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Summary (English)

Computed Tomography (CT) enables analyzing the internal structures of ob-
jects from projections data. The projections data measures the attenuation of
penetrating radiations such as X-rays. The conventional CT pipeline includes re-
constructing an image from projections and segmenting the reconstructed image
for quantitative analysis. However, in challenging situations, when projection
data are noisy or limited, the reconstructed images can be degenerate, which
can lead to incorrect segmentation results.

Instead of reconstructing images, the main goal of the thesis is to develop direct
tomographic segmentation methods from projections for homogeneous objects.
This goal is achieved by representing objects using triangle meshes and deform-
ing them to be aligned with the boundaries of the scanned objects. In this re-
gard, we propose two direct segmentation methods. The first method addresses
mesh deformation in 2D space with the advantage of topological adaptivity
during deformation.

The second proposed method tackles 3D shape estimation directly from pro-
jections. We extend recent results on differentiable rendering to tomographic
reconstruction and this extension enables optimizing 3D shapes from projec-
tions. The experimental results in electron tomography show the effectiveness
of our method for reconstructing shapes of some nano-particles.

Also, we investigate another representation of objects using coordinate-based
neural networks for tomographic reconstruction. Finally, the thesis studies a
regularization term using a vectorial total variation norm for spectral CT. The
proposed regularization term is demonstrated to benefit spectral CT data with
the potential to be of practical use in security applications.
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Summary (Danish)

Computed tomografi (CT) muliggør analyse af objekters interne strukturer ud
fra projektionsdata. Projektionsdata måler dæmpningen af gennemtrængende
stråling såsom røntgenstråler. Den konventionelle CT-pipeline inkluderer rekon-
struktion af et billede fra projektioner og herefter segmentering af det rekon-
struerede billede til brug for kvantitativ analyse. I udfordrende situationer, når
projektionsdata er støjende eller begrænsede, kan de rekonstruerede billeder dog
være degenererede, hvilket kan føre til forkerte segmenteringsresultater.

Målet med afhandlingen er at udvikle direkte tomografiske segmenteringsmeto-
der fra projektionsdata af homogene objekter som alternativ til at rekonstruere
billeder. Dette mål blev opnået ved at repræsentere objekter ved hjælp af tre-
kantsmesh og deformere dem så de tilpasser sig kanterne af de scannede objekter.
I denne henseende foreslår vi to direkte segmenteringsmetoder. Det første arbej-
de adresserer deformation af trekantsmeshes i 2D med den fordel at topologien
tilpasses under deformation.

Den anden metode tackler 3D-formestimering direkte fra projektionsdata. Vi
udvider de seneste resultater om differentiable rendering til tomografisk rekon-
struktion, og denne udvidelse muliggør optimering af 3D shapes fra projektions-
data. De eksperimentelle resultater fra elektrontomografi viser effektiviteten aff
vores metode til rekonstruktion af shapes for nogle nanopartikler.

Vi undersøger også en anden repræsentation af objekter ved hjælp af koordinat-
baserede neurale netværk til tomografisk rekonstruktion. Endelig studerer vi i
afhandlingen et regulariseringsudtryk ved hjælp af en vektoriel totalvariations-
norm for spektral CT. Det foreslåede regulariseringsudtryk vises at det gavner
spektral CT-data med potentialet til at være praktisk anvendelig i sikkerheds-
applikationer.
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Chapter 1

Introduction

1.1 Scope of the thesis

Computed Tomography (CT) has emerged as a powerful imaging technique to
enable investigating the internal structures of objects. CT has been successfully
applied to many areas such as medical diagnostics, material science, and security
applications. A workflow in CT begins with scanning an object from different
angles by radiation sources such as X-rays to obtain data called projections.
Projections measure how much radiations are attenuated after they pass through
the object. Following that, the tomographic reconstruction procedure aims to
recover the object from projections.

Over the past few decades, there have been many useful reconstruction methods
developed, but it still remains challenging to reconstruct objects correctly when
the projections data are noisy or limited. For instance, in electron tomography,
the available range of projection angles is limited, or security applications re-
quire the reconstruction algorithm to be robust from a small number of noisy
projection images.

The thesis focuses on developing tomograhpic reconstruction methods from such
noisy or limited projections data. Instead of conventional image-based represen-
tation, we have investigated alternative representations of objects. These include
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meshes to be deformed to align with the boundaries of the scanned objects, and
a coordinate-based neural network to reconstruct a continuous function for the
object. We also investigate an image reconstruction method from spectral CT
data for security applications using a conventional voxel-based representation.

The works carried out in the thesis are part of a multi-disciplinary project: MUl-
tiscale, Multimodal and Multidimensional imaging for EngineeRING (MUM-
MERING) funded by EU Horizon Marie Skłodowska-Curie Actions with the
grant number 765604. MUMMERING covers the whole pipeline of tomogra-
phy from data acquisition and reconstruction to finite element modeling. Many
parts of the thesis are performed in close collaboration with some colleagues in
MUMMERING working on electron tomography or security applications.

1.2 Motivation

The main theme of the thesis is to investigate tomographic reconstruction meth-
ods from limited projection data and we have developed four reconstruction
methods in Contribution A - D. In this section, we discuss the motivations of
the contributions.

1.2.1 Direct segmentation from projections

Projections
Image

Reconstruction
Segmentation

A Direct Approach

Figure 1.1: A conventional pipeline of tomography consists of image recon-
struction from projections data and estimates the segmentation of
the reconstructed image. On the contrary, a direct approach aims
to obtain the segmentation directly from projections.

As shown in Fig. 1.1, the conventional pipeline of CT includes the reconstruction
of an image from projections and the segmentation of the reconstructed image
for quantitative analysis. However, in challenging situations, when projection
data are noisy or limited, the reconstructed images can be degenerate, which
would lead to incorrect segmentation results.
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Instead of reconstructing images, in the thesis, we investigate other tomographic
segmentation methods directly from projections for homogeneous objects. We
consider the situation where the number of materials (mostly less than 5) is
known and the objects are homogeneous. Exploiting this prior information,
we propose two direct segmentation methods based on mesh deformation in
Contribution A and B.

1.2.2 Alternative ways to represent objects

Most of existing tomographic reconstruction methods represent objects by im-
ages on a regular grid. That is, each voxel on the image is assigned with an
attenuation coefficient. The attenuation coefficient is a material property to
indicate how much a radiation is attenuated when penetrating the material. In
many cases, the attenuation value is assumed to be constant within the voxel.
Instead of using an image-based representation, in this thesis, we investigate
three alternative ways to represent objects, which is summarized in Table 1.1.

Papers Representation of objects
Contribution A Triangular mesh with attenuation-labeled faces in 2D
Contribution B Triangular surface mesh in 3D
Contribution C Continuous function using an implicit neural network

Table 1.1: We investigate different ways to represent objects for tomographic
reconstruction.

First, for reconstructing homogeneous objects in 2D, we use a triangle mesh to
represent objects, where each face in the mesh is labeled with one material, so
each face has the corresponding attenuation coefficient. We name such labeled-
mesh as Attenuation-Labeled Mesh (ALM). The deformation of ALM is studied
in Contribution A to align with object boundaries.

Second, we consider a surface mesh in 3D, which differs ALM in the sense
that the surface mesh only considers the boundary of an object and has no
information on the inside of the object. From this representation, we have
suggested a differentiable forward model to enable optimization of the mesh in
Contribution B.

Lastly, we investigate a continuous representation of attenuation functions. Al-
though the measurements are finitely available, the underlying attenuation func-
tion can be considered as continuous. To reconstruct a continuous attenuation
coefficient function, in Contribution C, we study a coordinate-based neural net-
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work which takes spatial coordinates as input and outputs the attenuation co-
efficients at the coordinate positions.

1.2.3 Spectral X-ray CT

The conventional CT using X-ray sources relies on energy-integrating detec-
tors. That is, conventional X-ray detectors measure the projections which are
integrated over X-ray energies. In contrary, an advanced technique called spec-
tral X-ray CT uses energy-dependent detectors which obtain energy-dependent
projection data for some X-ray bin levels.

One challenge in spectral X-ray CT is that the quality of energy-dependent
projection data become more noisy, as the number of X-ray bin levels increases
(e.g. 15 energy bins). Moreover, security applications require the reconstruction
algorithm to be robust from limited projections data, where the number of
projection images is small (e.g. 7 or 12 projection images). To handle these
challenging data, we study a regularization scheme in Contribution D.

1.3 Thesis objectives

During the PhD study, we have produced four academic papers of Contribu-
tion A - D and the objective of each contribution can be summarized as follows:

• Developing a mesh-based deformable model to reconstruct homogeneous
objects from projections with the advantage of topological adaptivity dur-
ing deformation (Contribution A)

• Developing a differentiable forward model for a triangle surface mesh to
reconstruct 3D shapes of homogeneous objects (Contribution B)

• Investigating continuous representation of object, using coordinate-based
neural networks (Contribution C)

• Studying a robust regularization term in iterative image reconstruction
method from spectral CT data (Contribution D)
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1.4 Thesis overview

The remainder of the thesis consists of four chapters. Chapter 2 reviews existing
tomographic reconstruction methods from image-based reconstruction methods
to geometric approaches for tomographic reconstruction. Section 2.4 derives a
curve evolution equation which will be helpful to understand Contribution A.
Chapter 3 is concerned with some technical backgrounds which are necessary
to understand the contributions. In particular, Section 3.3 provides a detailed
background on a computer graphics technique related to Contribution B. Chap-
ter 4 gives an overview of the four contributions of the thesis with some motiva-
tional examples and Chapter 5 concludes the thesis. Finally, the thesis includes
the three published papers (Contribution A, B, C) and one draft (Contribution
D) in the appendix.
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Chapter 2

Existing tomographic
reconstruction works

Tomographic reconstruction is an inverse problem where we aim to reconstruct
an object from the projections of the object. Tomographic reconstruction en-
ables seeing the inside of the object without breaking it apart. The projections
are obtained by the interaction of the object and the radiations such as X-rays
in X-ray tomography or electrons in electron tomography. This chapter begins
with explaining the process of obtaining data and discusses the reconstruction
methods. For a more thorough treatment on X-ray tomography, one may refer
to the book by Buzug [Buz08].

In X-ray tomography, the projection measurements can be modeled based on
Lambert-Beer’s law [Buz08]. According to this law, the X-ray intensity I passing
through an object can be given as a function of running length l as follows:

I(l) = I(0) exp

(
−
∫ l

0

µ(η) dη

)
(2.1)

where I(0) is the X-ray intensity before passing the object and µ is the atten-
uation coefficient function. This function characterizes a material property of
how much the material can attenuate the X-rays. A more accurate model for µ
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Figure 2.1: Illustration of the projections of a 3D object called bunnny, for 3
projection angles. The projections are shown on the black planes.
From these projections, tomographic reconstruction aims to re-
cover the object.

would be to include the dependency on X-ray energies as follows:

I(l) =

∫ Emax
0

I(0) exp

(
−
∫ l

0

µ(η, E) dη
)

dE . (2.2)

This energy-dependent model is considered in an advanced technique called
spectral CT where the detectors can measure energy-dependent X-ray intensi-
ties. Spectral CT is considered in Contribution D, but from now on, we focus
on the simplified form (2.1), which is considered in Contribution A, B, C.

X-ray detectors can detect the intensities I(0) and I(l), and these intensities
can be converted to obtain the so-called projections. By arranging Eq. (2.1), we
have

− ln

(
I(l)

I(0)

)
=

∫ l

0

µ(η) dη. (2.3)

and the projection value p is defined as follows:

p =

∫ l

0

µ(η) dη. (2.4)

This equation represents one projection measurement p corresponding to one
detector pixel. A detector comprises many detector pixels and, by rotating the
object, the total number of measurements can be the number of detector pixels
times the number of rotation angles. We will only consider the converted form
p from now on. In Fig. 2.1, we provide an example of projections of a 3D object
for 3 projection angles.
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In electron tomography, the radiation sources are electrons rather than X-rays,
and there are many different types of imaging techniques based on electron
sources. Among them, we consider a technique called Scanning Transmission
Electron Microscope (STEM) in Contribution B. In this case, STEM measures
the projection value directly and we can still use Eq. (2.4) under a certain
condition that the objects are not too thick [Haw92].

In summary, the goal of tomographic reconstruction is to recover the attenuation
function µ from the projections which are the line integrals of the attenuation
function along the rays. We have described how projections are obtained. We
now review some existing reconstruction methods. For the simplicity of pre-
sentation, we consider 2D reconstruction problem whose goal is to reconstruct
one slice of the object, but most of the described methods can generalize to 3D
reconstruction as well.

Lθ(x, y) − s = 0
θ

s

Figure 2.2: Illustration of a parallel beam ray for the projection angle θ and
the detector position s. The blue line shows the line equation
Lθ(x, y) − s = x cos θ + y sin θ − s = 0. The line in the bottom
right represents the detector.

2.1 Analytic image reconstruction

Analytic reconstruction methods are based on mathematical solutions using
Fourier transforms. These methods are very efficient for an ideal case where
projection data are noise-free and the available number of projection angles is
large enough. We will review two well-known analytic methods and discuss their
limitations.

For the simplicity of presentation, we restrict our attention to the parallel beam
case in a 2D reconstruction domain. The parallel beam refers to the case where
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radiation rays are perpendicular to the detector, as shown in Fig. 2.2. Let p(θ, s)
denote the projection value obtained by the line integral of the attenuation
function µ along the line Lθ(x, y)− s = 0, where Lθ(x, y) = x cos θ + y sin θ.

Figure 2.3: According to the Fourier slice theorem, for the 2D parallel beam
case, projections can be interpreted as the measurements on the
Fourier domain representation of an object. Each line corresponds
to one projection angle and the line shows the positions on which
frequency components of the object are available on the Fourier
domain, where the origin is located at the center.

Analytic reconstruction methods in a 2D reconstruction domain are based on a
surprising theorem called the Fourier slice theorem, which connects projections
and frequency domain representation of the object. According to the theorem,
the 1D Fourier transform Pθ(q) of projections p(θ, s) for a fixed angle θ is equiv-
alent to the slice on the Fourier domain representation of µ through the origin
along the angle θ. Specifically, we can write the theorem as

F{µ}(q cos θ, q sin θ) = Pθ(q) := F{p(θ, ·)}(q), (2.5)

where F{µ} stands for 2D Fourier transform of the attenuation function µ and
F{p(θ, ·)} is the 1D Fourier transform of projections, given θ.

Hence, the projection data can be interpreted as the frequency components of
the object on the radial lines. As shown in 2.3, these measurements in Fourier
domain are concentrated near the origin, so we have dense low-frequency ob-
servations and sparse high-frequency observations. One analytic solution is to
apply 2D inverse Fourier transform on such measures on Fourier domain. This
direct inverse method requires an interpolation on the grid points.

Another analytic method is a classical method in computed tomography, called
filtered backprojection [KS88]. This method does not require 2D inverse Fourier
transform, but uses a set of 1D Fourier transforms. Filtered backprojection
is based on a mathematical equation in a continuous setting. To derive the
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equation, we represent the function µ by the 2D inverse Fourier transform in
polar coordinates and with the Fourier slice theorem, we can derive the following
reconstruction formula:

µ(x, y) =

∫ π

0

∫ +∞

−∞
Pθ(q) |q| e2πiqLθ(x,y) dq dθ (2.6)

The outer integral is known as backprojection, as it maps back from projection
domain to the reconstruction domain. The inner integral is involved with filter-
ing Pθ(q) by the so-called ramp filter |q|, followed by taking 1D inverse Fourier
transform. The ramp filter is a high pass filter, which suppresses low-frequency
components.

Filtered backprojection is a discrete algorithm for Eq. (2.6) and can be summa-
rized as follows: 1. Filter the projections by a high pass filter such as ramp filter,
independently with respect to angles. 2. Backproject those filtered projections
onto the reconstruction domain. This two-step method is fast, but heavily de-
pendent on the quality of the data. This is because using high pass filter can
amplify the noise on the data. Moreover, we need enough projection data to
accurately approximate the original equation (2.6).

In the thesis, we mostly consider the case of noisy or incomplete data where
the projection angles are sparsely given or limited to a small range. To such
data, popular approaches are to use iterative methods based on gradient descent
scheme, which is the topic of the next subsection.

2.2 Algebraic image reconstruction

Algebraic reconstruction methods represent objects by an image of the attenua-
tion values, represented by a vector u and formulate the reconstruction problem
based on a linear system of equations. To be specific, we can model the pro-
jection value for the i-th measurement as a weighted sum of pixel values uj as
follows: ∑

j

aijuj (2.7)

where j denotes the index for the pixels and aij is the weight determined by
the contribution of the i-th ray and the j-th pixel. For example, as shown in
Fig. 2.4, the weight can be set as the line segment length bounded by the ray
and the pixel.

From Eq. (2.7), we can construct a system of linear equation for all the mea-
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aij = 0

aij > 0

Figure 2.4: The projection for the i-th ray can be computed by a weighted
sum of image values. The ray passes the shaded pixels where the
weights are positive. The weight aij can be determined by the line
segment (blue) bounded by the intersection of the ray i and the
pixel j.

surements in a vectorized form:

Au = p (2.8)

where A ∈ RI×J is a system matrix with elements aij and p is a vector rep-
resenting the projection data. Solving such linear equation depends on the
properties of the matrix A. In tomography, the system matrix is typically not
a square matrix and so we consider two cases: the overdetermined matrix when
I > J and the underdetermined matrix when I < J , where I is the number of
rows and J is the number of columns of the matrix.

To explore how to deal with a non-square matrix, we begin with an ideal case
where the matrix has the full rank and relax the condition later. A full rank ma-
trix means that an overdetermined matrix has linearly independently columns
or an underdetermined matrix has linearly independent rows. In this case, it is
rather easy to solve the linear equation and we summarize the solutions in the
following (see [BV18] for the derivation):

A: overdetermined with full rank ⇐⇒ ATA is invertible.

=⇒ uLS = (ATA)−1ATp ⇐⇒ uLS = argmin
u
‖Au− p‖22

A: underdetermined with full rank ⇐⇒ AAT is invertible.

=⇒ u0
LS = AT (AAT )−1p ⇐⇒ u0

LS = argmin
u
‖u‖2 such that Au = p

Hence, if the system matrix A has full rank, we can compute the inverse of
ATA or AAT and obtain the closed-form solution in the sense of least-square
error (for the overdetermine case) or minimum-norm least-square error (for the
underdetermined case).
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This approach, however, is not applicable to tomographic reconstruction, be-
cause the system matrix A in tomography typically has not full rank and the
projection data p are noisy. To deal with these cases, iterative approaches are
common for tomographic reconstruction and such iterative methods are also
known as algebraic reconstruction methods. One simple solution would be to
apply gradient descent to the least square norm, which leads to the update at
the k-th step with the step size τ as follows:

uk+1 = uk + τAT
(
p−Auk

)
. (2.9)

This algorithms is known as Landweber’s method and its convergence to the
least square solution is guaranteed [Byr14] under τ < 2/‖ATA‖2, where ‖B‖2
denotes the largest eigenvalue of the square matrix B.

Another iterative method, known as Simultaneous Iterative Reconstruction Tech-
nique (SIRT) [AK84], is one of the most popular algebraic methods in tomog-
raphy and known to converge faster than Landweber’s method. SIRT update
the solution uk at the k-th step as follows:

uk+1 = uk + τV−1ATW−1 (p−Auk
)

(2.10)

where V and W are the diagonal matrices consisting of the elements AT1 and
A1, respectively. These diagonal matrices have some normalization effects on
the system matrix and make the method converge faster. SIRT is known to
converge in a sense [Byr14] under the condition of the step size 0 < τ < 2.

SIRT has a disadvantage that it is vulnerable to noise, as it only fits to the data.
To overcome this drawback, one can add a regularization term, by imposing a
prior information on the solution such as the smoothness on the image. A pop-
ular regularization scheme is total variation regularization which promotes the
sparsity on the gradients of the solution, by considering the following (isotropic)
total variation term:

TV(u) =
∑

j

√
(∂x(uj))2 + (∂(uj))2 (2.11)

where ∂x and ∂y denote the partial derivative with respect to x and y axis,
respectively. With this regularization term and the residual from the linear
equation, one can consider the following optimization problem:

min
u
‖Au− p‖22 +TV(u). (2.12)

This minimization problem can be solved by an efficient convex optimization
solver, which will be explained in Section 3.4.
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2.3 Discrete tomography

While algebraic reconstruction methods can reconstruct any types of objects,
discrete tomography methods assume that objects consist of a small number
of materials. This assumption acts as an additional prior information to deal
with some challenging cases such as the limited angle problem where a small
range of projection angles is given. Similar to algebraic reconstruction methods,
discrete tomography methods represent the object by an image u, but the image
is constrained to have a small number of attenuation values.

An influential work in discrete tomography is a method called Discrete Algebraic
Reconstruction Technique (DART) [BS11]. DART combines an algebraic recon-
struction method with a heuristic step which refines the boundary based on hard
thresholding. This novel approach has been improved by many works. Among
them, an optimization approach is suggested, called Total Variation Regularized
Discrete Algebraic Reconstruction Technique (TVR-DART). TVR-DART turns
the heuristic approach into an optimization problem, by using a differentiable
thresholding function with total variation regularization.

The outcome of a discrete tomography method can be considered as a direct
segmentation from projections, as such method assigns each pixel to a mate-
rial. In terms of the direct segmentation, Contribution A and B also consider
the similar assumption that the scanned object comprises a small number of
materials. The major difference lies on the way how the object is represented.
Contributions A and B represent the object based on meshes, while discrete
tomography represent the object by a discrete image.

2.4 Level-set based reconstruction

Similar to discrete tomography, level-set based reconstruction methods are con-
cerned with objects comprising a small number of materials. Most of these
methods reconstruct a shape of the object and that shape can be represented
by a zero level-set of an implicit function. Level-set based methods evolve such
implicit function, to reconstruct the shape of the object in the end.

This section reviews some level-set based reconstruction methods which are
related to Contribution A and B. The section begins with the derivation of
curve evolution equation (2.21) in a general setting and from this equation the
level-set based approach is explained. The evolution equation (2.21) is derived in
detail, as it is helpful to understand Contribution A. Finally, another approach
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based on parametric level-set methods is briefly mentioned, which is not related
to the evolution equation (2.21).

Curve evolution equation. Consider a homogeneous object with a constant
attenuation value µ and we denote the inside region of the object by R and its
boundary by a curve C, i.e., C = ∂R. For the simplicity of presentation, we
assume that the attenuation coefficient µ is known.

