

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 05, 2024

High Performance Algorithms Enabling Real-Time Security Assessment of Sustainable
Electric Power Systems

Jørgensen, Christina Hildebrandt Lüthje

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jørgensen, C. H. L. (2021). High Performance Algorithms Enabling Real-Time Security Assessment of
Sustainable Electric Power Systems. Technical University of Denmark.

https://orbit.dtu.dk/en/publications/29320f52-a7d1-4e21-b15e-8cce41fc5a1c

Center for Electric Power and Energy
Department of Electrical Engineering

High Performance Algorithms Enabling
Real-Time Security Assessment of
Sustainable Electric Power Systems
Christina Hildebrandt Lüthje Jørgensen
PhD Thesis, March 2021, Kongens Lyngby, Denmark

DANMARKS TEKNISKE UNIVERSITET
Center for Electric Power and Energy (CEE)

DTU Electrical Engineering

High Performance Algorithms Enabling

Real-Time Security Assessment of Sustainable

Electric Power Systems

Effektive algoritmer, der muliggør

sikkerhedsvurdering af bæredygtige elsystemer i

realtid

Dissertation by Christina Hildebrandt Lüthje Jørgensen

Supervisors:

Arne Hejde Nielsen, Technical University of Denmark

Hjörtur Jóhannsson, Technical University of Denmark

Stefan Horst Sommer, University of Copenhagen

DTU - Technical University of Denmark, Kongens Lyngby - March 2021

High Performance Algorithms Enabling Real-Time Security Assessment of Sustainable Electric
Power Systems

This thesis was prepared by:
Christina Hildebrandt Lüthje Jørgensen

Supervisors:
Arne Hejde Nielsen, Technical University of Denmark
Hjörtur Jóhannsson, Technical University of Denmark
Stefan Horst Sommer, University of Copenhagen

Dissertation Examination Committee:
Examiner No. 1 (Chairman)
Department of Electrical Engineering, Technical University of Denmark, Denmark

Examiner No. 2
Department of XX, University of XX, Country

Examiner No. 3
Department of XY, Technical University of YY, Country

Center for Electric Power and Energy (CEE)
DTU Electrical Engineering

Elektrovej, Building 325
DK-2800 Kgs. Lyngby
Denmark

Tel: (+45) 4525 3500
Fax: (+45) 4588 6111
E-mail: cee@elektro.dtu.dk

Release date: March 26th, 2021

Edition: Draft V01

Class: Internal

Field: Electrical Engineering

Remarks: The dissertation is presented to the Department of Electrical Engineering
of the Technical University of Denmark in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

Copyrights: ©Christina Hildebrandt Lüthje Jørgensen, 2017– 2021

ISBN: 000-00-00000-00-0

Preface
This thesis is prepared at the Department of Electrical Engineering of the Technical University of
Denmark in partial fulfillment of the requirements for acquiring the degree of Doctor of Philosophy
in Engineering. The Ph.D. project was funded by the project Security Assessment of Renewable
Power Systems funded by the Danish FORSKEL funding framework (grant nr. 2016-1-12427).

This dissertation summarizes the work carried out by the author during his Ph.D. project. It started
on 15th May 2017, and it was completed on 26th March 2021. During this period, she was hired
by the Technical University of Denmark as a Ph.D. student at the Center for Electric Power and
Energy (CEE).

The thesis is composed of 6 chapters and 3 attached scientific papers, which have been peer-reviewed
and published.

Christina Hildebrandt Lüthje Jørgensen
March 26th, 2021

i

Acknowledgements
First and foremost, I would like to thank my supervisors Hjörtur Jóhannsson, Stefan Horst Sommer
and Arne Hejde Nielsen for providing guidance throughout the years and for believing in my
ability to pursue a PhD degree in electric power system, which was all new to me. The knowledge
of power systems provided by Hjörtur as well as the help in setting directions for the project has
been valuable. Stefan provided insight in to the algorithmic side of things, and I still remember
leaving our first meeting at University of Copenhagen happily thinking, that this is a person who
speaks the same language as me. Arne always ensured that I felt welcome and appreciated in the
department.

I would like to thank my colleagues at CEE, it has truly been a pleasure working there for the past
three years and I will surely miss you all. A special thanks goes to my office mates - Jakob, Can,
Theis, Jundi and Ha - for being both great colleagues and friends. The last year has unfortunately
been a bit strange due to the COVID-19 pandemic and I have surely missed my colleagues, which I
haven’t met in person, since I returned from maternity leave.

I would furthermore like to thank Jakob for helping my understanding of power systems and
helping shape the initial direction of the project, when all of this was new to me. Can has been a
valuable partner in the SARP project and I have enjoyed our scientific discussion as well as the
help and guidance provided.

I would like to thank my husband, Kasper, which has supported me in all my endeavours - both
celebrating with me in my victories and comforting me in my struggles. Thank you for your
endless love and support - for believing in me when I did not myself. Last but not least I would
like to thank my son Jonathan for being my biggest fan and for bringing overwhelming happiness
in to my life.

Christina Hildebrandt Lüthje Jørgensen

Sønderborg, Denmark, 2021

iii

Table of Contents
Preface i

Acknowledgements iii

Table of Contents v

List of Figures vii

List of Tables ix

Abstract xi

Resumé xiii

Acronyms xv

1 Introduction 1
1.1 Background . 1

1.1.1 Power System Stability . 2
1.2 State of the art . 3
1.3 Focus of PhD project . 4
1.4 Contributions . 5
1.5 Thesis outline . 6
1.6 List of publications . 6

2 Thévenin Equivalent Computations 7
2.1 Thévenin equivalent circuit . 7
2.2 Factorization methods . 9

2.2.1 KLU of an admittance matrix . 9
2.3 Implementation and test . 11

2.3.1 Tolerance of ILU . 12
2.3.2 Comparison of factorization methods . 13
2.3.3 Accuracy of stability margins . 16
2.3.4 Density of coefficient matrix . 17

2.4 Conclusion . 19

3 Factor-Solve Method for Thévenin Computations 21
3.1 Reference method . 21

3.1.1 Complexity . 21
3.2 Factor-solve method . 22

3.2.1 Complexity . 23

v

vi TABLE OF CONTENTS

3.3 Implementation and test . 24
3.3.1 Parallelization . 29
3.3.2 Memory requirements . 30

3.4 Discussion and Conclusion . 33

4 Voltage Stability Boundary Monitoring Method 35
4.1 Voltage stability boundary monitoring method . 35

4.1.1 Thévenin equivalent computations . 36
4.1.2 Maximum deliverable power to a load . 37

4.2 Iteration algorithms . 39
4.2.1 Reference algorithm . 39
4.2.2 Binary Search . 40
4.2.3 Binary Search with Polynomial Fitting (BSPF) 42
4.2.4 Implementation and test . 43
4.2.5 Parallelization . 46

4.3 Block-wise calculations . 47
4.3.1 Implementation and test . 49

4.4 Conclusion . 51

5 Efficient Refactorization using Hierarchical Matrices 53
5.1 Hierarchical matrices . 53

5.1.1 Forming super-nodes . 55
5.1.2 Compression . 55
5.1.3 Elimination . 57
5.1.4 Algorithm . 57
5.1.5 Solve . 57

5.2 Refactorization . 58
5.2.1 Algorithms . 58

5.3 Toy Example . 60
5.4 Implementation and test . 61
5.5 Conclusion . 64

6 Conclusion and Future Work 65
6.1 Conclusion . 65
6.2 Future Work . 67

Bibliography 69

Collection of relevant publications 75
[Pub. A] Evaluation of Factorization Methods for Thévenin Equivalent Computations in

Real-Time Stability Assessment . 77
[Pub. B] A Memory-Efficient Parallelizable Method for Computation of Thévenin

Equivalents used in Real-Time Stability Assessment 85
[Pub. C] Binary Search and Fit Algorithm for Improved Voltage Stability Boundary

Monitoring . 95

List of Figures
1.1 Classification of power system stability and subcategories [11]. 2

2.1 (a) Sparsity pattern for Ycs for the system Pegase2869 from MATPOWER [41] and (b)
Ycs on BTF . 10

2.2 The directed graph G(Ycs) will either have (a) no edges between two nodes i and j or
(b) 2 edges (i, j) and (j, i) . 11

2.3 Example of a network divided in to cs nodes and vs nodes. The dotted lines represent
the strongly connected components of G(Ycs) . 12

2.4 Maximum and mean TVE (%), when comparing Thévenin voltages from ILU to
UMFPACK. The tolerance of ILU is set to 10−5 [35]. 14

2.5 Runtime of Algorithm 1 for each factorization method. 14

2.6 Runtime of factorizing Ycs for each factorization method. 15

2.7 Runtime of calculating the Thévenin voltage Vth using the coefficient matrix K for each
factorization method. 16

3.1 Runtime for the Algorithm 1 and 2 depending on the number of buses. The plot is
logarithmic. 26

3.2 Runtime for computing the Thévenin voltages with the reference and factor-solve method
depending on the number of buses. The plot is logarithmic. 27

3.3 Speed-up of Algorithm 2 compared to Algorithm 1 - (a) shows all systems and (b) is a
zoom of the smaller systems. 30

3.4 Distribution of the runtime of Algorithm 2 on to each part of the algorithm for the
optimal number of cores. 31

3.5 Runtime for computing the Thévenin impedances for each cs node and vs node using
the factor-solve method run in parallel with optimal number of cores. 32

4.1 Thévenin equivalent seen from a generator . 36

4.2 Thévenin equivalent seen from a non-controlled load modelled as an impedance . . . 36

4.3 Possible scenarios for 3 feasible (YLD, PLD) points: (a) Scenario 1: increasing - (b)
Scenario 2: decreasing - (c) Scenario 3: midpoint largest 41

4.4 Possible scenarios for the 4th point in scenario 3. Points are plotted as (YLD, PLD)
points: (a) Scenario 3a: Point 4 smaller than point 2 - (b) Scenario 3b: Point 4 larger
than point 2 . 42

4.5 (YLD, PLD) =
(
Z−1

LD, PLD

)
curves for 3 different nc loads for the system Nordic32, Table

2.1. The vertical dashed lines show the interval from YLD,0 = Z−1
LD,0 to Yth = Z−1

th for
each load. 42

4.6 The runtime for each iteration algorithm (Reference, Binary search and BSPF) depending
on the number of nc loads. The plot is logarithmic. 45

vii

viii LIST OF FIGURES

4.7 The runtime for each iteration algorithm (Reference, Binary search and BSPF) depending
on the number of nc loads and the runtime for the algorithms run in parallel on 24 cores
is plotted. The plot is logarithmic. 48

4.8 The runtime for computing Knc and Zth,nc by Algorithm 3 and by utilizing block-wise
computations. The plot is logarithmic. 49

4.9 The runtime for each iteration algorithm (Reference, Binary search and BSPF) depending
on the number of nc loads and the runtime for the algorithms when doing block-wise
computations. The plot is logarithmic. 50

4.10 The runtime for setting up the blocks Yb prior to running the iteration algorithms. The
plot is logarithmic. 50

5.1 Example of an 8x8 matrix A with non-zero pattern marked red. 53
5.2 Example of hierarchical tree for the matrix A (Figure 5.1). Interaction edges (solid)

are initially only present at the leaf nodes. Parent-child edges (dashed) show the
relationships between the nodes. 54

5.3 Example of red siblings merged to super-nodes. This is the leaf nodes of Figure 5.2
being merged. 55

5.4 Example of a super-node with t well-separated edges. 56
5.5 Example of a super-node with t well-separated edges, which have been compressed to

the parent level. 56
5.6 Hierarchical structure for the 16x16 matrix given in (5.5). The initial interactions on

the leaf level is shown by solid lines and parent relationship by dashed lines. Non-leaf
nodes that has no interactions in the factorization are shown as transparent. Affected
red-nodes, black-nodes and super-nodes are colored blue. 62

List of Tables
2.1 Test systems . 12
2.2 Performance of ILU for different tolerance levels when computing the Thévenin

equivalents for Pegase9241 compared to UMFPACK . 13
2.3 Non-zeros in coefficient matrix, K, for each factorization method 16
2.4 Voltage stability index for loads (L-index) . 18
2.5 ASSRAS margin for generators (min %∆Pinj) . 18
2.6 Size of largest block compared to entire matrix, theoretical and actual density of Zcs

and actual density of K for test systems. 19

3.1 Runtime of Algorithm 1 and Algorithm 2 and the speed-up. 25
3.2 Runtime of computing Thévenin voltages with reference and factor-solve method and

the resulting speed-up. 25
3.3 Maximum TVE (%) for the reference and factor-solve method with UMFPACK as the

true value. 27
3.4 Runtime in seconds for Algorithm 2 run in parallel for different number of cores. Lowest

runtime for each system is marked with green. 28
3.5 Results for the optimal number of cores for each system 31
3.6 Memory requirements for coefficient matrix K in sparse and full format and the

factorization of Ycs. 33

4.1 Test systems for iteration algorithms . 44
4.2 Runtime for each iteration algorithm for voltage stability boundary monitoring 44
4.3 PLD,max difference between reference algorithm and binary search 46
4.4 PLD,max difference between binary search and BSPF . 46
4.5 PLD,max difference between reference algorithm and BSPF 47
4.6 Runtime for each iteration algorithm run in parallel on 24 cores. 47

5.1 Runtime for factorization and refactorization and the residual and accuracy for the
refactorization for different system with different levels of discretization and τ = 10−4. 63

ix

Abstract
Power systems are transitioning towards low-carbon emission Renewable Energy Sources (RES)
such as wind and photovoltaic power. This type of generation is highly dependent weather
conditions, which can cause fluctuations in the system operating point. These fluctuations can
happen rapidly as more and more generation is based on RES, making the traditionally time-
consuming offline approaches for stability and security assessment insufficient. Therefore, there
will be a need for real-time stability and security assessment methods.

This PhD is part of the Security Assessment of Renewable Power Systems (SARP) project. The
main goal of the project is to push forward the technology needed to ensure secure and stable
system operation of future power systems with a high share of RES based production. In the PhD
the factorization method for Thévenin equivalent computations has been investigated, which led
to the development of a fast and efficient method for computations of Thévenin equivalents. The
voltage stability boundary monitoring method acounting for non-linearities in Thévenin voltages
have been omtimized using a binary search with polynomial fitting. Lastly an algorithm for fast
refactorization using hierarchical matrices have been developed.

Thévenin equivalent computations is used in a long range of methods recently developed for
real-time stability and security assessment methods. It is therefore important that these can be
computed fast and efficiently to ensure the methods can operate in real-time. Thévenin equivalents
can be computed using an LU factorization to optimally invert the bus admittance matrix. Both
direct and incomplete factorization methods can be used for the computations. Clark Kent LU
factorization (KLU) is almost twice as fast as the standard LU factorization with no cost of accuracy.
However, factorization time is seen to be a negligible part of the computations. The most inefficient
part is to compute the impedance matrix for the current sources of the system. Incomplemte LU
factorization (ILU) reduced the fill-in of the coefficient matrix for computing Thévenin voltages.
ILU reduces the runtime for computing Thévenin voltages at the cost of accuracy. As runtimes
have a hard time competing with the direct methods for acceptable error levels the applicability of
ILU is severely limited.

The impedance matrix for the current sources is used to determine the coefficient matrix for
computing Thévenin voltages, however this is inefficient to compute due to the density. Therefore
the factor-solve method, which avoids these computations, is developed by using KLU. KLU
factorization brings a matrix on block triangular form, where each block consists of all nodes,
that are connected. For a system of linear equations it uses block back substitution to find the
solution. The factor-solve method uses block back substitution to determine the Thévenin voltages
and thereby avoids computing the coefficient matrix. This makes it possible to determine the
Thévenin voltages in linear time compared to the reference implementation, which using the
coefficient matrix had close to quadratic complexity.

Computations for Thévenin impedances is still quadratic, however these can easily be parallelized
resulting in runtimes lower than 3 seconds for systems up to 30.000 buses, whereas Thévenin

xi

xii ABSTRACT

voltages can be determined in less than 6 milliseconds. The Thévenin impedances only depend on
system topology and therefore doesn’t need to be recomputed as often.

The distance to the boundary of voltage instability can be determined more accurately by taking in
to account non-linearity in Thévenin voltages as the load changes. The maximum power transfer to
a non-controlled load is used to determine this distance, and repeated changes in load impedance
is required to find this.

The maximum power transfer is found between the current load and the Thévenin impedance
(which is the boundary normally determined by the impedance match criterion). Doing this naïvely
by splitting the interval evenly results in poor runtime and accuracy. Therefore, a binary search is
used instead. This determines the load impedances that the power transfer should be computed
to find the maximum power transfer. The binary search is further improved by combining the
search with a polynomial fitting. Feasible points are fitted to a second order polynomial, and the
maximum of the polynomial is found. By utilization of parallelization it is possible to determine
the margin for 2.000 non-controlled loads in a 3.000 bus system in less than 6 seconds, while also
determining the maximum power transfer accurately.

Even though runtimes are improved the complexity is still quadratic, therefore the scaling needs
to be improved. The computations are dominated by a large block in the block triangular form
and therefore the computations for this is sought to be optimized. The voltage stability method
requires the matrix to be refactorized for each change in load impedance and therefore efficient
refactorization would improve runtimes.

The hierarchical matrix structure constructs a hierarchical tree for a chosen level of discretization,
where the leaf nodes and edges between these represent the matrix to be factorized. The factorization
is then done by eliminating the leaf nodes and compressing fill-in generated to the parent level by
approximating using a low-rank approximation such as Singular Value Decomposition. To do
fast refactorization the effect a change in the diagonal have on the computations is tracked in the
initial factorization. This makes it possible to do refactorization, where only the nodes affected by
the change is recomputed. This lowers runtime considerably, however work still remains for the
factorization to work for all systems and levels of discretization.

Resumé
Elnetværket ændrer sig i til at være mere og mere afhængig af vedvarende energi såsom vind og
solkraft. Denne type energi er meget afhængig af vejret og dette resulterer derfor at systemets
drift punk kan fluktuere. The fluktueringer kan komme hutigt eftersom mere og mere energi
kommer fra vedvarende energikilder. Dette gør, at traditionelle tidskrævende metoder til stabilitets
og sikkerhedsanalyse bliver utilstrækkelige. Derfor vil der være et behov for stabilitets og
sikkerhedsmetoder som kan operere i real tid.

Dette PhD er en del af SARP projektet, som har til hovedformål at skubbe teknologien, som skal
sikre sikker og stabil system drift af fremtidens elnetværk med store mængder vedvarende energi,
fremad. I denne PhD bliver faktoriseringsmetoden brugt i Thévenin ækvivalentberegninger, som
har ledt til udviklingen af en hurtig og effektiv metode for disse beregninger. Metoden for at
finde afstanden til spændingsustabilitet, som tager højde for ikke-lineære ændringer i Thévenin
spænding, er blevet optimeret ved brug af en binær søgning med polynomial regression. Til slut er
der blevet udviklet en algoritme til hurtigt at refaktorisere ved brug af hierarkiske matricer.

Thévenin ækvivalentberegninger bliver brugt i en lang række metoder, som er udviklet i de senere
år inden for real tids stabilitets og sikkerhedsanalyse. Det er derfor vigtigt at sikre sig at de
kan blive beregnet hurtigt og effektivt. Thévenin ækvivalentberegninger benytter sig af en LU
faktorisering for optimalt at invertere en bus admittansmatrice. Både direkte og ufuldstændige
faktoriseringsmetoder kan benyttes. Clark Kent LU faktorisering (KLU) er næsten dobbelt såhurtig
som standard LU faktorisering uden at miste noget pånøjagtigheden af beregningerne. Desværre
er faktorisering en ubetydelig del af beregningerne, og det har derfor ikke den store effekt. Den
mest ineffektive del af beregningerne er at beregne impedansmatricen for strømkilderne. Den
ufuldstændige (incomplete) LU faktorisering (ILU) reducerer mængden af elementer forskellig fra
0 i koefficientmatricen, som bliver brugt i beregningen af Thévenin spændinger. ILU reducerer
beregningstiden påbekostning af nøjagtighed. Fordi beregningstiderne for ILU har svært ved at
konkurrere med de direkte metoder for acceptable fejlniveauer, begrænser det brugbarheden af
ILU.

Impedansmatricen for spændingskilder er brugt i beregningen af koefficientmatricen, som er
ineffektiv at beregne fordi den er en meget tæt matrice. Derfor er factor-solve metoden udviklet
som undgår at beregne disse ved at bruge KLU. KLU faktoriseringer bringer en matrice op blok
triangulær form, hvor hver blok består af de punkter, som er forbundne. For et lineært system
af ligninger benytter KLU sig af blok substitution for at finde løsningen. Factor-solve metoden
benytter sig af dette såThévenin spændinger kan beregnes uden koefficientmatricen. Dette gør det
muligt at bestemme Thévenin spændinger i lineær tid sammenlignet med referencen, som bruger
koefficientmatricen, hvilket resulterer i tæt påkvadratisk kompleksitet.

Beregninger for Thévenin impedanser har stadig kvadratisk kompleksistet, men disse kan nemt
paralleliseres, hvilket giver beregningstider lavere end 3 sekunder for systemer op til 30.000

xiii

xiv RESUMÉ

busser. Thévenin spændinger kan derimod bestemmes for hele systemer påunder 6 millisekunder.
Thévenin impedanser skal kun bestemmes når topologien for systemet ændrer sig og er derfor
ikke nødvendig at beregne såofte.

Afstanden til grænsen for spændingsstabilitet kan bestemmes mere nøjagtigt ved at tage højde for
ikke-linearitet i Thévenin spændinger, når belastningen ændrer sig. Den maksimale effektoverførsel
til en belastning bliver brugt i udregningen af afstanden til grænsen og gentagne ændringer i
belastnings impedansen er nødvendig for at finde denne.

Den maksimale effektoverførsel kan findes mellem impedansen for den nuværende belastning
og Thévenin impedansen. Thévenin impedansen bliver normalt brugt som grænsen og bliver
kaldt impedans matchning kriteriet. Hvis man helt naivt splitter intervallet mellem belastning
og Thévenin impedans for man dårlige beregningstider og et unøjagtigt svar. Derfor bliver der
i stedet brugt en binær søgning, som bestemmer hvilket skridt der skal tages for at finde den
maksimale effektoverførsel. Dette bliver kombineret med polynomial regression med et anden
ordens polynomium og maksimum for dette bliver brugt i søgningen. Ved at benytte sig af
parallelisering er det muligt at bestemme afstanden til grænsen for spændingsstabilitet for 2.000
belastninger i et 3.000 bus system påmindre end 6 sekunder. Derudover bliver den maksimale
effektoverførsel ogsåfundet mere nøjagtigt.

Selvom beregningstider er bedre med den binære søgning er kompleksiteten stadig kvadratisk,
hvilket gerne skulle forbedres for at kunne skalere bedre med større systemer. Beregninger er
domineret af en stor blok i den blok triangulære form, hvilket ogsåer at se i beregninger. Fordi
spændingstabilitetsmetoden kræver flere beregninger for at finde den maksimale effektoverførsel
bliver der udviklet en metode til at refaktorisere matricen.

Den hierarkiske matrix struktur tager udgangspunkt i et hierarkisk træfor det valgt niveau af
diskretisering. Det nederst blade i træet og vejene mellem disse repræsenterer matricen, som
skal faktoriseres. Faktoriseringen udføres ved at eliminere bladene og komprimere de ekstra
veje der dukker op. Disse bliver komprimeret til det næste niveau ved at brug en lav rangs
approksimation såsom SVD. For at refaktorisere effektivt, når et element i diagonalen bliver ændret,
bliver elementer påvirket af ændringen markeret under den første faktorisering, og det vil såkun
være disse elementer som bliver genberegnet. Det giver lavere beregningstid, men der ligger
desværre stadig noget arbejde i at fåfaktoriseringen til at virke for alle systemer og alle niveauer.

Acronyms
AMD Approximate Minimum Degree

ASSRAS Aperiodic Small-Signal Rotor Angle Stability

AVR Automatic Voltage Regulator

BSPF Binary Search with Polynomial Fitting

BTF Block Triangular Form

cs node current source

GPS Global Positioning System

GTC Grid-Transformation Coefficient

ILU Incomplete LU factorization

ILUC Crout Incomplete LU factorization

HPC High Performance Computing

KLU Clark Kent LU factorization

nc non-controlled

PMU Phasor Measurement Unit

RES Renewable Energy Sources

RTDS Real Time Digital Simulator

SARP Security Assessment of Renewable Power Systems

SOSPO Secure Operation of Sustainable Power Systems

SVD Singular Value Decomposition

SW-platform Software platform

TESCA Thévenin Equivalent Based Static Contingency Assessment

TVE Total Vector Error

vs node voltage source

vc voltage controlled

WAM Wide-Area Measurement

xv

CHAPTER1
Introduction

1.1 Background

In recent years there has been a big shift in the composition of power systems. Many countries are
going from fossil fuel to low-carbon emission Renewable Energy Sources (RES) such as wind and
photovoltaic power. With the Paris Agreement many countries agreed to reduce the emission of
greenhouse gasses due to their effect on climate changes. The EU agreed to reduced greenhouse
gas emission by 40% by 2030 compared to 1990 levels. This goal was recently, in 2019, upgraded
and EU now seek to reach a 45 % reduction by 2030 [1]. One of the steps on the road to reach this
goal is to base at least 32% of all energy consumption on RES by 2030. The danish goal is even more
ambitious with a 70% reduction of emission of greenhouse gasses compared to 1990 by 2030 [2],
which includes a goal to have at least 50% RES. In 2018 this number reached 36% and is expected
to reach 55% by 2030. By 2050 Denmark aims at being completely independent of fossil fuels [3].

On top of this shift towards a system with a high share of RES, the energy demand is also increasing
due to growing populations and development of societies. From 2004 to 2014 the electric power
consumption per capita increased by more than 21%1. The growth will continue steadily the
coming years, and the reason for this can be found in the continued commitment to electrification
of the transport sector and district heating as well as the new large data centres [2]. The increased
dependency on electricity will put even larger requirements on electric power system’s capability
to ensure a stable and secure operation. A transition of power systems towards one where a high
share of power production is based on RES will introduce new challenges, when stable and secure
system operation is to be ensured.

For the past decades the electric power system was composed of few centralized units. Traditionally,
approaches to ensure stability planned production hours in advance. This was made possible by a
knowledge of the load demand and the ability of large power plants to quickly adjust production.
The integration of RES to the existing power system changes the dynamics of the system. Wind
power and photovoltaic units are fluctuating and highly dependent on weather. Planning the
generation of these units is highly dependent on methods for forecasting. Furtheremore, to be able
to match generation and load in the power system a lot of research is carried out in energy storage,
load balancing, smart charging and demand response to mention a few.

The traditional methods to enable secure and stable operation was done offline, due to their
inefficiency making them quite time-consuming. As the system condition fluctuate due to the
large amount of RES in the power system, they will become insufficient. This introduces a need for
real-time stability assessment methods to ensure secure and stable operation of such systems [4].
The introduction of Phasor Measurement Units (PMUs) [5, 6] has been a basis for recent research
in real-time stability assessment methods. By placing PMUs on nodes of importance in the power

1http://data.worldbank.org

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Classification of power system stability and subcategories [11].

system and synchronizing these using a Global Positioning System (GPS) makes it possible to
monitor system conditions at the rate of the system frequency [7–9].

The availability of Wide-Area Measurements (WAMs) by the use of PMUs enables the development
of new methods for real-time stability and control. However, another essential factor is the
efficiency of such methods to ensure their capability to operate in real-time. It is both important that
the methods have runtimes suitable for real-time operation and that the amount of computational
resources (CPU, memory, etc.) are within a feasible range of modern computational capabilities.
This introduces a need for High Performance Computing (HPC) techniques as well as other
modelling methods to be utilized to overcome the bottleneck in power grid operations, which are
mostly run on serial computers today [10].

1.1.1 Power System Stability

Before discussing methods for power system stability assessment the term power system stability
needs to be defined. The definition that will be used is [11]:

Power system stability is the ability of an electric power system, for a given initial operating
condition, to regain a state of operating equilibrium after being subjected to a physical disturbance,
with most system variables bounded so that practically the entire system remains intact.

The subcategories of stability can be seen in Figure 1.1.

• Rotor Angle Stability refers to a synchronous machines ability to remain in synchronism
after a disturbance. This can be split in to transient (large disturbance) and small signal
(small disturbance) stability. Transient instability occurs as aperiodic angular separation due
to insufficient synchronizing torque. Small signal instability can be further subdivided in
to aperiodic (non-oscillatory) increase of rotor angle due to lack of synchronizing torque or
oscillatory with rotor oscillations of increasing amplitude due to lack of sufficient damping
torque.

1.2. STATE OF THE ART 3

• Frequency Stability refers to the ability of a power system to maintain steady frequency
following a disturbance resulting in a significant imbalance between generation and load.

• Voltage Stability refers to the ability of a power system to maintain steady voltages at all
buses in the system after being subjected to a disturbance. The term voltage collapse is used
to describe the process by which a sequence of events accompanying voltage instability leads
to a blackout or abnormally low voltages in a significant part of the system. Voltage stability
can be subdivided in to voltage instability due to a large or a small disturbance.

1.2 State of the art

Stability and security assessment methods suitable for real-time is important for future power
system based on RES. The development of these methods was the focus of the Secure Operation of
Sustainable Power Systems (SOSPO) project [12]. SOSPO was a four year project and the research
conducted in this project serves as a basis for the work in this PhD. The focus was not solely on
real-time stability and security assessment but also on methods capable of deploying appropriate
control countermeasures for when unsafe operation is approaching.

In the SOSPO project it is assumed that there is full observability by WAMs from the distribution
of PMUs. A review of methods for long-term voltage stability concluded that using Thévenin
equivalents for calculations was computationally efficient [13]. Thévenin equivalents furthermore
give a credible representation of the system in assessment of power system stability.

A Thévenin equivalent method for real-time voltage stability is proposed in [14–16], which also
explores a synergy with sensitivity analysis. In [17] sensitivities are derived from a Thévenin
equivalent representation of the system to be able to detect instability issues concerning voltage
sags after a transient disturbance. The Thévenin Equivalent Based Static Contingency Assessment
(TESCA) method performs a contingency analysis for aperiodic small-signal instability [18, 19].
Thévenin equivalents are computed repeatedly for each contingency to find a steady-state post
contingency, and the computations make use of a Grid-Transformation Coefficient (GTC) matrix.

The GTC matrix decompose the Thévenin voltage in components induced by each voltage source
[20, 21] for a power system split in to voltage controlled and non-controlled nodes. The GTC
matrix is used in [14] to improve Thévenin equivalent methods for voltage stability. The expression
for the GTC matrix is reevaluated in [22] and defined in terms of the Schur complement [23]. The
computation are further extended by modelling loads not only by their impedance but as current
sources injecting a current into the power system.

The reduction of the network resulting in the Schur complement is called Kron reduction [24].
The Schur complement is used for voltage stability assessment in [25] to lower the computational
burden of Thévenin impedances for load busses, and in [26, 27] the Schur complement is applied
to compute Thévenin impedances for generator busses.

The use of a Schur complement in Thévenin equivalent computations has previously been
investigated and was determined to have a cubic overhead making it a burden for large systems
[28]. The Schur complement is generally considered to be dense [26, 29] making it inefficient
to compute, however LU factorization can be used to make computations more efficient. Only
the diagonal of the Schur complement is needed to determine Thévenin impedances for voltage
controlled nodes. Therefore, the computations can be limited to computing these elements to

4 CHAPTER 1. INTRODUCTION

avoid the dense fill-in of the entire matrix. Furthermore, parallelization is an important step in
optimizing computations. In [27] the method is extended to compute the full Schur complement,
which is done efficiently by parallelizing the computations on a GPU. The use of LU factorization
to efficiently compute Thévenin impedances was already shown in [30], where the default LU
factorization in MATLAB (UMFPACK) [31] was used. The newer methods [26, 27] uses Clark Kent
LU factorization (KLU) [32].

As part of the SOSPO project a Software platform (SW-platform) was developed [33, 34]. The
platform provides structured access to model parameters and real-time PMU snapshots, which
eases the implementation process of new methods. The platform can work with a stream of
predefined snapshots or utilize a Real Time Digital Simulator (RTDS).

This PhD is part of the Security Assessment of Renewable Power Systems (SARP) project, which is
the direct continuation of the SOSPO project. The main objective of this project is to push forward
the technology needed to ensure secure and stable system operation of future power systems with
a high share of RES based production. The research in the SARP project is split in to 4 areas:

• Modelling of RES Under Stressed Conditions and Its Impact on System Stability

• Assessment of Voltage Stability in RES Based Power Systems

• High Performance Power System Algorithms

• SW-platform Improvements and Developments Towards Online Operation

The PhD falls under the third category.

1.3 Focus of PhD project

The purpose of the PhD project is to develop high performance algorithms capable of real-time
security assessment of future power systems. This is done by modifying existing methods to
enhance their performance and ensure their feasibility. To achieve this goal 4 objectives were
defined:

• Determine computationally critical elements of existing methods for real-time stability and
security assessment.

• Develop high performance algorithms through performance enhancing by exploiting graph
theoretical properties and avoid repeated calculations

• Develop algorithms utilizing extensive parallel processing.

• Implement and test methods by comparing them to current state-of-the-art methods for
real-time stability and security assessment.

1.4. CONTRIBUTIONS 5

1.4 Contributions

The main contributions of the presented work are:

• An evaluation of the effect factorization methods have on Thévenin equivalent computations [Pub. A]
Three different factorization methods have been used in Thévenin equivalent computations
and was determined to have a low impact on the computations as the factorization methods
have negligible runtime compared to the entire computations. The incomplete factorization
method is shown to have limited applicability in the computations due to errors along with
high runtimes.

• An improved method for effecient Thévenin equivalent computations [Pub. B]
The factor-solve method efficiently compute the Thévenin equivalents for all buses in the
power system. Determining the Thévenin impedances have quadratic complexity, however
computations can easily be parallelized. Thévenin voltages can be determined in linear time
resulting in runtimes of only a few milliseconds for systems of several thousand of buses.
The factor-solve method doesn’t compute the dense coefficient matrix reducing memory
requirements from several gigabytes to a few megabytes for larger systems.

