁt as the heat energy is computed as the temperature difference times the mass flow
and the specific heat constant,

Qt = ṁtcw(Ts,t − Tr,t), cw = 4.186J kg−1°C−1 (4.1)

to satisfy the heating demand, Qt where the objective is to increase savings and reduce heat loss in
the system. Thus, the controller needs to know the future demand between one hour ahead to the
control horizon of the system which is usually the longest transportation time of the system. For
large networks, the transportation time can be up to 24 hours. As the future demand is not known,
a prediction of it needs to be available for the operators. The accuracy of the predictions is of
high importance because the uncertainty of the forecast heating demand needs also be considered
in the production and network operations. Along with the requirement of satisfying the heating
demand of the consumers, the production of heat has become more complicated than firing up
boilers using oil or natural gas. The shift from fossil fuels to renewable energy sources needs to be
taken into account as these energy sources are not always available due to their weather dependency.
Therefore, to utilize renewable energy sources, energy sector coupling is needed between the power
and district heating market, i.e. smart energy system [27]. This makes accurate heat demand
forecast highly valuable for the energy sector. Especially, as district heating plants usually also
produce electricity with their CHP plants, and therefore need to plan their power production for
the next market day. District heating utilities can also store energy as hot water in large thermal
storage tanks when an excess of electricity is available.

Consequently, heat demand forecast is the first aspect that utilities need to have for operating the
system efficiently. However, heating demand is an inherently non-linear and non-stationary process.
The consumption has a non-linear relationship with the ambient air temperature because of the
thermal mass of buildings [22, 5, 11]. The non-stationarity comes from the seasonal variation of
the ambient temperature and social behavior of the consumers, i.e. time-varying demand. Other
weather components than temperature also demonstrate some effect on the heating demand, it is
however not as significant as the temperature and social behavior. Dotzauer [28] suggest a simple
forecasting model that has a future insight into the heating demand for two different systems.
Modeling the ambient air temperature dependency as a piecewise linear relationship to the heating
demand is discussed. The social component was modeled by estimating a daily profile using
the residual after having removed the dependency of the temperature from the heating demand.
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Figure 4.1: Heat load observation from Tingbjerg and ambient air temperature measured
from a local climate station in Copenhagen, Station 06186 [21].

The model demonstrates adequate results however temperature measurements are used instead
of the numerical weather forecast as input to the model. Also, the model does not handle the
time-varying process as the parameters do not change over time as needed for heating demand
systems. Nielsen and Madsen [22] suggest using adaptive methods to change parameters during
the transition periods, i.e. from cold to warm season. They also propose to use on-line numerical
weather predictions as inputs to the model and how to handle the nonlinear dependencies to be
used in linear regression models. Their proposal of using grey-box modeling to describe the known
physical relationship between heating demand and weather has high accuracy and has proven quite
successful. Trying to use new sophisticated models to identify known physical relationships is time-
and computer-demanding and is therefore undesirable.

In this project, ENFOR delivered the heat load forecast to be used for the temperature control
in Tingbjerg. In the following, we shall describe the climate variables that influence the heat
consumption, the consumption in Tingbjerg and compare the localized heat demand forecast from
ENFOR to the scaled forecast that HOFOR used previously.

4.1 Data Exploration
Figure 4.1 shows the observed heat demand from Tingbjerg and the measured ambient air tempera-
ture at the local climate station in Copenhagen. The data from the climate station was extracted
from DMI Open Data [21]. As we mentioned before, heat demand is a non-stationary process due
to the time-varying demand following the climate and social behavior. The figures show that the
heating demand follows the ambient temperature closely. During the heating season, the ambient
temperature has a slow influence on the heating demand, and this influence is usually modeled
using a low-pass filter [22]. As the temperature decreases or increases, the heating demand follows
with a negative correlation as the plot demonstrates. In the summer season, when the temperature
is above 17°C, there is no need for space heating. In these periods, district heating only needs to
fulfill the need for domestic hot water usage, e.g. showering. One of the most difficult periods to
predict the heat demand is during the transition periods from winter to summer and vice versa.
The transition periods are when the temperature starts to increase or decrease, and at the same
point in time, the solar gain starts to change.