Let θ denote a projection angle, s denote a detector position and Lθ(x, y)−s = 0
be line equations for radiation rays. For example, as shown in Fig. 2.2, the line
equation Lθ is given by Lθ(x, y) = x cos θ + y sin θ for the parallel beam case
where the rays are perpendicular to the detector. Then, the projection value
can be computed as an integration form as follows:

p̂(θ, s) = µ

∫

R

δ(Lθ(x, y)− s) dxdy (2.13)

where δ is the delta function. From the computed value p̂, we aim to minimize
the residual between p̂ and the measurement p and define the objective function
with respect to the curve C as follows:

E(C) =
1

2

∑

θ

∫

S

(p(θ, s)− p̂(θ, s))2 ds. (2.14)

where S denotes the detector line.

The goal is to find an evolution equation of the curve in the direction of minimiz-
ing the above objective function. There are several ways to derive the evolution
equation [EW01, AY04]. I find the derivation based on Reynolds transport the-
orem [RBM03, ZJL20] clear, so the evolution equation will be derived based on
this theorem. The Reynolds transport theorem states that for a time-dependent
scalar function F on the region R, the following relation holds:

d

dt

∫

R

F (x, y, t) dx dy =

∫

R

∂

∂t
F (x, y, t) dx dy +

∫

∂R

〈Ct, F (x, y, t)n〉dr (2.15)

where t is the time parameter, Ct is the velocity on the boundary that explains
the evolution of the boundary, n is the outward normal vector, and r is the arc
length parameter. The theorem is stated in 2D case, but it holds for 1D case
as well. Moreover, if the boundary is fixed, the second term on the right hand
side vanishes.

We first apply the Reynolds transport theorem (2.15) to the 1D integral in (2.14)
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and note that the boundary of the detector is fixed. Hence, we have

dE

dt
=

1

2

∑

θ

∫

S

∂

∂t
(p(θ, s)− p̂(θ, s))2 ds (2.16)

= −
∑

θ

∫

S

(p(θ, s)− p̂(θ, s))∂p̂
∂t

ds (2.17)

To compute ∂p̂/∂t, we again apply the Reynolds theorem to (2.13) and since
∂δ/∂t = 0, we obtain:

∂p̂

∂t
= µ

∫

∂R

〈Ct(r), δ(Lθ(x, y)− s)n(r)〉dr (2.18)

where Ct denotes the evolution of the boundary. By plugging Eq. (2.18) into
Eq. (2.17), the integral in Eq. (2.17) disappears due to the delta function
δ(Lθ(x, y)− s) and we have

dE

dt
= −µ

∑

θ

〈Ct(r), (p(θ, s̃)− p̂(θ, s̃)n(r)〉dr. (2.19)

where s̃ = Lθ(C(r)) is the detector position on which the point C(r) on the
curve is projected. As a reminder, we aim to evolve the curve C in the direction
that minimizes the objective function E. To evolve in the steepest direction, we
make the right hand side in Eq. (2.19) minimum or make the inner product in
Eq. (2.19) maximum, by setting Ct as follows:

Ct(r) = µ
∑

θ

(p(θ, s̃)− p̂(θ, s̃))n(r), (2.20)

This is the curve evolution equation to minimize the objective function (2.14)
which fits to data.

To deal with incomplete data and avoid degenerate solutions, one can add some
regularization terms in Eq. (2.14) such as the length of a curve. Minimizing
this length term leads to a well-known equation called mean curvature mo-
tion [ZY96], which is Ct(r) = κ(r)n(r), where κ is the curvature at the point
C(r). If we add this additional regularization term, the curve evolution equation
becomes

Ct(r) = µ
∑

θ

(p(θ, s̃)− p̂(θ, s̃))n(r) + λκ(r)n(r), (2.21)

where λ is the weighting parameter to balance the two terms.

The evolution equation 2.21 is derived in a continuous setting based on explicit
representation. This explicit representation has two major issues when imple-
mented numerically. One issue is how the points on the curve are sampled and
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it might be handled by resampling the points uniformly at each iteration. The
other issue is regarding the topological changes during evolution. For example,
if we start one closed curve and need to split it into two closed curves, handling
such splitting would require many additional efforts.

Level-set based reconstruction. Instead of explicit representation, one can
consider an indirect representation which represents a curve implicitly. A nu-
merical algorithm using implicit representation can handle the resampling issue
and the topological changes automatically. To be specific, consider an implicit
function φ(x, y ; t) which changes in time t such that its zero level-set

{(x, y) ∈ R2 : φ(x, y ; t) = 0} (2.22)

represents a curve. We now put the curve evolution equation (2.21) into the
implicit function, by setting φ(Ct(r) ; t) = 0 and if we derivative φ with respect
to the time parameter t, we have

dφ

dt
= φt +∇φ · Ct = 0, (2.23)

which can be rearranged as

φt = −∇φ · Ct. (2.24)

This equation is known as level-set evolution equation and explains the evolu-
tion of the implicit function φ. This evolution equation provides a basis for some
level-set based tomographic reconstruction works [EW01, WE02, AY04] when
the curve evolution Ct in (2.21) is considered together. There are many numeri-
cal methods to solve level-set equations such as the fast marching method [OS88].

Parametrized level-set based reconstruction. Aghasi et al. [AKM11] in-
troduced another type of level-set method called the parametric level-set method
for solving inverse problems. This method parametrizes the implicit function
φ by the aggregation of radial basis functions and estimates the parameters
of these basis functions, not the level-set function. This parametrization re-
duces the number of unknowns significantly and enables using an efficient non-
linear least squares solvers such as Gauss-Newton method [NW99]. The pa-
rameterized level-set methods have been applied to tomographic reconstruc-
tion [AKM11, KvB18, EST20], to reconstruct a shape of a homogeneous object.
As a limitation, such works are designed to reconstruct a single material, while
Contribution A supports multiple materials and Contribution B can deal with
a composite object.
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2.5 Spectral CT image reconstruction

As mentioned in Section 2.1, spectral CT considers energy-dependent projection
data and the goal is to reconstruct multi-channel images u1,u2, ...,une where ne
is the total number of X-ray energy bins considered. The spectral CT data are
known to become more noisy, as the considering number ne of X-ray channels
increases [HSF12]. As the data are not reliable, we need a robust regulariza-
tion scheme, by imposing a prior knowledge. One prior knowledge in spectral
CT is that the multiple reconstructed images are expected to be highly corre-
lated. Depending on how to model such correlation, different regularizers can
be introduced.

A popular regularizer in spectral CT is Total Nuclear Variation (TNV) [RLR15,
DMSC16]. TNV correlates the gradients of the reconstruction images such that
those gradients align together in a sense over the multi-channel images. Such
alignment can be quantified by the nuclear norm of the Jacobian of the image,
which is defined as

TNV({u1, ...,une}) =
J∑

j=1

∥∥∥∥
(
∂xu1,j ∂xu2,j · · · ∂xune,j
∂yu1,j ∂yu2,j · · · ∂yune,j

)∥∥∥∥
∗
, (2.25)

where J is the number of pixels per each image channel, ul,j is the pixel value
for the l-th energy on the j-th pixel and ‖ · ‖∗ is a nuclear norm of a matrix,
which is the summation of the singular values of the matrix. The nuclear norm
can be considered as the relaxation of the matrix rank, the number of nonzero
singular values of the matrix.

In Eq. (2.25), if the non-zero gradients are all aligned in the sense of parallel or
anti-parallel over the channels on a pixel, the matrix rank on the pixel will be 1,
or otherwise 2. As TNV relaxes the matrix rank, TNV will favor the solutions
whose gradients over the multiple channels are parallel or anti-parallel (when
the gradient magnitudes are the same).

Contribution D studies TNV and another regularization scheme which is shown
to be more effective than TNV in spectral CT.
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Technical background

This chapter describes some technical backgrounds necessary to understand the
contributions of the thesis. In particular, Section 3.3 describes a rendering
technique in detail, as it is important to understand Contribution B.

3.1 Triangular mesh

A triangular mesh is a collection of triangles with their connectivity information.
The triangular mesh consists of a set of vertices, edges and faces. A vertex can
be considered as a point in a Euclidean space; an edge connects two vertices; a
face connects three vertices. Note that vertices contain geometric information,
while edges and faces encode the connectivity information. The triangle mesh
can be used to represent a surface in 3D. In Contribution B, we use triangle
meshes to represent 3D surfaces of homogeneous objects, where the topology of
objects is assumed to be known and kept fixed. When the connectivity of a mesh
is fixed, a simple data structure to store edges and faces may be preferred, such
as an adjacency list that collects vertex indices corresponding to the triangle
faces.

In some situations, however, we often need to manipulate the mesh by changing
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the connectivity information of the mesh. In this case, we need to traverse
vertices, edges or faces efficiently and such efficient traverse can be achieved
by using another data structure called half-edge data structure. In this data
structure, each edge is augmented with two directional edges called half-edges,
as shown in Fig. 3.1. Using these additional edges, a mesh based on half-edge
structure, called a half-edge mesh, can manipulate the mesh efficiently and it is
very useful when the connectivity information of the mesh needs to be updated
frequently. A half-edge mesh is used in Contribution A.

Figure 3.1: A half-edge mesh uses two directed edges called half-edges (dotted
arrows), instead of one edge.

3.2 Deformable Simplicial Complexes (DSC)

As mentioned earlier in Section 2.4, when dealing with curve evolutions, explicit
representation of a curve has issues with regards to sampling the points on
the curve and handling topological changes. To overcome these issues, Misztal
and Bærentzen [MB12] proposed a clever method called Deformable Simplicial
Complexes (DSC). DSC represents the curve based on a mesh explicitly and
deforms the curve, while improving the mesh and changing the connectivity
information of the mesh. Specifically, DSC uses a half-edge mesh in 2D case,
where each triangular face is labeled with a material and the interface is a set
of edges whose two adjacent faces have different labels, as shown in Fig. 3.2.

With this labeled mesh, we assume that vertices on the interface have some
destinations. For example, from the curve evolution equation 2.21, we can assign
a displacement to each vertex on the interface. Towards these destinations,
DSC deforms the mesh, by moving the interface vertices. Moving the vertices
could make some neighboring triangles obtuse or degenerate. DSC fixes such
degenerate triangles, while keeping the interface fixed during the refinement
steps. The whole procedure of DSC is summarized in Algorithm 1.
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Figure 3.2: A triangular mesh in 2D with the labeled faces (gray or white)
and the boundary edges (blue or red). The background faces are
not visualized in the figure.

Algorithm 1 Deformation step by DSC in 2D
input Half-edge mesh M, displacements on the interface vertices, average
edge length l1
while the interface vertices do not reach their destinations do
Move the interface vertices until they do not cross other triangles
Improve the mesh while keeping the interface fixed
Remove degenerate edges and triangles

end while
Resize the mesh, making its average edge length around l1.

3.3 Mesh deformation based on differentiable ren-
dering

This section addresses 3D triangular meshes and the deformation of the meshs
based on an inverse process of a computer graphics procedure called rendering.
Rendering in computer graphics refers to a process of generating 2D images from
3D object models and the information of visible lights and a camera. Note that
this section addresses visible lights, instead of X-rays or electrons and deals with
computer graphics, rather than tomography. Here, we restrict our attention to
opaque objects represented by 3D triangular meshes in the sense that visible
lights could not pass through such opaque objects. We first review a rendering
process and explain how the rendering process can be made differentiable for
the shape estimation problem.
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3.3.1 Rasterization rendering technique

Among rendering techniques, we focus on a fast technique called rasterization.
Rasterization rendering technique projects object geometry onto the camera
plane and determines the pixels to update. As shown in Fig. 3.3 (a), the first
step of the rasterization rendering technique projects a triangle onto an camera
plane and, as shown in (b), the second step called rasterization finds the pixels
which are covered by the projected triangle. The projection step for a triangle
can be done by an affine transformation of the positions of the three vertices
in the triangle and so is differentiable. The second step is a discrete sampling
operation which is not straightforward to differentiate.

v0 v2

v1

s0

s1

s2

(a) projection (b) rasterization

Figure 3.3: Illustration of the rasterization rendering technique for the parallel
projection case (also called orthographic projection in computer
graphics). (a) shows the projection step which projects a triangle
in a mesh onto an camera plane. (b) shows the rasterization step
which determines the pixels (red) covered by the triangle.

After finding the visible pixels from the triangle, the rasterization rendering
technique updates the image values by interpolating the value between three
known attributes such as colors on the three vertices. Lastly, we need to choose
the triangles visible from the camera. For opaque objects, we can only observe
the nearest triangle to the camera, so we need to filter out far triangles. This
can be achieved by using an array called z-buffer. For each pixel on the image,
z-buffer aims to keep track of the nearest triangle index and we can update the
buffer when we find a triangle closer to the camera than the current triangle in
the z-buffer. Using this z-buffer, we can update the image value by the nearest
triangle. The whole procedure of rasterization rendering process is summarized
in Algorithm 2.
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Algorithm 2 Rasterization rendering algorithm
Initialize the z-buffer array as infinity
for each triangle in the mesh do
// projection step
Project the triangle onto the camera plane
for i = 1 to the number of pixels in the image do
// rasterization step
if the i-th pixel is covered by the projected triangle then
z ← the distance between the i-th pixel and the triangle
if z < z-buffer(i) then
z-buffer(i) ← z
Update the image value on the i-th pixel, by interpolating the value
between known three vertex attributes

end if
end if

end for
end for

3.3.2 Differentiable rasterization for shape estimation

In recent years, researchers have investigated a procedure of how to invert the
rasterization rendering process so that we can estimate unknown parameters
such as the shape of an object from 2D images. Such inverse analysis can be
possible through a tool called differentiable rasterization. Differentiable rasteri-
zation connects the rasterization rendering process and optimization of unknown
parameters, by estimating the derivatives of observation images with respect to
unknown variables. Among differentiable renderers, we review a recent work
called Differentiable Interpolation-based Renderer (DIB-R) [CGL+19], which is
used in Contribution B.

Whereas previous methods approximate differentiable renderers [KUH18, LCLL19],
DIB-R provides an analytic differentiation with respect to unknown variables
such as the vertex positions vk of the triangular mesh for the shape estimation
problem. Consider a projected triangle on the camera plane with three vertices
sk, as shown in Fig. 3.3. An image value Ii on the i-th pixel can be written in
a barycentric coordinate form as

Ii =

2∑

k=0

wkdk (3.1)

where dk is an attribute of the vertex k (e.g., colors) and wk is the barycentric
weights such that w0 + w1 + w2 = 1 and wk > 0. The clever idea of DIB-R is
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to rewrite the barycentric weights wk as a function of sk and the position ri of
the pixel i on the camera plane as:

wk = wk(s0, s1, s2, ri). (3.2)

For the exact formula, the reader is referred to [CGL+19, the supplementary,
Eq. (7)].

Such reformulation enables computing the derivative of an objective function
with respect to the vertex positions. Consider an objective function of the
residual between the image observation Îi and the estimation Ii

L({vl}) =
∑

i

‖Ii − Îi‖2. (3.3)

Then, its derivative with respect to the vertex position vl reads

∂L

∂vl
=
∑

i

∂L

∂Ii

∂Ii
∂sl

∂sl
∂vl

, (3.4)

where the derivative ∂L/∂Ii is straightforward to compute and the second term
∂Ii/∂sl can be computed, using the reformulation in Eq. (3.2). The last term
∂sl/∂vl is also straightforward to compute, since the projected vertex position
sl is an affine transformation of the 3D vertex vl.

This differentiable rasterization algorithm is extended to tomographic recon-
struction for estimating the shapes of homogeneous objects in Contribution B.

3.4 Convex optimization

This section touches on convex optimization and explains a specific solver called
Hybrid Gradient Primal Dual (HGPD) which is used in Contribution A and D.
Convex optimization is concerned with minimizing a convex function over convex
sets. In particular, the thesis deals with minimizing convex functions F and G
having the composite forms as follows:

min
u
F (Au− p) +G(Du). (3.5)

where A is a linear operator such as the system matrix explained in Sec. 2.2,
p is a vector for the projection data and D is a linear operator for a discrete
gradient operator. In particular, we consider F to be the L2 squared norm such
that F (·) = 1

2‖ · ‖22 and G be the L1 norm function which is not differentiable.
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Solving the problem (3.5) is not straightforward, as it is involved with the com-
posite operators A and D and has the non-differentiable term G. To deal with
such difficulty, there have been many first-order convex optimization methods
developed. Among them, HGPD is a primal dual algorithm where the mini-
mization problem is reformulated as a minimization-maximization problem and
finds the saddle point there. The reformulation is based on a conjugate function
f∗ of a convex function f , defined by

f∗(y) = sup
x
〈y, x〉 − f(x). (3.6)

It is well known [BC17, Theorem 13.37] that if f is a convex continuous function,
it holds that f∗∗ = f , where f∗∗ is the conjugate function of f∗. Since the norm
functions F and G are convex and continuous, we can identify them with F ∗∗
and G∗∗, respectively. Using this identification, we can rewrite (3.5) as

min
u

sup
q1,q2

〈Au− p,q1〉 − F ∗(q1) + 〈Du,q2〉 −G∗(q2), (3.7)

where the dual variables q1 and q2 are introduced. Then, HGPD updates the
primal variable u by a procedure similar to the gradient descent method and the
dual variables by a similar procedure to the gradient ascent method. Specifically,
the updates of HGPD read [CP11]:

uk+1 = uk − τ(ATqk1 + DTq2
k) (3.8)

ū = 2(uk − uk+1) (3.9)

qk+1
1 = proxσ1F∗(q

k
1 + σ1(Aū− p)) (3.10)

qk+1
2 = proxσ2G∗(q

k
2 + σ2 Dū), (3.11)

where k is the iteration number, τ and σ1, σ2 are the step sizes and the operator
prox is defined as

proxτf (y) = argmin
x
f(x) +

1

2τ
‖x− y‖22. (3.12)

The solution to the proximal operator (3.12) can be interpreted as a solution to
the implicit gradient method, when f is differentiable [PB14].

The convergence of the algorithm depends on the step sizes, which can be de-
termined by the operator norms ‖A‖ and ‖D‖, the largest singular values of
the operators. To be specific, according to [CP16, Lemma 5.5], the conver-
gence of HGPD is guaranteed under the condition that τ = c/(‖A‖ + ‖D‖),
σ1 = 1/(c‖A‖) and σ2 = 1/(c‖D‖) where c is a positive number. The choice
of the number c might affect the balance of convergence between the primal
variable and the dual variables updates. For a more detailed discussion on the
step sizes, the reader is referred to [CP16, Example 5.7].
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3.5 Coordinate-based neural networks

Coordinate-based neural network, also known as implicit neural network, is a
neural network to enable the parametrization of a continuous function, by receiv-
ing the spatial coordinates as input and yielding the signals for the coordinates.
Since a recent work called NeRF [MST+20] was developed for the novel view
synthesis task in computer vision, the coordinate-based neural network has been
successfully applied to many problems involving the computation of integrals.

...

. . .

. . .

. . .

...

Figure 3.4: An illustration of a fully connected neural network which inputs a
2D coordinate and outputs the signal for the coordinate.

A neural network architecture called SIREN [SMB+20] is a fully connected neu-
ral network which uses the sine activation function and a principled initialization
scheme. SIREN is shown to represent well the signals with the high frequency
components. This neural network is used for tomographic reconstruction in
Contribution D.



Chapter 4

Contributions

The goal of this chapter is to give an overview of the contributions of the thesis
with some motivational examples. The chapter consists of four sections, where
each section corresponds to one paper from Contributions A - D in the same
order.

Section 4.1 and 4.2 describe the main contributions of the thesis: Contribution A
and B, which aim to estimate the segmentation of homogeneous objects directly
from projection data based on mesh deformation. In this regard, these works
share some common features, but differ in several aspects. Contribution A
addresses 2D object space and does not require the knowledge of the topology
information of the objects. On the other hand, Contribution B considers 3D
object space and needs the information on the topology of the objects as a priori.
The difference of two works will be more discussed in Section 4.2.

Section 4.3 gives an overview of Contribution C which investigates a neural
network-based representation for tomographic reconstruction. Section 4.4 de-
scribes Contribution D which studies a regularization scheme for spectral CT
reconstruction. Note that Contribution C and D are not related to mesh defor-
mation.
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4.1 Multi-material segmentation from projections
in 2D (Contribution A)

In Section 2.4, we have discussed a geometric approach to tomographic recon-
struction and derived the curve evolution equation (2.21) for alinging a curve
with the boundary of a homogeneous object from projections. There are two
main ways to represent such a curve: an explicit and an implicit representa-
tion. A method based on explicit representation keeps track of the points on
the curve and evolves the curve by displacing the points. The explicit repre-
sentation was used in Dahl et al. [DDH18] to reconstruct a single homogeneous
object, by extending a curve evolution method called Snakes [KWT88] to tomo-
graphic segmentation. This preliminary work has the limitations that it only
supports a single material and could not handle the topological changes during
deformation. These limitations are shared by many curve evolution methods
based on explicit representation.

In Contribution A, we extend the preliminiary work [DDH18] to support mul-
tiple materials and the topological adaptivity during deformation, using De-
formable Simplicial Complex (DSC). As explained in Section 3.2, DSC is a
deformable model which supports topological changes during deformation and
takes care of improving the quality of the mesh.

Fig. 4.1 shows an overview of the proposed method in Contribution A. From a
given configuration of the mesh, we use a specific forward model to compute the
projections. These computed projections are compared with projection data to
estimate attenuation coefficients and the displacements of the interface vertices.
The displacements are computed based on the curve evolution equation (2.21),
but we extend it to multiple materials. From these estimated displacements,
we use DSC to deform the mesh and repeat the procedure, until a stopping
criterion is met.

In Fig. 4.2, a simple experiment shows an advantage of our work in terms of
topological changes during deformation for reconstructing an object consist-
ing of disconnected components. We compare our method with the previous
work [DDH18] from the same initialization by one closed circle. As shown in
the figure, the proposed method can split the initial circle into 5 separate com-
ponents, which matches with the ground truth phantom. On the other hand,
the previous work [DDH18] keeps the topology fixed from the beginning, which
yields a degenerate result.
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Figure 4.1: An overview of the proposed method in Contribution A.

Phantom Initialization Result of ours A Result of [DDH18]

Figure 4.2: An example of reconstructing the phantom (left). The proposed
method can change the topology from the initial sphere (middle-
left) to 4 connected components (middle-right). On the other
hand, the preliminary work [DDH18] keeps the initial topology
fixed, which yields the degraded segmentation result (right).

4.2 Surface segmentation from projections in 3D
(Contribution B)

In the previous section, we have seen 2D tomographic segmentation from pro-
jections. DSC, which we used in Contribution A], has also been implemented
in 3D where it is based on tetrahedral mesh. This means that our 2D method
might be extended to 3D segmentation. However, this would require expensive
computational costs in terms of memory usage and running time required by
DSC. Instead, this section addresses 3D surface reconstruction from projections
in another way, by extending a differentiable rendering technique explained in
Section 3.3 under the assumption that the topology of the objects is given.
It means that we need to initialize meshes such a subdivided icosphere with
the correct topology of the objects. In this section, we consider parallel beam
geometry, where the rays are perpendicular to the detector plane.

