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Abstract: An important step in the sea ice freeboard to thickness conversion is the classification of sea
ice types, since the ice type affects the snow depth and ice density. Studies using Ku-band CryoSat-2
have shown promise in distinguishing FYI and MYI based on the parametrisation of the radar echo.
Here, we investigate applying the same classification algorithms that have shown success for Ku-band
measurements to measurements acquired by SARAL/AltiKa at the Ka-band. Four different classifiers
are investigated, i.e., the threshold-based, Bayesian, Random Forest (RF) and k-nearest neighbour
(KNN), by using data from five 35 day cycles during Arctic mid-winter in 2014-2018. The overall
classification performance shows the highest accuracy of 93% for FYI (Bayesian classifier) and 39%
for MYI (threshold-based classifier). For all classification algorithms, more than half of the MYT cover
falsely classifies as FYI, showing the difference in the surface characteristics attainable by Ka-band
compared to Ku-band due to different scattering mechanisms. However, high overall classification
performance (above 90%) is estimated for FYI for three supervised classifiers (KNN, RF and Bayesian).
Furthermore, the leading-edge width parameter shows potential in discriminating open water (ocean)
and sea ice when visually compared with reference data. Our results encourage the use of waveform
parameters in the further validation of sea ice/open water edges and discrimination of sea ice types
combining Ka- and Ku-band, especially with the planned launch of the dual-frequency altimeter
mission Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) in 2027.

Keywords: SARAL/AltiKa; radar echoes; classification; MYT; FYT; radar altimetry; sea ice types

1. Introduction

Sea ice affects the Earth’s climate and recent studies show a decline in the ice forma-
tion, distribution and volume in the Arctic [1]. The sea ice in the Arctic has experienced
significant changes, with the average extent of sea ice cover in the summer declining by
43% between 1979 and 2019 while continuing to become younger and thinner than in
1980-2000s [2]. Sea ice is a key parameter in the climate system because the increasing
warming of the atmosphere results in a further reduction in sea ice [3]. With the reduced sea
ice extent and thickness, the ocean absorbs more heat and increases the air temperatures,
resulting in inhibited sea ice formation and lowering of the albedo, also known as the
ice-albedo feedback [4]. Through the recent global climate model’s, it is projected that the
ice-albedo feedback will be a major contributor to the expected increase in warming [5];
thus, it is critical to monitor the changes in sea ice extent, distribution of ice types and sea ice
thickness. Sea ice thickness data have previously been acquired by upward-looking sonar
mounted on submarines and moorings (e.g., [6,7]) and electromagnetic induction sensors
mounted on airborne platforms (e.g., [8,9]). While these observations are regionally and
spatially limited, satellite altimetry (radar altimetry, in particular) provides near-global ele-
vation measurements that contain information of surface roughness depicted as altimetric
radar echoes from which the elevation of sea ice thickness can be inferred [1].
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Sea ice has been monitored since the beginning of the 1980s by radar altimetry mis-
sions. Many of the dedicated ocean altimetry missions do not possess high enough orbit
inclination for Arctic sea ice observations. However, there has been a series of pulse-limited
European Ku-band radar altimeters providing measurements up to 81.5 degrees North (i.e.,
ERS-1, ERS-2 and Envisat). More recently, satellites carrying synthetic aperture radar (SAR)
altimeters have been launched: CryoSat-2, Sentinel-3A and Sentinel-3B. The along-track
SAR processing provides finer resolution in the along-track direction than conventional
pulse limited altimeters (~300 m in contrast to several kilometres). With the launch of the
French-Indian (Centre National D’Etudes Spatiales (CNES)/Indian Space Research Organ-
isation (ISRO)) Satellite with ARgos and AltiKa (SARAL) on 25 February 2013, the first
altimeter mission carrying a pulse-limited Ka-band radar (AltiKa) was initiated (see more
details below and in Section 2). An overview of all altimeter missions covering the Arctic
Ocean, including former, present and future missions, is provided in overview Table 1, and
more information can be found in Quartly et al. [10], Kern et al. [11] and Markus et al. [12].

Table 1. Performance characteristics of Altimeters covering the Arctic ocean including former, present and future mis-

sions. In particular, three major types of missions are presented: Light Detection and Ranging (LiDAR) laser altimeter

missions, low-resolution-mode (LRM; conventional, pulse-limited) altimeter missions and synthetic aperture radar (SAR)

altimeter missions.

Mission Organisation Mission Period Altimeter Type Frequency Band Coverage
GEOS-3 NASA 1974-1979 RA LRM Ku 72.0
SeaSat NASA 1978 RA LRM Ku 72.0
Geosat US Navy 1985-1989 RA LRM Ku 72.0
ERS-1 ESA 1991-2000 RA LRM Ku 81.5
ERS-2 ESA 1995-2003 RA LRM Ku 81.5
Envisat ESA 2002-2012 RA-2 LRM Ku/S 81.5
ICESat NASA 2003-2009 GLAS LiDAR Optical (1064/532 nm) 86.0
CryoSat-2  ESA 2010- SIRAL SAR Ku 88.0
SARAL CNES/ISRO  2013- AltiKa LRM Ka 81.5
Sentinel-3A  ESA 2016- SRAL SAR Ku/C 81.5
Sentinel-3B  ESA 2018- SRAL SAR Ku/C 81.5
ICESat-2 NASA 2018~ ATLAS LiDAR photons  Optical (532 nm) 88.0
Sentinel-3C  ESA ~2021- SRAL SAR Ku/C 81.5
Sentinel-3D ESA ~2023- SRAL SAR Ku/C 81.5
CRISTAL ESA ~2027- IRIS SAR Ku/Ka 88.0

The classification of surface types including sea ice types is part of the algorithm
for determining sea ice thickness by freeboard-to-thickness conversion [1,13-16], and it
is also important for operational ice charting [17]. Radar echoes (waveforms) have been
studied since the early heritage missions (GEOS-2, SeaSat, GeoSat and ERS-1/2) in the
1980’s (e.g., [18,19]). Dwyer and Godin [18] observed that altimeter radar waveforms have
higher power values over smooth sea ice than over the rough open ocean, suggesting
possible discrimination between the sea ice and the open ocean. Fedor et al. [20] observed
a reduction in the signal response when comparing flat to ridged sea ice, and Fetterer [21]
observed the strongest return signal from leads (calm, open water or thin ice between ice
floes), producing specular echo power waveforms. With these findings, the possibility of
retrieving information on sea ice and sea ice type classification from radar altimeter data
has been discussed in several studies (e.g., [22-24]). Currently, sea ice thickness retrieval
algorithms only employ a method for distinguishing leads from ice floes to estimated
freeboard, which is the sea ice above local sea surface level [25], but recent studies have
investigated the possibility of discriminating between sea ice types with airborne [15] and
spaceborne SAR radar altimeters [17,26-28]. The assumptions are based on the shape of
the waveform from conventional altimeters acquired over ice and snow to characterise
the underlying surface in order to differentiate based on the sea ice type. Sea ice in the
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Arctic can be divided into two major groups: first-year ice (FYI) and multi-year ice (MYI).
The surface characteristics of these ice types differ due to, e.g., accumulation, convergence
and survival of the melting season, causing MYI to generally have a rougher surface [29].
Normally, FYI radar echoes will have a high peak value of backscatter and a steep decay
as the surface is relatively smooth with thin snow cover, thus primarily experiencing
surface scattering. In comparison, MYI (and heavily deformed FYT) will often exhibit lower
backscatter and a slower decay [27]. While recent studies have investigated spaceborne
Ku-band SAR altimeters (CryoSat-2) (e.g., [17,27,28]), there have been no such studies
investigating the possibility of discriminating sea ice types from spaceborne Ka-band
radar altimeters, to the best of our knowledge. Thus, we will investigate the possibility in
this paper.

AltiKa is the first satellite altimeter operating in Ka-band (see [30] and Table 1). The
higher frequency offers higher spatial resolution, resulting in potentially better lead detec-
tion than conventional Ku-band altimeters [30]. Furthermore, it permits less penetration
into the snow cover that is covering the sea ice compared with earlier Ku-band missions [31].
Moreover, the volume echo in the Ka-band is a result of the near subsurface layer and is
more sensitive to ice grain size than Ku-band [32]. With its relatively high orbit coverage
(81.5°N), one of the objectives of AltiKa is to study continental ice and sea ice. Successful
use of satellite altimeters to estimate sea ice types will provide users with an indepen-
dent validation product for other sea ice type products (e.g., Ocean and Sea Ice Satellite
Application Facility (OSI SAF)), as well as a potential estimate of the sea ice edge. It will
also provide direct input for the altimetry derived freeboard-to-thickness conversion and
improve the estimates of sea ice thickness [26]. In addition, acquiring this information
from the same platform and instrument as the freeboard /thickness measurement itself
will reduce the uncertainty due to the lack of temporal latency, which is usually intro-
duced between the altimeter measurement and the related sea ice type mask obtained by
other sources.

