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Summary (English)
Automating visual quality assurance of product appearance is a very hot topic in industry
as it is still primarily a manual task only carried out by humans. With a strong focus
on digitization in Industry 4.0, it is also highly beneficial for companies to be able to
include product appearance in their digital twin. In order to automate the visual quality
assurance, we need to be able to model, measure, and compare appearance.

Our focus is combining computer vision and computer graphics to develop the instru-
mentation and methodology needed to achieve the goal of automating appearance as-
sessment. This thesis is focused around industrial applications in collaboration with in-
dustrial partners through an organization named Manufacturing Academy of Denmark
(MADE).

Specifically, we contribute by developing three robotic setups that utilize cameras and
controllable light sources to obtain surface information from radiometric measurements,
ABB Setup, UR5 Setup and UR3 Setup. These instruments has been key components
in the contributions presented in this thesis, although they span a wide range of topics.
One contribution is developing methods for measuring the contrast in engineered micro-
surfaces with the UR5 Setup. In relation to that, we developed a suitable BRDF model
for simulating these structures. By utilizing the high repeatability of the ABB Setup,
we created a digitization pipeline that inputs data from multiple modalities and create
a digital scene, which can be rendered and compared pixel by pixel with a photograph.
This allow for direct comparison of the digital and physical twin as images. We devel-
oped practical methods that can help introduce appearance in the digital twin such that
it can be compared with the physical twin for Visual Quality Assurance.
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Summary (Danish)
Automatisering af visual kvalitetets kontrol af product udseende er et meget efterspurgt
emne i industrien, da det stadig primært er en manuel opgave udført af mennesker.
Med et stærkt fokus på digitaliseringen i Industri 4.0, er det meget fordelagtigt for
virksomheder at kunne inkludere et products udseende i dets digitale tvilling. For at
kunne automatisere visual kvalitets kontrol, så er man nødt til at kunne modelere, måle
og sammenligne udseende.

Vores fokus er at kombinere computer vision og computer grafik til at udvikle måleinstru-
menter og metoder til at opnå automatiseret vurdering af et produkts udseende. Denne
afhandling bygger på industrielle anvendelser i samarbejde med industrielle samarbe-
jdspartnere gennem organisationen Manufacturing Academy of Denmark (MADE).

Specifikt, så bidrager vi ved at udvikle tre robotsystemer ABB System, UR5 System,
og UR3 System, som bruger kameraer og kontrollerede lyskilder til at få informationer
om overfladen ud fra radiometriske målinger. Disse instrumenter har været nøglekom-
ponenter i bidragene som præsenteres i denne afhandling, selvom anvendelsesområderne
spænder bredt. En del af bidragene er udviklingen af metoder, til at modelere og måle
kontrasten i mikro fræsede overflader med vores UR5 setup. Ved at udnytte den høje
repetiterbarhed i vores ABB setup, kunne vi udvikle en digitaliserings pipeline, der tager
imod data fra forskellige modaliteter og udformer en digital scene.

iii





Preface
This thesis was carried out at the Section for Visual Computing, under the department
of Applied Mathematics and Computer Science (DTU Compute), at the Technical Uni-
versity of Denmark (DTU). It is done in fulfilment of the requirements for obtaining a
Doctor of Philosophy degree (Ph.D) in Computer Science.

This project has been funded by Manufacturing Academy of Denmark (MADE) as part
of Work Package 9 - Sensor Technologies and Production Data.

In this thesis we seek to combine robotics, computer vision, and computer graphics,
to develop tools that allow for estimation of appearance, i.e. surface radiometry. To
improve on the tools used in Industry 4.0 to introduce object appearance into the digital
twin.

The project has been supervised by Associate Professor Jeppe Revall Frisvad as main su-
pervisor, Associate Professor Claus Brøndsgaard Madsen as co-supervisor and Assistant
Professor Søren Schou Gregersen as co-supervisor. The research has been conducted at
the Section for Visual Computing at DTU Compute. Part of the experimental work
has been done in collaboration with the Section of Manufacturing Engineering at the
Department of Mechanical Engineering at the Technical University of Denmark. The
external stay was conducted under the supervision of Alessio Del Bue and Arianna Trav-
iglia at Istituto Italiano di Tecnologia - IIT Centre for Cultural Heritage Technology
(CCHT@Ca’Foscari) in Venezia Italy.

Mads Doest

v





Acknowledgements
First I would like to thank my supervisor, Jeppe Revall Frisvad, who has been a great in-
spiration and motivator throughout my PhD studies. His excellent guidance and highly
technical knowledge led to fruitful discussions of interesting topics. I would like to thank
my supervisors, Jeppe Revall Frisvad, Søren K. S. Gregersen, and Claus Brøndsdgaard
Madsen, for their guidance and our many interesting and fruitful discussions.

Thanks to MADE and DTU Compute for providing me with the funding to work with
my passion for 3 years and MADE collaborators for feedback and discussions.

Thanks to LEGO and especially Otto H. A. Abildgaard for great collaboration, inter-
esting discussions, and support.

Thanks to all my collaborators from IIT Center for Cultural Heritage Technology, espe-
cially, Alessio Del Bue, Stuart James, Arianna Traviglia, and Marco Fiorucci.

Thanks to my collaborators from DTU Mekanik, especially, Francesco Regi, Dongya Li,
Macarena Ribo, Dario Loaldi and Yang Zhang.

A special thanks to all my colleagues and friends at DTU Compute and the Section for
Visual Computing. It’s been some interesting and exciting years with you all.

Lastly I will thank my friends, family and girlfriend Thea for their immense support.

vii





List of Contributions
Peer Reviewed Contributions

A Jonathan Dyssel Stets, Alessandro Dal Corso, Jannik Boll Nielsen, Rasmus Ahrenkiel
Lyngby, Sebastian Hoppe Nesgaard Jensen, Jakob Wilm, Mads Emil Brix Doest,
Carsten Gundlach, Eythor Runar Eiriksson, Knut Conradsen, Anders Bjorholm
Dahl, Jakob Andreas Bærentzen, Jeppe Revall Frisvad, and Henrik Aanæs. “Scene
reassembly after multimodal digitization and pipeline evaluation using photore-
alistic rendering”. In: Applied Optics 56.27 (Sept. 2017), pp. 7679–7690. doi:
10.1364/AO.56.007679. [1]

B Andrea Luongo, Viggo Falster, Mads Emil Brix Doest, Dongya Li, Francesco
Regi, Yang Zhang, Guido Tosello, Jannik Boll Nielsen, Henrik Aanaes, and Jeppe
Revall Frisvad. “Modeling the Anisotropic Reflectance of a Surface With Mi-
crostructure Engineered to Obtain Visible Contrast After Rotation”. In: Pro-
ceedings of the IEEE International Conference on Computer Vision Workshops
(ICCVW). Oct. 2017, pp. 159–165. doi: 10.1109/ICCVW.2017.27. [2]

C Francesco Regi, Mads Emil Brix Doest, Dario Loaldi, Dongya Li, Jeppe Revall
Frisvad, Guido Tosello, and Yang Zhang. “Functionality characterization of in-
jection moulded micro-structured surfaces”. In: Precision Engineering 60 (Nov.
2019), pp. 594 –601. doi: 10.1016/j.precisioneng.2019.07.014. [3]

D Andrea Luongo, Viggo Falster, Mads Emil Brix Doest, Macarena Méndez Ribó,
Eyþór Rúnar Eiríksson, David Bue Pedersen, and Jeppe Revall Frisvad. “Mi-
crostructure Control in 3D Printing with Digital Light Processing”. In: Computer
Graphics Forum 39.1 (2020), pp. 347–359. doi: 10.1111/cgf.13807. [4]

E Morten Hannemose, Mads Emil Brix Doest, Andrea Luongo, Søren Kimmer
Schou Gregersen, Jakob Wilm, and Jeppe Revall Frisvad. “Alignment of rendered
images with photographs for testing appearance models”. In: Applied Optics 59.31
(Nov. 2020), pp. 9786–9798. doi: 10.1364/AO.398055. [5]

F Sebastian Hoppe Nesgaard Jensen, Mads Emil Brix Doest, Henrik Aanæs, and
Alessio Del Bue. “A benchmark and evaluation of non-rigid structure from motion”.
In: International Journal of Computer Vision 129 (Dec. 2020). doi: 10.1007/
s11263-020-01406-y. [6]

ix



Non Peer Reviewed Manuscripts

G Mads Emil Brix Doest, Stuart James, Alessio Del Bue, and Jeppe Revall Fris-
vad. “Reconstructing transparent glass objects from polarization”. Unpublished
Manuscript. 2021. [7]

Not Included Peer Reviewed Contributions

I Henrik Aanæs, Knut Conradsen, Alessandro Dal Corso, Anders Bjorholm Dahl,
Alessio Del Bue, Mads Emil Brix Doest, Jeppe Revall Frisvad, Sebastian Hoppe
Nesgaard Jensen, Jannik Boll Nielsen, Jonathan Dyssel Stets, and George Vo-
giatzis. “Our 3D vision data-sets in the making”. In: The Future of Datasets in
Vision 2015: CVPR 2015 Workshop. 2015. [8]

J Jakob Wilm, Daniel González Madruga, Janus Nørtoft Jensen, Søren Kimmer
Schou Gregersen, Mads Emil Brix Doest, Maria Grazia Guerra, Henrik Aanæs,
and Leonardo De Chiffre. “Effects of subsurface scattering on the accuracy of opti-
cal 3D measurements using miniature polymer step gauges”. In: Proceedings of the
18th International Conference of the European Society for Precision Engineering
and Nanotechnology (euspen 2018). June 2018, pp. 449–450. [9]

Not Included Non Peer Reviewed Manuscripts

K Andrea Luongo, Jeppe Revall Frisvad, Alessandro Dal Corso, Mads Emil Brix
Doest, and Henrik Wann Jensen. “Building Vision-Based Predictive Appearance
Models for 3D Printing”. Published as a Technical Report in Andrea Luongos PhD
Thesis. 2019. [10]



Abbreviations
ADC Analog to Digital Converter

ANOVA ANalysis Of VAriance

BRDF Bi-directional Reflectance Distribution Function

BSDF Bi-directional Scattering Distribution Function

BSSRDF Bi-directional Surface Scattering Distribution Function

BTDF Bi-directional Transmittance Distribution Function

BTF Bi-directional Texture Function

BxDF Bi-directional x Distribution Function

CAD Computer Aided Design

CG Computer Graphics

CGI Computer-Generated Imagery

CNN Convolutional Neural Network

Cobot Collaborative Robot

CT Computed Tomography

DoF Degrees of Freedom

FPS Frames Per Second

GAN General Adversarial Network

GT Ground Truth

HDR High Dynamic Range

HSV Hue Saturation Value

IK Inverse Kinematics

xi



LCD Liquid Crystal Display

LED Light Emitting Diode

LUT Look-Up Table

MoCap Motion Capture

MP Mega Pixels

NRSfM Non-Rigid Structure from Motion

QA Quality Assurance

RGB Red, Green, and Blue

RMSE Root Mean Squared Error

ROS Robot Operating System

SfM Structure from Motion

SLA Stereolithography Apparatus

SVBRDF Spatially Varying Bi-directional Reflectance Distribution Function

VQA Visual Quality Assurance



Contents
Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

List of Contributions ix

Abbreviations xi

Contents xiii

1 Introduction 1
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Expected Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 7
2.1 Radiometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Appearance Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Instruments for Appearance Acquisition . . . . . . . . . . . . . . . . . . . 9
2.4 Appearance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Development of Flexible Instruments for 3D and Appearance Acqui-
sition 17
3.1 Practicalities of Camera Calibration . . . . . . . . . . . . . . . . . . . . . 21
3.2 Mechanical Setup and Kinematics . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Discussion and Further Improvements . . . . . . . . . . . . . . . . . . . . 26

4 Contributions 29
4.1 Modelling and Measuring the Appearance of Surface Micro-Structures . . 32
4.2 Comparing the Appearance of the Physical and Digital Twins . . . . . . . 36

xiii



4.3 Controlling the Surface Roughness in 3D printing . . . . . . . . . . . . . . 40
4.4 A Benchmark and Dataset for NRSfM Methods . . . . . . . . . . . . . . . 41
4.5 Obtaining 3D Information from Monocular Polarization Images . . . . . . 43
4.6 Future Work and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Conclusion 47

Bibliography 49

A Scene reassembly after multimodal digitization and pipeline evalua-
tion using photorealistic rendering 57

B Modeling the Anisotropic Reflectance of a Surface With Microstruc-
ture Engineered to Obtain Visible Contrast After Rotation 71

C Functionality characterization of injection moulded micro-structured
surfaces 79

D Microstructure Control in 3D Printing with Digital Light Processing 81

E Alignment of rendered images with photographs for testing appear-
ance models 95

F A benchmark and evaluation of non-rigid structure from motion 109

G Reconstructing transparent glass objects using polarized light 129



CHAPTER 1
Introduction

This thesis has been carried out in close collaboration with industrial partners through
an organization named Manufacturing Academy of Denmark (MADE), and as such the
research project focuses on applied research for industrial use. The industrial interest
in this topic relates to visual quality assurance, more specifically to develop instruments
able to quantify if the appearance of a produced part is within specification or not.
Coupling this with the parameters used to control the machines and we would achieve,
what in Industry 4.0 is referred to as Closing the Loop. As such the focus of this research
project is developing instrumentation and methods that can be used for visual quality
assurance with the goal of Closing the Loop. We seek to make the appearance of an object
quantifiable, so that others can link it to machine parameters, this is an important and
for appearance an unsolved task.

1.1 Scope

In this thesis we focus on developing instrumentation and methods for estimating and
comparing the appearance of objects. The work is focused around measuring optical
phenomena on a human perceivable scale and from those measurements estimate prop-
erties not directly observable. Specifically we use cameras and controlled environments
to estimate the radiometric properties, by observing the light reflected off a surface.
We seek to use photographs in combination with rendering techniques to infer these
properties.

As the primary application of this research project is industrial, we work with materials
used in industry, which are primarily metals, glass, and polymers. These materials are
known for being difficult to scan using traditional 3D scanners and thus we rely on
multiple modalities for acquisition of geometry. One modality being a Computer Aided
Design (CAD) model, which is almost always available as part of the design process.
Some of the methods in this thesis rely on a priori knowledge of geometry for estimation
of material properties, and some include the acquisition of geometry.

The contributions in this thesis span a broad range of topics, from designing and building
instruments, to object and light pose estimation, creating datasets for evaluation of
methods, material modelling, and virtual scene representation for comparing physical
objects with digital versions. But common for all of these contributions are that they
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are steps towards being able to close the loop in production.

Because of the broad range of topics used in this research project, spanning over robotics,
computer vision, computer graphics, and additive manufacturing, we cover the specifics
for the development of the instrument, whereas for the other contributions we refer to
the attached papers in Contributions A to G for the specifics. We kindly refer the reader
to Section 1.5 for an in depth explanation of the expected background when reading the
thesis and a list of suggested literature.

1.2 Motivation

The traditional production pipeline, as seen in Figure 1.1, is where a designer designs
the product, the design is then given to a machine that produces a product. Then
the Visual Quality Assurance (VQA) inspects the product to ensure that the product
is of the desired quality. In the case of not passing the VQA, the machine operator
needs to fix the machine, so that it can produce products that the VQA can approve. In
relation to Visual Quality Assurance, this pipeline is, for many companies, a manual task,
which leads to much variation in the products, due to variations in the VQA. In many
productions, the visual quality assurance is still largely manual, this is primarily because
it is a very complicated task, not easily automated. Since it is a manual task, it is a
labour intensive and error prone process. This is one of the reasons why it is interesting
to look into developing new tools to aid the process of appearance specification and
verification. Tools that can assist the humans in visual quality assurance and increase
robustness. The key component that is missing for this is instruments and methods to
measure and quantify the appearance of an object.

Design Operator Machine Product Accepted

Defect

VQA

Figure 1.1: Figure showing a simplified overview of the traditional production pipeline.
Scope of this project is related to VQA (marked in blue), and Closing the Loop (marked
in red).

The field of Computer Graphics, is showing amazing results with their photorealistic
renderings, creating digital models that many of us cannot tell are not real. For example
companies like KeyShot1, produce software for artists to create images for virtual product
showcasing that look stunningly real. We see movies with digital special effects where it

1https://www.keyshot.com/
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is nearly impossible to tell what is real and what is Computer-Generated Imagery (CGI),
yet we can read that it was ”More efficient” to buy a real Boeing 747 airplane and blow
up for making a scene in the movie Tenet2, than using CGI for it. Even though the
statement is a publicity stunt, there is at least some truth to it, that creating digital
models of real objects is expensive, increasing with requirement for realism. This makes
it interesting to introduce the computer graphics concepts of photorealistic rendering
into visual quality control, as a way to work with object appearance. But to be useful in
practice, we need to develop instruments to acquire the geometry and optical properties.

The simple approach would be to use cameras to measure the appearance models. Of-
ten simpler models are used such as a Bi-directional Reflectance Distribution Func-
tion (BRDF) but to refer to the full range of models an umbrella term Bi-directional x
Distribution Function (BxDF) is often used, where x is the placeholder for any specific
model. In general BxDFs are not easily compared with each other, and even comparison
between the parameters of two different materials modeled with the same model, being
mathematically easy, does not correlate with the perceived difference. E.g. two materials
with very different parameters might look quite similar in their perceived appearance,
this makes BxDF parameters ill suited for comparing the perceived appearance.

Many appearance models exist [11] there are both physically accurate and approximate
models for better artistic use. These models were not developed with the purpose of
comparison and material analysis, but for producing the most realistic rendering. Most
models have a high variance of the numerical scale of their parameters, and mathematical
ambiguities, allowing very different values of parameters to result in the same or very
similar output, this is sometimes called similarity relations [12, 13, 14]. This makes
distance measures less meaning-full and complicate comparing the perceived output
based solely on model parameters, thus such an approach based on current material
models is sub optimal for quality assurance.

One of the reasons that we would like to make comparisons in image space rather than
BxDF model space is that images make more sense to us humans for interpretation
where most BxDF models have hard-to-interpret parameters. Images are the closest
representation we can make of the real world, that we can also intuitively interpret.
A problem that rises when working with images is that they show a final combination
of many interactions, each pixel contains information on both environmental lighting,
geometry and material properties.

The focus of this research project has been on developing instrumentation supporting the
research in the methodology to compare the appearance of objects. In order to compare
something, it first needs to be measured. In order to measure something, you first need
to have a model, that explains what to measure and how to measure. Lastly, you need
an instrument to perform the measurement. These are the four core problems addressed
in this thesis.

2https://www.insider.com/christopher-nolan-blew-up-boeing-747-for-tenet-stunt-2020-5
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1.3 Research Goals

The primary objective of the MADE Work-Package 9.4 - Estimation of Surface Radiom-
etry, was to develop a proof of concept instrument, able to estimate optical properties of
materials in an industrially relevant setting. As mentioned in Section 1.1, an industri-
ally relevant setting is a controlled environment, where the environment, geometry and
expectation of the appearance is known a priori.

This industrial interest in being able to compare a product with its digital twin for visual
quality assurance, is the core motivation for the research described in this thesis. It is
not obvious how to create a digital twin that is useful for quality assurance, thus one of
the research questions is how to create appearance specifications, so that it can be used
for quality assurance.

The research goals of this thesis is as follows:

1. Develop instrumentation for estimating surface radiometry.

2. Establish methodology for appearance specification

3. Develop methods to create a digital twin from measurements

4. Establish a framework to compare the physical and digital twins

1.4 Thesis Structure

In Chapter 2 we describe the background and related work to the central topics of the
thesis. For related work on the individual contributions, we refer the reader to the
related work sections in the respective papers.

In Chapter 3 we describe and discuss the development of the instruments used in the
contributions listed in ?? . This chapter focus on information that has not made it to the
published manuscripts due to space limitations. It is the intention that this chapter, will
give the reader some insight into the challenges related to developing such an instrument,
as well as the ability to recreate the instrument if one were to buy the equipment.

In Chapter 4 we present and discuss the contributions and put them into the perspective
of research goals, related to comparison of the physical and digital twin and instrumen-
tation for estimating the surface radiometry in an industrial setting.

1.5 Expected Background

For the full appreciation of the contents of this thesis, we recommend background knowl-
edge within Linear Algebra, Image Analysis, Computer Vision and Computer Graphics.
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Specifically for Computer Vision, the topics of Camera modeling, Multi-view Stereo and
Structure From Motion are assumed known. The textbook Computer Vision: Algorithms
and Applications [16], provides the needed background knowledge.

Regarding Computer Graphics and Light Transport topics, the textbook Physically
Based Rendering: From Theory to Implementation [17], provides a strong background
on the practicalities related to rendering. The textbook Color Imaging: Fundamentals
and Applications [18], provides a good insight into the physical phenomena and a more
physics-related angle on appearance.
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CHAPTER 2
Background and Related

Work
In this chapter we guide the reader through the definition of appearance as it is used in
this thesis, the physical phenomena and how we can model it. Additionally, we discuss
options for measuring the appearance and how it has been done previously, with focus on
the instrumentation to do so. This leads to the final part of closing the loop, comparing
appearance, ways to do that and how that has been done previously.

2.1 Radiometry

In order to describe an object’s interaction with light, we start by briefly introducing
the terminology for radiometry and the notation used. For an in depth explanation the
reader is referred to the textbook Color Imaging: Fundamentals and Applications [18].

If we start with the example of buying a light bulb, the power consumption of the light
bulb is usually defined in Watts. We refer to the part of this emitted as light as radiant
flux

Φ = 𝑑𝑄
𝑑𝑡

[W]

where 𝑄 [J] is the radiant energy, which would correspond to the total energy emitted
in a given time 𝑡. If we take a picture of the light bulb, each pixel would be an area
illuminated by the radiant flux, we refer to this as irradiance

𝐸 = 𝑑Φ
𝑑𝐴

[ W
m2 ]

which is radiant flux received per area. The exposure time of the camera integrates
irradiance over time, giving us radiant exposure

𝐻 = ∫
𝑇

0
𝐸 𝑑𝑡 [ J

m2 ]

which is the physical quantity that a camera measures.
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When a camera chip is exposed to light, charge accumulates and is read by an Analog
to Digital Converter (ADC), giving the final pixel value in either 8-bits or 12-bits for
most cameras. This pixel value correspond to radiant exposure, at an unknown scale.
Calibrating this scale requires special instruments and is not easily done. For our appli-
cations of comparing measurements, the scale is not needed to be known as long as it is
constant between measurements. There are many sources of noise when using cameras
to measure, most of those are addressed in the EMVA 1288 Standard [19], which is the
Standard for Characterization of Image Sensors and Cameras. The two largest sources
of noise in images are dark current and shot noise. The influence of Dark Current noise
can be reduced by keeping low camera temperature and subtracting ”dark” images from
all acquired images. Shot noise is statistical noise in the number of photons exciting the
sensor, and can be mitigated by acquiring multiple images and averaging pixel values.

To help us describe how light reflects in a surface, we can use the reflected radiance
equation [20]

𝐿𝑟(𝐱, �⃗�𝑟) = ∫
Ω

𝑓𝑟(𝐱, �⃗�𝑖, �⃗�𝑟)𝐿𝑖(𝐱, �⃗�𝑖)(�⃗�𝑖 ⋅ �⃗�) d�⃗�𝑖 [ W
sr m2 ] (2.1)

where 𝐿𝑟(𝐱, ⃗𝜔𝑟) is the radiance reflected off a surface at any given point 𝐱 and direction
�⃗�𝑟, can be modeled by a surface integral over the hemisphere ∫

Ω
𝑑 ⃗𝜔𝑖 centered around 𝐱.

For each light direction ⃗𝜔𝑖 we multiply the BRDF term 𝑓𝑟(𝐱, ⃗𝜔𝑖, ⃗𝜔𝑟) with the incoming
radiance 𝐿𝑖(�⃗�, ⃗𝜔𝑖), weighted with the dot product between surface normal �⃗� and ⃗𝜔𝑖,
these vectors must be of unit length. The function 𝑓𝑟 describes the ratio of reflected
radiance in direction ⃗𝜔𝑟 given the incident irradiance at direction ⃗𝜔𝑖, at a specific point
on a surface 𝐱, hence this function is generally used to model the optical properties of a
material, it is further explained in Section 2.2.

The reflected radiance depends on wavelength and time, but when observing with a
camera, we can only measure Red, Green, and Blue (RGB) which are spectrums of light
and we assume that the light is constant over time, thus we leave out the wavelength
and time dependency.

2.2 Appearance Definition

In this thesis we use the term appearance as how an object interacts with light. Typically,
we represent the appearance of an object as a combination of optical properties (material)
and geometry. We refer to optical properties as a separate term, but it is just a way
to represent interaction with geometry at a micro- or nano-scale. We humans can only
visually perceive the micro- and nano-geometry from its interaction with light, as such
we consider the border between geometry and optical properties to be at the scales of
our perception.
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Figure 2.1: Showing different light material interactions. A being a perfectly specular
material. B being a glossy material. C being a diffuse material. D is a combination of
glossy and diffuse. E is sub-surface scattering. F is transparent.

In Figure 2.1 we see some different light material interactions, �⃗� is the surface normal
and ⃗𝜔𝑖 is the incident light direction. If we start from a simpler-to-model point of view,
we have A, B, and C being the basic light/material interactions for reflections. A being a
perfectly specular material, where all light is reflected in the direct reflection. B being a
glossy material, spreading the reflected light but still only around the direct reflection. C
being a diffuse material, which reflects light equally in all directions on the hemisphere.
Common for A, B, and C is that those are ideal reflectance representations and most
materials behave as a combination of the three. D is a combination of glossy and diffuse,
which is a much more realistic scenario for real world materials. E is sub-surface scat-
tering where the light exits at a different place than it enters, this phenomenon is often
modelled as a diffuse component. F is a transparent material, where the light is partially
reflected off and transmitted through the surface. To acquire a digital representation of
a real object, we have to deal with D, E and F or some combination thereof.

2.3 Instruments for Appearance Acquisition

In the introduction we motivated the usefulness of being able to compare a digital and
physical twin. A way to enable this comparison, is to create an instrument that is reliable
and precise enough to consistently perform measurements. In this chapter we investigate
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the available research to better identify the problems already solved and further motivate
the focus on sparse radiometric measurements of industrial samples using robot arms as
instrumentation. The focus is primarily on instrumentation rather than methodology.
Just to remind the reader, our ideal goal is to develop an instrument where an operator
puts in a manufactured object, and a digital twin for comparison. Then the instrument
can quantify the difference in perceived appearance between the manufactured object
and its digital twin or in this case reference model. As such the points of interest in the
previous work is instruments to measure appearance.

Ideal Requirements for Instrument

As we are interested in measuring the reflected light, we find that basing the instrument
on cameras and controllable light sources, to be a logical solution. In order to work
with samples of various shape and material, the system has to move around the object.
Thus it is a requirement for the instrument that the object remains stationary during
acquisition. This infer that the system must be able to position a camera and a light
source such that the object can be observed and illuminated in any configuration, without
moving the object. Making sure that the object is stationary makes it possible to scan
fragile objects. Having no constraints on camera and light positioning, allows for better
sampling of materials with complex optical properties, such as anisotropy and narrow
specular lopes. A setup with limitations on camera positioning will suffer from aliasing
effects from sampling the high frequency behavior from a sparse set of positions. Since
we want to measure objects with a wide range of shapes and materials, it is important
that the samples remain stationary.

Related Work on Instrumentation

A survey on the Advances in Geometry and Reflectance Acquisition by Weinmann and
Klein [21] provide an in depth investigation of the previous work on both methods and
instrumentation for acquiring geometry and reflectance models up until 2015. They
divided the instruments into three groups: Gonio-reflectometers, Camera Arrays and
Mirror/Kaleidoscope systems. These categories allow us to get an overview over the
type of actuation. But we are also interested in identifying the versatility of the setups
for changing experiment parameters, thus we also look into the actuation of the camera
and light source for positioning. All methods seem to be based around cameras and light
sources, and as such the variation lies within the choice of actuation and measurement
procedures. A list of instruments and an overview over their methods of actuation can
be seen in Table 2.1, which serves as an overview over a selected subset of relevant
instruments from the survey and others.

If we start by looking into the dynamics of the instruments from Table 2.1. We have the
instruments from [22, 23, 24, 25] that mount a flat sample on a robot arm, responsible for
moving the sample, rather than the camera and light source. Sattler et al [22] use a fixed
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Table 2.1: Comparisons of actuation approaches of the instruments used to estimate surface radiometry. The output class
Radiometry is used for instruments that do not have the purpose of measuring a BxDF.

Method Year Object Sensor Light Source Geometry Output
Murray-Coleman & Smith [31] 1990 Stationary Gantry Gantry Flat BRDF

Ward [32] 1992 Stationary Gantry Gantry Flat BRDF
Dana et al [33] 1999 Robot arm Fixed Fixed Flat BTF

Marschner et al [34] 2000 Stationary Fixed Manual Sphere/Cylinder BRDF
Dana [35] 2001 Stationary Fixed Fixed Flat BRDF/BTF

Matusik et al [36] 2003 Stationary Gantry Gantry Sphere MERL BRDF
Sattler et al [22] 2003 Robot arm Gantry Fixed Flat BTF

Hünerhoff et al [23] 2006 Robot arm Fixed Gantry Flat BRDF
Kimachi et al [37, 24] 2006 Robot arm Fixed Robot arm Flat Radiometry

DOME I [28, 29] 2008 Stationary Fixed Fixed Measured BTF
Holroyd et al [38] 2010 Stationary Gantry Gantry Measured SVBRDF

Höpe et al [25] 2012 Robot arm Fixed Gantry Flat BRDF
DOME II [30] 2013 Turntable Fixed Fixed Measured BTF

UTIA [26] 2014 Stationary Gantry Controlled Flat BRDF
Nielsen et al [39] 2017 Turntable Fixed Fixed Measured BRDF
Lyngby et al [27] 2019 Stationary Robot Arm Fixed Flat BRDF
X-rite Tac7 [40] 2020 Turntable Fixed Fixed Flat/Staircase SVBRDF

UR5-Setup Chapter 3 2021 Stationary Robot Arm Robot Arm CAD Radiometry
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light source and a moving camera on a rail, where the instruments from [23, 25] have
fixed camera, movable light source and flat sample. Filip et al [26] use a gantry based
gonioreflectometer setup made to measure the Bi-directional Texture Function (BTF)
of flat samples put on a turntable, unlike the previous setups the sample seems to not
need to be mechanically fixed. In the setup by Lyngby et al [27] a robot arm is used
to move the camera with relation to a flat sample, but the light source is an arc with a
fixed array of Light Emitting Diodes (LEDs) from 0° to 90° in increments of 7.5°. This
has the advantage of being able to select an arbitrary observer direction, but like DOME
I[28, 29] and DOME II[30], it is noticeable in the measurements that the light source
positions are few and mechanically fixed.

We see multiple instruments utilizing robot arms to actuate the sample, and that pro-
vides many benefits with relation to motion planning, compared to our setups in Chap-
ter 3. Having the robot constrained to a small portion of its practical work-area leads
to less risk of intersection with other items and easier avoidance of singularities in the
Inverse Kinematics (IK) when performing the motion planning. The limitations of such
an approach is that the sample must be fixated on the end-effector of the robot arm,
and that severely limits the range of shapes that can be evaluated in the system. The
problems related to this are described in more detail in Chapter 3.

Besides the aforementioned methods that work only on flat samples, there is also a subset
of the methods [36, 34] and X-Rite TAC7 [40], that rely on samples of special geometry
in order to measure the appearance. Matusik et al [36] use spherical objects, Marschner
et al [34] use both spheres and cylinder shapes to measure multiple light/camera/surface
normal configurations in a single image.

While all of the instruments in Table 2.1 are created to measure radiometric quan-
tities, almost all of them seem to have the purpose of estimating BxDF models for
computer graphics uses. This is all except [23, 25], which seem to be developed to eval-
uate appearance-related quantities with high spectral sensitivity. The purpose of our
instruments is not to acquire BxDFs, but to estimate the surface radiometry. While
acquiring a BxDF involves measuring the surface radiometry, our focus is on using the
radiometric measurements directly to generate and compare with the digital twin.

The instruments by [28, 29, 30, 38, 39] all estimate the geometry of the sample as well
as their chosen BxDF model. In DOME I [28, 29] 151 cameras are used to estimate
the geometry by shape from silhouette, where in DOME II [30] this is done by adding
projectors to the system allowing for structured light 3D scanning. In [38, 39] the
geometry is also estimated by using structured light scanners. All of these methods
reproject the geometry into the images and estimate the ray paths from light source
to object and then to camera. This allows for isolation of the BxDF parameters and
dense measurements of BxDFs on arbitrary geometries. Our ABB-setup from Chapter 3
uses a structured light scanner to acquire geometry, but cannot estimate the BRDF
simultaneous, as it requires a reconfiguration to use the light arc from [27]. Where as
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the UR5-setup from Chapter 3 does not have any means of acquiring geometry, primarily
due to weight and size constraints, and relies on other modalities to obtain the geometry.

Common for all these systems are that they have very long acquisition times, ranging
from hours to days, and output complex appearance models suited for rendering. This
is a direct consequence of trying to estimate BxDFs. For example, if we were to densely
measure the 4-dimensional BRDF at a 1° resolution, that would require 90⋅180⋅90⋅180 ≈
260⋅106 samples. Measuring 1 sample pr. second, that would take around 8 years. In an
industrial setting it might not be beneficial to work directly with BxDF functions as they
are high-dimensional and it is often not meaningful to perform parameter comparisons
on these methods.

So far we have discussed the gonio-reflectometers, but taking a look at the Camera
Array setups, we have DOME I [28, 29] and DOME II [30]. These setups are expensive,
complex and super fast. This is due to the fact that they use 151 and 264 cameras
for acquisition and have ”no moving parts”, which is mostly true, as they added a
turntable to rotate the sample, but one could argue that the rotation time for that is
negligible. This is also the downside to this setup, as the cameras and light sources
are fixed in relation to the sample, resulting in a limited resolution. Especially the fact
that the cameras are distributed very evenly across the sphere, is a limitation for BTF
acquisition [21]. For companies, acquiring the BTF of an object often one would buy a
system like TAC-7[40] from XRite, which is an industrial version similar to the DOME
setups, and a breakdown can be found in this article [41] where they use the TAC-7 to
extract a Spatially Varying Bi-directional Reflectance Distribution Function (SVBRDF)
instead of the BTF normally measured by the instrument.

Theses instruments provide high acquisition speeds at the cost of versatility and resolu-
tion. They are the exact opposites of our setups, where we sacrifice the acquisition speed
for high versatility and significantly increased resolution, theoretically the accuracy of
the robot arms are the limiting factor in our setups.

Previous work on instrumentation have been focusing on very specific tasks, measuring
either different BxDF models, geometry or both. This focus has resulted in some very
specialized instruments, such as gonioreflectometers, spherical gantrys, mirror setups,
and massive domes using many cameras. Common for these setups is that they are cus-
tom setups, that require custom built components and a significant amount of resources
to be recreated or modified for slightly different tasks.

The gantry setups are ideal for positioning the camera and light source on a hemisphere
with equal distance to the center. But have the downside that the focus is fixed at the
center of the gantry, and does not allow for arbitrary camera and light placement in
the space around an object. The ability to evaluate reflectance at specific regions could
become a difficult task if that region is located significantly far away from the gantry
center. This problem is also present in the dome setups, while they are also being limited
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by resolution, as they have fixed cameras at 7.5° angles. For appearance evaluation it
can be difficult to sample the spectral peak at such a coarse resolution.

All instruments in Table 2.1 are focused on measuring the radiometry to estimate BxDF
models. But we do not see any of these papers focus on creating a controlled environment
that allows us to take our measurements and evaluations a level up and address the
radiometry on a scale of human perception. By doing this, we are able to compare a
digital representation with its physical counterpart. And as that has not previously been
the focus, the highly specialized setups are not built with that purpose in mind. Thus
we see a need for a versatile setup, that can position a camera and a light source around
an object, very precisely and accurately, so that we can compare our digital renderings
with actual photographs in the setup as we do in Contributions A and E.

The current trend, for research within the Computer Vision and Computer Graphics
communities, seems to be focused on developing new methodology rather than instru-
mentation. Most of which either relies on using one of the instruments from Table 2.1
or an in the wild setting. We see a strong focus on methods for handheld devices and
Deep Learning methods e.g. [42, 43, 44, 45, 46, 47, 48]. To support the development
of such methods, it is crucial to have proper reference data. Obtaining proper reference
data is a core contribution in Contributions A, F and G.

Using an instrument to create repeatable input data with accompanying reference out-
put, makes it possible to evaluate the performance of methods. The availability of good
reference data is important for developing new methods. This was a big motivation for
Contribution F, where we developed a dataset and benchmark for other researchers to
compare their methods against the performance of other methods.

From the survey by Weinmann and Klein [21], we identify a few challenges. One is pose
estimating light sources in acquisition setups, according to the survey it is primarily done
by triangulating highlights in arrays of mirror spheres of known positioning and radii
or clever optimization as in [30]. We found this topic to be open for improvements on
its practicality, and in Contribution E we investigate using the shadow of an arbitrary
object with known geometry to estimate the direction to one or more point light sources.

2.4 Appearance Comparison

Using the parameters of any BxDF model for comparison is not straight forward. Inter-
model comparison or even quantification of the similarity of two materials, given their
sets of parameters, is challenging. For many appearance models the scale of which
the parameters operate are very different, complicating the process of quantifying the
deviation. In microfacet models [49], for example, we have spectral complex indices of
refraction, normal distributions, roughness and color. These parameters interact non-
linearly and on different scales. So a change of 0.1 in any RGB parameter is much
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different than a change of 0.1 in the index of refraction. These reflections have been
researched previously by Havran et al [50]. While they provide important insight to the
problem and an approach to this problem, the problem remains largely unsolved.

In [51], they discuss the importance of being able to compare rendered images with
photograph of the same scene. They argue that it is important to further advance
the field of computer graphics. We argue that it is also highly beneficial to perform
VQA as well. We addressed this in Contributions A and E, where we aimed to make
it more practical to compare photographs and renderings. The primary reason we are
interested in measuring the appearance is for using it to compare a physical object
with its digital twin. In the computer graphics community, this is sometimes done
by comparing renderings with photographs. While the purpose of a large portion of
the graphics research is to create renderings that are indistinguishable by humans from
photographs. Most methods are often compared qualitatively and not quantitatively.
The former would be a side-by-side visual comparison of two images as in manual VQA,
while the latter would for example be investigation of pixel-to-pixel differences. An
example of side-by-side qualitative comparison is the CornellBox [52, 53], where they
have subjects looking at a photograph and a rendering on a screen and deciding which
is real.