In Contribution B, we extend the differentiable rasterization technique explained
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Figure 4.3: Forward projection of a homogeneous object represented by a tri-
angular mesh for a given ray (darkred). The projection value for
the ray can be computed by the signed sum: µ (+AD−BD), where
µ is the constant attenuation value, AD is the length between two
points A and D and BD between B and D. Here, the signs for
AD and BD are determined by the sign of the dot product of the
ray vector and the normal vectors (green).

in Section 3.3.2 to tomographic reconstruction. I first explain the connection
between the rasterization rendering technique and the forward model procedure
in tomography, known as forward projection. Whereas the rendering process
only considers the nearest triangle to the camera plane for an opaque object,
the forward projection in tomography needs to consider all the triangles, as the
ray passes through the object. The forward projection of a triangular mesh
is illustrated in Fig. 4.3, where the object is assumed to be homogeneous. As
shown in the figure, given an attenuation coefficient µ and a ray, the projection
value for the ray can be computed by the multiplication of µ and the thickness
of the object along the ray (AD −BD in the figure).

How can we compute the length such as AD in the figure? One can compute
AD by finding the exact point A, the intersection point of the ray and the
corresponding triangle. However, we want to write down AD in terms of three
vertices on the triangle containing A, so that the forward projection can be
differentiable with respect to the vertex positions.

To represent AD in terms of the vertices, we first assign to each vertex on the
triangle its distance to the detector. Then, the length AD can be given by the
barycentric interpolation from three assigned distance values on the vertices. In
a similar way, we can compute the length BD and so the thickness for the ray
in the figure can be obtained by AD−BD. Here, we assign the positive sign for
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AD and the negative sign for BD. These signs are determined by the sign of the
dot product of the ray direction vector and the normal vector of the triangle.

In summary, the forward projection of a triangular mesh for a homogeneous ob-
ject can be interpreted in terms of a rendering process, where we need to consider
all the triangles and assign to each vertex its distance to the detector, instead
of color values as in the rendering technique. Based on this connection, we ex-
tend the differentiable rasterization work discussed in Section 3.3.2, to make the
forward projection process differentiable in terms of the vertex positions. Using
this differentiable forward projection, we propose a shape estimation method
from projections in Contribution B.

The proposed method in Contribution B begins from a template mesh such as
an icosphere and moves the vertices, but does not change the connectivity of the
mesh. To deform the mesh, we use the gradient descent method with respect
to the vertices of the mesh where the gradient is computed from the proposed
differentiable forward projector. It is worthwhile to mention that in Contribu-
tion A, the displacements are computed only along the normal directions of the
vertices. This is because, for example, the curve evolution equation (2.21) for
the objective function (2.14) is based on the steepest descent method in a space
of smooth closed curves, not in a Euclidean space [Sun11]. (Note that depend-
ing on the objective function, the curve evolution equation can have the tangent
components [CKS95].) In contrast, in Contribution B, the unknowns are the po-
sitions of the vertices where the solution space is a Euclidean space. Hence, the
method in Contribution B has no restriction on the direction of displacements.

Fig. 4.4 shows an example of deformation by the proposed method to estimate
a surface with genus 1. This topology information is assumed to be known and
the proposed method begins with a torus, as the torus is one of the simplest
shapes with genus 1. In the beginning, the intermediate meshes can have few
degraded triangles. To deal with such degenerate triangles, we add regulariza-
tion terms and refine the meshes several times during the deformation. This
mesh refinement also helps the method converge fast. As shown in the figure,
our method yields a high-quality mesh around the iteration 360.
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iter=0 iter=60 iter=120 iter=360

Figure 4.4: Deformation example for the kitten data model from a torus. The
top row shows the intermediate meshes during deformation and
the bottom row shows the corresponding computed projections.
The mesh was refined at the iterations 60, 120 and 180.

4.3 Spatial regularization for tomography using
coordinate-based neural networks (Contribu-
tion C)

As mentioned in Section 3.5, SIREN [SMB+20] is a fully connected neural net-
work with sine activation functions and inputs spatial coordinates and outputs
the signals for the coordinates. Contribution D applies SIREN to tomographic
reconstruction such that the output of the network is the attenuation coefficient
values on the coordinates.

Specifically, we use 3 hidden layers where an output of a hidden layer can be
written as

h(z) = sin (ω(Wz + b)) (4.1)

where W and b are the neural network weights to optimize, ω is a constant
to control the frequency of the signal and sin is the sine function. We use the
rectified linear unit (ReLU) as the activation function in the last layer, where
ReLU maps negative input values to zeros. Using this network, we represent an
object by a continuous function in the sense that we can evaluate the attenuation
coefficient function for any spatial coordinates.
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δ
xk

o

Figure 4.5: Illustration of uniform sampling for one ray with the origin o and
the constant interval δ.

Given such continuous representation, the forward projection can be computed,
using a numerical integration method, since we can evaluate the attenuation
function at any spatial coordinate. We used a simple numerical integration
method called the mid-point rule. As shown in Fig.4.5, in the mid-point rule, we
sample the points xk uniformly with a constant interval δ. Then, the estimated
projection for a ray is given by

∑
k f(xk)δ where f represents the neural network

function. With such forward model, we aim to minimize the misfit between our
estimation and projection data in the L2 sense.

To deal with noisy data and obtain high-quality results, we consider a regular-
ization term. Inspired by total variation regularization, in Contribution C, we
propose a spatial smoothness term along only one direction of the ray. This way,
we impose a prior that the network outputs of neighboring locations should be
similar, but it is only imposed on along one direction for computational effi-
ciency.

Fig. 4.6 shows some intermediate results for reconstructing a phantom with dif-
ferent frequency parameters ω, while the object space is normalized to (−1, 1)2.
We can clearly see the effect of ω, where the result from the low value ω = 10
could not capture the fine details. We observe that in most cases, the value
ω = 30 gives the best performance, while the parameter ω with higher values
can yield some artifacts.

4.4 Vectorial total variation based on L∞ norm
for spectral CT (Contribution D)

As discussed in Section 2.5, one important question for iterative methods in
spectral CT is how to model a robust regularization term to correlate the
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epoch=1 epoch=3 epoch=10 epoch=140

Figure 4.6: Intermediate results with varying the frequency parameter ω = 10,
30, 50, and 70 (top-to-bottom).

multi-channel images from different X-ray energies. Total Nuclear Variation
(TNV) (2.25) is one of the popular regularization methods for spectral CT.
However, we observe that TNV can be vulnerable to noise, when the number of
X-ray energies considered high (e.g. 12 energy bins). This may be because TNV
often tries to align the image gradients with the noises over the multi-channel
images, instead of aligning with object features.

In spectral CT, we want to reconstruct multi-channel images u1, ...,une rep-
resenting energy-dependent attenuation coefficients from ne projections, where
ne is the number of X-ray energies considered. As a way of regularization to
correlate such multi-channel images, in Contribution D, we suggested to use a
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vectorial total variation term based on the L∞ norm, defined by

RL∞VTV({u1, ...,une}) =
J∑

j=1

(
max

1≤i≤ne
|∂xui,j |+ max

1≤i≤ne
|∂yui,j |

)
(4.2)

where J is the number of pixels in one channel image and ∂xui,j and ∂yui,j are
the partial derivatives of the image ui for the j-th pixel with respect to x and
y directions, respectively. This term was suggested for color image denoising
problems in [MS12], but has not been investigated for spectral CT data, to our
knowledge. In this section, we call the reconstruction method using RL∞VTV as
L∞-VTV.

To analyze the effects of the different regularization terms, we compare several
iterative methods based on Principal Component Analysis (PCA) [Jol86]. PCA,
in a geometric viewpoint, attempts to find a low dimensional (affine) subspace to
best fit a given set of points in a Euclidean space. The estimated low dimensional
space can give insight on the original high dimensional points.

Here, PCA is used to visualize the patterns of reconstructed images by SIRT,
TV, TNV and L∞-VTV, where SIRT and TV reconstruct multi-channel images,
independently. For this experiment, we use a real projection data (obtained from
the 3D ImagingCenter at DTU) for a single-material object made of aluminum
with 15 X-ray energy bands. We view one channel image as a point in a Eu-
clidean space RJ . Then, the reconstructed 15 multi-channel images are fitted to
a low dimensional space with dimension 4 and the aim is to visualize the basis
of this low dimensional space, known as principal components.

Fig. 4.7 shows several reconstructed images from different methods and the
estimated principal components from the results. As SIRT has no regular-
ization effects, the principal components show irregular non-smooth patterns.
The principal components by TV have smooth background overall, but have
some artifacts inside the object. The first principal components by TNV and
L∞-VTV look similar, but TNV yields other principal components with some
artifacts. A possible explanation for this might be that TNV tries to align not
only the boundaries, the but also the noises. On the other hand, the principal
components by L∞-VTV look smooth except for the boundary regions.
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Figure 4.7: Reconstruction results and the principal components by different
methods. Odd rows show four reconstruction images among 15
multi-channel images. Even rows show the 1st, 2nd, 3rd and 4th
principal components which are estimated from the reconstructed
images with 15 channels.



Chapter 5

Conclusion

The thesis has studied tomographic reconstruction methods and proposed sev-
eral new methods which have been carried out during the Ph.D. study. The
proposed methods have been shown to be applicable to X-ray CT, electron to-
mography or spectral CT.

The major work of the thesis is the direct tomographic segmentation methods
from projections based on mesh deformation. Unlike the conventional pipeline
of tomography, the proposed methods can estimate the segmentation directly
from projections data for homogeneous objects. Contribution A addresses mesh
deformation in 2D domain to align with object boundaries. One key advantage
of this work is to support topological changes during deformation, so that the
topology of the initialization mesh can be arbitrary.

Contribution B tackles 3D shape estimation with the assumption that the topol-
ogy of objects is known and is kept fixed during deformation. Compared with
other reconstruction algorithms, mesh-based methods require more computa-
tional costs, but can handle severely limited and noisy data. This makes them
very suitable for problems where data is sparse, but we have a good prior knowl-
edge about the objects to be reconstructed. We have found one such problem in
electron tomography, where our 3D shape estimation has shown to be useful for
reconstructing nano-particles. But there are other situations where mesh-based
approaches may prove useful, for example in medical CT, where approximate
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shape of organs is known, and low radiation dose limits data quality, or in dy-
namic tomography to estimate the dynamic behavior of an object. Furthermore,
due to the differentiability, the proposed forward projection model can be easily
incorporated into a deep learning framework.

We have also investigated another representation of objects using a coordinate-
based neural network for tomographic reconstruction with a new spatial regular-
ization term. Representing reconstructed object using coordinate-based neural
network might offer benefits compared to image-based representations. For ex-
ample, it may allow for capturing finer detail, not limited by the grid resolution.
While our work has not been mature enough for a practical usage, it can add
to our understanding of an exciting path.

Lastly, we have studied a regularization scheme for spectral CT reconstruction
based on vectorial total variation in Contribution D. This regularization scheme
shows the potential to be of practical use for security applications and may be
valuable to any researcher using iterative methods for spectral CT data.

In summary, the contributions of the thesis are as follows:

• We have proposed a method for segmentation of homogeneous objects
from projections based on mesh deformation with the support of multiple
materials and topological changes during deformation in Contribution A.

• We have developed a differentiable forward projector for 3D triangular
meshes representing homogeneous objects in Contribution B.

• We have proposed a direct 3D shape estimation method from projections
and applied the proposed method to electron tomography data Contribu-
tion B.

• We have investigated a coordinate-baesd neural network for tomographic
reconstruction and proposed a spatial regularization term in this frame-
work in Contribution C.

• We have studied a regularization scheme for spectral CT reconstruction
based on vectorial total variation based on the L∞ norm in Contribution D.

I believe that the contributions of the thesis are of value to future research and
practical applications of computed tomography.
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DALM, Deformable Attenuation-Labeled Mesh for
Tomographic Reconstruction and Segmentation

Jakeoung Koo , Anders Bjorholm Dahl , and Vedrana Anderson Dahl

Abstract—Most X-ray tomographic reconstruction methods rep-
resent a solution as an image on a regular grid. Such representation
may be inefficient for reconstructing homogeneous objects from
noisy or incomplete projections. Here, we propose a mesh-based
method for reconstruction and segmentation of homogeneous ob-
jects directly from sinogram data. The outcome of our proposed
method consists of curves outlining the regions of constant atten-
uation, and this output is represented using a labeled irregular
triangle mesh. We find the solution by deforming the mesh to
minimize the residual given by the sinogram data. Our method
supports multiple materials, and allows for topological changes
during deformation. An integral part of our algorithm is an efficient
forward projection of the labeled mesh onto the sinogram domain.
We initialize our algorithm based on graph total variation, also here
taking advantage of the mesh representation. Experimental results
on simulated datasets show that our method gives a compact rep-
resentation of the reconstruction and also accurate segmentation
results for challenging data with e.g. large noise, a small number
of angles or problems with limited angle. We also demonstrate
the result on real fan-beam data. The proposed geometric solution
shows a further step towards using alternative representations for
tomographic reconstruction.

Index Terms—Deformable models, tomographic reconstruction,
tomographic segmentation.

I. INTRODUCTION

IN X-RAY CT, the aim of the tomographic reconstruction
is typically to compute an image of a scanned object with

image voxels representing attenuation coefficients arranged on
a regular grid [1]. This representation is well-suited for a wide
range of reconstruction problems. However, for homogeneous
objects with simple geometry, grid-based representation may be
very redundant.

In this work, we propose a reconstruction and segmentation
method using an interface-based representation in the form of a
labeled deformable mesh and we investigate the properties of our
method. The proposed method is targeted at objects composed
of homogeneous components. Our work extends the method by
Dahl et al. [2] that employs a deformable closed curve to outline
one object in the reconstruction. Here, we replace one single
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Fig. 1. Mesh deformation minimizes the residual. A mesh configuration (a)
with triangle labels indicated by colors (black, gray and white) and interface
drawn in red. This configuration yields a residual (b) where the dark regions
denote large values. Two large displacements in the normal direction are shown
as the arrows in (a) and their corresponding residuals are shown as dotted lines
in (b). After deformation, we obtain the mesh with two new regions (c) shown
in rectangles, with the residual (d).

curve by an interface represented as edges in a labeled mesh,
and we deform the interface based on Deformable Simplicial
Complex (DSC) proposed by Misztal and Bærentzen [3]. This
gives our method several advantages compared to [2]. First, we
can reconstruct multiple objects thanks to topological adaptivity
of DSC. Second, as DSC supports multi-label segmentation, our
method also supports objects with different materials. Third,
DSC may employ either fixed or adaptive mesh resolution, which
gives an additional flexibility to our method. Fourth, while in [2]
an initialization is done by circle, meshing of the reconstruction
domain allows us to efficiently initialize our algorithm by finding
a configuration close to the desired solution.

In Fig. 1 we show an example of a labeled mesh before and
after the deformation. To obtain a segmentation, we compute the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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displacements of the interface vertices to minimize the residual
between data and the computed sinogram from the mesh. While
moving those vertices, the mesh quality is maintained by split-
ting or merging nearby faces. These local mesh operations allow
two new pores to be created from nearby pores.

A. Related Works

Two approaches to finding segmentations directly from sino-
gram data are related to our work: discrete-valued tomography
and deformable models. We will review those two approaches
in addition to mesh-based reconstruction methods.

Discrete-valued tomography methods assume that the recon-
struction image has a small number of discrete attenuation
coefficients. This acts as a prior to deal with situations where
there are a small number of homogeneous objects from small
angular range and noisy sinogram data. Batenburg and Sijbers
in [4] proposed the DART method, which combines an existing
iterative reconstruction method and a thresholding scheme. To
improve DART’s robustness to noise and to automatically com-
pute the attenuation coefficients, extensions have been suggested
in [5], [6], and [7].

The method in [8] splitted the variables representing attenua-
tion coefficients into continuous and discrete. This splitting turns
the problem into two simple problems solved by the conjugate
gradient method and a submodular minimization solver. In [9]
the authors suggested a joint reconstruction and segmentation
method in a variational framework. Other techniques include
graph cut [10], [11] and convex relaxation techniques [12].
These discrete-valued tomography methods relied on a regular
image grid, while DALM does not restrict the solution on the
image domain. Among these works, we choose one of the
state-of-the-art works [7] to compare our segmentation results
with.

Deformable models from sinogram data have been studied
mostly based on level set methods [13]. Whitaker and Elan-
govan [14] formulated the Mumford-Shah piecewise constant
model [15] in terms of level-set to minimize the reprojection
error. This work was extended to a piecewise smooth model
by Alvino and Yezzi [16]. Extending two-phase segmentation,
a multi-phase piecewise constant model was studied in [17],
[18]. The stated deformable models required dense and regular
discretization. To reduce the unknown variables, a parametric
level set method was proposed in [19] and used in [20]. Those
methods required fewer parameters to represent a level set,
which reduced the unknown variables and allows to use efficient
second-order optimization methods.

Such level-set models rely on regular image grids and their
forward projections use an image-based forward model, whereas
the proposed method can directly project a labeled mesh into
sinogram domain. Instead of level-set, our previous work [2]
used an explicit representation, but limited to one simple closed
object. We extend it to consider multiple materials and allow
topological changes.

Several mesh-based reconstruction methods have been pro-
posed. Such methods aim to find an adaptive representation
of objects to match with the structure of objects and improve
the reconstruction quality. In [21] Brankov et al. suggested
a method to estimate an initial mesh configuration from the

reconstruction image obtained by pixel-based filtered backpro-
jection. This dependency on an analytical method could affect
the mesh estimation step severely in the case of limited sinogram
data. Cazasnoves et al. [22] employed a more sophisticated
strategy to build an irregular mesh before reconstruction. They
detected edges in sinogram data to extract structures in 2D and
merge them to estimate the interface of objects in 3D. Around
the interface, a more fine mesh was constructed and then the
reconstruction was performed. Instead of estimating mesh con-
figuration once, adaptive mesh refinement methods have been
proposed. In [23], [24], a tetrahedron mesh was generated from
a coarse regular grid and the Expectation Maximization (EM)
method was used for reconstruction on the mesh. The mesh
was finely refined around the nodes having large attenuation
value variations. They repeated reconstruction and refinement in
a coarse-to-fine way. On the other hand, the method in [25] began
with a fine uniform grid and alternately use EM and coarsen the
mesh, repeatedly. In [26] they iteratively refined the mesh based
on the segmentation result by the level set method.

Unlike existing mesh-based reconstruction methods, our
method aims to deform the interface between materials and uses
the mesh as an auxiliary structure due to the assumption of a
small number of materials.

B. Summary of Contributions and Outline

The main contribution of our work is to develop a mesh-based
deformable method from sinogram data which supports multiple
materials and topological changes during deformation (Sec. III).
We develop an efficient forward projection algorithm mapping a
labeled mesh into the sinogram domain. To avoid local optima,
we employ a robust initialization scheme based on graph total
variation on the mesh (Sec. IV). The numerical results are
presented in noisy and incomplete synthetic data and in real
fan-beam data (Sec. VI).

II. PROBLEM FORMUATION

In this section, we formulate the tomographic segmentation
problem to estimate the curves to segment the regions whose
attenuation values are approximately homogeneous. We follow
the similar formulation in [14], [16] which consider two-region
segmentation, but we extend it to multi-region cases inspired by
the region competition method [27]. Similar to such works, our
formulation is based on variational methods where an energy
over a continuous space is formulated and a low energy reflects
a desired solution. Here, our aim is to find the minimizer. In the
next section, we will propose a concrete algorithm to minimize
the energy.

The sinogram data p(θ, s) is produced by projecting and
rotating an unknown collection of objects onto the detector, and
by θ we denote the projection angle, while s denotes the detector
position.

Tomographic segmentation problem for homogeneous ob-
jects is to divide the reconstruction domain Ω ⊂ R2 into M
mutually disjoint regions {Rm} such that Ω = ∪Mm=1Rm and
Ri ∩Rj �= ∅ for i �= j. Each region is associated to a homoge-
neous object with attenuation coefficient μm. We aim to find the
curves {Cm} to align with the boundaries of unknown objects
such that Cm = ∂Rm for each region Rm.
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Fig. 2. Illustration of line equations for parallel beam. Given a position s along
the detector, blue line represents the line equation Lθ(x, y)− s = 0.

From this configuration, we define μmp̂m as forward projec-
tion of a region Rm with the attenuation value μm where

p̂m(θ, s) =

∫

Rm

δ(Lθ(x, y)− s) dx dy, (1)

and δ is the delta function, s the detector position, θ the projection
angle and Lθ − s = 0 a line ray equation. For the parallel beam,
L is given by Lθ(x, y) = x cos θ + y sin θ (See Fig. 2). By
combining all M materials, we define p̂ as a linear combination
of all the contributions

p̂(θ, s) =

M∑

m=1

μmp̂m(θ, s). (2)

From the estimation p̂, we aim to fit it to the sinogram data
p, by minimizing the reprojection error (p− p̂)2. This fitting
term can lead to an undesirable solution if data is noisy or
incomplete. To prevent it, we introduce a regularization term
to make the curves smooth by penalizing their large lengths.
With this smoothness term, we define the energy to minimize:

E({μm, Cm}) =
1

2

∑

θ,s

(p(θ, s)− p̂(θ, s))2+λ

M∑

m=1

Len(Cm),

(3)
where λ is the weighting parameter for the regularization term
and Len denotes the length of a closed curve, defined by
Len(Cm) =

∫
Cm

dr, with arc length parameter r [28]. Choosing
the optimal regularization parameter λ in (3) is not straightfor-
ward and other variational approaches [14], [16] have the same
problem. We often have an idea of how object shapes look like
before scanning. In this case, the prior knowledge on objects
could help choose the parameter.

Given attenuation values {μm}, we derive a curve evolution
equation. Consider a curve Cm which encloses the region Rm

with the attenuation μm and the adjacent region Rn with μn.
Then, the curve evolution equation for Cm can be derived as
(see Appendix)

Ck+1
m (r) = Ck

m(r)

+ τ

(
(μm − μn)

∑

θ

(p(θ, s̃)− p̂(θ, s̃)) + λκm(r)

)
Nm(r),

(4)

where k denotes the iteration number, τ the step size, Nm

the outward normal vector, κm the curvature of the curve and

Fig. 3. Illustration of attenuation-labeled mesh. Each triangle is associated
with one material. The blue edges indicate the interface between air and the
material 1 and the red edges between the material 1 and the material 2. For the
illustration, the triangles representing the background are omitted.

s̃ = Lθ(Cm(r)) the detector positions onto which the point
Cm(r) are projected.