In this paper, we will investigate several approaches that classify sea ice into MYI and
FYI (including deformed sea ice) based on former studies on CryoSat-2 Ku-band radar
altimetry. We show that different sea ice types produce significantly different shapes of
radar echoes represented by five selected waveform parameters. Our study areas are
selected by visual inspection of OSI SAF sea ice type products. The influence of snow
cover and radar penetration will be briefly discussed. Finally, a reference to the European
Space Agency (ESA)’s future polar altimetry mission, The Copernicus Polar Ice and Snow
Topography Altimeter (CRISTAL) is provided.

This paper is divided as follows: Section 2 describes the SARAL/AltiKa altimeter
data and the used reference data. The parametrisation of the echo waveform is described
in Section 3, as well as pre-processing of data, classification method and discrimination
of surface types. The evaluation of the classification performance and of the results is
shown in Section 4 and the discussion is presented in Section 5. In Section 6, the conclusion
is presented.

2. Data
2.1. SARAL/AltiKa

We use waveforms from SARAL’s main instrument, AltiKa. More specifically, we use
the geophysical data records (GDR) data set provided by the CNES data centre: Archiving,
Validation and Interpretation of Satellites Oceanographic (AVISO). The data were acquired
in February and March (35 days; a similar period as the repeat cycle of AltiKa) every year
between 2014 and 2018.
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SARAL was launched on 25 February 2013 and AltiKa was first switched on 26 Febru-
ary with the first cycle beginning on 14 March. SARAL flies on a similar orbit as Envisat
did, with an inclination of 98.55° providing coverage up to 81.55°N. The orbit is sun-
synchronous with a 35-day repeat cycle. AltiKa operates in a single-frequency band of
37.5 GHz, which is the Ka-band, and thus possesses reduced ionospheric effects when
compared with Ku-band [33]. The higher frequency results in a smaller footprint of 8 km
(compared to Envisat’s 20 km). This combined with AltiKa’s higher pulse repetition
frequency compared to that of Envisat (4 kHz for AltiKa) results in better along-track
sampling. Furthermore, the enhanced bandwidth (480 MHz) enables a better range resolu-
tion [14,30,32,33].

2.2. OSI SAF Sea Ice Type

For selecting study areas we use sea ice type charts from Ocean and Sea Ice Satellite
Application Facility (OSI SAF). The sea ice type product of the European Organisation for
the Exploitation of Meteorological Satellites (EUMETSAT) OSI SAF is available at www.
osi-saf.org (accessed on 29 July 2021). The ice classes are assigned from atmospherically
corrected Special Sensor Microwave Imager/Sounder (SSMIS) brightness temperatures
(19H, 19V, 37V, 91H and 91V, where H and V note horizontal and vertical polarisation,
respectively) and Advanced SCATterometer (ASCAT) (C-band) backscatter values on-
board EUMETSAT platform Metop-A and Metop-B, by using a Bayesian approach. The sea
ice types are provided in a grid with a resolution of 10 km spacing on a Polar Stereographic
projection and possess a time span of 24 h. The sea ice types utilise the OSI SAF sea ice
edge product to define the border between sea ice and open water, using a threshold of
30% of ice concentration [34,35]. For this study, days with the maximum sea ice extent are
chosen to visually recognise specific FYI and MYI areas as training data sets. Furthermore,
data from OSI SAF sea ice types from February 2014 to 2018 have been extracted in order
to compare with the classified AltiKa data, i.e., data from each day of the month have been
combined and averaged to create a monthly ice type chart for February for each of the
specified years.

3. Method

In this study, we aim to use AltiKa altimeter data to discriminate between FYI and MYL
The ice types usually have different surface characteristics, i.e., FYI is relatively smooth as
it is newly formed ice whereas MYI appears rougher due to its age and is more deformed
by accumulation and redistribution. This difference can be used to discriminate between
the different sea ice types [14,15], as different waveform shapes depict the different surface
characteristics. We extract five waveform parameters here (see Section 3.1) from the radar
echoes and investigate a simple classification approach based on thresholds (Section 3.3.1)
and three supervised classifiers (Sections 3.3.2-3.3.4). In order to determine unbiased
thresholds, pre-processing is a necessary step (Section 3.2), e.g., to remove data affected
by leads.

3.1. Parametrisation of Waveforms

In order to classify sea ice types from AltiKa, we investigate five waveform parameters
as described below and shown schematically in Figure 1.


www.osi-saf.org
www.osi-saf.org

Remote Sens. 2021, 13, 3183

50f27

Power

300 Mhomupoer ' ' '
200 ¢
Leading edge wid_th
100}
Trailing edge slope
Backscatter e e
0 e A s 1
0 20 40 60 80 100 120

Range bin

Figure 1. Schematic visualisation of different features (parameters) of a radar altimeter waveform.

Maximum power (MAX) is the highest recorded power in the calibrated waveform. It
has been used in several studies to identify sea ice leads (e.g., [1,13,14]) and charac-
terises, in general, the reflective properties of the surface [14]. Zakharova et al. [14]
formulated the expression to calculate MAX for AltiKa:

MAX =10 log,, (max(P;) - 10, (1)

where AGC is an automatic gain control (in dB) and P; is the power in the ith bin.
Pulse peakiness (PP) describes the specularity of the radar echo return (high PP near
surfaces with high reflectances, such as FYI or leads [14,15,26]) and was first defined by
Laxon [24] for ERS-1. For AltiKa GDR data, PP must, as described in Zakharova et al. [14],
be calculated as follows:
maX(Pi) ’ Nright
Zi:V{F P i
where Ny is the total number of gates, i.e., 128, and Nyignt is the number of points to
the right of the bin containing the MAX value.
The leading-edge-width (LEW) is defined as the width between 1 and 99% of the
amplitude of a Gaussian fit to the leading edge of a waveform [13]. For specular
returns (leads), LEW will be smaller than for scattered returns (e.g., MYI) [15]. LEW is
available in the AltiKa data product from the ICE-2 retracker and is directly used in
this study.
Research has shown that the trailing edge slope (TES) is a parameter useful for
distinguishing between MYI and FYI with Ku-band radar altimeters while being
highly correlated with the trailing edge width (TEW) [15]. TES is defined as the decay
factor for the exponential fit [36]. There is a clear difference in the decay after the peak
of the waveform when comparing MYI and FYI, as MYI generally has a lower decay
rate (with a wider TEW) than FYI (and leads) [15]. TES is available in the AltiKa data
product from the ICE-2 retracker.
The backscatter coefficient (0p) is computed from the power of the returned pulse and
provides information about the surface from which the pulse has been reflected. MYI
has lower backscatter values due to the rougher surface caused by, e.g., deformation,
allowing MYI to scatter the pulse away from the radar at nadir, whereas FYI experi-
ences more specular returns due to less deformation; thus, the return signal from nadir
will be stronger [33]. The backscatter coefficient from AltiKa can be obtained from
the retracking algorithms ICE-1, ICE-2 and SEA ICE [37]. Rajkumar et al. [33] argues

2

PPajtika =
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that retracking algorithms ICE-1 and SEA ICE have similar backscatter observations
over sea ice, indicating great suitability for sea ice observations, whereas the bias
with ICE-2 retracker was apparent for the backscatter observations. Therefore, in this
study, instead of using the backscatter coefficient from the ICE-2 retracker as is used
when retrieving LEW and TES, the backscatter coefficient obtained from the SEA ICE
retracker is used.

3.2. Pre-Processing of Altika Data

The pre-processing of AltiKa data is necessary to reduce the amount of data that could
impact the results. First, the specific study areas are defined (see Figure 2 for specifications).

120°E

O Aol M1
O aoiFyi
[l 0SI SAF MYI
[ oS SAF FY1
[l 0SI SAF Opean Ocean

Figure 2. Map of the study areas by area of interest (AOI) chosen by visual inspection of Ocean and
Sea Ice Satellite Application Facility (OSI SAF) sea ice types. AOI first-year ice (FYI) is shown in
yellow and AOI multi-year (MYI) in cyan. Averaged (~30 d) OSI SAF sea ice type map from February
2016 is applied as the background representing MYI in green, FYI in brown and open ocean in dark
blue. Dark lines denote FYI/MYI border and ice/ocean edge, respectively.

The locations are based on the simple assumption that one area is covered by FYI and
the other by MYI and that these areas are representative for the two types of sea ice present
in the Arctic. Any points outside these areas have been removed from the initial processing.
Next, filtering by the surface type flag and ice flag provided in the AltiKa GDR is applied.
We only keep radar echoes measured over what is defined as ocean surface and ice.

Discrimination between Specular and Diffuse Waveforms

Identifying whether waveforms are specular or diffuse renders it possible to discrimi-
nate between measurements of calm ocean surface (leads) and ice surfaces [25]. When a
radar burst is reflected from a smooth, mirror-like surface, e.g., leads or very calm ocean,
a specular echo occurs. In a case such as this, the power in the range window rises and
falls again very rapidly, creating a narrow echo. Diffuse echoes occur when the radar burst
is scattered from a rougher surface, e.g., deformed sea ice, where the echoes become less
peaky compared to specular returns from the calm water [16]. Examples of waveforms
from specular and diffuse echoes are shown in Figure 3.