While being a very informative and an useful evaluation form, pixel-wise comparisons
of renderings and photographs, are seldom used in literature. This quantitative way
of describing the methods is rare, often authors chose to let the reader perform the
qualitative evaluation, of comparing the rendering with an image. One of the main
reasons for this, is that it is a highly complex task to create a physically accurate digital
representation of a physical scene. Some of the first to do pixel-by-pixel comparisons
was Rushmeier et al [54] and Pattanaik et al [55], which both found that the biggest
source of error in their comparisons where misalignment of the geometry in the physical
and digital representations. Solving this alignment from images is still an active research
topic, especially in Differentiable Rendering. A recent contribution to this is by Loubet
et al [56]. We also found this geometry alignment to be an issue, and in Contribution A
we solved it by gluing on markers, and use marker based pose estimation methods, and
optimization for refinement. Where in Contribution E we rely on a CAD model, to
estimate the pose of the object, making for a more practically feasible solution, that
could be used as an initial guess and further improved in a differentiable renderer like
Mitsuba 2 [57].
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CHAPTER 3
Development of Flexible
Instruments for 3D and
Appearance Acquisition

In this chapter we dive into the development of the instruments used in the contributions.
In Contributions A and F we use an industrial robot with a mounted 3D scanner, focusing
on geometry acquisition and structured light scanning, we will refer to this instrument
as the ABB Setup. Where in Contributions B to E we use a dual robot system to
move a camera and light source in relation to an object, with the focus to estimate
surface radiometry, we will refer to this as the UR5 Setup. We will discuss the details of
implementing the setups and the methods for evaluating the accuracy and precision of
these two instruments here, as many of these details have been left out in the published
papers, due to space constraints.

There are many reasons for using 6 Degrees of Freedom (DoF) robot arms for moving
3D scanners, cameras, and light sources in Computer Vision applications, besides the
obvious of automating movement, industrial robots are built to have a very high re-
peatability. They also have a versatility in regards to which applications they can be
used in, compared to specialized setups like the gantry setups often used in appearance
acquisition. With the introduction of Collaborative Robots (Cobots), like the Universal
Robots UR(3,5 and 10) series, they are no longer required to be behind security fences
and proximity switches to be operated safely. This, and a significantly lower price com-
pared to ”old” welding robots like the ABB IRB-1600 10/1.45m, have made them very
approachable for introducing automation into applied research.

Mostly the work here related to radiometry measurements are very similar to related
work on instrumentation for BTF measurements. While we do not perform dense mea-
surements as for BTF estimations, there is simply a large overlap of methods and prac-
tical approaches.

A limitation that the robots solve for us is the need to pose estimate the camera every
time we move the robot. The repeatability of the robot allows us to only calibrate each
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position of the camera once, and then reuse previous calibration when revisiting the
position. This allows for much more complex data acquisitions, allowing the work of
Contributions A and F to be carried out.

The price of these robot arms for manufacturing have dropped significantly, and the ease
of use have increased as well. The combination of the two are making the use of Cobots
for this task a very interesting prospect. Previously the hardware for instrumentation
needed to be custom designed and built, requiring an enormous amount of resources,
both in terms of money and technical staff. Cobots appear to provide a way to overcome
these limitations or at least most Cobot manufacturers claim that their robots can be
easily used.

A big hurdle in doing physical experiments related to appearance measurements is the
level of accuracy and precision needed to capture these complex light and matter inter-
actions.

This allows for easier installations or even portable system as there is no need for large
security systems. Further it allows for interacting with the scene while the robots are
moving without endangering oneself. An example of this is that the UR5 weight is
approximately 13kg aluminium and plastic casing, where the ABB IRB 1600 is a 250kg
cast iron casing. While the UR5 still packs a punch if it were to collide with an operator,
when it moves 1.0m/s the force is still small compared to 250kg cast iron at the same
speed.

ABB Setup

The ABB Setup is a setup built for high precision movement, using an industrial welding
robot ABB IRB 1600-10/1.45, meaning a payload of 10kg and a reach of 1.45m. The
repeatability is 0.02mm, allowing for very high precision when positioning the 3D scan-
ner. The ABB Setup is an upgrade of a previous system built around the same robot for
acquiring the DTU MVS dataset [58]. The upgrade is improving the mounted structured
light 3D scanner and the environment lighting. Photographs of the setup can be seen in
Figure 3.1.

The 3D scanner is a stereo camera structured light setup, build of two PointGrey
Grasshopper3 9.1MP color cameras on either side of a WinTech LightCrafter 4500Pro
projector with a resolution of 1920x1080 pixels. We used the Phase Shifting Heterodyne
principle [59] for our structured light patterns, and 3D reconstruction. The cameras are
positioned slightly toe-in of approximately 10°, and while in theory the toe-in configu-
ration increases the warping in the rectification step, we did not see an increase in error.
Further by using the VDI-2634 [60] standard for measuring and reporting the precision
and accuracy of 3D area scanners, we found the results in Table 3.1, to be acceptable
for our applications.
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Figure 3.1: Left: Industrial robot system, ABB IRB 1600 1.45m. Right: 3D scanner rig,
consisting of a Microsoft Kinect version 2, and a custom structured light 3D scanner.
Using 2 PointGrey Grasshopper3 9.1MP RGB cameras, and a WinTech Lightcrafter
4500Pro. These images are also found in Contribution F.

Error type 𝜇[mm] 𝜎[mm]
Form 0.01 0.32
Sphere -0.33 0.50
Flatness 0.29 0.56

Table 3.1: Results from the VDI-2634 [60] standard on geometric errors from 3D area-
scanners. According to the standard results should be reported as bias 𝜇 and standard
deviation 𝜎.

Because of the high repeatability of the robot, we can create a predefined series of scanner
positions and perform pose estimation as a separate step from data acquisition. This has
two major benefits, first it allow us to use camera calibration targets to pose-estimate the
scanner giving better point-cloud stitching. Secondly, we do not need to have trackers
in the scene, giving much more freedom to the choice of scenes. This was crucial for
Contributions A and F.
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UR5 Setup

For our appearance related research we needed a setup to accurately position a camera
and a light source around an object. The ABB Setup didn’t have a second robot to move
a light source separately from the 3D scanner, and the risk of colliding with another robot
and severely damaging it was a strong motivator for not adding a second robot to that
setup. Instead we put two Universal Robots UR5, 6-DoF robot arms on either side of
a pedestal, see Figure 3.2. On the left robot is a PointGrey Grasshopper3 6MP color
camera, we chose the 6MP over the 9.1MP used in the ABB Setup, due to the larger
pixel size, giving better light sensitivity and noise levels. White light LEDs are known
for a large intensity peak around 440nm, and the Thorlabs MNWHL4 4900K LED was
chosen over a 6500K due to a reduced peak.

Figure 3.2: Image of UR5 Setup, with the two Universal Robot UR5. Right arm hold-
ing a PointGrey Grasshopper3 6MP color camera. Left arm holding a Thorlabs LED
MNWHL4 4900K, for a reduced blue peak compared to a 6500K LED.

The repeatability of the Universal Robots UR5 robots are lower than the ABB IRB 1600,
they state a worst case repeatability of 0.1mm. Thus we can use the same, calibrate
once and run forever, approach as we did in the ABB setup. This made it possible for
us to scan hundreds of different samples and objects without having to recalibrate.

UR3 Setup

In a collaboration with Center for Cultural Heritage Technology (CCHT@Ca’Foscari) at
Istituto Italiano di Tecnologia (IIT), we looked into 3D reconstruction of glass objects.
We developed an acquisition setup as seen in Figure 3.3, based around a Liquid Crystal
Display (LCD) screen, a turntable and an Universal Robot UR3 with two FLIR BlackFly
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S BFS-U3-51S5P-C polarization cameras mounted. The setup uses a light source with
polarized light, the LCD screen, and then observe changes in polarization in the light
transmitted through the glass object, measured by the polarization cameras. We found
that the light transport paths were too complex to model with sufficient accuracy for
this setup. As such we used Convolutional Neural Networks (CNNs) to estimate the
shape of the glass objects. This is the physical setup used for generating data for the
neural network in Contribution G.

Figure 3.3: Image of UR3 Setup. Used as a research tool for 3D acquisition of glass
objects, developed in collaboration with CCHT@Ca’Foscari IIT. Consists of a LCD
screen, projecting light patterns, a turn table and an Universal Robot UR3 to move two
FLIR BlackFly S BFS-U3-51S5P-C cameras. The glass objects on the turn table is a
replica of an ancient glass bottle, thus it is not transparent. Photograph courtesy of
Stuart James.

3.1 Practicalities of Camera Calibration

The basics behind camera calibration is described in most computer vision textbooks
such as [16], and many good implementations are openly available online. We used the
camera calibration implementation from OpenCV [61], which is based on checkerboard
patterns like seen in Figure 3.4 and the method by Zhang [62].

Checkerboard corners are well defined in image space and very robust, making checker-
boards ideal for intrinsic camera calibration. For intrinsic calibration only the relation
between the points are needed, not their absolute 3D position in world space. On the
other hand for extrinsic calibration the 3D position in world space must be known for all
points in order to correctly estimate the pose of the camera. Only if the checkerboard
is asymmetric, and fully visible in all images, then the extrinsic parameters can be esti-
mated. This requirement is difficult to fulfil in a practical setup like the robot setups.
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To circumvent this requirement we use ChArUco boards, which extend the checkerboard
with the inclusion of ArUco markers [63, 64]. This gives a unique identification of each
tile, and thus each corner, making calibration possible with only a subset of the markers
visible in the camera.

Figure 3.4: Left: image of a normal calibration checkerboard . Right: a ChArUco board.
The calibration boards are bought from https://calib.io

We experienced that for high resolution images, the corner detection from OpenCV got
stuck and struggled to find the pattern. Even in what we would see as perfect images. We
found that using down-scaled images for finding the corners and full resolution images
when finding sub-pixel position, provided both the fastest but also the most robust
calibration.

When taking photographs there is radial distortion due to the lens of the camera. This
is rarely modelled in computer graphics and to be able to compare photographs and
renderings we have to un-distort the photographs first.

Most 3D modeling and rendering software e.g. Blender, KeyShot, Autodesk Maya etc.
uses artist friendly representations of the camera parameters. Often the input is as a
camera position p and orientation is often represented as a rotation in Euler angles
or quaternions, some times it is even represented as a lookat vector and up direction
vector. The internal parameters are often defined as the field of view, in either direction,
in degrees and the size of the output image in pixels. These can all be found from the
camera calibration.

The output of the camera calibration is the 3D location 𝐭 and rotation 𝐑 of the checker-
board in relation to the focal point of the camera. From that we can get the camera
position by

p = −R𝑇t
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If we extract the three row vectors 𝑈, 𝑉, and 𝑊 making up the rotation matrix as such,

R = [𝑈 𝑉 𝑊]

We get 𝑊 as the lookat direction, 𝑉 as the up direction, and 𝑈 as perpendicular to the
two. This is a change from our notation using arrow overline, but it is to comply with
the notation used in Computer Graphics (CG) and rendering resources. The up vector
is often selected to be y-up, but that is not the case in most real world cases.

We can derive the field of view from the width of the sensor and focal point in pixels, as

fov𝑥 = 2 arctan
𝑤𝑝𝑥

𝑓𝑥
, fov𝑦 = 2 arctan

ℎ𝑝𝑥

𝑓𝑦

3.2 Mechanical Setup and Kinematics

In order to use a robot to accurately position a camera or light source in relation to
an object, we need to know where the robot is located in relation to the object. While
applicable to any system using actuators, it was only strictly needed in the UR5 Setup,
as for the ABB Setup and UR3 Setup absolute positioning accuracy was not needed.
For Contribution C we needed to have an accurate position of camera and light source
in relation to the surface normal of the sample. This was because we were looking at
the reflected radiance, and recalling from Equation (2.1), we are effectively sampling a
single light direction ⃗𝜔ℓ so that 𝐿𝑖 can be described as a delta function

𝐿𝑖(𝐱, ⃗𝜔𝑖) = 𝛿( ⃗𝜔𝑖 − ⃗𝜔ℓ)𝑉 (𝐱, 𝐱ℓ)(𝐼ℓ/|𝐱ℓ − 𝐱|2)

where 𝑉 (𝐱, 𝐱ℓ) is the visibility function, indicating if the light is visible or not at 𝐱.
Since a point light source does not have an area, it cannot emit radiance, but rather
we divide the intensity 𝐼ℓ with the distance squared to the point light (𝐼ℓ/|𝐱ℓ − 𝐱|2).
Combining this into Equation (2.1), gives us

𝐿𝑟(𝐱, 𝜔𝑟) = ∫
2𝜋

𝑓𝑟(𝐱, 𝜔𝑖, 𝜔𝑟)𝐿𝑖(𝐱, 𝜔𝑖)(𝜔𝑖 ⋅ 𝑛) 𝑑𝜔𝑖 (3.1)

= 𝑓𝑟(𝐱, 𝜔ℓ, 𝜔𝑟)𝑉 (𝐱, 𝐱ℓ)(𝐼ℓ/|𝐱ℓ − 𝐱|2)(𝜔ℓ ⋅ �⃗�) (3.2)

Due to the nature of BxDFs, small deviations in ⃗𝜔ℓ and ⃗𝜔𝑟 can lead to large changes in
the reflected radiance 𝐿𝑟. Thus the accuracy of the instrument largely depends on the
accuracy for positioning the camera and light source.
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To obtain a high accuracy we need to model the physical positioning of the various com-
ponents and their actuation, in control logic using this information to control movement
is called kinematics. In the field of robotics the mechanical system is often divided into
groups of coordinate systems called frames [65]. We represent transformation between
frames using the notation 𝐓𝑡𝑜

𝑓𝑟𝑜𝑚, so if we wanted to have a transform from world co-
ordinates to robot tool coordinates we would write 𝐓𝑡𝑜𝑜𝑙

𝑤𝑜𝑟𝑙𝑑. Applying this to the UR5
Setup, we have 7 important coordinate frames, as seen in Figure 3.5.

Figure 3.5: Drawing of the transformations related to camera and robot. Green arrows
represent transformations based on robot movement, red are fixed offsets due to mount-
ing, and purple are transformations are information needed for a CG pipeline to render
images. The prefix of cam and LED is to avoid long suffixes on frame names.

The first frame is the world frame, which is a reference point on the pedestal. The two
robot base frames are points inside the robot mounting bracket. The tool frame is the
robots internal representation point for the end-effector mounting bracket. The LED is
the physical location of the LED. The camera is the mathematical representation of the
focal point of the camera. The locations of these make them hard to measure by any
form of ruler. We have to resort to other methods described later to do that.

By using Homogeneous coordinates we can represent the transformation between two
frames as a rigid motion

𝐓 = [𝐑 𝐭
0 1] , 𝐑 ∈ SO3, 𝐭 ∈ ℝ3 (3.3)

This has the advantage that we can easily go back and forth between coordinate frames
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as
𝐓𝑡𝑜𝑜𝑙

𝑤𝑜𝑟𝑙𝑑
−1 = 𝐓𝑤𝑜𝑟𝑙𝑑

𝑡𝑜𝑜𝑙

In order to accurately use the kinematics we have to obtain the transformations between
frames. If we look at Figure 3.5, the red arrows are fixed transformations as they repre-
sent how the robot is attached to other parts. These will not change during operation
and small errors in the rotation part of these result in nonlinear large error in absolute
positioning. Especially the 𝐓𝑏𝑎𝑠𝑒

𝑤𝑜𝑟𝑙𝑑 transformation, as 1° error in the base of the robot
can propagate to errors in the tool position in the millimeter range. The green arrows
represent robot motion, which is a black box in this system, but we rely on the fact
that Universal Robots inform that the error is no larger than 0.1mm. The purple lines
represent the position of the light and camera in relation to the world frame, 𝐓𝑤𝑜𝑟𝑙𝑑

𝑐𝑎𝑚𝑒𝑟𝑎
can be estimated by doing camera calibration.

In the beginning of using the system, we had to rely on measuring the fixed transforma-
tions by hand and relying on dimensions in the CAD models of the system and manual
tweaking. This is of course not optimal and we found that it could be calibrated by using
hand-eye calibration. Hand-eye calibration is a well researched topic and a few methods
can be found as implementations in OpenCV [61]. Hand-eye calibrations can be split
into two categories, AX = XB which is used when only the relation between robot and
camera is needed, and AX = ZB when the position of the robot is also needed.

Figure 3.6: Showing the difference between AX = XB and AX = ZB hand-eye calibra-
tion. A and B are the movement of T𝑡𝑜𝑜𝑙

𝑏𝑎𝑠𝑒 and T𝑐𝑎𝑚𝑒𝑟𝑎
𝑤𝑜𝑟𝑙𝑑 . X is the transformation from

the robot tool to the camera T𝑐𝑎𝑚𝑒𝑟𝑎
𝑡𝑜𝑜𝑙 . Z is the transformation from the world coordinate

system to the robot base T𝑏𝑎𝑠𝑒
𝑤𝑜𝑟𝑙𝑑. Both X and Z are constant for all movement.
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The basic concept of hand-eye calibration can be seen in Figure 3.6. To perform hand-
eye calibration we rely on the camera being fixed to the robot, by the transform 𝐗, and
the robot base is fixed w.r.t. the checkerboard by transform 𝐙. Then by moving the
robot from 𝐏1 to 𝐏2, we obtain the movement A for the camera and B for the robot
tool. Recalling that we can estimate 𝐂1 and 𝐂2 from observing a checkerboard with a
camera and 𝐘1 and 𝐘2 directly from the robot, we are able to obtain 𝐀 and 𝐁 quite
easily. This can be formulates as a non-linear optimization problem, but it is prone to
local minima and finding the optimal solution is not straight forward [66, 67, 68].

Obviously, since we cannot view images from the LED point of view we cannot use
hand-eye calibration for calibrating the robot responsible for moving the light source. In
Contribution C we noticed a slight misalignment of the highlights in the samples, and
being able to perform hand-eye calibration for the light source, would greatly benefit
the setup as a whole. With the light position calibration method in Contribution E, we
might be able to perform hand-eye calibration of the LED by observing the shadows of
a known shape.

3.3 Discussion and Further Improvements

The list of improvements we would like to make is long. The immediately obvious ones
would be to apply the newly developed method in Contribution E to obtain the data
to do hand-eye calibration for the light source. Next would be to use the same method
to automatically estimate the pose of the sample scanned, and correct robot positions,
just by supplying the CAD model of the sample. The ability to finely control position
of light and camera in relation to the sample could be very useful for researching new
methods.

It could be interesting to upgrade the system to perform photometric stereo, but it
would be very slow in its current version, with just one light source that would have to
be moved. But despite the slow acquisition time, it is versatile enough to be used to
investigate the optimal positioning of light sources and cameras for a static setup with
a specific product, a good use case for inline visual quality control systems in industry.

The original plan was to use two Universal Robots UR5 to move the camera and light
source, as done in the gantry based gonioreflectometers in Table 2.1. We found that
using 6 DoF robot arms for dense hemispherical sampling, requires movement in the full
working area of the robots, which leads to a ”singularity hell”. Meaning that the robots
often will encounter a singularity in their IK model, causing the robot to do undefined
behavior, for example turning a joint 360° to move 0.1mm to the right. Whenever the
robot encounters a singularity, it compensates by taking a detour at infinite speed in
joint space to keep a constant speed in cartesian space. This often leads to cables to be
torn over and collisions with whatever is within reach.
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The IK singularities that we encountered doing motion-planning, proved to be cumber-
some to work around. This is one thing that gantry systems do not suffer from, as their
mechanical parts are aligned with a spherical coordinate system. Usually specializing
in solving a single task well, is at the cost of versatility. We seek to have a versatile
instrument, that we can use to aid in multiple research topics, as demonstrated in this
thesis.

Making proper motion sequences for our measurements, was by far the biggest issue
we had in regards to using 6-axis robot arms. Having to manually account for self-
collisions, singularities and joint-limits was a very cumbersome task, that neither ABB
nor UR provided any good software solutions to solve. This is not a new problem, as
singularities in IK is a well known problem and there are many libraries to solve both IK
and motion planning. But at the time we started, neither ABB nor UR were willing to
provide us with the kinematic model or the calibrated dimensions of the robots, which is
required to obtain any useful accuracy. This in order to achieve any accuracy better than
a few millimeters, we had to use the systems shipped with the robots. Universal Robots
now officially provide its users with access to the internal calibration file, allowing the
use of third party IK solvers and motion planners.

Given that Universal Robots now share the robot calibration, an obvious choice of con-
trol platform would be to use Robot Operating System (ROS) [69]. ROS is an extensive
framework for communicating between subsystems, made specifically to control auto-
mated systems. One of such subsystems for ROS is their RViz and IK solvers and
motion planning software. At the time we started the project, it was not possible to
control the robots reliably using the ROS framework, but at the current state of ROS,
if we were to start over, we would build everything around ROS.
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CHAPTER 4
Contributions

In this chapter we summarize the contributions from this thesis and put them into
context of the research goals, see Section 1.3. For the full details on the contributions,
we refer the individual papers Contributions A to G. All of the contributions are related
to problems encountered when trying to acquire or compare object appearance in an
industrial setting. Each setup has been used in different contributions, where they have
served either as a core/critical component in the contribution or as a tool supporting
the exploratory research, idea generation, method development and analysis of results.
An overview over the relation between contributions and instruments can be seen in
Figure 4.1.

Contribution A

Contribution F Contribution E

Contribution B

Contribution C

Contribution D

UR5 Setup

UR3 Setup

ABB Setup

Contribution G

Figure 4.1: An overview over the relation between the instruments and the different
contributions.

In Chapter 1 we discussed the industrial applications of being able to measure and com-
pare appearance in a production setting. The contributions also address topics which
current state of the art 3D acquisition methods struggle with, e.g. structured light scan-
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ners struggle with scanning metals, glass, and polymers, which are all materials that are
heavily used in industry. Further we address the application of using computer graphics
methods for controlling the appearance of 3D prints. This is related to closing the loop,
as we would like to change parameters in the productions based on measurements.

We start by discussing Contribution C where we quantify the perceived contrast of
binary surface patterns, made by controlling the surface micro-structure in the injection
molding process. We will briefly describe the surface structures and their characteristics
and then address how we used the UR5 Setup to estimate the surface radiometry of
different regions on the surface. This leads us to Contribution B, where we developed a
BRDF model to create physically accurate renderings of these ridged micro-structures.
We compared the response of our BRDF model with measurements of real samples made
by [70]. This gives us instrumentation to measure the appearance of samples and the
methodology to create renderings of the micro-milled ridged structures, the basic tools
needed to investigate the creation of a digital twin.

This leads to the topic of creating digital twins, the digital twin is different from the
normal digital model as the digital twin implies that the parameters are identical to, or
obtained from, the physical twin. In Contribution A we develop a digitization pipeline
around the ABB Setup, to acquire a digital twin and perform pixel-wise comparison to
photographs of its physical twin. The ability to reliably position and re-position the
camera at a later time, was crucial to creating the pipeline. One of the challenges in this
study was placing the digital geometry at the correct pose in the virtual representation.
We addressed this in Contribution E, where we developed a method to estimate the pose
of an object of arbitrary shape and material, as long as a 3D mesh, a photograph of the
object, segmentation and a camera calibration is available. Quite strong requirements,
but in in an industrial setting, the environment can often be controlled to allow easy
segmentation and an intrinsic camera calibration is easily obtained.

In Contribution A we also found that we needed af Computed Tomography (CT) scanner
to obtain the 3D geometry of glass objects, which is a very expensive requirement. This
led to Contribution G, which build on the work by Stets et al. [71]. Here, we decided to
look into the use of polarization cameras to better capture the geometry. As in the work
of Stets et al. [71], we needed training data for a network and implemented a rendering
tool supporting polarization ray tracing. This tool renders the images as they would
appear in polarization cameras. We used this engine to generate a dataset of polarized
images of glass objects, that we then used to train a CNN to estimate the 3D geometry.

If we were to measure appearance in industries working with deformable objects, e.g.
meat or clothing, we would need to obtain proper geometry first. This ties Contribu-
tion F to the geometric part of appearance, where we developed a dataset to benchmark
state of the art non-rigid structure from motion methods. We wanted to evaluate the per-
formance of Non-Rigid Structure from Motion (NRSfM) methods with structured light
scanning as a reference. We need to have a better knowledge of the geometric errors in
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NRSfM methods, if we want to use them to extend the methods from Contributions A
and E to quantify the appearance of deformable objects. Thus the contribution here is a
dataset and benchmark to help researchers in the NRSfM community when developing
new methods.

Lastly in Contribution D, we looked into using computer graphic methods to control
the appearance of objects 3D printed using a Stereolithography Apparatus (SLA). The
UR5-Setup was heavily used in qualitative appearance verification throughout the devel-
opment, but also for the final evaluation of the produced appearance using the inverse
rendering methods that later led to Contribution E.

This links the parameters of computer graphics models to machine parameters to control
surface finish on a 3D printed object, and brings us a step closer towards closing the
loop.
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4.1 Modelling and Measuring the Appearance of Surface
Micro-Structures

In this section we will go over Contributions B and C, which were carried out in collab-
oration with a research group from the Department of Mechanical Engineering at DTU.
They were working on embedding binary patterns, like a datamatrix or QR code, into
the surface of injection-molded polymers. The approach was to control the radiometric
response by modifying the micro-structures to obtain dark and light areas, without the
use of paint or dyes. This were done by milling ridged micro-structures into steel inserts,
which was then used for injection-molding the polymer samples. In Figure 4.2 we can
see two of the measured samples and an example datamatrix code representing the text
”DTU”. The binary pattern comes from using either parallel or perpendicular ridges to
direct the light towards or away from the viewer, giving the light and dark areas.

Figure 4.2: Left: Image showing two datamatrix samples used in Contribution C. They
are made from injection molding with the micromilled ridged structures. Both specimens
are translucent, but the green sample is see through, where the black sample have a
higher absorption. This strongly influences the contrast, as can also be seen in the
image. Right: Datamatrix code for ”DTU”.

Using binary codes to embed information into the part, be that either lot number,
production parameters or information for the end-user, is a way to fix the information
to the part. Being able to do this as a mold modification, allows production companies
to embed this information at part creation, without adding additional steps to their
production pipeline. This sees its usefulness for high-volume production, as modifying
the pipeline is expensive.

In the work by Regi et al. [70] they used a modified microscope with and external LED
and a turntable to measure the contrast of surface micro-structures. They wanted to
improve their acquisition method and ideally have it automated. This was an early
application of our UR5 Setup, which we used for measuring the perceived contrast of
micro-ridged surfaces in Contribution C.

The iterative process of designing micro-structures for the machining inserts and making
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injection molded samples is expensive and a cumbersome process. Thus, it was interest-
ing to investigate the possibilities to develop a BRDF model of the ridge micro-structure
and perform functionality experiments on renderings, to find the ridge parameters giving
the best contrast between sample rotation. This is what let to Contribution B, where we
developed an analytic BRDF model to model the an-isotropic behaviour of the ridged
micro-structures. Renderings of the final BRDF model applied to a plane, can be seen
in Figure 4.3. For the specifics of the ridged BRDF model, we refer the reader to the
paper of Contribution B.

Modelling the ridged micro-structures

We find that having a BRDF model of the ridge micro-structures, is beneficial in two
ways. One is finding the optimal parameters for the ridge structure, to achieve op-
timal contrast. Second is being able to create renderings, that we can compare with
photographs for quality control.

Figure 4.3: Renderings of a plane with the ridge BRDF model from Contribution B,
showing the an-isotropic features from rotating the sample 90°. The right image is
rotated 90° around the plane normal compared to the left, showing the desired function-
ality, that the binary pattern is inverted. It is easiest to see in the top corner.

For a qualitative evaluation of the BRDF model, we can see in Figure 4.3, that the
rotation of 90° around the surface normal, yields the expected functionality: That dark
checkers turn light and light checkers turn dark.

When comparing predictions made with our ridge BRDF model against measurements
from the real world, provided by Regi et al. [70], we can see in Figure 4.4 that the
trends align pretty well, indicating that our model is suitable for modeling the ridge
micro-structures. Only when looking at the ridge angle 𝜃𝑟 we see a large deviation at
10°. We suspect the reason for the large deviation is due to inaccuracies of the physical
samples, which were made using early versions of the micro-milling process and the
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Figure 4.4: Measurements of mean contrast between 0° and 90° rotation around the
surface normal. Comparison between predictions from our ridge BRDF model (blue) vs.
measurements from [70] (red). The figure is from Contribution B.

observed issues related to the quality of the micro-structures. This resulted in small
metal particles in the polymer samples, as seen in Figure 4.5, as well as many smaller
defects in the ridge structure, which led to many undesired effects such as diffraction of
light and significant geometrical deviations from the ridge edge structure. Thus it is not
surprising that the comparisons between measurements and simulations differ a bit.

Figure 4.5: Left: Microscope image of a ridge sample similar to the one used for ver-
ification in Contribution B and Figure 4.4. Some of the ridge edges have significant
defects, and the amount of small metal particles is quite high. We suspect that is a
contributing factor in the deviation between BRDF model and measurements. Right:
3D visualization of a surface height map, acquired from a 3D laser confocal microscope.
Both images are from Contribution B.
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Measuring the functionality of surface micro-structures

It was of interest to develop an improved data acquisition for these samples, due to the
development of new ridge micro-structure samples, and a significant amount of different
samples. We automated this task using our UR5 Setup and were able to make an
automated acquisition pipeline and data processing based on an initial user assisted
sample localization method. This is published in Contribution C.

In Contribution C we used two orientations of ridge structure to direct the light in
different directions, using either parallel or perpendicular ridges to create a bright or
dark region, see Figure 4.2. We then looked into measuring the contrast, and thus the
functionality of the surface. To evaluate the quality of the ridge structures, on a human
perceivable scale, we used the UR5 Setup to control camera and light position in order
to measure the radiometric response from the surface of the micro-structures.

The UR5 Setup has been crucial in this setup for a number of reasons. Versatility in the
setup, endless possibilities for positioning of light source and camera.

Automation of acquisition. Each sample took approximately 90 minutes to acquire all
data from a given rotation. A turntable would have been convenient for acquisition, but
would have introduced an angular error around the surface normal. To avoid that, we
decided to use LEGO bricks for mounting the samples, as the samples fit a 2x2 LEGO
brick perfectly, this way we could neglect the rotational error around the surface normal.
The LEGO mounting bracket, was securely mounted to the UR5 Setup frame.

Robot repeatability allowed for a ”calibrate once, run forever” approach. It made it
possible for the operator to only select corner points in a subset of images, for the
system to calculate sample position and make automatic homography extraction, even
for views not annotated by the operator. We used this homography to segment the
binary regions of the sample. The contrast could then be evaluated by comparing the
black and white regions before and after a physical rotation of the sample as we see
reported in the paper. It also made it possible to observe surface defects on a pr. block
scale, by observing the changes in the signal w.r.t. camera movement.

Figure 4.6: Extracted homographies from the angles [10°, 20°, 30°, 40°, 50°]

By careful investigation its noticeable, from looking at the reflection in the images,
that during these experiments the light source was not perfectly aligned 90° atop of the
samples. See Figure 4.6, specifically. This misalignment most likely come from the fact
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that the position of the light source could not be calibrated properly, and the positioning
was based solely on the CAD models and manual adjustment.

If the methods developed in Contribution E had been available at the time, we could
have done a hand-eye calibration of the light source, improving the precision of the light
source positioning. And used the method for automatic pose estimation without the
need for an operator to mark the corners. That would most likely significant improve
both accuracy and precision of the measurements.

4.2 Comparing the Appearance of the Physical and
Digital Twins

One of many challenges in Industry 4.0, is how to create a digital twin that has a
meaningful relation to the physical twin. In production and particularly in visual quality
assurance, it is interesting to use the digital twin to verify the quality of the physical part
that is produced. To do this one first has to define a model to represent the twin, then
a way to measure the parameters of the model and lastly a way to compare a measured
model with a reference to measure deviation from the ideal part.

In Contribution A we address all of the aforementioned steps in a digitization pipeline.
Even though the angle of the manuscript is focused on research applications, the concept
is directly applicable in relation to comparing a physical and digital twin, as the pipeline
represents all aspects of digitizing glass objects and a the environment around it, to
perform comparisons between renderings and photographs, a result of this can be seen
in Figure 4.7.

Previously we have been measuring the radiometric response on the surface of flat sam-
ples, and extending to objects of other shapes and materials, seems like the next natural
step. An interesting area is glass objects, as they are inherently hard to work with, when
using traditional computer vision methods. One of the reasons why glass is so hard to
work with, is that it takes its appearance from the environment around it and generally
doesn’t absorb much light.

In Contribution A we build a digitization pipeline around the ABB Setup, for creating
a digital twin of a full scene, using many different modalities for acquisition. A scene is
defined here as the environment, objects, light sources and appearance models, every-
thing that is needed to create a photo-realistic rendering. We then used the digital scene
to create a rendering for pixel-wise comparison with a photograph of the same scene.
While not being the original intend, the pipeline in Contribution A, contains all the
steps needed to do visual quality control using data obtained from different modalities.

Objects in close proximity to the glass objects, were 3D scanned using the structured
light scanner of the ABB Setup. While not directly addressed in the manuscript, the
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Figure 4.7: Comparison of rendering of digital scene with photograph. The log-error
row is calculated by log10(||Rendering − Reference||2. Figure from Contribution A.

ABB Setup is a core component. Making it possible to align all of these digital objects
from different modalities robustly. The calibrate once and repeat forever approach,
that was needed for this project to succeed, was only practically feasible because of the
repeatability and versatility of the robot system. Besides 3D scanning of the scene and
backdrop, it was also used for obtaining an environment map of the location of light
sources, defining a common base frame for placing all objects in the virtual scene trough
extrinsic camera calibration, and acquisition of the BRDF of the cloth and backdrop.
Common for all of these are that they rely on the robots ability to reliably position and
re-position itself in world space.

We also found the absorption coefficients, for the glass objects using the digitization
pipeline and a rendering engine to perform analysis by synthesis also known as inverse
rendering. The digitization pipeline presented in Contribution A makes it possible to
use the Root Mean Squared Error (RMSE) distance between a rendered image and the
photograph as a cost-function for optimization methods. Opening up the possibilities
to estimate many different parameters solely based on their influence on the comparison
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of the rendered image and its corresponding photograph. While we obtained quite
good results, a downside to this approach is compensating for pixels not related to the
object or parameters we optimize for. We encountered these issues, where the optimizer
increased the absorption of the glass to compensate for a small increase of brightness in
the tablecloth.

Another challenge we found in Contribution A, was that the pose estimation of the glass
object had to be solved by physically gluing markers onto the glass objects that could
both be seen and pose estimated by a camera as well as in the CT. This caused artifacts
in the CT reconstructions and estimating the pose of these markers in the acquired
images was not as robust as we had hoped. This was among other issues, a motivator
for Contribution E.

Estimating Object Pose and Appearance from Images

From the work in Contributions A, C and F we have encountered multiple issues that
were complicated or impractical to solve. One of these issues is related to pose estimation,
both of the object in the scene, but also the LED position in the UR5 Setup, this is what
led to Contribution E. While we do not specifically cover the pose of glass objects in
that contribution, we only need the segmentation of the glass object in order to estimate
the pose. The groundwork leading to Contribution E is described in Contribution K,
where we also looked into obtaining the material parameters by optimization rather than
manual tweaking as was done in Contribution E.

We used the UR5 Setup to obtain images of the 3D printed Stanford Bunny from multiple
positions under controlled lighting. An useful feature of using the robots, is a quite good
initial guess for camera and light pose. Our pose estimation is based on CAD models
and image segmentations. For obtaining the pose from images our first approach in
Contribution K, was to use the binary operation exclusive or (XOR) as a loss function
to define the overlap between two regions. We then minimized the loss using the Nelder-
Mead minimization algorithm [72]. In Contribution E we improved this by using object
silhouettes and Hu’s moment invariants [73] with the Levenberg-Marquardt [74, 75]
minimization method.

For obtaining the actual BxDF parameters we have a few options available, we have
manual tweaking, which is a slow and tedious process. Then we have inverse rendering
techniques in its broadest term, making the optimization automated, but generally lack
proper gradients for the input parameters. Lastly, we have differentiable rendering, which
is a subset of inverse rendering techniques that focus on having well defined gradients
throughout the rendering process [57].

We investigated the general usefulness of Contribution E by using it together with readily
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photograph (𝑥) rendering (𝑦) (max(𝑦 − 𝑥, 0))1/𝛾 (max(𝑥 − 𝑦, 0))1/𝛾

Figure 4.8: Pixelwise comparison of rendered images and photographs. Row-wise start-
ing from the top, we have a rough transparent cupped angel figurine. Middle, a rough
translucent 3D printed Stanford Bunny [76] and an aluminium bust of H. C. Ørsted.
𝛾 = 2.2. The images are from Contribution E, where the two right columns are gamma
corrected versions of similar images found in the manuscript.

available rendering software, Blender1 as Open Source and KeyShot2 as Commercial,
to create renderings that would be pixelwise comparable to photos taken with a less
controlled setup than the UR5 Setup. We then used this comparison to manually adjust
the parameters of the Principled Bi-directional Scattering Distribution Function (BSDF)
[77, 78, 79] appearance model, this would arguable give better results if estimated using
inverse rendering techniques.

In Contribution K we looked into finding the BxDF parameters from the images using
inverse rendering. For this we found that using CIELAB color space worked best in the
optimization pipeline. For the appearance model we used a directional dipole mode [80]
and estimated the parameters by minimizing the difference in pixel intensities between
a rendering and the photograph using the Nelder-Mead minimization method [72]. The
parameters used to render the bunny in Figure 4.8 was obtained using this method,
where the other entries were obtained by manual tweaking.

As seen in Figure 4.8 we do not use the absolute difference for visualizing the error,
instead we look at the negative and positive errors separately clamping at 0. This help
us interpret the direction to change the parameters to obtain a better rendering. This is

1www.blender.org
2www.keyshot.com
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a simple tool that makes life much easier for manually tweaking parameters. Tweaking
a parameter that causes the error to fluctuate around 0, would not be visible when
looking at absolute error, while looking at the max images one would immediately see
that the sign just flips, indicating the influence of the change. Further we apply a gamma
mapping of 𝛾 = 2.2 to the error for visualization, as it makes it easier to identify changes.

One of the practical limitations of Contribution E for automated pose estimating objects
with complex materials, is the required segmentation of object, shadow and background.
This is still challenging to obtain for materials that take their appearance from their sur-
roundings, such as low-absorbing transparent objects like glass and mirror-like smooth
metal surfaces. Fortunately, neural networks such as [71, 81] and our Contribution G
show promising results in making segmentations of these materials, increasing the prac-
tical usefulness of Contribution E as an automated approach for pose estimating objects
of complex materials.

This is ultimately what is interesting for the industrial partners involved in this project:
Being able to define a format to describe the appearance of their product and estimate
the parameters from images taken by our instruments. And then compare their physi-
cal part with a digital version and quantify the visual deviation between the two. We
have developed instrumentation that assisted us in the development of our contributions.
Combining the methodology developed in Contribution E with the instrumentation de-
veloped in Contribution C we are able to acquire the data needed to generate the ideas
for and to evaluate new methods.

4.3 Controlling the Surface Roughness in 3D printing

Our work with estimating the appearance of 3D objects led us into the field of trying to
produce parts, where we introduced surface noise to influence the surface appearance of
objects made with 3D printing, specifically SLA printing. In Contribution D we found
that we could use computer graphics methods to modify the signal that was fed to the
projector in such a system, to influence the printed surface roughness. The UR5 Setup
was used heavily to inspect the parts and as a tool to verify and measure the appearance
of our produced parts.