III. DEFORMABLE ATTENUTION-LABELED MESH

In this section, we describe the proposed framework, de-
formable attenuation-labeled mesh (DALM), to optimize the
energy in (3). We first propose our mesh-based representation,
called ALM, and its forward projection to generate the estimated
sinogram. From the estimation, we compute the attenuation
values and deform ALM.

A. Attenuation-Labeled Mesh (ALM)

Consider a triangularization of a reconstruction domain Ω ⊂
R2, where every triangle is labeled with a label m from
m ∈ {1, . . . ,M}, and every label has an associated value μm.
In terms of tomographic reconstruction, labels correspond to
different materials, and label values correspond to material
attenuations. While we can operate with an arbitrary number
of materials, we assume that M is known as a prior and much
smaller than the number of triangles.

The construction consisting of a triangle mesh, labels, and
attenuation values is denoted by X , and we call it attenuation-
labeled mesh (ALM). Any ALM configuration is fully defined
by the list of mesh vertices, list of mesh triangles, list of triangle
labels, and a list of label attenuations. An example of ALM is
illustrated in Fig. 3.

Clearly, ALM gives a partitioning of the reconstruction do-
main Ω into different materials, i.e. regions Rm of attenuation
μm, for m = 1, . . . ,M . Furthermore, ALM gives an explicit
representation of interface curves as a collection of interface
edges – mesh edges whose two adjacent triangles are assigned
two different labels. Furthermore, we define interface vertices as
mesh vertices which are adjacent to at least one interface edge.

B. Forward Projection of ALM

We propose a forward projection algorithm to yield the esti-
mated sinogram p̂ from the interface edges of a configuration
of ALM. Our forward model is based on the principle that a
ray should hit a closed region an even number of times. Our
forward algorithm has two advantages: First, we only need the
information of the interface and its surrounding labels. Second,
the forward projection can be done independently for each
interface edge, which allows for efficient parallelization.
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Fig. 4. Illustration of mesh representation and forward projection in fan-beam geometry for a projection angle. For the illustration purpose, we omit the triangles
representing background and the interface edges are shown as darker than non-interface edges. (a) Half-edge based mesh is used to represent objects where each
face is labeled with a material. The shaded region denotes a material and its outside denotes vacuum. The detector positions sv , sv̄ are from the two vertices in a
half-edge. Depending on the sign of (sv − sv̄), we add (b) or subtract (c) the contribution of the segment between the source and the interface. After summing
these values, we obtain (d) the final forward projection for a specific angle.

Algorithm 1: Forward Projection For One Angle.
Input: Attenuation-labeled mesh X , a projection angle θ
Init: p̂m(θ, s)← 0 for every label m, detector pixel s
1: for all interface edge eijdo
2: l← label of triangle left of eij
3: k ← label of triangle left of eji (opposite triangle)
4: si ← projection of i onto the detector (continuous)
5: sj ← projection of j onto the detector (continuous)
6: for all detector pixel s between si and sj do
7: o← source position
8: x← intersection of eij and ray os
9: c← length of ox

10: p̂l(θ, s)← p̂l(θ, s) + sign(si − sj) · c
11: p̂k(θ, s)← p̂k(θ, s) + sign(sj − si) · c
12: end for
13: end for
14: return p̂(θ, s)←∑M

m=1 μmp̂m(θ, s)

In Fig. 4, we provide an illustration of our forward algorithm
for fan-beam geometry given one projection angle. We (b) add or
(c) subtract the contribution between the source point and the in-
terface, depending on the orientation of the half-edges. The sign
of the contribution is determined by the sign of the difference
of detector positions sv, sv̄ corresponding to the initial and end
vertices v, v̄ in the edge, respectively. Then, we (d) sum those
signed contributions. The whole procedure for one projection
angle is summarized in Algorithm 1. After performing forward
projection for all edges and angles, we obtain the final estimated
sinogram.

C. Estimation of Attenuations

In the energy (3), we have two unknowns of attenuation values
and interface curves. Our strategy is to optimize them separately.
Here, we fix the interface curves and optimize M attenuation
values only. The optimal condition with respect to μm reads

0 =
∂E

∂μm
= −

∑

θ,s

(p(θ, s)− p̂(θ, s))p̂m(θ, s), (5)

which leads to a system of linear equations to solve:
⎛
⎜⎜⎝

∑
θ,s p̂

2
1 · · · ∑

θ,s p̂1p̂M
...

. . .∑
θ,s p̂M p̂1

∑
θ,s p̂

2
M

⎞
⎟⎟⎠

⎛
⎜⎜⎝

μ1

...
μM

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

∑
θ,s p̂1p

...∑
θ,s p̂Mp

⎞
⎟⎟⎠,

(6)
where we omit (θ, s) in p̂m, p for simplicity of notation. The
matrix on the left side is symmetric and positive semi-definite.
In many cases, the background of a material is known as air or
vacuum, so its attenuation coefficient can be set as zero. In this
case, we only need to estimateM − 1 attenuation coefficients. If
the number of unknown attenuation coefficients in (6) is less than
4, we can use the closed-form solution to compute the inverse
of the matrix of size 2-by-2 or 3-by-3 in the left hand side.
Otherwise, we can use Cholesky factorization [29] to solve (6).

D. Deformation of ALM

Given attenuation values, we now deform the interface in the
direction of minimizing the energy (3). In ALM, each vertex v on
the interface is associated with two materials: the inside μv and
the outside μ̃v . For example, μv corresponds to the material for
the triangle: face(opposite(evv̄)) in Fig. 4(a). For each
interface vertex v, we compute the displacement from the current
position, by the discretization of (4), as follows:

τ

(
(μv − μ̃v)

∑

θ

(p(θ, sv)− p̂(θ, sv)) + λκv

)
Nv, (7)

where Nv denotes the outward unit normal vector for the vertex
v and κv is the curvature for the vertex v which can be computed
by the discrete version of Frenet formula [28]. The detector
position sv denotes the position determined by the vertex v and
projection geometry, as shown in Fig. 4(a). Note that sv needs
to be interpolated, as detectors have finite measurements.

From the computed displacements, we aim to deform the
interface. To allow for topological changes during evolution, we
employ a mesh-based deformable model, Deformable Simplicial
Complex (DSC) [3]. Here we briefly explain the principle of
DSC.

DSC moves the interface vertices sequentially towards des-
tinations, while improving the mesh quality. The improvement
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Fig. 5. A diagram of the deformation step in DSC. The loop is done for one
vertex at a time. After all the vertices reach the destination, the mesh is resized.

step includes smoothing non-interface vertices, edge flipping
and removing degenerate faces. The destination of each interface
vertex is computed from (7) which is the displacement from
the current position. When all the interface vertices reach their
destinations, DSC refines the mesh further by splitting long
edges, which are not on the interface, based on the parameter
of average edge length l1. This parameter allows some range of
edge lengths around l1. At this last step, DSC does not split the
interface edges.

We provide a summary of DSC deformation in Fig. 5. We
refer to the paper [3] for more detailed description of DSC.

IV. INITIALIZATION

Snake-based reconstruction suggested in [2] is initialized as
a circle in the middle of the reconstruction domain. Such initial-
ization would also work in our case, and topological adaptivity
provided by DSC would split the curve if needed. Despite the
topological adaptivity, the curve deformation might still stop in
a local optimum, for example if a hole needs to be introduced in
the material.

To avoid local optima, and to improve the efficiency of the
reconstruction, it is desirable to start the mesh deformation from
a good initialization. We present two initialization methods,
the first based on filtered backprojection and the second based
on a graph total variation. The first method is computationally
efficient and aimed for complete and noise-free data. The second
method is capable of handling incomplete or noisy data at an
increased computational complexity.

Both initialization methods share a common pipeline. First,
we construct a regular triangular mesh using a selected edge
length l0. Second, for each mesh triangle t we compute an
attenuation coefficient νt. Third, we divide triangle attenuation
coefficients into background and foreground objects by the k-
means algorithm [30]. The difference between the two proposed
initialization approaches lies in the second step, computing νt.

A. Filtered Backprojection on Mesh

Filtered backprojection method is one of the most popular
methods in tomographic reconstruction [31]. This analytical
method consists of two stages: filtering the sinogram and back-
projection. Filtering sinogram does not depend on the repre-
sentation of unknown objects, while the backprojection stage
depends on the representation. In image reconstruction, for each

pixel, the corresponding sinogram values are accumulated from
all angles. Motivated by this way, we use a similar backprojec-
tion method on a triangular mesh.

For each mesh triangle t, we can compute its forward projec-
tion νtp̂t(θ, s) with the attenuation νt by Algorithm 1. Then, the
estimated sinogram corresponding to the whole mesh would be

p̂mesh(θ, s) =

T∑

t=1

νtp̂t(θ, s) , (8)

where T is the number of triangles in the mesh. This can be
written as a matrix-vector product

p̂mesh = Aν , (9)

where p̂mesh is unwrapped into a vector, A is the forward matrix
whose t-th column is (unwrapped) p̂t and ν is the unknown
vector whose t-th element is νt.

From this setting, the backprojection operator is the adjoint
operator of A, and the backprojected image is

νB = AT p. (10)

Similar to filtered backprojection on images, we first filter the
sinogram and backproject it onto the mesh as in (10).

B. Graph Total Variation

The filtered backprojection method is vulnerable to incom-
plete or noisy data. To deal with degraded data, we present
another initialization method based on graph total variation [32].
In the mesh domain, we impose smoothness between the neigh-
boring faces.

To formulate a minimization problem, we consider the abso-
lute difference of attenuation coefficients of neighboring faces

Esmooth = α
∑

(t,t̄)∈E
|νt − νt̄|, (11)

where E = {(t, t̄) : trianges t and t̄ are adjacent} denotes a set
of edges connecting two neighboring faces andα is a smoothness
weight. This term can be written in a matrix multiplication form
as

Esmooth = ‖Kν‖1 . (12)

Here, K is an oriented edge-triangle incidence matrix with
weight α. Each row of K represents one edge (t, t̄), and has two
non-zero elements: α in a position corresponding to triangle t
and −α in a position corresponding to triangle t̄.

Combining a data fidelity term of reprojection error and
smoothness term (12), we aim at finding ν by solving the
following minimization problem:

νTV = argmin
ν

1

2
‖Aν − p‖22 + ‖Kν‖1. (13)

Note that the weighting parameter α is incorporated into the
matrix K.

Optimizing the convex energy (13) is not straightforward,
as the energy has a non-smooth regularization term and two
linear operators of A and K in the composite form. To deal with
these difficulties, we employ the Hybrid Gradient Primal Dual
(HGPD) algorithm [33] which can split the operators and lead
to efficient iteration steps. To split the linear operators, we intro-
duce two variables z1 = Aν, z2 = Kν and the corresponding
dual variables q1, q2. We also impose the positivity constraint
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Fig. 6. An illustration of initialization schemes. In initial reconstructions, each triangle has its own attenuation value. In initial segmentation, the red line represents
the initial guess of the object after applying k-means algorithm to initial reconstruction.

on our solution ν. To use HGPD, we formulate a saddle-point
problem

min
ν

max
q1,q2
〈Aν, q1〉+ 〈Kν, q2〉+ δ + (ν)− F ∗(q1, q2), (14)

where δ + is the indicator function of positive set and F ∗ is the
conjugate function of F (z1, z2) =

1
2‖z1 − p‖22 + ‖z2‖1.

HGPD aims to find a saddle point solution of (14) by the
minimization with respect to the primal variables and the max-
imization with respect to dual variables. The updates of primal
and dual variables are provided in Algorithm 2. For the detailed
derivation we refer to [34, Algorithm 4].

Algorithm 2: Primal Dual Updates For Solving (13).

Set the step sizes τ , σ as 1/(‖A‖2 + ‖K‖2).
Initialize ν0, q01 , q

0
2 as zero vectors.

for k = 0, 1, 2, . . .

νk+1/2 := νk − τ(AT qk1 +KT qk2 ) (15)

νk+1 := max(νk+1/2, 0) (16)

ν̄ := 2νk+1 − νk (17)

qk+1
1 :=

qk1 + σ(Aν̄ − b)

1 + σ
(18)

qk+1
2 :=

qk2 + σKν̄

max(1, |qk2 + σKν̄|) (19)

Fig. 6 shows an illustration of two different methods. We
use the same phantom and sinogram data with 30 angles. For
filtered backprojection, we use Hann filter. The reconstruction
from filtered backprojection has some unstable values around
the boundary, which gives several outliers in the initial segmen-
tation. On the other hand, graph total variation yields a better

Algorithm 3: DALM.
Input: sinogram data p, number of materials M
Output: attenuation-labeled mesh X
1: Construct an initial mesh with regular edge length l0
2: Compute initial reconstruction ν by Algorithm 2
3: Construct an initial ALM X by applying k-means to ν
4: while stop condition not metdo
5: Forward projection of ALM by Algorithm 1
6: Estimate attenuations by (6)
7: Estimate displacements by (4)
8: Deform the ALM X by DSC
9: end while

result with clean background due to the local smoothness and
positivity constraint.

V. COMBINED METHOD

Combining the initialization scheme, we summarize our pro-
posed method, DALM, in Algorithm 3. We estimate an initial
configuration by reconstructing attenuations on regular mesh
and clustering them by k-means method [30]. This clustering
yields an initial attenuation-labeled mesh (ALM). We iteratively
update attenuation coefficients and deform ALM. This proce-
dure repeats until the magnitude of deformation is less than a
threshold or the iteration number exceeds 500.

VI. EXPERIMENTAL RESULTS

In this section, we perform experiments to demonstrate the ro-
bustness and the limitation of DALM. We illustrate the adaptivity
of topological changes and investigate the initialization meth-
ods. We show the relative advantages over other reconstruction
methods on various synthetic datasets. We also investigate the
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Fig. 7. DALM supports topological changes and captures complex shapes.
The first column shows two phantom objects to be reconstructed. The second
column shows the intermediate step and the final result of [2] from the circle
initialization, where (b) and (d) are from the data generated by (a) and (g) and
(i) are by (f). The last column shows the corresponding results of DALM from
the same initialization.

numerical performance and the effects of algorithm parameters.
Finally, we present results on real fan-beam data.

A. Support of Topological Changes During Deformation

Here, we illustrate one advantage of our method: topological
adaptivity during deformation. Fig. 7 shows behaviour of our
method compared to [2] on the two phantoms (a) and (f). The
sinogram data are generated from the phantoms with parallel
beam geometry and 30 angles. To better illustrate the curve
evolution, we initialize both methods as circles. For the phantom
(a), as shown in (b) and (d), a single curve used in [2] does
not allow for change in topology during the curve evolution.
The curves of the proposed method are shown in (c) and (e).
The curves (interfaces) are red edges between faces labeled
as foreground (white) and background (black). While moving
interface vertices, the mesh quality is maintained by splitting
or merging nearby faces. These local mesh operations allow

for topological changes of objects during deformation. Support
for topological adaptivity also helps reconstructing the complex
shape (f). As shown in (g) and (i), the deformation of [2] stops
in a local minimum, whereas our method successfully recovers
the spiral shape (j).

B. Choice of Initialization and Parameters

As explained in Sec. IV, graph total variation can provide a
more robust initialization than filtered backprojection. To deal
with incomplete data, we choose the graph total variation method
as the initialization throughout the next experiments.

Unless explicitly mentioned, we choose algorithm parameters
as follows. As for initialization, we fix the initial edge length l0
as 4, the smoothness parameter α as 8 and iterate the primal
dual updates in (2) up to 200 times. As for the deformation of
mesh, we fix the average edge length l1 as 4, λ as 0.01 and set
the maximum iteration number as 500. The step size τ for the
curve evolution is set as 0.2. We use the public code for DSC
provided the authors [3] and use the default parameters.

C. Robustness to Limited Data

In this set of experiment, we aim to show the relative advan-
tage over other reconstruction methods on limited dataset.

We use the synthetic phantom images shown in the second
column of Fig. 8 where Phantom 3 is generated from [35]. Each
phantom has a fixed number of materials. Note that our forward
projection requires a geometric representation of objects, while
algebraic reconstruction methods need a discrete image. To
compare fairly and avoid inverse crime, we generate sinogram
data from images with 512-by-512 size by forward projection
provided in the ASTRA toolbox [36] onto the detector with
256 pixels. Note that we do not employ our forward model to
generate data, but employ an image-based forward model. We
use a parallel beam geometry and choose the area projection
model, which determines the weight in a pixel by the intersection
area of the pixel and the ray whose width is the same as that of
one detector pixel.

We compare DALM to other reconstruction methods includ-
ing (image-based) Filtered Back Projection (FBP), Simultane-
ous Algebraic Reconstruction Technique (SART) [37] and Total
Variation Regularized Discrete Algebraic Reconstruction Tech-
nique (TVR-DART) [7]. TVR-DART is one of the state-of-the-
art discrete tomography methods where reconstruction images
are assumed to have a fixed number of attenuation coefficients.
This method is closely related to ours, as it gives an already
segmented reconstruction. We carefully choose the regulariza-
tion parameter of TVR-DART for fair comparison. Since the test
data is generated from the image, these image-based methods
have benefits in the reconstruction. We use the implementation
of these methods based on ASTRA toolbox [36]. Other lines of
works are learning-based methods using deep neural networks
when training data is available. Although such approaches obtain
impressive performance in some cases, our method is aimed at
another set of problems where no training data is needed. Hence,
we compare against the mentioned model-based methods, rather
than data-driven methods.

Small number of projections: We use sinogram data with a
small number of angles between 0 and 180 degrees. In Fig. 8,
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Fig. 8. Qualitative results on phantom data with small number of projections. Each row uses the different number of angles in sinogram data generated from
the phantom images in the second column. The first column indicates the numbers of angles used and relative noise level η. The 3nd-5th columns show the
reconstruction image by FBP, SART and TVR-DART, respectively. The last column shows our results based on geometric representation.

Fig. 9. Convergence behavior on phantom images in Fig. 8. (a) Convergence of residuals divided by the size of sinogram data. (b) Convergence of the gray
value (attenuation coefficients) errors which are sum of absolute differences of true attenuation coefficients and estimations divided by the number of materials.
(c) Convergence of the magnitude of deformation which is the mean value of displacements on the interface vertices.
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Fig. 10. Visual comparison of reconstruction results on limited angle data
between TVR-DART and DALM. The odd rows show the reconstruction results
and the even rows show the difference image to ground truth.

we present the qualitative results with different angles chosen
to give reasonable results. In this figure, η denotes the relative
Gaussian noise level. The details about imposing noise will be
explained in VI-D. For Phantom 1 and Phantom 2, TVR-DART
and our method are shown to give accurate reconstruction re-
sults even for a small number of angles. However, TVR-DART
yields a degenerate reconstruction result for Phantom 3 due to
high noisy levels, while DALM captures the overall shape of
foams. TVR-DART also yields an inaccurate reconstruction in
Phantom 4 which has 6 materials and in Phantom 5 which has 4
materials with small features. As indicated in its original paper,
TVR-DART seems to be degenerate when the object have many
materials. On the other hand, DALM overall captures the shapes
in Phantom 4, but our method still misses one tiny feature at the
right bottom part, as can be seen if we zoom in close enough.
In Phantom 5, our method also has difficulty segmenting a fine
detail on the bottom, but gives better result than TVR-DART.

Limited range of angles: In this experiment, we use Phantom
2, but generate sinogram with limited range of angles. In Fig. 10,
we present the qualitative results from limited angle data. The
first row shows the result from data with 30 limited angles
between −60◦ to 60◦ and the second row shows the difference
of the results to the ground truth. Both TVR-DART and our
method yield good reconstruction shapes, but TVR-DART gives

Fig. 11. Error measure with varying relative noise level for residual projection
error between noise-free sinograms and estimations. The error bars show the
mean and standard deviations of the errors with respect to 5 phantom data.

an inaccurate attenuation coefficient. The third row shows the
visual results where a smaller range of angles (−45◦ to 45◦) are
used. The reconstruction by TVR-DART is inaccurate in shape
and attenuation coefficient value. DALM gives a superior result
to that of TVR-DART.

Convergence behavior: In Fig. 9, we investigate the conver-
gence behavior of DALM for noise-free phantom data with
uniformly-sampled 30 angles. In (a), we show the residual
between the sinogram data and our estimated sinogram divided
by the number of angles and detector pixels per iteration. The
behaviors of phantoms 1, 2 and 3 show smooth curves, while
the phantoms 4 and 5 have some peaks. This instability can
arise when some regions are merged or splitted. In the end,
the residual is shown to be stable. In (b) we plot the errors of
attenuation coefficients per iteration which are measured as the
sum of absolute differences between true attenuation coefficients
and the estimates μm divided by the number of materials. As for
Phantom 1 and 3, the gray value (attenuation coefficient) error
is shown to increase around the 20th iteration. This happens
because we estimate the optimal attenuation coefficients given
the current mesh. Therefore, large changes in the mesh can
affect the estimation of attenuation coefficients. In Phantom
4 and 5, the errors are shown to stablize after around 190
iterations. In (c) we show the magnitude of deformation per
iteration which is calculated as the average of displacements on
interface vertices. These displacements are calculated from the
expression within the large parenthesis in (4). Because the step
size is chosen around 0.2, the exact magnitude of deformation is
smaller than those shown. Both errors of attenuation coefficients
and magnitude of deformation begin to be stable in the end.

D. Robustness to Noise

In the following, we compare our method to other methods
quantitatively with different noise levels. In this set of exper-
iment, we use all the 5 phantoms and generate sinogram data
with 30 projection angles. We impose Gaussian noise e on some
sinogram data p such that a noisy sinogram is given as p̄ = p+ e.
The noise e is determined by varying the relative noise level
η = ‖e‖2/‖p‖2 from 0 to 0.03.

We employ a metric residual projection error [38] between
the noise-free sinogram p and the estimated sinogram p̂. This
estimated sinogram p̂ is obtained by forward projection of the
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Fig. 12. Effect of algorithm parameters with different noise levelsη in terms of residual projection error. Effect of (a) edge length parameter, (b) curve regularization
parameter λ and (c) smoothness parameter α in the initialization. In (a) initial edge length l0 and average edge length l1 during deformation are set as the same
values. Phantom 1 is used for this result.

Fig. 13. Effect of average edge length l1. Final mesh results of Phantom 3 are
shown with varying average edge length, starting from the same initialization.

reconstruction. Then, the residual projection error is the mean
squared error between between the noise-free sinogram p and
the estimation p̂.

In Fig. 11, we present residual projection errors with varying
relative noise level η. When there is no noise, SART gives the
best result as it aims to minimize the residual without regular-
ization. However, as noise level increases, DALM is shown to
yield better results than other methods.