In order to identify specular and diffuse echoes, it is common to use thresholds for
PP as described in Section 3.1. Studies of CryoSat-2 have used different thresholds for
PP values to discriminate between specular and diffuse echoes. Tilling et al. [16] defined
specular echoes from CryoSat-2 as possessing PP values greater than 18, diffuse echoes as
possessing PP values less than 9 and values in between for echoes of too much complexity.
Other studies defined a threshold of specular echoes to possess PP values greater than 40
(e.g., [1,17]). Zakharova et al. [14] emphasises how the radar characteristics of AltiKa are
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different from the other missions and how their thresholds cannot be directly transferred
to the processing of AltiKa data. Their study shows PP values of 30-90 around leads and
lead edges, suggesting a threshold of PP values > 30 to describe the specular returns.
Lawrence et al. [38] state that, for AltiKa, waveforms with PP values higher than 18 are
considered leads; those with values ranging from 5 to 18 are considered mixed; and PP
values below 5 are used for sea ice. The threshold (PP < 5) is applied in this study to
identify reflections from sea ice and is further refined by only keeping MAX values within
the interval 40-50 dB, following the results of Zakharova et al. [14].

1500 T 4 y r ! 4 300

(2) (b)

1000 | 200 ¢

Power
Power

500 ¢ 100 |

0 i n— = e D ! - L L "
0 20 40 60 80 100 120 0 20 40 60 80 100 120

Range bin Range bin

Figure 3. Example of AltiKa waveforms. (a) A specular return echo. (b) A diffuse return echo. We
would like to emphasise the large difference in power return when you compare the specular and
diffuse return echo.

While surface roughness is one of the factors that change the shape of the waveform,
other factors also affect the radar signals behaviour in the snowpack. This in turn may be
observed in the resulting waveform. A recent study by Stroeve et al. [39] based on a ground-
based radar system, KuKa, deployed during the Multidisciplinary drifting Observatory
for the Study of Arctic Climate (MOSAIC) showed that factors such as snow grain size
and neighbouring grains, brine particles, the salinity of snow and the general scattering
within the snowpack should be taken into account when it comes to interpreting the
waveforms. However, for satellite-based systems, an assumption of a non-coherent sum
of all scatterers is still usually accepted. The shape of the waveform is not dependent on
surface roughness only, and the scattering in snowpacks also plays a role. We note that
this is still an ongoing research topic, and it is still unclear exactly how these scatterers
within the local snowpack propagate through the resulting radar signal from a larger
surface (larger footprint) recorded by the satellite compared to a local surface observed by
a ground-based system.

3.3. Classification

For classifying the MYI and FYI, we use four classifiers that have already been applied
to Ku-band altimeter measurements [15,17,27,28]. The classifiers are trained separately for
each year.

3.3.1. Threshold-Based Classification

We use here a simple threshold classification similar to Zygmuntowska et al. [15], as
it makes no prior assumption on the distribution and is straightforward to implement.
The goal is to estimate thresholds or intervals of the waveform parameters in order to
discriminate between the sea ice types, as there should be a prominent difference due to
the different surface characteristics of the sea ice types. The intervals will be determined by
the most frequent measured value of each waveform parameter, i.e., the modal value £ the
standard deviation (std). There will be an interval for each sea ice type defined (i.e., FYI
and MYI) by each waveform parameter over each year during 2014-2018. If a waveform
possesses a parameter that falls within the overlapping part of the intervals (in both MYI
and FYI), this measurement will be classified as ambiguous. If the parameters fall outside
the determined thresholds, it will be labelled as no class.
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3.3.2. Bayesian Classification

The Bayesian classifier is based on Bayes’ theorem (see Hanson et al. [40]), in which
the classification problem is formulated in probabilistic terms. That is, based on the proba-
bilities of each surface class and probabilities of each waveform parameter, a probability
calculation is used to make the classification decision. Similar to Zygmuntowska et al. [15],
the Gaussian kernel density estimates are used to model the parameter densities for each
class. By using the Bayesian classification approach, the training dataset will be the same
as the dataset used to estimate thresholds in the threshold-based classification scheme (this
will be the case for all supervised classifiers). The Bayesian classifier will be tested on the
entire data product available, where it will classify the pan-Arctic ice-covered region by
using the ice type product from OSI SAF in order to describe the ice as either MYI or FYI.

3.3.3. k-Nearest Neighbour (KNN) Classification

A k-nearest neighbour (KNN) classifier finds k objectives in a provided training dataset
that are closest to the test point; the class is based on a majority vote among these k objects
and the distance is based on the ordinary Euclidean metric; based on this distance, the
classification output is determined [17,28]. The training data used are the same for all
supervised classifiers (and threshold-based), and the features used are the waveform
parameters (which particular parameters selected are described in Section 4).

3.3.4. Random Forest (RF) Classification

In addition to the threshold-based, Bayesian and KNN classifier, we also investigated
the performance of a RF classifier, which has been applied to Ku-band CryoSat-2 data by
Shen et al. [27] and demonstrated one of the highest classification performances compared
to former studies. The RF classifier is a machine learning algorithm belonging to the
category of decision tree classification algorithms. The RF classifier generates a large
number of decision trees and, in each tree, the features are selected on a random basis. This
allows the classifier to be robust with regards to noise [27,28]. The RF classifier is trained
with the same training data as used in the previously mentioned classifiers (for each year)
and is later applied to the entire pan-Arctic and compared with the OSI SAF reference data
product for evaluation of performance. Classification trees numbering 150 were planted
similar to Shen et al. [27] and Shu et al. [28].

3.3.5. Classification Performance

The classification performance will be calculated over the entire Arctic region (FYI/MYI
dependent) for the selected period (~February, 35-day cycle). A correct classification for
the different ice type classes is defined as the number of classified waveforms of each type
by AltiKa, which are equivalent to the ice type from OSI SAF. Thus, FYI and MYI masks
are applied to the classified data and the percentage of FYI and MYI (and ambiguous and no
class for threshold-based) observations is calculated for each of the two areas. Therefore, the
percentage of the waveforms that have been correctly classified is given as the following:

#class ajixa M #classogr sar

correct classification =
#class()SI SAF

, ®)

which is similar to Zygmuntowska et al. [15].

Training performance is calculated in the Matlab Toolbox (used to train the classifiers)
as 5-fold cross-validation by default. By using the Matlab Toolbox, an accuracy (validation)
score is provided, which estimates a model’s performance on new data compared to the
training data and can be used to assist in choosing the model that performs the best.
According to MATLAB’s own definition, the score is the accuracy of all observations for
cross-validation, counting each observation when it was in a held-out (validation) fold
(see more on https:/ /se.mathworks.com/help/stats/assess-classifier-performance.html,
accessed on 18 April 2021). Such training performance accuracy scores are provided in
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Table 2. Here, it is mainly used as a figure to select which combination of waveform

parameters is to be used for further classification.

Table 2. Overall training classification performance (%) of three types of classifiers: Bayesian (Zygmuntowska et al. [15]),

KNN (Rinne and Simila [17]) and RF (Shen et al. [27]) with four combinations of waveform parameters used as classification

parameters, i.e., LEW, MAX and oy. The overall training performances of classification methods averaged over all four types
of waveform/classification parameter combinations are KNN (81.70%), RF (83.76%) and Bayesian (83.96%). Combination-
wise, the training performance is divided as: LEW + MAX + 0 (82.97%), LEW + 0 (84.48%), LEW+MAX (83.35%) and
MAX + 0y (80.10%). The highest average training performance (and smallest spread denoted by standard deviation, std)

of each classifier (overall) is highlighted in bold. The lowest average classification performance (and largest spread) is
highlighted with italics.

LEW + MAX + 09 LEW + oy LEW + MAX MAX + o9

Year KNN RF Bayesian KNN RF Bayesian KNN RF Bayesian KNN RF Bayesian
2014  85.88 86.35 85.51 86.32 86.86 86.35 85.95 87.20 86.25 78.65 80.11 83.44
2015 94.44 94.50 94.06 94.57 95.42 94.54 94.50 94.57 94.50 92.09 9247 94.27
2016  80.58 81.36 79.97 78.88 82.57 79.93 79.86  80.75 79.97 68.75 73.93 76.88
2017 7753 80.37 80.10 77.56 84.42 79.59 7695 80.34 79.66 72.34 7593 79.69
2018 7824 80.00 80.68 78.34 80.25 81.69 77.53  80.51 81.63 75.19 77.36 80.41
Mean 83.33 84.52 84.06 83.13  85.90 84.42 82.96 84.67 84.42 77.40  79.96 82.94

Std 7.02 614 6.04 730 5.85 6.27 737 624 6.23 898 7.35 6.75

4. Results

4.1. Waveform Parameters and Discrimination Suitability

4.1.1. Waveform Parameters Acquired over the Study Areas

Following the pre-processing of AltiKa GDR as described in Section 3.2, we estimate
the waveform parameters for FYI and MYI in February (35 day cycle) 2014-2018 for the
study areas defined in Figure 2. It is evident from the box and whiskers plots (Figure 4)
that the MAX and o show the largest differences in the distributions when comparing FYI
and MYI alongside LEW. In 2015, PP also seems to be useful for distinguishing between the
sea ice types. The estimated modal values of the waveform parameters with the associated
variability (std) are provided in Table 3.