This was investigated using confocal microscopes able to measure the microstructures in
the surface and as well as the UR5 Setup. Using the confocal microscopes was very time
consuming, taking 3-5 hours for each scan, while only being able to scan a around 100µm.
This was important for observing the appearance as geometry. But we as humans, cannot
see features on that scale and thus we found a need for an instrument for evaluating the
appearance on a human perceptible scale. This gave rise to some questions on as how
can we evaluate that what we observe with the camera is in fact what we want it to
be? This is where we started to look into using the robot setup in combination with
inverse rendering techniques to perform pixel wise comparisons between produced parts
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and their digital twin.

standard sinusoid noise (𝐴 = 0.625) noise (𝐴 = 3)
Figure 4.9: Images of the 3D printed Stanford Bunny, corrected with different versions
of surface roughness models, taken under same lighting and camera conditions, in the
UR5-Setup. Images are from Contribution D

When developing BRDF models in Contribution B and Contribution D the UR5 Setup
has been of great use to allow investigations and comparing of renderings with real
world measurements. By using the UR5 Setup we were able to obtain images from the
exact same set of angles and light configurations, for multiple objects, see Figure 4.9.
This allow us to still be able to perform pixel wise comparisons of the image. This
proved to be very useful for the development of the methods, designing experiments and
evaluating results. And while we only show a small subset of the produced samples in
Contribution D, we produced many more samples as seen in Figure 4.10. While not
being the only instrument used for inspection, the ability to use an automated setup,
as the UR5 Setup, to compare a bunch of samples under the same conditions was very
useful.

4.4 A Benchmark and Dataset for NRSfM Methods

If we are to extend these methods to deformable objects, where the ground truth ge-
ometry is not known, e.g. making sensory systems for surgery robots or meat quality
assurance, then we need to obtain the geometry first. We already showed that we have
the methodology to do this for known shapes of rigid objects, so the focus is now, how
we can obtain the geometry of non-rigid objects. The concept of acquiring geometry
of deformable objects using camera motion is also known as Non-Rigid Structure from
Motion (NRSfM) methods, and there are many applications such as, surgery robotics,
self driving cars and as sensory input for industrial automation. In Contribution F we
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Figure 4.10: Image showing the large amount of different samples of various shapes and
appearance, produced to reach the final results in Contribution D.

developed a dataset and a benchmark, which we used to analyze the NRSfM methods,
to help identify research directions in the field.

One of the problems in the field of NRSfM is the difficulty to generate accurate reference
data. Most high precision 3D scanners takes a few seconds to make a 3D scan and high
Frames Per Second (FPS) 3D scanners, like the Microsoft Kinect, are very inaccurate.
This forces researchers to use low accuracy scanners for their reference data.

The idea for our NRSfM dataset was to do stop motion, but instead of taking a single
image, we acquired a full 3D scan from multiple views, pr. frame. To do this we
developed a series of small robots, see Figure 4.11, capable of stepping through the
non-rigid deformations, i.e. change the pose of the robot slightly between each frame,
and keep steady for acquisition. The robots were positioned inside the ABB setup, see
Chapter 3 for the details, to obtain full 3D scans pr. frame. The repeatability of the
ABB robot made it possible to move the camera precisely, to multiple positions for
3D acquisition with sub-millimeter accuracy on positioning. This made it possible to
only calibrate the system once, instead of for every camera position in every frame,
which would have been infeasible. These small robots were designed to mimic a series
of non-rigid deformations, that would occur either naturally or in an industrial setting.

Experimenting with different types of deformation and developing the actual animatron-
ics, required a large amount of the experimentation, which is not shown in the paper.
The previously most used datasets for NRSfM evaluation are based on human Motion
Capture (MoCap) data, the CMU motion dataset [82], a flag dataset [83] and a synthetic
dataset [84]. Multiple papers such as [85, 86] use the deformation of bending a piece of
paper for qualitative evaluation, without ground truth, just to clarify that our choice of
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Figure 4.11: Images of the 5 different small robots made for the dataset in Contribu-
tion F. Each representing a different type of non-rigid deformation. Starting from left
to right, Articulated, Bending, Deflation, Stretching, and Tearing.

deformations was influenced by previous choices of verification.

For the acquisition of ground truth data, it was not possible to use the same 3D scanner
positions for all small robots, as they did not all occupy the same physical space. Thus
there would have been empty frames, and most likely a bias introduced due to change
in both camera motion and geometry simultaneously. We solved this by making virtual
camera motions, based on the intrinsic parameters of the camera in the 3D scanner, and
reprojecting the geometry into the virtual cameras. This allowed for complete separation
of camera motion and geometry, while keeping the acquisition noise from the 3D scanner.

One of the strengths of the dataset is that, due to the nature of acquisition, it has realistic
structured missing data due to occlusion. This is unlike most of the other datasets for
NRSfM that rely on removing randomly selected points for missing data. As many of
the methods rely on strong regularization factors and smoothing, they would perform
well with randomly removed points. But when dealing with structured occlusion based
missing data, we saw that most methods performed poorly.

The complete separation of geometry, camera motion and missing data makes it possible
to perform a factorial analysis of the influence of the individual parameters on the
performance of the NRSfM methods, this has to our knowledge not been done previously.
According to our ANalysis Of VAriance (ANOVA) test, all the factors in our dataset
have a significant influence on the reconstruction error, and as such this is a positive
indication that the dataset does challenge the methods, and thus can be used as a tool
for further research within NRSfM.

4.5 Obtaining 3D Information from Monocular
Polarization Images

Taking a reference in the challenges experienced in our work in Contribution A, we found
that having to use a CT scanner for scanning the geometry of glass objects is a very
expensive prerequisite in order to reproduce the work. It was therefore of interest to
be able to estimate the geometry of glass objects from images taken by a camera. This
endeavour was started by Stets et al. [71], but while their results are promising, the
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quality of the estimated depth maps are not accurate enough to be used for generating
images. This led to Contribution G, as an extension of their work into using polarization
cameras and using that for estimating the geometry.

In Contribution G we developed a rendering pipeline to perform physically accurate
polarization raytracing that is directly comparable to real world images. We used it
to render a dataset, see Figure 4.12, for estimating the geometry of glass objects using
CNNs, both with VGG-16 and a hybrid General Adversarial Network (GAN) version.
The results from this are shown in Table 4.1. The rendering pipeline is representing
the digital version of the UR3 setup using a LCD screen, a turntable and a polarization
camera. The concept is that the polarized light emitted by the screen, will interact
with the glass object and each interaction will, due to effects described by the Fresnel
equations, change the polarization. This change in polarization will be measured by
the camera and polarization will change depending on the number of interfaces the ray
interacts with before reaching the camera.

Figure 4.12: Showing an example output from our renderer. Here we render CAD model
#53159 from the Thingi10k dataset. From top left we have: Rendering no environment,
rendering with environment, front-facing normals, back-facing normals, depth, mask, s0,
s1, s2, and s3. Figure from Contribution G

When developing the polarization ray tracing framework, we found that while in litera-
ture they are able to do polarization ray tracing for geometry estimation of transparent
objects, no research was found on simulating a polarization camera for rendering. We
made a polarization camera model by modelling the polarization mosaic pattern on the
chip, similarly to the Bayer pattern for RGB cameras. Simulating such a camera requires
more than just the filter pattern on the image sensor. It requires knowledge about the
coordinate frames of which polarization is calculated in the simulated scene. This is im-
portant to know for the screen and the camera. The cameras coordinate frames are given
as the angle of the polarization filter in each pixel. For the screen we made the assump-
tion that the coordinate frame of the monitor was aligned to the output polarization,
but this should be properly estimated for the optimal results.
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Table 4.1: Comparisons of mask, depth, normal and back face normal to GT across our
three input modalities, RGB, Intensities and Stokes. For each modality we show four
random models that demonstrate varying surface and geometry complexity. Table from
Contribution G.
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4.6 Future Work and Discussion

If the methods developed in Contribution E had been available at the time of Contri-
bution C, we could have used hand-eye calibration of the light source, improving the
precision of the light source positioning. Furthermore, the sample could have been auto-
matically pose estimated, removing the need for an operator to mark the corners. That
would give significant improvements in both accuracy and precision.

The primary challenge in applying Contribution E to pose estimate the glass object is
that an image segmentation needs to be obtained, and that is (to our knowledge) not
possible by conventional image analysis methods. However, Stets et al. [71] shows that
the segmentation mask can be generated by using CNNs, and combined with our method
in Contribution E we could estimate the pose of glass objects in images. A problem that
could arise from this is caustics. Which breaks the assumption that a shadow is a dark
flat color as it would be for non-transparent objects. This behaviour can already be seen
in images of the cupped angel in Figure 4.8. With segmentation and pose estimation
of marker-free glass objects, we could significantly improve the reassembly technique in
Contribution A. The digitization procedure would then be non-invasive and the markers
would then not generate issues in the CT scanning process and much better results would
most likely be obtained.
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CHAPTER 5
Conclusion

To sum up, the contributions from this PhD project is the development of an instrument
Contribution C and methodology Contribution E to estimate the appearance of objects
with unknown and arbitrary material but a known and arbitrary shape. We have devel-
oped the UR5 Setup with methodology as discussed in Chapter 3, is assisting researchers
in their development of new methodology to quantify and evaluate the appearance of ob-
jects. The instrument has been used in Contributions C to E, both as a core instrument
but also as an instrument used to evaluate and analyze results for idea generation and
method evaluation. The UR5 Setup has been used by external researchers to evaluate
results for their research projects.

We developed a BRDF model in Contribution B to represent the complex light interac-
tions in ridged microstructures, which was difficult to model by previous BRDF models.
The proposed BRDF model can be used for virtual experimentation to find optimal
production parameters to obtain the best surface functionality.

In Contribution C we developed the UR5 Setup as described in Chapter 3, to estimate
the surface radiometry of samples with engineered microsurfaces. We also identified
areas for improvement, and developed methodology in Contribution E allowing us to in
the future, make better measurements with the UR5 Setup. As it allows for automatic
pose estimation of both the object and light source, which is currently difficult.

In Contribution A we developed a digitization pipeline for, but not limited to, glass
objects around the ABB Setup. The pipeline demonstrates how to create a digital
representation of a physical environment for use in comparing photographs to renderings
of the digital reference model. This allows for a direct comparison of a digital and
physical twin, and even a tool to generate the digital twin from a physical object. Further
the pipeline can be used to evaluate the performance of new methods in each steps in
the pipeline, making it useful for new research.

We found pose estimating objects for placing in a digital scenes, to be a particularly
hard problem. In Contribution E we solved that problem to a large extend, relying only
on CAD models and image segmentations for pose estimation. This could prove useful
in making the pipeline in Contribution A for use cases where the destructive process of
gluing on markers is not an option.

47



In Contribution D we used computer graphics principles to control the surface roughness
of 3D prints to avoid aliasing artifacts. The UR5 setup with its ability to reproduce a pre-
viously used light-camera configuration was indispensable in this context when inspecting
the macroscopic optical effects of actuating changes in the surface microstructure of the
digital twin.

In Contribution F, we developed a dataset that captures a wider range of deformations
and a more realistic representation of missing data, than previously available. Using this
dataset we made a benchmark, that provided an exploration of the performance, trends
and challenges of the current NRSfM methods and hopefully can act as a tool that will
support fellow researchers in their research for future NRSfM methods.

In Contribution G we developed a rendering pipeline capable of rendering images as
seen by polarization cameras. We used this renderer to generate data for training our
Polarization Neural Network (PNN) that could generate masks, depth, front- and back-
normal maps from images of glass objects.

With the contributions from this thesis, we believe that we have moved a step closer to
bringing appearance into the digital twin, as we developed practical methods for esti-
mating object pose and appearance by using combining computer vision with rendering
techniques.
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Transparent objects require acquisition modalities that are very different from the ones used for objects
with more diffuse reflectance properties. Digitizing a scene where objects must be acquired with differ-
ent modalities, requires scene reassembly after reconstruction of the object surfaces. This reassembly of
a scene that was picked apart for scanning seems unexplored. We contribute with a multimodal digiti-
zation pipeline for scenes that require this step of reassembly. Our pipeline includes measurement of
bidirectional reflectance distribution functions and high dynamic range imaging of the lighting environ-
ment. This enables pixelwise comparison of photographs of the real scene with renderings of the digital
version of the scene. Such quantitative evaluation is useful for verifying acquired material appearance
and reconstructed surface geometry, which is an important aspect of digital content creation. It is also
useful for identifying and improving issues in the different steps of the pipeline. In this work, we use it
to improve reconstruction, apply analysis by synthesis to estimate optical properties, and to develop our
method for scene reassembly. © 2017 Optical Society of America. One print or electronic copy may be made for personal use only.
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1. INTRODUCTION

Several research communities work on techniques for optical
acquisition of physical objects and their appearance parame-
ters [1–5]. Thus, we are now able to acquire nearly any type
of object and perform a computer graphics rendering of nearly
any type of scene. The range of applications is broad and in-
cludes movie production [2], cultural heritage preservation [3],
3D printing [4], and industrial inspection [5]. A gap left by these
multiple endeavors is a coherent scheme for acquiring a scene
consisting of several objects that have very different appearance
parameters, together with the reassembly of a digital replica
of such a scene. Our objective is to fill this gap for the combi-
nation of transparent and opaque objects, as many real world
scenarios exhibit this combination. An example is a living room,
like the one rendered in Fig. 1 (right). We propose a pipeline
for acquiring and reassembling digital scenes from this type

of heterogeneous real-world scenes. In addition, our pipeline
closes the loop by rendering calibrated images of the digital
scene that are commensurable with photographs of the original
physical scene (see Fig. 1, left). This allows for validation and
fine-tuning of appearance parameters. The quantitative evalua-
tion we get from pixelwise comparison of rendered images with
photographs is a great improvement with respect to validation
of the acquired digital representation of the physical objects.

When addressing the problem of acquiring a heterogeneous
scene, there is an infinite variety of scenes and object types to
choose from. So, to make our task feasible, we focus on scenes
that combine glassware and non-transparent materials, more
specifically, white tablecloth and cardboard with a checkerboard
pattern. We made these choices as glass requires a different
acquisition modality, the tablecloth bidirectional reflectance dis-
tribution function (BRDF) is spatially uniform but not neces-
sarily simple, and the cardboard has simple two-color varia-



Research Article Applied Optics 2

Fig. 1. To the left, we compare rendered images (top) with photographs (bottom). More views are available in Appendix A. The
scenes to the left were digitized using our pipeline and include both glass objects and non-transparent objects (tablecloth and back-
drop). To the right, we exemplify the use of our pipeline for virtual product placement using our digitized glass objects, with esti-
mated optical properties and artifact-reduced removal of markers.

Fig. 2. Overview of our digitization pipeline in four main stages: acquisition, reconstruction, reassembly, and rendering. A video
presentation of our pipeline is available in supplementary Visualization 1. Colored arrows show the path through the pipeline of
transparent objects (dotted blue) and non-transparent objects (dashed red).

tion. The latter is particularly useful for observing how light
refracts through the glass. The chosen case is also of partic-
ular interest, since glass is present in many intended applica-
tions of optical 3D acquisition. Considering the highly multi-
disciplinary nature of our work, we have released our dataset
(http://eco3d.compute.dtu.dk/pages/transparency). This facil-
itates further investigation by other researchers of the different
steps of our pipeline with the possibility of a quantitative feed-
back at the end of the process.

A. Related Work and Contributions
Researchers occasionally compare renderings with photographs
to provide a qualitative verification of a presented rendering
technique. The work by Phong [6], Goral et al. [7], and Takagi
et al. [8] are early examples of this trend. A procedure to bring
a rendered image close to a photograph was first presented by
Meyer et al. [9]. In this work, likeness of images was evalu-
ated perceptually by human observers. Pixelwise comparison of
photographs with rendered images is surprisingly uncommon.
The few examples we have found are by Rushmeier et al. [10],
Karner and Prantl [11], Pattanaik et al. [12], and Jones and Rein-
hart [13, 14]. These examples build on the rendering framework

described by Greenberg et al. [15]. Employing such a framework
for more complex scenes is a long and tedious process [16]. The
key issue is that a scene specification is expected as an input.

Several problems arise as a result of not having correspon-
dence between the physical and the digital scene. Misalignment
due to inaccurate scene and viewing geometry and inaccurate
orientation of the lighting environment are some of the essential
problems identified in previous work [17, 18]. One way to deal
with this problem is to calculate error for image patches when
evaluating results [13, 19, 20]. As opposed to this, our digitiza-
tion pipeline (Fig. 2) provides both reference photographs and
correspondingly calibrated scene and viewing geometry so that
pixelwise comparison becomes meaningful.

Pixelwise comparison of rendered images with photographs
is not only useful for quantifying the photorealism of a ren-
dering in terms of error measurements. We find it particularly
useful for improving the digitization pipeline. The fact that
our pipeline enables quantitative evaluation led us to more spe-
cific contributions in its different steps. These contributions are
mostly in the reassembly and are as follows. (a) A cross-modality
marker-based placement approach, enabling accurate placement
of objects scanned with one modality into scenes scanned with
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Clean transparent object i

Glue markers

Set up object stand in CT scanner

Place transparent object

Adjust scanning volume 

Switch to next object (increment i)

Perform CT scan

CT scan
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Robot path planning for hand-eye calibration

Set up stand and light arc in robot

Estimate tool transform

Robot path planning for gonioreflectometry

Align Spectralon to light arc

Pass 1: Spectralon HDR images
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Robot path planning for camera calibration

Pass 1: checkerboard images

Place non-transparent objects

Robot path planning for structured light scan

Pass 2: checkerboard images for pose estimation

Pass 3: structured light images

Place transparent object i in scene

Pass i + 3: reference images

Structured light scan

} Photographic capture of the scene
Switch to next material (increment i)

Pass i + 1: material HDR images

Fig. 3. Our workflow for scanning the geometry of non-transparent objects and collecting reference images (left), for scanning the
geometry of transparent objects (middle), and for measuring material reflectance properties (right).

another modality. (b) A soft object deformation technique deal-
ing with surface intersections after object placement, which is
critical for scenes containing transparent or translucent objects.
(c) A micropolygon labeling approach for assigning BRDFs to
acquired geometry. (d) A color calibration scheme enabling use
of spectral optical properties for calculating reflectance, trans-
mittance, and absorption. (e) Perspective unwrapping of mirror
probe images to improve precision when the environment is
not very distant. (f) Use of analysis by synthesis for fine-tuning
physics-based optical properties.

Digitization is most often unimodal and tailored toward ob-
jects with a specific type of surface reflectance behavior [1].
While unimodal techniques are becoming more versatile [21–23],
objects with a transparent material like glass still pose challeng-
ing problems. Their reflectance behavior is so different that they
require an entirely different modality, such as computed tomog-
raphy (CT) [24]. The transparent object must then be removed
from the scene to be scanned elsewhere. In the meantime, the
surrounding scene can be scanned with a more common tech-
nique. However, as the transparent object takes most of its
appearance from its surroundings, it must be repositioned in the
surrounding scene (physically and digitally) if we are to take
reference images for comparison with rendered images. The
purpose of our scene reassembly is to address this type of issue.

Our digitization technique is multimodal. Currently, such
techniques seem to exist only in the context of sensor fusion [25–
27]. Here, the goal is to optimize reconstruction by fusing data
from different sensor modalities with complementary charac-
teristics. Even so, the different modalities see the same object
and thus work for materials with a similar reflectance behav-
ior. The challenge is then mostly in registration of the scans.
In their final remarks and suggestions for future work, Wein-
mann and Klein [1] discuss possible ways of combining multiple
techniques tailored to different types of surface reflectance. Our
pipeline is a different way to take a step in this direction.

In summary, our work makes it possible to perform multi-
modal digitization and scene reassembly in such a way that
rendered images of the reassembled scene can be quantitatively
compared to photographs of the original. This enables us to
provide the first empirically founded investigation of the appear-
ance accuracy of objects digitized using a non-optical scanner.

2. DIGITIZATION PIPELINE

We divide our pipeline into four stages: (1) acquisition, (2) recon-
struction, (3) reassembly, and (4) rendering. Figure 2 provides
an overview. As illustrated, transparent objects (dotted blue
arrows) and non-transparent objects (dashed red arrows) take
different paths through the pipeline. The acquisition stage in-
cludes structured light scanning of non-transparent objects, CT
scanning of transparent objects, gonioreflectometric reflectance
measurements, and photographic capture of environment, color
chart, and scene reference images. Figure 3 provides details
of our workflow in these acquisition steps (except the simpler
captures of environment and color chart). The second stage in-
cludes reconstruction of surface meshes, material BRDFs, and
color space. The third stage is reassembly of the digital scene
consisting of geometric objects, material appearance properties,
and environment map. The fourth and final stage is rendering
and comparison with reference images.

Our acquisition stage requires an elaborate hardware setup.
We assemble the physical scene in a black light-proof enclosure.
This has five LED light tubes for scene lighting, which we cap-
ture by high dynamic range (HDR) imaging of a light probe. To
acquire non-transparent geometry inside this enclosure, we use
a structured light scanner consisting of a toe-in stereo camera
rig and a light projector mounted on a robotic arm [28, 29]. We
chose a converging camera configuration (toe-in) to increase the
overlap of the fields of view so that we get a denser point cloud
per stereo view. Together with an LED based illumination arc,
we also use this camera rig with exact control for measuring
isotropic BRDFs. For transparent objects, we use a CT scanner.
In the following subsections, we describe the individual steps
of the pipeline with focus on details required for reproducibility
and on non-standard techniques that we introduce.

A. Camera Calibration and Settings
The camera system is calibrated using a standard technique [30].
Our calibration board is an 11 by 12 black-and-white checker-
board. For the intrinsic calibration (Pass 1 of Fig. 3, left), we
include a large variety of views to estimate good lens distortion
coefficients. To facilitate stereo calibration, we also ensure that
both cameras have the calibration board fully in view. For extrin-
sic calibration (Pass 2 of Fig. 3, left), we balance good coverage
of the scene and good coverage of the calibration board. Since
we cannot change the camera system while collecting data, we
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chose a small aperture to ensure that background and projected
structured light patterns are always in focus from all views. The
full setup is in a dark room environment to eliminate external
light, so we use a long shutter time (600 ms) to obtain sufficient
exposure. A slight noise component is present in the images,
but this is considered negligible. Finally, we use the estimated
distortion coefficients to remove distortion from all images in
the dataset so that subsequent algorithms may assume a pinhole
camera model.

To avoid any compression or manipulation of the images by
the camera software, in particular automatic color correction,
we read the raw sensor data directly. We use bilinear interpo-
lation to reconstruct RGB images from the raw Bayer pattern
images. By doing this, we obtain a consistent RGB color space.
Moreover, the raw sensor data is linear and correlates directly
with radiometric quantities, which allows for better BRDF and
environment map estimation in later stages of our pipeline.

We capture radiometrically relevant parts of our dataset in
HDR by stacking multiple exposures [31]. More specifically,
we stack 11 exposures at one-stop intervals ranging from 1 to
2048 ms. For the other parts of the dataset, we capture a single
image at an exposure time of 600 ms.

B. Surface Reconstruction from Structured Light
We use a standard Gray code structured light approach to gener-
ate raw point clouds for a scene [32, 33]. With camera parameters
from the calibration, we transform these point clouds into the
same world coordinate system.

To reconstruct one connected triangle mesh from the point
clouds, we merge them into a single point cloud and perform
screened Poisson reconstruction with trimming and an octree
depth of nine [34]. This technique requires point normals, so
before the merging we generate normals for each point cloud
as follows. We resample the point cloud down to 100,000 ver-
tices via Poisson disk sampling [35] and then compute normals
via planar fitting to a nearest neighborhood of 500 points (∼16
mm radius). We then reorient all the normals according to the
location of one of the cameras and transfer them back onto the
original point cloud. This procedure ensures smooth contin-
uous normals, necessary for a good performance of the mesh
reconstruction algorithm. As we rely on smoothing, we cannot
reconstruct features in the mesh with the same physical size
as the alignment error accumulated from structured light and
calibration. The aim of the chosen constants was to preserve
features by striking a balance between too noisy and too smooth.
The operability of the pipeline is however not sensitive to the
choice of these constants.

C. Material BRDF Reconstruction
We assume that all non-transparent materials in the scene are
opaque and isotropic, so we model their reflectance properties
by BRDFs. To acquire a BRDF, we combine traditional canonical
gonioreflectometric sampling [36] with a BRDF interpolation (re-
construction) technique [37]. We follow the workflow outlined
in Fig. 3 (right). A light arc illuminates material samples from 11
unique inclinations, evenly distributed from 7.5◦ up to 90◦ with
7.5◦ steps. We place a flat material sample at the center of the
circle partly traced by the light arc. Using the cameras mounted
on the robot, we then measure radiance reflected by the sample
across one octant of a sphere. The center of this sphere coincides
with that of the light arc, while its radius is slightly larger to
avoid collision between the robot and the arc. The robot moves
in steps of 7.5◦ and captures 11 HDR images of the sample per

step, one for each light direction. In total, this yields 2,783 HDR
images per material. We avoid tangential and zenith viewing
directions (90◦ and 0◦, respectively). In the former case, no re-
flected radiance should be visible, while in the latter the light
arc occludes the view of the sample.

The 2,783 observations are too few to faithfully represent the
BRDF of a material in a photorealistic rendering. We need an
interpolation scheme to fill the entire (90× 90× 180) Mitsubishi
Electric Research Laboratories (MERL) format BRDF look-up
table [38]. The reconstruction method by Nielsen et al. [37] is our
interpolation scheme. First, we use each of the 100 BRDFs in the
MERL-dataset [38] as sample points in a 90 · 90 · 180 = 1,458,000
dimensional space. The nonlinear mapping of Nielsen et al. [37]
is then applied to each of the samples. The mapped samples are
ordered as rows of a matrix X ∈ Rm×d where m is the number
of BRDF samples and d is the dimension of the space. The zero-
mean matrix is computed as X − x̄, with x̄ being the sample
mean. From this, the singular value decomposition X − x̄ =
UΣVT is used to compute the eigenvectors and eigenvalues of
the covariance matrix of X− x̄, which are given as the columns of
V and the diagonal elements of Σ, respectively. This is effectively
a principal component analysis (PCA), where the eigenvectors
are the principal components. A matrix composed of the scaled
principal components as columns are computed as Q = VΣ.

Now, the full BRDF can be reconstructed from this princi-
pal component space by projection. Let x′ ∈ Rn be n BRDF
observations measured for a given material. Then, let x̄′ ∈ Rn

be the mean values and Q′ ∈ Rn×k be the scaled eigenvectors
corresponding to the direction pairs of those n observations. A
vector c which spans the full space can be constructed by find-
ing the linear combinations of principal components that best
approximate the n observations. We do this by solving the linear
least-squares optimization problem given by

c = arg min
c
‖(x′ − x̄)′ −Q′c‖2 + η‖c‖2

= (Q′TQ′ + ηI)−1Q′T(x′ − x̄′).

Note that by adding a penalty η to the norm of c, this effectively
becomes a Tikhonov regularized least squares. Now, the full,
mapped BRDF is reconstructed as x = Qc+ x̄. The inverse of the
nonlinear mapping applied to X is applied to x to get the actual,
unmapped BRDF of the material. The described approach is
applied to every single non-transparent material in the scene in
order to obtain models of their reflectance properties.

This approach assumes that the MERL database encompasses
the class of materials present in the scene. Effectively, this is a
practical compromise between dense, unbiased, canonical BRDF
sampling and fast, inferred BRDF sampling. This enables us to
obtain high confidence BRDFs in a matter of a few hours.

D. Surface Reconstruction from CT
In our dataset, we have three glass objects: a sphere, a teapot
(pot and lid) and a bowl (bowl and lid), for a total of five pieces.
All objects have spherical plastic markers glued onto their outer
surface. We CT scan each glass piece to obtain X-ray radiographs
and use the CT PRO 3D reconstruction software from Nikon
Metrology to obtain a volumetric image for each piece. The
resolution of the reconstructed volume is up to 10003 voxels. Due
to beam hardening, high density differences between materials
lead to streak artifacts [39], especially around our markers and
at the top and bottom of the objects (see Fig. 4). We account for
these artifacts in the volumetric segmentation.
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Fig. 4. CT scans of the bowl (top row) and the teapot (bottom
row) with markers glued onto them. In the left column, visu-
alized using a 1D transfer function. Note the different density
of the markers. In the right column, a slice scaled to display
streak artifacts.

From a CT scan, we generate two triangular meshes with
vertex normals: one for the glass object and one the plastic
markers. Figure 5 provides an overview of our procedure. We
start with the markers, which appear as elements of higher
density in the scan. We preprocess the scan by clamping all
the values under a certain threshold to zero and then create a
mesh using dual contouring [40]. Generating the glass mesh is
more cumbersome. We also use dual contouring in this case, but
because of the streak artifacts (Fig. 4) it is not possible to isolate
the glass mesh via a threshold. Instead, we use a lower threshold
that only removes noise, then estimate the marker positions, and
use these to remove the markers from the glass mesh.

To estimate marker positions, we determine a series of cen-
ter/radius pairs (ci, ri) by fitting a multi-sphere model to the
marker mesh vertices using a tuned random sample consensus
(RANSAC) algorithm [41]. We then carve a hole by excluding all
the triangles that are inside a sphere with center ci and radius
(1 + ε)ri, where ε is usually in the 0.5 to 0.75 range. We store
the marker positions ci so that we can use them to transform
from the local coordinate system of the glass object to the world
coordinate system (see Section F).

After removing the markers, the glass meshes still have alias-
ing artifacts. To deal with this issue, we first decimate the mesh
down to 1% of the original vertices via quadric edge collapse.
The holes are then easy to close by identifying the edge loops
surrounding each hole and filling these with triangles. We then
introduce a subdivision-decimation loop with alternating

√
3-

subdivision [42] and decimation to 33% of the original vertices.
We perform this subdivision-decimation operation four times to
obtain a cleaned mesh. The decimation removes unwanted high
frequency features from the mesh. Thus, we generate smooth
meshes at the cost of some geometric precision. We are again
trying to strike a balance between reconstruction error and too

Markers
After After After

reconstruction simplification cleaning

Fig. 5. Reconstruction from CT with stages illustrated us-
ing Phong shading (top row) and wireframe shading (bot-
tom row). After estimating the marker mesh (first column)
and fitting spheres to the markers, we reconstruct the object
mesh (second column). To eliminate noise, we first simplify
the mesh (third column) and then close the holes and apply
our subdivision-decimation loop to get the final object mesh
(fourth column).

Fig. 6. Labeling of the image to the left results in the label im-
age to the right. Each color in the label image represents a la-
bel that we assign a BRDF to. The black edges between labels
indicate areas where we apply a nearest neighbor method.

much smoothing. In Section 4, we compare our method with a
different cleaning procedure that better preserves geometry.

E. Scene Reassembly for Non-Transparent Objects
Two operations are necessary to prepare the background mesh
for rendering: labeling and deformation. In the labeling, our
objective is to identify BRDFs and label each face of the mesh
with a BRDF. Assuming a scene with a small number of known
BRDFs, we apply edge detection and watershed on the images
of the scene to segment BRDF boundaries. Shadows, specular
highlights, and different viewing angles of the scene complicate
fully automatic BRDF identification. Our approach gets us most
of the way, but we manually correct any residual misclassifica-
tion. Figure 6 shows a label image produced by our labeling
technique.

The label images can be used in multi-view projective tex-
turing of the background mesh. However, we would like to
precompute the view and label selection instead of doing it
millions and millions of times while rendering. To avoid uv-
unwrapping of the mesh for storing precomputed labels, we
take an approach inspired by micropolygon rendering [43]. We
project each vertex of a face onto the label images of the scene
and select the face BRDF according to the image label that most
of the face vertices were projected to. If a vertex projects to an
unknown label, we resolve it by a nearest neighbor search. Since
faces around material boundaries overlap multiple materials,
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No subdivision One subdivision Two subdivisions

Fig. 7. Subdividing the mesh dissolves unwanted boundary
sawtooth artifacts that originate from the BRDF labeling.

Fig. 8. Deformation of background mesh, where we push the
background vertices down to avoid mesh intersection.

we get sawtooth artifacts. We dissolve these by subdividing the
mesh until the rendered triangles are smaller than the surface
area observed in a pixel, see Fig. 7.

When applying physically based rendering, we observed
intersections between background scene and glass meshes. This
could be due to small errors in reconstruction and positioning,
or perhaps the harder glass objects press down the tablecloth
when placed for reference imaging. It causes significant visual
artifacts since the rendering exposes all surfaces of a transparent
object. To eliminate these artifacts, we accommodate the hard
object (glass) by deforming the soft object (tablecloth), see Fig. 8.
To deform the soft object, we need a “down” direction in which
to push the vertices. We first find contact vertices. These are
vertices in each mesh that are close to any vertex of the other
mesh. We consider vertices close if the distance between them
is less than 7% of the bounding box diagonal of the hard object.
Using least squares regression, we fit a contact plane to the
contact vertices of the soft object. We set the sign of the contact
plane normal so that the upper half-space contains the center of
the hard object bounding box. Projection of a contact vertex to
the normal of the contact plane then measures the height of the
vertex. For each soft object contact vertex x, we find the nearest
hard object contact vertices and push x down below the lowest
one of these.

F. Scene Reassembly for Transparent Objects

To reposition the glass objects in the scene, we rigidly trans-
form the meshes reconstructed from CT to the world coordinate
system of the background mesh. We obtain this transforma-
tion by matching markers in the stereo images with the marker
coordinates ci computed during reconstruction from CT (see
Section D).

To find the markers, we employ a size invariant circle Hough
transform [44]. This works well for our dataset, where the
markers show high contrast against their surroundings. We
match markers in the left and the right images via Sampson dis-
tance [45]. Using this technique, markers on the same epipolar
line lead to false positives, so we manually inspect the result. We
also manually discard detected markers that are visible through
the glass, as the refraction would lead to incorrect positioning.
Markers in both stereo images with no match are discarded. The
result is a set of matched markers in image coordinates as seen
in Fig. 9 (bottom left). We then triangulate the matched markers

Fig. 9. Repositioning a CT scanned object in the background
scene. We identify and match the markers in the stereo image
pairs and calculate their corresponding 3D points. Pairing
these with marker coordinates from the CT scans, we trans-
form the CT scanned piece of an object into the world coordi-
nate system.

Fig. 10. Color calibration: raw images (left) and color cor-
rected images (right). The camera sensor is particularly sen-
sitive to green.

from the stereo views and gather them in clusters of 3D points.
We remove outliers via their distance from the cluster centers,
and for each cluster we select the point with the lowest reprojec-
tion error. An example of the points and clustering is shown in
Fig. 9 (top middle).

We manually pair the 3D marker coordinates from the im-
ages with the marker coordinates ci from the CT scans. We
perform Procrustes analysis [46] on the two point sets, excluding
reflection, since we assume a rigid transformation applied to
each vertex of the mesh. The bowl and the teapot are composed
of multiple pieces. For these objects, we compute the trans-
formation individually for each piece. The result of the object
transformed into the scene is shown in Fig. 9 (top right). We
found that in order to have low error in the transformation the
chosen markers should sample the surface evenly and be visible
from most views.

G. Color Calibration
Images are only quantitatively comparable if they live in the
same color space. Thus, we must ensure that our radiometry-
dependent data, namely reference images, environment map,
and BRDFs, are in the same color space. We do this by imaging



Research Article Applied Optics 7

Fig. 11. Unwrapping of a spherical probe. We know the
sphere radius R from specification, the camera position c
through calibration, and the sphere center o by triangulation.
Radiance at pproj in our image then corresponds to the envi-
ronment map direction~l. The result for the robot enclosure is
in the lower left corner in latitude-longitude panoramic format
(here tone-mapped).

a color chart of precisely known colors. More specifically, we
use second degree root-polynomial color correction [47] based
on a 24 patch ColorChecker Classic from X-Rite. This provides
a matrix that transforms from camera RGB to XYZ, where we
assume illuminant D50 when specifying the XYZ values of the
colorchecker. With the assumption of illuminant D50, we can
transform colors to the CIE L*a*b* color space and then com-
pute color difference using the ∆E00 metric [48]. We use this to
refine our result by minimizing ∆E00 using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [49]. The result is in Fig. 10.
The average color difference is ∆E00 = 1.97 ± 1.21, which is
larger than 1 JND (just noticeable difference) [50], but we find it
acceptable.

Since we work with glass objects (and chrome, see Section H),
we need refractive indices to determine reflectance, transmit-
tance, and absorption properties. Refractive indices can be
found per wavelength in tables of research papers. To use such
spectral optical properties together with our trichromatic image
data, we integrate them to CIE RGB using the CIE RGB color
matching functions listed by Stockman and Sharpe [51]. It is
important to normalize these functions [52] and to use RGB
rather than XYZ [53]. This is because a refractive index is not a
color, but rather a quantity that in trichromatic representation
should resemble a sparse sampling of the spectrum. Thus, as
recommended by other authors [54], we choose CIE RGB as
our rendering color space. After transforming our image data
from camera RGB to XYZ, we therefore convert them to CIE
RGB [55]. As a final step, we apply Bradford chromatic adap-
tation [50], adapting to the originally assumed illuminant D50,
so that renderings and reference images get closer to real life
appearance.

H. Environment Lighting
To capture the lighting observed in the reference images, we use
a method similar to the mirror probe technique [56]. However,
we use a pinhole camera model for probe image unwrapping
instead of the standard orthographic model. Our pipeline en-
ables this as we have a calibrated camera and know its position
relative to the photographed mirror probe. With the pinhole

model, we obtain a more precise estimate of the environment
lighting. The environment map is generated from HDR images
and stored in latitude-longitude panoramic format [50]. We use
a polished grade G100 chrome bearing ball as mirror probe.

An environment map represents an infinite area light and
maps a direction to a texture element (a texel). To do unwrap-
ping, we map each texel direction~l to the corresponding pixel
position pproj in a light probe image. Given the configuration
illustrated in Fig. 11, we have

~v =
c− o
‖c− o‖ , ~n =

~v +~l
‖~v +~l‖

, p = o + R~n, pproj = M [pT 1]T ,

where camera matrix M and camera position c are available from
our calibration. The radius of the sphere R is available from the
bearing ball specification, and we find the center of the sphere
o by manually annotating the sphere and then triangulating
it. We assume that the distance to the actual light along ~l is
equal to the distance between camera and sphere ‖c− o‖. This
assumption works well in practice, leading to an error smaller
than the uncertainty of o caused by the triangulation. With
the original orthographic camera model, we can reconstruct
the lighting for all directions except one (−~v). In our model,
we cannot reconstruct the lighting for a set of directions (~n ·
~v ≤ R/‖c − o‖), so we set them to black. Since we do our
unwrapping in world space, we can combine contributions from
multiple camera views with no need to align them afterwards.

The environment map is color corrected according to Sec-
tion G, which enables us to correct for the angularly dependent
reflectance of chrome. The correction is to divide by Fresnel
reflectance, which we compute during unwrapping. As input
for Fresnel’s equations, we use the angle β between c− p and~n
and the complex refractive index of chrome [57] converted from
spectrum to CIE RGB. The result is shown in the inset of Fig. 11.