In the spring, the solar radiation starts to warm up the buildings and therefore contributing to
heating to maintain a comfortable indoor climate [29]. However, it has a complex relationship
because the penetrating radiation onto the windows is related to the time-varying orientation of
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solar radiation. The orientation changes during the day as the earth rotates around its axis and
has yearly dependency as the earth rotates around the sun. The solar gain does not contribute
as much to the heat consumption during the summer as the ambient temperature is the main
driving contribution and is quite high during warm periods. However, during the fall similar effect
appears as the angle changes and the ambient temperature has decreased. Thus, the climate
variable, solar radiation influences heating consumption. The wind speed and the direction of
the wind also contribute to the heating consumptions during the transition periods with natu-
ral ventilation. The weather is also known occasionally to change rather quickly during these periods.

The time-varying relationship between heat demand and ambient temperature is visualized in
Figure 4.2 where the plots show the heat demand plotted against the temperature for each month.
A reference curve is also plotted in each plot to highlight the difference between months, especially
in the transition months. The piecewise linear reference curve was estimated by tuning the knots to
fit the overall period in the top plot. When investigating the transition months from cold to warm
(the months’ March, April, and May) we can see that the demand tends to be more scattered below
the reference curve between 0 and 10 degrees. In this period, solar radiation could have started
to influence consumption even though the ambient temperature is still quite low. Comparing the
spring transition period to fall, the demand in the fall is more constant, i.e. it has less spread around
the curve. This could be due to the fact that Copenhagen is a coastal city. The sea temperature is
higher in the fall period as it has been warmed up during the summer and it gives a quite constant
heat to the city. Figure 4.3 shows the monthly average sea temperature in Copenhagen over 20
years. The plot shows that the fall periods have a higher temperature than spring. The data was
extracted from the DMI Open Data platform [30]. The social behavior could also vary over time
and that could drive the difference between the transition periods. People probably have a different
perspective on ambient temperature when comparing the periods. Also, sea temperature could play
a big part in keeping the climate milder in the fall.
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Figure 4.2: Time-varying relationship between heat demand and ambient air temperature
demonstrated over different months.

As discussed, solar radiation is an interesting aspect regarding the heating demand during the
transition periods. Figure 4.4 shows the mean solar radiation per month, the mean ambient air
temperature per month, and the mean heating demand vs the mean solar radiation per month.
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Figure 4.3: Monthly average sea temperature in Copenhagen from January 2000 to
December 2020. Station 30336 from DMI Open Data [30]

The data was extracted from the DMI Open Data platform [21]. Investigating these plots together
starting with the lowest plot, you would assume for the transition months that the solar radiation
has less effect in spring. The spring months have similar solar radiation as the fall months but
they require more heat. However, considering the mean ambient temperature it becomes evident
that it is quite warm during the fall months than spring in Denmark. This could be explained
by the fact that during spring and summer the ground and sea temperature have increased and
have slow time variation, i.e. they react to changes slowly. Therefore, in the spring they have yet
to be warmed up and during the fall they give away heat to the air temperature as we see in Figure 4.3.

We do not analyze the wind speed effect on the heating demand in-depth. However, it has an effect
on the consumption, and largely when it is high and the ambient temperature is low [31, 32].

Considering these climate variables and how they influence heating consumption emphasizes the
importance of having an accurate forecast of the heating demand to operate district heating systems.
It shows that accurate numerical weather predictions of these variables and a time-varying model,
that can react to these changes, is needed. Both the rapid changes in how the climate variables
related to the consumption changes over the day and the slow variation in the heating demand
can be explained by, for example, the change in social behavior, renovation of houses, new house
connected to the network, so on and so forth.