In image-based reconstruction, it is common to evaluate the
quality of reconstruction based on image quality metrics such as
peak signal-to-noise ratio (PSNR) or structural similarity index
(SSIM). To use such metrics, from our DALM solutions we pro-
duce images of size 256× 256, the same size as reconstructions
by image-based methods we compare against. As explained in
Sec. VI-C, ground truth phantoms have the different image size
of 512× 512, so we downscale those phantoms by half, and then
compute PSNR and SSIM between the downscaled phantoms

TABLE I
MEAN AND STANDARD DEVIATION OF PSNR AND SSIM WITH VARYING

NOISE LEVELS η

Fig. 14. Reference reconstruction image by filtered backprojection from the
carved cheese data with 180 projection angles.

and the solutions. In Table I we provide the quantitative results
by PSNR and SSIM with different noise levels. Our result is
shown to give better results in all noise levels. In this result we
use 5 phantoms and present the mean and standard deviation
values.

The large standard deviation for the three methods might
indicate that the difference between the means is not significant.
Therefore, we performed a three-way ANOVA with no interac-
tion between variables. The results for both PSNR and SSIM
show that the phantom and the noise level have a very large
influence on quality measure, and our method has a smaller,
but also significant influence. In conclusion, ANOVA confirms
that the quality means for the three methods are significantly
different.

E. Effects of Algorithm Parameters

We investigate the main parameters of our method: the initial
reconstruction regularization parameter α, the average edge
length of the mesh l1 and the curve regularization parameter
λ. We use the same dataset and settings as in Section VI-C. Note
that we have two parameters to control the fineness of mesh:
the initial edge length l0 and the average edge length l1 during
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Fig. 15. Reconstruction and segmentation results on real fan-beam data.

TABLE II
COMPUTATIONAL COST AND COMPACTNESS OF MESH WITH WITH VARYING

AVERAGE EDGE LENGTH l1

evolution. Throughout the experiment, we fix l0 as 4 and this
parameter affects the initial reconstruction quality and speed.
It is desired to choose this parameter as small as possible to
capture the details of objects. After initialization, we collapse
non-interface edges for computational efficiency, but interface
edges are unchanged. This way, we preserve the details on the
interface, while non-interface regions have a more coarse mesh.
Subsequently, the average edge length l1 controls the fineness
of the mesh during evolution.

In Fig. 13, segmentation results of Phantom 3 are provided
with varying average edge length l1. As l1 increases, we have the
compact representation of objects, while preserving the outlines
of objects. In Table II, we provide the information of final mesh
and computational cost with different average edge length. As
expected, as average edge length is higher, we obtain more
compact representation of objects and reduce the computational
cost. To investigate the cost of each step, we divide the total
time into three steps: first, initialization; second, computing
forward projections, attenuation coefficients and displacements;
third, the deformation step. Most of the computational cost is
attributed to the deformation part. Based on this, we identify the

mesh deformation model as the critical step. A more efficient
deformation model could therefore be a candidate for improv-
ing the algorithm speed. For other image-based methods, the
computational time is 13.6 seconds for SART and 42.4 seconds
for TVR-DART. Both methods reconstruct 65 536 pixels. For
the experiments, we use a laptop with 3.5 GHz processor and
16 GB memory.

The initial regularization parameterα controls the smoothness
of the initial reconstruction result. We observe that our method
is not sensitive to initialization in the simple datasets such as
Phantom 1, 2, 3 and 4, but sensitive in Phantom 5. We leave as
a future work to solve the apparent issue of initialization.

In Fig. 12, we provide the effects of the main parameters with
different noise levels. For this experiment, we use Phantom 1
and show how residual reprojection errors are affected. In (a)
we show the effect of fineness of mesh. We set both the initial
edge length l0 and the average edge length l1 as the same values,
so that the fineness of mesh is fixed from initialization to the
end. As those values increase, overall, the residual projection
error also increases. So there is a trade-off between accuracy
and compactness of representation. In (b) it is shown that as the
relative noise level increases, so does the optimal parameter of
curve regularization λ. If the data is noisy or incomplete, we need
stronger regularization. Note that, in addition, the deformation
step has a regularization effect intrinsic to DSC. In (c) we see
that the initialization smoothness parameter α does not affect
the error, significantly.

F. Real Dataset

In the following, we perform an experiment on real fan-beam
data provided by [39]. The authors of [39] carved out the letters
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‘CT’ in a cheese. The carved cheese was scanned using micro-
CT under the exposure time of 1000 ms, the acceleration voltage
of 40 kV and the current of 1 mA in X-ray tube [39]. Two
phases (materials) are present: cheese and air. The geometry of
the scanning is flat fan-beam, and the number of detector pixels
is 989. For this data we do not have the exact ground truth, but
we consider the reconstruction by FBP from sinogram with 180
angles as the reference image shown in Fig. 14.

We compare our methods in challenging cases under the
small number of projection angles or limited range of angles. In
Fig. 15, we provide the reconstruction and segmentation results
from SART, TVR-DART and our method, DALM. The first
row shows the results when using sinogram from 18 projection
angles. The second and third row present the results from limited
angle data with 15 angles of 0–90 ◦ and 90–180 ◦, respectively.
As TVR-DART and our method give the segmentation results,
we provide the estimated boundaries overlaid on the reference
image on the third and last column, respectively. DALM captures
the shape of the object, even in the limited angle data. Overall,
our method is shown to give slightly smaller letters due to
regularization of curves.

VII. CONCLUSION AND DISCUSSION

We have presented DALM, a mesh-based method for 2D
reconstruction and segmentation directly from sinogram data. In
DALM, a labeled mesh is deformed to align interface edges with
object boundaries. By using mesh deformation which supports
topological changes and prevents self-intersections, DALM
overcomes the drawbacks of existing explicit representation-
based methods [2], [27], [40]. Moreover, our method easily
supports multiple objects, while in popular level-set methods,
supporting multiple regions is not straightforward and additional
efforts are required [41]. Experimental results on synthetic data
show that our method gives an accurate geometric solution with
a compact representation of objects. We provide an efficient
forward projection scheme, while the deformation step costs
more in terms of computation time. We leave for future work to
speed up the deformation step and extend to 3D reconstruction.

APPENDIX

DERIVATION OF THE CURVE EVOLUTION EQUATION (4)

To derive the evolution equation (4), we begin with the case
of single material. Let Cm denote the curve to represent the
boundary of foreground object with material μm and the air
background. We introduce an artificial time parameter t and
assume that the detector positions s are sampled dense enough.
Following [16], the curve evolution equation for Cm is

∂Cm(r)

∂t
=

(
μm

∑

θ

(p(θ, s̃)− p̂(θ, s̃)) + λ̄κm(r)

)
Nm(r),

(20)
where κm is the curvature, Nm is the outward normal vector,
s̃ = Lθ(Cm(r)) with r the arc length parameter and λ̄ is the
regularization parameter.

We now extend to M multiple materials where the domain is
divided by mutually disjoint regions {Rm} and the curves {Cm}
represent their boundaries. Let the region Rm be adjacent to the
region Rn with the boundary Cn and the attenuation μn. Then,

for the points onCm ∩ Cn �= ∅, the curve evolution equation for
Cm is given [27]:

∂Cm(r)

∂t
=

(
μm

∑

θ

(p(θ, s̃)− p̂(θ, s̃)) + λ̄κm(r)

)
Nm(r)

+

(
μn

∑

θ

(p(θ, s̃)− p̂(θ, s̃)) + λ̄κn(r)

)
Nn(r).

(21)
For the points on Cm ∩ Cn, the normal vectors and the curva-
tures have the opposite sign such that Nm = −Nn and κm =
−κn [27]. Plugging these relations into (21), we have

∂Cm(r)

∂t
=

(
(μm − μn)

∑

θ

(p(θ, s̃)− p̂(θ, s̃)) + 2λ̄κm(r)

)

×Nm(r). (22)

From this equation, we derive (4) with the fixed step size τ and
λ := 2λ̄.
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Abstract

In computed tomography, the reconstruction is typically obtained on a voxel grid. In this work, however, we propose a mesh-based
reconstruction method. For tomographic problems, 3D meshes have mostly been studied to simulate data acquisition, but not for
reconstruction, for which a 3D mesh means the inverse process of estimating shapes from projections. In this paper, we propose a
differentiable forward model for 3D meshes that bridge the gap between the forward model for 3D surfaces and optimization. We
view the forward projection as a rendering process, and make it differentiable by extending recent work in differentiable rendering.
We use the proposed forward model to reconstruct 3D shapes directly from projections. Experimental results for single-object
problems show that the proposed method outperforms traditional voxel-based methods on noisy simulated data. We also apply the
proposed method on electron tomography images of nanoparticles to demonstrate the applicability of the method on real data.

Keywords: Computed Tomography, Electron Tomography, Tomographic Reconstruction, Mesh Deformation

1. Introduction

In computed tomography (CT), we aim at solving the inverse
problem of computing the 3D structure (shape and attenuation)
of an object from a set of projection images (Buzug, 2008)
taken from different angles. Here, the geometry and the physics
of the imaging system is known, which allows us to model the
forward process, i.e. if we have a suggestion for the 3D structure
of the imaged object, we can compute the projection images.

We need a data structure to represent the structure of the ob-
ject that should be reconstructed. The most common data struc-
ture is a volumetric image, with voxel intensities representing
local attenuation. This approach may be used for reconstruct-
ing any type of object. Since each voxel in the volume is a
parameter that must be computed, we have a very large num-
ber of unknowns. This makes it difficult to reconstruct volumes
in situations where we have projections from a limited angular
view (e.g., in electron tomography) or noisy data, and it can
be difficult to accurately compute the attenuations in all vox-
els. Therefore, we propose to use a mesh to represent the shape
of the object. The mesh separates the object into parts with a
constant attenuation.

In tomography, forward projection of 3D meshes has mostly
been used for simulating tomographic data acquisition, i.e.
modeling the forward projection. This includes modeling X-ray
transmission imaging based on Monte-Carlo methods (Bonin
et al., 2002; Freud et al., 2006) or ray tracing techniques (Freud
et al., 2006; Marinovszki et al., 2018). Furthermore, Vidal et al.
(2009); Sujar et al. (2017) took the advantage of the OpenGL
library to simulate X-ray images in real time. However, none
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Figure 1: The proposed differentiable forward projector enables optimizing a
3D mesh from projections for tomographic reconstruction. Given a mesh and
scanning geometry, the forward projector computes projections for the current
mesh, which is updated by deforming vertices in the direction that minimizes
our objective function.

of the proposed methods are concerned with reconstruction, i.e.
solving the inverse problem.

For the mesh-based tomographic reconstruction that we pro-
pose, the reconstruction problem is two-fold. The mesh must
be deformed to follow the boundaries of the depicted object,
and in each part of the object, a single attenuation coefficient
must be estimated. To forward project the mesh, we employ
rendering techniques, which allow a very efficient projection
of the 3D mesh to the detector plane. We extend the differ-
entiable rasterizer recently proposed by Chen et al. (2019) to
derive differentiable forward projection. This enables us to
compute vertex displacements that deform the mesh based on
the difference between the forward projection and projection
data. In Fig. 1, we provide an overview of our shape estimation
method. In Fig. 2, we illustrate how our work differs from ex-
isting image-based reconstruction methods (Andersen and Kak,
1984; Buzug, 2008).

Our model has been developed for problems like X-ray CT
where the damping of the X-ray attenuation coefficient are mod-
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Proposed reconstruction:
min
M,µ
‖f(M, µ) − p̂‖ + Reg(M)

Figure 2: Algebraic reconstruction vs. our proposed approach. Left: Existing
algebraic reconstruction methods use a linear system of equations to model the
forward projections typically together with some regularization to constrain the
solution. Right: We propose a differentiable forward model f which computes
projections for an object represented by a triangular mesh and attenuation coef-
ficients µ. This forward model is used to reconstruct the shape from projections
data p̂.

eled as linearly dependent on the path length through the sam-
ple (Buzug, 2008), which is also assumed in electron tomog-
raphy up to a certain thickness (Midgley and Weyland, 2003)
where coefficient is related to electron scattering.

In summary, our contribution is two-fold. We suggest a dif-
ferentiable forward projector to generate projections from 3D
meshes, and we propose a shape estimation method employ-
ing the differentiable forward projector. Our code is available
online: https://github.com/jakeoung/ShapeFromProjections.

2. Related works

Differentiable rendering based on rasterization. In our work
we deform a mesh by changing vertex positions using gradi-
ent descent. Therefore, we need the gradient of our objective
function with respect to vertex coordinates, which is possible
through differentiating the forward projection. As observed
in (Vidal et al., 2009), the tomographic forward projection can
be implemented by extending a rendering technique in com-
puter graphics based on rasterization. Such rasterization-based
rendering technique projects 3D models onto 2D image plane
and involves a discrete step to choose the pixels covered by tri-
angles of 3D models. This discrete step is not differentiable
in conventional graphics pipelines. Making such rasterization-
based rendering differentiable, called differentiable rasteriza-
tion, has been studied by several works to connect rendering
and optimization. As our work extends such differentiable ras-
terization techniques, we first review those works and explain
the difference to our work.

The general framework OpenDR, that was proposed by
Loper and Black (2014), approximated gradients of pixel values
with respect to model parameters. Kato et al. (2018) suggested
a heuristic forward and backward pass where blurring is used
to avoid zero gradients. This approach has an inconsistency be-
tween the forward and backward pass, and to circumvent this
inconsistency, Liu et al. (2019) proposed a method called Soft-
Ras by relaxing discrete rasterization process into the aggrega-
tion of smooth probability functions. Unlike the conventional
rasterization rendering, in SoftRas, each face in the mesh af-
fects many pixels in the image plane, which is computationally
costly and memory-demanding.

Chen et al. (2019) suggested an interpolation-based differen-
tiable rasterizer called DIB-R. DIB-R reformulates the barycen-
tric interpolation in the rasterization process to analytically de-

rive the gradients. Our forward projector extends this reformu-
lation when computing the thickness of an object for computed
tomography, but differs in some aspects. The rendering tech-
niques such as DIB-R can improve the performance by ignoring
invisible faces, but since we model penetrating radiation, our
forward projector needs to consider all the faces. DIB-R used
the idea of SoftRas (Liu et al., 2019) for background pixels to
propagate the gradients on those background, but our forward
projector does not use it to reduce the computational cost.

Shape reconstruction from projections. Our proposed method
is related to tomographic segmentation, where segments are
directly computed from projections. This includes (Elan-
govan and Whitaker, 2001; Whitaker and Elangovan, 2002;
Alvino and Yezzi, 2004) that are based on the Mumford-Shah
model (Mumford and Shah, 1989) where boundaries are rep-
resented using level-sets (Osher and Fedkiw, 2004). Recently,
the parametric level-set method (Aghasi et al., 2011) has been
used for tomographic segmentation in (Kadu et al., 2018; Elia-
sof et al., 2020) where level-sets are represented as an aggre-
gation of radial basis functions. Although the parametric level-
set method has fewer unknown variables, its forward projection
still depends on a regular grid. Gadelha et al. (2019) used a
deep convolutional neural network for 2D tomographic recon-
struction, where the forward projection is based on the trans-
formation of a regular grid and resampling. On the other hand,
the work (Dahl et al., 2018) based on snakes (Kass et al., 1988)
avoids a dense grid – it represents curves explicitly and pro-
poses a direct forward projection of the curves. However, this
method is limited to a single 2D curve, while the proposed
method supports 3D objects. Another difference is that (Dahl
et al., 2018) evolves curves in the normal directions of curve
points, while our deformation can displace the vertices in all
directions.

In summary, existing shape estimation methods from projec-
tions are either based on regular grid or limited to single 2D
curve. To our knowledge, our work is the first to propose the
differentiable forward projector for 3D triangular mesh and use
it for reconstructing shapes from projections.

3. Differentiable forward projector

In this section, we describe our main contribution of the dif-
ferentiable forward projector. The goal is to forward project
triangular meshes and make this process differentiable with re-
spect to 3D vertex positions and attenuation coefficients. This
differentiable forward projection will be used for optimizing the
mesh shape described in Sec. 4. First we describe the case of a
single object and then extend to composite objects.

3.1. Single object

Consider an object represented by a watertight triangular
mesh. A watertight triangle mesh forms a closed surface that
has a well-defined interior and exterior: any path from a point
in the interior to a point in the exterior must cross the triangle
mesh. We assume that the object is homogeneous, i.e. it has
a certain attenuation coefficient µ associated with the volume

2



z z

y y

x x

v0

v1

v2

i

dijl0
l1

l2

j

s0

s1

s2

Figure 3: Left: The vertices of the triangle mesh (blue dots) are projected onto
the detector. Each detector pixel (red dots) is associated with the projection ray
which intersects mesh triangles. Right: One triangle j, here given by vertices
k = 0, 1, 2, and one detector pixel i. Using barycentric coordinates, the distance
di j may be expressed in terms of lk .

inside the mesh. For now, we consider µ constant, we will later
explain how it is computed in the next subsection. The mesh
consists of K vertices, and we write vk for the 3D coordinates
of the vertex k.

To simplify the explanation, we start with a single projection
and later expand to multiple projections from different angles.
Let P and R be the position of the detector and a matrix that ro-
tates from detector coordinates to the global frame, respectively.
If we denote the position of vertex k in global coordinates by
Vk, the position in detector coordinates are vk = Rᵀ(Vk − P).
Note that in detector coordinates, the detector itself corresponds
to the plane z = 0, its center is at the origin, and the positive z-
axis points towards the object, see Fig. 3.

Expressed in detector coordinates, the distance of the vertex k
from the detector is trivially lk = eᵀ3 vk while sk = [e1 e2]ᵀvk are
the coordinates of the projection of the vertex onto the detector.
Here e1, e2, and e3 are unit vectors in x, y and z direction, for
example e1 = [1 0 0]ᵀ.

Projecting the object onto the detector pixel i we consider
the projection ray associated with i (slightly sloppy, call it ray
i), and its path length in the object. As explained in (Vidal et al.,
2009), this can be broken into contribution of all intersections
of the ray i with the mesh triangles

pi = µ
∑

j
i intersects j

sign(eᵀ3 n j)di j (1)

where n j is the normal of the triangle j (needed for determining
the sign of the contribution), and di j is the distance of the inter-
section point to the detector. Here, we consider the sign value
sign(eᵀ3 n j) as a constant attribute of each triangle.

Considering now a single triangle j we express di j using
barycentric coordinates

di j =
∑

k
k in j

wk
i jlk , (2)

where k are the indices of the three vertices of the triangle j and
wk

i j are the corresponding three barycentric coordinates of pixel
i with respect to the projection of triangle j onto the detector
plane, see Fig. 3, right.

To make the forward projection differentiable, we derive

∂pi

∂vk
= µ

∑

j
i intersects j

sign(eᵀ3 n j)
∂di j

∂vk
, (3)

and

∂di j

∂vk
=
∑

k
k in j

wk
i j
∂lk
∂vk

+
∂wk

i j

∂vk
lk

 =
∑

k
k in j

[0 0 wk
i j] +

∂wk
i j

∂vk
lk

 . (4)

For the last step, computation of ∂wk
i j/∂vk, we employ the idea

from (Chen et al., 2019), which reformulates the barycentric
form to express the coefficients wk

i j in terms of 2D projected
positions sk and the position of detector pixel i.

3.2. Composite objects

The method described above generalizes to composite ob-
jects if certain conditions are met. Specifically, we require that
we know beforehand the topology of the parts of the compos-
ites, and how parts are embedded within one another. Thus, for
each interface triangle we will have a suggestion that what class
of material is on either side, but we do not know the specific at-
tenuation coefficient of the classes, since we solve for those.

In order to extend Eq. (1) to composites, we only have to
observe that triangles may now be the interface between two
materials and not just air and material. This can be handled
simply by letting each triangle contribute twice

pi =
∑

j

µ j sign(eᵀ3 n j)di j −
∑

j

µ j sign(eᵀ3 n j)di j (5)

=
∑

j

(µ j − µ j) sign(eᵀ3 n j)di j , (6)

where µ j is the attenuation of the interior material and µ j of the
exterior material according to normal orientation. Of course, ei-
ther attenuation will be zero if the material on the corresponding
side of the triangle is air.

The derivative of a pixel value with respect to the contribut-
ing attenuation µm for material m (by abuse of notation) is

∂pi

∂µm
=
∑

j

± sign(eᵀ3 n j)di j , (7)

where the ± is positive if the interior material of face j is labeled
as m and negative if m is the exterior material. We also modify
Eq. (3) by changing µ to (µ j − µ j).

We have derived the Jacobians in Eq. (3) and (7), which will
be used to optimize an objective function E. That is, we can
propagate the gradients from E

∂E
∂vk

=
∑

i

∂E
∂pi

∂pi

∂vk
,

∂E
∂µm

=
∑

i

∂E
∂pi

∂pi

∂µm
, (8)

where the summation is over all the detector pixels.
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4. Shape from projections

In this section, we use the proposed forward projector to re-
construct shapes from projections. We assume that a template
mesh with the correct topology is given. We aim to deform
the template mesh and estimate the attenuation coefficients by
minimizing the residual between data p̂ and our estimation p.

Optimizing only the data fitting term can lead to degenerate
meshes. To obtain high-quality meshes, we impose three reg-
ularization terms. The first term is the Laplacian term (Wang
et al., 2018), which constraints the vertices to move similarly
with their neighbors, defined by

Elap =
∑

k

‖Vk − 1
|N(k)|

∑

n∈N(k)

Vn‖2, (9)

where N(k) is the index set of neighboring vertices to k-th ver-
tex. The second term is the edge length term to penalize long
edges

Eedge =
∑

(Vk ,Vn)∈G
‖Vk − Vn‖2, (10)

where G denotes the set of edges. Lastly, we impose the flat-
tening term (Kato et al., 2018; Liu et al., 2019)

Eflat =
∑

e∈G
(1 − cos θe)2, (11)

where θe is the angle between the normal vectors of two faces
sharing the edge e. Flattening term is needed to remove near-
zero volume spikes. These thin artifacts have negligible con-
tribution to the forward projection, and will be ignored by the
data fitting term. As shown in Fig. 5, such artifacts can appear
during the deformation, but disappear later.

With the data fidelity and regularization terms, the objective
function to minimize is

E({Vk}, {µm}) = ‖p − p̂‖22 + αElap + βEedge + γEflat (12)

where α, β, γ control the relative weights between the terms.
Note that the size of projection data p̂ is the number of detec-
tor pixels times the number of projection angles. We use au-
tomatic differentiation to minimize E. For large data, we can
use stochastic gradient descent with mini batches in terms of
projection angles. In this paper, however, we only consider full
batch size of data.

5. Experiments and Results

In this section, we present the experimental results of the pro-
posed method on synthetic data of single objects. We also show
the results on real data of some nano particles from electron
tomography, which has limited range of angles.