I. Rendering

We render images using progressive unidirectional path trac-
ing [58, 59] implemented in OptiX [60]. The captured HDR en-
vironment map is the sole light source in our scene [56]. When
rendering non-specular materials, we importance sample the
environment map to get direct illumination and use sampling of
a cosine-weighted hemisphere to get indirect illumination. From
our labeling, we have one BRDF attached to each triangle in our
scene. For non-transparent objects, we use our measured BRDFs
tabulated in the MERL format [38]. To terminate paths proba-
bilistically, we use Russian roulette based on the bihemispherical
reflectance of each measured BRDF. This reflectance is calculated
in a preprocessing step using Monte Carlo integration. We deal
with transparent objects in the usual way, setting reflectance and
transmittance according to Fresnel’s equations of reflection and
Bouguer’s law of exponential attenuation. Given their small
surface, we were unable to estimate a BRDF for the markers.
Instead, we render them as glass with all refracted rays being
absorbed.

3. ANALYSIS BY SYNTHESIS

The ability to render images comparable to photographs en-
ables us to use our pipeline for improving parameter estimates
through analysis by synthesis. As an example, we need a scaling
factor for our HDR environment map as it measures relative ra-
diance [31]. We estimate this factor by taking ratios of references
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Fig. 12. Analysis by synthesis to estimate absorption of the
glass bowl. We run renderings in low resolution and change
the absorption in each color channel one at the time. In the
case of the bowl, the blue channel is the most sensitive one.

Fig. 13. Scene with checkerboard backdrop, lighting, glass
teapot, and stand with table cloth observed by two cameras
mounted on a 6-axis industrial robot arm.

and renderings with the background scene alone. Another ex-
ample is estimating real and imaginary parts of glass refractive
indices. As analysis by synthesis is fundamentally ill-posed [61],
we take our outset in physics-based initial guesses such as Schott
K5 crown glass (sphere and teapot) and soda lime glass (bowl).
Spectral refractive indices for these glasses were obtained from
an online database (http://refractiveindex.info) and converted
to CIE RGB. All parameters were estimated using different views
than the ones in our comparisons of renderings with references.

As an example of our analysis by synthesis, we plot the evo-
lution of the root-mean-squared error (RMSE) for different ren-
derings of the glass bowl in Fig. 12. For each rendering, we vary
a trichromatic component of the absorption coefficient (which
directly relates to the imaginary part of the refractive index). We
identify a distinct minimum in the error for each channel, with
a slightly larger uncertainty in the red channel. The minimum
values in this figure were used in our renderings of the glass
bowl. We apply the same analysis to the teapot and the sphere.

Given an initial guess for a parameter, we can employ stan-
dard optimization algorithms, defining the RMSE between the
reference and the rendering as a cost function to minimize. To
reduce rendering times, the evaluation of the cost function can
be calculated on a downsampled image or limited to a specific
patch of the images. Various general optimization algorithms
exist for minimizing expensive cost functions [62].

Fig. 14. Markers rendered in blue and added to the reference
image to validate marker positions by looking at pixel offsets.

Fig. 15. Pixelwise error for three rendering-reference pairs.
Error is the `2-norm of 32-bit per channel RGB images, visual-
ized using a base 10 logarithmic scale.

4. RESULTS

Our scenes consist of a backdrop, a stand, and a glass object
(with markers) placed on the stand. The backdrop is a 30 by 20
white-and-gray checkerboard print on 120 cm by 80 cm semi-
matte cardboard and the stand is a tabletop with a white cloth.
An example scene is depicted in Fig. 13. We implemented our
reconstruction and reassembly procedures as a modular soft-
ware pipeline and computed all rendered images using our path
tracer. As illustrated in Fig. 2 and mentioned in Section G, we
color correct both rendered images and reference images to have
a meaningful perceptual comparison. Figure 14 compares mark-
ers in a reference image with rendered markers to validate our
marker positioning. For the teapot, the average distance be-
tween the markers from stereo and the transformed markers
from CT is 0.43 mm.

Figure 15 presents pixelwise comparisons of reference images
and rendered images. The error images allow us to spot subtle
differences not easily noticed in a perceptual comparison, such
as the slight misalignments in geometry and highlights. As
reference photographs were not captured in HDR, we clamp
the renderings correspondingly. This means that areas of strong
light intensity, such as highlights and intense caustics, appear
black in the error images.
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Fig. 16. Qualitative (top) and quantitative (bottom) step-by-step evaluation of our reassembly techniques. The log error images
have the same format as in Fig. 15 and the reference photograph is in the rightmost column (g). In each column, we provide root-
mean-squared error and structural similarity index (RMSE / SSIM). Both measures attain their best score in our final result (f).

Fig. 17. Zoom-in of Figs. 16 (b) and (c) to emphasize the effect
of our background deformation.

Orthographic Perspective Reference

Fig. 18. Zoom-in of Fig. 16 (c) and (d) to emphasize the effect
of our perspective unwrapping of the environment map.

Figure 16 exemplifies the impact on error images of some of
our contributions. In Fig. 16 (a), we only reposition the glass
object in the background scene and apply color correction (Sec-
tions F and G). This means that we use Lambertian materials
(with bihemispherical reflectances from the measured BRDFs),
an orthographic unwrapping model of the environment map,
and no chrome reflectance correction or analysis by synthesis
optimization. We compare to the reference image in Fig. 16 (g),
with error images as in Fig. 15. Figure 16 (b) shows the impact
of using measured BRDFs (Section C), resulting in a more accu-
rate representation of the folds of the cloth in the background
scene (top image) and an overall reduction of the error (bottom
image). In Fig. 16 (c), we add deformation of the background
mesh (Section E), which ensures that the background mesh does
not poke through the glass surface (see a close-up in Fig. 17).
Additionally, we can see how this improves the error on the lid
of the bowl, because of refraction of light in the glass. The next
step, Fig. 16 (d), shows the impact of our modified environment
map unwrapping (Section H) against the standard orthographic
unwrapping rotated according to our camera parameters. A
close-up is available in Fig. 18. Our modified unwrapping pro-
vides a better shape and alignment of highlights and caustics.
Partially due to the assumption of infinitely distant environment
light, some alignment artifacts persist. In Fig 16 (e), we show the

Fig. 19. Trade-off in mesh reconstruction. If we smooth more,
we get less distortion in the refractions, but less precision in
the mesh geometry. From left to right: Rendering with smooth-
ing, reference image, rendering without smoothing.

effect of correcting for chrome reflectance in our environment
map reconstruction. Quantitatively, this changes the distribution
of the error (bottom image). On the cloth, the exposure increases,
exposing the caustics misalignment. On the backdrop, the error
reduces. Interestingly, the structural similarity index (SSIM) im-
proves while the RMSE worsens. Finally, in Fig. 16 (f), we use
analysis by synthesis to adjust glass absorption. This improves
the glass appearance, but it also leads to slight color changes
in other parts of the scene due to indirect light paths. Because
of this global influence, the analysis by synthesis introduces
slightly too much absorption to compensate for the slightly too
bright tablecloth.

As an example of how our pipeline can be used to validate
existing algorithms, we investigate the case of glass object recon-
struction. In Fig. 19, we compare two different reconstruction
methods with focus on two parts of the teapot scene. Smooth re-
construction refers to the procedure described in Section D. The
other procedure is to simply decimate the reconstructed mesh to
2.5% of the original vertices and apply Taubin smoothing [63].
This removes the high frequencies of the noise but much noise
is still present in the midranges leading to wobbly refractions.
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Rendering Reference Log error (as in 15)

Fig. 20. Material transitions: error lines along checker edges
and along the boundary between tablecloth and backdrop.

Rendering Reference Log error (as in 15)

Fig. 21. Effect of separating markers from glass (refracted
light close to marker) and of not accounting for subsurface
scattering (dark areas close to caustics).

Our method in Section D reduces far more noise, but this is at
the cost of greater changes to the overall shape. We note that
a refractive object with a simple geometry is very hard to re-
construct automatically if fidelity and almost no noise are both
required.

5. DISCUSSION

Since our pipeline enables us to compare renderings with pho-
tographs, we can identify problems in acquisition, reconstruc-
tion, and rendering that would otherwise have been hard to
find. Camera calibration issues, for example, reveal themselves
as error lines along edges (visible in Fig. 20). Color calibration
issues reveal themselves as color shift. Such issues led us to
more careful camera calibration procedures and the choice of
root-polynomial color correction. Qualitative comparisons re-
vealed artifacts in surface reconstruction, mesh intersections
calling for deformation, misplacement of highlights, color shift
due to chrome reflectance, and missing absorption in renderings
(Figs. 16–19). Quantitative comparisons confirmed improvement
due to perspective unwrapping of light probe images and led to
analysis by synthesis.

The comparison with reference photographs before and after
deformation (Fig. 17) to some extent validates our soft object
deformation technique. Further validation would be desirable,
but it is difficult to come up with a different experiment. Some
kind of soft, durable memory foam with a scannable surface
would be required as the soft object would otherwise change
shape again once the hard object is removed. Our validation
only supports that the cloth appearance (as observed through
glass) is represented more faithfully after deformation.

We found analysis by synthesis useful for estimating parame-
ters with an outset in physics-based initial guesses. The results in
Fig. 12 show that we can estimate optical properties for a given
material and use them in a different setting (right part of Fig. 1).
The precision of the estimation varies with the impact of the
property on the overall error, and the estimated parameters may
compensate for unrelated errors. In this regard, specific scene
configurations could be used to favor estimation of a particular
parameter.

The most important limitation of our method is that we de-

scribe materials as large patches of isotropic BRDFs. In our
renderings, this assumptions works well for the checkerboard
backdrop but not for the cloth, where we both have subsurface
scattering effects and probably anisotropy due to the weave
structure of the cloth. Fig. 21 reveals that the rendered image
is too dark in areas surrounding caustics. As seen in the light
refracted through the sphere in the vicinity of the marker, our
processing of the glass object to separate glass from markers
causes some imprecision in the geometry. We believe this mainly
influences the shape of the caustic. The bleeding of the caustic
to areas that are much darker in the rendered images looks like
backscattering from the table beneath the cloth. We refer to this
as a kind of subsurface scattering.

Another limitation is seen at the transition between non-
connected elements. It is visible in the renderings at the bound-
ary between the cloth and the backdrop (see Fig. 20). The prob-
lem derives from the fact that the cloth and the backdrop were
too close to each other during dataset acquisition. This resulted
in the Poisson mesh reconstruction interpreting them as a contin-
uous object instead of two separate ones. The problems around
markers (Fig. 21) are also due to transition of materials. The
marker removal and whole closing in the glass surface recon-
struction interrupts the original shape of the surface. Further-
more, the markers are glued onto the glass surface, and the
glue is not considered in the reconstruction and renderings. The
marker glue problem is magnified by the glass refraction.

6. CONCLUSION

We have proposed a pipeline for multimodal scene digitization.
Our work addresses the entire process from acquisition of the
original objects, through reassembly of the digital scene, to accu-
rate modeling of camera and environment. While the pipeline
required several non-trivial steps, the benefits are correspond-
ingly great since we can perform pixelwise comparisons between
rendered images and photographs of the corresponding physi-
cal scene. This means that we have the means to quantitatively
assess the accuracy of an acquired model based on comparison
with empirical evidence. We believe this kind of quantitative
assessment has not previously been possible for transparent
objects. In applications like cultural heritage preservation and
industrial inspection, where the accuracy of a digitization is
important, such comparison with empirical evidence is crucial.

To the best of our knowledge, our work is also the first work
to quantify the photorealism of a heterogeneous scene requiring
multimodal acquisition.

Our dataset is publicly available so that others can test new
techniques for the different steps of the pipeline with quantita-
tive feedback based on photorealistic rendering. The fact that
one can use off-the-shelf rendering techniques for improving
the different steps of a multimodal digitization pipeline is per-
haps the most important benefit of our work. An application
of the full pipeline is the virtual product placement in Fig. 1.
Another important application is the estimation of radiometric
properties through analysis by synthesis. The ability to accu-
rately estimate optical properties through computation rather
than measurement, which might require specialized equipment,
is likely to greatly simplify the digitization of radiometrically
complex objects. In this paper, we estimated absorption and
refractive indices of transparent objects, but analysis by synthe-
sis could be equally useful for other materials with non-trivial
BRDFs. This is another key benefit of our work that we believe
is well worth exploring in the future.
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Fig. 22. Comparison of renderings and photographs as in
Fig. 1 (left), but with more views.
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Abstract

Engineering of surface structure to obtain specific
anisotropic reflectance properties has interesting applica-
tions in large scale production of plastic items. In recent
work, surface structure has been engineered to obtain vis-
ible reflectance contrast when observing a surface before
and after rotating it 90 degrees around its normal axis. We
build an analytic anisotropic reflectance model based on the
microstructure engineered to obtain such contrast. Using
our model to render synthetic images, we predict the above
mentioned contrasts and compare our predictions with the
measurements reported in previous work. The benefit of an
analytical model like the one we provide is its potential to
be used in computer vision for estimating the quality of a
surface sample. The quality of a sample is indicated by the
resemblance of camera-based contrast measurements with
contrasts predicted for an idealized surface structure. Our
predictive model is also useful in optimization of the mi-
crostructure configuration, where the objective for example
could be to maximize reflectance contrast.

1. Introduction

Engineering of surface microstructure to obtain cus-
tom reflectance properties, or so-called appearance print-
ing, has many applications in product design and manufac-
turing. This research area has received significant atten-
tion [23, 11, 10, 7, 8, 14] and, recently, tooling was done
with the objective of inserting a simple anisotropic surface
microstructure into economic manufacturing processes [9].
The intended functionality of the anisotropic surface mi-
crostructure was to obtain high reflectance contrast for the
surface when viewed from above at orthogonal angles. Us-
ing a microscope and a camera, the contrast was measured
for different surface structure configurations to find the con-
figuration revealing highest contrast [16].

In this work, we build an analytic bidirectional re-

Figure 1. Engineered surface microstructure used by previous au-
thors [9, 16] to obtain reflectance contrast when the surface is
observed from above at orthogonal angles. We build an analytic
BRDF model for this type of surface.

flectance distribution function (BRDF) that models the
anisotropic reflectance properties of the functional surface
tested by previous authors [9, 16]. Our analytic BRDF
model has two benefits. It is (1) useful for finding the
surface structure configuration that theoretically produces
optimal contrast. It also (2) enables estimation of surface
quality from photographs. As an example, deviation in the
contrast measured for a physical sample from the contrast
predicted for an idealized surface corresponds to surface
quality deviation, and contrast is measurable using simple
computer vision [16].

The simple anisotropic microstructure that produces vis-
ible contrast when viewed at orthogonal angles is created
by having a sequence of small, parallel ridges as shown in
Figure 1. The angle θr is a microstructure configuration re-
ferred to as the ridge angle. Based on how the structure is
rotated around its macrosurface normal, it reflects light in
different ways. Thus contrast can be generated by rotating
the object by 90◦.

The reflectance properties of the ridged surface have
only been studied experimentally [16]. The analytic BRDF
we provide is built for this particular ridged surface struc-
ture, but a similar procedure could be used to derive an an-
alytical model for a surface with a different engineered sur-
face structure. Figure 2 shows an example of a quad ren-
dered with our BRDF before and after rotation by 90◦. The
contrast produced by the ridges having orthogonal orienta-
tion is clearly visible in this image.
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Figure 2. Quad rendered using our BRDF model before and after
rotation by 90◦. The orientation of the ridges follows a checker-
board pattern: two adjacent squares have ridges oriented in orthog-
onal directions.

2. Related Work

The work of Torrance and Sparrow [18, 19] is an early
example of measuring the reflectance properties of a surface
and subsequently developing a BRDF model for predicting
the measured properties. Torrance and Sparrow [18] inves-
tigated metals and ceramics and processed the surfaces of
their samples with the objective of having isotropic, random
rough surfaces. They developed their BRDF model for this
type of surface in order to explain surprising occurrences
of off-specular peaks in the reflectance measurements [19].
Our work is similar, but we model the reflectance properties
of plastic samples with an anisotropic, ridged surface.

With a similar approach, Ward [22] measured and mod-
eled the bidirectional reflectance properties of anisotropic,
random rough surfaces. He found good agreement between
model and measurements for materials such as varnished
wood and unfinished (rolled) or brushed metals. Our work
is different in the sense that we model a ridged rough sur-
face instead of a random rough surface.

Poulin and Fournier [15] presented one of the first
BRDF models for an anisotropic surface with a specific mi-
crostructure. Their model assumes a microstructure consist-
ing of half cylinders each with its axis lying in the surface
tangent plane. More generically, Ashikhmin et al. [2] de-
scribe a methodology for generating a BRDF according to
a given microfacet normal distribution function. Our ridged

surface microstructure requires a slightly different approach
as the microfacet normals are predominantly in two direc-
tions. The specific microstructure we model is interesting
because it can be engineered. This enables us to compare re-
flectance properties predicted by our model with measured
reflectance properties.

Using a generic BRDF model [2], it is possible to
match observed reflectance properties by acquiring spa-
tially varying microfacet normal distribution functions for
an anisotropic surface [21]. This is impressive, but then de-
viations between predicted and measured properties cannot
be used to assess how close an engineered microstructure is
to the desired idealized microstructure.

Researchers working with techniques for BRDF print-
ing have an opportunity to compare predicted reflectance
properties with those of engineered surfaces. Weyrich et
al. [23] use micro milling to obtain a surface structure with
a specific microfacet normal distribution. This is similar
to the tooling part of the manufacturing process that we
are modeling [9]. Our added step of transferring the tool
microstructure to a polymer component enables absorption
(colored surfaces). In previous work [11, 7], absorption
was added by applying different inks to the surface. This
means that their BRDF model is a weighted average of dif-
ferently oriented ink BRDFs, where we have a combina-
tion of surface and subsurface scattering effects. Other au-
thors [10, 8] improve the microstructure resolution as com-
pared with Weyrich et al. [23], but their techniques do not
allow for absorption effects. In the work of Levin et al. [8],
microfacets are at a scale that requires a BRDF model based
on wave optics. Our pitches ranging from 50 to 150 microns
can safely be modeled using geometrical optics. None of
this previous work on BRDF printing includes shadowing
and masking in their BRDF models. This is however im-
portant in the microstructure we investigate due to the steep
slope of the ridge edges.

In recent work, Pereira et al. [14] show that magnetic
microflakes can be used for anistropic BRDF printing. They
measure the BRDFs printed by their technique but do not
provide a predictive BRDF model.

Levin et al. [8] investigated the same kind of contrast that
we are aiming at with our ridged surface structure. Their
technique is however very different as it is based on wave
interference effects. While they seem to achieve better con-
trast than ridged surfaces, they use photolithography which
has high capital and operational cost and cannot easily be
used with polymeric or curved substrates [1]. Nevertheless,
it is noteworthy how easily their very small surface features
produce contrast through wave interference.

McGunnigle [12] uses a bivariate Gaussian distribution
(no Fresnel or geometrical attenuation effects) to model the
anisotropic reflectance of a surface sandpapered in one di-
rection. While his directional surface microstructure seems



Figure 3. Microstructured surface and simplified macrosurface.

a bit like ours, his reflectance model is one-dimensional and
considers only the azimuthal angle of the light source.

3. BRDF Model
The engineered surface that we consider is composed of

many parallel ridges with a pitch of between 50 µm and
150 µm (see Figure 1). If viewed at a reasonable distance,
these details can be assumed to be too small to be seen di-
rectly (at a distance of 0.5 m, humans can discern details
of about 150 µm [13]). Thus we choose to model our sur-
face by a macrosurface with an appropriate BRDF. In this
way, the details of the microstructure are represented by the
reflectance properties of the surface. This is analogous to
other microfacet BRDF models [19, 3, 4, 2], where a rough
surface with a complicated microgeometry is modeled by a
simpler surface with an appropriate BRDF that can replicate
the overall light scattering of the microsurface.

Figure 3 illustrates the macrosurface for our particular
microsurface. In this model, we have a microsurface normal
~m and a macrosurface normal ~n (both are unit vectors). In
addition, ~u is a vector parallel to the ridges and orthogonal
to the normal ~n, and ~v is a vector aligned with the direction
of the pitches. Together, ~u,~v, ~n is an orthonormal basis of
the macrosurface tangent space.

Microfacet models represent the microsurface in terms
of a microfacet reflectance function fm, a geometrical at-
tenuation function G, and a normal distribution function D.
These are combined by integration over all microfacet nor-
mals to form a BRDF f for the macrosurface [20].

3.1. Geometrical Attenuation Function G

The portion of the microsurface with normal ~m visible
from both directions ~ωi and ~ωo is described by the geomet-
rical attenuation functionG(~ωi, ~ωo, ~m). This means that the
function models shadowing and masking effects.

An exact formulation of G is rarely available since it de-
pends on the geometrical details of the particular surface.
Most often, the function is approximated based on assump-
tions about the surface geometry (such as v-grooves [19]).

Figure 4. The angle θp between the microsurface normal ~m and
the projection of the vector ~ω on the nv-plane is used to evaluate
the geometrical attenuation function.

Smith [17] derived an approximation of G for surfaces with
Gaussian microfacet normal distribution. This has the use-
ful property of being separable into the product of two
mono-directional functions (one for shadowing and one for
masking):

G(~ωi, ~ωo, ~m) ≈ G1(~ωi, ~m)G1(~ωo, ~m). (1)

Given the particular regularity of the microsurface we are
dealing with, we have derived an expression for G1 (details
are provided in Appendix A) that is suitable for our model:

G1(~ω, ~m) = χ+

(
~ωp · ~m
~ωp · ~n

)
× [1−min (1, |tan θr tan θp|)] , (2)

where χ+(a) denotes a Heaviside step function that is 1 for
a > 0 and 0 otherwise. We let θp denote the angle between
~m and the projection ~ωp of ~ω on the plane spanned by ~n and
~v, see Figure 4. Thus,

cos θp =
~ωp · ~m
|~ωp|

=
(~ω − (~ω · ~u)~u) · ~m
|~ω − (~ω · ~u)~u|

,

which reveals that the orientation of the macrosurface is
required to evaluate the geometrical attenuation function.
This is as expected since we are dealing with an anisotropic
surface microstructure.

3.2. Microfacet Distribution Function D

The manufacturing process introduces irregularities on
the ridges. The surface microstructure of physical samples
is therefore not as regular as the idealized surface illustrated
in Figure 1. In reality, it is rather rough as illustrated in
Figure 5. Roughnesses have been measured for physical
samples in previous work using optical profilometry [9, 16].



Figure 5. Rough surface.

Figure 6. Orthonormal basis formed by ~um, ~vm, ~m.

These measurements reveal that the ridges are certainly not
smooth. Thus, at a given point x on the microsurface the
normal ~ωm is usually slightly different from the pitch nor-
mal ~m.

The distribution of normals D(~ωm) statistically de-
scribes the orientation of these irregularities across the mi-
crosurface. Many microfacet distribution functions have
been defined over the years [19, 3, 4, 20]. In order to high-
light the anisotropic nature of the surface we are working
with, we use the anisotropic Beckmann distribution func-
tion [5], which is defined by

D(~ωm) =
χ+(~ωm · ~m)

παuαv cos4(θm)

× exp

(
− tan2 θm

(
cos2 φm
α2
u

+
sin2 φm
α2
v

))
. (3)

This distribution function is centred around the pitch normal
~m, and the parameters au and av represent the stretching
coefficients of the distribution along the ~um and ~vm direc-
tions, respectively, see Figure 6. Together, ~um, ~vm, ~m form
an orthonormal basis and the microsurface normal ~wm can
be written in spherical coordinates as

~ωm = sin(θm) cos(φm)~um

+ sin(θm) sin(φm)~vm + cos(θm)~m.

3.3. Macrosurface and Microfacet BRDFs

The normal distribution function D(~ωm) and the geo-
metrical attenuation function G(~ωi, ~ωo, ~m) are combined

into a macrosurface BRDF using [20]

fM (x, ~ωi, ~ωo) =

∫
fm(~ωi, ~ωo, ~ωm)D(~ωm)G(~ωi, ~ωo, ~ωm)

×
∣∣∣∣~ωi · ~ωm

~ωi · ~n

∣∣∣∣ ∣∣∣∣~ωo · ~ωm

~ωo · ~n

∣∣∣∣ d~ωm. (4)

For the microfacet BRDF fm, we assume that a microfacet
is smooth so that it reflects and refracts light as a perfectly
specular material. Reflection is described by one BRDF frm
and some of the refracted light returns due to subsurface
scattering. We approximate this part by another BRDF fssm .
The function fm is then defined by

fm(~ωi, ~ωo, ~ωm) = frm(~ωi, ~ωo, ~ωm)+fssm (~ωi, ~ωo, ~ωm). (5)

These BRDFs are based on a directional Dirac delta-
function δ (just like the BRDF of a perfect mirror). We
use Fresnel reflectance Fr as the specular reflectance and
include a change of coordinates to enable integration over
microfacet normals [20]. We then have

frm(~ωi, ~ωo, ~ωm) = Fr(~ωi, ~ωm)
δ(~ωh, ~ωm)

4(~ωi · ~ωh)2
,

where ~ωh = (~ωo + ~ωi)/|~ωo + ~ωi| is the half vector of re-
flection.

Although subsurface scattering happens for many BRDF
inputs, we limit our model to only include subsurface scat-
tering of the light that was lost to refraction in the reflection
case. This light is certainly missing and including it is a
first step. This makes our model similar to the BRDF ap-
proximation of subsurface scattering described by Jensen et
al. [6]. We have

fssm (~ωi, ~ωo, ~ωm) = Ft(~ωi, ~ωm)Ft(~ωo, ~ωm)
ρd
π

δ(~ωh, ~ωm)

4(~ωi · ~ωh)2
,

where Ft = 1 − Fr is the Fresnel transmittance, and ρd is
the diffuse reflectance of the material.

By inserting Eq. 5 into Eq. 4, we arrive at our macrosur-
face BRDF:

f(x, ~ωi, ~ωo) = fr(x, ~ωi, ~ωo) + fss(x, ~ωi, ~ωo), (6)

where the reflection term is

fr(x, ~ωi, ~ωo) =
Fr(~ωi, ~ωh)

4 |~ωi · ~n| |~ωo · ~n|
G(~ωi, ~ωo, ~ωh)D(~ωh)

and the subsurface scattering term is

fss(x, ~ωi, ~ωo) =
ρd
π
Ft(~ωo, ~ωh)Ft(~ωi, ~ωh)

× G(~ωi, ~ωo, ~ωh)D(~ωh)

4 |~ωi · ~n| |~ωo · ~n|
.



Figure 7. Configuration of the experiment for measuring contrast.

4. Experiments

We test our model by investigating its ability to predict
the contrast measurements by Regi et al. [16]. These were
conducted by photographing the surface before and after ro-
tating the microstructure 90◦ around its macrosurface nor-
mal axis. Figure 7 illustrates the configuration of this exper-
iment. They observed the samples with a digital microscope
modified to hold an LED light source at a fixed position rel-
ative to the camera so that the angle between the camera and
the light source was constant: θl = 10◦.

The parameters considered in the experiment are: the
ridge angle θr which could assume the values 5◦, 10◦, 15◦,
and 20◦; the camera tilting angle θc with values −20◦,
−10◦, 0◦, 10◦, and 20◦, and the azimuthal angle of rota-
tion of the structure φs with values 0◦, 90◦, and 180◦. The
radiant exposure was measured under constant lighting con-
ditions and varying parameters. The contrast was then eval-
uated as the difference between the measurements at posi-
tions 0◦ and 90◦ and between 90◦ and 180◦ for φs.

To predict these contrast measurements, we reproduced
the same settings in a rendering framework and measured
the radiant exposure

[
J
m2

]
(up to an unknown scaling fac-

tor k). Renderings were based on the BRDF described in
the previous section and we compare our contrast measure-
ments with the results presented by Regi et al. [16] in the
following section.

5. Results

Our contrast predictions are compared with the measured
contrasts in Figure 8. The mean contrast was evaluated by
keeping one parameter constant and averaging all the con-
trasts obtained by varying the other parameters.

As in the measurements, we find maximum contrast for
zero tilting angle (θc = 0◦) and decreasing contrast when
the camera is tilted. We also find that the anisotropic struc-
ture of the surface makes the contrast between the azimuthal
angles 0◦ and 90◦ stronger than the contrast between 90◦

and 180◦. With respect to the ridge angle θr, our model
predicts the highest contrast with a 5◦ angle. This is theo-
retically plausible as a five degrees ridge angle should leave
most microfacets with a normal so that light is reflected in
the macrosurface normal direction when θc = 0◦.
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Figure 8. Comparison of mean contrasts for different values of the
parameters θc, θr , and φs. Measured contrasts [16] are in red and
our predicted contrasts are in blue.

Figure 9. Small part of a manufactured sample. Visualization of a
height map acquired with an industrial laser confocal microscope
(left) and a microscope image (right).

The most significant difference between prediction and
measurement is that measurements found highest contrast
for a ridge angle of θr = 10◦. We think that this result might
be caused by the presence of noise in the surface structure
due to the manufacturing process. To support this conjec-
ture, we have produced samples similar to the ones in previ-
ous work [9, 16] and investigated the microstructure of the
tool and the manufactured plastic sample. Figure 9 shows
a 3D visualization of height data captured with a 3D laser
confocal scanner and a microscope image both of the plas-
tic surface. While the original surfaces produced by Regi
et al. [16] may have been higher quality, there is no doubt
that the manufacturing process produces inaccuracies both
in the tool and in the sample microstructure. In the tool,
we have observed small burrs, especially along ridge edges.
These burrs have a tendency to leave residues of material on
the surface and create substantial artifacts. The white bulky
peaks in Figure 9 are examples of such artifacts. These im-
perfections in the surface become more significant for small
ridge angles and may easily hide the signal from the ridged
structure in noise. We believe this is a plausible explanation
for this deviation between prediction and measurement.

6. Discussion and Future Work
We have developed a new model for predicting the re-

flectance properties of an engineered anisotropic surface



Figure 10. The surface fraction masked by the ridged structure is
given by the ratio between p and p′.

made of parallel micro ridges. Our model provides a BRDF
based on microfacet theory including an expression for the
geometrical attenuation function. The BRDF describes our
particular type of ridged surface, but a similar procedure
could be employed to model other engineered surface mi-
crostructures. We validated our model by comparing with
experimental measurements from previous work. Our re-
sults are quite similar to the measurements, but we observed
some deviations. If deviations are due to manufacturing ar-
tifacts, as we conjecture, our model is useful as a tool for
computer vision based quality inspection of optical func-
tional surfaces of this kind. In addition, our model provides
many opportunities for optimizing surface structure with the
objective of maximizing contrast, for example. It is signifi-
cantly easier to modify microstructure configuration in sim-
ulation as compared with experiment.

In the future, we would like to further support our con-
jecture that contrast measurements converge to predicted
contrasts as sample quality improves. This will be in-
vestigated as tooling and manufacturing processes improve
to provide higher quality samples. Moreover, comparison
of anisotropic BRDF measurements with predicted values
would also be interesting as an alternative to the more over-
all contrast measurements.

A. The G1 Function for a Ridged Surface
This appendix provides some details about the derivation

of the geometrical attenuation function described in Eq. 2.
The value of the function G1 is given by the ratio be-

tween the portion of the pitch surface visible from a given
direction ~ωp and the total pitch surface. Figure 10 provides
some elements that are useful for the derivation of Eq. 2.
The vector ~ωr represents the reflection of ~ωp around the
surface normal ~m, θr is the ridge angle and θp is the an-
gle between ~ωp and ~m, p and r represent respectively the
length of the pitch and the length of the ridge, and p′ repre-
sents the length of the portion of pitch surface for which the

reflection vector ~ωr is blocked by the ridge.
Now, G1 is described by

G1(~ωp, ~m) = 1− p′(~ωp, ~m)

p
, (7)

and the value of p′ is

p′(~ωp, ~m) = r tan θp = p tan θr tan θp. (8)

Then, by inserting Eq. 8 into Eq. 7, we have

G1(~ωp, ~m) = 1− tan θr tan θp. (9)

Since the value of p′ might become greater than p for certain
combinations of angles θr and θp, we modify Eq. 9 and get

G1(~ωp, ~m) = χ+

(
~ωp · ~m
~ωp · ~n

)
× [1−min (1, |tan θr tan θp|)] . (10)

In a similar way, it can be shown that for an arbitrary direc-
tion ~ω not lying in the plane spanned by the ~n and ~m Eq. 10
is still valid and depends only on the projection vector ~ωp

and the surface normal ~m.
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Figure 1: Hemispheres and bunnies with smooth and rough surfaces, and flat samples (smileys and QR code) with spatially varying
anisotropic reflectance. The scene is observed from two different directions to exhibit the anisotropy. The sun is used as a directional light
source. Each item was printed in a one-step process using the presented technique.

Abstract
Digital light processing stereolithography is a promising technique for 3D printing. However, it offers little control over the
surface appearance of the printed object. The printing process is typically layered, which leads to aliasing artifacts that affect
surface appearance. An antialiasing option is to use grayscale pixel values in the layer images that we supply to the printer.
This enables a kind of subvoxel growth control. We explore this concept and use it for editing surface microstructure. In other
words, we modify the surface appearance of a printed object by applying a grayscale pattern to the surface voxels before
sending the cross-sectional layer images to the printer. We find that a smooth noise function is an excellent tool for varying
surface roughness and for breaking the regularities that lead to aliasing. Conversely, we also present examples that introduce
regularities to produce controlled anisotropic surface appearance. Our hope is that subvoxel growth control in stereolithography
can lead 3D printing toward customizable surface appearance. The printing process adds what we call ground noise to the
printed result. We suggest a way of modeling this ground noise to provide users with a tool for estimating a printer’s ability to
control surface reflectance.

CCS Concepts
•Computing methodologies → Reflectance modeling;
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1. Introduction

While 3D printers can often print geometric features in high qual-
ity, they lack the ability to control surface appearance by modifying
roughness and reflectance properties. The ability to produce mod-
els with region-specific surface properties is crucial for artists and
developers to properly design the appearance of a part. In the pro-
totyping stage of product development, additive manufacturing is
commonly used to produce parts in order to evaluate the final aes-
thetics of a product. For a part to look like a designed digital model,
however, additional surface processing is often required. We pro-
pose a method for better control of printed surface properties to
enable customization of the final appearance of a printed part.

The printing technology we work with is based on photopoly-
merization, which refers to the curing of liquid photo-reactive
resins (photopolymers) using light. The light is usually in the ul-
traviolet range of wavelengths. This process is used for 3D printing
with stereolithography, where a light source selectively illuminates
a photopolymer to produce a solid object with a user-defined shape.
If a digital light processing (DLP) projector is used as the source,
the technique is referred to as DLP printing. In this case, we can
specify the user-defined shape as a volume. The photopolymer is
contained inside a vat and at each step a building platform is raised
or lowered, depending on the setup of the DLP printer, in order to
expose only a thin layer of liquid photopolymer to the projector.
Each slice of the volume is then projected onto the photopolymer
to produce a layer of the 3D print consisting of solidified polymer
in all the pixels of the slice with value one (white voxels). In the
context of DLP printing, we provide an investigation of the use of
grayscale voxel values to control surface microstructure. Figure 1
displays some of our results.

Commercial 3D printers improve continually in terms of the res-
olution and the complexity of the geometries that can be printed.
Nevertheless, the final surface appearance is typically controlled
through the use of different print materials, deposition of different
inks, and postprocessing of the surface. Samples with different re-
flectance properties can be printed directly in a one-step process,
but the microstructure of the surface is then defined by the em-
ployed 3D printing technique. For example, in a material-extrusion
based printer, the sample surface will exhibit layering artifacts,
while a powder based print will have a grainy surface. A DLP
printer can produce smooth flat surfaces, but on vertical and curved
surfaces it will produce staircase artifacts. Even if the layers are so
thin that we cannot see them with our naked eyes, the layered struc-
ture still produces moiré patterns and reflects light with a glean
at certain angles. To get a different appearance, such as smooth
or matte, the printer must produce a more detailed geometry with
smaller features. The resolution of the 3D printer typically sets the
limitation and prevents us from obtaining the desired result.

In this work, we show how the use of grayscale patterns greatly
increases the capabilities of a DLP printer, and how it enables us
to print microfeatures and patterns on the surface of a sample in a
one step process without changing the macroscopic geometry of the
printed part. By using this technique, we can modify the roughness
and surface appearance of a print without changing materials or
applying postprocessing to the sample.

2. Related Work

Fabrication of microgeometry to obtain custom surface reflectance
was pioneered by Weyrich et al. [WPMR09]. They point at many
interesting applications and fabricate custom microgeometry using
a micro milling approach. In a 3D printing context, a 5-axis micro
milling machine can produce free-form surfaces with fairly small
features. However, due to the kinematics of the milling process, it
is difficult to control the surface roughness [ABRK17]. In another
early technique, Matusik et al. [MAG∗09] use different inks in dif-
ferent halftoning patterns to print a surface with spatially-varying
reflectance properties. This technique is however restricted to print-
ing on planar surfaces, and the microstructure that can be printed
depends on the reflectance properties of the employed inks.

Different ways of extending these early techniques have been
tested. Malzbender et al. [MSS∗12] print on a paper with a static
microstructure and let the selective depositing of ink control the
surface reflectance. More generally, Baar et al. [BBS15] study the
link between variation of print parameters and local control of the
gloss appearance in a printout. However, they only consider print-
ing of flat images. Lan et al. [LDPT13] use a 3D printer based on
material jetting to produce patches with oriented facets and then
coat them with glossy inks using a flatbed UV printer. However,
the facets in the patches are visible to the naked eye (140 µm by
140 µm) and the fabrication process requires two steps. The use of
the flatbed printer puts a constraint on the curvature of the surface
that the inks can be applied to. Thus, when applying this method to
a 3D surface, the object is divided into several parts that are stitched
together in a post-process after inks have been deposited using the
flatbed printer. Another approach requiring two steps is by Rouiller
et al. [RBK∗13]. They use another 3D printer based on material
jetting to print microfacetted transparent domes that they stick onto
a colored model, which was 3D printed using a powder bed printer.
In this way, each dome modifies the reflectance in the local area
where it is attached. As opposed to these techniques, we present
a one-step approach where the fabrication of surface microstruc-
ture is integrated into the 3D printing process. The material jetting
printers (PolyJet technology) employed in this previous work can
only print binary voxels (material or not). Consequently, they do
not support the grayscale voxel values that we can use when em-
ploying a vat polymerization based DLP printer.

Levin et al. [LGX∗13] present a technique for printing mi-
crostructure small enough to create reflectance functions based on
wave interference effects. Their technique is based on photolithog-
raphy, which is a very precise but also very costly process that re-
quires a special wafer coated by photoresist. Photolithography is
currently not available as a 3D printing technique.

Pereira et al. [PLMR17] propose an entirely different approach,
where magnetic microflakes are embedded into a photopolymer
and controlled during printing using electromagnets. While they
obtain interesting results, the magnetic flakes are significantly
harder to control than our surface microstructure based on gray-
scale values in the projected cross-sectional images.

Use of grayscale values in DLP printing is not entirely new.
Mostafa et al. [MQM17] explore to what extent grayscale val-
ues can improve the dimensional accuracy of an Autodesk Em-
ber printer. This use case has also been investigated internally
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at Autodesk [Gre16], where they improve printing fidelity using
grayscale values computed with antialiasing techniques. The work
presented by Greene [Gre16] is the work most closely related to
ours. Greene even mentions in passing that random noise can be
used to break moiré patterns and to produce a matte surface. How-
ever, to the best of our knowledge, we are the first to more carefully
modify surface roughness and reflectance properties of 3D printed
objects by applying grayscale patterns across surface voxels.