• A binary search for voltage stability boundary monitoring [Pub. C]
A binary search is developed to find the maximum power transfer to a non-controlled load.
The algorithm is further optimized by fitting feasible points in the search to a second order
polynomial. This makes it possible to determine the maximum power transfer faster and
more accurately. Parallelization can be used to lower runtimes even further.

• Algorithm for refactorization using hierarchical matrices
A refactorization algorithm is developed, which makes it possible to do fast refactorization
of a matrix, when a value in the diagonal changes. This is done by using the factorization
for hierarchical matrices, which compresses fill-in to auxiliary variables by using a low rank
approximation.

The minor contributions of the presented work are:

• Block triangular form of a bus admittance matrices have non-zeros in the off-diagonal [Pub. A]
The block triangular form for a bus admittance matrices with complex admittances is shown
to have off-diagonal elements, which are all 0. THis is shown by using definitions for strongly
connected components and strong Hall matrices. This ensures, that KLU can be used for the
Thévenin equivalent computations.

• Analysis of relationship between block sizes in block triangular form and the density of coefficients for
computation of Thévenin voltage
The theoretical density of the impedance matrix for current sources are determined using the
block triangular form and shown to be accurate as numerical cancellation is small. The block
triangular form is further shown to be dominanted by one large block.

• Analysis of block-wise calculations for optimization of runtime
For systems, where the load impedance is seen outside the Thévenin equivalent the computa-
tions has to be done independently for each load. This makes it possible to limit computations
to the block in block triangular form, that the node it part of. However, as the block triangular
form is dominated by one large block so is the block-wise computations.

6 CHAPTER 1. INTRODUCTION

1.5 Thesis outline

The thesis is composed of 6 chapters with the following outline:

Chapter 1: Introduces the background and motivation for the research. Power system stability
is defined which leads to a presentation of the state of the art literature for stability
assessment of electric power systems. From the discussion of the state of the
art 4 objectives for the PhD project is defined. The chapter ends with a list of
contributions, outline of the thesis and a list of publications.

Chapter 2: Presents Thévenin equivalent computations through the use of a Schur Com-
plement. This leads to an investigation of the factorization method used in the
computation to determine the optimal one for fast and efficient computations. The
structure of KLU factorization is analyzed and lastly the density of the coefficient
matrix is analyzed using the Block Triangular Form (BTF).

Chapter 3: Develops a factor-solve method for computing the full Thévenin equivalent for
all nodes in a system divided in to current and voltage sources. The method is
investigated in term of both runtime and memory requirements. Furthermore,
the method is parallelized to optimize runtime.

Chapter 4: Introduces the recently developed method for voltage stability boundary mon-
itoring, which accounts for non-linearity of Thévenin Voltage. Computational
improvements is suggested by using a binary search to find the maximum power
delivered to a load. Additionally it is investigated how runtimes can be improved
by dividing the system in to smaller blocks.

Chapter 5: Introduces the hierarchical matrix structure, which can be used to solve sparse
systems in linear time. This is then used to develop an algorithm to do fast
recalculation of the factorization, when an element in the diagonal of the matrix
changes.

Chapter 6: Concludes the research conducted and gives an outlook on possible directions for
future work.

1.6 List of publications

The relevant publications which are the core of this thesis are as follows:

[Pub. A] Christina Hildebrandt, Bahtiyar Can Karatas, Jakob Glarbo Møller, and Hjörtur Jóhannsson.
Evaluation of Factorization Methods for Thévenin Equivalent Computations in Real-Time
Stability Assessment. In Proceedings of 20th Power Systems Computation Conference (PSCC),
Dublin, Ireland, 2018

[Pub. B] Christina Hildebrandt Lüthje Jørgensen, Jakob Glarbo Møller, Stefan Sommer, and Hjörtur
Jóhannsson. A Memory-Efficient Parallelizable Method for Computation of Thévenin
Equivalents used in Real-Time Stability Assessment. IEEE Transactions on Power Systems, 2019

[Pub. C] Christina Hildebrandt Lüthje Jørgensen, Bahtiyar Can Karatas, Hjörtur Jóhannsson, and
Stefan Sommer. Binary Search and Fit Algorithm for Improved Voltage Stability Boundary
Monitoring. In Proceedings of 9th IEEE PES Innovative Smart Grid Technologies Europe (ISGT
Europe), Bucharest, Romania, 2019

CHAPTER2
Thévenin Equivalent

Computations
This chapter describes the Thévenin equivalent computations and the block-wise partitioning
of the power system for these calculations. Three different factorization methods - UMFPACK,
Clark Kent LU factorization (KLU) and Incomplete LU factorization (ILU) are introduced and
their influence on the computations are investigated. Before comparison the structure of KLU is
analyzed and a tolerance for ILU is determined. Furthermore, the Block Triangular Form (BTF)
used in KLU provides a way to theoretically determine the resulting fill-in of the coefficient matrix.
The main results of this chapter is based on [Pub. A] and [Pub. B].

2.1 Thévenin equivalent circuit

The Thévenin equivalent for a node is an equivalent representation of the remainder of the system
seen from that node. The equivalent consists of a Thévenin impedance Zth and a Thévenin voltage
V th, such that the equivalent seen from node i satify

V th,i = V i − Zth,iIi (2.1)

V i is the node voltage and Ii is the current injected at node i.

The power system will in the computations be divided in to two sets of nodes. These two sets
generally represent generators and loads. In the first part of this thesis the system will be split in to
voltage sources (vs nodes) and current sources (cs nodes). Another way of splitting the system is
to divide the nodes in to voltage controlled (vc nodes) node and non-controlled (nc nodes), which
will be discussed and used later in the thesis.

Generators with Automatic Voltage Regulator (AVR) or internal voltages of manually excited
machines seen behind the synchronous reactance jXd are represented as voltage sources. Floating
nodes can be modelled as a current sources injecting 0 current. Loads may be represented as
impedances, dependent- or independent current sources.

The admittance matrix for the system can be block-wise partitioned by the two sets of nodes[
Ics

Ivs

]
=
[

Ycs Yv→c

Yc→v Yvs

][
Vcs

Vvs

]
(2.2)

Yv→c and Yc→v contains the edges (transmission lines of the system) from vs nodes to cs nodes
and vice versa. The admittance matrix is typically symmetric, but there can be components in the
system making it asymmetric. As an example this could be a phase-shifting transformer. However,
the non-zero pattern will always be symmetric, since transmission lines are bidirectional.

7

8 CHAPTER 2. THÉVENIN EQUIVALENT COMPUTATIONS

Using (2.2) expressions for Vcs and Ivs can be determined

Vcs = Y−1
cs (Ics −Yv→cVvs) (2.3)

Ivs = YeqVvs −QacIcs (2.4)

with

Yeq = Yvs −Yc→vY−1
cs Yv→c (2.5)

Qac = −Yc→vY−1
cs (2.6)

where Yeq is the Schur complement and Qac is the accompanying matrix.

The Thévenin impedances seen from node i is determined by short circuiting all voltage sources
and open-circuiting all current sources and will be the diagonal of the impedance matrix

Zth,i =

Zcs(i, i) i ∈ cs

Yeq(i, i)−1 i ∈ vs
(2.7)

where Zcs = Y−1
cs .

Substituting (2.3) and (2.4) in to (2.1) the Thévenin voltages for cs nodes and vs nodes are computed
as

Vth,cs = −ZcsYv→cVvs + (Zcs −D(Zth,cs))Ics (2.8)

Vth,vs = (I − D(Zth,vs)Yeq)Vvs +D(Zth,vs)QacIcs (2.9)

I is the identity matrix and D(Zth) is the diagonalization of the vector Zth into a diagonal matrix.
(2.8)-(2.9) can be written on the form[

Vth,cs

Vth,vs

]
=
[

Zc Kv→c

Zc→v Kv

][
Ics

Vvs

]
(2.10)

with

Zc = Zcs −D(Zth,cs) (2.11)

Kv→c = −ZcsYv→c (2.12)

Zc→v = D(Zth,vs)Qac (2.13)

Kv = I − D(Zth,vs)Yeq (2.14)

The coefficients Kv is the GTC matrix, which was mentioned in the introduction. The matrix
defined in (2.10) will be defined as the coefficient matrix K.

Determining the full Thévenin equivalent requires the Thévenin impedances and the coefficient
matrix K. A vital part of the computations is determining the inverse of the admittance matrix for
the cs nodes Zcs = Y−1

cs , which is generally considered inefficient to compute. This is therefore
done by using a LU-factorization of Ycs, since L and U is computationally more efficient to invert
than the full matrix [22, 26]. Algorithm 1 shows all the steps required to compute Zth and K.

D(X) is a vector containing the diagonal of the matrix X, while D(X) a diagonal matrix with the
vector X along the diagonal.

The Thévenin voltages can be determined by (2.10) using the coefficients K, the current injected at
cs nodes Ics and the voltage at vs nodes Vvs.

2.2. FACTORIZATION METHODS 9

Algorithm 1 Thévenin equivalents

1: Lcs,Ucs ← factorization of Ycs

2: UZcs
← solve(Lcs, I)

3: LT
Zcs

← solve(UT
cs, I)

4: Zcs ← LZcsUZcs

5: Zth,cs ← D(Zcs)
6: Qac ← −Yc→vZcs

7: Yeq ← Yvs + QacYv→c

8: Zth,vs ← D(Yeq)−1

9: Zc ← Zcs −D(Zth,cs)
10: Kv→c ← −ZcsYv→c

11: Zc→v ← D(Zth,vs)Qac

12: Kv ← I −D(Zth,vs)Yeq

13: Zth ←
[
Zth,cs

Zth,vs

]
14: K ←

[
Zc Kv→c

Zc→v Kv

]
15: return Zth and K

2.2 Factorization methods

Step 1 of Algorithm 1 computes an LU factorization of the admittance matrix for the cs nodes
Ycs. The factorization is the basis of all the computations. It will therefore be investigated how
changing the factorization method might affect the computations. The three different factorization
methods chosen are:

• UMFPACK with Approximate Minimum Degree (AMD) ordering: This is the standard LU
factorization in MATLAB. AMD is an ordering scheme used prior to factorization to reduce
both runtime and the amount of fill-in [38].

• KLU: This factorization method is optimized for sparse systems [32] and is part of the
SuiteSparse library [39]. KLU converts the system to BTF. Each block is then reordered using
AMD before being factorized, while off-diagonal elements are kept as is. The structure of
KLU will be treated later.

• ILU: This is an incomplete solver meaning it computes an approximation of the LU
factorization. The chosen type will be the Crout Incomplete LU factorization (ILUC) [40].
The method requires a tolerance, which is used to set elements of the matrix to 0. If a value is
smaller than the tolerance multiplied by the norm of the row and the tolerance multiplied by
the norm of the column, the value is deemed insignificant and set to 0. Furthermore, ILU
is set to preserve row sums, since it was empirically seen to significantly increase accuracy
without affecting the runtime. The tolerance level will be treated later.

2.2.1 KLU of an admittance matrix

KLU brings the system on BTF. The diagonal of the resulting matrix will contain square matrices
with zero-free diagonal and the off-diagonal will contain potentially non-zero blocks. The blocks
below the diagonal will be zero. 

A11 · · · A1k

. . .
...

Akk

 (2.15)

10 CHAPTER 2. THÉVENIN EQUIVALENT COMPUTATIONS

(a) (b)

Figure 2.1: (a) Sparsity pattern for Ycs for the system Pegase2869 from MATPOWER [41] and (b)
Ycs on BTF

Figure 2.1 shows an example of an admittance matrix and it’s BTF. The test system in this example
is Pegase2869 taken from MATPOWER [41].

As described earlier the diagonal blocks is reordered using AMD ordering. Each block is then
factorized to obtain the LU factorization, whereas the potential off-diagonal elements are kept as is.
Due to the off-diagonal elements the structure of the KLU factorization for a matrix A will be

PRAQ = LU + F (2.16)

P,Q are permutation matrices, R is a diagonal scaling matrix, L,U are the factorization of the
diagonal elements and F represents the entire off-diagonal. To solve a linear system of equations
KLU use block back substitution.

The structure of KLU in (2.16) does not fit in to Algorithm 1 due to the off-diagonal elements in
F. However, this will not be an issue, since for an admittance matrix with complex admittances
F = 0, which will be shown below.

BTF of a square matrix A with zero-free diagonal corresponds to finding the strongly connected
components of a directed graph G(A) [39]. An admittance matrix with complex admittances will
always have a zero-free diagonal. Therefore, BTF of Ycs will correspond to finding the strongly
connected components in the directed graph G(Ycs) = (V,E) with the nodes V = {1, . . . , |cs|}
and the edges E = {(i, j) | Ycs(i, j) 6= 0}, where |cs| is the number of cs nodes.

A strongly connected component is defined as the maximal set of nodes such that for any pair
of nodes in the set, the paths i j and j i, exists. This means, that for nodes to be in the
component, there should be a path both from node i to node j and from node j to node i for any
two nodes. There need not be a direct edge between the nodes, but it should be possible to follow
a path from one node to the other along edges in the component.

The non-zero pattern of an admittance matrix is symmetric. This means, that if

Ycs(i, j) 6= 0⇔ Ycs(j, i) 6= 0 (2.17)

2.3. IMPLEMENTATION AND TEST 11

i j

(a)

i j

(b)

Figure 2.2: The directed graph G(Ycs) will either have (a) no edges between two nodes i and j or
(b) 2 edges (i, j) and (j, i)

and in equality

Ycs(i, j) = 0⇔ Ycs(j, i) = 0. (2.18)

Therefore, there are two scenarios for edges between two nodes i and j in the directed graph
G(Ycs). Either there will be no edges between the nodes i and j or there will be an edge both
from i to j, (i, j), and from j to i, (j, i), see Figure 2.2. This means that two nodes will either be in
the same strongly connected component or they will be completely separated, since the graph is
bi-directed. Hence BTF of Ycs will consist of the strongly connected components in the diagonal
and the entire off-diagonal will be empty, since there is no connection between the components.

Edges in the off-diagonal block would stem from asymmetries in the non-zero pattern, where
Ycs(i, j) 6= 0 and Ycs(j, i) = 0. Therefore, KLU factorization of Ycs will always satisfy F = 0.

Considering the entire power system there will be a path between any two nodes unless we end
up in a scenario with faults resulting in island to form in the power system. This means that for
BTF of the full admittance matrix, there would be only one strongly connected component, which
is the entire matrix. This means that KLU for the full system would be similar to using UMFPACK
with AMD ordering.

Algorithm 1 however only factorize Ycs, and the cs nodes need not all be connected, since they can
be connected through vs nodes. Figure 2.3 shows an example of a network divided in to cs nodes
and vs nodes. Ycs for this system will have 2 connected components marked on the figure with
dotted lines.

2.3 Implementation and test

Algorithm 1 is implemented in MATLAB and test are done on an Intel(R) Xeon(R) CPU E5-2650 v4
@ 2.50GHz. Table 2.1 shows the different test systems that will be used in this thesis. The Pegase
and Polish-Winter systems can be found in MATPOWER [41], the PTI systems are included in the
PSS®E 33.0 examples and Nordic32 can be found in [42]. EECC-PSSE-33-0 is a representation of
the American Eastern interconnection.

The two largest systems will be omitted in the test of the different factorization method due to the
high runtimes required for these.

12 CHAPTER 2. THÉVENIN EQUIVALENT COMPUTATIONS

cs node

vs node

Figure 2.3: Example of a network divided in to cs nodes and vs nodes. The dotted lines represent
the strongly connected components of G(Ycs)

Table 2.1: Test systems

Case no. of buses no. of vs nodes non-zeros in Y
Nordic32 46 20 160

Pegase89 89 12 501

Pegase1354 1354 260 4774

PTI-WECC-1648 1648 313 6680

Polish-Winter99 2383 327 8155

Polish-Winter03 2746 374 9344

Pegase2869 2869 510 10805

Polish-Winter07 3012 347 10144

PTI-EECC-7991 7917 1325 32211

Pegase9241 9241 1445 37655

Pegase13659 13659 4092 50909

EECC-PSSE-33-0 29827 3780 107527

2.3.1 Tolerance of ILU

Before comparing the different factorization methods it is necessary to determine a suitable
tolerance for ILU. This tolerance will effect the sparsity, accuracy and computation time. As a
measure of the error the Total Vector Error (TVE) [43] will be used. The error for the Thévenin
voltages obtained with ILU can be computed using the results from UMFPACK as reference

TVE (%) =

√
(X̃r −Xr)2 + (X̃i −Xi)2

X2
r +X2

i

· 100% (2.19)

where X̃ is the estimate from ILU and X is the "true" value from UMFPACK. Xr is the real part
and Xi is the imaginary part.

2.3. IMPLEMENTATION AND TEST 13

Table 2.2: Performance of ILU for different tolerance levels when computing the Thévenin
equivalents for Pegase9241 compared to UMFPACK

Tolerance Non-zeros K Runtime (s)
Algorithm 1

Runtime (ms)
Vth

Max TVE (%)
Vth

UMFPACK 42515618 11.95 128.08 -

10−3 9126625 2.14 35.69 4540.43

10−4 29047282 7.13 92.22 14.80

10−5 37618552 17.32 119.92 1.89

10−6 42101927 29.48 126.32 0.27

10−7 42423098 43.80 125.80 0.029

10−8 42498272 47.31 129.70 2.08·10−3

10−9 42506413 50.67 139.04 2.28·10−4

Table 2.2 shows the sparsity of ILU for different tolerance levels as well as the resulting runtime of
Algorithm 1, runtime for computing Thévenin voltages and the maximum TVE of the Thévenin
voltages for the system Pegase9241. As a reference the same values are given for UMFPACK.

Increasing the tolerance increases the sparsity of the coefficient matrix, which reduces the runtime
for computing the Thévenin voltages but also the accuracy. For a tolerance larger than 10−6 the
sparsity of K obtained with ILU is approaching that obtained with UMFPACK and the advantage
of using ILU disappears.

At a tolerance of 10−4 ILU shows runtimes for Algorithm 1, that are comparable to UMFPACK for
all systems. For Pegase9241 the runtime is lower, however the errors in Thévenin voltages are
up to 15%. An error in Thévenin voltage of a few percent might be accounted for by defining an
appropriate trigger-margin for the stability indicators. A suitable tolerance for ILU must therefore
satisfy that there is an advantage in terms of runtime when choosing ILU over UMFPACK, and the
resulting inaccuracy should be a few percent at most. On this basis a tolerance of 10−5 is chosen.

The accuracy of ILU for all systems with the chosen tolerance is shown in Figure 2.4. The mean and
maximum TVE of the Thévenin voltages between ILU and UMFPACK is plotted for all systems.
The mean value of TVE is in general small, which means that there are few large errors. The largest
vector error is smaller than 2% for all systems.

2.3.2 Comparison of factorization methods

After choosing a tolerance of ILU it is possible to compare the different factorization methods.
They are compared in terms of runtime, accuracy and fill-in of the coefficient matrix K.

Figure 2.5 shows the runtime of Algorithm 1 for each factorization method. The total runtime
of KLU is a faster than UMFPACK, however in general the runtimes are quite close. ILU for the
chosen tolerance is slower than both UMFPACK and KLU except for the smallest system. The
runtime seems to be very dependent on the structure of the system. As an example PTI-EECC-7991
takes longer than Pegase9241 even though the system is smaller

Figure 2.6 shows the runtime for the factorization step (Step 1) of Algorithm 1. KLU consistently
performs the factorization almost twice as fast as UMFPACK and is the fastest factorization method

14 CHAPTER 2. THÉVENIN EQUIVALENT COMPUTATIONS

46/

20

89/

12

1354/

260

1648/

313

2383/

327

2746/

374

2869/

510

3012/

347

7917/

1325

9241/

1445

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
V

E
 (

%
)

maximum TVE (%)

mean TVE (%)

Figure 2.4: Maximum and mean TVE (%), when comparing Thévenin voltages from ILU to
UMFPACK. The tolerance of ILU is set to 10−5 [35].

46/

20

89/

12

1354/

260

1648/

313

2383/

327

2746/

374

2869/

510

3012/

347

7917/

1325

9241/

1445

10
-3

10
-2

10
-1

10
0

10
1

10
2

Figure 2.5: Runtime of Algorithm 1 for each factorization method.

2.3. IMPLEMENTATION AND TEST 15

46/

20

89/

12

1354/

260

1648/

313

2383/

327

2746/

374

2869/

510

3012/

347

7917/

1325

9241/

1445

10
-4

10
-3

10
-2

10
-1

10
0

Figure 2.6: Runtime of factorizing Ycs for each factorization method.

in all cases. When comparing the runtimes in Figure 2.5 to the runtime for the factorization in
Figure 2.6 it is evident that the time spent on factorization is negligible compared to the total
runtime of Algorithm 1. Further investigation showed that a majority of time was spend on Step 4
i.e. determining Zcs.

For all cases KLU and UMFPACK are almost identical in both runtime and accuracy. The largest
difference between the computed Thévenin voltages for the two was 10−13, which could be due
to numerical cancellation, as it is close to machine precision. The larger errors seen for ILU is
explained by the inaccuracies in Thévenin voltages seen in Figure 2.4.

One advantage of ILU is the increased sparsity of the coefficient matrices. Table 2.3 shows the
number of non-zeros of the coefficient matrix K for each factorization method. For small systems
ILU does not provide additional sparsity however as the systems grows larger it significantly
reduces fill-in. The difference with respect to sparsity between KLU and UMFPACK is insignificant
and can be due to numerical cancellation.

Reduced fill-in will lower the runtime of the Thévenin voltage calculations. Figure 2.7 shows the
runtime for computing the Thévenin voltage using the coefficient matrix computed in Algorithm
1. For all systems the runtime of computing the Thévenin voltages was smaller for ILU than for
UMFPACK and KLU, however the difference is quite small. If coefficients were to be used for
contingency analysis as in [19] the computation time for the contingency assessments could be
reduced using ILU. However, the runtime of Algorithm 1 is also increased significantly using ILU.

For Pegase9241 the runtime for computing Thévenin voltages is reduced by 8ms, while the runtime
of Algorithm 1 is 5.45s slower Table 2.2. This means that the extra runtime for Algorithm 1 in the
case of ILU requires the Thévenin voltage to be computed at least 675 times for ILU to be faster.

16 CHAPTER 2. THÉVENIN EQUIVALENT COMPUTATIONS

Table 2.3: Non-zeros in coefficient matrix, K, for each factorization method

Case Non-zeros
UMFPACK

Non-zeros
KLU

Non-zeros
ILU

Nordic32 548 547 549

Pegase89 7668 7663 7664

Pegase1354 1120074 1120078 1025267

PTI-WECC-1648 1706590 1706580 1694777

Polish-Winter99 2825724 2825717 1835089

Polish-Winter03 3027546 3027555 2577363

Pegase2869 2961791 2961793 2790832

Polish-Winter07 4206611 4206582 4095535

PTI-EECC-7991 44852964 44852962 31146092

Pegase9241 42515624 42515659 37618552

46/

20

89/

12

1354/

260

1648/

313

2383/

327

2746/

374

2869/

510

3012/

347

7917/

1325

9241/

1445

10
-1

10
0

10
1

10
2

10
3

Figure 2.7: Runtime of calculating the Thévenin voltage Vth using the coefficient matrix K for each
factorization method.

This combined with the fact that there will be an error when using an approximation for the LU
factorization severly limits the applicability of ILU.

2.3.3 Accuracy of stability margins

Another measure of accuracy is to compare the ability to predict instability issues. To do this two
measures of instability are introduced:

• L-index

2.3. IMPLEMENTATION AND TEST 17

• Aperiodic Small-Signal Rotor Angle Stability (ASSRAS) margin

The L-index is a local voltage stability margin for loads [44]. For a node i the local indicator Li is
defined by the node voltage V i and the Thévenin voltage V th,i seen from node i

Li =
∣∣∣∣1− V th,i

V i

∣∣∣∣ . (2.20)

For stable situations Li ≤ 1 must not be violated for any node i. Hence the global indicator for
voltage stability of the entire system is given as the maximum of all Li for the cs nodes that are
loads

L = max
i∈csload

{Li} , (2.21)

Voltage instability may be inferred in the case where L > 1.

In [45] a power margin of the injected power Pinj to the maximum power injection Pinj,max is
defined. This margin describes the distance from a generator’s operating point to the stability
boundary of ASSRAS. In [46] this margin is reformulated in terms of voltages instead of impedances.
A percentage margin to the maximum injectable power is defined as

%∆Pinj = Pinj,max − Pinj

Pinj,max
· 100% (2.22)

= cos (δ + φth) + 1
1 + V

Vth
cosφth

· 100%, (2.23)

where the generator is represented as a voltage source V ∠δ and the remaining grid by its Thévenin
equivalent with a Thévenin equivalent voltage of magnitude (Vth and Thévenin equivalent
impedance θth, Zth∠φth. V th is the phase angle reference.

If, for any generator, %∆Pinj < 0, that generator will begin to lose synchronism, which may
destabilize the entire system. Therefore, the overall systems ASSRAS margin is defined as the
minimum %∆Pinj .

Table 2.4 and 2.5 show the computed L-index and ASSRAS margin for UMFPACK and the difference
between this and the values computed by KLU and ILU. ILU with the chosen tolerance is close to
the results from UMFPACK, while KLU has an accuracy, that can be considered to be the same as
for UMFPACK. In all cases ILU predicted the same node to be the critical node i.e. the node with
the smallest margin to instability as both UMFPACK and KLU.

Therefore the resulting margin is not that different using ILU however there is still a small error
using this.

2.3.4 Density of coefficient matrix

The impedance matrix Zcs is part of the computations for each of the elements in the coefficient
matrix K and hence an essential part of Algorithm 1. The density of the impedance matrix will
therefore be a determining factor for the density of the coefficient matrix since the remaining
coefficients are quite sparse.

The density of Zcs can be determined theoretically by using BTF of Ycs, where the only elements
will be the diagonal blocks as determined in Section 2.2.1. These blocks have the strong Hall
property meaning they have full structural rank [39]. Inverting Ycs will be the same as inverting

18 CHAPTER 2. THÉVENIN EQUIVALENT COMPUTATIONS

Table 2.4: Voltage stability index for loads (L-index)

Case L-index
UMFPACK

Difference
KLU

Difference
ILU

Nordic32 0.183 0 0

Pegase89 0.316 0 1.25·10−4

Pegase1354 0.212 0 0

PTI-WECC-1648 0.283 -1.7·10−15 -1.9·10−4

Polish-Winter99 0.066 -1.2·10−14 7.39·10−5

Polish-Winter03 0.105 5.4·10−15 1.01·10−4

Pegase2869 0.163 0 6.04·10−4

Polish-Winter07 0.075 2.9·10−15 -6.3·10−4

PTI-EECC-7991 0.311 0 -1.1·10−4

Pegase9241 0.176 0 -2.17·10−3

Table 2.5: ASSRAS margin for generators (min %∆Pinj)

Case min %∆Pinj

UMFPACK
Difference

KLU
Difference

ILU

Nordic32 38.01 0 0

Pegase89 94.33 0 0.004

Pegase1354 81.00 0 0.018

PTI-WECC-1648 32.82 0 0

Polish-Winter99 81.42 5.0·10−13 0.026

Polish-Winter03 88.79 4.0·10−13 9.05·10−4

Pegase2869 63.41 0 0

Polish-Winter07 79.93 -7.7·10−13 0.009

PTI-EECC-7991 44.54 0 1.39·10−4

Pegase9241 62.84 0 0

each of these strong Hall blocks and the inverse of a strong Hall matrix has no zero entries, when
ignoring numerical cancellation. Therefore, the size of the blocks determines the density of Zcs.

density =
∑

i

n2
i , (2.24)

where ni is the size of the quadratic blocks.

The number of non-zeros is predetermined by the structure of the matrix and therefore the number
of non-zeros should be roughly the same, when using any direct method i.e. UMFPACK and KLU,
whereas an incomplete method such as ILU can have fewer entries.

For each of the systems in Table 2.1 the theoretical number of non-zeros in Zcs, determined by the
size of the blocks in BTF, is computed and shown in Table 2.6. Next to this the actual density of
Zcs, the density of K using KLU and the size of the largest block in BTF for Ycs is shown.

The theoretical density is the same as the actual density of Zcs for all systems. By including more
digits it is possible to see a small difference. The density of K is not far from the density of Zcs,

2.4. CONCLUSION 19

Table 2.6: Size of largest block compared to entire matrix, theoretical and actual density of Zcs and
actual density of K for test systems.

Case Largest block (%)
Ycs

Theoretical density (%)
Zcs

Density (%)
Zcs

Density (%)
K

Nordic32 25 27.2 27.2 27.1

Pegase89 97.4 97.4 97.4 96.7

Pegase1354 65.9 66.0 66.0 61.2

PTI-WECC-1648 63.3 64.1 64.1 62.9

Polish-Winter99 48.0 48.4 48.4 49.8

Polish-Winter03 38.7 39.3 39.3 40.2

Pegase2869 38.4 40.3 40.3 36.0

Polish-Winter07 45.6 46.0 46.0 46.4

PTI-EECC-7991 72.7 73.1 73.1 71.6

Pegase9241 54.7 55.3 55.3 49.8

Pegase13659 99.7 99.7 99.7 99.0

EECC-PSSE-33-0 97.0 97.0 97.0 96.1

which makes sense since this is used in the computations of all blocks in K. The size of the
largest block in Ycs is very close to the density of Zcs, which shows that there is one large block
dominating the computations. For three of the systems the size of the largest block is more than
90%. For these systems the advantage of using KLU over UMFPACK is small since the large block
is almost the same size as the entire system and the resulting matrices have a large amount of fill-in
making them in-effective to compute.

2.4 Conclusion

The influence of using different factorization methods on Thévenin equivalent computations was
investigated. The results show that the chosen factorization method has little impact, since the
factorization step is a negligible part of Algorithm 1. Investigation show that the computational
heavy part is determining Zcs. One approach to remedy this would be to take advantage of the
backwards solve of KLU and just use the factorization directly instead of computing Zcs. This is
similar to the approach in [26], where good performance is achieved.

The incomplete factorization method ILU was able to compute stability indicators with an accuracy
close to that of the direct methods UMFPACK and KLU. However using ILU involves a trade-off

between accuracy and sparsity, where sparsity also means lower runtimes. For the systems
investigated the runtimes for computing the coefficients were generally higher than that of the
direct methods, while there was also an error. Therefore ILU has limited applicability in this
setting.

Furthermore, it was shown how the density of Zcs and in consequence the coefficient matrix
K could be predetermined by the BTF of Ycs and that one large block in Ycs dominates the
computations.

CHAPTER3
Factor-Solve Method for
Thévenin Computations

This chapter introduces the factor-solve method for determining Thévenin equivalents for an entire
system split in to cs nodes and vs nodes. The approach in the method is developed using the
conclusions in Chapter 2. It was concluded that the computationally heavy part of the method
is determining the inverse of the admittance matrix of the cs nodes and the factor-solve method
therefore avoids computing this. The method is tested and parallelized and will be compared to
the reference method given in Chapter 2. The complexity of both of these methods is investigated
as well as their memory requirements. The main results of this chapter is based on [Pub. B].

3.1 Reference method

The method for computing Thévenin equivalents introduced in Chapter 2 (Algorithm 1) will be
considered as the reference method for the work presented in this Chapter. KLU will be used as
the factorization method in Algorithm 1, since it was shown to have a little better performance
compared to UMFPACK and since it will be used in the factor-solve method introduced later. To
do a proper comparison of the reference method to the factor-solve method the complexity will be
determined.

3.1.1 Complexity

All computations of Algorithm 1 is done with sparse matrices and therefore all computations are
dependent on the number of non-zeros i.e. the density of the matrices involved. |cs| is the number
of cs nodes and |X| is the number of non-zeros in the matrix X .

• The factorization step and the amount of fill-in generated scales close to linear with system
size in this context [26].

• Inverting the sparse LU factors will at maximum have one computation per non-zero element
in the matrix for each column of the identity matrix. This means that solve(Lcs, I) and
solve(UT

cs, I) has a complexity of O(|Lcs||cs|) = O(|Ucs||cs|).

• Computing Zcs will have the complexity O(|LZcs
||cs|), since the non-zeros in LZcs

is multi-
plied by the |cs| columns in UZcs

.

Empirically |Ucs| ≤ |LZcs |, and therefore inversion will be computationally cheaper than computing
Zcs. The remaining computations of Algorithm 1 will be of lower complexity, since they involve at
least one sparse matrix. Hence the complexity of the algorithm will be O(|LZcs ||cs|). Assuming

21

22 CHAPTER 3. FACTOR-SOLVE METHOD FOR THÉVENIN COMPUTATIONS

that |LZcs
| (' |UZcs

|) scale close to linear with system size like it’s the case (in practise) with the
number of non-zeros and fill-in generated in the factorization the complexity will be O(|cs|2).

Determining Thévenin voltages (2.10) is O(|K|), since it is sparse matrix-vector multiplication.
Therefore, the computation of Thévenin voltages will depend on the density of the coefficient
matrix. As concluded in Section 2.3.4 the density of the coefficient matrix depend on the density of
Zcs, which is determined by the size of the blocks in the BTF for Ycs. Therefore, the structure of
the system will determine the computational time for Thévenin voltages.

3.2 Factor-solve method

Performance of Algorithm 1 and the computation of Thévenin voltages is dissatisfying and doesn’t
scale well with system size, but using some of the ideas from the conclusion in Chapter 2 there is
potential for improvements. KLU solves a system by using block back substitution and this solver
makes it possible to find the Thévenin voltages without computing the coefficient matrix.

The equations from (2.10) is revisited and written as

Vth,cs = (Zcs −D (Zth,cs)) Ics − ZcsYv→cVvs (3.1)

Vth,vs = D(Zth,vs)QacIcs + (I − D(Zth,vs)Yeq)Vvs (3.2)

By using the expression for Yeq and Qac given in (2.5)-(2.6) and moving some terms around the
following expression emerges

Vth,cs = Zcs (Ics −Yv→cVvs)− Zth,csIcs (3.3)

Vth,vs = Vvs − Zth,vs (YvsVvs + Yc→vZcs (Ics −Yv→cVvs)) (3.4)

Defining Ṽ as

Ṽ = Zcs (Ics −Yv→cVvs) (3.5)

and inserting this in to (3.3) and (3.4) gives

Vth,cs = Ṽ − Zth,csIcs (3.6)

Vth,vs = Vvs − Zth,vs

(
YvsVvs + Yc→vṼ

)
(3.7)

The expensive part of the computations is contained in Ṽ . The remaining part of (3.6)-(3.7) is either
subtraction of vectors, multiplication of vectors or sparse matrix-vector multiplication, which are
all linear in complexity.