5.1. Shape reconstruction of a set of single objects
Datasets. This experiment is designed to test our shape esti-
mation method on noisy simulated data. We use 5 watertight
meshes (closed surfaces without any holes): star, spot, bunny,
bob, kitten, shown in the first row of Fig. 6 and the attenua-
tions of the objects are set to 1. Generating projections of those

GT

SIRT

TV

Proposed

Figure 4: Qualitative results of estimated projections on noisy data with relative
noise level 0.4. The first row shows the ground truth, i.e., noise-free data. 2nd-
5th row show the forward projection from the solutions by SIRT, TV and the
proposed method, respectively.

init. iter. 60 iter. 120 iter. 180 iter. 360

Figure 5: Deformation examples. The odd rows show the intermediate meshes
during deformation and the even rows show the corresponding computed pro-
jections for one projection angle. We refine the mesh in finer resolution at
iteration 60 and fix the mesh at iterations 120 and 180.

meshes using our forward model may resemble to the so-called
inverse crime (Mueller and Siltanen, 2012). To avoid it, we
employ the Blender software to make projection data based on
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GT

TV
best

TV
high

Proposed

Figure 6: Qualitative results of extracted meshes on noisy data with relative noise level 0.4. The top row shows the ground truth meshes. Rows 2 and 3 show the
extracted isosurface from the results of TV reconstruction with the optimal regularization parameter (best) and a high regularization parameter (high), respectively.
The last row shows our results.

ray casting methods similar to (Marinovszki et al., 2018). We
use 3D parallel projection geometry with 30 projection angles
and the detector of size 192 × 192 pixels. Some projection im-
ages without noise are shown in the first row of Fig. 4 for one
projection angle.

Evaluation metrics. We compare our result to two standard
reconstruction methods: simultaneous iterative reconstruction
technique (SIRT) (Andersen and Kak, 1984) and total variation
(TV) based reconstruction (Chambolle and Pock, 2011; Sidky
et al., 2012). These methods yield 3D images, whereas the pro-
posed method produces surface mesh, making direct compar-
ison of the main output challenging. For consistent compari-
son, we employ a residual-based metric: residual projection er-
ror (Roelandts et al., 2014), which measures the L2 norm differ-
ence of data and computed projections. We impose the relative
Gaussian noise on the original data and calculate the residual
projection error between noise-free projections and the estima-
tions of other methods and the proposed method. For SIRT and
TV, the voxel size is set as 192 × 192 × 192 and the algorithm
parameters are chosen carefully.

Experimental details. Our implementation relies on Py-
Torch (Paszke et al., 2019) and uses Adam (Kingma and Ba,
2015) as an optimizer. The proposed forward projector is im-
plemented as a module in PyTorch. As for the regularization
parameters, we fix α = 10, γ = 0.01 and iterate 500 times. The
step size τ (learning rate in PyTorch) is set to 0.01 and reduced
by half at 400 iteration. This reduction step is not really nec-
essary but can yield a more stable result. We observe that 500
iterations are needed for capturing fine details of the compli-
cated objects such as the bunny data. During the experiment,
we only vary the edge length parameter β among the values of

1, 2, 4, 8, 16 and 32 and the optimal parameter would depend on
the data. Finding the optimal regularization parameter is itself
a research topic and not straightforward also in regularization-
based image reconstruction methods such as TV. As for the ini-
tialization, the proposed method begins from an icosphere for
genus-0 objects (star, spot, bunny), and from a torus for genus-
1 objects (bob, kitten). Except for star data, we refine the mesh
by (Huang et al., 2018) at iteration 60 and improve the mesh
quality 3 times by a lightweight repair method (Attene, 2010)
at iteration 60, 120, 180. These refine and repair steps help
remove some artifacts and lead to fast convergence. As also
observed in (Vidal et al., 2009), some artifact pixels can ap-
pear (e.g., when the ray hits an odd number of times). When a
large deformation happens, we may observe some artifact pix-
els, which we exclude in the objective function. However, in
the end, we only observe around 2 artifact pixels. In Fig. 5, we
show the deformation of the estimated meshes with the corre-
sponding computed projections.

Robustness to noise. The experiments show that the proposed
method is robust to noise. Fig. 4 shows some computed projec-
tion images of the reconstruction results from noisy data with
relative noise level 0.4 achieved using SIRT, TV reconstruction
and the proposed method. Since SIRT has no regularization,
it fits closely to the highly noisy data. The results of TV are
relatively smooth, but sharp transitions appear blurred. On the
other hand, the proposed method yields projections similar to
noise-free data. Fig. 6 shows the final mesh results, where the
proposed method yields qualitatively better results than TV –
we omit highly noisy SIRT results. In Fig. 7, we provide the
quantitative results of residual projection error with respect to
relative noise levels. Without noise, SIRT gives the superior re-
sult as it fits to data without regularization. However, as noise
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Figure 7: Quantitative results with varying relative noise level over 5 datasets.
The residual projection error represents the error between the noise-free pro-
jections and the estimated projections. The error bars denote the average values
with the maximum and minimum value and the y-axis is in logarithmic scale.

increases, the results of SIRT and TV are shown to be poorer.

Effect of parameters. Here, we investigate the effects of the
parameters. In this experiment, we use data with a fixed relative
noise level of 0.4 and use residual projection error to measure
performance. Fig. 8 shows the effect of initializing the mesh by
varying the radius of the icosphere used for initialization and
then iterating 500 times. The final result is mostly not affected
by the initial radius size thanks to the refinement steps during
the optimization. We choose the bunny data model to generate
the results shown in Fig. 8, because of its complicated shape.

In Fig. 9 we show the effects of the regularization parameters
α, β and γ, while keeping other parameters fixed. Here we use
all data models and the residual projection error for the star is
large due to the coarse resolution of the mesh. We observe that
if β < 1.0 or γ > 0.1, the final meshes might have some arti-
facts. As mentioned before, we use the default settings (α = 10
and γ = 0.01), which in most experiments give a stable result.
With these fixed values, we observe that it is enough to only
vary the edge length parameter, depending on the desired de-
gree of smoothness.

Figure 8: Effect of initializing the mesh with spheres of varying diameter. The
x-axis represents the radius of the initialized sphere. The radius is determined
relatively to an object space that is normalized to (−1, 1)3. The experiments are
based on the bunny data model.

(a) Effect of α

(b) Effect of β

(c) Effect of γ

Figure 9: Effect of the regularization parameters: (a) the Laplacian regulariza-
tion parameter α given β = 4, γ = 0.01, (b) the edge length parameter β given
α = 10, γ = 0.01, and (c) the flattening parameter γ given α = 10, β = 4. The
vertical bars in (a) and (c) correspond to the values we keep fixed, when our
method is compared with other methods.

Computational cost. Table 1 shows the size of the initial and
final mesh and the corresponding running times. The mesh size
is one of the major factors that contribute to computational time.
For example, as we do not refine the mesh for star object, its
final mesh size and its computational time is lower than others.
We do the experiment on a Ubuntu server with 256GB RAM
and Titan X GPU.

For a reference, the running times for the image-based meth-
ods are 38 seconds for SIRT and 152 seconds for TV which
are implemented based on multithreading on 8 CPU cores, not
GPU. For image-based methods, we use the fixed grid of size
192 × 192 × 192 for all the data.
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Table 1: Size of meshes and running times
Data Star Spot Bunny Bob Kitten
Initial mesh Icosphere (1280 faces) Torus (3200 faces)
Final mesh no refine. 18680 17908 19308 20904
Run time 244.1 (sec.) 730.7 719.6 816.3 816.8

5.2. Application to electron tomography

The goal of this experiment is to estimate the shape of a
bimetallic nanoparticle having a Au-core and a Ag-shell nano
particles. We obtained 2 tilt series datasets of a nano triangular
bipyramid and a nanocube using high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM).
We hereby used a Thermo Fisher Tecnai Osiris electron micro-
scope generated at 200kV. Each dataset contains 49 projection
images acquired over ±72◦ with a tilt increment of 3º and a
frame time of 4 seconds. This small range of projection angles
is typical for electron tomography and makes the reconstruc-
tion challenging. Fig. 10 shows three images for each of the
two datasets.

Figure 10: Projection images along 3 different tilt angles for a nano triangular
bipyramid (top) and a nano cube (bottom).

To test the proposed method on the data, we initialize the
meshes as two icospheres having total 2,560 faces. We use the
collision detection method in (Lauterbach et al., 2009), to make
sure that the core and the shell part do not collide. In this ex-
periment, we set the number of iterations as 300, the step size τ
as 0.005 and observe no collisions when a proper regularization
weight is used. As the unknown shapes are relatively simple,
we impose only the Laplacian regularization term, by setting
α = 15 for the nano bipyramid and α = 5 for the nanocube.
The nanocube data is not much affected by this parameter α, but
for the nano bipyramid data, the parameter α should be greater
than or equal to 10 to avoid the collision and obtain a high qual-
ity mesh when a small range of tilt angles is used. As for the
initialization of two icospheres, the inner icosphere’s size is set
to half the size of the outer icosphere. This outer icosphere is
initialized with a relative radius 0.4 (when the object space is
normalized to (−1, 1)3), but we obtain a similar result with the
radius range of 0.2 ∼ 0.8 for the nano cube and 0.2 ∼ 0.5 for the
nano triangular data.

Fig. 11 and Fig. 12 show the 3D reconstruction for the nano
triangular bypyramid and the nano cube data, respectively, by
SIRT, TV, and the proposed method. To evaluate the effect of
tilt angle range, we test two cases: an angular range of ±72◦ and
a subsampled tilt angles of ±18◦. To compare our mesh result
to the voxel-based methods, we extract meshes from the recon-
struction images of SIRT and TV, by median filtering, thresh-
olding, filling holes, and extracting the isosurfaces. For the
highly-limited angle case with a tilt range of ±18◦, we addition-
ally apply Gaussian smoothing on the results of SIRT and TV
before the thresholding step, to obtain the visually-appealing
meshes.

For the tilt angle ranges of ±72◦, the results of SIRT, TV, and
the proposed method are in good comparison. However, when
the range of tilt angles is reduced to ±18◦, SIRT and TV yield
a degenerated reconstruction, which also affects the quality of
the final extracted surfaces. On the other hand, the proposed
method is shown to be less affected by a tilt range. For the
bypyramid in Fig. 11, the volume of the Au-core decreased for
the limited angle case, due to the high regularization effect. In
Table 2, we provide the estimated volumes of the Au-core and
Ag-shell particles by the proposed method and the extracted
isosurfaces from the images by SIRT and TV.

Table 2: Estimated volumes in the unit of 103 nm by SIRT reconstruction image
followed by isosurface extraction, and the proposed method.

Tilt angles Method bipyramid nano cube
core shell core shell

-72◦ ∼ 72◦
SIRT+Iso. 3.6 33.2 2.4 29.8
TV+Iso. 3.7 33.5 2.5 29.8
Proposed 4.2 36.7 2.3 31.2

-18◦ ∼ 18◦
SIRT+Iso. 1.3 31.5 1.2 14.9
TV+Iso. 3.5 25.0 1.3 11.2
Proposed 2.7 37.7 2.5 29.8

6. Conclusion and Discussion

In this paper, we have developed a forward projector to map
a triangular mesh onto the projections domain which is differ-
entiable with respect to the mesh vertices and the attenuation
values. Based on our differentiable forward model, we have
suggested an optimization-based shape estimation method from
projections. Our model should be chosen for reconstructing ho-
mogeneous objects with relatively simple geometry, but in situ-
ations where the data foundation is so noisy or limited that other
methods will not allow a reconstruction. While a conventional
approach most often consists of the two steps of image recon-
struction followed by a segmentation to obtain a surface, the
proposed method directly yields the surface, which among oth-
ers allows imposing a shape prior directly on the reconstructed
shapes. Our experiments on synthetic data show that the pro-
posed method is robust to noise when reconstructing single ob-
jects. The experiments on the electron tomography data show
how our method is robust even when the range of tilt angles is
highly limited, compared with SIRT and TV. In this challeng-
ing case, the conventional image reconstructions by SIRT and
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TV are highly degraded and these degenerate results propagate
errors to the surface estimation from the reconstructed images.
Our method can, however, capture the overall shapes well with
the regularization term which can impose a smoothness prior
directly on the object shapes.

To discuss the limitation of the proposed method, we di-
vide our contributions into two parts: the differentiable forward
model and the shape estimation method. The proposed forward
model estimates the displacement direction of each vertex for
minimizng the objective function. These displacements will
only allow change in shape and not collisions of splitting of the
mesh that would require topological changes. Handling such
topological changes and collisions is itself an active research
topic in mesh deformation in computer graphics or computer vi-
sion. Investigating how to handle topology changes for a more
general mesh adaption and deformation is for future research.

The current differentiable forward model has only been
tested on parallel beam geometry where rays are perpendicular
to the detector plane. This can be extended to a more general
setting such as the cone beam geometry (Buzug, 2008), but we
have not investigated the effect of that, as electron tomography
data are based on parallel beam geometry.

As a potential application, the proposed method can be use-
ful for estimating the geometry precisely, e.g. for registering
the reconstructed object to a 3D CAD model. Another future
application can be dynamic tomography where we aim to ana-
lyze the objects which may change during scanning.
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SIRT+Isosurface
(-72◦ ∼ 72◦)
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(-18◦ ∼ 18◦)
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Figure 11: Reconstruction results on nano triangular bypyramid data. The first and the 4th rows show the reconstruction results by SIRT and from projections with
tilt angles from -72◦ to 72◦ and -18◦ to 18◦, respectively, where two central slices are visualized in the first and second column. The 2nd and the 5th rows show the
reconstruction results by TV. The last column shows the extracted mesh from the reconstructed image by SIRT or TV with some post-processing procedures. The
third and the last row show our direct shape estimation results, where two central slices are visualized in blue and yellow.
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Figure 12: Reconstruction results on nano cube data. The first and the 4th rows show the reconstruction results by SIRT and from projections with tilt angles from
-72◦ to 72◦ and -18◦ to 18◦, respectively, where two central slices are visualized in the first and second column. The 2nd and the 5th rows show the reconstruction
results by TV. The last column shows the extracted mesh from the reconstructed image by SIRT or TV with some post-processing procedures. The third and the last
row show our direct shape estimation results, where two central slices are visualized in blue and yellow. The results on the second and the fourth row appear to be
the same, but they are slightly different.
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Abstract

Tomographic reconstruction is concerned with com-
puting the cross-sections of an object from a finite
number of projections. Many conventional methods
represent the cross-sections as images on a regular
grid. In this paper, we study a recent coordinate-
based neural network for tomographic reconstruction,
where the network inputs a spatial coordinate and
outputs the attenuation coefficient on the coordinate.
This coordinate-based network allows the continu-
ous representation of an object. Based on this net-
work, we propose a spatial regularization term, to
obtain a high-quality reconstruction. Experimental
results on synthetic data show that the regulariza-
tion term improves the reconstruction quality signif-
icantly, compared to the baseline. We also provide
an ablation study for different architecture configu-
rations and hyper-parameters.

1 Introduction

Computed tomography (CT) is a versatile imaging
technique allowing the study of interior structures of
objects and has many applications, ranging from clin-
ical to industrial applications [5]. In CT, a procedure
known as tomographic reconstruction aims to recon-
struct the material properties from measurements,
called projections, based on the interaction of objects
and penetrating radiation such as X-ray. Specifically,
the projections are obtained by line integrals of an at-

∗Corresponding Author: jakoo@dtu.dk

tenuation coefficient function along straight lines and
reconstructing an attenuation function is the goal of
tomographic reconstruction.

Although the measurements are finite, we can con-
sider different ways to represent the attenuation func-
tion. Among them, a discrete image on a regular grid
has been popular in most of existing works includ-
ing model-based [3, 14] or recent deep learning-based
works [1, 8, 19]. In those works, the attenuation value
within one pixel is typically assumed to be constant.
From this image representation, conventional recon-
struction works are based on solving a system of lin-
ear equations with some regularization terms.

Recently, there has been growing interest in
coordinate-based neural networks to represent con-
tinuous functions [12, 16, 15]. Such networks in-
put continuous spatial coordinate and output the
signal on the coordinate. To represent high fre-
quency features, a feature mapping of input coor-
dinates was suggested in [12, 16] and another work
called SIREN [15] used the sine function as the acti-
vation function with a specific initialization scheme.

In this paper, we study a coordinate-based neural
network for tomographic reconstruction. We use the
same architecture as in SIREN [15], to reconstruct
a continuous attenuation function. We use the neu-
ral network, but our method does not require any
training data. Our main contribution is to propose
a regularization term to impose spatial smoothness.
We also provide an ablation study with various con-
figurations of the network and hyper-parameters.

Concurrent to our submission, there is a recent pa-
per [16], which applied a coordinate-based network to

1



different tasks including tomographic reconstruction.
Our method differs in that we use another neural net-
work architecture [15] and introduce a spatial regu-
larization term. Our experimental results in Sec. 3
show that the regularization term improves the per-
formance significantly.

1.1 Related works

Methods for tomographic reconstruction using deep
neural networks can be classified into two cate-
gories: learning-based and learning-free approach.
The learning-based approach utilizes the available
data in a supervised or unsupervised manner. Zhu
et al. [19] proposed a general method to train neural
networks from pairs of projection data and ground
truth reconstruction images. He et al. [8] considered
two neural networks, where the first network simulate
the filtered backprojection method [5] and the output
of the first network is refined by the second convolu-
tional neural network. The idea of filtered backpro-
jection is also used in [10, 18]. Another approach is
to combine conventional iterative methods and neu-
ral networks, called learned iterative methods [1, 2].
In this approach, convolutional layers replace some
parts of the iterative methods and receive the for-
ward projection operator and its adjoint as part of
the inputs.

A learning-free approach does not need any train-
ing data, but still harnesses the power of neural net-
works. Gadelha et al. [7] extended Deep Image Prior
(DIP) [17] to 2D tomographic reconstruction. DIP
represents an image by the output of a learnable con-
volutional neural network on a fixed random input
and have an implicit regularization effect. The dis-
advantage of [7] is that it requires early-stopping to
prevent overfitting to noisy data.

As our method belongs to the learning-free ap-
proach, we compare our method to [7] shown in
Sec. 3. The main difference of our work, compared
to image-based methods, is that the outcome of our
method is a continuous function, instead of discrete
image, and the forward model does not depend on
regular grid, which will be explained in the next
section. Moreover, as we include the regularization
term, our method does not need early-stopping.

2 Method

The aim of tomographic reconstruction is to recon-
struct an attenuation coefficient function f from a
finite number of projections. We first explain the rep-
resentation of solution f based on a coordinate-based
neural network and the forward model to connect the
solution and measurements. Then, we introduce a
regularization term and define our loss function.

2.1 Continuous representation of the
attenuation function

To represent a continuous function, we employ a
coordinate-based neural network, called SIREN [15].
As shown in Fig. 1, SIREN is a multi-layer perceptron
whose input x = (x, y) is a spatial coordinate and the
output fΘ(x) represents the signal at that coordinate
where Θ represents neural network parameters – the
weight matrices and the bias vectors. In our case,
the output corresponds to the attenuation coefficient.
The key feature of SIREN is to use the sine function
as the activation in the network and a principled ini-
tialization, which allows the representation of high
frequency features.

x

y ...

. . .

. . .

. . .

...

f

Figure 1: The coordinate-based neural network maps
a spatial coordinate x = (x, y) to the attenuation
coefficient fΘ(x).

To be specific, each layer with the input z from the
previous layer is constructed as

sin (ω(Wz + b)) (1)
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where W is a weight matrix and b is a bias vector
in the layer and ω is a hyper-parameter to control
the spatial frequency. We use Rectified Linear Unit
(ReLU) as the last layer activation, to impose a non-
negativity constraint.

2.2 Forward model

We model the process of obtaining tomographic mea-
surements from the attenuation coefficient function
f : R2 → R. We follow a common assumption in to-
mographic reconstruction based on Lambert-Beer’s
law [5], where radiation intensity is attenuated expo-
nentially. After pre-processing, the projection data
for a ray can be considered as the line integral of f
along the path. The projection data consist of M
measurements where M is the multiplication of the
number of detector pixels and the number of projec-
tion angles. Each measurement can be assigned to
a ray from the source of X-rays (or other waves) to-
wards the corresponding detector pixel. Consider a
ray i with an origin o and a normalized direction vec-
tor d. Then, the projection pi can be computed as
the line integral of f along the ray:

pi =

∫ b

a

fΘ(o + td)dt (2)

where a and b denote the initial and the last value
for t.

To numerically integrate Eq. (2), we employ the
mid-point rule by dividing the limits of integration
(a, b) into N subintervals:

pi =
N∑

k=1

fΘ(xk) δ (3)

where δ = (b − a)/N and xk is the midpoint of the
intervals defined by

xk = a+
δ

2
+ (k − 1)δ. (4)

The forward projection in Eq. (3) is differentiable
with respect to the neural network parameters and
automatic differentiation tools can be used.

2.3 Regularization and loss function

To deal with noisy data and obtain a more accurate
reconstruction, we introduce a regularization term to
impose spatial smoothness, inspired by total varia-
tion [13]. The total variation term computes a spa-
tial gradient from both the x- and y-direction. In-
stead of two directions, we impose smoothness on one
direction along the ray, for computational efficiency.
Specifically, we aim to minimize the variation on each
point along the ray i:

Ri =
1√
δ

N−1∑

k=1

√
|fΘ(xk+1)− fΘ(xk)| (5)

where we omit the dependency of i in each x, for no-
tational simplicity. We use the square root function
to make the regularization term more robust [4].

From the computed projection p in Eq. (3), we aim
to fit it to the projection data p̂ by minimizing the
L2 norm between them. With this data fitting term
and the regularization term (5), we define the loss
function to minimize with respect to neural network
parameters Θ:

L(Θ) =
1

M

M∑

i=1

‖pi − p̂i‖22 +
λ

M

M∑

i=1

Ri, (6)

where λ is a hyper-parameter to control the weighting
between the data fidelity and regularization term.

To optimize Eq. (6), we use the mini-batch gradient
descent method where at each iteration, we choose B
random measurements among in total M available
measurements.

3 Experimental Results

In this section, we compare our work to other image-
based methods on simulated data qualitatively and
quantitatively. We conduct an ablation study for dif-
ferent neural network settings and the regularization
parameter. We also provide a result for real data.

3.1 Results on simulated data

We use phantom images with the size of 512 × 512
pixels shown in the first column of Fig. 2. These
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Phantoms Projections SIRT TV DIP Ours

Figure 2: Qualitative results on noisy projection data. The first column shows the ground truth phantoms of
Phantom 1, 2, 3 which are used to generate noisy projection data on the second column. The other columns
show the reconstruction results.