Some work has been done to control the subsurface scatter-
ing and absorption properties of fabricated objects [DWP∗10,
HFM∗10,PRJ∗13,ESZ∗17]. In our case, these properties are deter-
mined by the photopolymer selected for the print job. We consider
it an interesting challenge for future work to investigate ways of
controlling the scattering properties of a photopolymer.

3. Subvoxel Growth

The resolution of DLP printing is typically in the range from 15
to 100 µm [LCR∗17]. It depends on the quality and pixel resolu-
tion of the digital micromirror device (DMD) chip of the projector
and on the step-precision of the building plate. It is possible to use
grayscale images as input for the projector to obtain subvoxel accu-
racy [Gre16,MQM17]. The principle behind this idea is that the so-
lidification process of the resin depends on the amount of UV light
received, and this amount can be changed by varying either the pe-
riod of time for which an image is projected (exposure time) or the
intensity of the light. With grayscale values as input for the projec-
tor, we vary the intensity and thus control the growth of each voxel.
This approach can be used to produce very small features and pat-
terns on the surface of a 3D printed sample. If applied properly, the
grayscale values modify the microscopic surface properties of an
object without modifying its macroscopic geometrical structure.

3.1. Subvoxel Control

The relation between grayscale values and voxel growth is crucial if
we are to print an arbitrary microscopic pattern with high accuracy.
If we project an even slope of all the grayscale values (pixel in-
tensity values from black to white), we would ideally see the same
even slope being printed. If this were the case, voxels would grow
proportionally with the grayscale values.

Unfortunately, the photopolymerization is initiated only when a
critical energy level is reached, and the cure depth then follows a
logarithmic curve with increasing energy [Jac92, LPA01, Ben17].
Thus, we can determine the relationship between pixel intensity
and voxel growth. With τ denoting the thickness of a print layer,
the cure depth and thus the voxel growth height is

τ f (I) =

{
α+β log(I− γ) , for I > e−α/β + γ ,

0 , for I ≤ e−α/β + γ ,
(1)

where I is the pixel intensity, and α, β, and γ are parameters that
need to be fitted for a particular photopolymer.

Through inversion of the function f , we obtain a mapping to
the proportionality relation, which significantly eases control of the

Figure 2: Inversion of non-linear voxel growth to have printed
voxel height proportional to grayscale pixel intensity, I.

Figure 3: A desired circular print layer geometry (left), its rasteri-
zation according to the resolution of the projector (middle), and the
same layer with grayscale values for antialiasing (right).

voxel growth. We have

f−1(I) =

{
e

τ I−α

β + γ , for I > 0 ,
0 , for I = 0 ,

(2)

and using f−1(I) as the grayscale values of the pixels in a pro-
jection, the printer prints voxels of height τ I. This is illustrated in
Figure 2. Greene [Gre16] presented a similar result, but they used
a quadratic f function while suggesting that a logarithmic function
seems a better choice. We found the right f function by considering
the photopolymerization cure depth.

3.2. Grayscale Patterns

The ability to control voxel growth using a linear scale of grayscale
values enables us not only to improve fidelity and reduce aliasing
artifacts, as demonstrated by Greene [Gre16], it also enables us to
print smooth microfeatures in a single layer and thereby modify the
reflectance properties of the surface.

3.2.1. Antialiasing

When printing an object, we have to slice the geometry to gen-
erate an image for each layer. Slices are obtained by rasterizing
the geometry, and if no measures are taken, spatial aliasing will be
present along edges of the layers in the form of pixelated bound-
aries, see Figure 3. Grayscale values based on supersampling (in all
three dimensions) can be used to counteract this effect and produce
a smoother surface [Gre16]. However, this is not enough to com-
pletely remove staircase artifacts in a surface. These artifacts lead
to visible reflectance anisotropy and moiré patterns.
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Figure 4: Sinusoidal patterns with different wavelengths (leftmost
with λu = λv = 100 µm and middle left with λu = λv = 400 µm).
Sparse convolution noise with different amplitude and frequency
factors (middle left with A = 0.625 and B = 16 and rightmost with
A = 3 and B = 32). Both types of patterns are useful for controlling
roughness. Due to its irregularities, the noise function is also useful
for antialiasing.

Greene [Gre16] suggests the use of Gaussian smoothing that pro-
duces grayscale values in a thick band around the edges to further
reduce aliasing. A broad Gaussian smoothing is however likely to
also smoothen the macroscopic geometry of the object if the sur-
face is not spherical. This would compromise object fidelity. An-
other suggestion by Autodesk [Gre16] is to add random noise to
all the grayscale values. This breaks the moiré patterns, but it also
leads to a matte surface. In other words, when printing in 3D, exist-
ing work leaves us with the choice of an aliased or a matte surface
appearance. In the following, we demonstrate how a smooth low-
amplitude solid noise function can be used to break moiré patterns
while retaining surface smoothness. In addition, we explore the use
of procedural methods for inserting grayscale values in surface vox-
els to control the surface microstructure.

3.2.2. Reflectance Properties

The roughness of a surface is given by its microstructure. The fea-
tures are so small that they are only individually visible at the mi-
croscale, but they affect the macroscopic surface appearance. Our
goal is to apply grayscale patterns along the surface of an object
to print surfaces with different roughnesses, going from smooth to
almost diffuse, and also to print spatially varying anisotropic re-
flectance properties.

As rough surfaces are characterized by having a distribution of
microfacet normals pointing in various directions, one way to ob-
tain isotropic roughness is to use a curved surface [TR75]. We
therefore test a grayscale pattern with surface voxel values set ac-
cording to a (2D) sinusoidal function running along the surface.
The function is

I(u,v) =
1
2

sin
(

2π

λu
u
)

sin
(

2π

λv
v
)
+

1
2
, (3)

where u and v are parameters measuring physical length in a uni-
form parametrization of the surface, so that λu and λv represent the
wavelengths along these two dimensions. The wavelengths of the
sinusoid then control the roughness of the surface, see Figure 4.
This kind of grayscale pattern will generate a periodic sequence of
micro-cavities and micro-bumps on the 3D printed object, and this
structure will produce a rough surface when the frequency of the
sinusoid is high (more bumps and cavities), and a smooth surface
when the frequency is low.

An issue with the sinusoidal surface is its regularity. Since the

Figure 5: Sinusoidal patterns with different wavelengths along the
two axes (left with λu = 50 µm and λv = 200 µm and middle with
λu = 50 µm and λv = 400 µm) and sequences of parallel ridges
(right). These 2D patterns are useful for printing anisotropic sur-
face roughness and reflectance contrast.

function is regular, it does not entirely prevent the aliasing prob-
lems due to layered printing. We therefore decided to also use a
smooth noise function, as it is irregular but produces a similar effect
in terms of the microfacet normal distribution. To avoid the grid-
aligned artifacts seen in Perlin noises [Per85, Per02, MSRG12], we
employ a solid sparse convolution noise (Appendix A). The differ-
ence between sinusoidal patterns and noise slices is illustrated in
Figure 4. By controlling the frequency and amplitude of the noise
function, we are able to obtain smooth and rough surfaces with very
few staircase artifacts (hemispheres and bunnies in Figure 1).

We print anisotropic reflectance properties using a 2D sinusoidal
function with different frequencies along the two axes, or a se-
quence of parallel ridges, as described by Luongo et al. [LFD∗17],
see Figure 5. These patterns are useful for producing anisotropic
reflectance contrast (smileys and QR code in Figure 1). While
we only test these patterns on a 2D surface, they could be tex-
ture mapped onto a curved surface to obtain a 3D surface with
anisotropic reflectance. Texture coordinates for a given model can
be generated using a 3D modeling tool such as Maya or Blender. If
we want to avoid this task, a solid noise function (Appendix A) can
be stretched along the tangent space of a 3D surface using line inte-
gral convolution [BSH97]. To obtain a consistently oriented tangent
space without use of texture coordinates, we can use the function
for building an orthonormal basis by Frisvad [Fri12].

3.3. Assessing Reflectance Controllability

We assess how well our method controls the reflectance properties
of a printed surface using two different approaches. For anisotropic
microstructure, we predict the expected contrasts in light reflection
when the surface is illuminated and viewed from different direc-
tions. We do this by rendering the surface appearance due to the
varying microstructures using analytic BRDF models derived for
those specific microstructures. For the ridged structure in Figure 5,
we use the model presented by Luongo et al. [LFD∗17]. For the
anisotropic sinusoidal patterns, we derived a new model, which is
described in Appendix B. We then qualitatively compare the ren-
dered images with photographs of printed samples. The compar-
ison is not in terms of photorealism, but in terms of contrast in
light reflection. For irregular noise-based microstructure, such as
the patterns generated using sparse convolution noise (Figure 4),
we compute the corresponding bidirectional reflectance distribu-
tion function (BRDF) using a path tracer. We path trace a represen-
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1. High poly mesh input 2. Scaled into View-Frustum
(AABB)

3. Sub slice (High Resolution)

4. 2DAA (Lower Resolution)5. 3DAA - Blending of sub slices

Sub slicing within each slice boundary

6. Final image

Figure 6: Mesh slicing pipeline based on rasterization. Used for
generating cross-sectional layer images for the DLP projector.

tative patch of the noise used as grayscale input for the printer. Mea-
suring the printed microstructure using a microscope, we can then
compare the BRDF of the desired microstructure with the BRDF of
a corresponding printed microstructure.

Interestingly, Ribardière et al. [RBSM19] provide an algorithm
for generating height fields with microstructure corresponding to
the normal distributions used in popular analytic microfacet BRDF
models [WMLT07]. These height fields can be used as grayscale
maps in our printing process and would allow for assessments sim-
ilar to ours but with the commonly used BRDFs. We leave this
additional investigation for future work.

3.4. Mesh Slicing

To generate antialiased cross-sectional layer images for the DLP
projector, we have tested two different approaches: one based on
rasterization and one based on ray tracing, both running on the
graphics processing unit (GPU). Our rasterization procedure is il-
lustrated in Figure 6, and the different steps are described in the
following paragraphs.

In both approaches, a closed triangle mesh is provided as input
(step 1) and the print volume is represented by the view frustum of
an orthographic camera placed above the mesh looking downwards.
The background color is set to black and the frame buffer resolution
is set to the projector resolution. The latter ensures that each pixel
of a generated layer image corresponds to a voxel with physical
dimensions as described in Section 4. To determine the number of
slices that we need, we calculate the object height in number of
voxels using the desired physical height of the printed object.

In rasterization, we slice the mesh by moving the near cutting
plane of the camera through the print volume in steps of the print
layer thickness (step 2). The far cutting plane is placed at the end of
the print volume and depth testing is enabled. For frontfacing trian-
gles, the color is based on a procedural texture (sinusoid or noise)
but the fragment is only rendered to the color buffer if it is within
the current layer. Frontfacing triangles behind the current layer are
only rendered to the depth buffer. Backfacing triangles passing the

Membrane

Projector

Vat

Buildplate

Resin

Glass

Figure 7: Schematic of the homebuilt DLP printer.

depth test are rendered with a flat white color. For each slice, we
generate a number of subslices (step 3) to include supersampling in
the depth dimension.

In ray tracing, we trace a ray from the image plane through all
surfaces until it reaches the front surface of the current layer. The
ray keeps a counter for each intersection, so that the counter is even
when the ray is outside the object, odd when inside. A ray is then
traced in the same direction from the front to the back of the layer.
The fraction of the distance traveled by this ray that was also inside
the object provides a grayscale value for antialiasing in the depth
direction. Combining this with jitter sampling of the ray origin in
the camera pixel, we obtain grayscale values incorporating full 3D
antialiasing. As in rasterization, the grayscale value is modulated
by a procedural texture when the ray going through the layer inter-
sects a frontfacing triangle.

In rasterization, antialiasing requires more passes. To have 2D
antialiasing in each slice, we use hardware supported full screen an-
tialiasing with four samples in each pixel (4xFSAA). This is done in
eight times higher resolution and downsampled to the projector res-
olution (step 4). The subslices are then blended into the same frame
buffer (step 5) to produce one antialiased cross-sectional layer im-
age for the printer (step 6).

4. Experiments

We run our experiments on a homebuilt bottom-up DLP printer,
which is based on the work of Jørgensen [Jør15]. A schematic of
the printer is in Figure 7. The photopolymer resin is inside the vat.
The building platform starts at the bottom of the vat and moves up-
wards during the printing process. The step precision of the build-
ing platform is 1 µm, which enables us to print very thin layers. A
transparent membrane is placed at the bottom of the vat in order to
separate the photopolymer from the glass. This is done to facilitate
the peeling effect and the release of the sample from the vat when
the platform is raised [PZNH16].

The DLP projector we use is a LUXBEAM Rapid System by
Visitech equipped with a DMD chipset of the DLP9000 family by
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Texas Instruments. It has an array of 2560× 1600 micro-mirrors
and pixel pitch of 7.54 µm. The projector is placed underneath the
vat and can be raised and lowered to focus it. We use a projection
lens from Visitech with a magnification factor of 1.0×, yielding an
image pixel pitch of 7.54 µm, or alternatively a lens with a factor
of 2.0× and pixel pitch of 15.08 µm.

According to the manufacturer, the projector is more stable for
high values of the UV LED amplitude, but even low values of UV
LED amplitude can overcure the photopolymer in our setup. This
would ruin the quality of the prints, so we equipped the projector
with two absorptive neutral density filters from Thorlabs. Each fil-
ter transmits 10% of the incoming light, so that the amount of light
reaching the photopolymer is 1% of the light emitted by the projec-
tor. In this way, we can use higher values of UV LED amplitude for
our prints, which means that we get a more stable behavior from
the projector (less flickering, for example).

The photopolymer we use is Industrial Blend (red) resin from
Fun To Do. In order to inspect and measure the properties of
our prints we used an optical measuring device based on focus-
variation, Infinite Focus by Alicona, which can produce high-
quality 3D measurements of the surfaces and measure the surface
roughness with nanometer precision.

After the printing process, the sample is cleaned with iso-
propanol in an ultrasonic cleaner in order to remove any residual
resin from the surface. We then do additional curing in a UV cur-
ing box to ensure that the sample has solidified properly, and to
remove the risk of contamination when touching the sample.

Our setup enables us to print high resolution samples. However,
the presence of the membrane, which mitigates peeling forces, is
a source of some defects: when the membrane is installed on the
glass, some wrinkles may be present and air can be trapped be-
tween the membrane and the glass causing the formation of bub-
bles. Such issues affect the final quality of the sample, where we
sometimes observe bumps and scratches on the surface. Scratches
start appearing as the membrane gets worn.

4.1. Parameter Calibration

The photopolymer curing process is determined by the intensity of
the projected UV light, by the exposure time, and by the amount of
resin that we want to cure (layer thickness). All these parameters
vary for different materials, and a calibration operation is required
in order to find the optimal configuration for a certain setup.

Based on previous experiments performed on the same
printer [Rib17], we decided to use a value of τ = 18 µm for the
layer thickness. This value is small enough to give us microfea-
tures, which can affect the reflectance properties of an object with-
out being visible to the naked eye, and it is thick enough so that the
features created with grayscale images are not overexposed.

To calibrate the projector intensity and exposure time, we cre-
ated a calibration sample with the same pattern repeated 36 times
on the top surface, see Figure 8. For each of these 36 patterns, we
use a different value of intensity or exposure time. One out of the
36 patterns has a physical size of 1920× 1920 µm2 and consists
of four black-and-white checkerboards with different scales for the

Figure 8: Pattern used to calibrate projector parameters (top left)
and microscope image of a printed pattern (bottom left). The pat-
tern is composed of four black-and-white checkerboards at different
scales, and it is repeated 36 times in a calibration sample. On the
right, a microscope image with 16 of the 36 checkerboard pattern
repetitions in a calibration sample.

size of the squares. We first print a calibration sample with increas-
ing UV LED amplitude for each pattern repetition while keeping
the exposure time constant. The same experiment is then repeated
with increasing exposure time while keeping the UV LED ampli-
tude constant. A good combination of parameters is found when a
pattern shows sharp features which are neither underexposed nor
overcured. With this experiment, we found that for a layer thick-
ness of τ = 18 µm the optimal parameters of our setup are an UV
LED amplitude of 230 and an exposure time of 3 seconds.

4.2. Voxel Height Measurements

As mentioned in Section 3.1, the relation between pixel intensity
and growth of the corresponding voxel is logarithmic, Eq. 1. In
order to apply our correction, Eq. 2, we need to find the values of
the parameters α, β, and γ.

We printed several samples with a repeated linear grayscale gra-
dient containing all the values from black to white, the upper left
part of Figure 9 shows two examples. We then examined the sam-
ples with the Infinite Focus microscope and measured the surface
with a vertical resolution of 0.4 µm. The collected data were used
to find a fit for Eq. 1, see the lower left part of Figure 9, and we
estimated the parameter values to be α = 17.71 µm, β = 10.24 µm,
and γ =−0.01. By having the same pattern repeated multiple times
we got a better estimate and were able deal with some of the noise
introduced by the printing process.

The corrected grayscale pattern and the corresponding printed
samples are shown in the upper right part of Figure 9. The surface
of the sample now looks more smooth and the resin solidifies ev-
erywhere on the surface. The blue plot in the lower right part of
Figure 9 is a measurement of the surface height, while the red plot
is the ideal linear behavior that we would like to have when print-
ing with grayscale images. Even though the blue plot shows some
irregularities, it proves that by applying Eq. 2 to our patterns we
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Figure 9: Grayscale layer images and microscope images of
printed results used for estimating α, β, and γ to control voxel
growth (two repetitions). The linear gradient (left) is used for fit-
ting to Eq. 1. The logarithmic gradient (right) is used for testing
the linearity of the printed gradient after correction with Eq. 2.

Table 1: Average roughness measured as Sa and Sq for samples
with sparse convolution noise applied using different amplitudes A
and frequencies B.

A = 0.625 A = 2 A = 3
Sa (µm) 2.21 3.30 5.53

B = 16
Sq (µm) 2.82 4.20 6.94
Sa (µm) 2.90 4.49 7.95

B = 32
Sq (µm) 3.64 5.71 10.10

obtain the desired geometry, and we therefore have the ability to
control subvoxel-sized surface microstructure.

4.3. Roughness Measurements

To verify that we can print surfaces with different roughnesses
by applying sparse convolution noise with varying amplitude and
frequency parameters (Appendix A), we printed several samples
and measured their surface roughness with the microscope. The
parameters used in this experiment and the corresponding results
are in Table 1. These results show quantitatively that by increas-
ing the amplitude A and the frequency B of the noise function the
area roughness parameters Sa (arithmetic average height) and Sq
(root mean square roughness) increase as well. Thus, we obtain a
smoother surface if we apply a grayscale pattern with sparse con-
volution noise using lower values of A and B, and more diffuse-like
surfaces if we use higher values of these two parameters.

Figure 10: Hemispheres printed with grayscale values calculated
using supersampling. On the left, the hemispheres were printed us-
ing a 2× magnifying lens: one with supersampling only (top left)
and one with both supersampling and sparse convolution noise
(bottom left, parameters A = 0.625 and B = 32). On the right, the
hemisphere was printed with supersampling and 1× magnifying
lens. Even at a scale this small, moiré patterns are still visible when
the surface is observed in a microscope.

4.4. Antialiasing Abilities of Supersampling

As discussed by Greene [Gre16] and in Section 3.2.1, we can
use supersampling to calculate grayscale values for spatial an-
tialiasing during the slicing process. However, we find (as did
Greene [Gre16]) that the surface will still exhibit reflectance
anisotropy and moiré patterns. The hemisphere in Figure 10 (top
left) was printed using 2× magnifying lens and supersampling for
antialiasing. Nevertheless, it still has an elongated highlight that we
would only expect to see when the surface exhibits anisotropic re-
flectance [AS00]. Even if printed with 1× magnifying lens and su-
persampling, we still see staircases and moiré patterns when look-
ing through a microscope (Figure 10, right). On the other hand,
we find a smooth irregular noise function (like the one presented
in Appendix A) useful for obtaining improved antialiasing and
more isotropic reflectance properties. The hemisphere in Figure 10
(bottom left) includes sparse convolution noise with parameters
A = 0.625 and B = 32. While this sample is not completely free
of aliasing artifacts, it does exhibits a more rounded highlight and,
thus, more isotropic reflectance properties. The same hemisphere is
illuminated by a more directional source in Figure 1.

5. Results

Let us compare printed surface microstructure with the surface mi-
crostructure given as input grayscale values for the printing pro-
cess. The first column of Figure 11 is examples of input noise at am-
plitudes A = 0.625,2,3 and the third column is examples of printed
surface microstructure for input noise at the same amplitudes. It
is clear that the printing process introduces additional noise, let us
call it ground noise, caused by the membrane and the cleaning pro-
cess. We can now use path tracing of a specular surface patch with
geometry given by these height maps to calculate a correspond-
ing BRDF lobe (second column of Figure 11). The input noises
produce a highly specular lobe, so we also draw these using a log-
arithmic scale in Figure 12 to make their differences more easily
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(a) input (b) input BRDF (c) measured (d) printed BRDF (e) input + ground (f) model BRDF
Figure 11: (a) Input grayscale noise values of amplitudes A = 0.625,2,3, (c) surface microstructure printed using input of the same ampli-
tudes and measured using a microscope, (e) ground noise added to the input noise. (b, d, f) Lobe images showing the BRDF values for a 45
degrees angle of incidence. The lobes were computed using path tracing.

A = 0.625 A = 2 A = 3
Figure 12: Log transformed versions of the BRDF lobes based on
the input noise values alone (second column of Figure 11).

observable. We observe that the shape of the lobe broadens with in-
creasing amplitude. The height maps obtained by imaging printed
surfaces using the Infinite Focus microscope result in a much more
broadly scattering lobe that we visualize in the fourth column of
Figure 11. The reflectance properties of the input surfaces and the
printed surfaces are so different that they are hard to compare. How-
ever, the results are important as we can use them to build a model
of the printer’s added ground noise.

Through inspection of the measured height maps and using the
noise function in Appendix A, we manually found that the follow-
ing function is a good model for our printer’s ground noise:

ground(xxx)

=
2
3

noise
(

xxx
50 µm

)
+

1
9

noise
(

xxx
25 µm

)
+

1
12

noise
(

xxx
2 µm

)
.

We believe this is useful as an example if one were to build a sim-
ilar model for the ground noise of another printer. Finding an ex-
pression for the ground noise of a printer is important as it models

the imprecision of the printing process. Since the printer adds noise
similar to the ground noise to the input grayscale values, the ground
noise function provides us with an outline of the printer’s limita-
tions in terms of reflectance control. If the printer is improved, we
can repeat the experiment and see if the ground noise has dimin-
ished. To model the BRDF output of the printer, we add the ground
noise to the input grayscale values and flatten the result a bit by
clamping to include the membrane in the model. The fifth column
of Figure 11 is examples of the surface microstructure estimated by
this model, and the sixth column indicates that the resulting BRDF
lobes come fairly close to the printed BRDF in the fourth column.

Figure 1 displays some of the visual effects enabled by our tech-
nique. It is remarkable that the rather small difference in the BRDFs
that we estimated (Figure 11) produces a fairly obvious visual dif-
ference. In the following, we explore different techniques for print-
ing surfaces with anisotropic reflection, and we demonstrate why
the irregular noise function is important when printing 3D surfaces.
Regarding the quality of antialiasing and the rate at which slices are
generated, both techniques introduced in Section 3.4 perform sim-
ilarly, and either one can be used to obtain the following results.

Figure 13 (top row) shows the grayscale patterns used for print-
ing the smiley sample displayed in Figure 1. The figure also shows
microscope images of the printed result (bottom row). We printed
this sample with the 1× lens to test how well we can print surfaces
with anisotropic reflectance properties. In this example, we used
the grayscale pattern for the last layer of the printing process only.
We used the 2D sinusoid to generate the patterns in the main diag-
onal of Figure 13, with parameters λu = 150 µm and λv = 50 µm
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Figure 13: Sample generated using two different anisotropic pat-
terns with orthogonal orientation. The first two smileys have been
printed with anisotropic sinusoidal patterns but with two different
orientations. The last two have been printed with a ridged pattern
with two different orientations.

Figure 14: Photos of the anisotropic smiley samples of Figure 13
(top row) with light incident from the directions shown in the bot-
tom row. Reflection contrast predictions based on our analytic
BRDF models are in the middle row. While the contrast seen in the
printed samples is not as clear as in the predictions, the intensity
variations are qualitatively similar.

respectively λu = 50 µm and λv = 150 µm. In the antidiagonal, we
used ridged patterns [LFD∗17] with an inclination of 10◦ and pitch
length of 100 µm. The ridges of the patterns in these two smileys
have orthogonal orientations. The QR code in Figure 1 is another
example of a surface with orthogonal ridged structures, but this was
printed using the 2× magnifying lens.

Printing these anisotropic patterns, we obtain a sample with spa-
tially varying reflectance properties without adding any extra step
to the DLP printing process. Figure 14 exemplifies how the dif-
ferent parts of the sample reflect light differently under different
lighting conditions. The ridged structure generates different con-
trasts as the light rotates around the sample. The sinusoid structure
also results in anisotropic properties, but the difference in contrast
between the two different pattern orientations is not as strong as
for the ridged pattern. On the other hand, the 2D sinusoid structure
results in a more diffuse-like anisotropic effect. We validated these
results by comparing the photographs in the top row of Figure 14
with images rendered using the corresponding BRDF models (as
explained in Section 3). The printed samples present light reflec-

Figure 15: Hemisphere printed without applying a grayscale pat-
tern to the surface, leftmost, and from second to rightmost when
using noise with amplitude A = 0.625,2,3, respectively, and fre-
quency B = 32. Mesh slicing was done with ray tracing. The light-
view configuration is the same within each row.

tion contrast that is qualitatively similar to the rendered images.
The difference in reflection contrast between the printed samples
and the rendered images are mainly due to our choice of using
BRDF models (no subsurface scattering), and due to the ground
noise introduced by the printing process.

In Figure 15, we compare a hemisphere printed without applying
any grayscale pattern to the surface (leftmost) with samples where
we applied sparse convolution noise of different amplitudes (A).
The presence of a grayscale pattern produced by a smooth irregu-
lar noise function with low amplitude makes the surface smoother
and removes the majority of the staircase aliasing artifacts intro-
duced by the layered printing process. As the amplitude increases,
the specular highlight becomes less visible and the surface appears
to be more diffuse. This is a visual indication that the noise func-
tion enables us to control roughness not only in flat samples (as
measured in Section 4.3) but also in curved 3D printed surfaces.

Finally, we applied grayscale patterns to a more complex ge-
ometry, namely the Stanford Bunny. The results are in Figure 1
and in Figure 16. In the leftmost column of Figure 16, the bunny
was printed without applying a pattern to the surface. It exhibits an
anisotropic specular highlight which is caused by the staircase that
is a by-product of the layered printing. In the middle left column,
we tried to remove the anisotropy and smoothen the printed surface
by applying a low-frequency 2D sinusoid. While this approach to
some extent reduces staircase artifacts in the highlights, a line-like
reflection is still visible across the back of the bunny (bottom im-
age). In addition, the regularity of the sinusoid pattern makes it
visible on the back and the ears of the bunny (top image). A bet-
ter result was achieved by using sparse convolution noise (middle
right column and rightmost column). With a value of A = 0.625,
we obtained a smoother surface with highlights similar to the ones
obtained with the sinusoid pattern specular highlight but without
introducing visible sinusoidal features. With A = 3, the bunny is
more rough and the appearance is more diffuse-like. In Figure 1,
we used the sun as the light source. This somewhat resembles a di-
rectional light and makes the difference between the rough and the
smooth bunny stand out clearly.

We observed that the effect of our technique is less visible at
the bottom of the ears of the Stanford Bunny. This is the case for
surface voxels that are backfacing as seen from the projector. These
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standard sinusoid noise (A = 0.625) noise (A = 3)

Figure 16: Stanford Bunny printed and photographed in two different light-view configurations (rows). The bunny was printed without
any grayscale pattern applied (standard), with an isotropic 2D sinusoid function applied (sinusoid, λu = λv = 400 µm), and using sparse
convolution noise with low and high amplitudes (A) and frequency B = 64 (noise). The glean due to anisotropic reflection caused by layering
artifacts is clearly observable for the standard technique. The sinusoid pattern reduces the problem but introduces regularity artifacts. The
noise function more effectively reduces the problem. As compared with the rough bunny (A = 3), the smooth bunny (A = 0.625) is brighter in
the highlight regions and darker outside those regions as expected. Mesh slicing was done with rasterization.

may have a different ground noise due to being cured without adhe-
sion (interlaminar bonding) to an existing solidified layer. A tech-
nique such as monitoring the photopolymerization process using a
photorheometer [HOBS18] might be used to improve the precision
of a 3D printer for backfacing surface voxels.

6. Conclusion

In this work, we presented a one-step technique for controlling sur-
face appearance in DLP printing. Our technique is based on pro-
jection of grayscale images to control the voxel growth and enable
printing of subvoxel sized microstructure. We provided a procedure
for correcting the nonlinearity of the photopolymerization process,
and the validity of this procedure was experimentally verified. We
also demonstrated that application of different grayscale patterns to
surface voxels is useful for modifying the microstructure of a sur-
face and for printing spatially varying anisotropic reflectance prop-
erties. An important discovery in our work is that a smooth irregular
noise function (sparse convolution noise, in our case) is useful both
for antialiasing to obtaining a smooth surfaces without staircase ar-
tifacts and for controlling surface roughness. We have described a
pipeline for applying grayscale patterns to surface voxels during
the slicing of mesh geometry. Finally, we included a procedure for
calibrating the parameters of a DLP printer and for estimating the
ground noise added to the surface by the printing process. Our re-
sults demonstrate that by modulating the UV light intensity of a
DLP projector with grayscale images we can print samples with

spatially varying reflectance properties, such as anisotropic effects
and surface roughness.

As an addendum, Mark Wheadon has presented a webpage
that describes an interesting experimental technique called velocity
painting (www.velocitypainting.xyz). This technique enables use
of grayscale values in fused deposition modeling (FDM) printing.
The grayscale input images modify and control the print speed of
an FDM 3D printer. This enables printing of patterns on the sample
surface without modifying the filament or using multiple extrud-
ers. We leave investigation of the microstructure controllabilities of
such a technique to future work. Nevertheless, we find it exciting
that our calibration and grayscale microstructure control techniques
can perhaps be transferred to the more commonly available nozzle-
based 3D printers.

Acknowledgments. This work was funded by Innovation Fund
Denmark (MADE Digital, 6151-00006B; QRprod, 5163-00001B;
3DIMS). The Stanford Bunny appearing in Figures 1, 6, and 16 is
based on data from the Stanford Computer Graphics Laboratory,
http://graphics.stanford.edu/data/3Dscanrep/.

Appendix A: Sparse Convolution Noise

We use sparse convolution noise [Lew84, Lew89] in the version
presented by Frisvad and Wyvill [FW07], but implemented as a
closed function. This is a solid noise function in the classical
sense [Per85], but without the grid-aligned regularity artifacts seen
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in Perlin noise and with no need for tabulated data. The noise func-
tion uses a simple linear congruential pseudo-random number gen-
erator:

tn+1 = (btn + c) mod m

rnd(tn) = tn+1/m ,

where we use b = 3125, c = 49, and m = 65536, and a cubic filter
kernel function

cubic(v) =
{

(1−4v ·v)3 for v ·v < 1
4 ,

0 otherwise .

A sparse distribution of randomly placed random impulses are then
blended using this cubic filter to obtain the noise function. As the
filter radius is 1

2 , we can use a regular grid offset by half a unit,
so that we only need to consider the impulses in the eight nearest
grid cells. Suppose i is the neighbor index of the grid cell, j is
the impulse index, and N is the number of impulses per cell. We
let αi, j denote the value of the impulse, ξξξi, j the local position of
the impulse in its grid cell, and ni, j the seed of the pseudo-random
number generator for an impulse. The noise function is then

noise(p) = 4
5 3
√

N

7

∑
i=0

N

∑
j=1

αi, j cubic(xi, j−p) ,

xi, j = qi +ξξξi, j

αi, j = rnd(tni, j )(1−2( j mod 2))

ξξξi, j =
(
rnd(tni, j+1), rnd(tni, j+2), rnd(tni, j+3)

)
ni, j = 4(N qi ·a+ j)

qi =

⌊
p−

(
1
2
,

1
2
,

1
2

)⌋
+

(
i mod 2,

⌊
i
2

⌋
mod 2,

⌊
i
4

⌋
mod 2

)
,

where N should be an even number to avoid a bias toward negative
impulse values. We use N = 30 and a = (1,1000,576).

To generate a noise function for procedural texturing with values
in [0,1], we use

min
(

max
(

0,
A
2

noise(Bp)+ 1
2

)
,1
)
,

where the parameters A and B control the amplitude and the fre-
quency (also called the scale) of the noise, respectively.

Appendix B: Masking and Shadowing for a Sinusoidal Structure

This appendix briefly describes the BRDF model that we used to
predict the reflection contrast produced by a 2D sinusoidal mi-
crostructure. The microstructure is described by Equation 3. The
model that we used is similar to the one presented by Luongo et
al. [LFD∗17] for the ridged surface microstructure, with the main
difference that we here use a different geometrical attenuation func-
tion, G. As Walter et al. [WMLT07], we use the separation

G(ωi,ωo,n) = G1(ωi,n)G1(ωo,n) ,

where ωi and ωo are incoming and outgoing light directions and n
is the surface normal.

We consider a generic 2D sinusoidal function

f (x,y) = Asin
(

2π

λx
x
)

sin
(

2π

λy
y
)
,

A

−A

0 λ

θ

n ω

ω

ω

x0x1

Figure 17: The surface fraction masked by the sinusoidal structure
is given by the ratio between |x1− x0| and λ.
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Figure 18: Plot of the masking function G1 for A = 1 and λ = 2π.

where A represents the amplitude, and λx and λy are the wave-
lengths along the x and y axes. For simplicity, we derive the ge-
ometrical attenuation function for the 1D function

f (x) = Acos(kx)

with k = 2π

λ
, and we then extend it to the 2D case.

For a given direction ω forming an angle θ with the surface nor-
mal n, as shown in Figure 17, we would like to determine if this
direction is tangent to f (x). This is determined by solving

f ′(x) =−Ak sin(kx) = m (4)

with m = tan
(

π

2 −θ
)
. Equation 4 admits

x0 = arcsin
(
− m

Ak

)1
k

as solution only if
∣∣ m

Ak

∣∣< 1. We can now define the function G1 by

G1(ω,n) =

{
1− |x1−x0|

λ
,
∣∣ m

Ak

∣∣< 1 ,
1 ,

∣∣ m
Ak

∣∣> 1 ,
(5)

where x1 is the intersection point between f (x) and the tangent line

ft(x) = f (x0)+m(x− x0) ,

as shown in Figure 17, and this is found by numerically solving the
equation ft(x)− f (x) = 0.

Equation 5 is plotted in Figure 18 for the parameters A = 1 and
λ = 2π. The function G1 is extended to the 2D sinusoidal case by
considering projections of ω on the planes spanned by n and the
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x-axis as well as n and the y-axis. We refer to these projections as
ωx and ωy and define G1 by

G1(ω,n) = G1(ωx,n)G1(ωy,n).
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We propose a method for direct comparison of rendered images with a corresponding photograph in order
to analyze the optical properties of physical objects and test the appropriateness of appearance models.
To this end, we provide a practical method for aligning a known object and a point-like light source
with the configuration observed in a photograph. Our method is based on projective transformation of
object edges and silhouette matching in the image plane. To improve the similarity between rendered
and photographed objects, we introduce models for spatially varying roughness and a model where the
distribution of light transmitted by a rough surface influences direction-dependent subsurface scatter-
ing. Our goal is to support development toward progressive refinement of appearance models through
quantitative validation. © 2020 Optical Society of America
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1. INTRODUCTION

Photorealistic rendering has many applications: product ap-
pearance prediction, digital prototyping, inverse rendering to
acquire optical properties, 3D soft proofing, etc. In most of
these applications, it is important to validate the photorealism
of the employed rendering technique. In graphics, side-by-side
visual comparison of rendered and photographed images has
traditionally been the validation method of choice. Phong [1],
for example, qualitatively compared a rendered sphere with a
photographed sphere as a final evaluation of his shading and
lighting models. Similarly, the Cornell box [2, 3] was presented
as a test scene for qualitative comparison of photographs and
rendered images. Rushmeier [4] was seemingly the first to dis-
cuss quantitative comparison of photographed and rendered
images, and Pattanaik et al. [5] then presented a difference image
for rendering versus photograph of a version of the Cornell box.
Differences in scene geometry and the view-light configuration
tend to be the main difficulty in setting up such pixel-by-pixel
comparisons [4, 6].

Alignment of rendered and photographed images has
reached good precision in controlled setups for geometry and
reflectance acquisition [7]. For images captured in less controlled
settings, the main difficulties are pose estimation of an object
from a given CAD model and light source estimation. These
are most often considered two separate problems. For pose esti-
mation, a large dataset is usually employed to train a statistical
model [8, 9]. A multitude of techniques exist for light source
estimation [10, 11]. However, as we estimate the object pose, we

may as well use the pose for light source estimation. Moreover,
if we use the cast shadow for estimating the light position, we
can use it to improve the estimate of the object pose as well.

Inverse rendering [12] enables recovery of both lighting and
reflectance properties but often assumes a known object with
a known pose. More recent inverse rendering techniques [13–
15] allow pose estimation and deformation of object geometry
too. These techniques are based on differentiable rendering,
where per pixel derivatives are computed as part of the render-
ing. While this is a powerful approach for estimating surface
displacements and spatially varying reflectance [13], it is also a
gradient-based optimization based on per pixel derivatives that
requires careful initialization to avoid local minima [14]. In this
landscape, we missed a practical method for estimation of both
object pose and light source position to enable pixel-by-pixel
comparison of a photograph with a rendering. We propose such
a method and find that it delivers a good starting point for vali-
dating rendering techniques, estimating optical properties, and
testing appearance models. In addition, our method is useful
for initialization of inverse rendering techniques.

Our outset is a photograph of a single object of known geom-
etry that has been captured with a known camera. We assume
that the object is placed on a diffuse planar surface and illu-
minated by a point-like light source. We let the term point-like
refer to a small source with a uniform far-field radiant intensity
distribution within the part of the scene observed by the camera.
In this scene configuration, we let the user approximately ini-
tialize the orientation of the object relative to the planar surface
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photograph (x) rendering (y) 2 max(y− x, 0) 2 max(x− y, 0)

Fig. 1. Pixel-by-pixel comparison of renderings with a photograph enables a detailed investigation of the virtues and deficiencies of
an appearance model. Our practical alignment technique is here used for testing different models: rough transparent (top), rough
translucent (middle), and metallic (bottom). The signed difference images to the right have been scaled by a factor of 2.

(this could be done using a physics engine), or we use a camera
calibration. Our method then estimates the light source position
and the camera and object poses. We do this by segmenting
the photograph and matching the object and the shadow silhou-
ettes to the silhouettes of the virtual object found by projective
transformation of the edges.