(3.5) can be written as

YcsṼ = Ics −Yv→cVvs (3.8)

Ṽ can therefore be determined by solving the above linear equation. Solving Ycsx = b for x can
be determined by block back substitution using the KLU factorization. This will be defined as
klu(LU, b). Ṽ can then be calculated by klu(LU, Ics−Yv→cVvs). This makes it possible to determine
the Thévenin voltages using only the factorization of Ycs and the Thévenin impedances. This
means, that the coefficient matrix K no longer needs to be computed.

The Thévenin impedances for cs nodes and vs nodes are defined in (2.7). The diagonal of Zcs and
the diagonal of the Schur complement Yeq is needed in these computations.

3.2. FACTOR-SOLVE METHOD 23

The diagonal of Zcs determines the Thévenin impedances for cs nodes. This is computed by
multiplying the rows and columns of UZcs

= L−1
cs and LZcs

= U−1
cs i.e.

Zth,cs,k = LZcs
(k, :)UZcs

(:, k) ∀k ∈ cs, (3.9)

where LZcs
(k, :) is the k’th row of LZcs

and UZcs
(:, k) is the k’th column of UZcs

.

The Thévenin impedances for the vs nodes are given as the inverse of the diagonal elements in the
Schur complment Yeq .

Zth,vs,k = Yeq(k, k)−1 ∀k ∈ vs, (3.10)

which is scalar inversion.

Using (2.5) each element of the diagonal is determined as

Yeq(k, k) = Yvs(k, k)−Yc→v(k, :)ZcsYv→c(:, k) (3.11)

As with the Thévenin voltages block back substitution can be used to determine part of the equation.
The Thévenin impedances for the vs nodes are then found as

Û(:, k) = ZcsYv→c(:, k)← klu (LU,Yv→c(:, k)) (3.12)

Yeq(k, k) = Yvs(k, k)−Yc→v(k, :)Û(:, k) (3.13)

Zth,vs,k = Yeq(k, k)−1 (3.14)

The computations for the vs nodes is similar to the computations given in [26]. This method was
called reduce-factor-solve and following this notation the new method will be called a factor-solve
method. The method factorize part of the system and then solves using the factorization to
compute the solution. This factor-solve approach is used to find the Thévenin impedances for the
vs nodes and to find the Thévenin voltages for the entire system. The method in [26] has an initial
reduce step to eliminate part of the nodes. However, this does not apply here, since the Thévenin
equivalents for the entire system is determined, and therefore there isn’t any nodes that can be
eliminated prior to the computations.

Algorithm 2 factorize Ycs and compute the Thévenin impedances. The two loops that determines
the Thévenin impedances can be run in parallel.

The factor-solve method ensures that no computation time is spent on computing the dense
coefficient matrix. Furthermore, the computation of the Thévenin voltages is altered from matrix-
vector multiplication with a sparse matrix, that is quite dense, to a block back substitution and
matrix-vector multiplications with very sparse matrices.

3.2.1 Complexity

The complexity of Algorithm 2 is split in to a sequential and a parallel part.

The first 3 steps are sequential. The inversions are O(|Lcs||cs|) and O(|Ucs||cs|), respectively, and
the fill-in scales linearly with system size meaning the complexity is O(|cs|2). The factorization has
negligible runtime compared to this as it is close to linear, and therefore the serial part will have a
complexity of O(|cs|2).

The two loops can be run sequential or in parallel. The first loop will be |cs| multiplications of
vectors of length |cs| giving a complexity of O(|cs|2). The second loop has |vs| computations of a

24 CHAPTER 3. FACTOR-SOLVE METHOD FOR THÉVENIN COMPUTATIONS

Algorithm 2 Thévenin equivalents

1: Lcs,Ucs ← factorization of Ycs {Output: LU }
2: UZcs

← solve(Lcs, I)
3: LZcs ← solve(UT

cs, I)T

4: for k = 1..|cs| {In parallel} do
5: Zth,cs,k ← LZcs

(k, :)UZcs
(:, k)

6: end for
7: for k = 1..|vs| {In parallel} do
8: Û(:, k) ← klu(LU,Yv→c(:, k))
9: Yeq(k, k)← Yvs(k, k)−Yc→v(k, :)Û(:, k)

10: Zth,vs,k ← Yeq(k, k)−1

11: end for

12: Zth ←
[
Zth,cs

Zth,vs

]
13: return Zth and LU

solve step with linear complexity O(|cs|), multiplication of vectors of length |cs| and inversion
of Yeq(k, k)−1, which is O(1), as it is inversion of a single number. This gives a complexity of
O(|cs||vs|) for the second loop.

When running an algorithm in parallel the runtime is theoretically determined by the number of
cores. By Amdahl’s law the total computational time will only be limited by the sequential part of
the algorithm, since an unlimited number of cores can be added to completely parallelize the loops
making the computational time for these negligble. In practise however this will not be possible,
since there will be an overhead due to communication between the cores.

The computation of the Thévenin voltages now consists of a solve step using KLU and matrix-vector
multiplication with sparse matrices. The block back substitution of KLU is close to linear and so is
the matrix-vector multiplications due to the sparsity scaling linear with system size. This gives a
complexity of O(|cs|). As comparison the reference method’s complexity is O(|K|), which was
shown earlier to be very dependent on the system but in general the matrix was quite dense.

3.3 Implementation and test

The reference method from Algorithm 1 and equation (2.10) and the factor-solve method from
Algorithm 2 and equations (3.5)-(3.7) is analysed in MATLAB on an Intel(R) Xeon(R) CPU E5-2650
v4 @ 2.20GHz. The test systems are the ones given earlier in Table 2.1. The reference method is
rerun here such that the runtimes for both methods are computed at the same time on the same
machine. Therefore, the runtime might be a little different compared to the values given in Chapter
2.

Table 3.1 shows the runtimes for Algorithm 1 and 2 and Table 3.2 shows the runtimes for computing
the Thévenin voltages with the reference and the factor-solve method.

The speed-up is calculated as a quantity for the performance of the factor-solve method compared
to the reference method. This is defined as

speed-up = t1
t2
, (3.15)

where t1 is the runtime of the reference method and t2 is the runtime of the factor-solve method.
The speed-up is shown alongside the runtimes in Table 3.1 and 3.2.

3.3. IMPLEMENTATION AND TEST 25

Table 3.1: Runtime of Algorithm 1 and Algorithm 2 and the speed-up.

Case Runtime (s)
Algorithm 1

Runtime (s)
Algorithm 2

Speed-up

Nordic32 2.98·10−4 0.045 0.01

Pegase89 1.34·10−3 0.050 0.03

Pegase1354 0.11 0.114 0.97

PTI-WECC-1648 0.20 0.544 0.37

Polish-Winter99 0.30 0.241 1.23

Polish-Winter03 0.31 0.319 0.98

Pegase2869 0.41 0.355 1.15

Polish-Winter07 0.42 0.300 1.39

PTI-EECC-7991 6.31 1.745 3.62

Pegase9241 11.58 2.983 3.88

Pegase13659 36.70 6.276 5.85

EECC-PSSE-33-0 253.08 20.592 12.29

Table 3.2: Runtime of computing Thévenin voltages with reference and factor-solve method and the
resulting speed-up.

Case Runtime (ms)
Vth reference

Runtime (ms)
Vth factor-solve

Speed-up

Nordic32 1.27·10−2 0.084 0.15

Pegase89 3.13·10−2 0.101 0.31

Pegase1354 2.74 0.295 9.28

PTI-WECC-1648 4.62 0.731 6.32

Polish-Winter99 7.08 0.457 15.50

Polish-Winter03 8.50 0.540 15.72

Pegase2869 7.65 0.604 12.66

Polish-Winter07 10.51 0.565 18.60

PTI-EECC-7991 118.13 1.473 80.18

Pegase9241 118.95 1.708 69.63

Pegase13659 530.13 2.328 227.75

EECC-PSSE-33-0 2519.75 5.522 456.28

The runtimes for Algorithm 1 and 2 is plotted in Figure 3.1. The runtimes for Algorithm 2 is slower
for the smaller systems and faster for the largest systems. As analysed the complexity of Algorithm
2 is seen to be close to quadratic if the smallest systems are ignored. These systems are quite
small and therefore doing normal matrix computations is faster than using loops in MATLAB,
which is computationally heavy when the system is so small. The complexity for Algorithm 1 was
also analysed to be quadratic under the assumption that the fill-in of LZcs scales close to linear
with system size. This type of complexity is what is seen in Figure 3.1. Hence as expected the
complexity is the same for Algorithm 1 and 2.

Figure 3.2 shows the runtimes for computing the Thévenin voltages with the reference and

26 CHAPTER 3. FACTOR-SOLVE METHOD FOR THÉVENIN COMPUTATIONS

10
1

10
2

10
3

10
4

10
5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Figure 3.1: Runtime for the Algorithm 1 and 2 depending on the number of buses. The plot is
logarithmic.

factor-solve method. The Thévenin voltages computations for the reference method was earlier
analyzed to have complexity of O(|K|). The runtimes in Figure 3.2 show that the complexity is
close to quadratic. |K|was seen earlier to be quite dense and therefore quadratic scaling seems
reasonable. Increased system size will result in larger matrices and therefore also a larger number
of non-zeros. Computing the Thévenin voltages with the factor-solve method is seen to have close
to linear complexity as analysed earlier. Figure 3.2 shows few points lying outside the linearity.
The complexity is only close to linear, since it actually depends on the fill-in in the factorization,
which can differ depending on the system structure.

For the smaller systems neither the algorithm nor the calculations of Thévenin voltage for factor-solve
method receives a speed-up. Systems larger than 1000 buses is sped up in Thévenin voltage
computations but only some benefit from Algorithm 2. Algorithm 2 requires large power systems
to be faster than Algorithm 1. The complexity is the same, which limits the benefit, however
parallelization can be used in Algorithm 2, which will be tested later.

Some systems have a larger speed-up when computing Thévenin voltages with the factor-solve
method instead of the reference method compared to systems of similar size. The systems
Pegase2869 and Pegase9241 both have a lower speed-up compared to similar sized systems. The
reason is found in Table 2.6. The coefficient matrix for both Pegase2869 and Pegase9241 is less
dense than for the systems of similar size, and therefore weren’t as slow with the reference method.
The change in complexity from dependence on the density of the coefficient matrix to be close to
linear to system size, now gives runtimes, that scale better with system size.

Errors in Thévenin voltages obtained with the two methods is determined in terms of the TVE
defined in (2.19). Here the reference method using UMFPACK will be considered the true value
and the reference and factor-solve method using KLU will be the estimate. The maximum TVE can

3.3. IMPLEMENTATION AND TEST 27

10
1

10
2

10
3

10
4

10
5

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Figure 3.2: Runtime for computing the Thévenin voltages with the reference and factor-solve method
depending on the number of buses. The plot is logarithmic.

Table 3.3: Maximum TVE (%) for the reference and factor-solve method with UMFPACK as the true
value.

Case Max TVE (%)
(reference)

Max TVE (%)
(factor-solve)

Nordic32 2.43·10−13 2.23·10−13

Pegase89 1.71·10−12 1.71·10−12

Pegase1354 4.55·10−12 4.56·10−12

PTI-WECC-1648 6.98·10−12 7.02·10−12

Polish-Winter99 1.95·10−11 2.79·10−11

Polish-Winter03 2.98·10−11 2.98·10−11

Pegase2869 5.50·10−12 5.54·10−12

Polish-Winter07 1.52·10−11 1.52·10−11

PTI-EECC-7991 9.26·10−12 9.17·10−12

Pegase9241 2.13·10−11 2.13·10−11

Pegase13659 2.20·10−11 2.22·10−11

EECC-PSSE-33-0 1.30·10−09 8.01·10−10

be seen in Table 3.3. The two methods differ in values close to machine precision and the accuracy
can therefore be concluded to be the same.

28 CHAPTER 3. FACTOR-SOLVE METHOD FOR THÉVENIN COMPUTATIONS

Ta
bl

e
3.

4:
R

un
ti

m
e

in
se

co
nd

s
fo

r
A

lg
or

it
hm

2
ru

n
in

pa
ra

lle
lf

or
di

ff
er

en
tn

um
be

r
of

co
re

s.
Lo

w
es

tr
un

ti
m

e
fo

r
ea

ch
sy

st
em

is
m

ar
ke

d
w

it
h

gr
ee

n.

C
as

e

C
or

es
1

2
4

6
8

10
12

14
16

18
20

22
24

N
or

di
c3

2
0.

04
5

0.
05

4
0.

06
4

0.
06

3
0.

07
2

0.
08

5
0.

09
5

0.
10

7
0.

12
8

0.
14

0
0.

15
3

0.
16

4
0.

16
2

Pe
ga

se
89

0.
05

0
0.

06
1

0.
06

3
0.

06
5

0.
08

2
0.

09
3

0.
11

8
0.

12
2

0.
13

3
0.

15
1

0.
16

1
0.

17
0

0.
17

7

Pe
ga

se
13

54
0.

11
4

0.
10

1
0.

10
7

0.
10

2
0.

11
7

0.
13

4
0.

16
7

0.
19

2
0.

21
2

0.
23

8
0.

25
6

0.
28

3
0.

30
2

PT
I-

W
EC

C
-1

64
8

0.
54

4
0.

30
2

0.
28

1
0.

29
6

0.
36

9
0.

29
2

0.
33

3
0.

42
8

0.
35

0
0.

38
9

0.
57

9
0.

44
6

0.
51

2

Po
lis

h-
W

in
te

r9
9

0.
24

1
0.

16
2

0.
12

4
0.

12
1

0.
12

1
0.

14
1

0.
17

7
0.

19
2

0.
21

8
0.

25
2

0.
27

9
0.

28
9

0.
35

0

Po
lis

h-
W

in
te

r0
3

0.
31

9
0.

20
6

0.
16

5
0.

16
1

0.
15

7
0.

15
5

0.
17

1
0.

19
5

0.
21

7
0.

23
6

0.
26

0
0.

27
7

0.
31

0

Pe
ga

se
28

69
0.

35
5

0.
24

2
0.

18
1

0.
16

4
0.

17
4

0.
17

6
0.

19
0

0.
21

8
0.

23
4

0.
25

6
0.

27
7

0.
30

7
0.

32
1

Po
lis

h-
W

in
te

r0
7

0.
29

9
0.

18
8

0.
15

2
0.

13
6

0.
13

6
0.

15
6

0.
18

6
0.

20
7

0.
22

6
0.

25
2

0.
27

1
0.

30
7

0.
31

4

PT
I-

EE
C

C
-7

99
1

1.
74

5
0.

88
2

0.
55

0
0.

43
8

0.
38

8
0.

35
8

0.
35

0
0.

35
3

0.
34

4
0.

37
0

0.
39

0
0.

41
2

0.
45

5

Pe
ga

se
92

41
2.

98
3

1.
60

3
0.

90
9

0.
70

7
0.

60
2

0.
54

0
0.

51
3

0.
49

7
0.

50
0

0.
51

8
0.

54
0

0.
56

4
0.

60
0

Pe
ga

se
13

65
9

6.
27

6
3.

33
4

1.
81

4
1.

38
8

1.
17

3
1.

03
9

0.
95

0
0.

90
7

0.
90

1
0.

91
8

0.
91

7
0.

96
7

0.
97

6

EE
C

C
-P

SS
E-

33
-0

20
.5

92
9.

93
6

5.
43

9
4.

20
9

3.
60

4
3.

21
6

2.
99

4
2.

87
1

2.
75

9
2.

78
6

2.
80

3
2.

84
8

2.
89

1

3.3. IMPLEMENTATION AND TEST 29

3.3.1 Parallelization

The runtime for Algorithm 2 is only a little faster than Algorithm 1 for some of the larger systems
and their complexity is both quadratic. However, a clear benefit from the method is that it can
easily be run in parallel. The runtime is therefore tested on a machine with 2 CPUs of Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz with 12 cores each. The algorithm will be tested on the
following number of cores 1, 2, 4, 6, . . . , 22, 24.

The runtimes for the systems for the different number of cores is shown in Table 3.4. The number
of cores giving the lowest runtime varies for the systems. The smallest systems are fastest using
only 1 core and comparing to the runtimes given in Table 3.1 the runtimes seems to be dominated
by the overhead from the parallelization. This is expected, since to running a parallel process with
parfor instead of just using for in MATLAB will cause this.

As the system size increases so does the optimal number of cores for the computation. The
lowest runtime is for each systems marked with green in the Table 3.4. For Polish-Winter99 and
Polish-Winter07 there is 2 runtime that are the lowest in the table. The difference was found using
more decimals and therefore only one of them is marked in the table.

The speed-up for Algorithm 2 compared to Algorithm 1 is shown in Figure 3.3. Runtime of
Algorithm 2 is decreased considerably. Speed-up increases with system size. For the larger system
the speed-up increases up to a factor of over 90 compared to a factor of 12 without parallelization.
The 4 smallest systems still does not receive a speed-up due to their size being too small to make
up for the overhead. The remaining systems i.e. the middle systems that did not or barely have a
speed-up when running Algorithm 2 in serial is now speed-up using parallelization.

The runtime for the optimal number of cores as well as the speed-up compared to Algorithm 1 is
seen in Table 3.5. It shows explicitly how the optimal number of cores as well as the speed-up
grows with system size. For the largest system EECC-PSSE-33-0 the runtime using the parallelized
factor-solve method gets as low as 2.8s compared to a runtime of 253s with the reference method.
This makes it possible to respond faster to changes in the system topology and makes it viable to
be run in real-time.

Figure 3.4 shows the runtime for each part of Algorithm 2 for the optimal number of cores in Table
3.5. Factorization is Step 1 of Algorithm 2, Zth,cs is Step 2-6 and Zth,vs is Step 7-11. Factorization
time is the smallest part of the runtime and remains negligible, which fits with it’s complexity
being close to linear to system size comparing to the remaining being quadratic.

The majority of time is spend on computing the Thévenin impedances for the cs nodes. However,
there is also a considerable larger amount of cs nodes, thus when dividing the runtimes with the
number of cs nodes and vs nodes the individual runtime for each Zth,cs is lower than for Zth,vs.
This is shown in Figure 3.5.

Each loop of Algorithm 2 is independent and the optimal number of cores for each loop might not
be the same. Therefore, running both loops using the same number of cores might result in the loop
with the fewest elements being affected by overhead. This might explain some of the difference
between the two, since there is a lot fewer vs nodes than cs nodes. There is also a difference in the
computations for the different nodes, which will effect individual runtimes. Computations for
cs nodes are also divided in to a sequential part (inversion of L and U) and a parallel part (the
loop multiplying vectors). The sequential part of the computations will not benefit from additional
cores.

30 CHAPTER 3. FACTOR-SOLVE METHOD FOR THÉVENIN COMPUTATIONS

0 5 10 15 20 25

0

10

20

30

40

50

60

70

80

90

100

(a)

0 5 10 15 20 25

0

0.5

1

1.5

2

2.5

3

3.5

(b)

0 5 10 15 20 25

0

10

20

30

40

50

60

70

80

90

100

Figure 3.3: Speed-up of Algorithm 2 compared to Algorithm 1 - (a) shows all systems and (b) is a
zoom of the smaller systems.

3.3.2 Memory requirements

A benefit from the factor-solve method compared to the reference method is that the coefficient matrix
is no longer required. Not only is it beneficial to not compute it but furthermore it is beneficial
not having to store it, as it requires more memory compared to only using the factorization. The
coefficient matrix can be stored either as a sparse matrix or a dense matrix.

Storing a sparse matrix requires storing the non-zero entries and the location of the entry, which
is stored in two vectors for the row and column indexes. This gives a formula for the memory
required for a matrix of size mxn

memsparse = 2 · nnz · bdouble + nnz · binteger + (n+ 1) · binteger, (3.16)

where nnz is the number of non-zeros and bdouble and binteger is the number of bits used to store
doubles and integers respectively. The above formula is for a compressed column storage (CCS) of
a sparse matrix for compressed row storage (CRS) replace n with m, since matrices will then be

3.3. IMPLEMENTATION AND TEST 31

Table 3.5: Results for the optimal number of cores for each system

Case Optimal
no. of cores

Runtime (s)
Algorithm 2

Speed-up
Algorithm 2

Nordic32 1 0.045 0.007

Pegase89 1 0.050 0.027

Pegase1354 2 0.101 1.105

PTI-WECC-1648 4 0.281 0.727

Polish-Winter99 6 0.121 2.439

Polish-Winter03 10 0.155 2.008

Pegase2869 6 0.164 2.477

Polish-Winter07 8 0.136 3.070

PTI-EECC-7991 16 0.344 18.354

Pegase9241 14 0.497 23.289

Pegase13659 16 0.901 40.750

EECC-PSSE-33-0 16 2.759 91.715

1 2 3 4 5 6 7 8 9 10 11 12

0

0.5

1

1.5

2

2.5

3

Figure 3.4: Distribution of the runtime of Algorithm 2 on to each part of the algorithm for the
optimal number of cores.

read by row first instead of column first. For computations of the memory it doesn’t matter if the
matrix is stored as CCS or CRS, since all matrices are square i.e. n = m. nnz is multiplied by 2
since the matrices contains complex values meaning two doubles are needed to represent them.

Storing a full matrix stores all entries and therefore the memory required will be

memfull = 2 ·m · n · bdouble. (3.17)

Again the coefficient matrix is square hence n = m. Therefore

memfull = 2 · n2 · bdouble. (3.18)

32 CHAPTER 3. FACTOR-SOLVE METHOD FOR THÉVENIN COMPUTATIONS

1 2 3 4 5 6 7 8 9 10 11 12
10

-2

10
-1

10
0

Figure 3.5: Runtime for computing the Thévenin impedances for each cs node and vs node using
the factor-solve method run in parallel with optimal number of cores.

As mentioned earlier the KLU factorization of a matrix A is defined as

PRAQ = LU + F (3.19)

P,Q are permutations stored as vectors, R is a scaling matrix optimally stored as a vector, L,U are
complex sparse matrices and F = 0. Storing the factorization from KLU can therefore be computed
as

memKLU = memL +memU +memP +memQ +memR. (3.20)

The memory for the vectors are
memvector = n · b, (3.21)

where n is the length of the vector and b the bits which for P and Q will be binteger and for R it will
be bdouble.

In MATLAB integers like doubles are stored using 64 bits therefore binteger = bdouble = 64. The
resulting memory requirements for storing K and the KLU factorization of Ycs can be seen in
Table 3.6. The memory for the coefficient matrix is showed for storing in both as a full and as a
sparse matrix.

Storing the factorization requires less memory than storing the coefficient matrix for all systems no
matter how K is stored. For the systems with a density of more than around 65% the coefficient
matrix is more efficiently stored as a full matrix since the number of non-zeros gets closer to the
total number of elements. Therefore, storing the row and column index on top of the number
of non-zeros will result in more elements stored than just storing the full matrix. For the largest
test system EECC-PSSE-33-0 the memory required storing the coefficient matrix optimally as a
full matrix still requires over 2400 times more memory than just storing the factorization. The
factor for Polish-Winter99 and Nordic32 is around 220 and 4.6 respectively. The big difference in
the amount of memory save is due to the difference in scaling. The memory for K scales close to
quadratic, while the memory for the factorization of Ycs scales close to linear.

3.4. DISCUSSION AND CONCLUSION 33

Table 3.6: Memory requirements for coefficient matrix K in sparse and full format and the
factorization of Ycs.

Case K
(full)

K
(sparse)

Factorization
of Ycs

Nordic32 33.1 kB 13.2 kB 2.9 kB

Pegase89 123.8 kB 180.3 kB 17.7 kB

Pegase1354 28.0 MB 25.6 MB 164.3 kB

PTI-WECC-1648 41.4 MB 39.1 MB 233.6 kB

Polish-Winter99 86.6 MB 64.7 MB 298.8 kB

Polish-Winter03 115.1 MB 69.3 MB 349.4 kB

Pegase2869 125.6 MB 67.8 MB 390.5 kB

Polish-Winter07 138.4 MB 96.3 MB 400.4 kB

PTI-EECC-7991 0.9 GB 1.0 GB 1.2 MB

Pegase9241 1.3 GB 1.0 GB 1.4 MB

Pegase13659 2.8 GB 4.1 GB 2.1 MB

EECC-PSSE-33-0 13.3 GB 19.1 GB 5.6 MB

3.4 Discussion and Conclusion

Runtimes for computing Thévenin voltages using the factor-solve method is below 6ms for
all systems. PMUs normally delivers data in the rate of system frequency. This means that
measurements would be received every 16-20ms, and therefore with the factor-solve method it will
be possible to compute the Thévenin voltages for every measurement.

Runtimes for Algorithm 2 dominate the factor-solve method, however this is only run whenever
system topology changes. The implementation for Algorithm 2 is a little faster than Algorithm
1, but in general the complexity for both is quadratic. The most important change between the
reference method and the factor-solve method is that the algorithm is going from sequential matrix
multiplications to a sequential and a parallel part making it possible to parallelize. The optimal
number of cores used in the parallelization of Algorithm 2 increases as the system size increases.
The runtime when using parallelization is lower compared to the reference method for most
systems. However, some systems does not receive a speed-up.

The smallest systems does not benefit from using the factor-solve method. The remaining systems
gets a speed-up computing the Thévenin voltages using the factor-solve method but only some
benefit from using Algorithm 2 over Algorithm 1. A suggestion for these system would be
to use a combination of the two methods to have optimal runtime as Algorithm 1 computes
everything needed in the factor-solve method. The Thévenin impedances and the factorization can
for these system be determined using Step 1-8 of Algorithm 1 and then the Thévenin voltage can
be determined using the factor-solve method.

A clear benefit from the factor-solve method is the decrease in memory usage, which was considerable
for all systems. This as well as the now linear complexity for computing Thévenin voltages will
make the method viable to be used in methods for real-time stability method. Furthermore, the use
of fewer computational resources will make room for other methods to ensure stability of future
power systems.

CHAPTER4
Voltage Stability Boundary

Monitoring Method
This chapter introduces the improved voltage stability monitoring method from [47, 48], which
accounts for non-linearity in the Thévenin voltages. The runtime is optimized by developing
a binary search method to find the point of maximum injectable power to a non-controlled
load. The search is further optimized by fitting points to a second order polynomial to find the
maximum. The different iteration algorithms is tested on a range of systems and compared to
a naïve implementation. Further investigation is conducted to determine the impact of doing
block-wise calculations when computing Thévenin equivalents. The main results of this chapter is
based on [Pub. C].

4.1 Voltage stability boundary monitoring method

The improved voltage stability method was introduced in [47, 48]. The method is developed in the
SARP project. Earlier voltage stability methods determines the maximum power transfer as the
point when the magnitude of the Thévenin impedance equals the magnitude of the load impedance
under the assumption that the Thévenin voltage remains constant as the load impedance changes.
This matching of the impedances is known as the impedance match criterion. The limitation of
using this has been investigated in [13]. The voltage stability method takes in to account the
changes occurring in the Thévenin voltage seen from the load. It was shown that the actual point
of voltage instability is before the boundary determined by impedance match criterion.

For the method proposed in [47, 48] two assumptions are required

1. Power is injected into nodes of constant voltage magnitude. The synchronous generators
are represented as a voltage source V ∠θ. The voltage magnitude is constant either at the
generator terminal if an AVR is present, or behind the synchronous reactance Xd depending
on the excitation system.

2. Loads are represented as impedances. The method needs the instantaneous representation
of the system conditions to accurately determine the changes in Thévenin voltages.

The representation due to the second assumption will therefore mean that the system changes from
being divided in to voltage sources (vs nodes) and current sources (cs nodes) to voltage controlled
(vc nodes) and non-controlled (nc nodes).

35

36 CHAPTER 4. VOLTAGE STABILITY BOUNDARY MONITORING METHOD

Figure 4.1: Thévenin equivalent seen from a generator

Figure 4.2: Thévenin equivalent seen from a non-controlled load modelled as an impedance

4.1.1 Thévenin equivalent computations

The computations for the Thévenin equivalent is revisited in terms of the new representation of
the system in this setting. Generators is still represented as voltage sources as seen in Figure 4.1,
which is the same as the representation in Chapter 2, however naming convention is changed
from vs to vc. Loads are represented as impedances. Figure 4.2 shows the equivalent for a nc load
ZLD = RLD + jXLD. The impedances is outside the equivalent i.e. the equivalent is independent
of the load impedance, which is important, when the impedance is changed to find the voltage
stability boundary.

By representing loads as impedances the current injected at nc buses will be 0. The admittance
matrix will then be block-wise partitioned as[

0
Ivc

]
=
[

Ync Yv→n

Yn→v Yvc

][
Vnc

Vvc

]
(4.1)

Eliminating Ivc and plugging this in to the expression for the Thévenin equivalent as done in
Section 2.1 gives the following expression for the Thévenin voltages

Vth,nc = −Y−1
nc Yv→nVvc (4.2)

Vth,vc =
(
I − D

(
Zth,vc

) [
Yvc −Yn→vY−1

nc Yv→n

])
Vvc (4.3)

Using the expression for the Schur Complement Yeq gives

Vth,nc = −Y−1
nc Yv→nVvc (4.4)

Vth,vc =
(
I − D

(
Zth,vc

)
Yeq

)
Vvc (4.5)

4.1. VOLTAGE STABILITY BOUNDARY MONITORING METHOD 37

The coefficients will be defined as Knc and Kvc respectively

Knc = −Y−1
nc Yv→n (4.6)

Kvc = I − D
(
Zth,vc

)
Yeq (4.7)

As earlier the Thévenin impedance is determined as

Zth,i =

Znc(i, i) i ∈ nc

Yeq(i, i)−1 i ∈ vc
(4.8)

The admittance of an nc load will be included in the diagonal of Ync. As the impedance is seen
outside the equivalent (Figure 4.2) this should be accounted for when determining V th,nc and
Zth,nc.

Algorithm 3 Thévenin equivalent for nc load

1: for i = 1..|nc load| do
2: ig ← global_index(i)
3: Ync(ig, ig)← Ync(ig, ig)− Yload(i)
4: Lnc,Unc ← factorization of Ync

5: UZnc
← solve(Lnc, I)

6: LT
Znc,ig

← solve(UT
nc(:, ig), I)

7: Znc,ig ← LZnc,ig
UZnc

8: Zth,nc(i) ← Znc,ig
(ig)

9: Knc(i, :) ← −Znc,ig
Yv→c

10: Ync(ig, ig)← Ync(ig, ig) + Yload(i)
11: end for
12: return Zth,nc and Knc

The algorithm is only run for nc loads as these are the ones that is relevant for the voltage stability
method. Therefore, the index i for the nc load is converted to the global index ig as load imight not
correspond to the i’th node in the entire system. The load admittance should be removed from Ync

to compute Knc and Znc for each load. Therefore, the computations are done independently for
each row of Knc and optimized such that only the parts needed to determine the row is computed.
Znc,ig

is the ig’th row of Znc. In Algorithm 3 Zth,nc and Knc is using the load index i and not the
global index ig , since they are only computed for the nc loads.

The impedance of the load is part of the equivalent for the vc nodes and therefore the entire
coefficient matrix for these Kvc can be determined without having to modify Ync repeatedly.

4.1.2 Maximum deliverable power to a load

The maximum power transfer PLD,max to a given load determines a margin for voltage stability as
margin to the boundary of voltage stability as

%∆PLD = PLD,max − PLD

PLD,max
· 100%, (4.9)

where PLD is the current power transfer for the load.

The margin can be determined more accurately by accounting for changes in the Thévenin voltage
magnitude seen from the load. The power transfer PLD,i to load i for a given change in ZLD can
be determined as

38 CHAPTER 4. VOLTAGE STABILITY BOUNDARY MONITORING METHOD

1. Update the admittance matrix Ync with the new load admittance Y LD = Z
−1
LD

2. Compute the Thévenin equivalents (Vth,vc, Zth,vc) seen from the generators i.e. vc nodes by
recomputing Kvc

3. Compute the new rotor angle of the generators δvc

4. Determine V th,nc,i for the load

5. Compute the power transfer to the load PLD,i

By iterating over different values of ZLD from the current load to the impedance load Zth it is
possible to determine the maximum injectable power to the load PLD,max.

The rotor angle of the generators δvc are computed as

δvc = arccos
(
Vvc cosφth,nc − PinjZth,vc

Vth,vcVvc

)
+ θth,vc − φth,vc, (4.10)

where Pinj is the power injected by the generator, which will be assumed to be constant as the
load changes. The remaining quantities can be seen in Fig. 4.1. The power transfer to the load PLD

can be determined as

PLD =
∣∣∣∣ V th,nc

Zth,nc + ZLD

∣∣∣∣2 RLD (4.11)

The coefficients for the nc nodes Knc (Algorithm 3) needs to be determined only once, since each
row is independent of the load. The coefficients for the vc nodes Kvc needs to be determined for
each change in ZLD, since they depend on the load.

To decrease runtime only necessary computations are included. This means that Knc as shown in
Algorithm 3 is not determined for all nc buses but only for nc loads. Furthermore, Knc is used
to determine the contributing generators to a load. If Knc(i, j) 6= 0 this means that generator j
contributes to the computations for load i. Therefore, the Thévenin equivalent and the new rotor
angle is only determined for these contributing generators.

Kvc, Zth,vc, Vth,vc will be computed for each nc load for each change in load impedance for the
generators contributing (cg) as

Yeq(gc, :) = Yvc(gc, :)−Yn→v(gc, :)Y−1
nc Yv→n (4.12)

Zth,vc,gc = D(Yeq(gc, gc))−1 (4.13)

Kvc(gc, :) = I(gc, :)−D (Zth,vc,gc) Yeq(gc, :) (4.14)

Vth,vc,gc = Kvc(gc, :)Vvc (4.15)

Algorithm 4 shows the steps for determining the maximum power transfer to all nc loads in the
system using the above equations.