4.2 Localized heat load forecast
In the previous subsection, we demonstrate that heat demand is a non-linear and non-stationary
process due to dependencies on climate data and social components. We also learned in Section
3 that NWPs need correction to forecast the climate in specific areas to enhance the accuracy,
especially for the short-term forecast. Therefore, we need to localize the NWP to a specific
area using climate stations to handle the influence of the buildings, humans, cars, pollution that
contribute to the climate. This was done for the heat demand forecast in Tingbjerg. A local
climate station in Copenhagen that is located close to Tingbjerg was used to correct the NWPs.
After the correction, the NWP was used as input to the heat demand forecast model. The model
was therefore both localized to the heating demand in Tingbjerg by estimating the parameters
of the model using historical demand from Tingbjerg and the climate as the NWPs are used as input.

In the previous operation in Tingbjerg, the heat demand forecast from a bigger area, Brønshøj,
was scaled to match the demand in Tingbjerg. We will demonstrate the accuracy difference in
heat demand forecasting by scaling the heating demand versus creating a localized heat demand
forecast for Tingbjerg that uses numerical weather predictions that have been corrected to the
climate in Tingbjerg. The scaled forecast is scaled by dividing the forecast for the large area by the
percentage of Tingbjerg heating demand to the total demand. HOFORs estimation of the fraction
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Figure 4.4: Climate data from the climate station in Copenhagen demonstrate the heating
demand dependency on temperature and solar radiation. It shows the monthly average of
these two climate variables.
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Figure 4.5: Daily heat demand from Brønshøj and Tingbjerg which is a small area inside
of Brønshøj. Fraction of Tingbjerg daily consumption compared to Brønshøj consumption
is illustrated in the bottom plot.
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Figure 4.6: Performance of forecasts compared using RMSE for one to 72 steps ahead. The
top plot visualize the results and bottom plot shows the localized forecast to demonstrate
the affect of having local climate station to improve the short term forecasts, i.e. the
forecast horizon between 1 and 8 hours.

of Tingjerg consumption was to be 8% of the total consumption in Brønshøj. Figure 4.5 shows
the daily heat demand from Brønshøj and Tingbjerg in the top plot while the bottom plot shows
the fraction of the Tingbjerg to the Brønshøj. Based on these data, the 8% that previously used,
estimated from older historical data is off by 1% as for the years 2019 and 2020 the fraction of
the consumption is around 7%. Notice, that the heat demand in Brønshøj during summer 2020 is
zero. This could be the result of HOFOR supplying heat to Brønshøj from other heat sources than
usually therefore the measurements are zero in this data-set.

The comparison between the forecasts is demonstrated in Figure 4.6. They are compared using the
Root Mean Square Error (RMSE) metric,

RMSEk =

√√√√ T∑
t=1

yt+k − ŷt+k|t

T
(4.2)

where the metric is computed for each prediction horizon, k. The heating demand observations are
y and predictions are ŷ. This is computed over the whole period. We have also added the heat
demand forecast scaled with the newer update on the fraction between Brønshøj and Tingbjerg
demand than was estimated before. The upper plot demonstrates the RMSE over the first 72 steps
horizon for all three forecasts, where the localized forecast significantly outperforms the scaled
forecasts. This is not surprising as the model has both tuned the parameters to the area and the
NWPs have been adjusted to the climate. Notice, the effect of localizing the weather forecast to
the climate when comparing the localized forecast to the 7% scaled forecast in the first seven steps
ahead. We see that there is a curvature for the localized which is the result of the corrections to
the climate and the dynamic process of the forecast model. This is demonstrated in more detail in
the lower plot in Figure 4.6 where the curvature is seen more easily. Usually, the RMSE over the
horizon demonstrates a straight line with a slope over the horizon however by using the climate
information in the area it is possible to enhance the short-term forecasts as demonstrated and using
historical heat demand observation for the dynamical process of the model.
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Figure 4.7: Figure demonstrate the performance of the three forecasting models. It shows
the 72h steps ahead when generate at 2021-01-20 11:00.