We exemplify our method using three scanned objects (see
Figure 1): the Stanford bunny [16], a cupped angel figurine,
and an aluminium bust of H. C. Ørsted (the scientist who dis-
covered electromagnetism and who was also the first to isolate
aluminium). The Stanford bunny was scanned by Greg Turk
using a technique for zippering several range scans [17], and
we 3D scanned the other two objects using structured light and
stereo vision [18]. We use a translucent 3D printed version of
the Stanford bunny, the angel figurine was 3D printed using an
almost transparent photopolymer, while we used the aluminium
bust as is. This enabled us to take photographs and test appear-
ance models for both subsurface scattering, rough refraction,
and metallic rough reflection. We quantitatively test the abil-
ity of such models to match the appearance of object samples
from the real world (Figure 1), and we suggest improved models
based on our findings. Notably, we for the first time integrate
rough surface scattering [19] with the directional dipole model
for subsurface scattering [20].

2. RELATED WORK

In many side-by-side comparisons of renderings with pho-
tographs [1–3, 6, 12, 21], alignment is done manually. This is usu-
ally a time-consuming process with an imprecise result. When a
comparison is done in the context of 3D acquisition, alignment
is given with good accuracy because the object geometry was

acquired in a calibrated setup [22, 23]. We are however looking
for an alignment method that does not require concurrent 3D
scanning of the object. Differentiable rendering [13, 15, 24, 25]
is an option, but the aim of such a technique is usually more
than alignment. We think of our technique as an enabler for
an inverse (differentiable) rendering system, which is then free
to focus on estimation of parameters not related to alignment.
In Sec. 6.B, we compare our object pose estimation with that
of a differentiable rendering method [15] to demonstrate the
advantages of our specialized technique.

Our work is related to CAD-based vision [26], where the
CAD model of a 3D object is used to recognise the physical
version of the object in an image. An important part of such
recognition is pose estimation of the object. In a view-based
approach [27, 28], multiple views of the object are used for the
training of a statistical model to recognise the object and suggest
an initial pose. The views can be obtained from photographs
captured in a calibrated robot setup [27] or from rendered images
of object edges [8, 28, 29]. After estimating an initial pose using
a statistical model, the pose is typically refined using iterative
shape matching [28, 30]. We combine some of these ideas. Petit
et al. [29] suggest a method based on foreground/background
segmentation in the case of a moving object. Our method is also
based on such a segmentation but for a static object. As in the
discussed previous work, we use the edges of the CAD model
for pose estimation, specifically the silhouette [8], but we avoid
the training of a statistical model based on a dataset with many
views.

Iterative methods for pose estimation [30] are good for pose
refinement but also prone to local minima if not carefully ini-
tialised. An exhaustive search for initial parameters is then
needed if we want to avoid the training of a statistical model,
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but such a search is infeasible for the full 6D pose of an object.
An option is then to limit the dimensionality of the search space
using invariants [31, 32]. Hu’s moment invariants [33] are for
example invariant to scale, rotation, and translation. For a 2D
shape, this reduces the search space in pose estimation to two
angular dimensions [31]. We use this concept for 3D shapes by
applying it to the object silhouette found in the image plane.

If one is willing to generate a dataset of object silhouettes
(for example) as observed across a view sphere, the pose esti-
mation can be accomplished using shape descriptors even for
cluttered scenes [34]. After image segmentation and initial pose
estimation, refinement is still required using an iterative method.
Several other learning-based techniques are available as well [35–
38]. These all require a large dataset for training and pose re-
finement after estimating the initial pose. Interestingly, Tekin
et al. [39] report a fast learning-based method that does not re-
quire pose refinement, but then Li et al. [40] present an iterative
learning-based method for pose refinement with improvements
over Tekin et al. Peng et al. [9] present an improved method
inspired by Tekin and others that indeed seems not to require a
posteriori pose refinement. This is based on an extensive dataset
augmented with 20,000 synthetic images of each object. These
learning-based techniques contribute robustness with respect to
object detection. This is however not important for our scenes
which must, in any case, be uncluttered to enable photorealistic
rendering of a corresponding digital scene.

A distinctive advantage of our silhouette matching approach
is that we can estimate the light source position too. In this way,
we avoid the traditional calibration of a point light by observing
highlights in mirroring spheres [7]. Our method employs the
shadow silhouette, which we find using Blinn’s projection shad-
ows [41]. In some related work [42], the shadow silhouette was
detected in an input image with depth information (RGB-D) and
used for estimating the position of one or more light sources.
However, since we estimate the pose of a known object together
with the position of the light, we do not need the depth infor-
mation. In addition, our treatment of pose and light as a joint
problem enables us to refine the estimation of both.

3. ALIGNMENT METHOD

Our method is based on the following input:

- image of an object on a uniform ground plane illuminated
by a point-like light source

- segmentation of the image into object, shadow, and back-
ground

- 3D model of the object
- camera intrinsics (focal length / camera constant / field of

view)
- approximate rotation of the object relative to the ground

plane.

Any camera can be used to capture the input image, but we
need to know the field of view. If this is not known for a given
camera, we can obtain it through camera calibration, but we
exclude images captured with an unknown and unavailable
camera. In most cases, the segmentation can be accomplished by
appropriate thresholds of the input image. In harder cases, such
as transparent objects, a good segmentation can be obtained
through background subtraction based on one image with and
one without the object.

Although we work with one light source per view, we also
illuminate a static object with multiple light sources in different

Algorithm 1. Computing a silhouette from edges of a mesh
projected to a plane. Each edge exists once in each direction.

p := p0 (the leftmost point)
e := edge from p with the largest slope
repeat

from p follow e until next intersection, pnew
enew := choose from edges intersecting pnew

such that angle(enew, e) is minimized
p := pnew, e := enew

until p = p0

positions one at a time. In this case, we use the additional
information to improve the object pose and light source positions
in a final refinement step.

To obtain object pose and light source position (in R3), we
project the 3D model into the image plane of the camera and
extract the silhouette. Our method aligns the silhouette in this
plane with the corresponding silhouette in the input image. We
obtain the latter from the segmentation of the input image. The
silhouette is a useful representation that enables different com-
parisons of two silhouettes with options for being either exact or
invariant to various measures such as rotation and translation,
all while being differentiable.

We define a silhouette as a list of 2D point pairs each rep-
resenting an edge with a direction. In analogy with a triangle
mesh, we can use an indexed edge set to represent a silhouette
or a set of lists of 2D points, where the points in each list are
connected by edges. This works in general, as we can describe
objects with holes (nonzero genus) by having both outer and
inner perimeters. An inner perimeter should then be in the
opposite direction.

A. Silhouette Computation

To compute the silhouette of the real object, we enlarge the seg-
mentation resolution by a factor of two using nearest neighbor
sampling. We then use the algorithm by Suzuki and Abe [43, 44]
to trace the perimeter of the object. We downscale the traced
perimeter and round the coordinates so that they lie exactly on
the border between object and background. After tracing the
perimeter, we have an optional step to simplify the perimeter
to accelerate computations later on. The optional simplification
is done using the Ramer-Douglas-Peucker algorithm [45, 46].
If the lens distortion of the camera that captured the ground
truth image is known, the silhouette points can be undistorted,
removing the need to undistort the segmentation itself.

We compute silhouettes of the 3D models without rasteri-
zation. This makes the silhouettes directly differentiable with
respect to scene parameters, which is an advantage in a gradient-
based optimization. Given a CAD model, we extract a polygo-
nal mesh and build a half-edge representation of this for easy
queries. For a given view matrix, we project the vertex positions
to the image plane and connect them using the edges of the mesh
polygons. To compute the silhouette, we traverse these edges
using Algorithm 1. This algorithm assumes a fully connected
object silhouette without holes. Extension to objects with holes
is done by restarting the algorithm inside each hole.

For the silhouette computation in Algorithm 1, we find the
signed angle between two vectors in 2D using

angle
([

a1
a2

]
,
[

b1
b2

])
= atan2 (a1b2 − a2b1, a1b1 + a2b2) . (1)
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The majority of time in Algorithm 1 is spent computing edge
intersections [47]. Computational complexity thus depends on
the number of edges. We significantly reduce this number by
exploiting that an edge can only be part of the silhouette if
it is shared by one face facing the camera and another facing
away [48]. If we let~ne,1 and~ne,2 denote the 3D surface normals
of the faces bordering an edge e, the edge e can only be part of
the silhouette if(

~ne,1 · (ve − c)
)(
~ne,2 · (ve − c)

)
≤ 0 , (2)

where ve is any point on the edge and c is the position of the
camera. After removing all edges that cannot be part of the
silhouette and building a bounding volume hierarchy for the
remaining edges, intersection testing is inexpensive.

Another way to reduce the computation time of this algo-
rithm is to use a mesh with a lower polygon count for the silhou-
ette while retaining the original mesh for rendering. A modest
mesh simplification often has a negligible influence on the sil-
houette.

We have several options when computing silhouette deriva-
tives. For simplicity, we use finite differences. Exact derivatives
can be obtained with automatic differentiation.

B. Shadow Contours
To include the shadow of an object when considering its silhou-
ette, we assume that the object is placed on a planar surface and
use projection shadows [41]. This is also done without rasteri-
zation to keep our method valid for the entire image plane. We
project the edges of the mesh to the ground plane to generate
shadow edges. We then project both object and shadow edges
to the image plane of the camera. After this, we use Algorithm 1
to compute the silhouette of the object including its shadow.
The number of edges in the shadow that we need to consider is
reduced early in the procedure by substituting c with the light
position in Eq. (2).

C. Silhouette Matching
To be able to align silhouettes, we introduce a silhouette similar-
ity metric. We refer to the silhouette of the real object observed
by camera c as Rc, and the union of object and shadow silhou-
ettes as Rc,`, where ` is the light source causing the shadow.
Equivalently, we define for the virtual object Vc and Vc,`. We
now let P(X, t) denote a parameterization of the silhouette X
with t ∈ [0, 1]. We measure the similarity of two silhouettes by
using a function (d) that finds the shortest distance from a point
to a silhouette. Taking n equidistantly sampled points on the
silhouettes, we find the shortest distance to the other silhouette
and take the sum. The similarity is then computed by

sim(R, V, n) =
n

∑
i=1

(
d
(

R, P
(

V, i
n

))2
+ d

(
V, P

(
R, i

n

))2
)

,

(3)
A visualization of what sim computes is in Figure 2. We can
again use a spatial data structure to obtain an efficient imple-
mentation of the dist function [49]. Our similarity metric (sim)
has the advantage that it has a nonzero gradient even for non-
intersecting silhouettes, which enables the use of our method
with a poor initial guess.

Our final goal is to minimize the difference between the sil-
houettes of the real and virtual objects. For a silhouette without
shadow, we measure the similarity by

Ec = sim(Rc, Vc, d‖Rc‖e) , (4)

R
V

Fig. 2. Illustration of how sim(R, V, n) is computed for a small
value of n. The arrows illustrate evaluations of dist(·, ·).

where ‖ · ‖ denotes the length of a silhouette in pixels. Ideally,
we would like to sample as many points as possible. In this
performance vs. accuracy trade-off, we have chosen n = d‖Rc‖e
to place the sampled points approximately one pixel apart.

To compare silhouettes including shadows, we introduce
a similarity measurement Ec,`. As mentioned previously, we
would like to refine estimates using multiple cameras and light
sources as long as only one is active per image. We compute the
sum of comparisons of silhouettes over one or more configura-
tions as follows:

Es = ∑
`

∑
c

(
sim(Rc,`, Vc,`, d‖Rc,`‖e)︸ ︷︷ ︸

Ec,`

+Ec

)
. (5)

In the following, we describe how we estimate object pose and
light source position using these silhouette similarity measure-
ments.

D. Pose Estimation
We compute the pose of the object independently for each cam-
era. We do this in camera space, where the camera is fixed at the
origin. In the end, we can then use the known relation between
object and ground plane to position each camera in world space.

Starting in camera space, the first step of the pose estimation
is to find an initial guess for the position of the object. We do
this by minimizing Ec with respect to the position, which places
the virtual object approximately in the same position as the real
object.

To find a good initial guess of the rotation, we randomly sam-
ple rotations. For each rotation, we compare the silhouette of
the digital object to the real object using Hu’s moment invari-
ants [33]. These are calculated from image moments but are
invariant to scale, rotation, and translation. For an image of
pixel values I(x, y), the image moments are defined by

Mpq =
∫ ∞

−∞

∫ ∞

−∞
xpyq I(x, y) dx dy, (6)

where the p and q exponents are the moment orders and inte-
gration is across the image plane. Since the silhouette can be
considered a polygon, the image moments can be computed
efficiently by applying Green’s theorem [50]. Hu’s moment in-
variants are seven polynomial combinations of image moments
that we store in a vector and compare using the sum of squared
differences. Using the Hu moment invariants, the search space
of the rotation is practically reduced to two dimensions. The
rotation giving the silhouette that best matches the Hu moment
invariants of the real silhouette is chosen as the initial guess of
the rotation. We parameterize the rotation using quaternions
and use the centroid of the object as the rotation centre.

With these initial guesses for position and rotation, we min-
imize Ec, which gives an object pose for each view. We use
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Levenberg-Marquardt [51, 52] for the minimization. This is pos-
sible as Ec is a sum of squares. As part of our input, we know
the object pose in relation to the ground plane. We use this to
convert the per camera object poses into camera poses in world
space.

E. Light Positions and Final Refinement

To estimate the position of each light, we randomly sample posi-
tions and then choose the one with the lowest Ec,` for each light.
Following this, Ec,` is minimized using Levenberg-Marquardt.

The last step of our method is a joint optimization where
we minimize Es with respect to object pose, camera pose(s),
light position(s), and a non-uniform scaling of the mesh. The
non-uniform scaling of the mesh is to compensate for some of
the shrinkage that may occur during 3D printing. The final
optimization of the object pose is beneficial as the inclusion of
the shadow silhouette(s) enables us to use more information
from the input image.

F. Known Camera Poses

If camera poses are known in advance, for example from a stereo
calibration of the camera rig, we can use the same steps as in
Sec. 3.D to find the pose for all cameras jointly. When finding
the rotation, it is then no longer desirable to have rotational
invariance for all cameras. Instead, we propose to rotate the
object to align the normalized image moments of the virtual and
digital objects in the best way possible along a randomly chosen
camera’s viewing direction. The rotation is found by aligning
the principal components of the two silhouettes [53]. We choose
the rotation that best matches the normalized image moments
across all cameras as the best rotation.

An initial guess of the object’s scale is required, but if the
camera poses are known in relation to the ground plane, we need
not know the rotation of the object relative to the ground plane.
The method for light source estimation is as with unknown
camera poses.

4. APPEARANCE MODELS FOR REAL OBJECTS

Rendering systems provide a multitude of rendering techniques
that we need to choose among when composing an appearance
model for a real object. We start from a very approximate model
at the most macroscopic scale. We then gradually increase com-
plexity by reconsidering the involved optical properties [54] and
what types of materials and visual effects that they can model.

At the most macroscopic scale, we have the bidirectional
reflectance/transmittance distribution function (BRDF/BTDF)
and the simplest models at this scale are the ones for perfectly
diffuse and perfectly specular materials [55]. To cover a broad
spectrum of different material types, we consider three different
starting points: (a) diffuse, (b) metallic, or (c) transparent. In
the following, we describe existing appearance models for these
material types as well as model extensions (Secs. 4.A–4.C).

The perfectly diffuse (or Lambertian) material is a good start-
ing point for objects that exhibit a significant amount of subsur-
face scattering (a). The BRDF of a perfectly diffuse material is
fr,d = ρd/π, where ρd is the bihemispherical diffuse reflectance,
which we can set in an RGB renderer using a color vector in
[0, 1]3. This reflectance represents the subsurface scattering of
the material. We can then add an interface to model highlights
and switch to a bidirectional scattering-surface reflectance dis-
tribution function (BSSRDF) to model translucency. The Fresnel

equations for reflection are an excellent starting point for metallic
and transparent objects (b-c).

The BRDF/BTDF of a perfectly smooth or a rough interface
are available from Walter et al. [19]. The BRDFs presented by
these authors work just as well for metals as long as we use
the complex index of refraction of the metals to find the Fresnel
factor. The key difficulty in use of the Fresnel equations is that
indices of refraction are physical parameters that are defined
as a spectrum rather than colors. We can convert a spectrum
to a representative RGB vector using weighted averages based
on RGB color matching functions [56, 57]. Assuming known
(complex) index of refraction, the key parameter for metallic and
transparent objects is the surface roughness (which is different
for different surface microfacet distributions [19, 58]).

A natural extension of the diffuse model (a) is to introduce a
refractive interface. The BRDF then becomes a sum of a specu-
lar and a diffuse component [59]. We can think of the specular
term as in-surface scattering and of the diffuse term as sub-
surface scattering. The Fresnel equations are then useful for
ensuring energy conservation (and reciprocity) both for smooth
surfaces [60] and for rough surfaces [61, 62]. The trick is to
sample the BRDF/BTDF of a transparent surface [19] and then
let incident light that refracts into the material reflect diffusely
before it refracts back out of the material using the BTDF of
the surface again but this time for the outgoing direction. This
enables addition of glossy reflections and highlights to an object
with an otherwise matte appearance.

A natural extension of the transparent model (b) is to account
for absorption based on the distance d that a ray travels through
the interior of the object. This is done using an (RGB) absorption
coefficient σa and Bouguer’s law of exponential attenuation of
light (attenuation factor e−σad). The absorption coefficient is di-
rectly linked to the imaginary part of the index of refraction [63].
The index of refraction was assumed known, and for metals
σa is very large. We can thus assume that all light transmitted
into a metal is absorbed. However, for transparent objects, σa
is often very small and may need some adjustment to account
for dissolved substances [56] or impurities [57]. The absorption
coefficient then becomes an RGB parameter in the model that
controls the color of transmitted light.

A further extension of the diffuse model (a) is to replace fr,d
with proper subsurface scattering, where light may be incident at
one surface position and observed at another. In terms of input
parameters, this requires knowledge of the (RGB) scattering co-
efficient σs and the phase function. The latter is the distribution
of the scattered light, which is often represented by an analyt-
ical model taking an (RGB) asymmetry parameter (g) as input.
Several rendering techniques are available for evaluating the
volumetric light transport between two surface positions [64].
For highly scattering materials, however, a full-fledged unbiased
path tracing technique [65] is unpractical due to long rendering
times. We need faster rendering when tuning parameters based
on comparison of renderings with a reference photograph. A
more practical rendering technique for subsurface scattering is
then to use an analytical approximation of the BSSRDF [20, 21].

The standard dipole approximation for subsurface scatter-
ing [21] does not model how the direction of the incident light
influences the subsurface scattering. To include this component,
we can use a directional dipole approximation [20]. However,
these models use Fresnel terms that assume a perfectly smooth
interface. Donner and Jensen [66] explained how to account for a
rough surface with a distribution of microfacet normals [58, 59].
In the following, we describe how to account for a rough surface
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in the case of a model that accounts for the directional depen-
dency of the subsurface scattering. We also describe simplistic
models that we use to account for spatial variation in the surface
roughness of our example objects.

A. Directional Subsurface Scattering for Rough Surfaces
The BSSRDF depends on the object geometry X, the position xi
and the direction ~ωi of the incident light as well as the position
xo and the direction ~ωo of the observed light. The normals at the
points of incidence and observation~ni and~no are known from
the object geometry. An analytic BSSRDF model developed for a
material with a smooth surface then usually has the form

S(X; xi, ~ωi; xo, ~ωo) = Ft(~ωo ·~no)(Sd + S∗)Ft(~ωi ·~ni) , (7)

where Ft = 1− F is Fresnel transmittance, Sd is the diffusive part,
which is typically modeled by a dipole, and S∗ is the remaining
light transport. The number of arguments used with Sd and S∗

is different for different models.
To incorporate a rough surface in a BSSRDF model of this

kind, we add a BRDF in the special case where the point of
incidence equals the point of emergence, and we insert hemi-
spherical transmittance integrals in place of the Fresnel terms:

S(X; xi, ~ωi; xo, ~ωo) = δ(xo − xi) fr(xo, ~ωi, ~ωo)

+
∫

2π

∫
2π

ft(xo, ~ω21, ~ωo)(−~no · ~ω21)(Sd + S∗) dω21

ft(xi, ~ωi, ~ω12)(−~ni · ~ω12) dω12 , (8)

where fr is the BRDF and ft is the BTDF of the surface, δ is a
Dirac delta function, ~ω12 is the direction of a ray transmitted into
the volume, and ~ω21 is the direction of a ray to be transmitted
out of the volume. The directions ~ω12 and ~ω21 would thus be
the ones to use as arguments for the S-functions.

The S∗ term is usually fully directional, and the integrations
over BTDFs at xi and xo are evaluated using regular volume
path tracing with rough refraction at the interfaces. In the case
of the standard dipole [21], S∗ = S(1) includes evaluation of
single scattering in the volume. In the case of the directional
dipole [20], S∗ = SδE is evaluated in the same way as absorp-
tion in a transparent material, but with a modified coefficient
in the exponential attenuation. One should note that analytic
expressions are available for the Fresnel transmittance integrals
in cases where Sd is independent of ~ωi and/or ~ωo [66, 67]. Some
care must be taken as some models [20, 67] assume a diffuse dis-
tribution of the light at xo and then include the integration over
~ω21 in their formulation. In the case of the directional dipole,
our expression becomes

S(X; xi, ~ωi; xo, ~ωo) = δ(xo − xi) fr(xo, ~ωi, ~ωo) + S∗δE

+
∫

2π
Sd,dir(xi, ~ω12; xo) ft(xi, ~ωi, ~ω12)(−~ni · ~ω12) dω12 , (9)

where Sd,dir is the diffusive part of the BSSRDF in the directional
dipole model, but taking the transmitted direction directly as
input instead of ~ωi, and S∗δE is the modified reduced intensity
term appearing in this model, but here including the BTDF
integrations (rough refractions at the interfaces).

Comparing Eq. (8) to common illumination models [1, 59],
the first term corresponds to the specular term and the second
term corresponds to the diffuse term. The BRDF fr to be used
for the first term should therefore not include an added diffuse
term. The BSDF (collective name for BRDF and BTDF) used in
Eq. (8) should rather depend only on surface properties, such

as a distribution of microfacet normals, see the work of Walter
et al. [19] for examples. In particular, we use the so-called GGX
distribution developed by these authors. This distribution has a
width parameter αg that we refer to as the GGX roughness.

B. Surface Roughness of a 3D Printed Object

Since most 3D printers print in layers, the surface of a printed
object is usually rougher when the intended surface normal
points in a direction aligned with layer edges in the voxel cubes
of the print volume. If the z-axis is the print direction, we can
use the following function to control the GGX roughness (αg)
based on the z-component of the surface normal (nz):

αg = ρ + (1− ρ)
| sin(2θ)|s

s
= ρ + (1− ρ)

(
2|nz|

√
1− n2

z

)s

s
,

(10)
where θ is the angle of the surface normal~n with the z-axis. We
can think of the user parameters as follows: ρ ∈ [0, 1] is the
minimum roughness and s > 0 is the shininess, which controls
the height and width of the bumps in the curve around angles
of ±45◦, ±135◦.

C. Surface Roughness of a Polished Metal Object

Quick hand polishing of a metallic object can result in an object
with a rougher surface in curved areas and a smoother surface
in flat areas. One way to specify the curvature of an object is
using the mean curvature normal H [68]. This is a quantity that
we can precompute for a triangle mesh using vertex circulators
and store as a vertex attribute. The dot product of the outward-
pointing surface normal ~n and the mean curvature normal H
provides a signed measure of the curvature, where positive is a
concavity and negative is a convexity. We use the absolute value
of this dot product as an indicator of areas that were maybe
not as easy to polish. To reduce noise from the surface scan
and set a high roughness for curved areas, we employ a sigmoid
function. Our use of the mean curvature normal is demonstrated
in Figure 3, and the formula is

αg = ρ +
1− ρ

1 + exp(s (1− 30 |H ·~n|)) , (11)

where ρ is again minimum roughness and s is a sort of shininess
while H is the mean curvature normal after division by the
length of the longest mean curvature normal in the triangle
mesh.

5. RENDERING

We implemented a progressive unidirectional path tracer using
OptiX [69]. To include subsurface scattering, we sample a new
set of surface positions for each progressive update. For each
update and within each pixel, the ray tracer generates a random
position xp in pixel coordinates. With the rotation of the camera
relative to the object R and the camera intrinsic matrix K, we get
the direction of the corresponding ray using

~ω = (KR)−1S xp = RTK−1S xp . (12)

Since the intrinsic matrix K is locked to the resolution of the
camera (Wc×Hc), which is usually very high, we use the scaling
matrix S = diag(Wr/Wc, Hr/Hc, 1) to enable rendering in a
different resolution (Wr × Hr).
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0.5 + H ·~n |H ·~n| αg

Fig. 3. Model of spatially varying roughness αg for an alu-
minium bust that has from time to time been subjected to hand
polishing. We use the dot product of the mean curvature nor-
mal H and the surface normal~n. The model correctly marks
eyes, hair, nostrils, and engraved letters as rough, but also in-
correctly marks edges along the box-like base of the bust as
being very rough.

6. RESULTS

The three objects of interest are (a) a translucent 3D print of the
Stanford bunny, (b) an aluminium bust, and (c) a cupped angel
figurine 3D scanned and printed using almost transparent resin.
Two of our test objects (b-c) were 3D scanned using structured
light based on phase shifting [18]. The employed 3D scanner
has a precision of around 100 µm [70]. Our 3D printed objects
(a, c) were produced using vat photopolymerization additive
manufacturing processes. In our pose estimation and renderings,
we used the geometry of these objects without correction for
print artifacts. The Stanford bunny was printed by Luongo et
al. [71] using red Industrial Blend resin (manufactured by Fun
To Do) and a digital light processing (DLP) printer developed for
research. The vertical resolution of this printer is 18 µm and the
horizontal resolution is 15.08 µm. The angel was printed using
general-purpose resin IM2.0 GP1 (manufactured by AddiFab)
and a Peopoly Moai stereolithography (SLA) printer. The laser
spot size (horizontal resolution) of this printer is 70 µm, and
we used a vertical resolution of 50 µm. In simulation, we use
a real index of refraction of 1.54 for the printed objects as this
is in the middle of the range of commercial acrylic resins with
low shrinkage after photopolymerization [72]. Our three objects
all have a rough surface and exhibit different types of spatial
variation in this roughness.

We used our method to align renderings of the objects of
interest with their photographs. We then tested different ap-
pearance models following the presented guidelines, where we
started from a simplistic model and gradually added complexity.
In each case, our end result is an appearance model and a render-
ing paired with a photograph for validation that would serve as
a suitable starting point for an inverse rendering technique. The
optical properties that we estimated for our different objects are
in Table 1. The reference photographs and the associated CAD
files and relative camera and light source alignments will be
available as a supplement. We encourage the reader to use this
dataset for testing preferred appearance models and rendering
software. Another option is to use the dataset for finding better
optical properties including better spatial variation of surface
roughness by means of inverse rendering.

Object

Shadow

Fig. 4. Each image is an additive blend of three photos of the
bust illuminated by the light source at different positions and
overlaid with aligned silhouettes of the digital object.

Object
Shadow

Fig. 5. Photo of the bunny overlaid with the aligned silhouette
of the digital object.

A. Acquisition
The objects were placed on a flat piece of paper and illuminated
by a Thorlabs MNWHL4 LED light source. This source is neutral
white with a point-like radiation distribution within an angular
diameter of 10◦. The bunny (a) and the angel (c) were captured
using a FLIR Grasshopper3 GS3-U3-60QS6C-C camera, while
the bust (b) was captured using D3200, D7000, D7500 and D750
cameras from Nikon. We used four cameras to cover all angles
of the object while also taking multiple images from the same po-
sitions with different light positions. As different cameras were
used, the images of the bust were color calibrated using a Col-
orChecker from X-Rite. All images were captured with a small
aperture so that all parts of the object and shadow were in fo-
cus. We performed camera calibration [44, 73] using a ChArUco
board which is a checkerboard with ArUco markers [74]. For
the bunny (a), we did not use the estimated extrinsics and only
used the estimated focal length from the intrinsics. Lens dis-
tortion from the camera calibrations were used to undistort the
reference photographs and ground truth silhouettes.

B. Alignment
To segment the photographs as required by our alignment
method, we used thresholding followed by hole closing and
selected the largest connected component. For the images of the
bunny and the angel, some manual cleaning of the segmentation
was necessary due to caustics.

Our test cases span different setups to showcase the flexibility
of our alignment method. For the bunny (a), we use just a single
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Table 1. Estimated optical properties.

Material n σa σs ρ s

Bunny (FTD, red Industrial Blend) 1.54 (0.33, 25, 67) · 103 m−1 (10, 21, 0.083) · 103 m−1 0.20 2.4

Angel (AddiFab, IM2.0 GP1) 1.54 (0.032, 32, 640) m−1 0 0.15 5.0

Bust (aluminium) (1.04, 0.76, 0.49) + i (6.45, 5.73, 4.76) 1.3 · 108 n/a 0.22 4.5

Object

Shadow

Fig. 6. Photos of the angel overlaid with the aligned silhouette
of the digital object.
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Fig. 7. Convergence plots of our pose estimation method ap-
plied to the bunny, showing the total time elapsed, with verti-
cal dashed lines separating the different steps of our method.
Left: as described in Sec. 3.D, steps: translation optimiza-
tion, random rotation search, pose optimization. Right: as
described in Sec. 3.E, steps: random light search, light position
optimization, joint optimization.

picture with unknown camera pose to align the scene. For the
angel (c), we use two camera poses and a single light position to
do the estimation. Finally, the bust (b) was captured from four
camera poses, each with four different light source positions,
yielding a total of 16 images that we used to do the alignment.
The more light source positions, the more information we have
available for the pose estimation. This comes at the small cost of
increasing the dimensionality of the optimization problem. If we
again consider our method an enabler for inverse rendering, it is
an advantage to have multiple light positions as these provide
additional samples for estimation of BRDFs, for example.

Outputs from our alignment method are in Figures 4 to 6.
We achieve good alignment of the outlines of the bust, which
makes sense as this is the only object in our collection for which
the geometry is directly from the photographed object. Both the
angel and the bunny have a quite good alignment, but especially
the bunny has noticeable differences between the rendered sil-
houette and the object. We presume these mostly stem from
non-linear shrinkage during printing that our method cannot
account for. For the angel, our method estimated shrinkage of
3%, 6%, 1% in the x, y, z directions as compared to the size of an
ideal 3D print.

As the bunny (a) is the more difficult case (with only one
view and light source position to constrain the problem), we
have analyzed the performance of our method more closely for
this case. Convergence plots in Figure 7 show that each step

RMSE: 0.1315 RMSE: 0.1304 RMSE: 0.1124
SSIM: 0.8065 SSIM: 0.7405 SSIM: 0.8181

Liu et al. [15] ours ours
for object pose w/o joint estimation final

Fig. 8. Ablation study shown with signed difference images
×2. Blue and red indicate positive and negative differences
(for rendering minus photograph): average of the color bands
in the third and the fourth column of Figure 1, respectively.

improves the similarity (reduces Ec and Es). While the joint
optimization in the last step gives a smaller improvement of Es
than other steps, the improvement of the final rendered result
is significant as seen in Figure 8. We also compare our align-
ment result with an object pose obtained using the differentiable
rendering method of Liu et al. [15]. We observe that the per-
formance of this related work is similar to ours without joint
optimization and we needed many random initial guesses with
this method too in order for it to converge to a good solution.
With other methods than ours, we do not get the advantages of
jointly estimating light source position and mesh shrinkage. In
the result found using the method of Liu et al. (Figure 8, left), we
used the camera pose and light source position from our final
result. The key benefit of our work is thus collective extraction
of information available in projected silhouettes (object pose,
light source position, mesh shrinkage), and that we can use joint
optimization to collectively improve each part of the result.

C. Appearance

Since our objects are placed on a piece of paper assumed to be
flat, we place a quad in the ground plane and resize it manually
to approximately fit the paper observed in the photograph. Pre-
cise alignment of the paper could be part of the object alignment,
but we find that it is not so important with respect to testing
the appearance model applied to the object. To start simple,
we consider the paper to be a diffuse surface. More complexity
could easily be added to the paper appearance model [75], but
we focus our attention on the objects of interest.

We initialise the diffuse reflectance of the paper to ρd =
(0.8, 0.8, 0.8) and select the simplest shading model for the mate-
rial category of the object in question. We then use the intensity
of the light reflected from the paper to estimate the intensity
of the point light. Since our source is neutral white, we use
the same intensity in all color bands. An easy way to do a
comparison is using two colored difference images: one for posi-
tive difference and one for negative difference (see examples in
Figure 1). Once the light intensity has been set, we modify the
reflectance values until each color appears equally in the positive
and the negative difference image. We also evaluate our results
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RMSE: 0.1152 RMSE: 0.1237 RMSE: 0.1136 RMSE: 0.1127 RMSE: 0.1124
SSIM: 0.8108 SSIM: 0.7931 SSIM: 0.8145 SSIM: 0.8177 SSIM: 0.8181
Lambertian interfaced standard SSS directional SSS SV roughness

Fig. 9. Renderings (top) and absolute difference images ×2 (bottom) to test appearance models for the rough translucent bunny.
The interfaced model adds a rough surface with a GGX microfacet normal distribution [19, 60, 61]. The standard subsurface scat-
tering (SSS) model is the standard dipole including path traced single scattering and a rough surface [21, 66]. The directional SSS
model uses the directional dipole [20] and incorporates a rough surface (Sec. 4.A). The model with spatially varying (SV) roughness
uses Eq. (10). Further comparison of the input image with the end result is in Figure 1. The not quite so flat paper worsens both
RMSE and SSIM by approximately 0.05.

quantitatively using root-mean-squared error (RMSE) (lower
is better) and structural similarity (SSIM) index [76] (higher is
better). The initial results for each of our three test cases are
leftmost in Figures 9 to 11.

To estimate absorption and scattering coefficients (σa and σs),
we need the physical size of the object as these optical properties
are measured per distance unit that a ray has travelled through
the material. Using the physical dimensions of the object, we
get the coefficients in Table 1. We decided to leave the phase
function as isotropic (g = 0) since the analytic BSSRDF models
mostly use the reduced scattering coefficient σ′s = σs(1− g) and
thus do not distinguish much between a reduction in σs and an
increase of g. The directional dipole is not exclusively based
on the reduced scattering coefficient, but the role of g seems
limited. When estimating the coefficients, 10 over the length of
the bounding box diagonal is usually a good value to start with
for the absorption or the scattering to have a reasonable effect.

Refinement of the model for the rough translucent bunny (a). Fig-
ure 9. We first add an interface to the model [60, 61] to enable
rendering of highlights. However, this also directs a lot of energy
into a glossy reflection lobe meaning that the missing transport
of light from the point of incidence to a different point of emer-
gence becomes apparent and RMSE and SSIM both worsen. As
soon as we switch to a model that accounts for this subsurface
light transport [21], the result becomes better than the Lam-
bertian model. This is true even without single scattering and
assuming that the surface is perfectly smooth. The directional
dipole [20] and our spatially varying roughness from Sec. 4.B
further improve the result. However, the models cannot fully
represent the scattering process. This is probably due to lim-
iting assumptions such as diffuse emergent light and a locally
flat, convex object. It should be mentioned that the bunny was
printed using greyscale values to reduce staircasing artefacts [71].
These staircasing artefacts due to layered printing are signifi-
cantly less pronounced for the bunny as compared with the
angel (which was not printed using greyscale values). Neverthe-
less, the bunny object still exhibits some spatial variation in its
roughness that we have modelled.

Refinement of the model for the aluminium bust (b). Figure 11. We
use the complex index of refraction of aluminium from McPeak
et al. [77] (this is available for download at refractiveindex.info).
Since we have a dark scene with a point light, the appearance
is off without surface roughness (as highlights then disappear).
Adding a microfacet normal distribution was thus essential for
this case, and we found that the GGX distribution [19] provided
a good result. When adding spatially varying roughness based
on the curvature, we found that SSIM would improve for a larger
shininess s at the cost of a poorer RMSE. The SSIM-improved
result is in Figure 1. The RMSE probably suffers from a slight
misplacement of the highlight peak in the forehead of the bust.

Refinement of the model for the rough transparent angel (c). Fig-
ure 10. Using the convention that surface normals always point
outwards, absorption is easily included by applying Bouguer’s
law of exponential attenuation to all rays that hit the surface
from the inside. Accounting for absorption and a rough inter-
face is highly important when modelling the appearance of the
angel. Apart from this, the print layers are visually obvious,
especially in highlights. We, therefore, tried to model the layers
by calculating a layer index based on the point of intersection
and using an increased roughness for every second layer. This
represents the rougher layer edges more explicitly. Visually, we
find this layered result more convincing and it also has lower
RMSE, but SSIM disagrees. We tried adding single scattering to
the material, but this only seemed to worsen RMSE and SSIM.
Thus, it seems that the remaining deviations from the reference
are mostly due to geometric print artefacts and inaccuracies in
the spatial variation of the surface roughness.

7. DISCUSSION

Although our method is able to quantify the differences between
a rendering and a photograph, it does not provide a direct way of
determining what the source of these differences are. However,
when a change of reflectance model leads to a smaller error, it is
very likely that the previous model was a source of error.

While we use a pinhole camera model, one should note that
our method can also work for more advanced camera models as
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RMSE: 0.1267 RMSE: 0.1135 RMSE: 0.0741 RMSE: 0.0733 RMSE: 0.0730
SSIM: 0.7699 SSIM: 0.8051 SSIM: 0.8876 SSIM: 0.8870 SSIM: 0.8858

glass absorbing rough SV roughness layered

Fig. 10. Renderings (top) and absolute difference images ×2 (bottom) to test appearance models for the rough transparent angel.
We use the GGX microfacet normal distribution [19] and add absorption through analysis by synthesis [57] and spatially varying
(SV) roughness (Sec. 4.B). We also tested a layered variation of the roughness in the print direction (every second layer is rougher
to model a staircase). SSIM is sensitive to structure and takes a hit because the layers do not perfectly match the real layers. Further
comparison of the input image with the end result is in Figure 1.

RMSE: 0.0311 RMSE: 0.0159 RMSE: 0.0134
SSIM: 0.9339 SSIM: 0.9693 SSIM: 0.9713

metallic rough SV roughness

Fig. 11. Renderings (top) and absolute difference images ×2
(bottom) to test appearance models for the aluminium bust.
We test spatially varying (SV) roughness as depicted in Fig-
ure 3 and use high dynamic range when computing differ-
ences. The input image is in Figure 1, where it is compared
with an SSIM-improved result (RMSE: 0.0148, SSIM: 0.9725).

we can apply the necessary transformations to the object edges
before computing the silhouette. Extending to area lights is
however challenging and left for future work.

A disadvantage of using silhouettes is their simplicity. In
some cases, they describe the features of an object inadequately,
which can cause ambiguities in the pose estimation. An example
of this could be a bowl with contents, where the silhouette only
contains information enough to pose estimate the bowl. To have
more information, some methods [29] also use features on the
object itself. In cases where the segmentation has inaccuracies
and our pose may have small errors, our method is still useful
for obtaining a good initial guess that can be refined by other
methods (such as differentiable rendering).