4.2. ITERATION ALGORITHMS 39

Algorithm 4 Find maximum deliverable power to nc loads

1: Compute Knc and Zth,nc

2: Determine contributing generators to each ncload
3: for each nc load do
4: for each change in ZLD do
5: Update Ync with new value of YLD

6: Compute Zth,vc and Kvc for generators contributing
7: Compute Vth,vc for generators contributing
8: Compute δvc for generators contributing
9: Compute V th,nc for the load using Knc

10: Compute PLD

11: end for
12: Determine PLD,max

13: end for

4.2 Iteration algorithms

Computing PLD,max for each nc load should require as few changes in ZLD such that Kvc is
recomputed as few times as possible. Finding the maximum power delivered to a load should be
fast but the value should also be computed accurately. The following 3 algorithms will be used to
determine values for ZLD to be used in the computations:

• Reference algorithm

• Binary search

• Binary Search with Polynomial Fitting (BSPF)

4.2.1 Reference algorithm

The reference algorithm is a naïve algorithm, where the interval between the initial impedance
ZLD,0 and the Thévenin impedance Zth is split in to k evenly spaced points. The power transfer to
the load PLD for each of these are then computed and the maximum of these are taken as PLD,max.
The computations start from ZLD,0.

PLD will increase with the load up to PLD,max and then start to decline or be limited by a
contributing generator’s rotor angle δvc becoming imaginary. Therefore it is unnecessary to
compute PLD for larger loads when the value for PLD starts to decline. When the rotor angle of a
generator becomes imaginary it indicates that that generator will start to lose synchronism [45].
This happens because the generator can not deliver the amount power that is required. This type
of solution is therefore not considered to be a stable operating point and any further increase in
load will only put a further strain on system conditions.

To improve the naïve method the remaining computations are therefore skipped if either PLD

starts to decline or if a contributing generator’s rotor angle δvc becomes imaginary.

40 CHAPTER 4. VOLTAGE STABILITY BOUNDARY MONITORING METHOD

4.2.2 Binary Search

The binary search determines the steps smarter by choosing each new ZLD using the knowledge
gained from the previous step. A traditional binary search takes the middle of an interval and use
this middle value to a determine if the maximum will be either to the left or the right of the middle
and then takes the middle of this interval and so forth. This method is similar but uses earlier
experience.

The initial load impedance ZLD,0 and it’s power transfer PLD,0 is the first feasible point. Initially
the end of the interval ZLD,end is set to Zth. The first first step ZLD,1 is taken as the point 15% from
Zth i.e. 1.15 · Zth, instead of taking the middle point between ZLD,0 and ZLD,end as in a regular
binary search. This was chosen using previous experience [13, 47] as the point of maximum power
transfer is often found close to the boundary predicted by the impedance match criterion. This
was seen in experiment to greatly improve performance. If an imaginary rotor angle is computed
or the values for PLD keeps declining ZLD,end will be updated.

For each point in the computations the current point is deemed feasible if the rotor angle is
non-imaginary and infeasible otherwise.

TheZLD,2 is chosen based on what happens forZLD,1 IfZLD,1 is infeasible orPLD,1 < PLD,0 the end
point of the interval is updated toZLD,end = ZLD,1 andZLD,2 is taken as the middle betweenZLD,0

and ZLD,1. If ZLD,1 is feasible and does not have lower power transfer ZLD,2 = ZLD,end = Zth is
tested, such that it is known if the end point of the interval is feasible, and in this case what the
power transfer of the point is.

The search is then done iteratively as

1. Compute ZLD,i as midpoint between ZLD,i−1 and ZLD,end. If ZLD,i−1 was infeasible the
midpont between ZLD,i−2 and ZLD,end will be used instead. When ZLD,i−1 the endpoint
will be updated and ZLD,end = ZLD,i−1.

2. If ZLD,i is infeasible, update the end of the interval ZLD,end = ZLD,i else compute the power
transfer PLD,i

3. Whenever 3 feasible points has been computed investigate their relationship and eliminate
the obsolete point depending on the 3 scenarios below.

Whenever there is 3 feasible points it is possible to compare them and determine, which point is
obsolete and in which interval the search should be continued. The reason a traditional binary
search can not be used is that for some loads the end of the interval might not be feasible and it
might not be known what the last feasible value is. Therefore a traditional comparison of the point
to the start and end point of the interval might not be possible. Figure 4.3 shows the 3 different
scenarios where PLD is plotted against YLD = Z−1

LD.

1. Scenario 1: (Figure 4.3a) The power transfer PLD is increasing with the load admittance YLD.
PLD,max will therefore be either between 2 and 3 or after 3. If the end of the interval (Zth)
was determined feasible, point 3 will be ZLD,end = Zth and the maximum is therefore known
to be between 2 and 3.

4.2. ITERATION ALGORITHMS 41

(a) (b)

(c)

Figure 4.3: Possible scenarios for 3 feasible (YLD, PLD) points: (a) Scenario 1: increasing - (b)
Scenario 2: decreasing - (c) Scenario 3: midpoint largest

2. Scenario 2: (Figure 4.3b) The power transfer PLD is decreasing with the load admittance
YLD. Point 1 will in this scenario be ZLD,0, i.e. the initial load of the node. PLD,max will
therefore be between 1 and 2 and ZLD,end is updated with the load impedance of point 2. If
the system has passed the boundary of voltage stability PLD,max = PLD,0 and the margin to
the boundary will be 0, since the interval before PLD,0 is not investigated.

3. Scenario 3: (Figure 4.3c) PLD,max will be between 1 and 3. For this scenario the midpoint to
the left and the right of the middle is computed iteratively. After each computations the
obsolete point will be removed such that there is always 3 points. Figure 4.4 shows the 2
possible scenarios for a point computed between 1 and 2. In 4.4a point 1 is obsolete and
therefore removed. In 4.4b point 3 is obsolete and therefore removed.

The iterations are stopped using the threshold τ . For scenario 1 and 2 the search is stopped when
the difference between the 2 relevant points are less than τ i.e. when the obsolete point is eliminated
the 2 remaining points should be close. The difference in both PLD and ZLD is investigated to
avoid a scenario where the difference in PLD is small but the points are actually on either side of
the maximum, which would result in a big difference in ZLD. In scenario 3 the search is stopped
when the relative difference on both sides of the midpoint is less than τ .

42 CHAPTER 4. VOLTAGE STABILITY BOUNDARY MONITORING METHOD

(a) (b)

Figure 4.4: Possible scenarios for the 4th point in scenario 3. Points are plotted as (YLD, PLD)
points: (a) Scenario 3a: Point 4 smaller than point 2 - (b) Scenario 3b: Point 4 larger than point 2

0 50 100 150

0

5

10

15

20

25

30

35

40

45

Figure 4.5: (YLD, PLD) =
(
Z−1

LD, PLD

)
curves for 3 different nc loads for the system Nordic32, Table

2.1. The vertical dashed lines show the interval from YLD,0 = Z−1
LD,0 to Yth = Z−1

th for each load.

4.2.3 Binary Search with Polynomial Fitting (BSPF)

BSPF uses the binary search introduced in the last section, but utilizes knowledge of the shape
of the (YLD, PLD)-curves. Figure 4.5 shows the (YLD, PLD)-curve for 3 different nc loads in the
Nordic32 system, Table 2.1. The vertical dashed lines show the interval from YLD,0 = Z−1

LD,0 to
Yth = Z−1

th for each load, which is the interval investigated when finding PLD,max.

The shape of the curve for each loads are:

4.2. ITERATION ALGORITHMS 43

• nc load 6: The curve is almost linear and only have feasible points in part of the interval. This
happens when at least one generator start to lose synchronism before the nc load reaches it’s
maximum potential for power transfer.

• nc load 8: The curve looks like a second order polynomial and have feasible points in the
entire interval. PLD,max occurs for this nc load at ZLD = Zth.

• nc load 13: The curve looks like a second order polynomial and have feasible points in the
entire interval. PLD,max occurs for this nc load just before Zth.

Using the shape of nc load 8 and 13 the idea is to fit any 3 feasible points to a second order
polynomial and use the maximum of this curve as the next step. This approach will not work for
nc load 6 and therefore the method is combined with the binary search to be able to predict the
maximum for this type of load.

Whenever 3 feasible points are given they are fitted to a second order polynomial f(x) = ax2 +bx+c
and the position of the maximum m̃ = − b

2a is computed. The maximum is then determined to be
either feasible or infeasible. The maximum is considered infeasible if

• a is positive as this means that m̃ is a minimum

• the maximum is outside the given interval i.e. before ZLD,0 or after ZLD,end

• the maximum is close to ZLD,end and this is known to be an infeasible point

If the maximum is infeasible the 3 points are reduced to 2 points like in scenario 1 and 2 of the
binary search and a new point is computed before redoing the polynomial fitting.

If the maximum is feasible the power transfer PLD is computed and the now 4 points are reduced
to 3 points using the same logic as for the binary search to remove the obsolete point and then the
fitting is repeated with 3 remaining points.

BSPF stops using the threshold τ either as in the binary search when the relative difference between
2 points is low or when m̃ is feasible and close to the previously computed m̃. The curve is not an
exact second order polynomial and therefore to ensure an accurate m̃ the difference in PLD for
the feasible points can not be more than 50%. This will keep outlying points of the interval from
skewing the results and at least one extra point will be computed.

If the difference in YLD of the 3 feasible points are close without PLD being close the fitting is
skipped and the binary search is used instead. This will only happen without a plausible solution
being found, if the load is similar to nc load 6 (Figure 4.5).

4.2.4 Implementation and test

The iteration algorithms are implemented in MATLAB and evaluated with respect to runtime and
accuracy of the results. The runtime is tested on an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz.
The systems tested will be the first 8 systems given in Table 2.1. The systems are shown in Table
4.1, where the number of nc loads is shown as not all nc nodes are loads.

The number of points k for the reference method is chosen to be 50, since this was found to give
reasonable runtimes. The threshold τ = 10−3 as this gave reasonable runtimes. Lower thresholds
did not give a much better accuracy and resulted in the algorithms taking small insignificant steps.

44 CHAPTER 4. VOLTAGE STABILITY BOUNDARY MONITORING METHOD

Table 4.1: Test systems for iteration algorithms

Case no. of buses no. of nc nodes no. of nc loads

Nordic32 46 26 18

Pegase89 89 77 35

Pegase1354 1354 1094 673

PTI-WECC-1648 1648 1335 1004

Polish-Winter99 2383 2056 1504

Polish-Winter03 2746 2372 1661

Pegase2869 2869 2359 1491

Polish-Winter07 3012 2665 1939

Table 4.2: Runtime for each iteration algorithm for voltage stability boundary monitoring

Case Runtime (s)
Reference

Runtime (s)
Binary search

Runtime (s)
BSPF

Nordic32 0.11 0.03 0.04

Pegase89 0.58 0.12 0.09

Pegase1354 165.93 36.80 19.26

PTI-WECC-1648 553.10 116.94 57.80

Polish-Winter99 731.55 169.44 97.91

Polish-Winter03 711.06 165.35 95.28

Pegase2869 726.86 164.80 84.88

Polish-Winter07 777.23 181.19 101.56

In some cases the next point ZLD,i, which computed as the midpoint between ZLD,i−1 and ZLD,end,
will give result in a point close to one of the feasible points. This will result in a very small step
size and make the search quite slow. In these cases, it would be better to recompute ZLD,i and
instead take the midpoint between the two feasible point, that remained after the last removal of
obsolete points. This will ensure that the feasible points will be more evenly spread and then after
removing the new obsolete point the steps are taken more efficiently. Therefore, another threshold
τ2 = 10−4 is introduced and if the difference between ZLD,i and one of the feasible points is lower
than τ2 ZLD,i is recomputed.

The runtime for the different iteration algorithms can be seen in Table 4.2. The first part of
Algorithm 4 (Step 1 and 2) is the same for each method and therefore not included in the runtime.
Algorithm 3 is computed once and does not depend on the iteration algorithm, and therfore the
runtime of this is not tested either.

The runtime is plotted against the number of nc loads in Figure 4.6. For the largest system
Polish-Winter07 the binary search is over 4 times faster than the reference method, while BSPF
lowers runtime by an extra 40% to a factor of 7.5 in total.

The plot shows, that the complexity is close to quadratic to the number of nc loads for all the
algorithms. This seems reasonable as the computations in the loops are quadratic as they are
similar to the computations of Chapter 3, which were quadratic. This means that even though

4.2. ITERATION ALGORITHMS 45

10
2

10
3

10
-2

10
-1

10
0

10
1

10
2

10
3

Figure 4.6: The runtime for each iteration algorithm (Reference, Binary search and BSPF) depending
on the number of nc loads. The plot is logarithmic.

lower runtimes are seen for the search algorithms the scaling of the methods are similar. The
binary search and BSPF both takes fewer steps to find the maximum power transfer to each load,
which result in lower runtimes. However recomputing in each step is quadratic, and therefore the
total runtime will be quadratic as well.

Runtime is important however, the accuracy of the computed PLD,max is just as important to be
able to correctly determine the distance to the voltage stability boundary. All iterations algorithms
computes PLD for different values of load impedance. Therefore, if an algorithm computes a larger
PLD,max it has been able to choose a load impedance that more accurately result in the actual
PLD,max.

The percentage difference between the reference and binary search algorithm is computed as

∆P% = PLD,max,search − PLD,max,ref

PLD,max,ref
· 100%, (4.16)

where PLD,max,search is the values computed by the binary search and PLD,max,ref is the values
computed by the reference method. PLD,max,search is larger than PLD,max,ref for ∆P% > 0 and
the opposite for ∆P% < 0. The maximum, minimum and average difference can be seen in Table
4.3.

The numbers show that generally the binary search computes a PLD,max that is considerable larger
than the reference algorithm, which means that the binary search is more accurate. On average the
percentage difference is largely in favour of the binary search and the biggest difference in favour
of the reference is less than 0.41%. If more steps were taken in the reference algorithm it would be
possible to get better results, however this would also result in runtimes to worsen. Tests were

46 CHAPTER 4. VOLTAGE STABILITY BOUNDARY MONITORING METHOD

Table 4.3: PLD,max difference between reference algorithm and binary search

Case Maximum
difference (%)

Average
difference (%)

Minimum
difference (%)

Nordic32 16.19 1.56 0

Pegase89 46.38 1.33 0

Pegase1354 1.19 · 104 66.06 -0.407

PTI-WECC-1648 5.47 · 103 32.76 0

Polish-Winter99 2.78 · 104 93.59 0

Polish-Winter03 1.06 · 105 449.58 0

Pegase2869 5.08 · 109 3.42 · 106 -0.405

Polish-Winter07 2.36 · 105 566.28 0

Table 4.4: PLD,max difference between binary search and BSPF

Case Maximum
difference (%)

Average
difference (%)

Minimum
difference (%)

Nordic32 0.004 4.74 · 10−4 −5.71 · 10−4

Pegase89 0.009 1.81 · 10−4 -0.003

Pegase1354 0.970 0.006 -0.244

PTI-WECC-1648 2.789 0.009 -0.197

Polish-Winter99 5.238 0.012 -0.406

Polish-Winter03 5.522 0.011 -0.312

Pegase2869 0.946 0.004 -0.708

Polish-Winter07 1.602 0.005 -0.368

conducted using k = 250 for the reference algorithm, which resulted in runtimes 4 times larger
than for k = 50, however ∆P% was still large and some systems even ended up with a larger
average difference. The reference method splits the interval between ZLD,0 and Zth evenly and
therefore if k is not large enough there is a chance that the splitting chosen might miss the actual
maximum.

BSPF is compared to the binary search as

∆P% = PLD,max,BSP F − PLD,max,search

PLD,max,search
· 100% (4.17)

Again PLD,max,BSP F is larger than PLD,max,search for ∆P% > 0 and the opposite for a ∆P% < 0.
The difference between the two can be seen in Table 4.4.

The difference between the binary search and BSPF is minimal and show similar accuracy but on
average the BSPF computes a more accurate result at a lower runtime. Comparing BSPF to the
reference algorithm (Table 4.5) the minimum difference is at machine accuracy i.e. 0. Therefore
BSPF is better at computing PLD,max than the reference algorithm for all nc loads, whereas the
binary search had a couple of nodes, where it was a little worse than the reference algorithm.

4.2.5 Parallelization

The voltage stability boundary monitoring is a stability assessment meant to operate in real-time,
but with the current implementation this is not feasible. However, runtimes can be further

4.3. BLOCK-WISE CALCULATIONS 47

Table 4.5: PLD,max difference between reference algorithm and BSPF

Case Maximum
difference (%)

Average
difference (%)

Minimum
difference (%)

Nordic32 16.19 1.56 0

Pegase89 46.37 1.33 0

Pegase1354 1.19 · 104 66.08 0

PTI-WECC-1648 5.47 · 103 32.79 0

Polish-Winter99 2.78 · 104 93.62 0

Polish-Winter03 1.06 · 105 449.64 0

Pegase2869 5.08 · 109 3.42 · 106 0

Polish-Winter07 2.36 · 105 566.39 0

Table 4.6: Runtime for each iteration algorithm run in parallel on 24 cores.

Case Runtime (s)
Reference

Runtime (s)
Binary search

Runtime (s)
BSPF

Nordic32 0.061 0.059 0.061

Pegase89 0.119 0.098 0.103

Pegase1354 8.575 2.196 1.201

PTI-WECC-1648 30.071 6.288 3.865

Polish-Winter99 36.546 9.363 5.881

Polish-Winter03 36.803 9.465 5.816

Pegase2869 35.970 8.411 4.683

Polish-Winter07 39.450 9.530 5.873

improved by introducing parallelization. The computations for the loads are distributed on to
several cores by parallelizing the outer loop i.e. line 3 in Algorithm 1. The number of iterations for
each load is different and therefore the distribution of work will be split dynamically.

The 3 iteration algorithms are parallelized on a machine with 2 CPUs of Intel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20GHz with 12 cores each, which means 24 cores is available in total. Testing
showed that the lowest runtime for all systems occurred, when all 24 cores where in use. However,
the last couple of cores only gave a small improvement, since overhead starts to get more dominant,
as was seen by the parallelization in Chapter 3. The results from parallelization are shown in Table
4.6.

Figure 4.7 shows the runtime for parallelizing the algorithms on 24 cores along the original runtimes
in serial. The parallelization of the reference algorithm result in runtimes below 40s for all systems,
which is a considerable improvement from the almost 780s, when run in serial. The binary search
have runtimes below 10s, while BSPF gives runtimes below 6s. These improved runtimes makes
the method feasible also for larger systems, when using parallelization.

4.3 Block-wise calculations

Runtimes was considerable better using BSPF and parallelization, however the complexity can
still be improved. The splitting of Ync in to blocks using BTF can be used for further optimization.

48 CHAPTER 4. VOLTAGE STABILITY BOUNDARY MONITORING METHOD

10
2

10
3

10
-2

10
-1

10
0

10
1

10
2

10
3

Figure 4.7: The runtime for each iteration algorithm (Reference, Binary search and BSPF) depending
on the number of nc loads and the runtime for the algorithms run in parallel on 24 cores is plotted.
The plot is logarithmic.

Each block is a strongly connected component, which means that the block is independent from
the remainder of the system. Therefore, computations for a node can be done by only using the
block, that it is part of.

Knc is computed one row at a time and therefore it is possible to limit computations to only the
block that the node is part of. Computing Knc is done as in Algorithm 3 but instead of using the
entire matrix Ync, the matrix Ync,b is used, which is the block b in BTF that the node is part of.
Using this it is possible to compute Znc,b and as in Algorithm 3 only the row concerning the node is
used Znc,b(ib, :), where ib is the index of the load in the block b. The vectors (pb, qb) are the indices
for the rows and columns for the block. Using Znc,b(ib, :) Knc(i, :) can be computed as

Znc(i, qb) = Znc,b(ib, :) (4.18)

Knc(i, :) = Znc(i, qb)Yv→c (4.19)

The remaining part of Znc(i, :) will be 0, since only the elements in the block affects the node.

Computing Kvc block-wise is a bit more complex. Computing Yeq requires contributions from
all blocks. Therefore when iterating over values of ZLD only the block that the node is part of
is recomputed and all the contributions from the remaining blocks need to be added. Yeq is
computed as below with Yb being the contribution from each block.

Yb = Yc→v(:, qb)Y−1
nc (pb, qb)Yv→c(pb, :) (4.20)

Yeq = Yvc −
∑

b

Yb (4.21)

4.3. BLOCK-WISE CALCULATIONS 49

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

Figure 4.8: The runtime for computing Knc and Zth,nc by Algorithm 3 and by utilizing block-wise
computations. The plot is logarithmic.

When ZLD changes for one node, Yb for the block it is part of can be recomputed and Yeq can be
computed. Therefore the initial value of all Yb needs to be computed for all blocks such that they
are available when computing the voltage stability margins.

For smaller blocks i.e. some blocks are only 1x1 the computations are considerable faster than
having to compute using the entire matrix. For a 1x1 matrix everything can be done in constant time
i.e. O(1). Inverting will now be division with a scalar and multiplication is with a scalar as well.
For smaller matrix’s inverting directly might be faster than first computing the LU factorization.

This is utilized in the computations for Knc and Zth,nc from Algorithm 3, where the 1x1 block
scenario is implemented as a special case, where the block is treated as a scalar instead.

4.3.1 Implementation and test

The block-wise computations are implemented in MATLAB and evaluated with respect to runtime
and accuracy of the results. The runtime is tested on an Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20GHz.

The runtimes for computation of Knc and Zth,nc can be seen in Figure 4.8. The runtimes for
Algorithm 3 seem to have a complexity somewhere between 1 and 2 around 3/2=1.5. The runtimes
for the block-wise computations are lower than for the original implementation however the
complexity is similar if not the same as the original implementation.

The runtime for each iteration algorithm with the original and the block-wise implementation is
seen in Figure 4.9. As explained earlier the contribution from each block Yb needs to be computed
before hand and this runtime is seen in Figure 4.10.

50 CHAPTER 4. VOLTAGE STABILITY BOUNDARY MONITORING METHOD

10
2

10
3

10
-2

10
-1

10
0

10
1

10
2

10
3

Figure 4.9: The runtime for each iteration algorithm (Reference, Binary search and BSPF) depending
on the number of nc loads and the runtime for the algorithms when doing block-wise computations.
The plot is logarithmic.

10
2

10
3

10
-3

10
-2

10
-1

10
0

Figure 4.10: The runtime for setting up the blocks Yb prior to running the iteration algorithms.
The plot is logarithmic.

4.4. CONCLUSION 51

Including the runtime from setting up the blocks still gives lower runtime doing the block-wise
computations compared to the original implementation. However, as seen the complexity is the
same for both implementations, and therefore the gain from doing the block-wise computations is
limited.

The reason for this is that BTF is dominated by one large block as seen in Section 2.3.4. Therefore,
this will also be the dominating factor, when doing block-wise computations. It seems reasonable
that this scales with system size giving similar complexity.

This can of course also be parallelized, however each part of the loop does a different amount of
work since blocks are of different sizes and therefore it is harder to split the work evenly on to
different cores. This might result in some cores doing most work, while the remaining cores just
wait for these to finish.

4.4 Conclusion

The binary search with polynomial fitting is able to determine the maximum power transfer to
loads faster and more accurately than the reference algorithm. Comparing BSPF to using binary
search shows that the polynomial fitting improves runtimes considerably. The smallest system has
faster runtime using the binary search, whereas the remaining systems are fastest using BSPF. The
polynomial fitting is only an improvement for some buses as seen in Figure 4.5. For the buses,
where the power transfer is limited by a generator starting to lose synchronism, the polynomial
fitting is a waste of time, since the shape is closer to linear. It is possible to get even better accuracy
by lowering the threshold however this is at the cost of runtime. Runtime is improved further
by use of parallelization but the complexity remains the same for all algorithms, and therefore
computations need to be improved further.

Testing with block-wise computations showed that it was possible to achieve lower runtimes by
doing this however the complexity was still the same. This shows that it is needed to use other
ways to optimize the runtime such that complexity for computing Kvc and Vth,vc can be lowered.

CHAPTER5
Efficient Refactorization using

Hierarchical Matrices
This chapter introduces the hierarchical matrix structure used to generate an approximate LU
factorization. This is used to do an efficient refactorization, when an element in the diagonal
changes. The refactorization is tested on a range of systems.

5.1 Hierarchical matrices

The hierarchical matrix structure presented here is described in [49]. Given a matrix each level in
the hierarchical representation is a level of discretization for this matrix. The top level is the entire
matrix and on each sublevel the matrix is divided in to smaller and smaller blocks. Each level i
divide the columns and rows in to 2i blocks. An 8x8 matrix can have a maximum of 3 levels where
the lowest level, i.e. the leaf nodes, gives the highest discretization and is an exact representation
of the matrix, where non-zero elements are edges between the leaf nodes. The higher levels i.e. a
higher discretization will be approximated in the algorithm to limit fill-in of the factorization.

Figure 5.1 show an example matrix A, where non-zero entries are colored. This matrix is used to
construct the hierarchical tree in Figure 5.2. Each level of a hierarchical tree except the root level
has 2i−1 black-nodes each with two red children.

The naming convention for nodes in the hierarchical tree is:

Figure 5.1: Example of an 8x8 matrix A with non-zero pattern marked red.

53

54 CHAPTER 5. EFFICIENT REFACTORIZATION USING HIERARCHICAL MATRICES

root

r1
0,1 r1

1,1

r2
0,1 r2

1,1 r2
0,2 r2

1,2

r3
0,1 r3

1,1 r3
0,2 r3

1,2 r3
0,3 r3

1,3 r3
0,4 r3

1,4

b1
1

b2
1 b2

2

b3
1 b3

2 b3
3 b3

4

Level 0

Level 1

Level 2

Level 3

Figure 5.2: Example of hierarchical tree for the matrix A (Figure 5.1). Interaction edges (solid)
are initially only present at the leaf nodes. Parent-child edges (dashed) show the relationships
between the nodes.

• black-node: bi
j is the j’th black-node at level i

• red-node: ri
k,j is the k’th child of black-node j at level i

The parent-child relationships between the nodes is shown with dashed lines in the tree. On the
leaf level there will be interaction edges (solid lines) between the nodes corresponding to the
non-zeros in the matrix. The red-nodes at the leaf level correspond to the rows and columns of
the matrix in Figure 5.1. The diagonal of the matrix is zero free and therefore all nodes have a
self-edge. As an example (1,2) and (2,1) is non-zero and therefore there is a bidirectional edge
between the first 2 red-nodes i.e. r1

0,1 and r1
1,1. This is then done with all the non-zeros and results

in the interaction edges seen in Figure 5.2.

For more elaborate implementations the splitting of the intervals might not be as naïve and
permutation could be used to split the matrix in more favourable ways depending on the non-zero
pattern of A. Furthermore the leaf level might not for larger matrices represent individual rows
and columns and instead the discretization can be coarser and leaf nodes will represent blocks in
the matrix instead. Using as fine a discretization as in the example is inefficient and will result in
higher runtimes. However, a too coarse discretization would also be slow, since the block will
become too big.

Computing the approximate factorization of the matrix will for each level have the steps

1. Merge red-nodes to super-nodes

2. For each super-node

a) Compress well-separated edges

b) Eliminate super-node

c) Eliminate black-node (parent of super-node)

5.1. HIERARCHICAL MATRICES 55

b3
1 b3

2 b3
3 b3

4

s3
1 s3

2 s3
3 s3

4

Figure 5.3: Example of red siblings merged to super-nodes. This is the leaf nodes of Figure 5.2
being merged.

5.1.1 Forming super-nodes

Super-nodes are created by merging red siblings, resulting in the structure shown in Figure 5.3.
Super-node si

j is the j’th super-node of level i. The edges between the super-nodes are formed
using the edges between the red siblings.

As an example the edge es3
1→s3

2
from super-node s3

1 to super-node s3
2 will be created as

es3
1→s3

2
=
[
er3

0,1→r3
0,2

er3
1,1→r3

0,2

er3
0,1→r3

1,2
er3

1,1→r3
1,2

]
(5.1)

Some of these edges might not exist and the entry of the matrix will therefore be 0. For the above
example the edge will be

es3
1→s3

2
=
[

0 er3
1,1→r3

0,2

er3
0,1→r3

1,2
0

]
, (5.2)

since the remaining edges are 0 i.e. doesn’t exist (Figure 5.2).

After merging the super-nodes the elimination process starts.

5.1.2 Compression

Well-separated edges will be compressed prior to elimination of the super-node. For the first node
there will be no well-separated edges, as these emerge during elimination. Well-separated edges
are edges between well-separated nodes, which are nodes that are not adjacent. Leaf nodes are
adjacent if they have at least one edge between them. Nodes further up the tree are adjacent if
their leaf descendants are adjacent. An edge between two well-separated nodes is defined as
well-separated.

Well-separated edges are essentially fill-in created in the factorization, which is often numerically
low rank. The idea is that these can be approximated using a low-rank factorization. The
well-separated interactions between the super-nodes are essentially pushed to the parent level,
which will be considered as a set of auxiliary variables.

Figure 5.4 shows an example of a super-node which has well-separated edges to t nodes. The
matrices representing the edges are vertically concatenated and a low-rank approximation method

56 CHAPTER 5. EFFICIENT REFACTORIZATION USING HIERARCHICAL MATRICES

P(bi
j)

bi
j

p1 p2 pt

sj
i

A1
A2

At

BT
1 BT

2

BT
t

. . .

Figure 5.4: Example of a super-node with t well-separated edges.

P(bi
j)

bi
j

p1 p2 pt

sj
i

R1

R2

Rt

QT
1

QT
2

QT
t

VT V

−I

. . .

Figure 5.5: Example of a super-node with t well-separated edges, which have been compressed to
the parent level.

(e.g. Singular Value Decomposition (SVD)) is used to approximate the edges as

A1
...

At

B1
...

Bt


'



R1
...

Rt

Q1
...

Qt


VT (5.3)

The matrices Ak and Bk are both of size mk x m, while Rk and Qk are of size mk x r and V is of
size m x r. r is the rank of the approximation, which determines the accuracy. The rank will be
chosen by use of a threshold τ . All singular values below the threshold will be excluded i.e. the
rank r is chosen such that for the singular values Si it holds that Si ≥ τ for i ≤ r and Si < τ for
i > r. Other ways of determining the rank could also be used. For example by choosing the rank
such that Si/S1 ≥ τ [49].

The resulting system after compression of the super-node in Figure 5.4 is shown in Figure 5.5.

Not all nodes will have well-separated edges and therefore the compression will be skipped for
these. This results in the parent node not being used as there will be no edges to it.

5.1. HIERARCHICAL MATRICES 57

5.1.3 Elimination

After compression the super-node will be eliminated. The compression process ensures that the
super-node is only connected to it’s original "neighbours", which preserves sparsity in the matrix,
however there will be a larger number of equations due to the inclusion of the parent nodes as
auxiliary nodes.

The elimination process is a standard block Gauss elimination. Elimination of node vi creates new
edges or updates existing edges. For every pair of outgoing edges evi→vk

and incoming edges
evj→vi

a new edge is created between node vk and vj or an existing edge is updated. The new edge
or the contribution to the existing edges evj→vk

is computed as

− evi→vk
e−1

vi→vi
evj→vi

= −Ak,iA−1
i,i Ai,j , (5.4)

where the Aj,i is block j, i of the matrix A. Block Ak,j , which corresponds to the edge evj→vk
will

be updated by the above computation.

This elimination process is what causes new edges to occur in the factorization introducing
additional fill-in, which is what this method tries to overcome by compression. By comparison in
direct methods this fill-in will be computed.

5.1.4 Algorithm

The overall algorithm for the factorization will be

Algorithm 5 Hierarchical matrix factorization

1: InitializeH tree
2: for i = l . . . 1 do
3: for j = 1 . . . 2i−1 do
4: si

j ← MergeRedNodes
(
ri

0,j , r
i
1,j

)
5: end for
6: for j = 1 . . . 2i−1 do
7: Compress

(
si

j

)
8: Eliminate

(
si

j

)
9: Eliminate

(
bi

j

)
10: end for
11: end for

Here l is the number of levels for the specific system. The size of the matrix puts a limit on the size
of l. In general a lower l gives a better accuracy since the computations will get closer to the direct
methods as fewer nodes means fewer occurrences of well-separated edges, which are the edges
approximated in the compression.

5.1.5 Solve

After factorization the solve process consist of a forward and backwards traversal of the nodes for
any right hand side. This is similar to the forward and backwards substitutions in the standard LU
factorization. The forward traversal visit all nodes in the order they were eliminated to update the
right hand side. The backwards traversal visit all the nodes in the reverse order to compute for x.

As auxiliary variables are introduced, when the well-separated edges are compressed, the solution
computed will be for all variables and not only the original ones. This means a little extra work is
done in the solve step but the number of auxiliary variables is of the same order as the original
number of variables and therefore does not affect complexity.

58 CHAPTER 5. EFFICIENT REFACTORIZATION USING HIERARCHICAL MATRICES

5.2 Refactorization

In the voltage stability assessment method introduced in Chapter 4 the factorization has to be
recomputed for each change in ZLD. Testing with block-wise computations showed that a big
block will still dominate the computation. Therefore, the idea is to use the hierarchical structure on
this big block and do a fast refactorization to optimize computations for this block. The remaining
blocks of Ync are small and efficient to compute and are therefore handled as before.

The fast refactorization is done by only recomputing the elements that is affected by changing ZLD.
This is done by splitting nodes of each level in to affected and unaffected nodes. The elimination
of each level then starts by eliminating the unaffected nodes and then the affected such that the
affected node does not affect any super-nodes on the same level but only nodes on the parent level.
This will limit the amount of nodes being affected in the factorization.

ZLD is part of the diagonal and therefore for the affected leaf node sl
a only the self-edge is affected.

Therefore, any edges created or updated in the elimination step will be affected as the self-edge
is used in computation of these as seen in (5.4). If the super-node has well-separated edges the
black parent and it’s red parent will also be affected since the self-edge on these is affected in the
elimination step.

Refactorization should be done without having to start over and eliminate the unaffected nodes
again. Therefore, the contribution from the unaffected elimination to affected edges need to be
stored as well as the value of edges prior to being affected.

5.2.1 Algorithms

The algorithm for the factorization given in Algorithm 5 is changed a bit to store values needed for
refactorization. The new algorithm is shown in Algorithm 6.

Algorithm 6 Hierarchical matrix factorization prior to refactorization

1: InitializeH tree
2: for i = l . . . 1 do
3: for j = 1 . . . 2i−1 do
4: si

j ← MergeRedNodes
(
ri

0,j , r
i
1,j

)
5: end for
6: for j ∈ N i

u do
7: Compress

(
si

j

)
8: Eliminate_unaffected

(
si

j

)
9: Eliminate_unaffected

(
bi

j

)
10: end for
11: for j ∈ N i

a do
12: Compress_affected

(
si

j

)
13: Eliminate_affected

(
si

j

)
14: Eliminate_affected

(
bi

j

)
15: end for
16: end for

N i
u is the set of unaffected nodes and N i

a is the set of affected nodes of level i. An affected node is
defined as a node having at least one edge affected by the change of ZLD.