Figure 4.7 shows the three forecasts created at 11:00 on the 2021-01-20 for the next 72 hours. We
see that the localized forecast follows the observation significantly better than the other forecasts.
Notice, that the scaled forecast does not resemble the diurnal variation in the Tingbjerg observation.
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Chapter 5

Temperature Optimization and
Control

We have demonstrated that district heating has a difficult task on forecasting the demand because
of the local climate and social components of the consumers. An even more difficult task is to
provide heat to the consumer without wasting heat and minimizing the cost. The process is a
complex procedure as it needs to be delivered through the piping system to the consumer and more
specifically it needs to arrive at the correct time to satisfy consumers demand. Hence, temperature
control is an essential tool for the efficient operation of district heating. The production of heat has
become more challenging as we move away from fossil fuels towards renewable energies. The goal
of temperature control is to reduce heating production costs and heat losses in the network and at
the same time, fulfill the requirements of the network and consumers. Nielsen [8] describes that the
optimal operation of the district heating system is to be achieved by minimizing the production
cost without violating these restrictions;

• A maximum allowable flow rate in the system

• A minimum guaranteed inlet temperature at the consumers

• A maximum allowable supply temperature

• Limited short term variation in the supply temperature

• Maximum allowable diurnal variations of the supply temperature

These restrictions are required to be satisfied by the temperature control and the controller also
needs to reduce the operational costs without violating them. Therefore, it also needs to consider the
heat loss in the pipe, the pumping costs, and maintenance costs of the system. As for all operational
aspects of district heating, temperature control needs to know the future heating demand in order
to minimize the operation costs for the given planning horizon. Thus, depending on the type of
the plant, production will need to have 1) heat demand forecast, 2) supply temperature forecast,
3) future optimal scheduling of the productions, e.g. for a CHP plant needs future sales price for
power, also heat and power production costs, 4) restriction in the system, e.g. hydraulics, minimum
or maximum time-varying heat production 5) flexibility of the system. These factors need to be
considered in advance to optimally achieve minimizing the operation costs. In this part of the
report, we will only focus on finding the optimal future supply temperature to give the operators of
the network, however in Nielsen [8] and Arvastson [4] further readings on how operating district
heating in an optimal setting are given while considering the whole district heating system.

Benonysson et al. [3] formulate a mathematical model of a district heating system for estimating the
optimal supply temperature. The model includes the production, the network, and the consumers
where the objective is to minimize the operational cost while satisfying all requirements of the

Digitalisering af fjernvarmen 23



system. They describe a number of items that need to be considered when modeling the dynamics
of a district heating network. We have summarized them here below:

• Time Delay: The transportation time of the DH water from the production plant to the
consumer. The transportation time varies for the individual consumer according to the
distance from the plant and the flow velocity in the pipes. The heat capacity of the DH pipes
also affects the time delays.

• Heat loss: The heat loss is approximately proportional to the difference between the temper-
ature of the DH water and the surrounding temperature. Ground temperature varies over
time, following the ambient air temperature with a slow change in undisturbed ground, i.e.
not heated by the DH pipes.

• Friction loss: When the pumping energy transforms to heat energy due to the friction loss in
the pipes. Most often negligible but when the flow velocity of the water is relatively high
(extreme cases), the produced amount of heat can be of the same size as the heat loss to the
surrounding ground.

• Pressure: The flow in the system changes spread in DH networks around 1000 times faster
than temperature changes. This leads to to the fact that the dynamics of the flow in the
network are of minor importance compared with the dynamics of the temperature changes,
from an operational optimization point of view.

The dynamics of the network are therefore highly important to understand to be able to utilize
these physical facts to enhance the operation of the network. They give the opportunity of keeping
the supply temperature as low as possible when modeling them adequately along with accurate
modeling of the consumers’ dynamics, i.e. accurate heat demand predictions.