8. CONCLUSION

We presented a practical method for aligning photographs with
rendered images. Our method is based on silhouette matching
and estimates both object pose and the position of a point-like
light source. If multiple images have been captured from differ-
ent views and/or with light sources in different positions, our
method can include this added information in the pose estima-
tion. As opposed to differentiable rendering techniques, our
method works not only in pixel space but in the entire image
plane. This means that we can estimate a pose from a very poor
initial guess. Thus we find our work a practical enabling tech-
nique for inverse rendering that could be based on differentiable
rendering.

Given an alignment, we proposed a procedure for compos-
ing an appearance model suitable for the photographed object.
The concept is to start from a simplistic model and gradually
increase the complexity of appearance models guided by differ-
ence images and quantitative metrics such as RMSE and SSIM.
As a consequence of this approach, we presented extensions of
existing models providing improved photorealism. One exten-
sion was the combination of a rough surface with directional
subsurface scattering. We believe that practical alignment of
photographs with renderings is an important step in furthering
the predictive abilities of appearance models.
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1 Introduction

The estimation of structure from motion (SfM) using a
monocular image sequence is one of the central prob-
lems in computer vision. This problem has received a

lot of attention, and truly impressive advances have
been made over the last ten to twenty years [38,63,52].
It plays a central role in robot navigation, self-driving
cars, and 3D reconstruction of the environment, to men-

tion a few. A central part of maturing regular SfM is
the availability of sizeable data sets with rigorous eval-
uations, e.g. [48][1].

The regular SfM problem, however, primarily deals
with rigid objects, which is somewhat at odds with the

world we see around us. That is, trees sway, faces ex-
press themselves in various expressions, and organic ob-
jects are generally non-rigid. The issue of making this
obvious and necessary extension of the SfM problem is

referred to as the non-rigid structure from motion prob-
lem (nrsfm). A problem that also has a central place
in computer vision. The solution to this problem is,

however, not as mature as the regular SfM problem. A
reason for this is certainly the intrinsic difficulty of the
problem and the scarcity of high quality data sets and

accompanying evaluations. Such data and evaluations
allow us to better understand the problem domain and
better determine what works best and why.

To address this issue, we here introduce a high qual-
ity data set, with accompanying ground truth (or ref-
erence data to be more precise) aimed at evaluating

non-rigid structure from motion. To the best of our
knowledge, this data set is significantly larger and more
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diverse than what has previously been available – c.f.
Section 3 for a comparison to previous evaluations of
nrsfm. The presented data set better capture the vari-
ability of the problem and gives higher statistical strength

of the conclusions reached via it. Accompanying this
data set, we have conducted an evaluation of 18 state
of the art methods, hereby validating the suitability of

our data set, and providing insight into the state of
the art within nrsfm. This evaluation was part of the
competition we held at a CVPR 2017 workshop, and

still ongoing. It is our hope and belief that this data
set and evaluation will help in furthering the state of
the art in nrsfm research, by providing insight and a
benchmark. The data set is publicly available at http:

//nrsfm2017.compute.dtu.dk/dataset together with
the description of the evaluation protocol.

This paper is structured by first giving an overview
of the nrsfm problem, followed by a general descrip-

tion of related work, wrt. other data sets. This section
is then followed by a presentation of our data set, in-
cluding an overview of the design considerations, c.f.

Section 3, which is followed by a presentation of our
proposed protocol for evaluation, c.f. Section 4. This
leads to the result of our benchmark evaluation in Sec-

tions 5. The paper is rounded off by a discussion and
conclusions in Section 6.

2 The nrsfm Problem

In this section, we will provide a brief introduction of
the nrsfm problem, followed by a more detailed overview
of the ways this problem has been addressed. The in-
tention is to establish a taxonomy to base our exper-

imental design and evaluation upon. In particular, we
review sparse NRSfM methods as these approaches are
the one evaluated in our benchmark.

The standard/rigid SfM problem, c.f. e.g. [38], is an

inverse problem aimed at finding the camera positions
(and possibly internal parameters) as well as 3D struc-
ture – typically represented as a static 3D point set, Q

– from a sequence of 2D images of a rigid body. The 2D
images are typically reduced to a sparse set of tracked
2D point features, corresponding to the 3D point set,

Q. The most often employed observation model, linking
2D image points to 3D points and camera motion is ei-
ther the perspective camera model, or the weak perspec-
tive approximation hereof. The weak perspective cam-

era model is derived from the full perspective model,
by simplifying the projective effect of 3D point depth,
i.e. the distance between the camera and 3D point.

The extension from rigid structure from motion to

the non-rigid case is by allowing the 3D structure, here

points Qf , to vary from frame to frame, i.e.

Qf =
[
Qf,1 Qf,2 · · · Qf,P

]
, (1)

Where Qf,p is the 3D position of point p at frame f . To
make this nrsfm problem well-defined, a prior or reg-

ularization is often employed. Here most of the cases
target the spatial and temporal variations of Qf . The
fitness of the prior to deformation in question is a cru-
cial element in successfully solving the nrsfm problem,

and a main difference among nrsfm methods is this
prior.

In this study, we denote nrsfm methods accord-
ing to a three category taxonomy, i.e. the deformable

model used (statistical or physical), the camera model
(affine, weak or full perspective) and the ability to deal
with missing data. The remainder of this section will

elaborate this taxonomy by relating it with the current
literature, leading up to a discussion of how the nrsfm
methods we evaluate, c.f. Table 1, span the state of the
art.

2.1 Deformable Models

The description of our taxonomy will start with the un-
derlying structure deformation model category, divided

into statistical and physical based models.

2.1.1 Statistical

This set of algorithms apply a statistical deformation
model with no direct connection to the physical process

of structure deformations. They are in general heuristi-
cally defined a priori to enforce constraints that can re-
duce the ill-posedness of the nrsfm problem. The most

used low-rank model in the nrsfm literature falls into
this category, utilizing the assumption that 3D defor-
mations are well described by linear subspaces (also

called basis shapes). The low-rank model was first in-
troduced almost 20 years ago by Bregler et al. [13]
solving nrsfm through the formalisation of a factoriza-
tion problem, as analogously proposed by Tomasi and

Kanade for the rigid case [65]. However, strong nonlin-
ear deformations, such as the one appearing in artic-
ulated shapes, may drastically reduce the effectiveness

of such models. Moreover, the first low-rank model pre-
sented in [13] acted mainly as a constraint over the
spatial distribution of the deforming point cloud and it

did not restrict the temporal variations of the deform-
ing object.

Differently, Gotardo and Martinez. [31] had the in-
tuition to use the very same DCT bases to model cam-
era and deformation motion instead, assuming those
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factors are smooth in a video sequence. This approach
was later expanded on by explicitly modeling a set of
complementary rank-3 spaces, and to constrain the mag-
nitude of deformations in the basis shapes [33]. An ex-

tension of this framework, increased the generalization
of the model to non-linear deformations, with a kernel
transformation on the 3D shape space using radial basis

functions [32]. This switch of perspective addressed the
main issue of increasing the number of available DCT
bases, allowing more diverse motions, while not restrict-

ing the complexity of deformations. Later, further ex-
tension and optimization have been made to low-rank
and DCT based approaches. Valmadre and Lucey [70]
noticed that the trajectory should be a low-frequency

signal, thus laying the ground for an automatic selec-
tion of DCT basis rank via penalizing the trajectory’s
response to one or more high-pass filters. Moreover,

spatio-temporal constraints have been imposed both for
temporal and spatial deformations [8].

A related idea proposed by Li et al. [45] attempts
at grouping recurrent deformations in order to better
describe deformations. At its core, the method has an

additional clustering step that links together similar de-
formations. Recently a new prior model, related to the
Kronecker-Markov structure of the covariance of time-
varying 3D point, very well generalizes several priors in-

troduced previously [62]. Another recent improvement
is given by Ansari et al.’s usage of DCT basis in con-
junction with singular value thresholding for camera

pose estimation [19].

Similar spatial and temporal priors have been intro-

duced as regularization terms while optimizing a cost
function solving for the nrsfm problem, mainly using
a low-rank model only. Torresani et al. [67] proposed a
probabilistic PCA model for modelling deformations by

marginalizing some of the variables, assuming Gaussian
distributions for both noise and deformations. More-
over, in the same framework, a linear dynamical model

was used to represent the deformation at the current
frame as a linear function of the previous. Brand [11]
penalizes deformations over the mean shape of the ob-

ject by introducing sensible parameters over the degree
of flexibility of the shape. Del Bue et al. [22] instead
compute a more robust non-rigid factorization, using
a 3D mean shape as a prior for nrsfm [20]. In a non-

linear optimization framework, Olsen et al. [50] include
l2 penalties both on the frame-by-frame deformations
and on the closeness of the reconstructed points in 3D

given their 2D projections. Of course, penalty costs in-
troduce a new set of hyper-parameters that weights the
terms, implying the need for further tuning, that can
be impracticable when cross-validation is not an op-

tion. Regularization has also been introduced in formu-

lations of Bundle Adjustment for nrsfm [3] by including

smoothness deformations via l2 penalties mainly [25] or
constraints over the rigidity of pre-segmented points in
the measurement [24].

Another important statistical principal is enforcing
that low-rank bases are independent. In the coarse to

fine approach of Bartoli et al. [9], base shapes are com-
puted sequentially by adding the basis, which explains
most of the variance in respect to the previous ones.
They also impose a stopping criteria, thus, achieving

the automatic computation of the overall number of
bases. The concept of basis independence clearly calls
for a statistical model close to Independent Compo-

nent Analysis (ICA). To this end, Brandt et al. [12]
proposed a prior term to minimize the mutual informa-
tion of each basis in the nrsfm model. Low-rank models
are indeed compact but limited in the expressiveness of

complex deformations, as noted in [82]. To solve this
problem, Zhu et al. [82] use a temporal union of sub-
space that associate at each cluster of frames in time a

specific subspace. Such association is solved by adopt-
ing a cost function promoting self-expressiveness [28].
Similarly, both spatial and temporal union of subspaces

was used also to account for independently deforming
multiple shapes [4,42]. Interestingly, such union of sub-
spaces strategy was previously adopted to solve for the
multi-body 3D reconstruction of independently moving

objects [81]. Another option is to use an over-complete
representation of subspaces that can still be used by
imposing sparsity over the selected bases [40]. In this

way, 3D shapes in time can have a compact represen-
tation, and they can be theoretically characterized as a
block sparse dictionary learning problem. In a similar
spirit, Hamsici et al. propose to use the input data for

learning spatially smooth shape weights using rotation
invariant kernels [36].

All these approaches for addressing nrsfm with a
low-rank model have provided several non-linear op-
timization procedures, mainly using Alternating Least

Squares (ALS), Lagrange Multipliers and alternating
direction method of multipliers (ADMM). Torresani et
al. first proposed to alternate between the solution of

camera matrices, deformation parameters and basis shapes.
This first initial solution was then extended by Wang
et al. [75] by constraining the camera matrices to be
orthonormal at each iteration, while Paladini et al. [54]

strictly enforced the matrix manifold of the camera ma-
trices to increase the chances to converge to the global
optimum of the cost function. All these methods were

not designed to be strictly convergent, for this reason,
a Bilinear Augmented Multiplier Method (BALM) [26]
was introduced to be convergent while implying all the

problems constraints being satisfied. Furthermore, ro-
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bustness in terms of outlying data was then included to
improve results in a proximal method with theoretical
guarantees of convergence to a stationary point [77].

Despite the non-linearity of the problem, it is possi-
ble to relax the rank constraint with the trace norm and

solve the problem with convex programming. Following
this strategy, Dai et al. provided one of the first effective
closed form solutions to the low-rank problem [18]. Al-
though their convex solution, resulting from relaxation,

did not provide the best performance, a following itera-
tive optimization scheme gave improved results. In this
respect, Kumar et al. proposed a further improvement

on their previous approach, where deformations are rep-
resented as a spatio-temporal union of subspaces rather
than a single subspace [42]. Thus complex deformation
can be represented as the union of several simple ones as

already described in the previous paragraphs. To notice
that evaluation is performed with synthetic generated
data only.

Later Kumar [41] proposed a set of improvements
over Dai et al. approach [18]. Namely, metric rectifica-

tion was performed using incomplete information by
choosing arbitrarily a triplet of solutions among the
one available. The solution in [41] proposes a method

to select the best among the available triplets using
a rotation smoothness heuristic as a decision criteria.
Then, a further improvement is algorithmic. Instead
of using Dai et al. strategy with a matrix shrinkage

operator that equally penalizes all the singular values,
the method in [41] introduces a weighted nuclear norm
function during optimisation. More recently Ornhag et

al. [51] proposed a unified optimization framework for
low-rank inducing penalties that can be readily applied
to solve for nrsfm. The main advantage of the approach

is the ability to combining bias reduction in the estima-
tion and nonconvex low-rank inducing objectives in the
form of a weighted nuclear norm.

On the one hand, the Procrustean Normal Distri-
bution (PND) model was proposed as an effective way

to implicitly separate rigid and non-rigid deformations
[44,56]. This separation provides a relevant regulariza-
tion, since rigid motion can be used to obtain a more
robust camera estimation, while deformations are still

sampled as a normal distribution as done similarly pre-
viously [67]. Such a separation is obtained by enforcing
an alignment between the reconstructed 3D shapes at

every frame. This should in practice factor out the rigid
transformations from the statistical distribution of de-
formations. The PND model has been then extended
to deal with more complex deformations and longer se-

quences [17].

2.1.2 Physical

Physical models represent a less studied class wrt. NRSfM,
which should ideally be the most accurate for modelling

nrsfm. Of course, applying the right physical model re-
quires a knowledge of the deformation type and object
material, which is information not readily available a

priori.

A first class of physical models assume that the non-
rigid object is a piecewise partition into parts, i.e. a

collection of pre-defined or estimated patches that are
mostly rigid or slightly deformable. This observation is
certainly true for objects with articulated deformations,

as it naturally models natural and mechanical shapes
connected into parts. One of the first approaches to use
this strategy is given by Varol et al. [71]. By prese-

lecting a set of overlapping patches from the 2D image
points, and assuming each patch is rigid, homography
constraints can be imposed at each patch, followed by
global 3D consistency being enforced using the overlap-

ping points. However, the rigidity of a patch, even if
small, is a very hard constraint to impose and it does
not generalise well for every non-rigid shape. Moreover,

dense point-matches over the image sequence are re-
quired to ensure a set of overlapping points among all
the patches. A relaxation to the piece-wise rigid con-
straint was given by Fayad et al. [29], assuming each

patch deforming with a quadratic physical model, thus,
accounting for linear and bending deformations. These
methods all require an initial patch segmentation and

the number of overlapping points, to this end, Russel
et al. [58] optimize the number of patches and over-
lap by defining an energy based cost function. This ap-

proach was further extended and generalised to deal
with general videos [59] and energy functional that in-
cludes temporal smoothing [30]. The method of Lee et
al. [43] instead use 3D reconstructions of multiple com-

binations of patches and define a 3D consensus between
a set of patches. This approach provides a fast way to
bypass the segmentation problem and robust mecha-

nism to prune out wrong local 3D reconstructions. The
method was further improved to account for higher de-
grees of missing data in the chosen patches so to gen-

eralise better the capabilities of the approach in chal-
lenging nrsfm sequences [14].

Differently from these approaches, Taylor et al. [64]

constructs a triangular mesh, connecting all the points,
and considering each triangle as being locally rigid.
Global consistency is here imposed to ensure that the

vertexes of each triangle coincide in 3D. Again, this
approach is to a certain extent similar to [71], which
requires a dense set of points in order to comply with

the local rigidity constraint.
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A strong prior, which helps dramatically to miti-
gate the ill-posedness of the problem, is obtained by
considering the deformation isometric, i.e. the metric
length of curves does not change when the shape is

subject to deformations (e.g. paper and metallic ma-
terials to some extent). A first solution considering a
regularly sampled surface mesh model was presented

in [60]. Using an assumption that a surface can be ap-
proximated as infinitesimally planar, Chhatkuli et al.
[15] proposed a local method that frame nrsfm as the

solution of Partial Differential Equations (PDE) being
able to deal with missing data as well. As a further
update [55] formalizes the framework in the context of
Riemannian geometry, which led to a practical method

for solving the problem in linear time and scaling for
a relevant number of views and points. Furthermore,
a convex formulation for nrsfm with inextensible de-

formation constraints was implemented using Second-
Order Cone Programming (SOCP), leading to a closed
form solution to the problem [16]. Vincente and Agapito
implemented soft inextensibility constraints [73] in an

energy minimization framework, e.g. using recently in-
troduced techniques for discrete optimization.

Another set of approaches try to directly estimate

the deformation function using high order models. Del
Bue and Bartoli [21] extended and applied 3D warps
such as the thin plate spline, to the nrsfm problem.

Starting from an approximate mean 3D reconstruction,
the warping function can be constructed and the defor-
mation at each frame can be solved by iterating between
camera and 3D warp field estimation. Finally, Agudo et

al. introduced the use of Finite Elements Models (FEM)
in nrsfm [6]. As these models are highly parametrized,
requiring the knowledge of the material properties of

the object (e.g. the Young modulus), FEM needs to
be approximated in order to be efficiently estimated,
however, in ideal conditions it might achieve remark-
able results, since FEM is a consolidated technique for

modelling structural deformations. Lately, Agudo and
Moreno-Nouger presented a duality between standard
statistical rank-constrained model and a new proposed

force model inspired from the Hooke’s law [5]. How-
ever, in principle, their physical model can account for
a wider range of deformations than rank-based statisti-

cal approaches.

2.2 Missing Data

The initial methods for nrsfm assumed complete 2D
point matches among views when observing a deformable
object. However, given self and standard occlusions,
this is rarely the case. Most approaches for dealing with

such missing data in nrsfm were framed as a matrix

completion problem, i.e. estimate the missing entries

of the matrix storing the 2D coordinates obtained by
projecting each deforming 3D point.

Torresani et al. [68] first proposed removing rows

and lines of the matrix corresponding to missing en-
tries in order to solve the nrsfm problem. However,
this strategy suffers greatly from even small percent-
ages of missing data, since the subset of completely

known entries can be very small. Most of the itera-
tive approaches indeed include an update step of the
missing entries [54,26] where the missing entries be-

come an explicit unknown to estimate. Gotardo et al.
[31] instead strongly reduce the number of parameters
by estimating only the camera matrix explicitly under
severe missing data. This variable reduction is known

as VARPRO in the optimization literature. It has been
recently revisited in relation to several structure from
motion problems [39].

2.3 Camera Model

Most nrsfm methods in the literature assume a weak

perspective camera model. However, in cases where the
object is close to the camera and undergoing strong
changes in depth, time-varying perspective distortions

can significantly affect the measured 2D trajectories.
As low-rank nrsfm is treated as a factorization prob-

lem, a straightforward extension is to follow best prac-
tices from rigid SfM for perspective camera. Xiao and

Kanade [80] have developed a two step factorization al-
gorithm for reconstruction of 3D deformable shapes un-
der the full perspective camera model. This is done us-

ing the assumption that a set of basis shapes are known
to be independent. Vidal and Abretske [74] have also
proposed an algebraic solution to the non-rigid factor-

ization problem. Their approach is, however, limited to
the case of an object being modelled with two indepen-
dent basis shapes and viewed in five different images.
Wang et al. [76] proposed a method able to deal with

the perspective camera model, but under the assump-
tion that its internal calibration is already known. They
update the solutions from a weak perspective to a full

perspective projection by refining the projective depths
recursively, and then refine all the parameters in a fi-
nal optimization stage. Finally, Hartley and Vidal [37]
have proposed a new closed form linear solution for the

perspective camera case. This algorithm requires the
initial estimation of a multifocal tensor, which the au-
thors report is very sensitive to noise. Llado et al. [46,

47] proposed a non-linear optimization procedure. It is
based on the fact that it is possible to detect nearly
rigid points in the deforming shape, which can provide

the basis for a robust camera calibration.



6 Sebastian Hoppe Nesgaard Jensen, Mads Emil Brix Doest, Henrik Aanæs, Alessio Del Bue

Table 1 Methods included in our nrsfm evaluation with annotations of how they fit into our taxonomy.

Method Citation Deformable Model Camera Model Missing Data

BALM [26] Statistical Orthographic Yes
Bundle [25] Statistical Weak Perspective Yes

Compressible [40] Statistical Weak Perspective -
Consensus [43] Physical Orthographic -

CSF [31] Statistical Weak Perspective Yes
CSF2 [33] Statistical Orthographic Yes

EM PPCA [67] Statistical Weak Perspective Yes
KSTA [32] Statistical Orthographic Yes
MDH [16] Physical Perspective Yes

MetricProj [54] Statistical Orthographic Yes
MultiBody [42] Statistical Orthographic -

PTA [7] Statistical Orthographic -
RIKS [36] Statistical Orthographic -

ScalableSurface [19] Statistical Orthographic Yes
SoftInext [73] Physical Perspective Yes

SPFM [18] Statistical Orthographic -
CMDR [30] Physical Orthographic -

F-consensus [14] Physical Orthographic yes

2.4 Evaluated Methods

We have chosen a representative subset of the afore-

mentioned methods, which are summarized according
to our taxonomy in Table 1. This gives us a good repre-
sentation of recent works, distributed according to our
taxonomy with a decent span of deformation models

(statistical/physical) and camera models (orthographic,
weak perspective or perspective). This also takes into
account in-group variations such as DCT basis for sta-

tistical deformation and isometry for physical deforma-
tion. Even lesser used priors, such as compressibility,
are represented. While this is not a full factorial study,

we think this reasonably spans the recent state of the
art of nrsfm. Our choice has, of course, also been in-
fluence by method availability, as we want to test the
author’s original implementation, to avoid our own im-

plementation bias/errors. All in all, we have included
18 methods in our evaluation. Note that we have cho-
sen not to include the method of Taylor et al. [64], even

if code is available, the approach failed approximately
two thirds of the time when tested on our data set.

3 Dataset

As stated, in order to compare state of the art meth-
ods for nrsfm, we have compiled a larger data set for
this purpose. Even though there is a lack of empirical
evidence w.r.t. nrsfm, it does not imply, that no data

sets for nrsfm exist.
As an example in [43], [31], [33], [32], [42], [7], [36]

and [18], a combination of two data sets are used. Namely

seven sequences of a human body from the CMU mo-
tion capture database [69], two MoCap sequences of a

deforming face [66,23], a computer animated shark [66]
and a challenging flag sequence [29]. To the best of our
knowledge, this list in Table 2 represents the most used

evaluation data sets for nrsfm with available ground
truth.

The CMU data set [69] captures the motion of hu-
mans. Since the other frequently used data sets are
also related to animated faces [66,23], this implies that
there is a high over representation of humans in this

state of the art and that a higher variability in the de-
formed scenes viewed is deemed beneficial. In addition,
the shark sequence [66] is not based on real images and

objects but on computer graphics and pure simulation.
As such, there is a need for new data sets, with reliable
ground truth or reference data,1 and a higher variability
in the objects and deformations used.

As such, we here present a data set consisting of five
widely different objects/scenes and deformations. The

physical object motions are generated mechanically us-
ing animatronics, therefore assuring experimental re-
peatability. Furthermore, we have defined six different
camera motions using orthographic and full perspective

camera models. This setup, all in all, gives 60 different
sequences organized in a factorial experimental design,
thus, enabling a more stringent statistical analysis. In

addition to this, since we have tight 3D surface models
of our objects or scenes, we are able to determine oc-
clusions of all 2D feature points. This in turn gives a

realistic handling of missing data, which is often due to
object self occlusion. Given this procedure of generating
occlusions, missing data always follow a more realistic
structured pattern in contrast with the most common,

1 With real measurements like ours the ’ground truth’ data
also include noise, why ’reference data’ is a more correct term.
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Table 2 A description of the previous data set sequences with available ground truth. The table shows the number of frames
and points, the way to generate the sequence (mainly with motion capture data) and the type of shape used.

Name Citation Frames×Points Type Shape

shark [67] 240 × 91 Synthetic Animal motion
face1 [67] 74 × 37 Mocap Face motion
face2 [67] 316 × 40 Mocap Face motion
cubes [79] 200 × 14 Synthetic ToyProblem

face occ [54] 70 × 37 Mocap Face motion
flag [29] 540 × 50 Mocap Cloth deformation

yoga [7] 307 × 41 Mocap Human motion
drink [7] 1102 × 41 Mocap Human motion

stretch [7] 307 × 41 Mocap Human motion
dance [7] 264 × 41 Mocap Human motion

pickup [7] 357 × 41 Mocap Human motion
walking [7] 260 × 41 Mocap Human motion

capoeira [31] 250 × 41 Mocap Human motion
jaws [31] 321 × 49 Synthetic Animal motion

and unrealistic, random process of removing 2D mea-

surement entries used in previous evaluation dataset.

As indicated, these data sets are achieved by stop-
motion using mechanical animatronics. These are recorded

in our robotic setup previously used for generating high
quality data sets c.f. e.g. [2]. We will here present de-
tails of our data capture pipeline, followed by a brief
outline and discussion of design considerations.

The goal of the data capturing is to produce 3 types
of related data:

Ground
Truth:

A series of 3D points that change over
time.

Input Tracks: 2D tracks used as input.

Missing Data: Binary data indicating the tracks that
are occluded at specific image frames.

We record the step-wise deformation of our animatron-

ics from K static views, obtaining both image data and
dense 3D surface geometry. We obtain 2D point fea-
tures by applying standard optical flow tracking [10] to

the image sequence obtained from each of the K views,
which is then reprojected onto the recorded surface ge-
ometry. The ground truth is then the union of these 3D

tracks. By using optical flow for tracking instead of Mo-
Cap markers, we obtain a more realistic set of ground
truth points. We create input 2D points by projecting
the recorded ground truth using a virtual camera in a

fully factorial design of camera paths and camera mod-
els.

In the following, we will detail some of the central

parts of the above procedure.

3.1 Animatronics & Recording Setup

Our stop-motion animatronics are five mechatronic de-
vices capable of computer controlled gradual deforma-

Fig. 1 Images of the robot cell for dataset acquisition. Left
image shows the robot with the structured light scanner (blue
box) and the area where the animatronic systems are posi-
tioned (yellow box). Right image shows the structured light
scanner up close, green arrows show the position of the Point-
Grey Grasshopper3 cameras, and the red arrow marks the
Lightcrafter 4500 projector.

tion. They are shown in Fig. 2, and they cover five types
of deformations: Articulated Motion, Bending, Defla-
tion, Stretching, and Tearing. We believe this covers a
good range of interesting and archetypal deformations.

It is noted, that nrsfm has previously been tested on
bending and tearing [64,73,16,43], but without ground
truth for quantitative comparison. Additionally, elastic

deformations, like deflation and stretching, are quite
commonplace but did not appear in any previous data
sets, to the best of our knowledge.

The animatronics can hold a given deformation or

pose for a large extent of time, thus, allowing us to
record accurately the object’s geometry. We, therefore,
do not need a real-time 3D scanner or elaborate multi-
scanner setup. Instead, our recording setup consists of

an in-house built structured light scanner mounted on
an industrial robot as shown in Fig. 1. This does not
only provide us with accurate 3D scan data, but the

robot’s mobility also enables a full scan of the object at
each deformation step.
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(a) Articulated (b) Bending

(c) Deflation (d) Stetching

(e) Tearing

Fig. 2 Animatronic systems used for generating specific
types of non-rigid motion.

The structured light scanner utilizes two PointGrey

Grasshopper3 9.1MP CCD cameras and a projector
WinTech Lightcrafter 4500 Pro projecting patterns onto
the scene and acquiring images. Then, we use the Het-

erodyne Phase Shifting method [57] to compute the
point clouds using 16 periods across the image and
9 shifts. We verified precision according to standard
VDI 2634-2 [27], and found that the scanner has a

form error of [0.01mm, 0.32mm], a sphere distance error
of [-0.33mm 0.50mm] and a flatness error of [0.29mm,
0.56mm]. This is approximately 2 orders of magnitude

better than the results we see in our evaluation of the
nrsfm methods.

3.2 Recording Procedure

The recording procedure acquires for each shape a series

of image sequences and surface geometries of its defor-
mation over F frames. We record each frame from K
static views with our aforementioned structured light
scanner. As such we obtain K image sequences with

F images in each. We also obtain F dense surface re-
constructions, one for each frame in the deformation.
The procedure is summarized in pseudo code in Algo-

rithm 1. Fig. 3 illustrates sample images of three views
obtained using the above process.

Algorithm 1: Process for recording image
data for tracking and dense surface geometry
for an animatronic.
1 Let F be the number of frames
2 Let k be the number of static scan views K
3 for f ∈ F do
4 Deform animatronic to pose f
5 for k ∈ K do
6 Move scanner to view k
7 Acquire image If,k
8 Acquire structured light scan Sf,k

9 end
10 Combine scans Sf,k for full, dense surface Sf

11 end

3.3 3D Ground Truth Data

The next step is to take acquired images If,k and sur-

faces Sf , and extract the ground truth points. We do
this by applying optical flow tracking [10] as imple-
mented in OpenCV 2.4 to obtain 2D tracks, which are

then reprojected onto Sf . The union of these repro-
jected tracks gives us the ground truth, Q. This process
is summarized in pseudo code in Algorithm 2.

Algorithm 2: Process for extracting the
ground truth Q from recorded images and sur-

face scans.
1 Let F be the number of frames
2 Let k be the number of static scan views K
3 Let Sf be the surface at frame f
4 Let If,k be the image from view k, frame f
5 S = {S1 . . . SF }
6 for k ∈ K do
7 Ik = {I1,k . . . IF,k}
8 Apply optical flow [10] to Ik to get 2D tracks Tk

9 Reproject Tk onto S to get 3D tracks Qk

10 end
11 Q = {Q1 . . . QK}

3.4 Projection using a Virtual Camera

To produce the desired input, we project the ground

truth Q using a virtual camera, similar to what has
been done in [43,31,18,23]. This step has two factors
related to the camera that we wish to control for: Path
and camera model. To keep our design factorial, we de-

fine six different camera paths, which will all be used to
create the 2D input. They are illustrated in Fig. 4. We
believe these are a good representation of possible cam-

era motion with both linear motion and panoramic pan-
ning. The Circle and Half Circle paths correspond well
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View

Po
se

Fig. 3 Illustrative sample of our multi-view, stop-motion
recording procedure. Animatronic pose evolves vertically and
scanner view change horizontally.

to the way scans are performed in SfM and structured
light methods: By moving around the target object we
try to cover most of its shape. Line and Flyby are to

simulate a scenario where instead the camera move lin-
early as in the automotive and drone-alike movements
respectively. Zigzag and Tricky motions are about hav-
ing depth variations in the camera movement, which

is important for perspective camera, where each frame
will have different projective distortions. Tricky camera
path resembles more a critical motion in the direction

of the optical ray of the camera as expected, for in-
stance, in medical imaging. To conclude, as mentioned
earlier, the camera model can be either orthographic or

perspective.

The factorial combination of these elements yields to

12 input sequences for each ground truth. Additionally,
as we have previously recorded the dense surface for
each frame (see Sec. 3.2), we estimate missing data via
self-occlusion. Specifically, we create a triangular mesh

(a) Circle (b) Flyby (c) Half Circle

(d) Line (e) Tricky (f) Zigzag

Fig. 4 Camera path taxonomy. The box represents the de-
forming scene and the wiggles illustrates the main direction
of deformation, e.g. the direction of stretching.

for each Sf and estimate occlusion via raycasting into
the camera along the projection lines. Vertices whose
ray intersects a triangle on the way to the camera are
removed, from the input for the given frame, as those

vertices would naturally be occluded. In this way, we
ensure as realistic as possible structured missing data
by modelling self-occlusion given the different camera

paths. This process is summarized in pseudo code in
Algorithm 3.

Algorithm 3: Creation of input tracks Wc,p

and missing data Dc,p from ground truth Q for
each combination of camera path p and model
c.
1 Let F be the number of frames
2 Let P be the set of camera paths shown in Fig. 4
3 Let C be either perspective or orthographic
4 Let Qf be the ground truth at frame f
5 Let Sf be the surface at frame f
6 for Sf ∈ {S1 . . . SF } do
7 Estimate mesh Mf from Sf

8 end
9 for c ∈ C do

10 for p ∈ P do
11 for f ∈ F do
12 Set camera pose to pf
13 Project Qf using model c to get points

wf

14 Do occlusion test qf against Mf to get
missing data df

15 end
16 Wc,p = {w1 . . . wF }
17 Dc,p = {d1 . . . dF }
18 end

19 end

3.5 Discussion

While stop-motion does allow for diverse data creation,

it is not without drawbacks. Natural acceleration is eas-
ily lost when objects deform in a step-wise manner and
recordings are unnaturally free of noise like motion blur.

However, without this technique, it would have been
prohibitive to create data with the desired diversity and
accurate 3D ground truth.

The same criticism could be levied against the use
of a virtual camera, it lacks the shakiness and accelera-
tion of a real world camera. On the other hand, it allows
us to precisely vary both the camera path and camera

model. This enables us to perform a factorial analysis,
in which we can study the effects of different configura-
tions on nrsfm. As we show in Sec. 5 some interesting

conclusions are drawn from this analysis. Most nrsfm
methods are designed with an orthographic camera in
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mind. As such investigating the difference between data
under orthographic and perspective projection is of in-
terest. Such an investigation is only practically possible
using a virtual camera.

4 Evaluation Metric

In order to compare the methods of Table 1 w.r.t. our
data set, a metric is needed. The purpose is to project

the high dimensional 3D reconstruction error into (ide-
ally) a one dimensional measure.

Several different metrics have been proposed for nrsfm

evaluation in the past literature, e.g. the Frobenius norm [53],
mean [36], variance normalized mean [33] and RMSE [64].

All of the above mentioned evaluation metrics are
based on the L2-norm in one form or another. A draw-

back of the L2-norm is its sensitive to large errors, often
letting a few outliers dominating the evaluation. To ad-
dress this, we incorporate robustness into our metric,

by introducing truncation of the individual 3D point
reconstruction errors. In particular, our metric is based
on a RMSE measure similar used in Taylor et al. [64].

Given the visualisation effectiveness and general adop-
tion of box plots [72], we propose to use their whisker
function to identify and to model outliers in the error
distribution. Such a strategy will enable the inclusion of

outliers in the metric with the additional benefit of re-
ducing their influence in the RMSE. Consider E being
the set of point-wise errors (||Xf,p−Qf,p||) and E1, E3

as the first and third quartile of that set. As described
in [78], we define the whisker as w = 3

2 (E3 −E1), then
any point that is more than a whisker outside of the

interquantile range (IQR = E3 - E1) is considered as
an outlier. Those outliers are then truncated at E3 +w
allowing them to be included in a RMSE without dom-
inating the result. This strategy works well for approx-

imately normally distributed data. With this in mind,
our truncation function is defined as follows,

t (x,q) =

{
||x− q||, ||x− q|| < E3 + w

E3 + w, otherwise
(2)

Thus the robust RMSE is defined as,

m (Q,X) =

√√√√ 1

FP

F,P∑
f,p

t (Xf,p,Qf,p). (3)

A nrsfm reconstruction is given in an arbitrary coor-

dinate system, thus we must align the reference and
reconstruction before computing the error metric. This
is typically done via Procrustes Analysis [34], but as

it minimizes the distance between two shapes in a L2-
norm sense it is also sensitive to outliers. Therefore,

we formulate our alignment process as an optimization

problem based on the robust metric of Eq. 3. Thus the
combined metric and alignment is given by,

m(X,Q) = min
s,R,t

√
1

FP

∑
f,p

t (s [RXfp + t] ,Qfp), (4)

where s = scale,

R = rotation and reflection,

t = translation.

An implication of using a robust, as opposed to a
L2-norm, is that the minimization problem of (4) can-
not be achieved by a standard Procrustes alignment,

as done in [64]. As such, we optimize (4) using the
Levenberg-Marquardt method, where s, R and t have
been initialized via Procrustes alignment [35]. In sum-
mary, (4) defines the alignment and metric that has

been used for the evaluation presented in Sec. 5.
Notice also that this registration procedure estimates

a single rotation and translation for the entire sequence.

In this way, we avoid the practise of registering the GT
3D shape at every frame of the reconstructed 3D se-
quence. Such frame-by-frame procedure does not ac-

count for the global temporal consistency of the re-
constructed 3D sequence and in particular regarding
possible sign flips of the 3D shape, scale variations, or
reflections that might happen abruptly from one frame

to the other during reconstruction. Registering the 3D
ground truth frame-by-frame is also unrealistic, because
in general, it is not feasible to do in a real operative re-

construction scenario where 3D GT is not available.
To conclude, the choice of an evaluation metric al-

ways has a streak of subjectivity and for this reason,
we investigated the sensitivity of choosing a particular

one. We did this by repeating our evaluation with an-
other robust metric, where the minimum track-wise dis-
tance between the ground truth and reconstruction was

used. By just using the n-th percentile, instead of our
truncation, the magnitude of the RMSE significantly
decreases, but the major findings and conclusions, as

presented in Sec. 5, were the same. As such we con-
clude that our conclusions are not overly sensitive to
the choice of metric.

5 Evaluation

With our data set and robust error metric, we have

performed a thorough evaluation and analysis of the
state-of-the-art in nrsfm, which is presented in the fol-
lowing. This is done in part as an explorative analysis

and in part to answer some of what we see as most
pressing, open questions in nrsfm. Specifically:
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- Which algorithms perform the best?
- Which deformable models have the best performance

or generalization?
- How well can the state-of-the-art handle data from

a perspective camera?
- How well can the state-of-the-art handle occlusion-

based missing data?

To answer these questions, we perform our analysis
in a factorial manner, aligned with the factorial design

of our data set. To do this, we view a nrsfm reconstruc-
tion as a function of the following factors:

Algorithm ai: Which algorithm was used.
Camera Model
mj :

Which camera model was used
(perspective or orthographic).

Animatronics sk: Which animatronics sequence was
reconstructed.

Camera Path pl: How the camera moved.

Missing Data dn: Whether occlusion based missing
data was used.

We design our evaluation to be almost fully crossed,
meaning we obtain a reconstruction for every combina-
tion of the above factors.

The only missing part is that the authors of Multi-

Body [42] only submitted reconstructions for orthographic
camera model.

Our factorial experimental design allows us to em-

ploy a classic statistical method known as ANalysis Of
VAriance (ANOVA) [61]. The ANOVA not only allow
us to deduce the precise influence of each factor on the

reconstruction but also allows for testing their signifi-
cance. To be specific, we model the reconstruction error
in terms of the following bilinear model,

y = µ+ ai +mj + sk + pl + dn (5)

+ asik + apil + adin +msjk

+mpjl +mdjn + spkl + sdkn + pdln,

where,

y = reconstruction error,

µ = overall average error,

xyi,j = interaction term between factor xi and yj .

This model, Eq. (5), contains both linear and inter-
action terms, meaning the model reflects both factor

influence as independent and as cross effects, e.g. asik
is the interaction term for ’algorithm’ and ’animatron-
ics’. For each term, we test for significance by choosing

between two hypotheses:

H0 : c0 = c1 = . . . = cN (6)

H1 : c0 6= c1 6= . . . 6= cN

Table 3 ANOVA table for nrsfm reconstruction error with-
out missing data with sources as defined in (5). All factors
are statistically significant at a 0.0005 level except msjk and
mpjl.