The methods in Algorithm 6 are explained below:

5.2. REFACTORIZATION 59

• Unaffected N i
u

– Compress: Compression pushes edges to the parent level. Since edges on the parent
level isn’t affected until the affected super-nodes of this level is eliminated, it is possible
to do regular compression for the unaffected nodes.

– Eliminate_unaffected: During the elimination process if an affected edge is
updated, the contribution from the elimination is stored in a variable called unaf-

fected_contribution, which will be used in the refactorization.

• Affected N j
a

– Compress_affected: In the compression process it is determined if any of the
well-separated edges are affected. If an affected well-separated edge is part of the
compression, the edges created to the parent node will be marked as affected, and the
compression needs to be recomputed during refactorization. The edges for compression
is stored in a list on the super-node to make the refactorization more efficient.

– Eliminate_affected: If the self-edge is affected any new edges or edges updated
will be affected. If the self-edge is not affected but another edge is, only the edges created
or updated using this edge will be set to affected. The value of an edge before being
affected is stored in the variable pre_affected to be able to reset the edge before
refactorization. For a new edge this will be 0.

The refactorization algorithm is shown in Algorithm 7. The refactorization only eliminate the
affected super-nodes, which limits the work needed to recompute the factorization.

Algorithm 7 Hierarchical matrix refactorization
1: UpdateAffectedLeafNode
2: for i = l . . . 1 do
3: SetPreAffectedValue(i)
4: for j ∈ N i

a do
5: Compress_recalc

(
si

j

)
6: Eliminate_recalc

(
si

j

)
7: Eliminate_recalc

(
bi

j

)
8: end for
9: end for

The methods in Algorithm 7 are explained below:

• UpdateAffectedLeafNode: The self-edge of the affected red-node at the leaf level is
update with the new value of ZLD.

• SetPreAffectedValue: The value of affected edges needs to be reset to the value they
would be in a regular factorization after the unaffected super-nodes have been eliminated.
This resetting will differ for the different type of nodes. The elements are set one level at a
time, since super-nodes will be affected by edges of the red siblings, they were merged from.

For every affected super-node every affected edge is reset to the value it had before it was
affected (pre_affected). If the edge was created during the merging of red siblings, it
depend on the value of the edges from the red siblings. These sub-edges are used to update

60 CHAPTER 5. EFFICIENT REFACTORIZATION USING HIERARCHICAL MATRICES

the value of the matrix if the sub-edge is affected. This will then be the value the edge
had prior to elimination of the unaffected nodes. The contribution from the elimination of
unaffected nodes is then added (unaffected_contribution), which set the edge to the
value it will have after the unaffected nodes have been eliminated.

Affected edges of both black and red-nodes will have no contribution from the unaffected
elimination as they are not affected before the elimination of the affected super-nodes.
Therefore, every affected edge of black-nodes of level i is set to the pre-affected value and the
same is done for every affected edge of red-nodes on level j − 1.

• Affected N j
a

– Compress_recalc: This is not run unless the node was marked for recompression in
the initial factorization i.e. if there is affected well-separated edges for the super-node.
The compression is then rerun as normal and the resulting edges are updated, since
they were already created in the initial factorization.

– Eliminate_recalc: The elimination is run as in the initial factorization. The only
difference is that all resulting edges have already been created in the initial factorization
and the value is only updated if the edge is affected. If the self-edge is affected all edges
will be affected and therefore updated, while only some edges are affected otherwise.

5.3 Toy Example

Initially the factorization and refactorization is used on a toy example. The below 16x16 matrix is
used in the computations

A =



2 1 3 0 0 5 0 0 0 0 0 0 0 0 0 0
1 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 4 3 0 0 1 0 0 4 0 0 0 0 0 0
0 2 3 5 0 0 0 3 2 0 0 0 0 0 0 0
0 0 0 0 2 3 0 0 0 0 6 0 0 0 0 0
5 0 0 0 3 1 0 0 0 0 0 2 0 0 0 0
0 0 1 0 0 0 6 1 0 0 0 0 0 0 2 0
0 0 0 3 0 0 1 2 0 0 0 0 0 0 0 1
0 0 0 2 0 0 0 0 3 2 1 1 0 0 0 0
0 0 4 0 0 0 0 0 2 2 1 1 0 0 0 0
0 0 0 0 6 0 0 0 1 1 1 4 3 2 0 1
0 0 0 0 0 2 0 0 1 1 4 2 0 1 0 0
0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 1
0 0 0 0 0 0 0 0 0 0 2 1 0 3 2 0
0 0 0 0 0 0 2 0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 2



(5.5)

The chosen hierarchical structure will have 4 levels such that each leaf node corresponds to one
row/column in the matrix. The affected red-node will be chosen to be the last node i.e. the element
updated for the refactorization will be A16,16. This is done such that the order of nodes in the
hierarchical tree will be the order that nodes are eliminated for the illustration in this example.

5.4. IMPLEMENTATION AND TEST 61

However, in practise the affected red-node could be any of the leaf nodes, and this would just
change the order the nodes are eliminated in on the leaf level.

Level 2-4 of the hierarchical tree is shown in Figure 5.6. Parent nodes not used in the factorization
(since the super-node had no well-separated edges) is transparent. Nodes affected by the change
of A16,16 is marked blue and so is the outline of the affected super-nodes.

Level 2 is the last level used in the factorization, since it has no well-separated edges and therefore
the parent nodes are not used. This will generally be the case since it would otherwise mean that
the two blocks is separated. This should not be possible if the algorithm is to be used on the big
block of Ync, which is a strongly connected component. If it was possible to split the nodes in 2 and
have them not be connected, this would not satisfy the criteria of a strongly connected component.

Even though only 1 out of 8 super-nodes are affected on level 3 it is seen that 3 out of 4 are affected
on level 2 increasing the work load considerably on level 2. However the number of nodes is still
significantly lower in the factorization, which is also seen in the resulting runtime.

5.4 Implementation and test

The factorization and refactorization was initially implemented in MATLAB using matrices instead
of the tree structure introduced here. This was done by extending the matrix when the auxilliary
variables was introduced in the compression. However, this showed dissatisfying runtimes with
no chance of competing with the standard LU factorization.

Therefore, the implementation was moved to C++ and implemented using the structure with nodes
and edges instead of matrices. The implementation is partly made reusing the code made available
in [49]1. The implementation was tested on an Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz.

In testing the accuracy and residual is determined. They are calculated as

residual = ||Ax̃− b||2
||b||2

(5.6)

accuracy = ||x− x̃||2
||x||2

(5.7)

where x̃ is the solution computed using the hierarchical factorization and x is the actual solution to
Ax = b.

Some problems occurred in testing. The smallest systems worked without problem however for
the larger systems the factorization and/or refactorization would fail for some of the higher levels
of discretizations. Problems occured due to some issues with certain edges getting very large or
very small resulting in issues with either self-edges becoming close to 0 or actually 0.

The test results using the toy example and the systems used in Chapter 4 can be seen in Table 5.1.
For the systems the matrix used in the factorization is the biggest block from BTF of Ync. They
are tested at the highest discretization level i.e. using the maximum number of levels possible
and some lower number of levels until the resulting residual and accuracy is on a somewhat
reasonable level. The chosen tolerance for choosing the rank of the low-rank approximation in the
compression is set to τ = 10−4.

1http://bitbucket.org/hadip/lorasp

62 CHAPTER 5. EFFICIENT REFACTORIZATION USING HIERARCHICAL MATRICES

b4 1
b4 2

b4 3
b4 4

b4 5
b4 6

b4 7
b4 8

b3 1
b3 2

b3 3
b3 4

b2 1
b2 2

s4 1
s4 2

s4 3
s4 4

s4 5
s4 6

s4 7
s4 8

s3 1
s3 2

s3 3
s3 4

s2 1
s2 2

Le
ve

l2

Le
ve

l3

Le
ve

l4

Fi
gu

re
5.

6:
H

ie
ra

rc
hi

ca
ls

tr
uc

tu
re

fo
r

th
e

16
x1

6
m

at
ri

x
gi

ve
n

in
(5

.5
).

Th
e

in
iti

al
in

te
ra

ct
io

ns
on

th
e

le
af

le
ve

li
s

sh
ow

n
by

so
lid

lin
es

an
d

pa
re

nt
re

la
tio

ns
hi

p
by

d
as

he
d

lin
es

.N
on

-l
ea

fn
od

es
th

at
ha

s
no

in
te

ra
ct

io
ns

in
th

e
fa

ct
or

iz
at

io
n

ar
e

sh
ow

n
as

tr
an

sp
ar

en
t.

A
ff

ec
te

d
re

d
-n

od
es

,b
la

ck
-n

od
es

an
d

su
pe

r-
no

d
es

ar
e

co
lo

re
d

bl
ue

.

5.4. IMPLEMENTATION AND TEST 63

Table 5.1: Runtime for factorization and refactorization and the residual and accuracy for the
refactorization for different system with different levels of discretization and τ = 10−4.

Case Block
size

Levels Runtime (ms)
Algorithm 6

Runtime (ms)
Algorithm 7

Residual/
Accuracy

Toy example 16 4 0.30 0.04 10−15 / 10−14

Nordic32 13 3 0.08 0.01 10−16 / 10−16

Pegase89 76
6 1.29 0.13 10−5 / 10−3

5 0.48 0.02 10−16 / 10−14

Pegase1354 888
9 7.74 - - / -

8 4.70 0.22 10−7 / 10−6

7 6.13 0.13 10−12 / 10−10

PTI-WECC-1648 1062

10 21.02 - - / -

9 - - - / -

8 10.37 0.77 10−6 / 10−4

7 10.98 0.24 10−14 / 10−14

Polish-Winter99 1425

10 - - - / -

9 - - - / -

8 - - - / -

7 18.35 0.30 10−6 / 10−3

6 48.33 0.36 10−14 / 10−12

Polish-Winter03 1476

10 - - - / -

9 9.49 0.86 10−6 / 10−4

8 10.16 - - / -

7 19.71 0.19 10−9 / 10−7

Pegase2869 1462

10 19.13 - - / -

9 10.94 0.86 1030 / 1031

8 11.07 0.38 102 / 104

7 20.11 0.25 10−9 / 10−7

Polish-Winter07 1800

10 - - - / -

9 15.34 2.19 10−4 / 10−1

8 15.27 0.75 10−4 / 10−2

7 31.68 0.37 10−11 / 10−8

The residual and accuracy is determined by computing a random x and computing b = Ax, which
is then fed to the solve algorithm. The accuracy is computed for the refactorization but could just
as well be computed for the initial factorization. The accuracy of both should be the same, when
feeding the refactorization the same value for ZLD. However, in testing for a couple of systems
this did not happen and is another error that needs to be investigated.

Table 5.1 shows the issues with the implementation where it seems a bit random, which number of
levels that result in issues, and for Pegase2869 the refactorization can be computed for more levels
than similar sized systems, but the error is quite big for some of them. The runtimes show that
refactorization (Algorithm 7) is considerablely faster than the initial factorization (Algorithm 6).

64 CHAPTER 5. EFFICIENT REFACTORIZATION USING HIERARCHICAL MATRICES

It can be seen that for the larger systems the lowest discretization for Algorithm 6 is slow, then it
gets a little faster and then it gets slower again. The reason for this is that a the lowest level there is
a lot of nodes to be handled, which takes time. For the higher levels there is fewer nodes but the
blocks are a lot larger making the method slow again. In between there will be a level that is faster,
since there is a "good" amount of nodes compared to the block size.

The refactorization on the other hand gets faster as the number of levels gets lower. This happens
because the amount of nodes gets lower with the number of level, and thereby fewer nodes can be
affected. This means that fewer nodes have to be recomputed in the refactorization, resulting in
lower runtimes.

Therefore, the optimal number of levels for a system will have to be investigated and will depend
on the number of times the factorization is to be recomputed and what level of error can be
accepted. If the factorization is recomputed many times it might be feasible to choose a lower
number of levels to ensure a fast refactorization and a low error.

One thing to note is that the refactorization algorithm only tracks the nodes affected by one specific
change in the diagonal. In practise it can be used to refactorize for change in any diagonal element
belonging to the same super-node so depending on the discretization it can be used for many
nodes. However, the initial factorization has to be recomputed if a diagonal element belonging to
another super-node is to be changed. This might also be an argument for the chosen discretization,
since a lower number of level makes it possible to use the same factorization to recompute for
several nodes.

The runtimes using the the original factorization (Algorithm 5) is similar to the runtimes of
Algorithm 6, even though some extra work is done in Algorithm 6 to ensure data required for the
refactorization. For a couple of systems the original factorization was a bit slower than Algorithm
6. The reason for this is the order of elimination. Affected nodes are eliminated last and this will
for the larger systems result in a changed order of elimination for some of the levels. The order of
elimination will result in a different number of edges eliminated and compressed, since the fill-in
changes depending on the ordering of the matrix, which affect runtime.

5.5 Conclusion

The hierarchical structure makes it possible to factorize a matrix and avoid fill-in by approximating
this with a low-rank approximation such as SVD. The hierarchical structure makes it possible
to track what elements are affected by changing one diagonal element of the matrix. This way
refactorization can be done fast and efficiently.

The level of discretization determines the runtime for both the initial factorization and the
refactorization. Refactorization gets faster with fewer levels, whereas the initial factorization is
slowest at the highest and lowest levels of discretization and the optimal level therefore has to be
determined for each system.

The implemented algorithm had some different issues for larger systems, which still needs to be
investigated. It has to be determined what gives rise to this and how it can be mitigated such
that the algorithms work for all matrices at all levels of discretization. Furthermore, it would be
interesting to see if the solve could be modified such that for the refactorization hopefully could be
done faster as well.

CHAPTER6
Conclusion and Future Work

This chapter concludes the research conducted in the PhD project, which has been presented in
this thesis. It ends with a discussion of future work to be considered.

6.1 Conclusion

This PhD project was concerned with the development of high performance algorithms for real-time
stability and security assessment for future power systems. To accomplish this 4 goals was listed
to help further the development of such methods. This included investigation of critical elements
of methods, optimization of algorithms to achieve real-time computation by exploiting graph
theoretical properties, avoiding repeated calculations and parallel processing. Finally, methods are
to be tested.

A long range of real-time stability and security assessment methods make use of Thévenin
equivalents as it is efficient and gives a credible representation of the system. Therefore Thévenin
equivalent computations were investigated to determine how these could be optimized. The
computations are optimally done by utilizing a factorization to decompose the system.

Initially it was investigated what effect the chosen factorization method had on the computations.
The factorization methods used was the standard LU factorization in MATLAB (UMFPACK), KLU
and ILU. UMFPACK and KLU are direct methods computing the exact solution, whereas ILU
computes an approximation and requires a tolerance level in computations.

Testing showed that the factorization step was in fact a negligible part of the computations
and the computationally heavy part was to determine the impedance matrix for the current
sources. For UMFPACK and KLU the accuracy of solutions was the same except for numerical
cancellation, whereas the accuracy and runtime of ILU depended on the tolerance. To get runtimes
competible with UMFPACK and KLU the error using ILU was dissatisfying making ILU have
limited applicability for this kind of computations.

It was shown how the density of the impedance matrix for the current sources and in consequence
the coefficient matrix for determining Thévenin voltages could be determined using BTF for the
admittance matrix for the current sources. Furthermore, one large block was seen to dominate the
BTF and thereby being a dominating factor in computations.

The factor-solve method was developed on the basis of the conclusion from the investigation.
It avoids computing the impedance matrix for the current sources to reduce both runtime and
memory requirements. The method takes advantages of the block back substitution of KLU and
uses the factorization directly instead of computing the coefficient matrix.

The complexity of the algorithm for computing the factorization and the Thévenin impedance was
shown to be the same as for the reference method, however the factor-solve method is more easily
parallelized making it considerably faster for larger systems.

65

66 CHAPTER 6. CONCLUSION AND FUTURE WORK

This biggest advantage was being able to compute Thévenin voltages in linear time compared
to the close to quadratic complexity for the reference method. This made it possible to compute
Thévenin voltages in 6ms for a 30.000 bus system, which ensures that they can be recomputed for
every measurement provides by PMUs, that normally arrive every 16-20ms.

Furthermore, the memory requirements for the factor-solve method was much lower. The factor-solve
method only stores the factorization which takes up a few megabytes for the largest system
compared to several gigabytes for the coefficient matrix in the reference method.

During the SARP project, which this PhD is a part of, a method was developed for determining
the voltage stability boundary by accounting for non-linearity in the Thévenin voltage. This
determines the maximum power transfer to a load by changing the load impedance multiple times
and ideally this should be found accurately in as few steps as possible.

A binary search is suggested to find this maximum, and it is furthermore improved by including
a second order polynomial fitting as part of the search. This is done since nodes not limited by
a generator starting to loose synchronism will have a shape similar to that of a second order
polynomial. Therefore, it is possible to find the maximum of the second order polynomial to
optimize the search for the maximum power transfer for the node.

Runtimes are lowered by using the binary search and the maximum determined compared to a
naïve algorithm is more accurate. The complexity is however still the same for all implementations
and shows that each step computed should be optimized for better performances.

Block-wise computations are therefore tested to achieve lower runtimes. Only nodes belonging to
the same block in BTF has to be considered in the computations for that specific load. However, as
determined earlier BTF is dominated by a big block, and this scales with system size, meaning that
even though runtimes are lower it still has the same complexity as before.

To find the maximum power transfer the admittance matrix has to be refactorized multiple times.
Therefore, the hierarchical structure is investigated to create a fast refactorization method to be
used on the biggest block in BTF. The hierarchical structure is a hierarchical tree, where the leaf
nodes is a discretization of the matrix. The higher levels are used, when fill-in generated in the
factorization by eliminataion of nodes is pushed to the parent level and approximated using SVD.

The number of levels i.e. the level of discritization determines the runtime for both the initial
factorization and the refactorization. Both the number of nodes and the resulting block size affect
runtime. For the initial factorization the runtime is lowest somewhere in between the highest and
lowest discretization. High discretization means a lot of nodes computed, while low discretization
means that block gets so large that it takes too long to compute. For the refactorization the lower
the discritization the faster, since fewer nodes are affected by the change in load impedance as the
amount of nodes gets lower.

The implementation of the algorithms for the hierarchical factorization and refactorization had
some different issues, which needs to be determined. The forward and backwards traversal of the
solve step was not modified for recalculation.

6.2. FUTURE WORK 67

6.2 Future Work

Based on the research conducted in this PhD project some topics was identified, which could
enhance the work presented here. The topics are explained and listed below:

• Thévenin equivalent computations

– Investigation of power systems structure and the affect on computations
In the different methods for computing the Thévenin equivalents it was seen that
the complexity of the methods was highly dependent on the fill-in of the matrices.
For systems of similar size this could differ and therefore it would be interesting to
investigate what properties of the admittances matrices that effect runtimes more than
other. This could make it possible to potentially modify computation or matrices to
ensure better runtimes.

– Implement factor-solve method on SW-platform and use in real-time stability methods
It would be interesting to use the factor-solve method in stability methods to test their
runtime using this and potentially identify if other areas of the methods should be
optimized. The methods would ideally be implemented on a SW-platform as the one
developed in the SOSPO project to test the method in a real-time setting.

• Voltage stability boundary monitoring

– Iteration algorithms tested for systems close to boundary
The iteration algorithms was tested for systems far from the voltage instability boundary,
and it would therefore be interesting to test their performance as the systems nears
instability. This could be done in a real-time setting on a SW-platform, such that the
algorithms are fed a range of snapshot generated in a time-domain simulation and
tested as the system nears the boundary.

– Maximum power transfer to load when boundary has been passed
The algorithms implemented all assume that the point of maximum power transfer to
the load hasn’t occurred yet and therefore the distance to the instability boundary will
be 0, when the boundary has passed. It would be interesting to determine the distance
to the actual maximum power transfer in these cases, since this could potentially be
used to determine a control measure to return the system to a secure state.

• Hierarchical matrix structure

– Code debugging for larger systems
The algorithms implemented in C++ resulted in some errors for larger systems and
some levels of discretization. Some of the problems occurred either when edges were
either extremely large or below machine precision. This could be a result of the values
in the test system being quite different. Self-edges are inverted during elimination of the
node, and numerically small self-edge might therefore result in a large values of new
edges created. Some initial testing where nodes with numerically small self-edges was
eliminated last did not result in any improvement. Further testing therefore is needed
to determine what happens for these systems.

68 CHAPTER 6. CONCLUSION AND FUTURE WORK

– Efficient solve for the refactorization
Due to the issues in the factorization and refactorization mentioned above the solve step
was not investigated. The solve step has both a forward and backwards traversal of
nodes. The idea is that it might be possible to do something similar in the first traversal
of nodes in the solve as in the refactorization making it faster. The backwards traversal
would have to be recomputed fully for any refactorization.

– Testing in voltage stability method
The refactorization was not tested in the voltage stability method, which it was intended
for and it would be interesting to see if it would have any effect on runtime to use this
here. Furthermore, testing should check the accuracy of the maximum power transfer
found to ensure that errors due to the low-rank approximation is not too big.

Bibliography
[1] European Commission. Clean energy for all Europeans. Technical report, 2019.

[2] Danish Energy Agency. Denmark’s Energy and Climate Outlook 2020 (DECO20). Technical
report, 2020.

[3] Danish Energy Agency. Energy Strategy 2050 - from coal, oil and gas to green energy.
Technical report, 2011.

[4] Fangxing Li, Wei Qiao, Hongbin Sun, Hui Wan, Jianhui Wang, Yan Xia, Zhao Xu, and Pei
Zhang. Smart Transmission Grid: Vision and Framework. IEEE Transactions on Smart Grid,
1(2):168–177, 9 2010.

[5] Arun G. Phadke. Synchronized phasor measurements - A historical overview. In Proceedings
of IEEE/PES Transmission and Distribution Conference and Exhibition, Yokohama, Japan, 2002.
IEEE.

[6] Arun G. Phadke and James S. Thorp. Synchronized Phasor Measurements and Their Applications.
Power Electronics and Power Systems. Springer US, Boston, MA, 2008.

[7] Arun G. Phadke, Hector Volskis, Rui Menezes de Morares, Tianshu Bi, R. N. Nayak, Y. K.
Sehgal, Subir Sen, Walter Sattinger, Enrique Martinez, Olof Samuelsson, Damir Novosel,
Vahid Madani, and Yuri A. Kulikov. The Wide World of Wide-Area Measurement. IEEE Power
and Energy Magazine, 6(5):52–65, 9 2008.

[8] Srdjan Skok and Igor Ivankovic. Applications based on PMU technology for improved power
system utilization. In Proceedings of 2007 IEEE Power Engineering Society General Meeting,
Tampa, FL, USA, 2007. IEEE.

[9] Vladimir Terzija, Gustavo Valverde, Devu Cai, Pawel Regulski, Vahid Madani, John Fitch,
Srdjan Skok, Miroslav M. Begovic, and Arun G. Phadke. Wide-Area Monitoring, Protection,
and Control of Future Electric Power Networks. Proceedings of the IEEE, 99(1):80–93, 2011.

[10] Yousu Chen, Zhenyu Huang, Yan Liu, Mark J. Rice, and Shuangshuang Jin. Computational
Challenges for Power System Operation. In Proceedings of 45th Hawaii International Conference
on System Sciences (HICSS), pages 2141–2150, Maui, HI, USA, 2012.

[11] Prabha Kundur, John Paserba, Venkat Ajjarapu, Göran Andersson, Anjan Bose, Clau-
dio Canizares, Nikos Hatziargyriou, David Hill, Alex Stankovic, Carson Taylor, Thierry
Van Cursem, and Vijay Vittal. Definition And Classification of Power System Stability IEEE/-
CIGRE Joint Task Force on Stability Terms and Definitions. IEEE Transactions on Power Systems,
19(3):1387–1401, 2004.

69

70 BIBLIOGRAPHY

[12] Guangya Yang, Hjörtur Jóhannsson, Morten Lind, Rodrigo Garcia-Valle, Mogens Blanke,
Arne Hejde Nielsen, and Jacob Østergaard. Addressing the security of a future sustainable
power system: The Danish SOSPO project. In Proceedings of 9th IET International Conference on
Advances in Power System Control, Operation and Management (APSCOM), Hong Kong, China,
2012.

[13] Angel Perez, Hjörtur Jóhannsson, Pieter Vancraeyveld, and Jacob Østergaard. Suitability
of voltage stability study methods for real-time assessment. In Proceedings of 4th IEEE PES
Innovative Smart Grid Technologies Europe (ISGT Europe), Copenhagen, Denmark, 10 2013. IEEE.

[14] Angel Perez, Hjörtur Jóhannsson, and Jacob Østergaard. Evaluation of enhancements to
Thevenin equivalent based methods for real-time voltage stability assessment. In Proceedings
of 5th IEEE PES Innovative Smart Grid Technologies (ISGT Europe), Istanbul, Turkey, 2014. IEEE.

[15] Angel Perez, Hjörtur Jóhannsson, and Jacob Østergaard. Wind farms generation limits and
its impact in real-time voltage stability assessment. In Proceedings of 11th IEEE PowerTech,
Eindhoven, Netherlands, 2015. Institute of Electrical and Electronics Engineers Inc.

[16] Angel Perez, Hjörtur Jóhannsson, Jacob Østergaard, Mevludin Glavic, and Thierry Van Cutsem.
Improved Thévenin equivalent methods for real-time voltage stability assessment. In
Proceedings of 4th IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 2016.
IEEE.

[17] Tilman Weckesser, Hjörtur Jóhannsson, Jacob Østergaard, and Thierry Van Cutsem. Sensitivity
based assessment of transient voltage sags caused by rotor swings. In Proceedings of 18th Power
Systems Computation Conference, Wroclaw, Poland, 2014. IEEE.

[18] Jakob Glarbo Møller, Hjörtur Jóhannsson, and Jacob Østergaard. Computation of steady state
nodal voltages for fast security assessment in power systems. In Proceedings of 2014 Electric
Power Quality and Supply Reliability Conference (PQ), pages 51–55, Rakvere, Estonia, 2014. IEEE.

[19] Jakob Glarbo Møller, Hjörtur Jóhannsson, and Jacob Østergaard. Thevenin equivalent method
for dynamic contingency assessment. In Proceedings of IEEE Power & Energy Society’s General
Meeting, Denver, CO, USA, 2015.

[20] Evgenia Dmitrova, Hjörtur Jóhannsson, and Arne Hejde Nielsen. Assessment of the impact
that individual voltage source has on a generator’s stability. In Proceedings of 10th International
Power & Energy Conference (IPEC). IEEE, 2012.

[21] Evgenia Dmitrova, Martin Lindholm Wittrock, Hjörtur Jóhannsson, and Arne Hejde Nielsen.
Early Prevention Method for Power System Instability. IEEE Transactions on Power Systems,
30(4):1784–1792, 2015.

[22] Jakob Glarbo Møller, Hjörtur Jóhannsson, and Jacob Østergaard. Super-Positioning of Voltage
Sources for Fast Assessment of Wide-Area Thévenin Equivalents. IEEE Transactions on Smart
Grid, 8(3):1488–1493, 2017.

[23] Fuzhen Zhang. The Schur Complement and Its Applications. Springer, 2005.

[24] Florian Dorfler and Francesco Bullo. Kron Reduction of Graphs With Applications to Electrical
Networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1):150–163, 2013.

BIBLIOGRAPHY 71

[25] Yunfei Wang, Iraj Rahimi Pordanjani, Weixing Li, Wilsun Xu, Tongwen Chen, Ebrahim
Vaahedi, and Jim Gurney. Voltage stability monitoring based on the concept of coupled
single-port circuit. IEEE Transactions on Power Systems, 26(4):2154–2163, 2011.

[26] Stefan Sommer and Hjörtur Jóhannsson. Real-time thevenin impedance computation. In
Proceedings of IEEE PES Innovative Smart Grid Technologies Conference (ISGT), Washington, DC,
USA, 2013.

[27] Stefan Sommer, Andreas Aabrandt, and Hjörtur Jóhannsson. Reduce-Factor-Solve for Fast
Thevenin Impedance Computation and Network. IET Generation, Transmission & Distribution,
11 2018.

[28] Haoyu Yuan and Fangxing Li. A comparative study of measurement-based Thevenin
equivalents identification methods. In Proceedings of 46th North American Power Symposium
(NAPS), Pullman, WA, USA, 2014.

[29] Luc Giraud, Azzam Haidar, and Yousef Saad. Sparse approximations of the Schur complement
for parallel algebraic hybrid solvers in 3D. Numerical Mathematics Theory Methods and
Applications, 3(3):276–294, 2010.

[30] Hjörtur Jóhannsson. Development of early warning methods for electric power systems. PhD thesis,
Technical University of Denmark, 2011.

[31] Timothy A. Davis. Algorithm 832: UMFPACK V4.3 - An unsymmetric-pattern multifrontal
method. ACM Transactions on Mathematical Software, 30(2):196–199, 2004.

[32] Timothy A Davis. Algorithm 907 : KLU , A Direct Sparse Solver for Circuit Simulation
Problems. ACM Transactions on Mathematical Software, 37(3):1–17, 2010.

[33] Hugo Morais, Pieter Vancraeyveld, Allan Henning Birger Pedersen, Morten Lind, Hjörtur
Jóhannsson, and Jacob Østergaard. SOSPO-SP: Secure Operation of Sustainable Power Systems
Simulation Platform for Real-Time System State Evaluation and Control. IEEE Transactions on
Industrial Informatics, 10(4):2318–2328, 2014.

[34] Hjörtur Jóhannsson, Hugo Morais, Allan Henning Birger Pedersen, Qiuwei Wu, and Dean
Ouellette. SW-platform for R&D in Applications of Synchrophasor Measurements for Wide-
Area Assessment, Control and Visualization in Real-Time. CIGRE US National Committee 2014
Grid of the Future Symposium, 2014.

[35] Christina Hildebrandt, Bahtiyar Can Karatas, Jakob Glarbo Møller, and Hjörtur Jóhannsson.
Evaluation of Factorization Methods for Thévenin Equivalent Computations in Real-Time
Stability Assessment. In Proceedings of 20th Power Systems Computation Conference (PSCC),
Dublin, Ireland, 2018.

[36] Christina Hildebrandt Lüthje Jørgensen, Jakob Glarbo Møller, Stefan Sommer, and Hjör-
tur Jóhannsson. A Memory-Efficient Parallelizable Method for Computation of Thévenin
Equivalents used in Real-Time Stability Assessment. IEEE Transactions on Power Systems, 2019.

[37] Christina Hildebrandt Lüthje Jørgensen, Bahtiyar Can Karatas, Hjörtur Jóhannsson, and
Stefan Sommer. Binary Search and Fit Algorithm for Improved Voltage Stability Boundary
Monitoring. In Proceedings of 9th IEEE PES Innovative Smart Grid Technologies Europe (ISGT
Europe), Bucharest, Romania, 2019.

72 BIBLIOGRAPHY

[38] Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. An Approximate Minimum Degree
Ordering Algorithm. SIAM Journal on Matrix Analysis and Applications, 17(4):886–905, 1996.

[39] Timothy A. Davis. Direct Methods For Sparse Linear Systems. SIAM, Gainesville, Florida, 2006.

[40] Youcef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[41] Ray Daniel Zimmerman, Carlos Edmundo Murillo-Sanchez, and Robert John Thomas.
MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems
Research and Education. IEEE Transactions on Power Systems, 26(1):12–19, 2011.

[42] CIGRÉ TF38.02.08. Long Term Dynamics Phase II, Final Report. Technical report, 1993.

[43] IEEE Standards Association. C37.118.1-2011 IEEE Standard for Synchrophasor Measurements
for Power Systems. Technical report, 2011.

[44] P. Kessel and H. Glavitsch. Estimating the Voltage Stability of a Power System. IEEE
Trannsactions on Power Delivery, 1(3):346–354, 1986.

[45] Hjörtur Jóhannsson, Arne Hejde Nielsen, and Jacob Østergaard. Wide-Area Assessment of
Aperiodic Small Signal Rotor Angle Stability in Real-Time. IEEE Transactions on Power Systems,
28(4):4545–4557, 11 2013.

[46] Tilman Weckesser, Hjörtur Jóhannsson, and Jacob Østergaard. Real-Time Remedial Action
Against Aperiodic Small Signal Rotor Angle Instability. IEEE Transactions on Power Systems,
31(1):387–396, 2016.

[47] Bahtiyar Can Karatas, Hjörtur Jóhannsson, and Arne Hejde Nielsen. Improved Voltage
Stability Boundary Monitoring by Accounting for Variations in Thevenin Voltage Magnitude.
In Proceedings of 8th Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Sarajevo,
Bosnia and Herzegovina, 2018.

[48] Bahtiyar Can Karatas, Hjörtur Jóhannsson, and Arne Hejde Nielsen. Voltage stability
assessment accounting for non-linearity of Thévenin voltages. IET Generation, Transmission &
Distribution, 14(16):3338–3345, 8 2020.

[49] Hadi Pouransari, Pieter Coulier, and Eric Darve. Fast Hierarchical Solvers for Sparse Matrices
using Extended Sparsification and Low-Rank Approximation. SIAM Journal on Scientific
Computing, 39(3):A797–A830, 2017.

A. First Appendix

73

Collection of relevant publications
[Pub. A] Christina Hildebrandt, Bahtiyar Can Karatas, Jakob Glarbo Møller, and Hjörtur Jóhannsson.