Initial controllers to operate the temperature optimally had a reference curve, i.e. a control schema
that changes the set-point of the supply temperature for a given outside temperature. This is a good
restriction on the supply temperature, it is however a naive control strategy. Firstly, it does not
consider the time for the heat to reach the consumer, the transportation time. Secondly, the flow is
usually kept at a low rate, thus the potential of keeping the flow close to the maximum hydraulic
constraint is dismissed, i.e. higher flow results in lower supply temperature. Therefore, when the
heat finally reaches the consumer, the outside temperature could have changed and the supply
temperature is then either too high or too low than required. Also, as the reference curve only
considers the ambient temperature as the meteorological factor that influences heat consumption, it
must necessarily take into account the worst possible condition with respect to other meteorological
factors [33]. This schema also frequently does not consider the social behavior of the consumer,
the diurnal variation. Madsen et al. [5] propose a control schema that utilizes the relationship
of supply temperature and flow in Eq. 4.1 and consider the dynamics of the network and social
behavior of the consumer to increase savings potential. They predict the heating demand using
historical heating demand, and the response of the network to change the supply temperature and
keep the flow high to have the supply temperature as low as possible without violating any of the
restrictions mentioned before. The response of the network is usually done by having measurements
wells within the network, located where the lowest temperature is believed to be, a critical point.
Thus, this critical point is used to give feedback on how the network is responding to changes at
the production, makes it possible to estimate the time delay and heat loss in the network for given
supply temperature and flow.

Madsen et al. [5] suggest controllers for the district heating to have an overall controller, supply
temperature sub-controller, and a flow sub-controller to estimate the future supply temperature at
the production. For each critical point, a sub-controller is developed to compute the lowest supply
temperature from the plant satisfying the reference curve. Flow controller considers the variation of
the heat demand, by varying either the mass flow or supply temperature. It utilizes the possibility
of keeping the flow high as possible as the objective is to maintain as low a supply temperature as
possible without violating the maximum flow constraint due to the hydraulic properties of the pipe
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network. However, as the flow approaches the limit, the flow controller will start to increase its
supply temperature predictions to meet the forecast heating demand. These controllers regulate
the supply temperature and flow without violating any restriction with a certain probability, e.g.
the supply temperature at the consumers needs to be above the reference curve 99% of the time.
The overall controller at the productions then uses the set-points from the sub-controllers to select
the highest supply temperature to generate the heat for the consumer.

In this report, a temperature controller from ENFOR was used, HeatTO™1. It is based on the
methodology mentioned previously in this section, i.e. based on the articles and projects that have
been discussed [8, 5]. Furthermore, in this project, HeatTO™ was extended to receive feedback
from smart meters in large apartment buildings, instead of the normal measurements wells in the
network. In Section 2.1 the smart-meter data and how they were selected to be used as feedback are
described. Feedback from smart meters makes temperature control more desirable to use, especially
for district heating networks that don’t have measurement wells or are poorly calibrated. They
can instead use feedback from smart meters to control the supply temperature at the production.
Another advantage of using smart meters is the ability to change the location of critical points.
District heating network dynamics changes over time due to many reasons, e.g. new areas are
built that are further out in the system, old pipes are replaced with new, and old pipes getting
older, i.e. the characteristics of the network vary over time. As the network dynamics vary, the
critical point changes also, and therefore the critical feedback needs to be moved to give accurate
feedback of the system to satisfy the requirements of the consumers. This is solved by selecting
different smart meters to give feedback on the network. Bergsteinsson et al. [13] suggest how to
use a group of single-family house smart-meters to establish an estimate of the temperature in the
street temperature to be used as feedback. However, in this project, the area used has many large
apartment buildings and it was demonstrated in Section 2.1 that some of the smart meters can be
used to give feedback. Three meters were chosen to be used as feedback for the trial.

5.1 Trial at Tingbjerg
The demonstration of using additional data for the temperature control trial started on 1 November
2020 and lasted until 1 April 2021. The main task of the trial is to demonstrate that smart meters
can be used as feedback of the network for temperature control. The trial was done in the Tingbjerg
area using the HOFOR district heating system where the production unit is a heat exchanger that
supplies the area with heat. Here the focus was on how district heating utilities can create value
from digitalization and use it for control of the network. Three smart meters were selected to be
used as feedback in Tingbjerg to control the distribution supply temperature at the heat exchanger.

Prior to the trial in Tingbjerg, an open-loop control was used to vary the supply temperature. It
was operated by a hydraulic simulation of the system and using a reference curve at the consumers
to estimate the optimal set-points for supply temperature. However, as there was no feedback of the
network on how it reacted to changes or if the consumers were receiving what they are promised,
i.e. the control was open-loop. It also used scaled heat demand forecast as was shown in Section 4
as input. The new controller in the trial is a feedback controller using data from the three smart
meters, a reference curve at the location of each smart meter, localized heat demand forecast, and
a flow controller to achieve the optimal future supply temperature to reduce the operational cost of
the system by lowering the temperature.