Table 3. Statistical analysis of the waveform parameters: (MAX (maximum power), PP (pulse peakiness), 0y (backscatter

coefficient), LEW (leading edge width) and TES (trailing edge slope)). The most frequent measured value (the modal value)

for each date of FYI and MYI areas with the variability provided as one standard deviation. * LEW is shown without the

scaling-factor of 0.01.

Cases Year MAX (dB) PP (dB) o0 (dB) LEW * (m) TES s~ 1)

FYI 2014 4891 4+ 1.26 1.47 £0.33 7.70 £ 1.26 0.09 £+ 0.33 —1.98 x 10”7 + 3.39 x 10°
FYI 2015 4950 £+ 1.16 1.55 +£0.28 776 £ 1.16 0.09 £+ 0.22 —1.92 x 107 +2.99 x 10°
FYI 2016 47.55 £+ 1.33 1.27 +£0.28 6.18 +1.33 0.09 +0.22 —1.92 x 107 + 2.44 x 10°
FYI 2017 4891 4+ 1.32 1.56 £ 0.51 743 +1.32 0.09 £+ 0.33 —1.93 x 10”7 + 3.39 x 10°
FYI 2018 4891 +1.18 1.35 £ 0.40 793 +1.18 0.09 £+ 0.30 —1.85 x 10”7 + 3.27 x 10°
MYI 2014 47.00 £+ 1.15 1.16 £ 0.21 5.01 = 1.16 0.28 +0.18 —1.77 x 107 + 1.75 x 10°
MYI 2015 45.78 +1.24 1.12 + 0.26 3.85+1.24 0.33 £0.21 —1.79 x 107 + 1.57 x 10°
MYI 2016 46.00 £ 1.39 1.16 £ 0.30 431 +£1.39 0.33 +0.23 —1.84 x 10”7 4+ 2.39 x 10°
MYI 2017 47.01 +1.49 1.16 £ 0.45 487 +1.49 0.28 £+ 0.27 —1.79 x 107 4+ 2.22 x 10°
MYI 2018 47.01 £+ 1.49 1.16 £ 0.48 5.20 &+ 1.50 0.28 £+ 0.27 —1.81 x 10”7 +2.23 x 10°
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Figure 4. Box and whiskers plots of computed waveform parameters (MAX in dB, PP in dB, ¢p in dB, LEW in metres and
TES in s~1) in February 2014-2018 from the chosen study areas (Figure 2). PP, LEW and TES have user-defined limits
applied to maintain the focus of the main distribution of the measurements rather than the outliers. Outliers have been

removed to keep the plot simple.

Based on Table 3 MAX, 0y and PP are the parameters that overlap the least and show
the largest variability between FYI and MYL. LEW is higher for MYI than FYI, which follows
our expectation, but it is associated with the large variability (determined by standard
deviation, ), resulting in a large overlap between ice types. For TES, FYI has a higher
decay rate when compared to MYI, which is expected due to an increase in quasi-specular
returns in the observations over FYI, but once again the large variability allows for overlap
between FYI and MYI. Thus, neither PP, LEW or TES seem suitable for a conventional
threshold-based classification for AltiKa.

Prior studies of airborne Ku-band radar altimetry (e.g., Zygmuntowska et al. [15])
and CryoSat-2 (e.g., Rinne and Simild [17], Zygmuntowska [26]) have estimated PP, TEW
and LEW to be the most suitable classifiers of sea ice types in the Arctic, with TEW and
LEW describing, to some extent, the volume scattering of the reflected snow cover and
the surface reflectance, respectively. In the sense of surface scattering, which is expected
to be dominant for Ka-band radars, one would assume TEW (or TES in this study) and
LEW to show similar behaviours over the respective ice types. While it is also true in this
study, the variability allows for too much overlap between the intervals. The same applies
to PP, suggesting MAX and oy as the most suitable classifiers. This is in contradiction to
the findings of Zygmuntowska [26]. They investigated CryoSat-2's waveform parameters
and found a statistically significant difference between PP, SSD (stack standard deviation, a
parameter stemming from delay doppler processing of SAR altimeters such as CryoSat-2),
LEW and TEW. For MAX and 0y, they found no distinct differences. They identified the
SSD, LEW and PP as the best parameters to distinguish between FYI and MYI and stated
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that the MAX could not be confirmed as a reliable parameter for sea ice classification. The
findings of Zygmuntowska [26] were also in contradiction with Zygmuntowska et al. [15],
where they performed an analysis of airborne synthetic aperture Ku-band radar waveforms
in order to classify sea ice types. Here they found TEW and MAX (Bayesian approach) or
PP (threshold-based approach) to be the most suitable parameters. Thus, several studies
have used different parameters based on their data and suitability requirements.

Inspired by these studies, we also investigated the parameters by cumulative probability
functions (CDFs) (see Figure 5) and distances between FYI and MYI that were determined
by Kolmogorov-Smirnov (KS) two-sided test similar to Zygmuntowska et al. [15] and Shu
et al. [28] (see Table 4). These approaches result in the same overall behaviour, i.e., MYI has
lower MAX, 0y and PP values when compared to FY], reflecting that the surface of FYI is
smoother than MYI. TES shows significantly more overlap and a smaller difference between
the distributions, and LEW’s CDFs are somewhat hard to analyse qualitatively as they do not
follow a similar pattern as the rest of the parameters.

The result shows that the distributions for each class are significantly different at
(at least) the 95% level for each feature. It is observed that the differences between LEW,
MAX and oy are significantly larger than for PP and TEW. Surprisingly, LEW has the highest
maximal distance (0.60 £ 0.12), suggesting this to be a valid classifier. However, as stated
before, the classification intervals (see Table 3) overlap too much and, thus, LEW cannot
be used in the threshold-based classification as it would include too many observations
classified as ambiguous ice. TES and PP have lower maximal distances than LEW (0.31 +0.13
and 0.37 £ 0.12, respectively), indicating the distributions to be similar for observations
obtained over FYI and MYI and thus are not suitable as classifiers. Based on the maximal
distances of MAX and oy (both 0.45 &£ 0.10), these show the largest potential to be the
most suitable classifiers. The variability (std) also suggests that the distribution difference
between MAX and ¢y is more robust than the others, suggesting that LEW, TES and PP
are more unreliable when describing a specific surface type. It could also indicate that
the surface appearance can change a lot even though it is supposedly of the same type.
Furthermore, we note that the maximal distance between the CDFs changes during the
years (e.g., MAX is higher for 2014 /2015 than 2016/2017), which indicates that the sea
ice is different in the study areas for each year and that perhaps, for 2016-2017, the study
areas are more similar in surface roughness than for other years. This is also why we base
our training interval and data on data from each year and month and not only on one
year because the sea ice is changing and is highly dynamic. This will likely also affect our
performance results, since the ice used to train is essentially different each year (a more
thorough discussion on the selection of suitable study areas is provided in Section 5.4). In
summary, with our qualitative analysis based on distributions (Figures 4 and 5), intervals
(Table 3) and maximal differences between the cumulative distributions by KS-test (Table 4),
we propose MAX and ¢p as the most suitable parameters for the classification of sea ice
types by radar echoes from AltiKa using a threshold-based classifier.

Table 4. The actual maximal distance between the CDFs of MYI and FYI for each year from 2014 to
2018 was calculated by the Kolmogorov-Smirnov (two-sided) test for each waveform parameter.

Year MAX PP 0o LEW TES
2014 0.510 0.493 0.508 0.610 0.452
2015 0.578 0.501 0.579 0.788 0.420
2016 0.346 0.294 0.344 0.595 0.192
2017 0.372 0.320 0.372 0.540 0.302
2018 0.444 0.250 0.456 0.479 0.172

Mean 0.450 0.372 0.452 0.602 0.308

Std 0.096 0.117 0.096 0.116 0.128
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Figure 5. The cumulative probability distributions (CDFs) for the five different AltiKa waveform parameters for all years
(2014-2018) combined are shown by MYI and FYI in green and brown, respectively. LEW, PP and TES use the same limits as

in Figure 4.

4.1.2. Pan-Arctic Distribution of the Waveform Parameters

The spatial pan-Arctic distributions of MAX, 0y and LEW from 70 to 81.6°N for
February (35 day cycle) 2014-2018 are shown in Figure 6. Comparing with the distribution
of OSI SAF sea ice type (contour lines in Figure 6), both MAX and oy are promising when
used as classifier.