Evaluation of Factorization Methods for Thévenin Equivalent Computations in Real-Time
Stability Assessment. In Proceedings of 20th Power Systems Computation Conference (PSCC),
Dublin, Ireland, 2018

[Pub. B] Christina Hildebrandt Lüthje Jørgensen, Jakob Glarbo Møller, Stefan Sommer, and Hjörtur
Jóhannsson. A Memory-Efficient Parallelizable Method for Computation of Thévenin
Equivalents used in Real-Time Stability Assessment. IEEE Transactions on Power Systems, 2019

[Pub. C] Christina Hildebrandt Lüthje Jørgensen, Bahtiyar Can Karatas, Hjörtur Jóhannsson, and
Stefan Sommer. Binary Search and Fit Algorithm for Improved Voltage Stability Boundary
Monitoring. In Proceedings of 9th IEEE PES Innovative Smart Grid Technologies Europe (ISGT
Europe), Bucharest, Romania, 2019

75

[Pub. A] Evaluation of Factorization Methods for
Thévenin Equivalent Computations in Real-Time

Stability Assessment

77

Evaluation of Factorization Methods
for Thévenin Equivalent Computations

in Real-Time Stability Assessment
Christina Hildebrandt, Bahtiyar Can Karatas, Jakob Glarbo Møller and Hjörtur Jóhannsson

Department of Electrical Engineering
Technical University of Denmark

Kgs. Lyngby, Denmark
{chhil, bcakara, jglmo, hjjo}@elektro.dtu.dk

Abstract—Thévenin equivalents are used by a range of power
system stability indicators, such as the L-index for voltage
stability and the aperiodic small signal rotor angle stability
indicator. This paper investigates the effect of using different
factorization methods for computing coefficients for wide-area
Thévenin equivalents. Direct and incomplete factorization meth-
ods are compared with respect to runtime, accuracy and amount
of fill-in. The paper introduces a proof that the block triangular
form of bus admittance matrices will have no non-zero entries in
the off-diagonal. KLU factorization is found to perform almost
twice as fast as the standard LU factorization with no cost of
accuracy. It is, however, shown that the largest computational
workload is associated with dense matrix multiplications. An
incomplete method reduces the fill-in of coefficient matrices at
the cost of accuracy in Thévenin voltages. It is shown, that
inaccuracies are amplified as the L-index approaches the stability
limit.

Index Terms—Power system analysis computing, Power system
stability, Real-time assessment, Thévenin equivalent, Wide-area
monitoring

I. INTRODUCTION

Thévenin equivalent methods have been proposed for reliable
assessment of several modes of power system instability -
including long-term voltage instability and steady-state insta-
bility of generators [1], [2]. These two types of instability
can be strongly connected, since long-term voltage instability
is provoked by trying to supply more power to a load than
the maximum power transfer capabilities of the system, while
aperiodic generator instability is driven by the maximum
power transfer from a generator to the system. These limits
describe the bounds of stable steady-state operation of power
systems and may be used to identify the set of feasible
solutions of power flow problems. Fast and efficient compu-
tation of Thévenin equivalents is a necessary condition for
the application of such indicators in real-time and on larger
scale. With the increasing usage of phasor measurement units
(PMU) [3], [4], complex bus voltages and complex branch
currents can be obtained at the rate of system frequency and
together with information of the system topology, the Thévenin
equivalent methods can be applied in real-time.

When using Thévenin equivalent methods one may choose
from two general approaches for obtaining the equivalent
parameters; methods based on local measurements [5], and
methods based on the full state of the system (wide-area
measurements) [6]. Both approaches have their advantages
and drawbacks. Local assessment is better suited for use in
distributed controllers while wide-area methods may be a
better choice for central monitoring and control or sensitivity
calculations. The scope of this paper is limited to the wide-area
methods and it is assumed that a true system state is available.
Thereby this paper focus on computational performance only.
For studies on the impact of measurement uncertainty the
reader is referred to [7].

The factorization method has previously been proven to
have an impact on computations for determining Thévenin
impedances [8]. However, when determining coefficients for
super-position the use of different factorization methods has
not previously been evaluated. The super-position principle
can be used to determine the contribution of each voltage- or
current source on the Thévenin voltage.

In [6] it is shown, how a Schur complement of the bus ad-
mittance matrix can be exploited to efficiently obtain Thévenin
equivalents seen from all nodes of a meshed system. The Schur
complement is in general considered to be dense [9], but as
noted in [6], several of the fill-ins are small and seem quite
insignificant. This observation is here used to give room for
increased degree of sparsity.

This paper investigates the effect of applying different
factorization methods when obtaining coefficients for super-
position for wide-area Thévenin equivalents. The highest pos-
sible degree of sparsity is pursued in order to speed up compu-
tations. The investigation will focus on the resulting runtime
as well as accuracy. Candidates for factorization methods are
the standard LU factorization in MATLAB (UMFPACK) [10],
”Clark Kent” LU factorization (KLU) [11] and incomplete
LU factorization (ILU) [12]. Ordering scheme candidates are
Block Triangular Form and Approximate Minimum Degree
(AMD).

The special attributes of the KLU algorithm makes it
unsuited for some inverse problems. This paper contributes

with a proof of how KLU can be used for calculations
involving Thévenin equivalents. The proof shows that the
block triangular form of a bus admittance matrix has no non-
zero entries in the off-diagonal blocks. This proof has not been
provided in earlier publications.

Section II introduces the voltage stability indicator for loads
from [13] and aperiodic small signal rotor angle stability
margin for generators from [2] and explains how a Schur
complement is used to obtain the Thévenin equivalents as pro-
posed in [6]. Section III introduces the different factorization
methods and proves why KLU can be used in computation
of Thévenin equivalents. Section IV evaluates the methods
by computational time, degree of sparsity and their accuracy
of the resulting stability indicators. Furthermore, the error in
Thévenin voltages introduced by ILU is investigated. Section
V discusses the results and gives some perspectives on further
work, while section VI concludes the paper.

II. BACKGROUND

A. Voltage stability indicator

A local voltage stability margin for loads is defined in [13].
For a node i the local indicator Li is defined by the node
voltage V i and the Thévenin voltage V th,i seen from node i

Li =

∣∣∣∣1−
V th,i

V i

∣∣∣∣ . (1)

For stable situations Li ≤ 1 must not be violated for any node
i. Hence the global indicator for voltage stability of the entire
system is given by

L = max
i∈cs
{Li} , (2)

where cs represent the loads. Voltage instability may be
inferred in the case where L > 1.

The importance of accuracy when assessing Thévenin
equivalents for system stability studies can be easily demon-
strated by adding a random vector-error ε to the Thévenin
voltage. This gives the following L-index;

Li =

∣∣∣∣1−
V th,i + εi

V i

∣∣∣∣ =
∣∣∣∣1−

V th,i

V i

− εi

V i

∣∣∣∣ . (3)

The closer the system is to voltage instability the lower the
magnitude of the node voltage, Vi will be. Therefore, the error
will have a larger influence close to the stability boundary.
Figure 1 shows the calculation of the L-index represented with
phasors. The worst case is an error vector that is orthogonal to
V th,i

V i
. This will result in an L-index that indicate the system

is more stable, than it actually is.

B. Aperiodic small signal rotor angle stability margin

In [2] a power margin of the injected power to the maximum
power injection is defined. This margin describes the distance
from a generator’s operating point to the stability boundary of
aperiodic small signal rotor angle stability. In [14] this margin
is reformulated in terms of voltages instead of impedances. A
percentage margin to the maximum injectable power is then
defined as

Figure 1. L-index for node i, where an error εi affect the resulting stability
indicator. The L-index is represented as a phasor in the complex plane. The
local voltage stability indicator for the node will be the magnitude of this.

%∆Pinj =
Pinj,max − Pinj

Pinj
· 100% (4)

=
cos (δ + φth) + 1

1 + V
Vth

cosφth

· 100%, (5)

where the generator is represented as a voltage source V ∠δ
and the remaining grid by its Thévenin equivalent with a
voltage source of magnitude Vth and an impedance Zth∠φth.
V th is used as the phase angle reference.

If, for any generator, %∆Pinj < 0, that generator will
lose synchronism. This may destabilize the entire system.
Therefore, the overall systems stability margin is defined as
the minimum %∆Pinj .

C. Schur complement and Thévenin equivalents

An approach for computing Thévenin equivalents is described
in [6], which uses a Schur complement to optimize the calcu-
lations. Thévenin equivalents consist of a Thévenin impedance
Zth and Thévenin voltage V th. The Thévenin equivalent seen
from node i will satisfy

V th,i = V i − Zth,iIi (6)

V i is node voltage and Ii is current injected at node i.
Nodes in a network can be partitioned in to two sets

- current sources (cs) and voltage sources (vs). A floating
node may be seen as a current source injecting 0 current.
Loads are represented as current sources and generators with
automatic voltage regulator (AVR) or internal voltages of
manually excited machines as voltage sources. This distinction
of nodes is important as it is recalled that the L-index is
an indicator of voltage instability of load buses while the
aperiodic small signal rotor angle stability margin is associated
with the maximum power transfer from generators.

The admittance matrix for the system can then be block-
wise partitioned as follows

[
Ics
Ivs

]
=

[
Ycs Yv→c

Yc→v Yvs

] [
Vcs

Vvs

]
(7)

Eliminating Vcs from (7) yields

Ivs = YeqVvs −QacIcs (8)

with

Yeq = Yvs −Yc→vY
−1
cs Yv→c (9)

Qac = −Yc→vY
−1
cs (10)

Yeq is the Schur complement and Qac is the accompanying
matrix. This reduction of the network is also known as Kron
reduction [15].

The Thévenin impedances seen from node i are determined
as the diagonal of the impedance matrix

Zth,i =

{
Zcs(i, i) i ∈ cs

Yeq(i, i)
−1 i ∈ vs

(11)

where Zcs = Y−1
cs [6].

Using the definition for Thévenin voltage given in (6) and
the above network equations the Thévenin voltage for the cs
and vs nodes respectively are defined as

Vth,cs = −ZcsYv→cVvs + (Zcs −D(Zth,cs))Ics (12)
Vth,vs = (I − D(Zth,vs)Yeq)Vvs +D(Zth,vs)QacIcs (13)

I is the identity matrix and D(Zth) is the diagonalization of
the vector Zth into a diagonal matrix. (12-13) can be written
on the form

[
Vth,cs

Vth,vs

]
=

[
Zc Kv→c

Zc→v Kv

] [
Ics
Vvs

]
(14)

with

Zc = Zcs −D(Zth,cs) (15)
Kv→c = −ZcsYv→c (16)
Zc→v = D(Zth,vs)Qac (17)
Kv = I − D(Zth,vs)Yeq (18)

The coefficients Kv were introduced in [6] and [16] as the
grid transformation coefficients (GTC).

Algorithm 1 contains the steps for obtaining the coefficients
and Thévenin impedances. The LU-factorization of Ycs is
used to optimize the computations. This approach is used in
[6] and [8], since L and U are computationally more efficient
to invert than the full matrix.

(a) (b)
Figure 2. (a) Sparsity pattern for Ycs for the test system Polish-Winter03,
Table I, used in the Section IV and (b) Ycs on block triangular form

Algorithm 1 Thévenin equivalents
Lcs,Ucs ← factorization of Ycs

UZcs ← solve(Lcs, I)
LT
Zcs

← solve(UT
cs, I)

Zcs ← LZcsUZcs

Zth,cs ← D(Zcs)
Qac ← −Yc→vZcs

Yeq ← Yvs +QacYv→c

Zth,vs ← D(Yeq)
−1

Zc ← Zcs − D(Zth,cs)
Kv→c ← −ZcsYv→c

Zc→v ← D(Zth,vs)Qac

Kv ← I −D(Zth,vs)Yeq

Zth ←
[
Zth,cs

Zth,vs

]

K ←
[

Zc Kv→c

Zc→v Kv

]

return Zth and K

D(X) is a vector containing the diagonal of the matrix X,
while D(X) a diagonal matrix with the vector X along the
diagonal.

The Thévenin voltages can be determined by (14) using the
coefficients, K, the current injected at cs nodes, Ics, and the
voltage at vs nodes, Vvs.

III. FACTORIZATION METHODS

Different factorization methods will be used in Algorithm 1.
The different methods investigated are

• UMFPACK with AMD
• KLU using block triangular form
• ILU

UMFPACK with AMD is the standard LU factorization of a
sparse matrix in MATLAB. AMD is used prior to factorization,
where the matrix is permuted to reduce the computation time
and the fill-in in the factorization [17].

KLU is a factorization method optimized for sparse systems
[11]. The method is part of the library SuiteSparse [18].
KLU convert the system to block triangular form, where the
diagonal of the resulting matrix will contain square matrices
with zero-free diagonal and the off-diagonal will contain
potentially non-zero blocks.



A11 · · · A1k

. . .
...

Akk


 (19)

The blocks below the diagonal will be zero. Figure 2 shows
Ycs for the test system Polish-Winter03, Table I and its block
triangular form.

The block elements are reordered using AMD and then
factorized whereas the off-diagonal elements are kept as is.
This gives the following structure for the KLU factorization
of a matrix A [11]

PRAQ = LU+ F (20)

P,Q are permutation matrices, R is a diagonal scaling matrix,
L,U are the factorization of the diagonal elements and F
represents the entire off-diagonal. KLU use block back sub-
stitution to solve a linear system from the factorization in (20).
The structure of KLU in the setting of this paper will be treated
later.

ILU is an incomplete solver, which will be used to test, how
reducing fill-in can speed up the computations and affect the
resulting Thévenin voltages. The chosen type of ILU is called
the Crout version of ILU (ILUC) [12]. The tolerance for ILU
determines when elements are set to 0. Elements will be set
to 0, if their value is smaller than the tolerance multiplied by
the norm of the column and the tolerance multiplied by the
norm of the row. The tolerance in this study is chosen as 10−5.
The choice of tolerance is explained in detail in section IV. In
addition ILU is set to preserve row sums as it has been found
to significantly increase the accuracy of the results without
affecting the runtime of the algorithm.

A. KLU of an admittance matrix

The structure of KLU, (20), does not fit in to the setting of
Algorithm 1. Ycs should be split into an L and U part, while
KLU provides a factorization of the form LU+F. However,
this will not be an issue, since for an admittance matrix with
complex admittances F = 0.

In [18] it is stated that the block triangular form of a square
matrix, A with zero-free diagonal corresponds to finding the
strongly connected components of a directed graph G(A). An
admittance matrix with complex admittances will always have
a zero-free diagonal. Therefore, the block triangular form of
Ycs will correspond to finding the strongly connected compo-
nents of G(Ycs) = (V,E) with the nodes V = {1, . . . , |cs|}
and the edges E = {(i, j) | Ycs(i, j) 6= 0}.

A strongly connected component is defined as maximal set
of nodes such that for any pair of nodes in the set the paths
i j and j i exists. This means that there will be a path
both from i to j and from j to i in the directed graph.

The non-zero pattern of an admittance matrix is symmetric.
This means, that Ycs(i, j) 6= 0 ⇔ Ycs(j, i) 6= 0 and in
equality Ycs(i, j) = 0 ⇔ Ycs(j, i) = 0. Therefore, there
are two scenarios for edges between two nodes i and j in
the directed graph G(Ycs). Either there will be no edges
between the nodes i and j or there will be an edge both
from i to j, (i, j), and from j to i, (j, i), see Figure 3. This
means that two nodes will either be in the same strongly
connected component or they will be completely separated,
since the graph only contains bidirectional edges. Hence the
block triangular form of Ycs will consist of the strongly
connected components in the diagonal and the entire off-
diagonal will be empty, since there is no connection between
the components. Edges in the off-diagonal block would stem
from asymmetries in the non-zero pattern, where Ycs(i, j) 6= 0
and Ycs(j, i) = 0. Therefore, KLU factorization of Ycs will
always satisfy F = 0.

In the graph for the entire power system there will be a path
between any two nodes. The algorithm however only factorize

i j

(a)

i j

(b)
Figure 3. The directed graph G(Ycs) will either have (a) no edges between
two nodes i and j or (b) 2 edges (i, j) and (j, i)

Ycs, and the cs nodes need not all be connected, since they can
be connected through the vs nodes, which are left out. Figure
4 shows an example of a network divided in to cs and vs
nodes. This contain 2 connected components when excluding
the vs nodes. Furthermore, it can be noted, that finding the
block triangular form will not be an advantage if factorizing
the entire admittance matrix. The diagonal will in this case
contain only one block element, which is the entire matrix,
since all nodes will belong to the same strongly connected
component.

cs node

vs node

Figure 4. Example of a network divided in to cs and vs nodes

IV. IMPLEMENTATION AND TEST

Algorithm 1 is implemented in MATLAB in order to assess the
effect of the different factorization methods. The methods are
evaluated with respect to both runtime, accuracy of the results
and the number of non-zeros in the resulting coefficients. The
runtime is tested on an Intel(R) Xeon(R) CPU E5-2650 v4 @
2.50GHz. The test systems can be seen in Table I.

The Pegase and Polish-Winter systems can be found in
MATPOWER, [19], the PTI systems are included in the
PSS R©E 33.0 examples and Nordic32 can be found in [20].

A. The Tolerance of ILU

Before comparing runtimes, fill-ins and precission of the
different factorization methods it is necessary to identify a
suitable tolerance for ILU. This tolerance determines the
sparsity, accuracy and computation time. Errors in Thévenin
voltages obtained with ILU can be stated with results from
UMFPACK as reference in the terms of a total vector error
(TVE) [21]

TVE (%) =

√
(X̃r −Xr)2 + (X̃i −Xi)2

X2
r +X2

i

· 100% (21)

TABLE I
TEST SYSTEMS

Case no. of buses no. of vs
nodes

non-zeros in Y

Nordic32 46 20 160
Pegase89 89 12 501
Pegase1354 1354 260 4774
PTI-WECC-1648 1648 313 6680
Polish-Winter99 2383 327 8155
Polish-Winter03 2746 374 9344
Pegase2869 2869 510 10805
Polish-Winter07 3012 347 10144
PTI-EECC-7991 7917 1325 32211
Pegase9241 9241 1445 37655

where X̃ is the estimate (ILU) and X is the true value
(UMFPACK).

Table II shows the sparsity of ILU for different tolerance
levels as well as the runtime of Algorithm 1, runtime for
computing Thévenin voltages and the TVE of the Thévenin
voltages for the test system Pegase9241. Furthermore, the
same information for UMFPACK is included in the table.

TABLE II
PERFORMANCE OF ILU DEPENDING ON CHOICE OF TOLERANCE FOR

PEGASE9241

Tolerance Non-zeros
of K

Runtime (s)
Algorithm 1

Runtime
(ms) Vth

Max TVE
(%) Vth

UMFPACK 42515618 11.95 128.08 -
10−3 9126625 2.14 35.69 4540.43
10−4 29047282 7.13 92.22 14.80
10−5 37618552 17.32 119.92 1.89
10−6 42101927 29.48 126.32 0.27
10−7 42423098 43.80 125.80 0.029
10−8 42498272 47.31 129.70 2.08·10−3

10−9 42506413 50.67 139.04 2.28·10−4

Increasing the tolerance increases the sparsity of the co-
efficient matrix while the time for calculating the Thévenin
voltages is reduced along with the accuracy. For a tolerance
larger than 10−6 the sparsity of K obtained with ILU is
approaching that obtained with UMFPACK and the advantage
of using ILU disappears.

At a tolerance of 10−4 ILU shows runtimes of Algorithm
1, that are comparable to UMFPACK for all systems. For
Pegase9241 the runtime is lower, but the errors in Thévenin
voltages at this level of tolerance were shown to be up to 15%
TVE. An error in Thévenin voltage of a few percent might be
accounted for by defining an appropriate trigger-margin for the
stability indicators. Thus, the choice of a suitable tolerance for
ILU must satisfy the criteria that there should be an advantage
of ILU over UMFPACK in terms of runtime, and the resulting
inaccuracy should be a few percent at most. On this basis a
tolerance of 10−5 is chosen.

With the choice of tolerance in place the accuracy of ILU
may be assessed for all the test systems. Figure 5 shows the

TVE between ILU and UMFPACK of the Thévenin voltages
for all test systems. The mean value of TVE is in general
small in all the cases, which means that there are few large
errors. The largest vector error is smaller than 2% for all test
systems.

46/
20

89/
12

1354/
260

1648/
313

2383/
327

2746/
374

2869/
510

3012/
347

7917/
1325

9241/
1445

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
V

E
 (

%
)

maximum TVE (%)
mean TVE (%)

Figure 5. Maximum and mean TVE (%), when comparing Thévenin voltages
from ILU to UMFPACK. The tolerance of ILU is set to 10−5.

B. Comparing Factorization Methods

Figure 6a shows the total runtime of Algorithm 1 for each
factorization method. The total runtime of UMFPACK and
KLU are close with a small favor to KLU. ILU for the chosen
tolerance is slower in all but the smallest cases, and the runtime
seems to be very dependent on the structure of the network.

Figure 6b shows the runtime for the factorization step of
Algorithm 1. KLU consistently performs the factorization al-
most twice as fast as UMFPACK and is the fastest factorization
method in all cases. However, comparing the runtimes reported
in Figure 6a and 6b it is evident that the time spent on
factorization is negligible compared to the total runtime of
Algorithm 1.

Looking at the ability to predict instability issues Table III
and IV show that ILU with the chosen settings is close to the
results from UMFPACK. The results for KLU show that the
accuracy can be considered to be the same as for UMFPACK.
In all cases ILU predicted the same node to be the critical
node as both UMFPACK and KLU.

For all cases KLU and UMFPACK are close both in
computation time and accuracy and in general the largest error
of the Thévenin voltages was 10−13 when comparing the two.
The larger error for ILU is explained by the inaccuracies in
Thévenin voltages seen in Figure 5.

One advantage of ILU is the increased sparsity of the
coefficient matrices. Table V shows the number of non-zeros of
the coefficient matrix for each factorization method. For small
systems ILU does not provide additional sparsity however
as the systems grows larger it significantly reduces fill-in.
The difference with respect to sparsity between KLU and
UMFPACK is insignificant.

46/
20

89/
12

1354/
260

1648/
313

2383/
327

2746/
374

2869/
510

3012/
347

7917/
1325

9241/
1445

10-3

10-2

10-1

100

101

102

(a)

46/
20

89/
12

1354/
260

1648/
313

2383/
327

2746/
374

2869/
510

3012/
347

7917/
1325

9241/
1445

10-4

10-3

10-2

10-1

100

101

102

(b)
Figure 6. For each factorization method versus size of power system (a) shows the total runtime of Algorithm 1 and (b) the runtime of the factorization step.

TABLE III
VOLTAGE STABILITY INDEX FOR LOADS (L-INDEX)

Case L-index
UMFPACK

Difference
KLU

Difference
ILU

Nordic32 0.183 0 0
Pegase89 0.316 0 1.25·10−4

Pegase1354 0.212 0 -2.2·10−16

PTI-WECC-1648 0.283 -1.7·10−15 -1.9·10−4

Polish-Winter99 0.066 -1.2·10−14 7.39·10−5

Polish-Winter03 0.105 5.4·10−15 1.01·10−4

Pegase2869 0.163 3.9·10−16 6.04·10−4

Polish-Winter07 0.075 2.9·10−15 -6.3·10−4

PTI-EECC-7991 0.311 6.7·10−16 -1.1·10−4

Pegase9241 0.176 -5.3·10−16 -2.17·10−3

TABLE IV
APERIODIC SMALL SIGNAL ROTOR ANGLE STABILITY MARGIN FOR

GENERATORS (min%∆Pinj)

Case min%∆Pinj

UMFPACK
Difference

KLU
Difference

ILU
Nordic32 38.01 0 0
Pegase89 94.33 0 0.004
Pegase1354 81.00 0 0.018
PTI-WECC-1648 32.82 0 0
Polish-Winter99 81.42 5.0·10−13 0.026
Polish-Winter03 88.79 4.0·10−13 9.05·10−4

Pegase2869 63.41 0 0
Polish-Winter07 79.93 -7.7·10−13 0.009
PTI-EECC-7991 44.54 0 1.39·10−4

Pegase9241 62.84 0 0

Reduced fill-in can reduce runtime of the Thévenin volt-
age calculations. In all cases the runtime of computing the
Thévenin voltages were smaller for ILU than for the direct
methods. If coefficients were to be used for contingency
analysis as in [22] the computation time for the contingency
assessments could be reduced using ILU. However, the run-

TABLE V
NON-ZEROS IN COEFFICIENT MATRIX, K, FOR EACH FACTORIZATION

METHOD

Case Non-zeros
UMFPACK

Non-zeros
KLU

Non-zeros
ILU

Nordic32 548 547 549
Pegase89 7668 7663 7664
Pegase1354 1120074 1120078 1025267
PTI-WECC-1648 1706590 1706580 1694777
Polish-Winter99 2825724 2825717 1835089
Polish-Winter03 3027546 3027555 2577363
Pegase2869 2961791 2961793 2790832
Polish-Winter07 4206611 4206582 4095535
PTI-EECC-7991 44852964 44852962 31146092
Pegase9241 42515624 42515659 37618552

time of Algorithm 1 is also increased significantly using ILU.

V. DISCUSSION OF RESULTS

The use of KLU provides a small speedup of computations
compared to UMFPACK at no cost of accuracy in the resulting
coefficient matrices. The speedup is achieved through a faster
factorization step, but it has been shown that the factorization
step is a negligible part of total runtime of computing Thévenin
impedances and the coefficient matrix.

The tolerance for ILU was chosen to be 10−5 to ensure
errors that were smaller than 2% for all test system. It is
clear that the error in these cases have a small effect on the
resulting stability indicators in Table III and IV. The biggest
error might not have occurred on the most critical node or in
a direction that did not change the magnitude of the L-index
considerably. However, there is no way of guaranteeing, that
this will always be the case. The chosen tolerance result in
a considerable increase in the runtime of Algorithm 1. For
Pegase9241 in Table II the runtime of Vth is reduced by 8 ms,
while the runtime of the algorithm is increased by 5.4 seconds.
This means that for ILU to be an advantage the calculations for

Vth should be done more than 675 times before the coefficients
needs to be recalculated.

Furthermore, the error in the Thévenin voltages for ILU
will have a larger influence near the stability boundary, and
here the system topology will also change more rapidly, which
will result in recalculations of coefficients to be done more
often. Seeing that ILU both introduce an error and give
an increased calculation time for coefficients with no major
decrease in runtime for Thévenin voltages it severely limits
the applicability of ILU.

An alternative method for introducing sparsity could be to
compute the full solution and then set elements to zero if they
seem to have a small influence on the result. The evaluation
of an element’s contribution to the result could be done by a
norm related tolerance like how ILU sets elements to zero.

Further investigation of calculations of coefficients show
that the computational heavy part of the algorithm is deter-
mining Zcs = Y−1

cs . Future work with a focus on reducing
the runtime of finding the impedance matrix for the cs
nodes, would benefit the computations more than a change
of factorization method. A sparse implementation of Fox’s
algorithm [23] was used in [6] to calculate a similar matrix
product. Another approach would be to take advantage of
backwards solve of KLU. Zcs could be kept on factorized
form, and whenever Zcs is used in calculations backwards
solve would compute the result. In [8] a similar approach
is presented, where good performance is obtained, and the
method if furthermore optimized by utilizing parallelization.

VI. CONCLUSION

In this paper different factorization methods for obtaining
coefficients for wide-area Thévenin equivalents was evaluated
with respect to accuracy, runtime and amount of fill-in.

The results show that the chosen factorization method has
little impact on the algorithm for obtaining coefficients, since
the factorization step has a short runtime compared to the
runtime of the entire algorithm. Looking only at the runtime
of the factorization step KLU was the fastest method in all
cases. It was furthermore proved, that for an admittance matrix
with complex admittances KLU can be used when obtaining
coefficients for super-position.

The incomplete factorization method, ILU, was shown to
be able to compute stability indicators with an accuracy close
to that of UMFPACK and KLU. Using ILU will involve a
trade-off between accuracy and sparsity, where sparsity also
leads to reduced computation time for both the factorization
step and the calculations to determine the Thévenin voltages.
For the error of ILU to be in an acceptable range the runtime
for computing coefficients is considerably longer than those of
UMFPACK and KLU. Furthermore, the increasing influence
of errors for a system close to the stability boundary, gives
ILU limited applicability.

REFERENCES

[1] T. Rahman and G. Jasmon, “A new technique for voltage stability
analysis in a power system and improved loadflow algorithm for
distribution network,” in Proceedings of International Conference on

Energy Management and Power Delivery EMPD, Singapore, 1995, pp.
714–719.

[2] H. Jóhannsson, A. H. Nielsen, and J. Østergaard, “Wide-Area Assess-
ment of Aperiodic Small Signal Rotor Angle Stability in Real-Time,”
IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4545–4557,
2013.

[3] M. Glavic and T. Van Cutsem, “Wide-Area Detection of Voltage
Instability From Synchronized Phasor Measurements. Part I: Principle,”
IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1408–1416,
2009.

[4] ——, “Wide-Area Detection of Voltage Instability From Synchronized
Phasor Measurements. Part II: Simulation Results,” IEEE Transactions
on Power Systems, vol. 24, no. 3, pp. 1417–1425, 2009.

[5] H. Yuan and F. Li, “A comparative study of measurement-based
Thevenin equivalents identification methods,” in 2014 North American
Power Symposium (NAPS). IEEE, 2014, pp. 1–6.

[6] J. G. Møller, H. Jóhannsson, and J. Østergaard, “Super-Positioning of
Voltage Sources for Fast Assessment of Wide-Area Thévenin Equiva-
lents,” IEEE Transactions on Smart Grid, vol. 8, no. 3, pp. 1488–1493,
2017.

[7] A. Perez, J. Moller, H. Johannsson, and J. Ostergaard, “Uncertainty
in real-time voltage stability assessment methods based on Thévenin
equivalent due to PMU’s accuracy,” in Proceedings of the 5th IEEE
PES Innovative Smart Grid Technologies (ISGT) Europe Conference,
Istanbul, Turkey, 2014, pp. 1–6.

[8] S. Sommer and H. Jóhannsson, “Real-time thevenin impedance compu-
tation,” in Proceedings of IEEE PES Innovative Smart Grid Technologies
Conference (ISGT), Washington, DC, USA, 2013, pp. 1–6.

[9] L. Giraud, A. Haidar, and Y. Saad, “Sparse approximations of the Schur
complement for parallel algebraic hybrid solvers in 3D,” Numerical
Mathematics-theory Methods and Applications, vol. 3, no. 3, pp. 276–
294, 2010.

[10] T. A. Davis, “Algorithm 832: UMFPACK V4.3 - An unsymmetric-
pattern multifrontal method,” ACM Transactions on Mathematical Soft-
ware, vol. 30, no. 2, pp. 196–199, 2004.

[11] ——, “Algorithm 907 : KLU , A Direct Sparse Solver for Circuit
Simulation Problems,” ACM Transactions on Mathematical Software,
vol. 37, no. 3, pp. 1–17, 2010.

[12] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[13] P. Kessel and H. Glavitsch, “Estimating the Voltage Stability of a Power

System,” IEEE Trannsactions on Power Delivery, vol. 1, no. 3, pp. 346–
354, 1986.

[14] T. Weckesser, H. Jóhannsson, and J. Østergaard, “Real-Time Remedial
Action Against Aperiodic Small Signal Rotor Angle Instability,” IEEE
Transactions on Power Systems, vol. 31, no. 1, pp. 387–396, 2016.

[15] F. Dorfler and F. Bullo, “Kron Reduction of Graphs With Applications
to Electrical Networks,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 60, no. 1, pp. 150–163, 2013.

[16] E. Dmitrova, H. Jóhannsson, and A. H. Nielsen, “Assessment of the
impact that individual voltage source has on a generator’s stability,” in
Proceedings of the 10th International Power and Energy Conference
(IPEC), Ho Chi Minh City, Vietnam, 2012, pp. 184–189.

[17] P. R. Amestoy, T. A. Davis, and I. S. Duff, “An Approximate Minimum
Degree Ordering Algorithm,” SIAM Journal on Matrix Analysis and
Applications, vol. 17, no. 4, pp. 886–905, 1996.

[18] T. A. Davis, Direct Methods For Sparse Linear Systems, N. J. Higham,
Ed. Gainesville, Florida: SIAM, 2006.

[19] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MAT-
POWER: Steady-State Operations, Planning, and Analysis Tools for
Power Systems Research and Education,” IEEE Transactions on Power
Systems, vol. 26, no. 1, pp. 12–19, 2011.

[20] CIGRÉ TF38.02.08, “Long Term Dynamics Phase II, Final Report,”
Tech. Rep., 1993.

[21] IEEE Standards Association, “C37.118.1-2011 IEEE Standard for Syn-
chrophasor Measurements for Power Systems.” Tech. Rep., 2011.

[22] J. G. Møller, H. Jóhannsson, and J. Østergaard, “Thevenin equivalent
method for dynamic contingency assessment,” in Proceedings of IEEE
Power & Energy Society’s General Meeting, Denver, CO, USA, 2015,
p. 5.

[23] G. C. Fox, S. W. Otto, and A. J. G. Hey, “Matrix algorithms on a
hypercube I: Matrix multiplication,” Parallel Computing, vol. 4, no. 1,
1987.

[Pub. B] A Memory-Efficient Parallelizable Method
for Computation of Thévenin Equivalents used in

Real-Time Stability Assessment

85

MANUSCRIPT 1

A Memory-Efficient Parallelizable Method for
Computation of Thévenin Equivalents used in

Real-Time Stability Assessment
Christina Hildebrandt Lüthje Jørgensen, Student Member, IEEE, Jakob Glarbo Møller, Member, IEEE,

Stefan Sommer and Hjörtur Jóhannsson, Member, IEEE

Abstract—This paper introduces a factor-solve method, which
efficiently computes Thévenin equivalents for all buses in the
power system. A range of real-time stability assessment methods
rely on Thévenin equivalents, and it is therefore essential that
these can be determined fast and efficiently. The factor-solve
method has runtime for computing Thévenin voltage that scales
linearly with system size resulting in runtime of only a few
milliseconds even for systems with several thousand buses. The
computations only need the sparse admittance matrix for the
power system and a sparse factorization resulting in low memory
requirements, and furthermore Thévenin impedances can be
determined in parallel. The factor-solve method is compared to
a reference method, which uses coefficients for super-position
to determine the Thévenin equivalents. The reference method is
shown to have dissatisfying runtime and complexity. The factor-
solve method is tested, parallelized and analysed, which shows a
considerable speed-up in computations of Thévenin equivalents
enabling them to be computed in real-time.