Figure 5.1 illustrates the performance at the three smart meters, referenced as netpoints, for the old
and new controller. The supply temperature for both operations is plotted versus the rolling average
of the outside temperature for the past 24 hours. This is to stabilize the time series, smoothing
out any small outliers. The grey solid lines show the reference curve that was used for the new
controller and how it was believed to be for the old controller at the netpoints as it did not have
feedback of the network before. All three plots demonstrate that the supply temperature from the
new controller has less spread and rarely violates the desire reference curve at the netpoints thus the

1https://enfor.dk/services/heatto/

Digitalisering af fjernvarmen 25

https://enfor.dk/services/heatto/


−10 0 10 20 30

60
65

70
75

80
85

90

Netpoint 1

f(Ta)

S
up

pl
y 

Te
m

p.
 [°

C
]

Old controller
New controller
Reference curve
Old controller CI
New controller CI

−10 0 10 20 30

60
65

70
75

80
85

90

Netpoint 2

f(Ta)

S
up

pl
y 

Te
m

p.
 [°

C
]

−10 0 10 20 30

60
65

70
75

80
85

90

Netpoint 3

f(Ta)

S
up

pl
y 

Te
m

p.
 [°

C
]

Figure 5.1: Figure compares the two controller performance at the netpoints. It also
demonstrates the reference curve used and the estimated confidence interval of the supply
temperature for both controllers

system was controlled with more precision. Hence, the new controller gives a better level of security
than what was possible with the previous controller as the previous operation violates it rather
frequently. This is visualized in more detail by comparing the confidence intervals (CI) between the
two operations in the plots. The intervals were estimated using nonparametric quantile regression
and using the 10th and 90th quantiles as the upper and lower bounds. These results indicate that
the new controller can not compete with the old control of lowering the supply temperature as it
can not violate the requirements as frequently as in the previous operation. This suggests that the
reference curve for the new controller could have been lower, resulting therefore in a lower and
more stable supply temperature. We notice that the reference curve can be adjusted 5°C lower
when comparing supply temperature close to the reference curve for the new controller to the
low group points at 10°C for the outside temperature. This suggests that the reference curve can
be adjusted without breaking any requirements when comparing to the previous operation. The
supply temperature will also be adjusted to investigate ”what if” scenario when a more reasonable
reference curve had been used. The suggested reference curve to be used with the new controller is
demonstrated in Figure 5.2. The supply temperature for the trial has also been adjusted with the
5°C. By having more suitable reference curve for the new operation, it could have resulted in lower
supply temperature without violating any constraints and thereby lowering the operational cost.

Figure 5.3 compares the old and the new controller operation at the heat exchanger. They were not
in operation at the same time therefore the months the new controller was varying the temperature
were also selected for the old controller, just one year earlier. The left plots are demonstrating the
stability of the controllers, i.e. the variation in time of the supply temperature. This is important
for the network, as large and frequent fluctuations in the supply temperature should be avoided as
it increases the maintenance costs compared to more stable operation [34]. Comparing the old and
new controller, it is noticeable for the period of the new controller, that the outside temperature
is changing more dramatically. It is has a long period of very cold temperature and quite warm
also. However, for the old controller, the outside temperature is more stable, there are never
significant changes between warm or cold periods. Investigating the supply temperature in these
two different periods it is evident that the new controller gives a more stable operation, i.e. fewer
large fluctuating supply temperatures. This is exhibited in the bottom left plot where the difference
series (subtracting past value with current value) of the supply temperatures are shown. The new
controller difference series is more stable and the plot also show the variance of the differences where
the old controller has around σ2

old = 0.633 and new, σ2
new = 0.345. Hence, with the new controller,

there is less strain to the pipe system due to the slow variation in the supply temperature.
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Figure 5.2: Figures shows the new adjusted reference curve and the supply temperature
from the new controller periods using the 5°C adjustment.