MAX (Figure 6, left column) shows relatively low values associated with MYI north
of the Canadian Archipelago, which is as expected. Most FYI and open ocean have MAX
values >48 dB and are difficult to separate by using MAX alone. The largest drawback
when using MAX is the large amount of MYI observed in the Beaufort Sea (in OSI SAF
data in 2014 and 2015), which is misclassified as FYI when using the MYI intervals from
Table 3. Furthermore, MAX does not show ice with values lower than ~44 dB, even though
Zakharova et al. [14] estimated rough sea ice to range from 40 to 50 dB. Since AltiKa does
not cover the entire MYI area due to its polar gap, it is not possible to investigate whether
it also applies to areas where the rougher, older and more deformed sea ice occurs, e.g.,
north of Greenland. The distribution of oy (Figure 6, centre column) suggests that it is also
a promising classifier for discriminating between MYI and FYI when compared to OSI
SAF sea ice types. However, in some years (2014 and 2015), it appears to recognise MYI
near the Barents Sea and Kara Sea which is not consistent with OSI SAF. This suggests a
combination of MAX and 0y to be the most suitable method for discriminating between sea
ice types in the Arctic using AltiKa data.
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Backscatter

Figure 6. Spatial distribution of MAX (limits 44-50 dB), 0y /backscatter (limits 0-10 dB) and LEW (limits 0-1 m) over the
Arctic from 70 to 81.6°N for a 35 day cycle (~February) in 2014-2018 interpolated to the OSI SAF 10 km grid with a polar
stereographic projection. The black line denotes MYI/FYI ice edge and the magenta line denotes ice/ocean edge.
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Based on the KS-test, the suitable parameters for discriminating between FYI and MYI
using our test areas are LEW (with the largest difference between MYI and FYI CDF’s),
MAX and oy. Thus, we have also investigated the pan-Arctic distribution of LEW (see
Figure 6 (right column)). It is clear from Figure 6 (right column) why there is such a big
overlap in the intervals determined by the threshold for FYI and MYI. While there are high
LEW values associated with MYI north of the Canadian Archipelago, the high values do
not spatially cover the whole MYI area as defined by OSI SAF. Furthermore, over the entire
FYI area, there is a large amount of high LEW values, which potentially stem from heavily
deformed FYI. However, a striking feature in the pan-Arctic distribution of LEW is the clear
difference between sea ice (FYI and MYI shown in blue colours) and open ocean (shown in
red colours). This suggests that for AltiKa, LEW can be used to discriminate sea ice (with
values of 0.0-0.5 m) from the open ocean (with values above ~0.6 m). By comparing this
open ocean/sea-ice edge visually with OSI SAF’s sea ice edge (see magenta contour lines
in Figure 6), there seems to be a good agreement. We encourage further studies in using the
Ka-band (such as AltiKa) waveform parameters in order to distinguish open ocean from
sea ice to support the sea ice edge mask that is applied when estimating sea ice thickness
products. The sea ice edge mask is usually provided by complementary measurements
such as the OSI SAF sea ice edge product, and it could be useful to investigate the question
of whether the altimetric measurements can provide an additional reference data set to
improve the sea ice edge masks.

We further investigate the question of which combination of MAX, ¢y and LEW, for
each year, will present the highest training performance with the lowest spread by using
three supervised classifiers (i.e., KNN, RF and Bayesian). In order to investigate the overall
accuracy of the models, we use data from the FYI/MYI study areas (defined in Figure 2) as
a training dataset and four combinations of waveform parameters, i.e., LEW + MAX + 0y,
LEW + 0y, LEW + MAX and MAX + 0y.

The overall highest training performance (averaged over all five years) is achieved
by using RF (85.90%) and a combination of LEW + 0y as classifiers. Using KNN, the
highest overall training performance (83.33%) is achieved by using a combination of
LEW + MAX + 0p. The Bayesian classifier achieves the highest overall training perfor-
mance (84.42%) by using both a combination of LEW + 0y and LEW + MAX. When averag-
ing the performance over five years for each combination, the combination of LEW + oy
had the highest training performance with an average of 84.48% and the Bayesian approach
proves best with an overall training performance of 83.96%. It is noteworthy to observe
that the combinations of MAX + 0y, which according to the threshold-based classification
scheme were superior to any classification based on single parameters (Table A1), possess
the overall lowest training performance (80.10%) when using the supervised classifiers.
Furthermore, it had the largest spread (denoted by standard deviation) for all years as well.
Based on the statistics of the training classification performance, we further investigate
the supervised classification of sea ice types based on a combination of LEW + oy, since
the overall training performance showed this combination as the best and the training
performances of RF and Bayesian (based on the five years with 85.90% and 84.42%, respec-
tively) are the highest here as well. One of the classifiers (RF) for LEW+0y also had the
smallest spread of 5.85%. For KNN, it had the second smallest spread (of 7.30%) and the
second-largest spread for Bayesian (of 6.27%) (see Table 2).

4.2. Classification of Sea Ice Types in the Arctic by Four Classifiers

In this section, we aim to classify the pan-Arctic sea ice types (FYI and MYI) by using
four classifiers (KNN, RF, Bayesian and threshold-based) and to test their performance
following the method described in Section 3.3.5.

As described in Section 3.3.1, the threshold-based classification partitions the AltiKa
data into four classes, i.e., FYI, MYI, ambiguous and no class, where the FYI and MYI classes
are determined by the intervals provided in Table 3. When combining MAX + o0y in the
threshold-based classification, only values within the same ice type interval (e.g., MYI in
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both MAX and ¢p) will be considered as MYI and the case is similar for FYI, otherwise
they will be considered as ambiguous. Based on the statistics presented in Appendix A,
the combined classification MAX + o shows the highest overall performance, where the
single parameter classifications using oy performs best over MYI and MAX over FYI. Hence,
for the threshold-based classification, the combination of MAX + 0y is used. Based on
the outcome of Section 4.1.2, we use a combination of LEW + ¢y in the case of all three
supervised classifiers (KNN, RF and Bayesian).

In order to investigate the classification performance, the classified AltiKa data are
compared with reference data from OSI SAF. By interpolating the classified AltiKa data
into the grid of the reference data, it is possible to determine the classification rate. The
classified AltiKa data are interpolated into the grid points of OSI SAF that are defined
as sea ice. Thus, the classification of AltiKa is constrained by the ice edge data from OSI
SAF, which determines the border between ice and ocean. The reference data possess the
following four types—ocean, FYI, MYI and ambiguous—and the data are provided in a polar
stereographic 10 km grid for each day in February, which has been averaged to provide a
monthly estimate, see Figure 7 and Section 2. Open water is defined as having ice coverage
of less than 30%, while FYI and MYI both have an ice concentration above 30%.

The classification performances of the supervised classification with waveform pa-
rameters LEW + 0p and for threshold-based classification with parameters MAX + ¢y are
provided in Table 5 and shown in Figure 7. In terms of overall performance and considering
only the supervised classifiers, KNN has the lowest FYI (91.27%), but highest MYI (34.07%),
and the Bayesian is the highest for FYI (92.82%) and the lowest for MYI (27.03%). RF ranges
between the values of KNN and Bayesian, with overall performances closer to the Bayesian
for FYI (91.85%) and to KNN for MYI (33.24%); however, RF has the overall lowest spread
for both FYI and MYI. For FYI, the Bayesian approach performs the best in all years except
2015. In 2015, RF showed the highest classification accuracy for FYI with 93.87% (0.02%
better than the second-highest classifier for FYI in 2018 that is KNN). Overall, RF classifies
FYI with high confidence ranging from 90.02 to 93.91%, while also keeping a relatively
high classification performance of MYI (24.95-39.42%) compared to, e.g., the Bayesian
approach, which shows the worst-case classification performance of MYI in 2014 to be less
than 20%. The threshold-based classifier is low in performance of FYI (56.56—68.67%) and,
in comparing with statistics and figures in Appendix A, it is clear that this is caused by
either ambiguous ice (due to overlapping intervals) or by misclassification (FYI as MYI or
vice versa). The threshold-based classification, however, achieves higher results in all years
for MYI compared with the supervised classifiers and achieves an overall classification
performance of 39.30%. However, this is still a low classification performance compared to
former Ku-band studies (e.g., [15,27,28]).

While all three supervised classifiers improves significantly for FYI compared to the
threshold-based approach, all classification methods show relatively poor performance
over MYI. Even the best classifier over MY], i.e., the threshold-based, has low performance,
which can be caused by the increased numbers in measurements classified as ambiguous
introduced by using the combination of MAX + oy to some extent. This class of ambiguous
measurements is not included in either of the three supervised classifiers, i.e., the only
classification results that can occur here are FYI or MYI. The low classification accuracy of
MYI by the supervised classifiers is somewhat surprising, as KNN, Bayesian and RF are
generally viewed as more sophisticated (and often better) classifiers than the threshold
approach. This is most likely caused by the limitations of the training dataset, which only
covers a part of the MYI cover north of Canada and does not include the MYI of other areas
of the Arctic Ocean, which may represent different characteristics of MYI than observed
here. When comparing the spatial distribution of the sea ice types classified by KNN, RF
and Bayesian (Figure 7), it follows a similar pattern as for the threshold-based classifier. An
increased amount of misclassified MYI is evident north of the East Siberian Sea (average
misclassification of FYI as MYI ranges from 4.39 to 12.14% for the three classifiers). We
expect this to be caused by highly deformed FYI (driven by winds and ocean currents),
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allowing the surface to appear rougher and to behave similar to MYI (see also Section 5).
It may be that the assumption of FYI and MYI being relatively easy to discriminate due
to significant differences in surface characteristics does not apply when using Ka-band,
and/or the mixed sea ice types dominates the surface signatures of the waveform.