Index Terms—Algorithms, Power system analysis computing,
Real-time assessment, Thévenin equivalent

NOMENCLATURE

X Vector of complex entries
X Matrix with complex entries
|X| Number of non-zeros in matrix X
I Identity matrix
D (X) Diagonalization of the vector X into a diagonal

matrix

I. INTRODUCTION

THÉVENIN equivalent computations are used in assess-
ment of power system stability. Steady-state stability of

a generator can be determined as a margin of the maximum
power injection using Thévenin equivalents [1], [2]. In [3]–[5]
methods for voltage stability assessment are introduced which
takes advantage of Thévenin equivalents, while [6] derives
sensitivities based on a Thévenin equivalent representation to
detect transient voltage sags. In [7] the Thévenin equivalent
static contingency assessment (TESCA) method is introduced,
which uses Thévenin equivalents to solve the power-flow prob-
lem and to evaluate aperiodic small signal stability following
a contingency.

C. Jørgensen, J. Møller and H. Jóhannsson are with Center for Electric
Power and Energy, Department of Electrical Engineering, Technical University
of Denmark, Kongens Lyngby, Denmark (e-mail: chhil@elektro.dtu.dk).

S. Sommer is with Department of Computer Science, University of Copen-
hagen, Copenhagen, Denmark.

The introduction of methods for stability and security as-
sessment as well as methods for defining countermeasures
will either result in a competition for the available computa-
tional resources or introduce a need for larger computational
resources. It is therefore essential, that the methods are first of
all fast, but they should also use few computational resources
(CPU, memory, etc.). Therefore, Thévenin equivalents should
be computed both fast and efficiently. Decomposing the system
using a Schur complement has previously been proposed in
order to reduce system size and optimize computations.

In [8] the super-postion principle is used to determine the
contribution of each voltage or current source to the Thévenin
voltage. The method take advantage of a Schur complement,
which [9] use to decompose the system for dynamic power
system computations. In [5] a Schur complement is used
to limit the computational burden when finding Thévenin
equivalents for load buses, while [10] and the extended version
of this [11] applies a Schur complement to efficiently compute
Thévenin impedances for generators.

A range of methods for computing Thévenin equivalents
for loads is analysed in [12] in order to assess a voltage
stability margin. One method uses a Schur complement, and
the complexity is estimated to have a cubic overhead, which is
concluded to potentially become a burden for large systems.
The Schur complement is generally considered to be dense
[10], [13] and therefore it is computationally inefficient to
determine. In reality all the coefficients for super-position and
not just the Schur complement can be dense [14], which means
that computing the coefficients is computational expensive.

In [14] different factorization methods are analysed to
optimize the method for finding Thévenin equivalents. It is
identified, that the Clark Kent LU factorization (KLU) factor-
ization is the most efficient factorization method, however as
in [8] it is determined that the greatest share of the execution
time is spend on matrix multiplications due to the density of
the matrices involved. The coefficients for super-position and
Thévenin impedances are computed, whenever the topology
of the power system change, whereas the Thévenin voltage
can be determined for every new system state to monitor the
system or for every iteration of a steady-state analysis. In [8]
the method for determining coefficients for super-position was
optimized, however the computation of Thévenin voltages was
not addressed.

KLU is a factorization method optimized for sparse systems
[15]. The method transform the system to block triangular

MANUSCRIPT 2

form and use approximate minimum degree ordering of the
blocks to minimize fill-in before factorizing each block sepa-
rately. KLU uses block back substitution to solve a system of
linear equations. The factorization and the fill-in generated
for sparse systems is close to linear with systems size in
the context of this paper [10]. KLU is part of the library
SuiteSparse [16].

This paper introduces a new method for computing
Thévenin equivalents, opposed to the reference method [8],
[14]. The method builds on the ideas given in [10] of
developing a factor-solve method, where the method here
will compute the Thévenin equivalents for the entire system
instead of only the Thévenin impedances for generators. The
method will take advantage of block back substitution in KLU
to avoid computing coefficients for super-positon. Thereby,
the computationally expensive matrix multiplication of the
reference method will be omitted, and additionally the method
will be considerably more memory-efficient.

Although [12] estimates a cubic runtime, when using a
Schur complement, it will be shown that this is not the case
for the methods in this paper. The factor-solve method will
facilitate a speed-up of the runtime of both the computation
of the Thévenin impedances as well as the Thévenin voltages.
The method is split in to a sequential and parallel part com-
pared to the sequential reference method, making it suitable
for parallelization, which often enables the performance to
become considerably better.

Following the introduction Section I.A gives some examples
of real-time stability assessment methods using Thévenin
equivalents. Section II describes the reference method for com-
puting Thévenin equivalents using a Schur complement and
investigate the runtime of this method. A factor-solve method
for computing Thévenin equivalents is proposed in Section
III. The method is implemented and tested in Section IV and
lastly parallelized for optimal performance. The scalability
of the method is evaluated as well as the resulting runtime
and memory requirements of the computations. Section V
discusses the results and gives perspectives on the method,
while Section VI concludes the paper.

A. Thévenin equivalents in stability and security assessment

A range of methods for stability and security assessment use
Thévenin equivalents in their computations. To ensure that
these method can run in real-time, the Thévenin equivalent
computations should be fast and efficient. Below follows some
examples of Thévenin equivalents used in assessment methods.

1) Aperiodic small-signal rotor angle stability: In [1] the
maximal injectable power by a generator is determined. This
is used to determine a margin to the boundary for aperiodic
small-signal rotor angle stability as a percentage margin to
the maximal injectable power. This is based on algebraically
derived equations [17] and given as

%∆Pinj =
Pinj,max − Pinj

Pinj,max
· 100% (1)

=
cos (δ + φth) + 1

1 + |V |
|Vth| cosφth

· 100%, (2)

where the generator is represented as a voltage source V with
angle δ and the remaining grid by its Thévenin equivalent with
a voltage source Vth and an impedance Zth with angle φth.
Vth is used as the phase angle reference.

A real-time remedial action can be computed as a coun-
termeasure to keep the system from becoming unstable [2].
This is done by computing the reduction in power needed
for the critical generator to become N-1 secure. The power is
then redispatched to the remaining generators in the system
ensuring these also remain secure.

2) Voltage stability: In [5] a voltage stability margin for the
loads is determined. This uses the impedance match criterion
to determine the maximum deliverable power to the load,
which is given by

Smax =
|V 2

th| [|Zth| − (imag (Zth) sin θ + real (Zth) cos θ)]

2 [imag (Zth) cos θ − real (Zth) sin θ]
2

(3)
with θ being the power factor angle of the load. The margin
is then determined using the apparent power of the load Si

%∆Si =
Smax,i − Si

Smax,i
· 100%, (4)

which determines the distance to the boundary of voltage
stability.

3) Post-contingency aperiodic small-signal stability: In [7]
a method for security assessment is described that deter-
mines the aperiodic small-signal stability of the power sys-
tem following a contingency. The post-contingency steady-
state nodal voltages is determined by first computing the
Thévenin impedances post-contingency and then computing
the Thévenin voltage and nodal voltage angle iteratively until
the steady state voltage is found. The voltage angle δi is
determined at each iteration as

δi = arccos

(
Pi|Zth,i|
|Vi||Vth,i|

− Rth,i|Vi|
|Zth,i||Vth,i|

)
(5)

The resulting steady-state nodal voltage can then be used to
determine the N-1 stability using the earlier mentioned margin
for maximum injectable power by generators.

II. REFERENCE METHOD

A. Schur complement and Thévenin equivalents

In [8], [14] a method for computing Thévenin equiva-
lents is described, which uses coefficients for super-position.
Thévenin equivalents consist of a Thévenin impedance Zth

and Thévenin voltage Vth. The Thévenin equivalent seen from
node i satisfies

Vth,i = Vi − Zth,iIi, (6)

where Vi is the node voltage and Ii is the current injected in
to the network at node i.

Sources in a circuit can as in power-flow calculations be
partitioned in to two sets - current sources (cs) and volt-
age sources (vs). Floating nodes may be represented as a
current source injecting 0 current; loads may be represented
as impedances, dependent- or independent current sources;
generators with automatic voltage regulator (AVR) may be

MANUSCRIPT 3

represented as voltage sources; internal voltages of manually
excited machines may be represented as voltage sources.

The admittance matrix for the system can then be block-
wise partitioned as follows[

Ics
Ivs

]
=

[
Ycs Yv→c

Yc→v Yvs

] [
Vcs

Vvs

]
(7)

Eliminating Vcs from (7) yields

Ivs = YeqVvs −QacIcs (8)

with

Yeq = Yvs −Yc→vY
−1
cs Yv→c (9)

Qac = −Yc→vY
−1
cs (10)

where Yeq is the Schur complement and Qac is the accom-
panying matrix. This reduction of the network is also known
as Kron reduction [18].

The Thévenin impedances seen from node i is determined
by short circuiting all voltage sources and open-circuiting all
current sources, which will be

Zth,i =

{
Zcs(i, i) i ∈ cs

Yeq(i, i)
−1 i ∈ vs

(11)

where Zcs = Y−1
cs [8].

Using the definition for Thévenin voltage given in (6) and
the above network equations (8)-(10) the Thévenin voltages
for the cs and vs nodes respectively are defined as[

Vth,cs

Vth,vs

]
=

[
Zc Kv→c

Zc→v Kv

] [
Ics
Vvs

]
= K

[
Ics
Vvs

]
(12)

with

Zc = Zcs −D(Zth,cs) (13)
Kv→c = −ZcsYv→c (14)
Zc→v = D(Zth,vs)Qac (15)
Kv = I − D(Zth,vs)Yeq (16)

Algorithm 1 determines the Thévenin impedances and the
coefficient matrix K needed for computing the Thévenin
voltages.

Algorithm 1 Thévenin equivalents
Lcs,Ucs ← factorization of Ycs

UZcs ← solve(Lcs, I)
LT
Zcs

← solve(UT
cs, I)

Zcs ← LZcsUZcs

Zth,cs ← D(Zcs)
Qac ← −Yc→vZcs

Yeq ← Yvs +QacYv→c

Zth,vs ← D(Yeq)
−1

Zc ← Zcs −D(Zth,cs)
Kv→c ← −ZcsYv→c

Zc→v ← D(Zth,vs)Qac

Kv ← I −D(Zth,vs)Yeq

Zth ←
[
Zth,cs

Zth,vs

]

K ←
[

Zc Kv→c

Zc→v Kv

]

return Zth and K

B. Complexity of reference method

All computations of the reference method are done with sparse
matrices and the complexity of the computations will therefore
depend on the density of these matrices.

Computing Zcs will have the complexity O(|LZcs ||cs|),
which is the most expensive computation in Algorithm 1.
By comparison inverting sparse matrices will at maximum
have one computation per non-zero element in the matrix
for each column in the identity matrix, which gives a com-
plexity of O(|Lcs||cs|) = O(|Ucs||cs|) for solve(Lcs, I) and
solve(UT

cs, I). Empirically |Ucs| ≤ |LZcs |, and therefore
inversion will be computationally cheaper than computing Zcs.
The remaining computations of Algorithm 1 will also be of
lower complexity, since they involve at least one sparse matrix,
and as stated earlier the factorization is close to linear in
complexity. Hence the complexity of the algorithm will be
O(|LZcs ||cs|).

Assuming that |LZcs | (≃ |UZcs |) scale close to linear with
system size like it’s the case in practise with the number
of non-zeros and fill-in generated in the factorization in this
context [10] the complexity will be O(|cs|2).

Determining Thévenin voltages (12) is O(|K|), and there-
fore the computation of Thévenin voltages will depend on the
density of the coefficient matrix.

C. Test of reference method
The reference method for determining Thévenin equivalents
using Algorithm 1 and equation (12) is analysed in MATLAB
on a CPU of Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz.
In the implementation KLU is used as the factorization
method, due to its efficiency for sparse systems.

The test systems are given in Table I. The Pegase and
Polish-Winter systems can be found in MATPOWER [19],
the PTI systems are included in the PSS R©E 33.0 examples
and Nordic32 can be found in [20]. EECC-PSSE-33-0 is a
representation of the American Eastern interconnection.

TABLE I
TEST SYSTEMS

Case no. of
buses

no. of vs
nodes

non-zeros
in Y

Nordic32 46 20 160
Pegase89 89 12 501
Pegase1354 1354 260 4774
PTI-WECC-1648 1648 313 6680
Polish-Winter99 2383 327 8155
Polish-Winter03 2746 374 9344
Pegase2869 2869 510 10805
Polish-Winter07 3012 347 10144
PTI-EECC-7991 7917 1325 32211
Pegase9241 9241 1445 37655
Pegase13659 13659 4092 50909
EECC-PSSE-33-0 29827 3780 107527

Table II shows the density of the coefficient matrix for each
test system. Here the density is given as the number of non-
zeros and as the percentage of non-zeros to the maximum size
of the matrix. Table III shows the resulting runtime.

MANUSCRIPT 4

TABLE II
DENSITY OF K FOR TEST SYSTEMS

Case non-zeros
in K

density of
K (%)

Nordic32 547 25.9
Pegase89 7663 96.7
Pegase1354 1120078 61.1
PTI-WECC-1648 1706580 62.8
Polish-Winter99 2825717 49.8
Polish-Winter03 3027555 40.2
Pegase2869 2961793 36.0
Polish-Winter07 4206582 46.4
PTI-EECC-7991 44852962 71.6
Pegase9241 42515659 49.8
Pegase13659 184786127 99.0
EECC-PSSE-33-0 854782395 96.1

TABLE III
RUNTIME OF ALGORITHM 1 AND OF COMPUTING THÉVENIN VOLTAGES

Case Runtime (s)
Algorithm 1

Runtime (ms)
Vth

Nordic32 2.98·10−4 1.27·10−2

Pegase89 1.34·10−3 3.13·10−2

Pegase1354 0.11 2.74
PTI-WECC-1648 0.20 4.62
Polish-Winter99 0.30 7.08
Polish-Winter03 0.31 8.50
Pegase2869 0.41 7.65
Polish-Winter07 0.42 10.51
PTI-EECC-7991 6.31 118.13
Pegase9241 11.58 118.95
Pegase13659 36.70 530.13
EECC-PSSE-33-0 253.08 2519.75

For small systems the method is viable and the algorithm
has a runtime of a few milliseconds, however as the system
size and complexity grows, so does the runtime. Figure 1
shows the runtime of Algorithm 1 and the runtime for com-
puting Thévenin voltages Vth (12) plotted against system size.

As expected, the figure shows complexity that is close to
quadratic to system size for Algorithm 1. The complexity is
dependent on |LZcs |, which was assumed to scale close to
linear with |cs|. |cs| scales close to linear with system size as
seen in Table I. This results in an almost quadratic complexity.

The complexity of computing Thévenin voltages was anal-
ysed to be O(|K|). An increased system size result in larger
matrices and thereby also a possibility of a larger number of
non-zeros, therefore the close to quadractic tendency for these
computations is reasonable.

PTI-EECC-7991 and Pegase9241 has almost the same num-
ber of non-zeros in the coefficient matrix |K| even though
the system size for Pegase9241 is considerably larger. As
expected this gives nearly identical runtimes for computing
Vth. Furthermore, the number of non-zeroes |K| for EECC-
PSSE-33-0 is almost 5 times larger than for Pegase13659
resulting in a runtime for Vth, which is also 5 times larger.
This is consistent with the analysed complexity.

101 102 103 104 105
10-6

10-4

10-2

100

102

104

Fig. 1. Runtime for the initial method depending on the number of buses.
The runtime is shown for Algorithm 1 and the Thévenin voltages (12) and
the plot is logarithmic.

III. INTRODUCTION OF FACTOR-SOLVE METHOD

Performance of Algorithm 1 and the computation of Thévenin
voltages is dissatisfying and doesn’t scale well with system
size, but it turns out that there is a potential for improvements.
KLU solves a system by using block back substitution. By
use of this solver it is possible to find the Thévenin voltages
without computing the coefficient matrix.
The equations from (12) can be written as

Vth,cs = (Zcs −D (Zth,cs)) Ics − ZcsYv→cVvs (17)
Vth,vs = D(Zth,vs)QacIcs + (I − D(Zth,vs)Yeq)Vvs (18)

Defining Ṽ as

Ṽ = Zcs (Ics −Yv→cVvs) (19)

and inserting this in to (17) and (18) gives

Vth,cs = Ṽ − Zth,csIcs (20)

Vth,vs = Vvs − Zth,vs

(
YvsVvs +Yc→vṼ

)
(21)

Solving Ycsx = b for x i.e. finding x = Zcsb can be
determined by block back substitution using the factors LU
from the KLU factorization. This will be defined as klu(LU, b)
and Ṽ can then be calculated by klu(LU, Ics −Yv→cVvs). It
is hereby possible to determine the Thévenin voltages using
only the factorization of Ycs and the Thévenin impedances.
This means, that the entire coefficient matrix K is no longer
needed, which will simplify the algorithm.

The Thévenin impedances for cs and vs nodes are defined
in (11). The diagonal of Zcs and the diagonal of the Schur
complement Yeq is needed in these computations.

The diagonal of Zcs determines the Thévenin impedances
for cs nodes and is computed by taking UZcs = L−1

cs and
LZcs = U−1

cs and multiplying the rows and columns, that result
in the diagonal i.e.

Zth,cs,k = LZcs(k, :)UZcs(:, k) ∀k ∈ cs, (22)

MANUSCRIPT 5

where LZcs(k, :) is the k’th row of LZcs and UZcs(:, k) is the
k’th column of UZcs .

The Thévenin impedances for the vs nodes are given as
the inverse of the diagonal elements of the Schur complement
Yeq .

Zth,vs,k = Yeq(k, k)
−1 ∀k ∈ vs, (23)

which is scalar inversion.
Using (9) this can be determined by

Yeq(k, k) = Yvs(k, k)−Yc→v(k, :)ZcsYv→c(:, k) (24)

As with the Thévenin voltages block back substitution is used
to determine part of the equation. The Thévenin impedances
for the vs nodes are found as

Û(:, k) = ZcsYv→c(:, k)← klu (LU,Yv→c(:, k)) (25)

Yeq(k, k) = Yvs(k, k)−Yc→v(k, :)Û(:, k) (26)

Zth,vs,k = Yeq(k, k)
−1 (27)

The computations for the vs nodes is similar to the compu-
tations given in [10], and the method will therefore be called a
factor-solve method. The method factorize part of the system
and then solves for part of the equations to efficiently compute
the solution. This approach is used to find the Thévenin
impedances for the vs nodes and to find the Thévenin voltages
for the entire system.

Algorithm 2 factorize Ycs and compute the Thévenin
impedances possibly in parallel.

Algorithm 2 Thévenin equivalents
Lcs,Ucs ← factorization of Ycs {Output: LU}
UZcs ← solve(Lcs, I)
LZcs ← solve(UT

cs, I)T

for k = 1..|cs| {In parallel} do
Zth,cs,k ← LZcs(k, :)UZcs(:, k)

end for
for k = 1..|vs| {In parallel} do
Û(:, k) ← klu(LU,Yv→c(:, k))
Yeq(k, k)← Yvs(k, k)−Yc→v(k, :)Û(:, k)
Zth,vs,k ← Yeq(k, k)

−1

end for
Zth ←

[
Zth,cs

Zth,vs

]

return Zth and LU

This way no computation time is spent on the coefficients
and furthermore the computation of the Thévenin voltages
is altered from matrix vector multiplication with the dense
coefficient matrix to a block back substitution and matrix
vector multiplications with sparse matrices.

A. Complexity of factor-solve method

The complexity of Algorithm 2 is split in to a sequential and a
parallel part. The first part is sequential and will be O(|cs|2),
since the inversions are O(|Lcs||cs|) and O(|Ucs||cs|) respec-
tively and the fill-in scales linearly with system size. The
factorization has negligible runtime compared to this due to
the close to linear complexity.

The two loops run sequential will be O(|cs|2) and
O(|cs||vs|), due to the linear complexity of the computations
in the loops. When run in parallel the runtime is theoretically
determined by the number of cores. By Amdahl’s law the
total runtime will only be limited by the sequential part of the
algorithm, since an unlimited number of cores can be added
to completely parallelize the loops. In practise however there
will be an overhead due to communication between the cores.

For the computation of the Thévenin voltages the complex-
ity will be O(|cs|). The matrix-vector multiplication is linear
due to the sparsity of the matrices scaling with system size,
and the block back substitution of KLU is close to linear. This
complexity is lower than the reference method’s complexity
of O(|K|), which is almost quadratic to system size for the
largest systems.

IV. IMPLEMENTATION AND TEST OF FACTOR-SOLVE
METHOD

The factor-solve method is implemented in MATLAB to
evaluate the method with respect to runtime of both Algorithm
2 and the computation of Thévenin voltages as well as the
accuracy of the results and the memory requirements. The
method is tested on Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20GHz. The test systems were given earlier in Table I.

The resulting runtime for Algorithm 2 and the runtime for
computing the Thévenin voltages (19)-(21) is shown in Table
IV, while Fig. 2 shows a plot of the runtime.

TABLE IV
RUNTIME AND SPEED-UP AND ERROR FOR FACTOR-SOLVE METHOD

Case Runtime (s)
Algorithm 2

Speed-up
Algorithm 2

Runtime
(ms) Vth

Speed-
up Vth

Nordic32 0.045 0.01 0.084 0.15
Pegase89 0.050 0.03 0.101 0.31
Pegase1354 0.114 0.97 0.295 9.28
PTI-WECC-1648 0.544 0.37 0.731 6.32
Polish-Winter99 0.241 1.23 0.457 15.50
Polish-Winter03 0.319 0.98 0.540 15.72
Pegase2869 0.355 1.15 0.604 12.66
Polish-Winter07 0.300 1.39 0.565 18.60
PTI-EECC-7991 1.745 3.62 1.473 80.18
Pegase9241 2.983 3.88 1.708 69.63
Pegase13659 6.276 5.85 2.328 227.75
EECC-PSSE-33-0 20.592 12.29 5.522 456.28

Algorithm 2 is seen to have close to quadratic complexity as
analysed earlier, while the Thévenin voltages is seen to have
an almost linear complexity as analysed earlier. The change
in complexity for the Thévenin voltages result in a significant
decrease in runtime compared to the reference method. It is
notable that, all test systems have runtimes for computing
Thévenin voltages below 6 ms. The system PTI-WECC-1648
has a runtime that is considerably different compared to the
other systems. The complexity is only close to linear and
actually depends on the fill-in in the factorization, which can
differ depending on the structure of the system.

The speed-up is calculated as a quantity for the performance
of the factor-solve method compared to the reference method.
This is defined as t1

t2
, where t1 is the runtime of the reference

MANUSCRIPT 6

101 102 103 104 105
10-5

10-4

10-3

10-2

10-1

100

101

102

Fig. 2. Runtime for the factor-solve method depending on the number of
buses. The runtime is shown for Algorithm 2 and the Thévenin voltages (12)
and the plot is logarithmic.

method and t2 is the runtime of the factor-solve method. The
speed-up is shown alongside the runtimes in Table IV.

For the smaller systems neither the algorithm nor the
calculations of Thévenin voltage receives a speed-up. Systems
larger than 1000 buses is sped up in Thévenin voltage com-
putations but only some benefit from Algorithm 2. Algorithm
2 requires large power systems to be faster than Algorithm 1.

Some systems benefit more from computing Thévenin volt-
ages with the factor-solve method instead of the reference
method. The systems Pegase2869 and Pegase9241 both have
a lower speed-up than test systems of similar size. The reason
for this is found in Table II. The coefficient matrix for both
Pegase2869 and Pegase9241 is less dense than for the systems
with similar size, and therefore weren’t as slow with the
reference method. The complexity has changed from being
dependent on the number of non-zeros in the coefficients to
be close to linearly dependent on system size, which now gives
runtimes, that scale better with system size.

Errors in Thévenin voltages obtained with the two methods
can be stated in terms of a total vector error (TVE) [21] using
the reference method with the standard LU factorization in
MATLAB (UMFPACK) as reference

TVE (%) =

√
(X̃r −Xr)2 + (X̃i −Xi)2

X2
r +X2

i

· 100%, (28)

where X̃ is the estimate (reference or factor-solve method)
and X is the true value (reference method with UMFPACK).

The maximum TVE can be seen in Table V. The two
methods only differs by a small margin in accuracy of the
resulting Thévenin voltages.

A benefit from the factor-solve method is the amount of
memory needed. The reference method need to store the
Thévenin impedances along with the coefficient matrix K,
while the factor-solve method need to store the Thévenin
impedances and the sparse factorization of Ycs. Especially for
the larger systems there is a significant reduction in memory
using the factor-solve method, since the coefficient matrix is

TABLE V
MAXIMUM TVE (%) FOR THE REFERENCE AND FACTOR-SOLVE METHOD

Case Max TVE (%)
(reference)

Max TVE (%)
(factor-solve)

Nordic32 2.43·10−13 2.23·10−13

Pegase89 1.71·10−12 1.71·10−12

Pegase1354 4.55·10−12 4.56·10−12

PTI-WECC-1648 6.98·10−12 7.02·10−12

Polish-Winter99 1.95·10−11 2.79·10−11

Polish-Winter03 2.98·10−11 2.98·10−11

Pegase2869 5.50·10−12 5.54·10−12

Polish-Winter07 1.52·10−11 1.52·10−11

PTI-EECC-7991 9.26·10−12 9.17·10−12

Pegase9241 2.13·10−11 2.13·10−11

Pegase13659 2.20·10−11 2.22·10−11

EECC-PSSE-33-0 1.30·10−09 8.01·10−10

dense. Sparse matrices store the location and value of a non-
zero entry, while full matrices store all entries of a matrix.
The test systems with a coefficient matrix with a high density,
see Table II, will therefore be more efficiently stored as a full
matrix than a sparse.
The KLU factorization of a matrix A is defined as

PRAQ = LU+ F (29)

P,Q are permutations stored as vectors, R is a scaling matrix
optimally stored as a vector, L,U are complex sparse matrices
and F = 0 in this context [14].

The memory requirements for storing the the coefficient
matrix (either in full or sparse format) compared to storing
the sparse factorization can be seen in Table VI. Integers like
doubles are stored using 64 bits.

TABLE VI
MEMORY REQUIREMENTS FOR COEFFICIENT MATRIX K IN SPARSE AND

FULL FORMAT AND FOR THE FACTORIZATION OF Ycs

Case K
(full)

K
(sparse)

Factorization
of Ycs

Nordic32 33.1 kB 13.2 kB 2.9 kB
Pegase89 123.8 kB 180.3 kB 17.7 kB
Pegase1354 28.0 MB 25.6 MB 164.3 kB
PTI-WECC-1648 41.4 MB 39.1 MB 233.6 kB
Polish-Winter99 86.6 MB 64.7 MB 298.8 kB
Polish-Winter03 115.1 MB 69.3 MB 349.4 kB
Pegase2869 125.6 MB 67.8 MB 390.5 kB
Polish-Winter07 138.4 MB 96.3 MB 400.4 kB
PTI-EECC-7991 0.9 GB 1.0 GB 1.2 MB
Pegase9241 1.3 GB 1.0 GB 1.4 MB
Pegase13659 2.8 GB 4.1 GB 2.1 MB
EECC-PSSE-33-0 13.3 GB 19.1 GB 5.6 MB

Storing the factorization requires less memory than storing
the coefficient matrix for all test systems i.e. the factor-solve
method requires less than the reference method. As with the
runtime for the Thévenin voltages it is also here the largest
systems that have the biggest improvement. For the test system
EECC-PSSE-33-0, which is optimally stored as a full matrix,
the improvement is a factor of over 2400, while the factor is
around 220 for Polish-Winter99 and only 4.6 for Nordic32.

MANUSCRIPT 7

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

(a)

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

(b)

Fig. 3. Speed-up of Algorithm 2 compared to Algorithm 1 for all test systems - (a) shows all test systems and (b) is a zoom of the smaller systems.

This difference is due to the scaling of the memory. The
memory for storing K as a sparse matrix is scaling close to
quadratic with system size, while the memory for the sparse
factorization of Ycs is scaling linearly.

A. Parallelization of Algorithm 2

The runtime for computing Thévenin voltages has been de-
creased significantly, however Algorithm 2 is only consider-
able faster for the larger systems. A benefit from the factor-
solve method is that Algorithm 2 can easily be parallelized.
The runtime is therefore tested on a machine with 2 CPUs of
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz with 12 cores
each. The algorithm will be tested on the following number
of cores 1, 2, 4, 6, . . . , 22, 24.

Fig. 3a shows the speed-up of Algorithm 2 compared to
Algorithm 1 for different number of cores for each test system
and Fig. 3b shows the same with the 4 largest systems
excluded.

Parallelization decrease the runtime of Algorithm 2 consid-
erably. As system size grows the speed-up increases signifi-
cantly up to a factor of 90 for the largest system compared
to a factor 12 without parallelization. The smallest systems
still has no speed-up, since these systems already have a short
runtime due to their limited size, and the introduction of loops
and overhead time only slows them down. There is a range
of test systems that when run sequential did not benefit from
Algorithm 2, however when parallelized there is now a benefit.
Fig. 3a and 3b furthermore show, that the optimal number of
cores increase with system size. After the point of maximal
speed-up it decreases due to the increased overhead time,
which will be larger than the gain of adding additional cores.

The for loops in Algorithm 2 are implemented with the
function parfor in Matlab for all cores. This will for 1
core i.e. the sequential version be a little slower than using
for, since there is a small penalty when using parfor. The
sequential version could therefore be a little faster.

Table VII shows the number of cores that maximize the
speed-up for Algorithm 2 and thereby also minimize the

runtime. It shows explicitly that the optimal number of cores
increase with systems size and so does the speed-up. Table
VII show a runtime of 2.8s for EECC-PSSE-33-0 with the
parallelized factor-solve method compared to 253s for the
reference method. This means that the factor-solve method
will be able to respond faster to a sudden change in the system
topology than the reference method.

TABLE VII
RESULTS FOR THE OPTIMAL NUMBER OF CORES FOR EACH TEST SYSTEM

Case Optimal
no. of
cores

Runtime (s)
Algorithm 2

Speed-up
Algorithm 2

Nordic32 1 0.045 0.007
Pegase89 1 0.050 0.027
Pegase1354 2 0.101 1.105
PTI-WECC-1648 4 0.281 0.727
Polish-Winter99 6 0.121 2.439
Polish-Winter03 10 0.155 2.008
Pegase2869 6 0.164 2.477
Polish-Winter07 8 0.136 3.070
PTI-EECC-7991 16 0.344 18.354
Pegase9241 14 0.497 23.289
Pegase13659 16 0.901 40.750
EECC-PSSE-33-0 16 2.759 91.715

Fig. 4 show the distribution of runtime on each part of
Algorithm 2 for the optimal number of cores given in Table
VII. Factorization time is negligible as expected by its almost
linear complexity compared to the quadratic complexity of the
entire algorithm as for the reference method [14].

The majority of time is spent on computing the Thévenin
impedances for the cs nodes. However, there is also a sig-
nificantly larger number of cs nodes than vs nodes as seen
in Table I. Dividing the runtimes by the number of cs and
vs nodes respectively, gives an average runtime for cs nodes
that is lower than for the vs nodes in every case. The reason
might be found in the difference in the computations. However,
it might also be that the optimal number of cores for the

MANUSCRIPT 8

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

Fig. 4. Distribution of the runtime of Algorithm 2 on to each part of the
algorithm for the optimal number of cores.

cs nodes is larger than for the vs nodes. The loops are
independent, and therefore running both loops on the same
number of cores might result in the computations for the vs
nodes being more dominated by overhead. Computations for
cs nodes are furthermore split in to a sequential part (inversion
of factorization factors) and a parallel part, where the first part
will not benefit from additional cores.

V. DISCUSSION AND PERSPECTIVES

The factor-solve method determines Thévenin voltages in lin-
ear time given the Thévenin impedances and the factorization
of the admittance matrix for the cs nodes. This means that
on the given CPU the Thévenin voltages for all buses in the
system could be determined in under 6 ms for tests system
up to a size of 30.000 buses. If the calculations where to be
used in connection with Phasor Measurement Units (PMUs)
[22], [23] the method would be able to determine the Thévenin
voltages for every measurement, since these will normally be
received at the rate of the system frequency (every 16-20ms).

In the factor-solve method the runtime of Algorithm 2
dominates the computations, but this is only run, whenever the
system topology change. The factorization time is negligible
due to linearity, thus the majority of time is spent on deter-
mining the Thévenin impedances. Runtime for the factor-solve
method compared to the reference method is better especially
for the larger systems. The complexity is still quadratic as with
the reference method, however the implementation is a little
faster. More importantly the method can easily be parallelized,
since the factor-solve method is split in to a sequential and a
parallel part compared to the reference method consisting of
sequential matrix multiplications.

The fact that the algorithm can be parallelized enables the
method to have an even lower runtime. Using only a couple
of cores makes the method better than the initial method
for systems with 2000 buses or more, while a single core
is sufficient to decrease runtime for the larger systems. The
system size and the density of the larger systems furthermore
increases the gain from using parallelization.

The smallest systems does not benefit from the factor-solve
method, since these are so small that the time spend on matrix
multiplications is neglible and changing these computations in
to loops only worsen the runtime due to the overhead.

A few systems benefit from computing Thévenin voltages
by use of the factor-solve method without benefiting from
Algorithm 2 even with parallelization. An alternative method
for these system would be to combine the two methods. The
Thévenin impedances along with the factorization could be
computed by line 1-8 in Algorithm 1 and then the Thévenin
voltages would be computed by the factor-solve method.
These systems will then get the lowest possible runtime, and
furthermore only running line 1-8 of Algorithm 1 will also
result in a further decrease in the runtime of computing the
Thévenin impedances.

This sort of hybrid method would be useable for systems
consisting of between 1.000 and 2.000 busses. It should
however be noted that the runtime for both methods for these
systems is low enough for real-time computations and either
one would be suitable. The method can be used for security
assessment in for example the Thévenin equivalent static con-
tingency assessment method [7]. Here Thévenin impedances
is determined for all N-1 contingencies and Thévenin voltages
are then computed several times when determining the steady-
state nodal voltage. For contingency analysis it is important to
use the fastest combination to ensure that assessment can be
done in reasonable time.

An idea for future work would be to investigate the potential
use of GPUs instead of doing all the computations on the
CPU. Moving data to and from the GPU is expensive, but
when the data is there the computations can be executed and
parallelized more efficiently. It could potentially be used on
the loops in Algorithm 2. However, since there is no reuse of
data in the loops it might not give a better performance, since a
GPU excel when doing the same computations multiple times.
Furthermore, it would also be satisfactory if the sequential part
of the algorithm could have it’s complexity reduced in order
to scale better or be changed to be able to run in parallel.