The plots to the right in Figure 5.3 compare the performance of the controllers versus the degree
days. Degree days are used to compare supply temperature between heating seasons when comparing
different operations. The degree days, T dd are computed by estimating the difference between the
average ambient temperature, T̄a an over one day, and using 17°C as the cut-off of heating demand
from buildings,

T dd = max(0, 17 − T̄a) (5.1)

The average supply and return temperature for each day is then computed and plotted against its
corresponding degree day as shown in the top and bottom right plots. The top plots demonstrate
the supply temperature performance of the controllers, and the adjusted supply temperature for
the new controller as suggested before. We see that the new controller has quite a stable but higher
supply temperature than the previous operation as expected because of the high reference curve
as shown in Figure 5.1. Consequently, the new controller results in higher supply temperature at
the production and thereby higher operation cost. However, it is not significantly higher than the
previous operation even though it was penalized by higher restrictions. We see notably improved op-
eration when the adjusted supply temperature is investigated, where the supply temperature is lower.

To compare these operations, a regression model using Ordinary Least Squares to estimate the
parameters of a model with an intercept and slope have been fitted to each operation as shown in
Figure 5.3 and rewritten here below,

New controller: Tsupply = 68.48 + 0.71T dd (5.2)

Old controller: Tsupply = 62.61 + 0.97T dd (5.3)

New adjusted controller: Tsupply = 63.48 + 0.71T dd (5.4)

Hence, that the new controller has a lower slope, which indicates that it does not increase the
supply temperature as fast when the outside temperature decreases compared to the previous
operation. However, the intercept is quite higher, which translates to that the overall expectation
of supply temperature is higher for the given degree day. The adjusted regression lines have a
lower intercept as we have adjusted the data by 5°C however it still has a higher intercept than the
previous operation.

Decreasing the supply temperature for operation leads to an increase in savings for the utility.
Madsen et al. [33] suggest a rule of thumb for savings resulting from lowering the supply temperature
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Figure 5.3: Comparing old and new controller at Tingbjerg. The left plots demonstrate the
stability of the supply temperatures while the right plots compare the supply temperatures
against degree days.

in CHP plant; For each degree lowered, the savings for the heat loss in the network is 0.5 % and at
the production for more efficient production is 1 %, thus the savings can be compute as

Savings = (Costbefore ∗ x [◦C] ∗ 0.5%) + SharesProduction(Costbefore ∗ x [◦C] ∗ 1% (5.5)

where x is the lowered supply temperature for the system. Thus, estimating from Figure 5.3 with
the new adjusted controller, the supply temperature would be 3°C. The savings would be around
4.5% for the operation of the district heating network in Tingbjerg. The rule of thumb and how to
compute the savings are heavily dependent on the system and how the heat is produced. Lowering
the supply temperature for a CHP plant gives the highest savings for district heating. Decreasing
the supply temperature results in an increase in the ratio of the power to heat output for CHP plant,
and as electricity is more valuable than heat, a more profitable operation is achieved [5]. Thus,
the equations are just a rule of thumb to demonstrate potential savings when sufficient production
data is not available.

Concluding this section, we have demonstrated that having feedback of the network improves the
stability of the system, i.e. few and smaller fluctuations in the supply temperature. We saw that
the restrictions of the new operation were probably too high compared to the previous as it was
allowed to violate the restrictions while the new controller tries to satisfy them within a certain
probability. However, adjusting the result with the new controller, we could demonstrate a potential
of 4.5% in savings.
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Chapter 6

Conclusion

In this report, we have demonstrated how digitalization in district heating can improve the operation
of the utility. Smart meters in the network can act as feedback of the system for temperature
control to give response characteristics of the network. Accurate modeling of how the system will
respond to changes at the production will increase the performance of temperature control and
lowering the operation cost. The climate in cities was discussed and the climate in Copenhagen
was used to visualize the temperature differences, i.e. different climates within the city. Therefore,
a local climate station was used to bind weather forecasts to the area’s climate, resulting in more
accurate NWPs for the climate area. The NWPs improvements will result in a more accurate
heat demand forecast, especially for the short-term forecast. An accurate short-term heat demand
forecast is beneficial for the temperature control to deliver the desired consumer consumption and
lowering the operational cost by intelligent control in the next hour.