Furthermore, the penetration capabilities of Ku-band into the snow cover (as the
radar echo is a function of both surface characteristics and volume scattering within the
snow layer) could potentially provide a necessary source of information to discriminate
between sea ice types, since MYI usually has a thicker snow cover compared with FYI. This
information is not necessarily achieved when using Ka-band as it has less penetration [38].
The volume scattering occurring when the radar pulse penetrates the snow cover can
at times be observed in the widening of LEW and TEW (often related to MYI sea ice
types); thus, these parameters carry crucial information that is not utilised in the Ka-band
classification [15]. Prior studies using Ku-band radar altimetry (e.g., [15,17,27]) all used a
combination of either LEW or TEW /TES, which could have improved their classification
for MYI. The penetration capabilities of Ka-band in relation to snow and the importance of
drift are discussed further in Section 5.2. Lastly, it should be noted that the classification
performance of the supervised classifiers was expected to improve, especially for FYI, since
these approaches include only the classification of FYI and MY], excluding the classes of
ambiguous ice and no class. As most of the Arctic Ocean south of 81.6°N is covered by FYI
and includes values of MYI that might appear to be smoother than deformed MY]I (see the
spatial distribution of MAX, 0y and LEW in Figure 6), this also affects the results compared
to the classification by thresholds that includes two additional classes. However, this
study demonstrates how rough ice is particularly easy to recognise in the retrieved surface
classifacation by using Ka-band alone (the main MYI cover shown in Figure 7). Based on
this, we highlight the potential of an increased performance in ice type classification by
combining Ka-band and Ku-band altimetry as an add-on to the more obvious retrieval of
snow depth, and we encourage this approach to be investigated further.

Table 5.  Classification performance (%) of four different types of classifiers: KNN
(Rinne and Simild [17]), RF (Shen et al. [27]), Bayesian (Zygmuntowska et al. [15]) and threshold-
based. Each supervised classifier has used LEW + oy as classifying parameters and threshold-based
has used MAX + 0. Bold denotes the highest overall (averaged) classification performance and
smallest spread (variability by std) for FYI and MYI. * Only classification performance correctly
classified as MYI in MYI area and FYI in FYI area is shown here. The reader is referred to Appendix A
for more statistics on the threshold-based classification.

KNN RF Bayesian Threshold *
Year FYI MYI FYI MYI FYI MYI FYI MYI

2014 93.38 26.76 93.91 24.95 95.61 17.47 60.31 37.59
2015 93.85 30.13 93.87 31.46 89.79 34.14 68.41 33.74
2016 91.40 36.90 91.17 33.73 91.49 24.10 68.67 41.74
2017 87.86 42.99 90.02 39.42 90.65 33.83 67.90 40.93
2018 89.84 38.08 90.27 36.64 92.81 25.62 56.56 50.70

Mean 91.27 34.07 91.85 33.24 92.82 27.03 65.23 39.30
Std 249 6.49 1.91 5.52 227 7.05 5.58 6.60
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Figure 7. Classification of sea ice types by AltiKa radar echo waveforms in February (35 day cycle) 20142018, with

KNN, RF and Bayesian classifiers (supervised classifiers), using a combination of waveform parameters LEW + 0 and a
threshold-based classifier using waveform parameters MAX + 0. For the supervised classifiers, FYI is denoted by bright
red and MYI by bright green. For the threshold-based classifier, FYI is denoted by brown and MYI by green. For reference,
OSI SAF sea ice type is presented with FYI denoted by brown, MYI by green and open ocean by blue. Black contour lines
denote the MYI/FYI edge provided by OSI SAF.
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5. Discussion
5.1. Comparison with Prior Studies

The classification of sea ice types by Ku-band radar echoes (waveforms) has been
researched during the last decade (e.g., [15,17,26-28]). Zygmuntowska et al. [15] showed
some of the first classification results of sea ice types by using measurements from the
Airborne Synthetic Aperture and Interferometric Radar Altimeter System (ASIRAS). Here,
they investigated the classification of several sea ice regimes (new ice, FYI and MYI) with a
threshold-based and a Bayesian approach. For Zygmuntowska et al. [15], the threshold-
based classification performance for FYI reached 72.6% and it reached 68.6% for MYI. The
overall performance was 72.4% (with PP as the only classifying parameter). Data used
for validation by Zygmuntowska et al. [15] were a mixture of Advanced SAR (ASAR), in
situ photo camera and electromagnetic (EM) observations, where these observations were
utilised to estimate the surface types the airborne altimeter measurements encountered.
The Bayesian approach showed slightly better results with a classification performance of
78.7% (FYI) and 81.7% (MYI) and an overall performance of 80.3% (using TEW and MAX as
parameters). With an overall performance being only ~8% better when using the Bayesian
approach than the threshold-based approach, we used both in this study.

Sea ice classification with space-borne altimeters has primarily been investigated by
using Ku-band CryoSat-2 measurements (e.g., [17,27,28]). Rinne and Similé [17] classified
CryoSat-2 radar altimeter echoes by the use of k-nearest neighbour (KNN) in the Kara Sea
to support operational navigation, and they achieved classification rates in March 2014 of
FYI (<70 cm) at 15-26%, (>70 cm) at 75-92% and MYI at 77-92%. Shen et al. [27] applied a
random forest (RF) machine learning approach for determining sea ice types in the Arctic.
They planted 150 classification trees (by RF) using six (PP, MAX, SSD, LEW, TEW and oy)
waveform parameters. The classification performances were 82.58% for FYI and 72.53%
for MYL Finally, Shu et al. [28] used an object-based RF (ORF) approach as a classifier,
which combines a boosting sampling strategy and classification and regression trees. They
achieved an overall classification performance of 92.7 & 3.3% (FYI) and 83.8 & 3.59% (MYI).
As for Rinne and Simild [17], Shu et al. [28] and Shen et al. [27], all studies were validated
against the Antarctic Research Institute (AARI) sea ice charts. Shu et al. [28] further applied
the aforementioned methods (RF, Bayesian and KNN) to their CryoSat-2 segmented data
to perform a direct comparison with classification performance. The overall performance
of the analysis conducted by Shu et al. [28] is shown in Table 6 (directly adapted).

Table 6. Summary (from Shu et al. [28]) of overall classification performance (%) with variability
(standard deviation, std) from four prior studies on Ku-band radar altimeters (Shu (object-based
random forest/ORF), Shen (random forest/RF) and Rinne (k-nearest neighbour/KNN) on CryoSat-2;
Zygmuntowska (Bayesian) on Airborne Synthetic Aperture and Interferometric Radar Altimeter
System (ASIRAS)). The summary is based on the classification of sea ice during the period of
November 2015-May 2016.

Shu (ORF) Shen (RF) Zygmuntowska (Bayesian) Rinne (KNN)

FYI 927 £33 82.9 +£9.48 73.6 £13.3 90.0 + 10.9
MYI 83.8 & 3.59 725 +£295 875+15 644 + 105

When comparing overall performance, ORF provides a better classification of FYI
compared to all the other methods. The Bayesian approach has the overall highest classifi-
cation performance for MYI. Ignoring the ORF classifier and, thus, using only REF, KNN
and Bayesian, an opposite pattern was observed for Ka-band observations in this study
(Table 5). Here, KNN had the highest overall classification performance (of supervised clas-
sifiers) for MYI (34.07 & 6.49%), and the Bayesian had the highest for FYI (92.82 &+ 2.27%).
In comparison, RF for Ka-band demonstrated to be in the middle in terms of overall per-
formance for both FYI and MYI but also had the smallest spread (standard deviation).
However, what is most remarkable is the fact that while this study only investigated KN,
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RF and Bayesian and not the ORF-classifier that outperforms all classifiers for FYI (and
two-thirds for MYI classification according to Shu et al. [28]), the Bayesian classifier (in
this study) outperforms the ORF for FYI—actually, all the classifiers were outperformed
by the same classifiers in the Ka-band for FYI. However, the same does not stand for the
classification performance of MYI. Thus, while the near-surface characteristics that Ka-band
was able to retrieve due to low penetration allowed for the easy identification of FYI, it was
unable to capture the less rough MYI. Thus, studies in combining Ku-band and Ka-band
are encouraged since not only does it appear to possess great potential in estimating sea
ice types from the radar echoes but also a possibility in discriminating between rough and
smooth MYI when combining Ka-observations and Ku-observations.