In the complexity analysis the runtime was determined to
be dependent on the sparsity of the factors in the factorization,
which is almost linear to the system size. From the results it
can be seen that this is the case for most of the test systems,
however the structure of some systems give rise to a larger fill-
in and will affect the resulting runtime. It would be interesting
to find specific reasons for the behaviour of these system.

A clear benefit from the factor-solve method is the decrease
in memory usage, where a reduction in required memory was
seen for all test systems. This together with the now linear
complexity of the Thévenin voltages computations will make
the method use fewer computational resources and thereby
leave room for other assessment methods.

Future work would also be to include the factor-solve
method in stability assessment methods to test their perfor-
mance with the new calculations. It would then be possible to
analyse the these methods and determine new areas suitable
for optimization. It would furthermore be interesting to test
the method in a real-time setting on a SW-platform like [24].

MANUSCRIPT 9

VI. CONCLUSION

The paper describes a reference method for determining the
Thévenin equivalents for all nodes in a power system. The
reference method was analysed to be insufficient especially for
large power systems. The given complexity of the method is
dependent on the density of the coefficients and will therefore
be less viable for some systems compared to others due to the
structure of the power system.

A factor-solve method was introduced, which takes ad-
vantage of the block back substitution in KLU. The method
spends no computation time on generating coefficients and the
calculations of Thévenin voltages computation can be done in
linear time. Furthermore, the memory usage is significantly
lower than for the reference method changing from gigabytes
to a couple of megabytes for larger systems.

Computations of Thévenin impedances can take advantage
of parallelization and runtime will therefore be dependent on
the number of cores used. The optimal number of cores is
shown to increase with system size. The runtime for determin-
ing Thévenin impedances is still not satisfying for the largest
test system, however these will only be determined, when
system topology change. Thévenin voltages are determined
without relying on parallization and the linear scaling with
system size, enables the factor-solve method to have consid-
erably lower computation time than the reference method.

REFERENCES

[1] H. Jóhannsson, A. H. Nielsen, and J. Østergaard, “Wide-Area Assess-
ment of Aperiodic Small Signal Rotor Angle Stability in Real-Time,”
IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4545–4557,
2013.

[2] T. Weckesser, H. Jóhannsson, and J. Østergaard, “Real-Time Remedial
Action Against Aperiodic Small Signal Rotor Angle Instability,” IEEE
Transactions on Power Systems, vol. 31, no. 1, pp. 387–396, 2016.

[3] I. Šmon, G. Verbič, and F. Gubina, “Local voltage-stability index using
Tellegen’s theorem,” IEEE Transactions on Power Systems, vol. 21,
no. 3, pp. 1267–1275, 2006.

[4] S. Corsi and G. Taranto, “A Real-Time Voltage Instability Identification
Algorithm Based on Local Phasor Measurements,” IEEE Transactions
on Power Systems, vol. 23, no. 3, pp. 1271–1279, 2008.

[5] Y. Wang, I. R. Pordanjani, W. Li, W. Xu, T. Chen, E. Vaahedi, and
J. Gurney, “Voltage stability monitoring based on the concept of coupled
single-port circuit,” IEEE Transactions on Power Systems, vol. 26, no. 4,
pp. 2154–2163, 2011.

[6] T. Weckesser, H. Jóhannsson, J. Østergaard, and T. Van Cutsem, “Sensi-
tivity based assessment of transient voltage sags caused by rotor swings,”
in Proceedings of the 18th Power Systems Computation Conference
(PSCC), Wroclaw, Poland, 2014.

[7] J. G. Møller, H. Jóhannsson, and J. Østergaard, “Thevenin equivalent
method for dynamic contingency assessment,” in Proceedings of IEEE
Power & Energy Society’s General Meeting, Denver, CO, USA, 2015.

[8] ——, “Super-Positioning of Voltage Sources for Fast Assessment of
Wide-Area Thévenin Equivalents,” IEEE Transactions on Smart Grid,
vol. 8, no. 3, pp. 1488–1493, 2017.

[9] P. Aristidou, D. Fabozzi, and T. Van Cutsem, “Dynamic Simulation of
Large-Scale Power Systems Using a Parallel Schur-Complement-Based
Decomposition Method,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 10, pp. 2561–2570, 2014.

[10] S. Sommer and H. Jóhannsson, “Real-time thevenin impedance compu-
tation,” in Proceedings of IEEE PES Innovative Smart Grid Technologies
Conference (ISGT), Washington, DC, USA, 2013, pp. 1–6.

[11] S. Sommer, A. Aabrandt, and H. Jóhannsson, “Reduce-Factor-Solve for
Fast Thevenin Impedance Computation and Network,” IET Generation,
Transmission & Distribution, nov 2018.

[12] H. Yuan and F. Li, “A comparative study of measurement-based
Thevenin equivalents identification methods,” in 2014 North American
Power Symposium (NAPS). Pullman, WA, USA: IEEE, 2014, pp. 1–6.

[13] L. Giraud, A. Haidar, and Y. Saad, “Sparse approximations of the Schur
complement for parallel algebraic hybrid solvers in 3D,” Numerical
Mathematics-theory Methods and Applications, vol. 3, no. 3, pp. 276–
294, 2010.

[14] C. Hildebrandt, B. C. Karatas, J. G. Møller, and H. Jóhannsson, “Evalua-
tion of Factorization Methods for Thévenin Equivalent Computations in
Real-Time Stability Assessment,” in Proceedings of 20th Power Systems
Computation Conference (PSCC), Dublin, Ireland, 2018.

[15] T. A. Davis, “Algorithm 907 : KLU , A Direct Sparse Solver for Circuit
Simulation Problems,” ACM Transactions on Mathematical Software,
vol. 37, no. 3, pp. 1–17, 2010.

[16] ——, Direct Methods For Sparse Linear Systems, N. J. Higham, Ed.
Gainesville, Florida: SIAM, 2006.

[17] H. Jóhannsson, J. Østergaard, and A. H. Nielsen, “Identification of
critical transmission limits in injection impedance plane,” International
Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 433–
443, 2012.

[18] F. Dorfler and F. Bullo, “Kron Reduction of Graphs With Applications
to Electrical Networks,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 60, no. 1, pp. 150–163, 2013.

[19] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MAT-
POWER: Steady-State Operations, Planning, and Analysis Tools for
Power Systems Research and Education,” IEEE Transactions on Power
Systems, vol. 26, no. 1, pp. 12–19, 2011.

[20] CIGRÉ TF38.02.08, “Long Term Dynamics Phase II, Final Report,”
Tech. Rep., 1993.

[21] IEEE Standards Association, “C37.118.1-2011 IEEE Standard for Syn-
chrophasor Measurements for Power Systems.” Tech. Rep., 2011.

[22] M. Glavic and T. Van Cutsem, “Wide-Area Detection of Voltage
Instability From Synchronized Phasor Measurements. Part I: Principle,”
IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1408–1416,
2009.

[23] ——, “Wide-Area Detection of Voltage Instability From Synchronized
Phasor Measurements. Part II: Simulation Results,” IEEE Transactions
on Power Systems, vol. 24, no. 3, pp. 1417–1425, 2009.

[24] H. Jóhannsson, H. Morais, A. H. B. Pedersen, Q. Wu, and D. Ouellette,
“SW-platform for R&D in Applications of Synchrophasor Measurements
for Wide-Area Assessment, Control and Visualization in Real-Time,”
CIGRE US National Committee 2014 Grid of the Future Symposium,
2014.

Christina Hildebrandt Lüthje Jørgensen (S’17) received the M.Sc. degree
in mathematical modelling and computation from the Technical University of
Denmark in 2015, where she is currently pursuing the Ph.D. degree with the
Centre of Electric Power and Energy, Department of Electrical Engineering.
Her research interest includes developing high performance algorithms for
assessing stability of power systems.

Jakob Glarbo Møller (M’17) received the M.Sc. and Ph.D. degrees in
electrical engineering from the Technical University of Denmark in 2013 and
2017 respectively, where he is currently a postdoc with the Centre of Electric
Power and Energy, Department of Electrical Engineering. His research interest
includes algorithms for assessing operational security of power systems.

Stefan Sommer received his M.Sc. in mathematics in 2008 and his PhD in
computer science in 2012 from the University of Copenhagen. He is currently
Associate Professor at the Department of Computer Science, University of
Copenhagen. His research interests cover aspects of mathematical modelling,
numerical algorithms and statistics, including foundational and algorithmic
problems in analysis of data with complex structure.

Hjörtur Jóhannsson (M’11) received the M.Sc. and PhD degrees in electrical
engineering from the Technical University of Denmark in 2007 and 2011
respectively, where he is currently a Senior Scientific Consultant at the Center
of Electric Power and Energy, Department of Electrical Engineering. His
research interests concern the development of methods for secure and stable
operation of power systems with a high share of RES based production, with
special focus on real-time approaches.

[Pub. C] Binary Search and Fit Algorithm for
Improved Voltage Stability Boundary Monitoring

95

Binary Search and Fit Algorithm for Improved
Voltage Stability Boundary Monitoring
Christina Hildebrandt Lüthje Jørgensen,
Bahtiyar Can Karatas, Hjörtur Jóhannsson

Department of Electrical Engineering
Technical University of Denmark

Kgs. Lyngby, Denmark

Stefan Sommer
Department of Computer Science

University of Copenhagen
Copenhagen, Denmark

Abstract—This paper introduces a binary search algorithm
using second order polynomial fitting to efficiently determine
the maximum power transfer to a non-controlled load when
accounting for variations in Thévenin voltage magnitude due
to non-linearity. This is used for voltage stability boundary
monitoring of a power system in real time. The binary search with
polynomial fitting (BSPF) is compared to a reference algorithm,
which sweeps over different load levels, and a binary search and
is shown to improve both runtime and accuracy of results. The
assessment method can take advantage of parallelization, which
together with the BSPF algorithm makes it possible to determine
a margin for each of the 2.000 non-controlled loads in a 3.000 bus
test system in less than 6 seconds. This enables early detection
of voltage instability in highly dynamic future smart grid based
power systems.

Index Terms—Power system analysis computing, Power system
stability, Real-time assessment, Thévenin equivalent

I. INTRODUCTION

Smart grid solutions such as real-time stabillity assessment
methods are important in future power systems with a high
share of renewable energy sources. A range of real-time
stability assessment methods focuses on the use of Thévenin
equivalents. In [1] an algebraically derived equation is used to
determine a generators distance to the boundary of aperiodic
small signal rotor angle stability. This can be computed in
milliseconds [2] by fast computations of Thévenin equivalents.
Thévenin equivalents have been suggested in voltage sta-

bility assessment [3]–[5], which uses an impedance match
criterion, where the maximum power transfer occurs when the
load impedance equals the Thévenin impedance. This holds
under the assumption that the Thévenin voltage is constant
as the load changes. The complexity of such methods is
almost linear however, the impedance matching will not be
able to detect instability issues in certain scenarios [6]. This is
investigated further in [7], which suggest an alternative method
that accounts for changes in the Thévenin voltage magnitude
arising from non-linearity as the load impedance changes.
High performance algorithms are important to ensure real-

time feasiblity and has been a focus of recent research [8],
[9]. The Thévenin equivalent for the generators needs to be
determined repeatedly [7] making the computational burden
for determining the maximum power transfer high. A Schur
complement needs to be computed when determining the

978-1-5386-8218-0/19/$31.00 ©2019 IEEE

coefficients [10], which can be computationally inefficient due
to the density [2], [11]. It is therefore important to lower
the number of computations to make the stability assessment
method feasible for real-time computations.
This paper contributes with a binary search algorithm to

efficiently compute the maximum power transfer to a load
accounting for non-linearity of Thévenin voltage and includes
fitting to a second order polynomial for better performance.
The algorithm is compared to a reference algorithm, which
sweeps over different load levels to find the maximum, and is
shown to have significantly higher accuracy. Furthermore, the
effect of parallelization on runtime will be tested.
Section II describes the Thévenin equivalent computations

and the method for computing the maximum power transfer to
a load as in [7]. The different algorithms are introduced and
described in Section III. Implementation and tests with respect
to runtime and accuracy are done in Section IV. Furthermore,
some tests with parallelization are carried out. Section V
discusses the results, while Section VI concludes the paper.

II. BACKGROUND
A. Thévenin equivalents
Thévenin equivalents consist of a Thévenin impedance Zth
and Thévenin voltage V th. The Thévenin equivalent seen from
node i satisfies

V th,i = V i − Zth,iIi, (1)

where V i is node voltage and Ii is current injected at node i.
The network can be split in to 2 sets of buses - voltage-

controlled buses (vc) and non-controlled buses (nc) with no
source. The vc buses will be the terminal of a generator
with automatic voltage regulators or the internal voltage seen
behind the synchronous reactance jXd, when the machine
is manually excited or the over-excitation limiter (OXL) is
activated. By representing loads as impedances the current
injected at nc buses will be 0. The admittance matrix will
then be block-wise partitioned as[

0
Ivc

]
=

[
Ync Yv→n
Yn→v Yvc

] [
Vnc
Vvc

]
(2)

Combining (1) and (2) the Thévenin voltage can be determined
for the nc buses and vc buses respectively as

V th,nc = −Y−1
ncYv→nVvc (3)

V th,vc =
(
I − D

(
Zth,vc

)
Yeq

)
Vvc (4)

where I is the identity matrix and D
(
Zth,vc

)
is the diag-

onalization of Zth,vc in to a diagonal matrix and Yeq =
Yvc −Yn→vY−1

ncYv→n is the Schur complement [12]. Y−1
nc

is determined efficiently using an LU factorization [2].
The coefficients will be defined asKnc = −Y−1

ncYv→n and
Kvc = I − D

(
Zth,vc

)
Yeq .

Fig. 1 show the Thévenin equivalent for an nc load ZLD =
RLD + jXLD. The equivalent is independent of the load of
the node and therefore the admittance of load i is removed
from Ync, when determining row i of Knc. Fig. 2 shows the
Thévenin equivalent for a generator.

Zth,nc = Zth,nc∠φth,nc

V th,nc =

Vth,nc∠θth,nc

ZLD =

ZLD∠γLD

Fig. 1. Thévenin equivalent seen from a load

Zth,vc = Zth,vc∠φth,vc

V vc =

Vvc∠δvc
V th,vc =

Vth,vc∠θth,vc

Fig. 2. Thévenin equivalent seen from a generator

The Thévenin impedance is determined as [10]

Zth,i =

{
Znc(i, i) i ∈ nc

Yeq(i, i)
−1 i ∈ vc

(5)

where Znc = Y−1
nc . The Thévenin impedance of nc loads is

independent of the load of the node and this therefore needs
to be accounted for in the computations.

B. Maximum power transfer to a load

The maximum power transfer PLD,max to a given load can
be determined more accurately by accounting for changes in
the Thévenin voltage magnitude seen from the load [7]. The
power transfer to the load PLD for a given change in ZLD
can be determined by updating Ync with the new load and
computing the Thévenin equivalent seen from the generators.
The new rotor angle of the generators δvc can be computed as

δvc = arccos

(
Vvc cosφth,nc − PinjZth,vc

Vth,vcVvc

)
+θth,vc−φth,vc,

(6)
where Pinj is the power injected by the generator, which is
assumed to be constant as the load change. The remaining
quantities can be seen in Fig. 2. V th,nc is then recomputed
and the power transfer to the load PLD is determined as

PLD =

∣∣∣∣
V th,nc

Zth,nc + ZLD

∣∣∣∣
2

RLD (7)

This is done for different values of ZLD to find the
maximum power transfer to the load PLD,max. This can be
used to determine a margin to the boundary of voltage stability

%ΔPLD =
PLD,max − PLD

PLD,max
· 100% (8)

In the computations the coefficients Knc needs to be
computed only once, since each row is independent of the
load,while the coefficientsKvc needs to be computed for each
change in ZLD. The procedure is shown in Algorithm 1.
To decrease runtime only necessary computations are in-

cluded. This means that Knc is only determined for nc
loads. Furthermore, the Thévenin equivalent and the new rotor
angle is only determined for the generators contributing to a
given load. Generators contributing to a load is determined as
elements having non-zero entries in Knc as these are the only
elements contributing in the calculations.

Algorithm 1 Find maximum deliverable power to nc loads
Compute Knc and Zth,nc
Determine contributing generators to each nc load
for each nc load do
for each change in ZLD do
Update Ync with new value of ZLD
Compute Zth,vc and Kvc for contributing generators
Compute V th,vc for contributing generators
Compute δvc for contributing generators
Compute V th,nc for the load using Knc

Compute PLD
end for
Determine PLD,max

end for

III. ITERATION ALGORITHMS

The number of steps needed to determine PLD,max for each
load should be as low as possible to improve the runtime
of the method. Each step is expensive since Kvc has to be
recomputed for every change in ZLD. The maximum power
transfer to the load, should therefore be determined fast but
also accurately. The following 3 algorithms will be considered
1) Reference algorithm
2) Binary search
3) Binary search with polynomial fitting (BSPF)

A. Reference algorithm

The reference algorithm splits the interval between ZLD,0
(the start value) and Zth in to n evenly spaced points and
computes PLD for each of these points starting from ZLD,0.
The remaining steps are skipped if PLD starts to decline or if
a contributing generator’s rotor angle δvc becomes imaginary.
PLD will increase with the load up to PLD,max and then

start to decline or a generator will get a imaginary rotor angle.
It is therefore unnecessary to compute PLD for larger loads
as soon as the computed values of PLD start declining. An
imaginary rotor angle indicates that the generator will start
to lose synchronism [1], since the required amount of power

(a) (b)

(c)

Fig. 3. Possible scenarios for 3 feasible (YLD , PLD) points: (a) Scenario 1:
increasing - (b) Scenario 2: decreasing - (c) Scenario 3: midpoint largest

can not be delivered. This solution is therefore not considered
to be a stable operating point for the system and any further
increase in load will only worsen the system conditions.

B. Binary search

The reference algorithm have some limitations, since the
number of points n needs to be large to get a step size that
is small enough to ensure that an accurate PLD,max is found.
As an alternative the steps are chosen using a binary search.
The current load ZLD,0 with the power transfer PLD,0 is

used as the first feasible point. The first step ZLD,1 is defined
as 15% from Zth, based on previous experience [6], [7]. It was
seen in experiment to improve runtime compared to using the
midpoint between ZLD,0 and Zth.
If ZLD,1 gives an imaginary rotor angle δvc for atleast one

generator the point is considered infeasible and the interval is
restricted using ZLD,1 as the new end point ZLD,end. If ZLD,1
is a feasible point PLD,1 is computed, and it is determined if
the end point ZLD,end = Zth is feasible.
The search is done iteratively as
1) Compute ZLD,i as midpoint between ZLD,i−1 (if this
was infeasible use ZLD,i−2) and ZLD,end

2) If ZLD,i is infeasible ZLD,end = ZLD,i else compute
PLD,i

3) If 3 feasible points are given sort by the load (see below)
Whenever 3 feasible points are given, they are sorted by the

load. Fig. 3 shows the 3 different scenarios, where the power
transfer PLD is plotted against the load (YLD = 1/ZLD).
In scenario 1 PLD is increasing with the load. PLD,max will

be between point 2 and ZLD,end making point 1 obsolete. If
Zth is feasible ZLD,end = Zth will be point 3.
In scenario 2 PLD is decreasing with the load and ZLD,end

can be set to point 2. Point 1 will be the current value of
the system PLD,0, since this is the first feasible point. If the
system has passed the boundary of voltage stability PLD,0 will
be set as PLD,max and the margin to the boundary will be 0.

0 50 100 150
0

5

10

15

20

25

30

35

40

45

Fig. 4. (YLD , PLD) = (1/ZLD , PLD) curves for 3 different nc loads for
the test system Nordic32, Table I. The vertical dashed lines show YLD,0 =
1/ZLD,0 and Yth = 1/Zth for each load.

In scenario 3 PLD,max will be between point 1 and 3.
Iteratively the midpoint between 1 and 2 and between 2 and
3 is checked. At every iteration the point that is obsolete will
be removed so there is always 3 points.
The stopping criteria in all scenarios is the threshold τ .

When the relative difference between the 2 relevant points in
scenario 1 or 2 is less than τ the search is stopped. It is ensured
that both the difference in PLD and ZLD is below τ to avoid
scenarios where the difference in PLD is low but the points
are on either side of the maximum. For scenario 3 the search
is stopped when the relative difference between point 2 and
the other points is less than τ .

C. Binary search with polynomial fitting (BSPF)

Fig. 4 shows different shapes of the (YLD, PLD)-curve for 3
nc loads in the Nordic32 test system, Table I. The dashed
vertical lines show the interval between YLD,0 = Z−1

LD,0 and
Yth = Z−1

th .
nc load 8 and 13 have feasible points in the entire interval

between ZLD,0 and Zth. nc load 8 has PLD,max at Zth, while
it occurs just before Zth for nc load 13. The shape of the curve
reminds of a second order polynomial, therefore the idea is to
fit any 3 feasible points to a second order polynomial and use
the maximum of the curve as the next step.
The curve for nc load 6 is almost linear and only have

feasible points in part of the interval. This stems from a
generator losing synchronism before the nc load reaches it’s
maximum potential for power transfer. For this load fitting to
a second order polynomial would not give a feasible solution
and therefore the algorithm is combined with the binary search
to be able to still predict the maximum for this type of load.
Whenever 3 feasible points are given these are fitted to

a second order polynomial f(x) = ax2 + bx + c with the
maximum m = − b

2a . m is infeasible if a is positive i.e. the
point is a minimum, if m is outside the given interval or if
m is close to ZLD,end and this is an infeasible point. If m is
feasible PLD is computed and the now 4 points are reduced

TABLE I
TEST SYSTEMS

Case no. of buses no. of nc
nodes

no. of nc
loads

Nordic32 46 26 18
Pegase89 89 77 35
Pegase1354 1354 1094 673
PTI-WECC-1648 1648 1335 1004
Polish-Winter99 2383 2056 1504
Polish-Winter03 2746 2372 1661
Pegase2869 2869 2359 1491
Polish-Winter07 3012 2665 1939

TABLE II
RUNTIME FOR EACH ALGORITHM

Case Runtime (s)
reference

Runtime (s)
binary search

Runtime (s)
BSPF

Nordic32 0.113 0.029 0.042
Pegase89 0.577 0.120 0.089
Pegase1354 165.93 36.80 19.26
PTI-WECC-1648 553.10 116.94 57.80
Polish-Winter99 731.55 169.44 97.91
Polish-Winter03 711.06 165.35 95.28
Pegase2869 726.86 164.80 84.88
Polish-Winter07 777.23 181.19 101.56

to 3 points and the fitting is repeated. If m is infeasible the
3 points are reduced to 2 points as in scenario 1 and 2 and a
new point is computed like in the binary search.
The search is stopped if the relative difference in PLD

is below τ or if m is feasible and close to the previously
computed m. To ensure an accurate m a criteria is added that
ensures a relative difference in PLD for the feasible points
that is less than 50%. The curve is not an exact 2nd order
polynomial so this keeps outlying points from skewing the
result and atleast one extra point is computed. Furthermore,
if the difference in YLD of the 3 feasible points is below τ ,
while the difference in PLD is high the fitting is skipped and
the binary search is used instead, since this only happens if
the fitting does not work like for nc load 6, Fig. 4.

IV. IMPLEMENTATION AND TEST

The algorithms are implemented in MATLAB and evaluated
with respect to runtime and accuracy. The runtime is tested on
an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz.
The test systems are given in Table I. The PTI system is

included in the PSS®E 33.0 examples, Nordic32 is found in
[13] and the remaining systems are from MATPOWER [14].
The runtimes can be seen in Table II. Line 1 and 2 in Algo-

rithm 1 is the same for all tests and therefore not included in
the runtime. The number of points for the reference algorithm
is chosen to n = 50, since this gives reasonable runtime and
τ = 10−3. Furthermore, if the relative difference between
ZLD,i and another feasible point is below τ2 = 10−4 the
midpoint between the feasible points is investigated instead.
The runtime is plotted against the number of nc loads in

Fig. 5. The decrease in runtime for Polish-Winter07 between

101 102 103 104
10-2

10-1

100

101

102

103

Fig. 5. The runtime for each iteration algorithm (Reference, Binary search
and BSPF) depending on the number of nc loads and the runtime, when run
in parallel on 24 cores. The plot is logarithmic

TABLE III
ΔP% BETWEEN REFERENCE ALGORITHM AND BINARY SEARCH

Case Maximum
difference (%)

Average
difference (%)

Minimum
difference (%)

Nordic32 16.19 1.56 0
Pegase89 46.38 1.33 0
Pegase1354 1.19 · 104 66.06 -0.407
PTI-WECC-1648 5.47 · 103 32.76 0
Polish-Winter99 2.78 · 104 93.59 0
Polish-Winter03 1.06 · 105 449.58 0
Pegase2869 5.08 · 109 3.42 · 106 -0.405
Polish-Winter07 2.36 · 105 566.28 0

the reference algorithm and the binary search is more than a
factor of 4. BSPF lowers runtime by an extra 40% resulting
in a factor of 7.5 in total. The plot shows close to quadratic
complexity for all algorithms, giving similar scaling for all.
Another important aspect is the accuracy, therefore the

computed values of PLD,max are investigated. Table III shows
the percentage difference between the reference algorithm and
the binary search computed as (PLD,max,search is largest for
ΔP% > 0 and the opposite for ΔP% < 0)

ΔP% =
PLD,max,search − PLD,max,ref

PLD,max,ref
· 100% (9)

The binary search makes it possible to find the maximum
faster and more accurately. On average the ΔP% is largely
in favour of the binary search and the biggest difference in
favour of the reference is less than 0.41%. For a larger n
it would be possible to get better results for the reference
algorithm, however this would result in higher runtimes. Tests
were conducted using n = 250, which gave 4 times larger
runtimes, however ΔP% was still large and some systems
even ended up with a larger average difference.
BSPF is compared to the binary search as

ΔP% =
PLD,max,BSPF − PLD,max,search

PLD,max,search
· 100% (10)

PLD,max,BSPF is largest for ΔP% > 0 and the opposite
for ΔP% < 0. ΔP% for these two algorithm lies in the
interval of [−0.71, 5.52]% with an average difference for all
test systems between 0 and 0.01%. Overall we get a better
accuracy using BSPF on top of a better runtime. Furthermore,
when comparing BSPF to the reference algorithm the mini-
mum difference was at machine accuracy i.e. BSPF was better
for all loads.

A. Parallelization test

The voltage stability boundary monitoring is meant to operate
in real time, but with current implementations this is not
possible. However, runtimes can be further improved by intro-
ducing parallelization. The computations for the loads can be
distributed on to several cores by parallelizing the other loop
i.e. line 3 in Algorithm 1. The number of steps for each load
is different and therefore the work will be split dynamically.
The methods are parallelized on a machine with 2 CPUs

of Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz with 12
cores each i.e. 24 cores in total. The lowest runtime is using
24 cores, however the last couple of cores only give a small
improvement. The results form parallelization are shown in
Fig. 5. The parallelization of the reference algorithm give
runtimes below 40s for all systems, while the binary search
have runtimes below 10s and BSPF below 6s. These improved
runtimes makes the method feasible also for larger systems.

V. DISCUSSION

The binary search with polynomial fitting is able to determine
the maximum power transfer to loads more accurately than
the reference algorithm with a lower runtime. Comparing
BSPF to using binary search shows that the polynomial fitting
improves runtimes considerably. The smallest system has
faster runtime using the binary search, whereas the remaining
systems are fastest using BSPF. The polynomial fitting is only
an improvement for some buses as seen in the examples in
Fig. 4. For the buses, where the power transfer is limited by a
generator starting to lose synchronism, the polynomial fitting
is a waste of time, since the shape is closer to linear.
It is possible to get better accuracy by lowering the threshold

if this is needed in computations at the cost of runtime. The
application of the reference algorithm is limited due to the high
runtime and low accuracy. Future work could include a deeper
investigation in to the relationship between the threshold,
runtime and resulting accuracy.
The algorithms in this paper lowers the number of steps for

each load and therefore future work would be to improve the
runtime of each step either by optimizing the computations or
completely changing the computations.
The tests with parallelization showed that it is possible to

determine a margin for all nc nodes in the system in less
than 6s. This is still a considerable amount of time however
a margin is also computed for almost 2.000 loads, which
would correspond to doing 2.000 continuation power flows.
Runtimes below 6s would still make it possible to determine
any potential problems before the critical boundary is reached.

All the test systems are far from the stability boundary and
it would therefore be interesting to investigate performance
as the systems are nearing instability. This can be done in a
real-time setting, where the methods are tested on a range of
snapshots generated from a time-domain simulation.

VI. CONCLUSION

This paper describes a binary search to efficiently determine
the maximum power transfer to all non-controlled loads in a
power system, when accounting for variations in the Thévenin
voltage. The binary search includes fitting of feasible points
to a second order polynomial to more efficiently determine
the point of maximum power transfer. BSPF is shown to
be significantly more accurate compared to the reference
algorithm, while also having lower runtime.
Parallelization makes it possible to get a margin to the

boundary of voltage stability for all 2.000 non-controlled loads
in a 3.000 bus system in under 6s. This enables early detection
of voltage instability.

REFERENCES
[1] H. Jóhannsson, A. H. Nielsen, and J. Østergaard, “Wide-Area Assess-

ment of Aperiodic Small Signal Rotor Angle Stability in Real-Time,”
IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4545–4557, 2013.

[2] S. Sommer, A. Aabrandt, and H. Jóhannsson, “Reduce-Factor-Solve
for Fast Thevenin Impedance Computation and Network,” IET Gener.,
Transmiss. Distrib., vol. 13, no. 2, pp. 288–295, jan 2019.

[3] I. Šmon, G. Verbič, and F. Gubina, “Local Voltage-Stability Index Using
Tellegen’s Theorem,” IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1267–
1275, 2006.

[4] S. Corsi and G. Taranto, “A Real-Time Voltage Instability Identification
Algorithm Based on Local Phasor Measurements,” IEEE Trans. Power
Syst., vol. 23, no. 3, pp. 1271–1279, aug 2008.

[5] M. Glavic and T. Van Cutsem, “A short survey of methods for voltage
instability detection,” in Proc. IEEE Power and Energy Soc. Gen.
Meeting, jul 2011.

[6] A. Perez, H. Jóhannsson, P. Vancraeyveld, and J. Østergaard, “Suitability
of voltage stability study methods for real-time assessment,” in Proc. 4th
IEEE PES Innovative Smart Grid Technol. Conf. Europe, oct 2013.

[7] B. C. Karatas, H. Jóhannsson, and A. H. Nielsen, “Improved Voltage
Stability Boundary Monitoring by Accounting for Variations in Thevenin
Voltage Magnitude,” in Proc. 8th IEEE PES Innovative Smart Grid
Technol. Conf. Europe, Sarajevo, Bosnia and Herzegovina, 2018.

[8] C. Hildebrandt, B. C. Karatas, J. G. Møller, and H. Jóhannsson, “Eval-
uation of Factorization Methods for Thévenin Equivalent Computations
in Real-Time Stability Assessment,” in Proc. 20th Power Syst. Comput.
Conf., Dublin, Ireland, 2018.

[9] C. H. L. Jørgensen, J. G. Møller, S. Sommer, and H. Jóhannsson, “A
Memory-Efficient Parallelizable Method for Computation of Thévenin
Equivalents used in Real-Time Stability Assessment,” IEEE Trans.
Power Syst., 2019.

[10] J. G. Møller, H. Jóhannsson, and J. Østergaard, “Super-Positioning of
Voltage Sources for Fast Assessment of Wide-Area Thévenin Equiva-
lents,” IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 1488–1493, 2017.

[11] L. Giraud, A. Haidar, and Y. Saad, “Sparse approximations of the Schur
complement for parallel algebraic hybrid solvers in 3D,” Numer. Math.-
Theory Methods and Appl., vol. 3, no. 3, pp. 276–294, 2010.

[12] F. Dörfler and F. Bullo, “Kron reduction of graphs with applications
to electrical networks,” IEEE Trans. on Circuits and Syst. I: Regular
Papers, vol. 60, no. 1, pp. 150–163, 2013.

[13] CIGRÉ TF38.02.08, “Long Term Dynamics Phase II, Final Report,”
Tech. Rep., 1995.

[14] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MAT-
POWER: Steady-State Operations, Planning, and Analysis Tools for
Power Systems Research and Education,” IEEE Trans. Power Syst.,
vol. 26, no. 1, pp. 12–19, 2011.

Department of Electrical Engineering
Center for Electric Power and Energy (CEE)
Technical University of Denmark
Elektrovej, Building 325
DK-2800 Kgs. Lyngby
Denmark

www.elektro.dtu.dk/cee

Tel: (+45) 45 25 35 00
Fax: (+45) 45 88 61 11
E-mail: cee@elektro.dtu.dk

www.elektro.dtu.dk/cee
cee@elektro.dtu.dk

	Preface
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Resumé
	Acronyms
	Introduction
	Background
	Power System Stability

	State of the art
	Focus of PhD project
	Contributions
	Thesis outline
	List of publications

	Thévenin Equivalent Computations
	Thévenin equivalent circuit
	Factorization methods
	KLU of an admittance matrix

	Implementation and test
	Tolerance of ILU
	Comparison of factorization methods
	Accuracy of stability margins
	Density of coefficient matrix

	Conclusion

	Factor-Solve Method for Thévenin Computations
	Reference method
	Complexity

	Factor-solve method
	Complexity

	Implementation and test
	Parallelization
	Memory requirements

	Discussion and Conclusion

	Voltage Stability Boundary Monitoring Method
	Voltage stability boundary monitoring method
	Thévenin equivalent computations
	Maximum deliverable power to a load

	Iteration algorithms
	Reference algorithm
	Binary Search
	Binary Search with Polynomial Fitting (BSPF)
	Implementation and test
	Parallelization

	Block-wise calculations
	Implementation and test

	Conclusion

	Efficient Refactorization using Hierarchical Matrices
	Hierarchical matrices
	Forming super-nodes
	Compression
	Elimination
	Algorithm
	Solve

	Refactorization
	Algorithms

	Toy Example
	Implementation and test
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Collection of relevant publications
	[Pub. A] Evaluation of Factorization Methods for Thévenin Equivalent Computations in Real-Time Stability Assessment
	[Pub. B] A Memory-Efficient Parallelizable Method for Computation of Thévenin Equivalents used in Real-Time Stability Assessment
	[Pub. C] Binary Search and Fit Algorithm for Improved Voltage Stability Boundary Monitoring