A trial was conducted to demonstrate these benefits. The focus was to improve the heat demand
forecast and temperature control of the area using additional data than typically is used. We
illustrated the accuracy improvements of localizing heat demand forecast by using the area’s
historical demand and binding the NWP to the area using a local climate station. The local heat
demand forecast was compared to the previous heat demand forecast in Tingbjerg where it was
scaled from a forecast from a large area that contains the Tingbjerg area. This highlighted how
crucial it is to localize heat demand forecast to an area where the temperature control is operating.
The heat demand forecast is used for all operations of the utility, hence the desire of increasing the
accuracy of the forecast that will improve the efficiency of the operations. Temperature control was
in operation on-line during the trial to demonstrate that smart meters can be used as feedback
for closed-loop control. The previous operation in the area was done with open-loop control using
current ambient air temperature and hydraulic simulation of the system to operate the network.
Unfortunately, the reference curve was placed quite conservatively in order to avoid complaints
during the trial. Therefore, the trial operation demonstrated a higher supply temperature than the
previous operation. However, we showed that the closed-loop control usually satisfied the reference
control requirement at the consumer while the open-loop violated it frequently. The closed-loop
operation also demonstrates that it results in higher precision of the supply temperature, e.g. it
does not vary as much for the given ambient temperature compared to the open-loop operation. To
summarize, the proposed data-driven methods lead to higher precision and that it has the potential
of lowering the supply temperature by 5°C, i.e. savings potential of more optimal operation of the
network.

In the report, all of these findings are demonstrated and highlighted, the importance of an accurate
understanding of the area where heat is delivered. Three things are needed to be considered for
efficient operation: 1) The local climate 2) The local social consumption behavior 3) The local
response characteristics of the network. Accurate representation of the heating in the area and the
local climate can be achieved by using data that has become available through the digitalization in
district heating. We therefore conclude that digitalization in district heating will highly benefit the
operation of district heating.
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Appendix A

Temperature Optimization and
Control at Svebølle Viskinge
Fjernvarmeselskab

For the past couple of years, the district heating utility Svebølle Viskinge Fjernvarmeselskab has
been improving its network operation by installing temperature sensors in the network (the critical
points) to have feedback of the network. The previous operation of the supply temperature had
been selected based on an open-loop system. Thus, without considering how the network response
to changes and what supply temperature is received by the consumers. Along with getting feedback,
they have also been using the temperature optimization software from ENFOR, the HeatTO™. The
same software was installed and used in the Tingbjerg network.

The result of the changes made in the network operation can be seen in Figure A.1. In the figure,
heating season is defined as the months; November, December, January, February, and March.
The savings gain of using closed-loop temperature optimization can be seen when comparing the
previous and new controller in the top plot where the average daily supply temperature against
the degree days. The old controller was in operation during the heating season 2018/2019 and the
new controller using the feedback and the HeatTO™ software during the heating seasons 2019/2020
and 2020/2021. The old controller was also kept running during the 2020/2021 heating season
when the new controller was in operation as shown in the figure. It was only used in computing an
alternative setpoints of the supply temperatures, while the new controller was operating the supply
temperature in the network. The flow at the production from the previous and current operation
is shown in the bottom plot. The plot shows that the new controller has a higher flow. Thus, it
increases the flow until it reaches the physical flow maximum of the system before increasing the
supply temperature.

Comparing the new operation to the heating season 2018/2019, it can be condluded that the supply
temperature has been on average lowered by 8°C therefore the savings can be estimated using
Eq. 5.5 to be 12%. However, comparing the new controller to the old controller during the same
heat season (2020/2021), the temperature was decrease by 10°C, and the savings are 15%. Hence,
investing in data-driven methods can increase the savings of the network.
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Figure A.1: Temperature optimization at Svebølle Viskinge for three heating seasons;
2018/2019, 2019/2020, and 2020/2021. The heating season months are November, Decem-
ber, January, February, and March. Average daily supply temperature and flow are plotted
against the degree days in the top and bottom plots.
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