5.2. Snow Cover and Drift Speed Influence

The radar signal waveform is dependent on the properties of sea ice and snow [21].
Snow properties influencing the signal are snow depth and snow density, and atmospheric
temperatures can influence snow, causing it to either change the speed of penetration or the
appearance of the scattering surface [26]. Both effects caused by atmospheric temperatures
have been found to influence the shape of the radar signal and the scattering surface [41].
Sea ice itself does not experience volume scattering and, thus, surface roughness is the main
influence on the reflected radar waveform [21]. Generally MYI carries a larger snow load
than FYI (MYI has approximately double the snow depth of FYI), which with penetration
into the snowpack would be reflected in the radar echoes, e.g., by the waveform parameter
TES/TEW [42]. Several studies (e.g., [26,28,43]) highlight the importance of estimation
of snow depth for the Ku-band (mostly based on CryoSat-2 measurements), since the
Ku-band is often expected to penetrate the snow cover until the snow/ice interface. If this
is not the case (e.g., due to wet snow cover or refreezing), wet snow significantly changes
the appearance of the resulting signal and cannot be neglected, as it will cause a bias in
the freeboard estimation and, subsequently, the ice thickness [15,28,43,44]. The Ka-band
has less penetration into the snowpack, which was confirmed by the studies of Guerreiro
et al. [43] showing that the maximum penetration depth for Ka-band is smaller than 5 cm
for snow grains larger than 2 mm. Thus, the amount of volume scattering measured by
the Ka-band is only from a very thin subsurface layer [45]. This could explain how TES
does not appear to show a great difference between FYI and MYI simply because the
Ka-band does not allow for the same penetration as Ku-band and, thus, does not result in a
significant difference in the reflected radar echo.

Misclassification of sea ice types can be caused by changes in the typical ice type-
dependent surface characteristics, e.g., by deformation [26] and /or melting and refreezing.
As we study the sea ice classifications from February, melting and re-freezing should
not affect our results significantly. However, deformation caused by the drift of sea ice
driven by wind and ocean currents can affect our results to a certain extent. In order to
properly understand the surface roughness and its dependency on the ice type classification
(Figure 7), we have inspected sea ice drift maps in the month prior to the classification
(January) downloaded from the NASA Distributed Active Archive Center (DAAC) at the
National Snow and Ice Data Centre (NSIDC), as shown in Figure 8. When we investigated
the sea ice drift maps from January 2016 and compared it to the other years (2014-2015;
2017-2018), a change in the drift pattern in the Arctic Ocean was observed, which allowed
us to assume that the FYI in that year has become more deformed than the other years,
causing it to appear more similar to MYI resulting in misclassification. This indicates that
the characteristics of AltiKa are dependent on the surface type in the sense of flat and
deformed ice, similar to findings in Zygmuntowska [26]. Thus, we can likewise conclude
that as long as the surface properties (flat or deformed) follows the expected sea ice types
(FYT or MYI), a classification of these two sea ice types is possible. The drift and the
aforementioned conclusion also explains the missing MYI classification near the Beaufort
Sea, simply suggesting that the MYI in this area has a smoother surface. This also explains
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the overestimation of MYI near the Siberian Sea in both 2017 and 2018—in reality, these
areas were covered by heavily deformed FYI.
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Figure 8. Weekly drift patterns of the Arctic acquired from 15 to 21 January (in the years 2014-2018). Available from
https://daacdata.apps.nsidc.org/pub/DATASETS /nsidc0116_icemotion_vectors_v4/, last access 9 August 2021.

Another explanation from this difference could be the difference in radar penetration
factor for the Ku-band and Ka-band over MYI and FYI, as suggested by Armitage and
Ridout [46]. The radar penetration factor describes the radar dominant scattering horizon
in relation to the snow and ice surfaces, such that a value of zero indicates that the air—
snow interface is the dominant scattering horizon, and a value of one will indicate that
the ice—snow interface is more dominant. Based on their results, the Ku-band not only
shows a stronger dominance of the ice-snow interface in their results but also a higher
variance in radar penetration factor depending on MYI and FYI. In comparison, the Ku-
band shows a radar penetration factor around 0.5 for both sea ice types, suggesting a
somewhat equal measure of dominance from both interfaces but almost no difference in
radar penetration factor depending on the type (FYI vs. MYI). This factor may also play
a role in the classification of sea ice types since the penetration factor seems to be more
ice-type-dependent in the Ku-band than Ka-band.

5.3. Uncertainty in Validation Data

The ultimate goal is to achieve a sea ice type classification that covers the entire Arctic
Ocean, and we use the availability of daily sea ice type products from OSI SAF providing
information over the entire Arctic Ocean as reference data sets. OSI SAF’s sea ice type
product is based on a combination of passive microwave data (SSMIS and Advanced
Microwave Scanning Radiometer-2 (AMSR2)) and active microwave scatterometer data
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(ASCAT), and the product is validated by ice charts and SAR images [26,47]. As it is
well validated and no additional ice product is believed to have better accuracy [47], we
assume this to be reliable ground truth. Prior studies (e.g., [17,27,28]) have used Arctic
and Antarctic Research Institute (AARI) ice charts that also provide information on sea ice
types on an Arctic-wide scale, but there have been no reports discussing the accuracy of
AARI charts yet [28].

However, we want to highlight that even though OSI SAF’s sea ice type product is well
validated, studies have shown a discrepancy between the ice type edge distinguishing FYI
and MYI ice in the OSI SAF product with the ice type edge estimated from extensive in situ
data of sea ice collected in April 2017 by Haas et al. [48]. The ice type edge between FYI and
MYI estimated from Haas et al. [48] is based on in situ observations and comparisons with
SAR imagery. Here, they conclude that there is a disagreement between the locations of the
ice type boundaries, which demonstrates the importance of ongoing validation of OSI SAF
products. Furthermore, it also highlights the importance of an improved understanding
of the effects of mixed ice types and product resolution. Based on their findings, the
disagreement between the ice types estimated by us from AltiKa radar echoes and the OSI
SAF ice types may not only be due to AltiKa’s limited penetration capabilities and, thus, it
was not possible to extract subsurface information that can aid the discrimination of sea
ice types. On the other hand, the method chosen could be a result of the OSI SAF ice type
product not being the perfect ground truth and the MYI/FYI border being different from
what OSI SAF shows. Our results show that more ice is misclassified as FYI than MY]I,
and the results of Haas et al. [48] shows the ice border between FYI and MYI to be located
further into the MYI area than suggested by the OSI SAF product. This suggests that the
OSI SAF product may be overestimating the coverage of MYI ice. Thus, this study also
encourages more work into the validation of the OSI SAF sea ice type product.

Furthermore, the comparison of the spatial distribution of sea ice and open ocean
based on LEW shows the possibility of estimating the ice edge by using observations of
LEW from AltiKa (Figure 6). Thus, we encourage the use of LEW to estimate sea ice edge
and to make comparisons with, e.g., OSI SAF, in order to investigate the use of altimetry as
additional reference data for sea ice edge detection.

5.4. Study Area and Training Data Selection

When investigating the spatial distribution of MAX, 0y, and LEW (Figure 6), it is clear
that parts of the MYI ice cover are not easily distinguishable in the data; it looks similar
to FYI than compared to MYL This was not directly taken into account when selecting
training datasets/study areas, which are chosen mainly as the older, mostly deformed MYI
ice north-west of Greenland and the newer, smoother FYI near the Laptev Sea. Thus, the
threshold-based classifiers and the supervised classifiers are assuming that MYI includes
only highly deformed surfaces and FYI includes only very smooth surfaces. However,
this is not necessarily the case, as shown by the spatial distribution (Figure 6). FYI can be
deformed due to ice drift caused by the wind and currents, and MYI may appear smoother,
which can be caused by, e.g., surface melt, resulting in the misclassification of Ka-band
radar altimetry waveforms. Future work should include several training data sites that
include several types of MYI and FYI ice, respectively.

5.5. Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) Mission and Future Work

One of the High Priority Candidate Missions (HPCMs) of the Copernicus Programme
at ESA is the Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL), which will
carry a dual-frequency (Ku and Ka) band radar altimeter [11]. The main driver for CRISTAL
including the Ka-band is the retrieval of snow thickness on sea ice, which is one of the
mission requirements. Nonetheless, the dual-frequency measurement may prove valuable
for ice classification too. As discussed earlier, there are previous studies akin to ours for
Ku-band altimeters, both airborne and satellite. However, our study here is the first-ever
to show Ka-band satellite altimeter waveform characteristic distributions over different
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ice types. This is the first step for the CRISTAL ice type classification algorithms, which
we foresee using both Ku-band and Ka-band to improve the classification skill from that
of CryoSat-2. However, our study here already shows that AltiKa achieves classification
skills comparable to that of CryoSat-2 for FYI, even if the spatial resolution of CryoSat-2
(delay-Doppler altimeter) is significantly better than the pulse-limited AltiKa.