Phantoms
PSNR SSIM

SIRT TV DIP
Ours

SIRT TV DIP
Ours

λ = 0 λ 6= 0 λ = 0 λ 6= 0
Phantom 1 23.08 28.12 27.83 25.86 27.36 0.524 0.896 0.941 0.851 0.939
Phantom 2 16.52 19.70 21.20 20.88 22.04 0.468 0.764 0.881 0.820 0.933
Phantom 3 25.59 27.09 27.44 26.05 26.09 0.710 0.944 0.949 0.906 0.958

Table 1: Quantitative comparison to other methods on synthetic data from the phantom images in Fig. 2.
We show two results for our method without regularization λ = 0 and with regularization λ 6= 0.

phantoms are used to generate projection data by an
image-based linear forward model with parallel beam,
shown in the second column. Each projection datum
consists of 512 detector pixels and 30 projection an-
gles. We impose Gaussian noise on the projection
data with the relative noise level 0.02, which is cho-
sen to reflect noise degree in real data.

Experimental details. Our method is imple-
mented in the Julia language and based on a deep

learning library called Flux [9]. Unless explicitly
mentioned, we use a neural network with 3 hid-
den layers where each layer has size 128. That is,
the weight matrix for each hidden layer has size
128 × 128, while the bias vector has 128 elements.
We consider the reconstruction domain bounded into
(−1, 1)×(−1, 1). In this bounded domain, the spatial
frequency parameter ω = 30 yields good performance
overall. We initialize neural network parameters in
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the same way as SIREN did [15] where the distri-
butions of activations are preserved through the net-
work. We use the Adam optimizer [11] with learning
rate 0.0001, batch size B = 512 and iteration number
4,500 (150 epochs) as the solution changes very little
after that. The batch size corresponds to the number
of rays per iteration and the rays are sampled ran-
domly. For the numerical integration (3), we divide
the range of integration into N = 256 intervals.

Comparison to other image-based methods.
As our method belongs to a learning-free approach,
we compare our method to conventional model-based
approaches including: SIRT [3] and a Total Varia-
tion (TV)-based method [14]. We also compare to a
method [7] based on Deep Image Prior (DIP) [17]. As
mentioned in Sec. 1.1, DIP needs an early stopping.
For DIP, we iterate 2000 times and save the results
every 50th iteration and among those candidate so-
lutions, we choose the best result.

To compare our result to image-based methods, we
produce images from our implicit solutions by evalu-
ating the network at each pixel position. For quanti-
tative comparison, we employ two image-quality met-
rics: Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index Measure (SSIM). We choose
the same configuration for 3 phantoms except for the
regularization parameter λ, which is set 0.0005 for
Phantom 1 and 2 and 0.0001 for Phantom 3.

Fig. 2 provides a visual comparison of the results by
SIRT, TV, DIP and our method and Table 1 shows
the corresponding quantitative results. Due to the
noisy data, the result images have some high values,
which make the images look darker than the ground
truth images. Overall, our method gives competitive
results. Fig. 3 shows some intermediate results of our
method during optimization for Phantom 2.

3.2 Ablation study

In this ablation study, we use projection data without
noise and use the same settings as before.

Effect of network size. We vary the layer size,
but fix the number of hidden layers. As shown in
Table 2, as the layer size increases, the number of
network parameters increases approximately 4 times.
For reference, for an image of size 512 × 512, image-

epoch 1 (iter. 30) epoch 3 (iter. 90)

epoch 10 (iter. 300) epoch 100 (iter. 3000)

Figure 3: Intermediate results of our method during
optimization.

based methods optimize 262,144 pixel values. When
the layer size is 512 with a large number of parame-
ters, the reconstruction quality is shown to degrade.

layer size # params. PSNR SSIM
32 3,296 19.1 0.827
64 12,736 21.2 0.907
128 50,048 23.4 0.953
256 198,400 23.6 0.957
512 790,016 21.5 0.930

Table 2: Effect of network size for the reconstruction
of Phantom 2.

Effect of sampling points N . The number of
sampling points per ray affects both reconstruction
quality and the computational cost. Table 3 provides
the effect of N . As expected, as N increases, the
computation time also increases.

Effect of regularization hyper-parameter λ.
Fig. 4 shows the effect of λ. Without regularization,
some artifacts are observed and, with large regular-
ization λ = 0.0005, our method could not capture
some fine details. The value λ = 0.0001 is shown to
yield the best result in terms of both visual quality
and PSNR.
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N time per iter. PSNR SSIM
64 0.031 20.03 0.846
128 0.065 22.00 0.927
256 0.110 23.37 0.953
512 0.293 23.61 0.961
1024 1.115 24.48 0.968

Table 3: Effect of the number of sampling points for
the reconstruction of Phantom 2. The computation
time in GPU per iteration is shown in seconds.

λ : 0, PSNR:26.15 λ : 0.00001, PSNR:26.16

λ : 0.0001, PSNR:26.28 λ : 0.0005, PSNR:26.23

Figure 4: Effect of regularization parameter λ.

3.3 Results on real fan beam data

We test our method on cone-beam X-ray CT data
from the SophiaBeads Dataset [6]. The scanned sam-
ple is a plastic tube filled with glass beads. Specifi-
cally, we use the provided central slice of the dataset
“SophiaBeads 1024 averaged”, choose 64 projections
at angles in [0◦, 360◦] and down-sample with a fac-
tor 2 so that each projection is 680 pixels wide. As
a pre-processing, we correct the center-of-rotation by
shifting the projections 12 pixels and remove a high-
intensity edge artifact by subtracting 0.0015 from the
projection. As we use the central slice of a cone-beam
dataset, a fan-beam geometry is used for the recon-

struction.
In Fig. 5, we provide the results of SIRT and our

method. This demonstrates that our method can suc-
cessfully be applied to a real data and that the per-
formance is comparable to that of SIRT.

Projection data SIRT

Ours, λ = 0 Ours, λ = 0.00001

Figure 5: Reconstruction results for real fan beam
data.

4 Conclusion and Discussion

We have proposed a spatial regularization term for
tomographic reconstruction using a coordinate-based
neural network. The experimental results show that
the regularization term improves the reconstruction
quality significantly, although choosing optimal reg-
ularization parameter is not trivial. For a practical
use of our method, the major limitation is the high
demand of memory requirement, which prevents us
from choosing a large number of rays per iteration.
This is an issue, especially in 3D reconstruction where
projection data consist of a large number of measure-
ments. We leave it as future work to improve the
speed. Another future direction would be to include
the encoding of projection data in the network, so
that the network can infer to unseen projection data.
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ABSTRACT
It is common knowledge that the development of energy-resolving photon counting detectors (PCD)
in spectral X-ray imaging opened the way to the rise of Spectral X-ray Computed Tomography (SCT),
which simultaneously measures a material’s linear attenuation coefficient (LAC) at multiple energies.
In previous work, we introduced the method for system-independent material classification through
X-ray attenuation decomposition (SIMCAD) from SCT, which estimates the material properties of
electron density (�e) and effective atomic number (Zeff ). In this work, using real experimental data
we extend the SIMCAD method to the case where materials are identified from sparse-view (few)
projections for enabling rapid scanning and from noisy projection data, which are of highly practical
significance in security screening. Therefore, for reconstructing images from spectral sinogram we
implement L∞ vectorial total variation (L∞-VTV) as a convex regularizer, which is for the first time
implemented in SCT to our knowledge. This joint reconstruction algorithm employs the L∞ norm to
penalize deviations from the inter bin dependency, taking advantage of strong correlations among the
energy bins. L∞-VTV has been proven to be successful regularizer in image processing problems.
We also investigate ”total nuclear variation" (TNV), which is a state-of-the-art method for joint re-
construction and uses the nuclear norm to penalize the singular values of image matrices using the l1
norm, so that gradient vectors of different energy bins are forced to point into the same direction. We
use the correlation coefficient as a figure of merit (FOM) to measure the reconstructed image qual-
ity. We show that the joint reconstruction algorithms give the improved reconstructions compared to
bin-by-bin reconstructions such as total variation (TV) and SIRT when scanning is performed with
different detector noise level, and when significantly higher levels of noise are introduced to certain
energy bins. We test also classification performance of the algorithms using as an another FOM. In
7-projections case, L∞-VTV gives 8.6% and 75.0%, and 297.1% and 25.0% better accuracy for esti-
mating �e and Zeff compared to TV and SIRT, respectively, while the improvements are 11.8% and
35.5%, and 308.8% and 3.2% for TNV, respectively.

1. Introduction
Many studies have been done in addressing the sparse

data problems either in image processing or CT Systems.
The total-variation (TV) introduced by Rudin, Osher, and
Fatemi [1] has been effectively used for various image pro-
cessing problems in noise suppression while enabling sharp
discontinuities and preserving edges. Therefore, various TV
based reconstruction algorithms have been implemented for
sparse-view and limited angle CT [2, 3]. Sidky et al. (2006)
[4] implemented a TV-regularized reconstruction in fan-beam
CT for different insufficient data problems such as the few-
view projections, limited-angle, and bad-bin cases. The re-
sults showed that the TV regularization outperformed the
existing methods in the reconstructions in such cases suf-
fering from incomplete projection data. Blomgren and Chan
(1998) [5] introduced a first definition of vectorial TV (VTV)
regularizer that extends the conventional scalar TV into the
three-dimensional frame for image processing problemswith
considering the inter color channel dependency. The main
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doniyor.jumanazarov@fysik.dtu.dk (D. Jumanazarov);
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question when formulating a VTV as a convex regularizer is
how exactly to couple color channels. For an image denois-
ing task, Miyata et al. (2012) [6] proposed using a L∞ norm
for defining VTV and showed that this norm can efficiently
estimate the violation of inter-channel dependency and pro-
vide strong coupling among color channels. Consequently,
it leads to better performance in image denoising compared
to the commonly used norms of VTV.

Holt (2014) [7] investigated several Jacobian-basedVTV
types with color image denoising experiments that use nu-
clear norm in the Jacobian structure, which is the convex
envelope of matrix rank [8]. They showed that minimiz-
ing Jacobian rank leads to promoting gradient vectors in dif-
ferent color channels to share a common direction, and us-
ing nuclear norm makes TNV to be stronger convex regu-
larizer for encouraging shared directions compared to other
convex Jacobian-based regularizers, including Total Frobe-
nius Variation (TFV) and Total Spectral Variation (TSV).
For image processing tasks, Duran et al. (2016) [9] im-
plemented and analyzed several VTV regularizations using
so-called collaborative norms that can penalize the three di-
mensions of the discrete gradient of the multi-channel im-
age corresponding to pixels, spatial derivatives and color
channels. They compared a performance of each norm by
employing images with different noise level from various

D. Jumanazarov et al.: Page 1 of 13
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databases. They find that the joint regularizations based on
the L∞ norm and the Jacobian-based nuclear norm (TNV)
give the best suppression of color artifacts.

Using simulated data, Rigie et al. (2015) [10] applied
TNV to reconstructing tissue density maps from spectral CT,
which simultaneously measures the energy dependence of a
material’s linear attenuation coefficient (LAC) using energy
resolved photon counting detectors (PCD). They showed that
TNV is better in suppressing noise and has less edge blurring
compared to channel-by-channel TV reconstructions. Even
though each energy bin of a spectral CT often has remark-
ably different noise levels, TNV showed robustness to unde-
sired transfer of individual characteristics to other bins. With
real data, Rigie et al. (2017) [11] implemented TNV and
another VTV algorithm using the Frobenius norm as well
as TV in dual-energy CT. They find that both VTV regu-
larized couplings are better at suppressing noise compared
the conventional TV while TNV was still the best regular-
izer among them. Zhong et al. (2018) [12] investigated to
reconstruct energy-dispersive X-ray spectroscopy (EDS) to-
mographic images by combining with a more precise high-
angle annular dark-field STEM (HAADF-STEM) tomogra-
phy through TNV in case of a small number of tilts and a low
number of photon counts. The experiments presented that
TNV regularization is more precise in preserving features of
reconstructed images compared to the simultaneous iterative
reconstruction technique (SIRT) [13] and TV reconstruction
methods in these difficult cases.

Spectral CT is just CT with multiple ”color" channels,
these advanced algorithms from image processing can be ap-
plied to spectral CT reconstruction. In this work, especially
motivated by thework of Duran et al. [9] we implement aL∞norm-based VTV method in Spectral CT, which we borrow
from Miyata et al. (2012) [6] in referring to it as L∞-VTV.We also investigate TNV joint reconstruction algorithm us-
ing the experimental data. We compare their performances
with TV and SIRT reconstructions. The term of a channel is
referred to a bin.

In previous work we presented a novel method for mate-
rial classification, named system-independent material clas-
sification through attenuation decomposition (SIMCAD) [14],
which estimates the system-independent material properties
(�e, Zeff ), independent of the instrument or specifics of the
scanner such as the X-ray spectrum, directly from energy re-
solved LACs in spectral CT. This method employs attenua-
tion decomposition method introduced by Alvarez et al. [15]
for the formulation of the method and adopts it for multi-
energy case. The method can meet the requirements of rapid
scanning for industrial applications such as check-in bag-
gage control at airports [16]. In this work, stemming from
practically importance we aim to extend the method into the
case where materials are classified from sparse-view (few)
projections again for increasing the classification speed mo-
tivated by security applications. We also test the method
for noisy projection data. A broader range of materials is
used for experimental validation. We focus on improving
the reconstruction quality, which would lead to more accu-

rate LAC extraction and as a result to targeted better ma-
terial classification. To combat the heavy sparse-view arti-
facts, we leverage the structure coherence of a scanned ob-
ject sharing the same structure information at various ener-
gies and jointly reconstruct the images simultaneously em-
ploying all the data instead of reconstructing each energy in-
dependently. We refer the reader to our previous work [14],
especially to the subsections such as Experimental setup and
data correction, Setting low- and high-energy thresholds and
LAC extraction. We use the MultiX ME100 v2 CdTe detec-
tor (”Detection Technologies”), which is a good candidate to
measure the energy-dependent LAC in high flux. The detec-
tor requires the correction of the detector’s spectral response
that helps to correct the LAC towards the reference values at
the low energies, where the contrast between organics com-
pounds is highest, and also at the high energies [17]. These
deviations of the LAC from the reference occur due to the
lower photon statistics and pulse pile-up, and they cannot be
completely restored by the correction algorithm. We trun-
cate these bins at the low and high energies setting the low-
and high-energy thresholds. In previous work, the classifi-
cation performance was tested for optimized bi-, 6, 15, 30,
45 and 90 energy bins. 15 energy bins approach spaced uni-
formly between low- (33.2 keV) and high- (132.4 keV) en-
ergy thresholds with equal width showed better results com-
pared to 30, 45 and 90 energy bins. One reason may be that
using energy bins with a width narrower than the energy res-
olution of the detector did not improve classification perfor-
mance; Secondly the detector noise becomes greater as the
width of each energy bin becomes narrower while the num-
ber of bins increases. Therefore, we use 15 energy bins ap-
proach for this study. Thus, SCT settings have a compromise
between spectral resolution and noise level. The joint recon-
struction of spectral sinogram is expected to compensate for
this giving better quality compared to bin-by-bin reconstruc-
tions. We only do 2D reconstructions for slices, however the
same methods can be applied to the third dimension.

The joint reconstruction algorithm has a positive weight-
ing parameter that controls the balance between a good fit
to spectral sinogram data and a smooth reconstruction. This
parameter determines the strength of the regularization term.
We use the correlation coefficient to estimate the reconstructed
image quality against ground-truth images as a figure ofmerit
(FOM). The convergence of each algorithm is ensured based
on the sum of primal and dual residuals and the number of it-
erations is fixed when the correlation coefficient and its gra-
dient remain stable. The weighting parameter is tuned for
the best match on the reconstruction based on the correla-
tion coefficients, which are assessed for each algorithm and
different level of photon flux and data acquisition time. For
each reconstruction method, the robustness to significantly
higher noise in certain energy bins is tested, and we investi-
gate a L-curve that is a plot and can be theoretically used for
finding the optimal weighting parameter. Lastly, the mate-
rial classification performance depending on the weighting
parameter is tested for each reconstruction algorithm as an
another FOM. We use 20 different materials for the calibra-
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tion and 15 additional materials for the (�e,Zeff ) calculationin the range of 6 ≤ Zeff ≤ 15. Moreover, the classification
performance ofL∞-VTV in 7-projection is evaluated by arti-
ficially adding Gaussian noise to the experimental data after
the spectral correction of detector response.

2. Method
2.1. Problem formulation

In spectral CT, the measurements with N energy bins
consist of N sinograms p1, ...,pN ∈ ℝM where M is the
number of detector pixels times the number of projection an-
gles. From the sinograms, we aim to reconstruct the corre-
spondingN images u1, ...,uN ∈ ℝJ representing the linear
attenuation coefficients for each energy bin Ei, where J is
the number of pixels per each image. For notational simplic-
ity, we define the stack of sinograms as a vector p ∈ ℝNM

and the stack of N images as u ∈ ℝNJ and we denote by
ui,j the attenuation coefficient for the energy bin Ei on the
j-th pixel.

The forward-projection to map an image to sinogram do-
main can be modeled by a linear operator A such that Auiestimates a sinogram for each energy binEi. By stacking thesame operator for all energy bins, we define the linear oper-
ator A on the stack of images u such that Au = p. Then, a
typical reconstruction approach is to minimize the reprojec-
tion error (difference between the computed and measured
sinogram) in the L2 sense as:

(Au) = 1
2
‖Au − p‖22. (1)

This data fitting term is not enough, as data can be highly
noisy or obtained by a small number of projection angles.
To reconstruct high-quality images, we need a robust reg-
ulatization scheme, by imposing a prior knowledge on the
solutions.

In the image reconstruction, a popular regularization
scheme is Total Variation (TV) [18], which promotes sparse
gradients of the images. One can apply (isotropic) total vari-
ation regularization on each energy channel Ei, indepen-dently, which can be written as

TV(u) =
N∑
i=1

J∑
j=1

√
)xu2i,j + )yu

2
i,j , (2)

where )xui,j and )yui,j are the gradient of the image ui on thepixel j with respect to x and y axis, respectively. This inde-
pendent total variation regularization does not exploit any
correlation between the images from different energy chan-
nels.

A more robust regularization can be achieved by corre-
lating the gradients of the images. One way to correlate the
gradients is Total Nuclear Variation (TNV) [9, 10], which is
defined as the sum of nuclear norm of image gradients:

TNV(u) =
J∑
j=1

‖‖‖‖‖

(
)xu1,j )xu2,j ⋯ )xun,j
)yu1,j )yu2,j ⋯ )yun,j

)‖‖‖‖‖∗
, (3)

where the nuclear norm ‖⋅‖∗ of a matrix is the sum of its sin-
gular values. Note that TNV can be computed parallelly for
each pixel j. TNV encourages the image gradients to align
together over different energy channels and can be effective
to correlate the images when the image gradients are reli-
able enough. However, TNV can be degenerate when there
are some outliers in the gradients of the images.

To overcome the disadvantage of TNV, we suggest to
use another vectorial total variation norm, L∞-VTV,which isthe sum of the maximum of gradients over the multi-channel
images, defined as

L∞
VTV (Du) = ‖Du‖∞,1,1

∶=
J∑
j=1

(
max
1≤i≤N |)xui,j| + max

1≤i≤N |)yui,j|
) (4)

where D is a linear operator for the discrete gradient oper-
ations such that Du is a 3D matrix. That is, (Du)i,j,l rep-resents the gradient of the image ui on the pixel j with re-
spect to x axis when l = 1 or y axis when l = 2. This L∞-VTV norm correlates the gradients strongly, while disallow-
ing some outliers in the sense of the gradients magnitudes.
This property will be illustrated in the subsection 3.4.

By combining the data fidelity term (Eq. (1)) and the reg-
ularization term L∞-VTV (Eq. (4)), we formulate the opti-
mization problem we want to solve:

min
u≥0 �(Au) +L∞

VTV(Du), (5)

where � is the weighting parameter between the two terms.
Here, we impose the non-negativity constraint on u, as linear
attenuation coefficients are desired to be non-negative.
2.2. Optimization

We describe the optimization of our objective function
defined in Eq. (5). Although the objective function is con-
vex, the challenge lies in having the composite operators A
in the data fidelity term and D in the regularization term.
To deal with such difficulty, we employ an efficient primal
dual algorithm, called Hybrid Gradient Primal Dual method
(HGPD) [19]. The basic idea of primal dual algorithms is
to reformulate a minimiziaton problem as a minimization-
maximization (min-max) problem and aim to find the sad-
dle point. To derive the min-max problem, primal dual al-
gorithms rely on Fenchel conjugate function [19] F ∗ of a
convex function F , defined by,

F ∗(y) = sup
x
⟨x, y⟩ − F (x). (6)

To use the primal dual algorithm, we introduce two dual
variables q and r corresponding to the operatorsA andD, re-
spectively. To rewrite the original minimization problem de-
fined in Eq. (5) as a saddle point problem, we use the Fenchel
conjugate function to obtain

(Au) = max
q

⟨Au,q⟩ − ∗(q) (7)
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L∞
VTV(Du) = maxr ⟨Du, r⟩ −∗(r) (8)

where ∗ and ∗ are the conjugate functions of
(x) = 1

2
‖x − p‖22 , (9)

(X) = ‖X‖∞,1,1 . (10)
Based on Eq. (7) and Eq. (8), we now turn the minimization
problem of Eq. (5) into the following saddle point problem
min
u
max
q,r

⟨Au,q⟩+⟨Du, r⟩−∗(q)−∗(r)+�+(u), (11)
where �+ is the indicator function for the non-negative con-
straint, defined by,

�+(x) =

{
x if x ≥ 0 ,
∞ if x < 0 . (12)

HGPD provides an efficient way to solve the saddle point
problem, by alternatively updating the primal and dual vari-
ables as follows:

uk+1 = prox�+
(
uk − �

(
AT qk + DT rk

)) (13)
ū = 2uk+1 − uk (14)

qk+1 = prox�1∗
(
qk + �1Aū

) (15)
rk+1 = prox�2∗

(
rk + �2Dū

) (16)
where k is the iteration number, � is the step size for the pri-
mal variable, �1, �2 are the step sizes for the dual variables
and prox is the proximal operator [20] defined by

prox�f (x) = argminy
1
2�

‖x − y‖22 + f (x). (17)
In Algorithm 1, we provide the whole procedure of op-

timization, where ‖A‖2 denotes the operator norm of A,
which is the largest eigenvalue of A. To guarantee the con-
vergence, we carefully choose the step sizes, following [19],
based on the operator norms, which can be computed by the
power method [21]. The concrete solutions to Eq. (13) and
Eq. (15) are provided in Eq. (21) and Eq. (23), respectively.
To evaluate Eq. (16), we use the fact that the proximal op-
erator to L∞ norm is the projection operator to L1 unit ball,denoted by Π‖⋅‖≤1 [20]. Then, by the abuse of notation, we
can write the solution to Eq. (16) as follows:
(
prox�2∗ (V)

)
i,j,l

= sgn
(
Vi,j,l

)
Π‖⋅‖≤1

(
�2‖V∶,j,l‖

) (18)
where sgn is the sign function, i denotes the index for the
energy bin, j for the pixel index and l ∈ {1, 2} denotes the
index for the gradient with respect to x or y axis. The nota-
tionV∶,j,l represents a vector consisting of the elements with
respect to the energy bins, given j and l. We refer to [9] for
a detailed derivation.