Existing CryoSat-2 and AltiKa data—even if not temporally coincident—should allow
for the development of the first dual-frequency ice classification algorithms applicable
to CRISTAL. Thus, for future work, we would suggest combining Ku-waveforms and
Ka-waveforms over stable ice by using, for example, satellite SAR data as a reference. SAR
data could provide much more accurate descriptions of the ice cover than the OSI SAF
product used here, since specific surface characteristics are recognisable and the spatial
resolution is higher for SAR. However, at the scale of few kilometres, any latency will
complicate the analysis. Regardless, CRISTAL mission will undoubtedly benefit from
the best possible understanding of gained value from combining Ku-waveforms and Ka-
waveforms. Especially with the CRISTAL instrument providing Ka-observations and
Ku-observations as a delay-doppler (SAR) altimeter, increasing the resolution of both
Ka-band and Ku-band will allow additional waveform parameters (such as SSD) to be
used in the classification, which have shown very useful for the sea ice type classification
using CryoSat-2.

6. Conclusions and Reflections

In this study, we investigated classifying sea ice types in the Arctic by AltiKa Ka-band
radar altimeter data, exploiting the fact that the radar echo shapes retrieved from FYI and
MYT are different. We investigated the radar echoes from AltiKa by using four different
classifiers that are previously used for the same purpose on Ku-band data. The classifiers
were the following: a threshold-based classification, which estimates classification inter-
vals (modal value £ std) of the extracted waveform parameters retrieved from two areas
dominated by either FYI or MYL; and three supervised classifiers—Random Forest (RF),
Bayesian and k-nearest neighbour (KNN). For AltiKa, MAX and ¢y proved most suitable as
classifying parameters (based on qualitative analysis of distributions, CDF’s and maximal
distance calculated by the two-sample KS-test). The threshold-based classification was
on average able to correctly classify (performance based on 35 day cycle in years 2014—
2018) 65.23% as FYI and 39.30% as MYI using a combination of MAX and oy as classifying
parameters. When using only MAX and oy as classifying parameters, some information
on the outer extent of MY], e.g., the Beaufort Sea, was misclassified as FYI. The KS-test
also showed LEW to be a useful classification parameter, but it could not be applied in
the threshold-based classification due to overlap in the thresholds. However, the spatial
distribution of LEW showed great promise of using LEW to separate sea ice and ocean to
support sea ice edge masks for the ice thickness algorithm. Hence, further studies using
LEW from Ka-band measurements to estimate the sea ice edge are encouraged, especially
as an additional validation source for the OSI SAF sea ice edge. When investigating the
supervised classifiers, which have proved valuable in past studies on Ku-band based on
averaged classification performances, the combination of LEW + ¢y proved highest when
training the data (applying same study area data as used in the threshold-based classifi-
cation, as training data). It showed an overall performance of 92.82% (FYI) and 27.03%
(MYI) with Bayesian; 91.27% (FYI) and 34.07% (MYI) with KNN; and 91.85% (FYI) and
33.24% (MYI) with RFE. The classification performance for MYI is low overall, and most of
the ice cover is classified as FYI rather than MYI. Using training data from smoother MYI
ice could improve the classification performance of MYI, however, this is likely to decrease
the performance of FYI as well since FYI could be misclassified as MYL

For any classifier, training data are of utmost importance. We have currently used the
sea ice north-west of Greenland (MYI) and near the Laptev Sea (FYI); however, the data
may not be sufficiently describing all the types of sea ice roughness that occurs within both
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MYTI and FYI and the mixing of these sea ice types. Thus, we encourage future studies to
investigate other training datasets to study if that improves the classification.

Since LEW, MAX and oy are the classifying parameters used and they mostly provide
information about roughness due to the limited penetrating capabilities of the Ka-band,
it suggests that while Ka-band can be used to discriminate between flat (smooth) and
deformed surfaces, it cannot discriminate properly between deformed FYI and MYT in
itself. Using other waveform parameters (such as TES/TEW) could provide additional
information about the surface (e.g., snow properties which are usually different over MYI
and FYI), but since the Ka-band does not penetrate extensively into the snowpack, this
information appears to be lost.

However, the future ESA High Priority Candidate mission CRISTAL utilises a dual-
frequency altimeter (Ka-band and Ku-band), which could provide useful information on
sea ice types and discrimination between sea ice and ocean to improve sea ice edge masks,
e.g., by using waveform parameter LEW, as AltiKa has shown it as a possible option.
Furthermore, the Synthetic Aperture Radar (SAR) Ku-band altimeter that CRISTAL will
also carry is similar to the altimeter of CryoSat-2, where prior studies have shown great
success in discriminating between sea ice types. Combining the Ka-band and Ku-band
waveform parameters and using this combination for discriminating the sea ice types could
become interesting future investigations in the case of observing just how much information
can be retrieved from the surface-sensitive Ka-band and the fact that the Ku-band that
can penetrate relatively far into the snowpack. In particular, the work on estimating less
deformed MYI and/or rougher FYI by combining Ka/Ku-band data is encouraged.
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Appendix A

The threshold-based classifications of the sea ice types based on MAX, oy and a
combination of MAX and oy are shown in Figure Al. Generally, it follows the distribution
already shown in Figure 6. In all the years, the threshold-based classifications are missing
MYTI features in the Beaufort Sea, which is most pronounced in 2014 and 2015, and the
MYI extent is not well determined. In both 2015 and 2018, the classification seems to
overestimate the amount of MYI near the East Siberian Sea. When investigating the
performance of the classification (by Equation (3)), it is clear that less than 50% of the
AltiKa MYI data points are classified correctly according to the reference data, see Table Al.
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Table Al. Data for classification over the Arctic. Classification accuracy (%) shows how much has been correctly classified
when comparing with validation data from OSI SAF. Number of echoes used: 3,551,399 (2014), 3,899,013 (2015), 4,009,484
(2016), 3,682,174 (2017) and 3,620,388 (2018). The overall highest classification performances of correctly classified FYI and
MYT are highlighted in bold.

MAX

MYI FYI
Year MYI FYI No class Ambiguous MYI FYI No class Ambiguous
2014 31.26 62.79 1.46 4.49 19.14 73.98 1.36 5.52
2015 31.91 56.28 3.99 7.82 17.05 79.66 0.67 2.62
2016 39.10 42.19 5.98 12.73 20.35 74.60 1.53 3.52
2017 40.62 43.11 4.77 11.50 28.23 67.73 10.57 3.57
2018 42.08 49.05 1.94 6.93 18.24 61.47 15.16 5.13
Mean 37.00 50.68 3.63 8.69 18.58 71.49 5.86 4.07

o0

MYI FYI
Year MYI FYI No class Ambiguous MYI FYI No class Ambiguous
2014 38.55 54.13 1.57 5.74 35.28 58.18 1.08 5.46
2015 35.30 15.12 414 8.44 18.61 66.16 11.93 3.31
2016 42.51 39.56 5.45 12.48 28.68 66.28 1.26 3.75
2017 43.56 41.76 4.06 10.62 19.73 66.19 10.40 3.68
2018 43.71 47.75 1.87 6.67 20.18 59.60 15.26 5.56
Mean 40.73 39.66 3.42 8.79 24.49 63.16 7.99 4.36

MAX + ()

MYI FYI
Year MYI FYI No class Ambiguous MYI FYI No class Ambiguous
2014 37.59 56.81 1.46 414 34.23 60.31 0.93 4.53
2015 33.74 54.40 4.02 7.83 17.28 68.41 4.70 9.61
2016 41.74 40.80 5.82 11.64 26.77 68.67 1.39 3.17
2017 40.93 43.64 4.71 10.72 18.20 67.90 10.55 3.35
2018 50.70 39.94 1.52 7.84 23.79 56.56 14.84 4.81
Mean 39.30 49.02 3.58 8.10 23.02 65.23 6.58 5.17

When the classification is based on MAX only, the classification performance for MYI
is on average 37.00% (within ranges of 31.26-42.08%); for oy these numbers are 40.73%
(35.30-43.71%); and for the combination of MAX and oy, it is 39.30% (33.74-50.70%). The
classification accuracies of FYI are significantly higher, with an average (range) classification
of 71.49% (61.47-79.66%) for MAX; 63.16% (58.18-66.28%) for 0p; and 65.23% (56.56—68.67%)
for the combination of MAX and op. It is clear that MAX is significantly better for estimating
FYI, while oy allows for the overall better detection of MYI. Therefore, a combination of
both parameters should in principle provide the overall best classification of both MYI and
FYI. However, the classification by threshold shows quite low performance for MYI and
thus suggests that these two parameters cannot be used in their own capacity to identify
sea ice types with an accuracy higher than about ~70% for FYI and about ~40% for MYL
Some sea ice type information is lost when only using surface roughness parameters MAX
and oy as inputs. It may be that the information is lost when ice types look similar from a
radar point of view.



Remote Sens. 2021, 13, 3183 25 of 27

0S| SAF

Figure Al. Ice-type charts from February 2014 to 2018. (Top) OSI SAF data without a polar gap of AltiKa applied,
(bottom three) AltiKa data classified by intervals from Table 3 in the order of MAX, oy (backscatter) and a combination of
both MAX and 0. The charts are classified as follows: open water (blue), FYI (brown) and MYI (green). Ambiguous values
and no class values are not depicted. The black line denotes MYI/FYT ice edge from OSI SAF (in row 2-4).
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