To check the convergence, we introduce two residuals 
and for the primal variables and the dual variables, respec-
tively, as follows:

k+1 = ‖(uk − uk+1)∕� − AT (qk − qk+1)

Algorithm 1 Primal dual updates for solving Eq. (11)
Set the step sizes:

� = 1
‖A‖2 + ‖D‖2 , �1 =

1
‖A‖2 , �2 =

1
‖D‖2

Initialize u0, q01, q02 as zero vectors.
for k = 0, 1, 2, ...

uk+1 = max
(
uk − �(AT qk + DT rk), 0

) (21)
ū = 2uk+1 − uk (22)

qk+1 =
qk1 + �1(Aū − p)

1 + �1
(23)

rk+1 = rk + �2(Dū − g) (24)

− DT (rk − rk+1)‖1, (19)
k+1 = ‖(qk − qk+1)∕�1 − A (uk − uk+1)‖1

+ ‖(rk − rk+1)∕�2 − D (uk − uk+1)‖1. (20)
These primal and dual residuals measure the changes of the
solutions per iteration for primal and dual variables, respec-
tively. Such residuals are expected to decrease along the it-
erations. The behaviors of these residuals and the stopping
criteria will be discussed in the subsection 3.1.

3. Results and discussions
3.1. Stopping criteria for the iteration number

0 200 400 600 800
10-4

10-3

10-2

10-1

100

Figure 1: The sum of the primal and dual residuals with re-
spect to the number of iterations for TV, TNV and L∞-VTV
obtained with 36 projections. In this subsection, we use the
experimental sample shown in Fig. 2 scanned with 8 s of the
total integration time per projection. The weighting parame-
ter � for each reconstruction defined in Eq. (5) is taken from
Fig. 4.

Fig. 1 shows the sum of primal and dual residuals for re-
construction algorithms that decreases as the number of it-
erations increases for each algorithm, as expected. The con-
vergence of each algorithm is therefore ensured. L∞-VTV
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Figure 2: A display of the sample including the seven plas-
tics indicated by red arrows. This is reconstructed with SIRT
using 360 projections at 42 keV. The color bar shows linear
attenuation coefficients (LACs) with the unit of cm−1.

Table 1
The number of iterations fixed for each algorithm and projec-
tion number.

Projection
number SIRT TV TNV L∞-VTV

7 80 550 750 550
12 80 550 600 500
36 100 400 500 400
360 150 400 400 400

converges noticeably faster than TNV and TV whereas TV
shows a slowest convergence rate.

We estimate the reconstructed image quality through the
correlation coefficient, r, which measures how the recon-
structed image u is linearly connected to the ground-truth
(true) image v, and it is expressed as

r =
∑
i(ui − ū)(vi − v̄)√∑

i(ui − ū)2
∑
i(vi − v̄)2

(25)

where ū and v̄ are the mean values, and ui and vi are the ithpixel values of u and v, respectively.
We use correlation coefficients for stopping criteria to

define whether or not the algorithms will converge to the
ground-truth image. In this work, the ground-truth images
are created by measuring the mean LAC based on the nor-
mal distribution [14] through SIRT reconstruction and 360
projections. Fig. 3 presents how the correlation coefficients
change with the number of iterations for each algorithm, and
for 7 and 36 projections. We stop SIRT reconstruction al-
gorithm when the correlation coefficient reaches the maxi-
mal value. For other algorithms, we truncate the iteration
numbers at the points when the correlation coefficient and
its gradient remain stable. Table 1 shows the fixed number
of iterations for each reconstruction method and projection
number obtained with the stopping criteria.

3.2. Investigating the reconstruction quality as a
function of the weighting parameter �

We performed the reconstructions for a set of weight-
ing parameters � for each method. A too small value of �
may result in an over-regularized image with blurred edges,
while a too large value may give insufficient regularization
effects, as notable in Eq. (5). We then computed the corre-
lation coefficients with reference to the ground-truth images
for the different number of projections, which are visible in
Fig. 4. For 7 and 12 projections, the maximal correlation
coefficient values for TV and SIRT reconstructions decrease
noticeably more compared to the spectral reconstructions,
TNV and L∞-VTV . The maximal correlation coefficients
for L∞-VTV reconstruction are clearly larger than the co-
efficients for TNV and TV reconstructions, while SIRT re-
construction has the lowest correlation coefficients. Fig. 5
compares the TV, the TNV and the L∞-VTV reconstructions
corresponding to the maximal correlation coefficients pre-
sented in Fig. 4 for 7, 12 and 36 projections. The TNV and
theL∞-VTV algorithms appear to have clearly less structural
artifacts than the TV reconstruction that suffers from over-
smoothing and more distortion in shape, which are more vis-
ible for 7 and 12 projections. L∞-VTV, in turn, has more
accurate structure with better edges compared to TNV.
3.3. Robustness to different noise levels in all the

energy bins
MultiXME100 photon counting X-ray detector can have

integration times from 0.5 ms to 100 ms (in 10 �s incre-
ments). In this subsection, we scanned the sample shown in
Fig. 6 with total integration times of 2 ms, 10 ms and 50 ms
per projection using 36 projections for testing robustness of
each algorithm to such decreasing photons statistics of each
energy bin. Fig. 7 shows the correlation coefficients eval-
uating reconstruction qualities for each method. The max-
imal correlation coefficients for TNV and L∞-VTV recon-
structions are larger than the coefficient for TV reconstruc-
tion, which are more noticeable in 2 ms and 10 ms cases.
As an integration time decreases, � values corresponding
to maximal correlation coefficients also decrease for each
algorithm, in other words the higher noise in scanning the
more regularization is needed, as expected. Fig. 8 compares
the reconstructions of TV, TNV and L∞-VTV correspond-
ing to such maximal correlation coefficients. 2 ms integra-
tion time shows that the TV reconstruction suffers notice-
ably from blurring and over-smoothing in a such low inte-
gration time whereas the TNV and the L∞-VTV reconstruc-
tions appear to be clearer and better at preserving the edges.
The images produced by the L∞-VTV, in turn, have notice-
ably sharper edges and less structural artifacts compared to
TNV, which are more visible in 2ms and 10ms levels. Thus,
the joint reconstruction algorithms show more robustness to
such higher noise levels compared to the TV. Robustness
to lower integration time may be important for industrial
applications, which can enable faster material classification
through faster data acquisition.
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Figure 3: Correlation coefficients as a function of iteration number for 36 (left) and 7 projections (right). The weighting
parameters � used for the reconstructions are obtained based on Fig. 4. The correlation coefficients represent the mean values
calculated from the coefficients for 15 energy bins used.
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Figure 4: The correlation coefficients as a function of weight-
ing parameter � for 7, 12 and 36 projections. In this subsection,
we use the plastics sample shown in Fig. 2 scanned with 8 s
of the total integration time per projection. The correlation
coefficients represent the mean values calculated from the co-
efficients for 15 energy bins used. Note the logarithmic scale
in the x−axis.

3.4. Robustness to significantly higher noise levels
in certain energy bins

Some spectral energy bins may suffer from sudden noise
during scanning. Significantly higher noise in certain en-
ergy bins can be caused by the metal objects in the sample,
which reduce the photon counts leading to photon starva-
tion and create metal artifacts in the reconstructions. Metal
artifacts influence primarily the lower energy bins and may
be more severe resulting in less reliable characterization of
the material properties. To estimate the robustness of the al-
gorithms to such artifacts, we added Gaussian noise to the
sinograms with a standard deviation (�) of 0.5, 1.0 and 1.5.
The noise is introduced to two bins out of 15 energy bins:
48.7 keV and 101.6 keV. We estimate the reconstruction
qualities of the algorithms for different �. Fig. 9 shows cor-

relation coefficients depending on energies for each � value.
The mean � values optimized for � = 1.5 and calculated
from the coefficients for 15 energy bins used are applied to
all the noise levels for reconstructions with each algorithm.
It can be noted from the graphs that for TV there are no in-
teractions between energy bins as expected whereas TNV
and L∞-VTV show high correlations between channels and
have noticeably smaller decreases in correlation coefficients
for the affected bins. Thus, the joint reconstruction algo-
rithms compensate for significantly higher noise in certain
energy bins by effectively using the unaffected energy bins,
for which coupling leads to slight degradation in the recon-
struction quality. The figures also show that L∞-VTV out-
performs TNV in compensating such noises, and improves
sharply the reconstruction quality in the lower energy bins,
which can be appropriate property to reduce the metal arti-
facts.
3.5. The L-curve

The L-curve is a plot of the norm of a regularized solu-
tion as a function of the norm of the respective residual vec-
tor. This tool can be used for showing the trade-off between
the weight of a regularized solution and its fit to the tomo-
graphic data, as the weighting parameter � changes. Dif-
ferently from correlation coefficients, using the L-curve one
can rely only on the experimental sample to establish the
optimal � without the ground truth image. For TV, TNV
and L∞-VTV, the weights of the regularized solutions are
measured by the 2-norm of the image gradients (∥ u� ∥TV,Eq. (2)), the nuclear norm of image gradients (∥ u� ∥TNV,Eq. (3)) and the 2-norm of the maximum of gradients (∥
u� ∥L∞−VTV, Eq. (4)), respectively. The fit is defined by
the 2-norm ∥ Au� − p ∥2 of the residual vector (Eq. (1))
for each method. Thus, one may use L-curve for selecting
an optimal weighting parameter for the given data. L-curve
may be represented on a log-log scale, such as for Tikhonov
regularization [22]. In our work, we employ a linear-linear
representation of the L-curve as in [23], which fits better to
our reconstruction methods. Fig. 10 shows the correlation
coefficient and the L-curve for each algorithm. Theoreti-
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(i) L∞-VTV, 36 projections, � = 1.2
Figure 5: TV, TNV and L∞-VTV reconstructions of the plastics sample (Fig. 2) for 7, 12 and 36 projections at 42 keV. The
weighting parameters � used correspond to maximal correlation coefficients shown in Fig. 4.

cally, the appropriate � values lie on the corner of the curve
and the values on the flat and vertical parts lead to the so-
lutions (reconstructions) dominated by over-regularization
and under-smoothing (the data errors), respectively. Note
that we use the real experimental data and sparse-view pro-
jections that may lead to some limitations of the L-curve for
the methods. Hanke [24] showed that the smoother the re-
construction the lower accuracy of the estimated �. Such
limitation is more visible for TV for which the L-curve cri-
terion can produce a weighting parameter that leads to slight
over-regularization. The reason for this may be due to that
TV tends to be over-regularized for sparse-view and high
noise cases as discussed in the subsections 3.2, 3.3. The �
values corresponding to maximum correlation coefficients
for TNV and L∞-VTV are in good correspondence with the
� values located on the corner of the L-curve, as shown in
Fig. 10. L∞-VTV, in turn, demonstrates clearly accurate es-
timation of the optimal � based on the L-curve criterion.

3.6. Classification performance as a function of �
Linear attenuation coefficient (LAC) is proportional

to a material’s electron density [26]. The electron
density is the number of electrons per unit volume
(electron − mole∕cm3). For a compound or mixture that has
the composition of N total different elements, the electron
density can be calculated as

�e =
∑N
i=1 �iZi∑N
i=1 �iAi

�. (26)

where � is mass density (g∕cm3), Ai andZi are atomic mass
and atomic number for each element, i, respectively, �i isthe number of atoms that have atomic number Zi. For com-
pounds, the atomic number is referred to as effective atomic
number,Zeff and a now classical parameterization proposed
by [27, 28] is defined as

Zeff =
l

√√√√ N∑
i=1

riZl
i , (27)
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Table 2
The list of the materials scanned and processed for the calibration step [14], and their
physical properties �e and Zeff . The mass density, � for the plastic materials was measured
with uncertainties of ± 0.15%. The mass densities for the rest of materials represent the
theoretical values found in PubChem data, [25].

Material
Chemical
Formula

Width×length/
Diameter (mm) � (g∕cm3) �e (e−mol∕cm3) Zeff

Graphite C 12.7 1.8 0.899 6
PC (CO3 C13 H8)n 8.2×53.5 1.18 0.610 6.82
PMMA (C5 O2 H8)n 40×42 1.18 0.636 7.02
POM-C (CH2 O)n 9×53.5 1.41 0.753 7.40
PTFE (C2 F4)n 9×53.3 2.16 1.035 8.70
N,N-Dimethylhydrazine C2H8N2 67 0.791 0.447 6.44
Ethylenediamine C2H8N2 67 0.90 0.509 6.44
Acetone 2 C3H6O 54 0.785 0.432 6.90
Nitrobenzene C6H5NO2 49 1.20 0.624 7.00
Ethanol 96% C2H6O (96%) 67×67 0.798 0.450 7.06
Methanol CH3OH 20 0.792 0.446 7.29
Hydrazine solution H4N2 (35%) 54 1.0 0.561 7.43
Nitromethane CH3NO2 20 1.14 0.597 7.50
Water H2O 20 0.997 0.554 7.78
Water 3 H2O 12.7 0.997 0.554 7.78
Hyd. Peroxide 2 H2O2 (50%) 73×74 1.22 0.661 7.83
Magnesium 2 Mg 18 1.74 0.859 12
Aluminum 2 Al 25 2.70 1.3 13
Aluminum 3 Al 20×20 2.70 1.3 13
Silicon Si 25 2.33 1.161 14

Table 3
The list of all the materials scanned and processed for the (�e, Zeff ) calculation step [14],
and their physical properties �e and Zeff . The mass density, � for the plastic materials
was measured with uncertainties of ± 0.15%. The mass densities for the rest of materials
represent the theoretical values found in PubChem data, [25].

Material
Chemical
Formula

Width×length/
Diameter (mm) � (g∕cm3) �e (e−mol∕cm3) Zeff

PET (C10 H8 O4)n 9×53.5 1.39 0.721 7.09
POM-H (CH2 O)n 15.5×53.3 1.43 0.763 7.40
PVDF (C2 H2 F2)n 9×53.5 1.79 0.896 8.40
PTFE 2 (C2 F4)n 12.7 2.2 1.056 8.70
2-Butanone C4H8O 83 0.805 0.447 6.76
Acetone C3H6O 20 0.785 0.432 6.90
Methanol 2 CH3OH 81 0.792 0.446 7.29
Ethanol 40% C2H6O (40%) 67×67 0.947 0.532 7.63
Water 2 H2O 51×51 0.997 0.554 7.78
Nitric acid HNO3 (65%) 83 1.39 0.714 7.80
Hyd. Peroxide H2O2 (50 %) 20 1.22 0.661 7.83
Magnesium Mg 12.7 1.74 0.859 12
Aluminum Al 25 2.70 1.3 13
Silicon powder Si 48 0.65 0.324 14
Silicon 2 Si 12.7 2.33 1.161 14

where ri is “relative electron fraction” contribution of an el-ement, i, which is determined as

ri =
�iZi∑N
j=1 �jZj

,

In previous work [14], the exponent l was investigated

to tune this value on the best match for the materials, source
spectrum and system features. The optimal value was l =
8.0 that showed the lowest percent relative deviations in clas-
sification performance, therefore we choose this value for the
calculations of reference Zeff values in this work. Based on[15], one can define a linear attenuation coefficient (LAC) of
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Figure 6: A display of sample consisting of aluminum, magne-
sium and PEEK plastic indicated by red arrows, reconstructed
with SIRT, 360 projections and 100 ms of total integration
time per projection at 61.9 keV. The color bar shows linear
attenuation coefficients (LACs) with the unit of cm−1.
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Figure 7: Correlation coefficient as a function of weighting
parameters � for the sample (Fig. 6) obtained with total in-
tegration times of 2 ms, 10 ms and 50 ms per projection for
each method. The number of projections is 36. The corre-
lation coefficients represent the mean values calculated from
the coefficients for 15 energy bins used. Note the logarithmic
scale in the x−axis.

a material, m, for each energy bin as
�m(Ek) = �e,m

(
Zn−1
eff ,mp(Ek) + c(Ek)

)
, (28)

where m = 1, 2, ...,M , k = 1, 2, ..., K withM being the to-
tal number of materials and K being the number of energy
bins used. Note that we use 15 energy bins approach for this
study based on previous work [14]. p(Ek) and c(Ek) are pho-toelectric absorption and Compton scattering basis functions
for energy bin Ek, respectively. The basis functions and pa-
rameter n being same for all materials are calibrated by using
the reference �e and Zeff values and measured LACs of the
scanned materials listed in Table 2 for the best classification

performance. After the calibration step, the classification
performance is estimated calculating (�e, Zeff ) values of
the additionally scanned materials listed in Table 3 by using
the calibrated values and the measured LACs. We refer the
reader to our previous work [14] for the derivation of calibra-
tion of basis functions and n and (�e,Zeff ) calculation steps.The reference �e and Zeff values of the materials listed in
both tables were calculated by using Eq. (26) and Eq. (27)
and the exponent l = 8.0, respectively. Sample dimensions
are also given in the tables throughwidth×length or diameter
for rectangular and circular samples, respectively. The clas-
sification of plastics is an efficient gauge for a system’s per-
formance to detect explosive materials in luggage. A num-
ber of explosives have similar chemical compositions, e.g.
POM has been regarded as an explosive simulant [29]. The
materials used in this study reflect the same Zeff variationas different organic tissues [30] and none possess K-edge ab-
sorption within the detector’s energy range.

The accuracy of material classification was measured as
the percent relative deviation from the reference values for
�e and Zeff as:

ΔZrel
ef f = 100% ⋅

Zest
ef f −Z

ref
ef f

Zref
ef f

, (29)

Δ�rele = 100% ⋅
�este − �refe
�refe

(30)

where superscripts est and ref refer to the estimated and ref-
erence values, respectively.

Fig. 11 highlights the percent relative deviations for
(�e, Zeff ) depending on weighting parameters � for sparse-
view and noisy projections. For 12 projections, the algo-
rithms have almost identical relative deviations. For 7 pro-
jections, TV gives the minimal overall deviations of 3.8% for
�e, and 4.2% for Zeff (at � = 16.0), whereas TNV and L∞-VTV yield deviations of 3.4% and 3.1% (at � = 150.0), and
3.5% and 2.4% (at � = 30.0), respectively. In 7 projections
case, Gaussian noise is introduced to the experimental data
after the spectral correction [17] with a standard deviation
of � = 0.05, which may be realistic for some scanning ap-
plications due to characteristics of X-ray sources. The noise
is added to all of the materials used for the calibration and
calculation, and to all of the 15 energy bins. As shown in the
figure, in the noisy case of 7 projections the deviations for
TV reconstructions increased to 5.0% for both �e and Zeff ,whereas TNV and L∞-VTV have the increases to 4.0% and
3.9%, and 3.6% and 3.2% at the same corresponding � val-
ues, respectively. Thus, spectral reconstruction algorithms
show better classification performance in such sparse-view
and noisy cases, and L∞-VTV, in turn, outperforms TNV. It
can be noted from the figure that in the noisy case of 7 pro-
jectionsL∞-VTV uses the lower � value that gives the lowest
deviations compared to the case without the noise, i.e. the
algorithm uses stronger regularization term to overcome the
noise, as expected.

Fig. 12 shows the relative deviations for the different
materials in 7 projections case. Compared to the other al-
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Figure 8: TV, TNV and L∞-VTV reconstructions of the sample (Fig. 6) obtained with total integration times of 2 ms, 10 ms
and 50 ms per projection and with 36 projections at 61.9 keV. The weighting parameters � used for each method correspond to
maximal correlation coefficients presented in Fig. 7.

gorithms, L∞-VTV gives the lower relative deviations for
POM-H that can be an explosive simulant. Fig. 13 shows the
classification performance of L∞-VTV for different materi-
als depending on weighting parameter � for 7 projections. It
can be noted from the figure that the � values between 20.0
and 40.0 for L∞-VTV can provide the optimal overall per-
formance for material classifications with this Zeff range ofmaterials used.

We found in our implementation that for material classi-
fication L∞-VTV involves 10.6% and 52.3% shorter com-
putation time compared to TNV that is a state-of-the-art
method for joint reconstruction and TV, respectively.

4. Conclusion
In this paper, we presented the joint reconstruction of

vectorial total variation defined by the L infinity norm (L∞-VTV) for material classification using the SIMCAD method
from sparse spectral X-ray CT. We compared the obtained

results with a state-of-the-art joint reconstruction of total nu-
clear variation (TNV) and channel-by-channel reconstruc-
tions of TV and SIRT. The optimization of L∞-VTV al-
gorithm has been displayed. We showed how we truncate
the iteration number based on the correlation coefficients for
each algorithm. When image reconstructions are performed
from sparse-view projections and with low levels of pho-
ton statistics due to decreased integration times of the detec-
tor, the joint reconstruction algorithms showed clearly bet-
ter performance in image reconstruction compared channel-
by-channel reconstructions. L∞-VTV, in turn, outperformed
TNV. In study of robustness to significantly higher noise lev-
els in certain energy bins, we found that the joint reconstruc-
tion algorithms effectively distribute such noises in affected
bins to unaffected bins and achieve significantly higher re-
construction performance for all the energy bins compared
to TV. L∞-VTV, in turn, was found to be better in compen-
sating for such noise levels than TNV, especially at lower en-
ergies. This property can be very useful for handling metal
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Figure 9: Correlation coefficient as a function of photon energy when different levels of Gaussian noise with standard deviation,
�, are added to certain energies of 48.7 keV and 101.6 keV for each method. The mean � values optimized for � = 1.5 case are
used to produce correlation coefficients for all the noise levels for each method. In this subsection, the sample shown in Fig. 6
was scanned with 12 projections and 100 ms of the total integration time per projection.

(a) TV (b) TNV (c) L∞-VTV
Figure 10: The correlation coefficients depending on � and L-curve for each method. In this subsection, the sample shown in
Fig. 6 was scanned with 12 projections and 100 ms of the total integration time per projection. Note the logarithmic scale in the
x−axis for correlation coefficients.

artifacts, which affect mainly the low-energy bins. For each
algorithm, we studied the practical use of L-curve method
for finding the optimal weighting parameter based on the
scanned sample itself while computing a correlation coef-
ficient requires a ground truth image. For L∞-VTV, the op-timal weighting parameter found based on correlation coeffi-
cient was accurately fitted with the weighting parameter that
is considered as the optimal value for L-curve located on its
corner. The joint reconstruction methods showed noticeably
better classification performance compared to channel-by-
channel reconstructionmethods for such sparse-view projec-
tions, also in the case when noise is added to all the materials
used. L∞-VTV, in turn, is more accurate in (�e, Zeff ) esti-mation compared to TNV. We found that L∞-VTV requires
significantly less evaluation time for material classification
compared to TNV and TV.
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