Fac-
tor

Sum
Sq.

DoF Mean
Sq.

F p-value

ai 3.6×105 15 2.4×104 204.8 5.5×10−242

mj 1.1×104 1 1.1×104 90.4 3.2×10−20

sk 1.0×105 4 2.6×104 219.0 3.6×10−121

pl 1.5×104 5 3.0×103 25.6 9.3×10−24

asik 4.1×104 60 6.9×102 5.9 2.9×10−33

apil 4.1×104 75 5.5×102 4.7 2.3×10−28

msjk 1.3×103 4 3.2×102 2.7 0.03
mpjl 1.8×103 5 3.6×102 3.1 0.0086
spkl 1.1×104 20 5.7×102 4.9 2.3×10−11

Error 8×104 689 1.2×102

Total 7×105 878

with cn being a term from (5) e.g. ai or mdjn. Typically,

H0 is referred to as the null hypothesis, meaning the
term cn has no significant effect. ANOVA allows for
estimating the probability of falsely rejecting the null

hypothesis for each factor. This statistic is referred to as
the p-value. A term is referred to as being statistically
significant if its p-value is below a certain threshold. In
this paper we consider a significance threshold of 0.0005

or approximately 3.5σ. As such, we clearly evaluated
which factors are important for nrsfm and which are
not.

Another interesting property of the ANOVA is that
all coefficients in a given factor sums to zero,

N∑
i=0

ci = 0. (7)

So each factor can be seen as adjusting the predicted
reconstruction error from the overall average. It should

be noted that the “algorithm”/“camera model” interac-
tion amij has been left out of (5) due to MultiBody [42]
only being tested with one camera model.

The error model of (5) is not directly applicable
to the error of all algorithms as not all state-of-the-
art methods from Table 1 can deal with missing data.

As such we perform the evaluation in two parts. One
where we disregard missing data and include all avail-
able methods from Table 1, and one where we use the
subset of methods that handles missing data and utilize

the full model of (5). The former is covered in Sec. 5.1
and the latter is covered in Sec. 5.2.

5.1 Evaluation without missing data

In the following, we discuss the results of the ANOVA
without taking ’missing data’ into account, using the
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Table 4 Linear term µ + ai sorted in ascending numerical
order, this is the average error for the given algorithm. Algo-
rithms are referred to by their alias in Table 1. All numbers
are given in millimeters.

MultiBody KSTA RIKS
29.36 31.94 32.21

CSF2 MetricProj CSF
32.83 34.09 41.19

Bundle PTA F-Consensus
46.66 46.80 53.17

ScalableSurface CMDR EM PPCA
53.88 53.91 59.21

SoftInext BALM MDH
61.94 66.34 70.34

Compressible SPFM Consensus
79.18 85.34 94.61

model as in Eq. (5) without terms related to dn:

y = µ+ ai +mj + sk + pl + asik (8)

+ apil +msjk +mpjl + spkl.

The results of the ANOVA using Eq. (8) is summa-

rized in Table 3. All factors except msjk and mpjl are
statistically significant. As such, we can conclude that
all the aforementioned factors have a significant influ-

ence on the reconstruction error. Therefore, we will ex-
plore the specifics of each factor in the following, start-
ing with ’algorithm’.

Table 4 shows the average reconstruction error for
each algorithm. The method MultiBody [42] has the
lowest average reconstruction error over all experiments

followed by KSTA [32] and RIKS [36]. For more de-
tailed insights refer to Table 5 showing the ’algorithm’
vs ’animatronic’ effect on the reconstruction error. As

it can be seen, MultiBody [42] does not have the low-
est error for all animatronics, as e.g. KSTA [32] has a
significantly lower error on the Tearing and Articulated
deformations. Both of these can roughly be described

as rigid bodies moving relative to each other, and it
would seem KSTA [32] is the best at handling these
deformations.

Methods with a physical prior, like MDH [16] and
SoftInext [73] have in general lower performance, as it

is evident from Tables 1, 5 and 6. MDH [16] is designed
with an isometry prior, therefore one would expect it
to perform well in the bending deformation. Indeed,
while its interaction term asik has its lowest value for

the bending deformation, denoting the fitness of the
chosen prior, the average reconstruction error is higher.
On a more careful inspection of the reconstructed 3D

sequences, it is evident that for a few frames MDH and
SoftInext struggle to obtain an accurate 3D reconstruc-

Table 5 Interaction term µ+ai+sk+asik. This is equivalent
to the algorithms average error on each animatronic. Lowest
error for each animatronic is marked with bold text. Algo-
rithms are referred to by their alias in Table 1. All numbers
are given in millimeters.

Deflation Tearing Bending Stretching Articulated

MultiBody
KSTA
RIKS
CSF2

MetricProj
CSF

Bundle
PTA

F-Consensus
ScalableSurface

CMDR
EM PPCA
SoftInext

BALM
MDH

Compressible
SPFM

Consensus

15.20 24.82 25.21 25.12 56.44
27.60 20.78 36.66 29.62 45.05

24.10 21.37 35.04 32.07 48.49
23.55 21.55 36.21 32.33 50.51
27.75 25.93 35.93 33.22 47.63
34.92 40.93 40.10 39.96 50.03
39.36 29.47 43.07 49.96 71.44
35.75 34.49 51.81 47.93 63.99
34.86 48.45 50.22 57.96 74.33
34.60 47.95 53.82 59.40 73.65
40.28 51.95 54.43 61.20 61.68
40.18 59.60 65.29 73.88 57.09
46.60 54.07 64.05 65.49 79.48
52.51 58.28 74.85 67.76 78.29
56.87 63.75 69.00 75.02 87.06
61.62 71.06 79.66 79.08 104.47
54.85 76.19 80.05 89.93 125.68
66.96 83.07 83.51 95.62 143.90

Table 6 Interaction term µ+ ai + pl + apil. Algorithms are
referred to by their alias in Table 1. All numbers are given in
millimeters.

Zigzag Line Half Circle Flyby Tricky Circle

MultiBody
KSTA
RIKS
CSF2

MetricProj
CSF

Bundle
PTA

F-Consensus
ScalableSurface

CMDR
EM PPCA
SoftInext

BALM
MDH

Compressible
SPFM

Consensus

19.48 28.52 30.88 29.71 52.18 15.37

24.35 33.56 29.36 34.65 43.17 26.57
25.68 30.24 26.76 37.59 41.21 31.81
28.22 28.96 28.25 36.58 43.96 31.02
26.48 32.37 30.67 34.88 48.79 31.36
31.90 46.39 40.17 34.53 59.49 34.65
47.30 39.27 45.55 39.68 55.30 52.84
35.51 48.34 42.67 43.91 60.53 49.82
37.89 37.42 50.52 52.73 48.76 91.68
39.64 41.88 52.68 52.64 48.49 87.98
38.95 45.89 53.35 52.91 51.90 80.46
52.88 58.40 54.68 55.70 57.49 76.11
51.38 49.13 58.32 62.58 61.17 89.06
62.61 72.22 59.87 56.73 73.55 73.06
75.09 71.77 60.50 67.90 67.46 79.33
73.61 80.08 80.78 83.84 84.24 72.49
85.53 82.53 86.09 88.33 86.88 82.68
94.70 94.81 94.52 94.35 94.42 94.88

Table 7 Linear term µ + mj sorted in ascending numerical
order, this is the average error for the given camera model.
All numbers are given in millimeters.

Orthographic Perspective
50.45 57.66

tion and this affects the whole evaluation. Moreover, the
3D reconstruction shows intermittent sign flips of the
3D reconstructed shape. To this end, a stronger tempo-

ral consistency may help to reduce this negative effect
and improve the method performance.
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Table 8 Linear term µ + sk sorted in ascending numerical
order, this is the average error for the given animatronic. All
numbers are given in millimeters.

Deflation Tearing Bending
39.86 46.32 54.38

Stretching Articulated
56.42 73.29

Table 9 Linear term µ + pl sorted in ascending numerical
order, this is the average error for the given camera path. All
numbers are given in millimeters.

Zigzag Line Half Circle
47.29 51.21 51.42

Flyby Tricky Circle
53.29 59.94 61.18

A similar trend can be observed in Table 6, which

shows the ’algorithm’ vs ’camera path’ effect on the re-
construction error. While MultiBody [42] has the low-
est average error, it is surpassed in the Half Circle and
Tricky ’camera path’ by RIKS [36]. On the other hand,

MultiBody has the lowest error under the Circle path
by quite a significant margin.

From this analysis we can conclude that MultiBody
performs the best on average, but is surpassed w.r.t.

to certain camera paths and animatronic deformations
by algorithms such as RIKS [36] and KSTA [32]. This
also clearly indicates that one needs to control for both
deformation type and camera motion in future nrsfm

comparisons, as the above conclusion could be changed
by choosing the right combination of camera path and
deformation. On the other hand, these findings show

that nrsfm performance can be optimized by choosing
the right camera path (e.g. Zigzag) and the right algo-
rithm for the deformation in question.

The camera model and its path have a significant
impact on reconstruction error, a trend that can be ob-

served from Table 6. Table 9 shows that there is a sig-
nificant difference in average error w.r.t. ’camera path’.
It is interesting to note, that the Circle path has one of

the highest average errors, only surpassed by the Tricky
camera path. The latter was specifically designed to be
challenging, as such, it is surprising to find that the
Circle and Tricky path’s average error only differ by

3.08mm. In fact, MultiBody [42] seems to be the only
method that benefits from the circle type of camera
path, as can be seen in Table 6. Table 7 shows the av-

erage error of reconstructions for an orthographic and
a perspective camera model. As it can be seen, there
is a difference of 7.20mm, which is significant but not

as large as the difference w.r.t. ’algorithm’ (Table 4)
or ’camera path’ (Table 9). This suggests that, while

Table 10 ANOVA table for nrsfm reconstruction error with
missing data. Factors are as defined in (5) and described at
the beginning of this section. All factors are statistically sig-
nificant at a 0.0005 level except msjk, mpjl and mdjn.

Fac-
tor

Sum
Sq.

DoF Mean
Sq.

F p-value

ai 1.3×105 8 1.6×104 90.9 7.7×10−108

mj 1.4×104 1 1.4×104 81.6 1.2×10−18

sk 7.5×104 4 1.9×104 106.5 3.8×10−73

pl 4.1×104 5 8.2×103 47.0 8.8×10−43

dn 1.6×104 1 1.6×104 89.8 2.7×10−20

asik 1.6×104 32 5.0×102 2.9 3.4×10−7

apil 5.6×104 40 1.4×103 8.0 6.4×10−37

adin 1.1×104 8 1.3×103 7.5 1.1×10−9

msjk 2.6×103 4 6.5×102 3.7 0.0052
mpjl 2.5×103 5 5.1×102 2.9 0.013
mdjn 2.9×102 1 2.9×102 1.6 0.2
spkl 2.7×104 20 1.4×103 7.8 6.7×10−21

sdkn 3.6×103 4 8.9×102 5.1 0.00048
pdln 8.1×103 5 1.6×103 9.3 1.4×10−8

Error 1.4×105 824 1.8×102

Total 5.7×105 962

the error increases the state-of-the-art in nrsfm can

still operate under a perspective camera model. This
is quite interesting as most nrsfm approaches are not
designed with a perspective camera in mind. It would

seem that an orthographic or weak-perspective camera
acts a reasonable approximation given the perspective
distortions and the scale of the object deformation.

There is also a significant difference between the av-
erage reconstruction error of each animatronic which
Table 8 shows. Articulated has by far the highest av-

erage reconstruction error, making it the most difficult
to reconstruct for the current state-of-the-art in nrsfm.
Since most approaches use low-rank methods, a highly

structured motion such as an Articulated is difficult to
handle with a low-rank prior, especially if points are
densely sampled on all joints. On the other hand, De-
flation seems to be quite easy to handle for most of the

state-of-the-art methods.

5.2 Evaluation with Missing Data

As previously mentioned, we are interested in ’missing

data’ and its effect on nrsfm. We, thus, here use Eq.
(5), which is used to evaluate the subset of methods
capable of handling missing data, as shown in Table 1.

It should be noted that while MDH [16] is nomi-
nally capable of handling missing data, it has not been
included in this part of the study. The reason being that

the code provided only reconstructs frames with mini-
mum ratio of visible data, thus our error metric cannot
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be applied. As such, we have 9 methods in total in this
category.

We treat ’missing data’ as a categorical factor hav-

ing two states: with or without missing data. This is
because the missing percentage of our occlusion-based
missing data is dependent on the ’animatronic’, ’camera

path’ and ’camera model’ factors. Additionally, there is
a significant sampling bias in the occlusion-based miss-
ing data. For example, in-plane motion, like Articulated
and Tearing, rarely get a missing percentage above 25%

and more volumetric motion such as Deflation rarely go
below 40% missing data. This would make it difficult to
distinguish between the influence of the ’missing data’

factor and the animatronic factor.

The results of the ANOVA is summarized in Ta-
ble 10 and all factors except msjk, mpjl and mdjn
are statistically significant. This means that ’missing
data’ has a significant influence on the reconstruction
error. Table 13 shows the interaction between ’algo-

rithm’ and ’missing data’. As expected, the mean er-
ror without missing data is very similar to the averages
in Table 4 with KSTA [32] having the lowest expected

error. However, with missing data, MetricProj [54] ac-
tually has a lower average reconstruction error. This is
due to its low increase in error of 5.85mm when operat-
ing under occlusion-based missing data. In comparison,

KSTA [32], CSF2 [33] and CSF [31] are much more
unstable with average increases in error of 9.65mm,
18.15mm and 13.49mm respectively. Common among

the three methods is the fact that they assume a Dis-
crete Cosine Transform (DCT) as their prior. Indeed,
we see a similar increase for ScalableSurface of 16.52mm
and this method also uses a DCT basis.

These results suggest that while DCT-based approaches
are quite accurate without missing data, they are not

very robust when operating under occlusion-based miss-
ing data. Thus, they would likely not be very robust
when applied to real-world deformations, where occlusion-
based missing data is unavoidable. This indicates that

future research should focus on making DCT basis meth-
ods more robust or to modify the DCT model to bet-
ter generalize for ’missing data’. Finally, BALM [26]

method exhibit some peculiar behavior as its average
error actually decreases by 3.33mm, contrary to ex-
pectation. A likely cause is a different computational

structure of the algorithm, since the full data case uses
mainly SVD for factorisation while the missing data
approach has a more elaborated algorithmic approach
with manifold projections and matrix entries imputa-

tion.

Table 12 shows the average error as an interaction
between ’animatronic’ and ’missing data’, i.e. the aver-

age reconstruction error of each animatronic with and

Table 11 Interaction between ’camera path’/’missing data’;
µ+ pl + dn + pdln. Numbers are given in milimeters.

Without
Missing

With
Missing

Zigzag
Half Circle

Line
Flyby
Circle
Tricky

42.82 46.48
45.59 52.41
46.25 52.10
47.22 53.47
58.96 63.39
54.24 75.26

Table 12 Interaction between ’animatronic’/’missing data’;
µ+ sk + dn + sdkn. Numbers are given in milimeters.

Without
Missing

With
Missing

Deflation
Tearing

Stretching
Bending

Articulated

36.94 48.66
41.53 45.06
52.30 56.70
50.33 63.12
64.79 72.39

without missing data. It is interesting to note that the

in-plane deformations, i.e. Tearing, Stretching and Ar-
ticulated, generally have a smaller increase in error with
missing data compared to the more volumetric defor-

mation, i.e. Deflation and Bending, compared to the
error without missing data. The increase is respectively
3.96mm, 4.65mm and 8.38mm versus 12.27mm and 13.47mm.

The main difference between the two groups is that the
ratio of missing data is consistently low for the in-plane
deformations. This would suggest that the ratio of miss-
ing data has an impact on the reconstruction error.

Table 11 shows the average error as interaction be-
tween ’camera path’ and ’missing data’. The Tricky

path has by far the highest average error. This is ex-
pected, as the small camera movement ensures that a
portion of the tracked points is consistently hidden. As
such, while Tricky and Circle were almost equally diffi-

cult without missing data, this is no longer the case with
missing data as Circle’s average error only increases by
4.9mm. Indeed, all other camera paths have approxi-

mately the same increase in error with missing data.
These paths also ensure that all observed points are
equally visible. What differs consistently is the spatio-
temporal distribution of missing data, which has a phys-

ical plausible structured pattern. the missing data dis-
tributions in our dataset are in contrast with previous
evaluations where often missing entries were generated

randomly, thus not reflecting a real 3D modelling sce-
nario. These results also suggest that the distribution
of missing data is as important as the ratio in affecting

the reconstruction error. Indeed this is in line with the
observations made by Paladini et al. [54].
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Table 13 Interaction between ’algorithm’/’missing data’; µ + ai + dn + adin. This is the average error for each algorithm
either with or without occlusion-based missing data.

KSTA MetricProj CSF2 CSF Bundle F-Consensus ScalableSurface EM PPCA BALM MDH

Without Missing

With Missing

31.94 34.09 32.83 41.19 46.66 53.00 53.88 61.33 66.34 70.51
41.59 39.76 50.98 54.68 52.95 56.43 70.40 64.11 62.98 77.97

The aforementioned observations demonstrate the

importance of testing against occlusion-based missing
data as it contains a spatio-temporal structure of miss-
ing data that a randomly removed subset lacks. Many

nrsfm methods treat missing data as a matrix fill-in
problem, meaning recreating missing values from inter-
polation of spatio-temporally close observations. Thus,
it is clear that conceptually it is much easier to inter-

polate random, evenly distributed missing data, com-
pared to the spatio-temporally clustered structure of
occlusion-based missing data. It is noted, that KSTA [32]

and CSF [31] were both evaluated using random sub-
set missing data in the original works, and was found
to approximately have the same performance whether

from 0% to 50% missing data. These results are obvi-
ously quite different from the conclusion of our study
and we hypothesize, that the spatio-temporal structure
of our occlusion-based missing is probably the primary

cause for the drop in performance of many approaches.

6 Discussion and Conclusion

To summarize our findings, we would like to firstly men-
tion that, the algorithm with the lowest error on average
without missing data was found to be MultiBody [42].

There is, however, a large variation between the dif-
ferent algorithms performance depending on the factors
chosen. As such our study does not conclude that Multi-

body [42] is definitively better than all other meth-
ods in general. As an example, for some camera paths
RIKS [36] had lower average error than MultiBody [42].

Also, with missing data MetricProj [53] has the lowest
reconstruction error. Other observations include that
methods with a DCT basis were found to have a great
increase in error with occlusion-based missing data. In

general, the evaluated methods stay about two orders
of magnitude behind the accuracy of the ground truth,
showing that there is a need of improving current ap-

proaches.

Our study also shows findings that support hypothe-
ses of where nrsfm research could head in the future.

Even though some of these hypotheses have been stated
before in related work, the strength of our data set and
evaluation is able to confirm these. Firstly, it is clear
that methods using the weak perspective approxima-

tion to the perspective camera model only incur a small

penalty for doing so on average. This camera model

seems like a good approximation, although it should be
noted, that our data set does not challenge the algo-
rithms extremely in this regard, with only an average
1.6 fold change in the depth variations. In particular,

nrsfm applied in the medical domain, e.g. endoscopic
imaging, may better benefit from a perspective camera
model as the deforming body can be imaged at differ-

ent depths while approaching with the endoscope to
the regions of interest. Providing an in vivo data set
for this scenario is a complex task requiring medical
staff support. Some initial and promising efforts have

been done for evaluating deformable registration meth-
ods [49] that could lead to a related nrsfm evaluation.

Moreover, given continuously deforming shapes, global
temporal consistency should be enforced in order to
avoid frame-by-frame sign flips, reflections and other
ambiguities given the stronger geometrical expressive-

ness of deformable models. This is truly necessary in an
operative scenario where such a problem might drasti-
cally reduce the effectiveness of the nrsfm approaches.

Another main avenue of investigation was the effect
of missing data. Here we found, that that this aspect
has a large impact on the reconstruction error. This is

somewhat at odds with previous findings, and we spec-
ulate that this has to do with our missing data hav-
ing structure originating from object self occlusion, as

opposed to generate missing data with random sam-
pling. In particular, occlusion-based missing data in-
creases the reconstruction error of all methods except
BALM [26]. Our study thus indicates this area to be a

fruitful area of investigation for nrsfm research.

Another observation is that the physical based meth-

ods did quite poorly compared to the methods using
a statistically based deformation model. This is in a
sense counter intuitive, provided that the physical mod-
els capture the deformation physics well. This, in turn,

leads us to the observation that stronger efforts could
be beneficial as far as better physical based deformation
models.

As stated, many of these observations, support hy-
pothesis held in the nrsfm community, and it strengths
them, that we have here provided empirical support

for them. On the other hand, this study also helps to
validate the suitability of our compiled data set. In re-
gard to which, it should be noted, both deformation

types and camera paths have a statistically significant
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impact on reconstruction error, regardless of the algo-
rithm used. This indicated that our proposed taxonomy
and the data set design has value.

All in all, we have here presented a state of the art

data set for nrsfm evaluation. We have applied 18 dif-
ferent nrsfm method to this data set. Methods that
span the state of the art of nrsfm. This evaluation val-
idates the usability of our proposed, and publicly avail-

able data set, and gives several insights into the current
state of the art of nrsfm, including directions for fur-
ther research.
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22. Del Bue, A., Lladó, X., Agapito, L.: Non-rigid face mod-
elling using shape priors. In: S.G. W. Zhao, X. Tang
(eds.) IEEE International Workshop on Analysis and
Modelling of Faces and Gestures, Lecture Notes in Com-
puter Science, vol. 3723, pp. 96–107. Springer-Verlag
(2005)
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Abstract

Reconstruction of transparent objects (e.g. glass) tradi-
tionally relies on modelling very complex light interaction
phenomena, but recently deep learning approaches have
shown to be a viable alternative to traditional model-based
methods. In this paper, we show that polarized images
can provide a further boost to this compelling problem.
This aspect is especially true because the polarization pro-
vides different image cues after reflection off external and
internal surfaces. We therefore introduce PNN that uses
polarized images as input and it outputs an estimation of
the surface in terms of their mask, normals, depth. PNN
is a fully supervised approach and we bypass the com-
plexity of generating data using our CG-based engine for
massively generating polarized images. We extensively
experiment on the different numerical input formats and
show X out performs the rest. We also provide an exten-
sive ablation study on CNN techniques for the inference
of the surface and provide insights over the method per-
formance over varying complexity of glass surfaces.

1 Introduction

Reconstructing the surface geometry of a non-lambertian
or transparent objects from images is one of the few in-
verse problems in computer vision still challenging the
computer vision and graphics communities [10]. In the
most unconstrained case, solving this problem is overly
complex given several unknowns that relates to highly

non-linear physical phenomena: The number of interfaces
(e.g. glass-air) in the object are generally unknown, every
interface usually causes both reflection and refraction, the
Index of Refraction (IOR) of the different media depends
on the wavelength, and interreflections are hard to deal
with if no knowledge of the environment is available. To
exacerbate further the problem, it is very expensive or in
some cases not viable to obtain real 3D ground truth from
standard objects. Examples of dataset are limited to few
objects scanned with Computed Tomography (CT) [32]
and then acquired with a camera. This has been a limiting
aspect for learning approaches that often rely on advanced
photorealistic renderers to provide enough data for train-
ing deep approaches [32, 28].

Still, the research community has attempted to solve 3D
surface reconstruction of transparent objects, often with
custom built setup [24, 38], a single fixed template [8, 24],
RGBD sensors [11, 28] and using polarization [17, 3, 39].
In this paper we propose a new approach that leverage the
recent availability of affordable polarized cameras, a new
CG engine to generate polarized images for training data
and a new model named PNN to to compute segmentation
mask, depth and front & back normals of a transparent ob-
ject from a single image. Although our approach can work
with any images with arbitrary background, we also spe-
cialize the method to the case where the fixed background
is an LCD screen. This choice is due to the fact that this
monitor is a linearly polarized source [4] thus improving
results over other less controlled polarized lights.

The contributions of the paper is therefore as follows:
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Figure 1: Exemplar capture setup for capturing polarized
images. Light from a monitor passes through a transpar-
ent object and is captured by the polarized cameras. A
robotic arm and turn table provide variation in views.

• Fast ray tracer for polarized camera including a
model of the polarized emission of an LCD monitor;

• Synthetic dataset of polarized and RGB images;

• PNN custom model for estimation of Mask, Normal
and Depth from Polarized Intensities and Stokes.

2 Related work
The reference method for 3D reconstruction of a transpar-
ent object is using Computed Tomography (CT) to acquire
a volumetric representation of the object and then recon-
structing the surface from this volume [14, 10, 31]. How-
ever, this reference technique requires slow and expensive
CT scanning equipment and is limited by smoothing (and
possibly other artifacts) introduced by the surface recon-
struction technique available in standard scanners [31].
These shortcomings have pushed researchers to search for
other techniques that are faster and more “light-weight”
than a CT scanner. In this section, we review both gen-
eral purpose reconstruction of transparent objects as well
as related approaches to our PNN model.
Transparent Object Reconstruction Accurate 3D glass
reconstruction is one of the most complex vision prob-
lems yet to solve and initial approaches relied mostly

on custom-built lab setups. Within the field of transpar-
ent object reconstruction, the setup contains one or more
cameras, the object in question, and a structured pattern
display. This type of capture setup was originally pre-
sented by Kutulakos and Steger [12] and further explored
by Chari and Sturm [2]. Qian et al. [24] also employ such
a setup but focus on computing normals using two cam-
eras to capture both the front and the back surface of the
object. Given images taken from multiple configurations
they are able to reconstruct glass objects of geometry such
as spherical shapes and reading glasses. A more recent
version of this setup [38] uses a screen and a turn table to
expedite the capture. All these in-the-lab approaches are
limited to two interfaces only and assume a known IOR,
which is a common assumption in references on transpar-
ent object reconstruction. An exception to this is the work
of Han et al. [8, 9] who proposed a fixed setup for dense
reconstruction of transparent objects in high detail allow-
ing them to handle various indices of refraction. The main
drawback of their custom setup is that it requires moving
a reference pattern to a priori known positions in order to
infer the surface.

An interesting technique by Morris and Kutulakos [21]
performs good quality reconstruction by capturing the
trajectory of highlights for a moving diffuse point-like
source. This enables reconstruction of heterogeneous
transparent objects. The key difficulty in this technique
is to get full coverage of the surface as trajectories are
only available where highlights were observed.
Polarization-Based Reconstruction The Fresnel equa-
tions [5] describe the angularly dependent amount of re-
flection and refraction of light at an interface, including
the polarization of the light. The fact that specular re-
flection causes polarization has multiple uses in vision.
We can use it to separate highlight and diffuse reflection
components [22]. This is useful for finding source direc-
tions and for removing highlights in shape from shading
and photometric stereo. Saito et al. [27] used the degree
of polarization revealed by the Fresnel equations to mea-
sure the orientation of the surface normals of a transparent
surface. In turn, this led to the concept of shape from po-
larization [25].

Using the degree of polarization for surface normal re-
construction leads to an ambiguity because a given de-
gree of polarization can be due to two different surface
normals [19]. Different methods have been proposed for
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disambiguation: using two wavelengths [19, 33] or two
views [18] or an inverse rendering approach [20]. For
transparent objects, such inverse rendering is based on
polarization ray tracing [16, 17], where each ray carries
a Stokes vector and a reference frame to represent the po-
larization of the light. Emission of light and light-matter
interaction then requires a model describing polarization
effects. This is usually accomplished using Mueller ma-
trices that are applied to the Stokes vector.

The usefulness of polarization in vision has led to the
development of polarimetric cameras [37, 15, 35]. More-
over, a standard liquid crystal display (LCD) monitor
emits linearly polarized light. The combination of po-
larization imaging and use of an LCD monitor as a po-
larized light source has resulted in a solid technique for
reconstructing surface normals [4] and for calibrating po-
larimetric cameras [36]. With a camera measuring the
degree of polarization and through use of polarization
ray tracing [17] in combination with shape from distor-
tion [29, 34], Drouet et al. [3] developed a technique for
acquiring both the front surface and the first internal sur-
face (back surface, if the geometry is simple) of a trans-
parent object. Their method however requires that reflec-
tions of the light source in the external and the internal
surface do not overlap in an acquired image.

A circularly polarized light source in combination with
a camera that provides more complete information of
the Stokes vector is another way to address the disam-
biguation in surface normal reconstruction using a sin-
gle view [7]. A combination of shape from polariza-
tion (this section) with triangulation methods for refrac-
tive surfaces [12, 2] (previous section) was presented by
Xu et al. [39]. This technique is limited to simple object
geometries due to refractive light-path triangulation being
limited to one or two light bounces. Nevertheless, This
work clearly indicates an advantage in use of the informa-
tion provided by the partial polarization of the light when
interacting with a specular/refractive surface.

3 Method
We aim to utilize multi-view and polarized information
to inform a data-driven approach for 3D reconstruction.
Our setup uses a robotic arm to capture multi-view im-
ages of the glass object (sec. 3.1). For each view we in-

dependently predict a mask, normal and depth to under-
stand for the object in sec. 3.3, using a adaption on U-Net,
then it would then be possible to integrate this information
into a single model using Shape-from-Silhouette [13]. To
achieve this we develop a ray-trace for polarized camera
to synthetically generate a large dataset in Sec. 2.

3.1 Physical setup
Our setup consists of a robotic arm, stereo cameras screen
and capture object. We use a single Universal Robots UR5
6-DOF robotic arm to move the cameras into a variety of
positions. The end-effector is a custom frame housing two
FLIR BFS-U3-51S5P-C polarization cameras from posi-
tioned in stereo. We use a 27” monitor to provide the light
patterns to be passed through the sample object. The ob-
ject is placed on a platform (turntable –although not used),
where the center of the platform is placed 35cm from the
screen. A selection of views of the full setup is shown in
Figure 2.

We manually teach the robot a set of positions within
the focal range of the object. This setup is performed once
by manually moving the arm into a variety of positions.
After the robotic arm then performs the same capture of
views for an array of sample objects.

3.2 Polarized Dataset Creation
The total size of the dataset is 132k entries. Uncom-
pressed this is roughly 2TB of data, and can be quite im-
practical to work with we also provice a smaller subset
of the dataset of just 40k entries. Each entry consists of
a photorealistic rendering with and without environment
map, normals of the front and back surface, depth image,
stokes vectors, and polarized intensity images simliar to
the FLIR Polarization cameras. An example of this can
be seen in Fig. 3.

3.2.1 Choice of 3D models

The dataset is based on a subset of objects from the
Thingi10K [40] dataset. It consists of CAD models de-
signed for 3D printing, thus the geometric properties of
the dataset is very diverse and similar to objects produced
in industry. Statistics on the geometrical properties of the
dataset can be found as a spreadsheet on their website.
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Figure 2: Top a synthetic setup, bottom a real capture
setup showing a sample object from different perspec-
tives. Setup uses a robotic arm (UR5) and the patterns
displayed on a LCD display. The capture object is placed
on a platform for easy identification and contrast.

Since Thingi10K is a massive dataset containing many
different types of geometries we have limited the set us-
ing their search tool, to include only objects which have
a single component, are manifold, are not degenerate and
are closed. Further all mesh files have been decimated to
only include up to 20k triangles. This was done to avoid
cases of significantly increased rendering times. Due to
the CAD models having a rather big size range, mm to
m objects were scaled to be approximately the size of the
table and screen.

Most of the previous work focus on reducing the com-
plexity of the geometry supported by their method e.g.
maximum of 2 interfaces, convex objects, no self occlu-
sions, or even prior knowledge about parts of the geome-
try. While using Thingi10K the only assumption made is
that the mesh is not degenerative, is closed and does not
contain multiple objects. Also the genus of the objects
varies from 1 to as high as 4886, allowing for very long
and complex ray paths.

3.2.2 Polarization Renderer

We evaluate two different types of input the first being
standard RGB data as proposed in [32], which we treat
as grayscale given the capture setup, as well as polarized

data. In this section, we outline the method for generating
polarized training data where we use NVIDIA OptiX [23]
for implementing a Monte Carlo ray tracer to render po-
larization images similar to images taken by the FLIR Po-
larization cameras mentioned in Sec. 3.1.

To include polarization in our renderer, we carry a
Stokes vector and a reference frame together with each
ray. In our shader (closest hit program), we account for
the polarization caused by reflection and refraction of
light by using the Fresnel equations. The plane on which
the objects are placed is modelled by a Lambertian mate-
rial. Lambertian materials work as a depolarization filter
due to the light scatterings, this is why the plane is visible
in s0 but not in s1, s2 or s3.

Polarization is due to the fact that photons have posi-
tive or negative spin. This property of photons is in the
outset not represented by the wave theory of light. How-
ever, due to the principle of superposition, we can de-
compose any electromagnetic wave into two independent
wave components and let these represent the polarization
of the light (the spin preference of the photons). We can
do the decomposition using an orthonormal frame of ref-
erence, where we can for example use the direction of
wave propagation as one of the basis vectors. The di-
rections of the other two basis vectors are not important,
since it is just a mathematical tool to have two wave com-
ponents for representing the polarization of the light. To
obtain a reference frame, we use an efficient method for
building an orthonormal basis from a unit direction vec-
tor [6]. A Stokes vector

s =
[
s0, s1, s2, s3

]T
(1)

is then used to describe the amount of polarization in the
wave components that the wave has been decomposed
into.

The ratio of reflected radiance is given by the Fresnel
equations [1]:

R‖ =

∣∣∣∣∣n2 cos θi − n1 cos θtn2 cos θi + n1 cos θt

∣∣∣∣∣
2

(2)

R⊥ =

∣∣∣∣∣n1 cos θi − n2 cos θtn1 cos θi + n2 cos θt

∣∣∣∣∣
2

(3)
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Figure 3: Showing an example from the rendered dataset, CAD model #53159. From top left we have: PB rendering
no environment, PB rendering with environment, front-facing normals, back-facing normals, depth, mask, s0, s1, s2,
and s3

T‖ = 1−R‖ (4)
T⊥ = 1−R⊥ , (5)

where n1 is the index of refraction (IOR) of the medium
with the incident and reflected light and n2 is the IOR of
the medium with the transmitted light, while θi and θt are
the angles of incidence and transmission. The angle of
reflection is equal to the angle of incidence.

It is important to realize that the reference frame and the
Stokes vector belong together. If we rotate the reference
frame, the Stokes vector must change accordingly. The
change in a Stokes vector upon rotation of the reference
frame is given by a so-called rotation Mueller matrix [16].
When light reflects and refracts at an interface, the amount
of polarization is given by the Fresnel equations but these
assume a reference frame with the basis vectors of the
two wave components being perpendicular to and parallel
with the plane of incidence. Thus, the rotation Mueller
matrix is needed for every light bounce in a ray tracing
in order to rotate the reference frame to the plane of in-
cidence (which is spanned by the surface normal and the
direction of wave propagation of the light). A reflection or
transmission Mueller matrix can then be applied, and we
can rotate the resulting Stokes vector back to the original
reference frame. This procedure is described in previous
work [16, 17].

Modelling LCD screens as a polarization light source.
In order to do the Mueller-Calculus the stokes vector
needs to have a reference frame, it seems logical to chose

this frame as the xy-plane expanded by the screen. An in-
teresting feature of LCD screens is that the light intensity
in a pixel is controlled by changing the polarization on
one of two filter with orthogonal polarization [26, p.751]

The basics for polarization raytracing are explained by
Miyazaki et al. [17]. Where as a practicality in the im-
plementation that is not explained there, is how to define
reference frames for the Mueller-Calculus.

3.3 View-based Glass Estimation
We extend the work of [32] which constructs three in-
dependent networks to estimate the Depth, Normals and
Mask from a single RGB Image. We implement a U-
Net style architecture with skip connections. The convo-
lutional blocks (ConvBlock) are as a standard 3×3 with
128 filter convolutional operation followed by batch nor-
malization and a non-linear ReLU function. As input we
explore both polarized or RGB image are of fixed size
(w, h). The encoder follows the VGG-16 [30] architec-
ture with 6 layers. In contrast to [32] we use a single
encoder as opposed to three independent networks. For
each of the output branches (mask, depth, normal) we use
the standard deconvolution block which combines a bi-
linear up-sampling interpolation and convolutional filters,
where the up-sampling as a power of two increase per
layer, for the w, h this is 7 layers of up-sampling. Our
network learns the ground truth mask (M ), depth (D),
normal foreground (Nf ) and background (Nb), where the
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outputs are thereforeM ′, D′, N ′
f , N

′
b respectively. We opt

for standard architecture as opposed to optimizing for any
specific traits like image sharpness allowing the network
to learn a useful representation.

We combine the loss of the different output into a single
loss

L = L1(M,M ′)+L1(D,D
′)+L2(Nf , N

′
f )+L2(Nb, N

′
b)

(6)
where Lx refers to L1 and L2 loss. We opt for L2 loss
on the normal as it allows the network to learn the com-
plementary object mask with vector length of zero as op-
posed to an arbitrary unit length vector. We found this
improves stability during training.

4 Evaluation
We evaluate the proposed approach using a quantitative
studies of train test performance. As the proposed dataset
is the first to synthetically render polarized images (See
sec. 3.2 for dataset details). Firstly, we evaluate our model
for different inputs RGB and two forms of Polarized im-
ages, Stokes and Intensities, in section 4.1.

4.1 View-based Estimation
As in [32] we evaluate based on the loss over multiple
runs on a test set. We split the dataset in a random 80 :
20 train:test split, where the results are shown in table 2
for the respective channel inputs. We compare training
with environment map and without for both standard RGB
and Polarized input. It is worth noting that in the case
of the polarized network, the first layer is retrained from
scratch to account for the four channel input in the case
of Polarized Intensities, however, the standard VGG-16
is used to initialize RGB and the three Stokes channels
(S0, S1, S2).

From table 2 we see that the environment map is less
useful in the case of polarized input. This is in strong con-
trast to prior work on transparency [31, 32] which greatly
benefited from an environment map for RGB input. Given
the additional information encoded in polarized images, it
is intuitive that the environment map, which doesn’t pro-
vide polarized light emission, does not contribute into an
improved performance. Although it could be beneficial
for mixed RGB and Polarized cameras.

4.1.1 Back face discussion

Incorporating the back face normals has an improvement
in the outcome of the model. Although it isn’t explicit
it can imply the network is learning the relationship be-
tween the front face and the back face of the medium.
Interestingly the network find better backnormals using
only RGB data rather than polarization, which it contrary
to our expectations. When observing the images from a
polarization camera there is a noticeable difference be-
tween the different interfaces in the different polarization
channels. One would think this would increase normal
estimation in general for polarized images, but it might
introduce difficult to model noise for areas with many in-
terface interactions.

5 Conclusion

We have presented a method that takes advantage of polar-
ized input for the reconstruction of transparent mediums
and training a novel network PNN to achieve improved
performance over the more traditional RGB with a slight
improvement for mask and depth. But with a lower per-
formance for back normals, which is quite interesting as
we would expect the back normals to be significantly im-
proved when using polarization information. With this
network we are able to predict the mask, depth, and front-
and back-normal maps, using images from polarization
cameras.
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L. Bigué. Polarization imaging for industrial inspection.
In Image Processing: Machine Vision Applications, vol-
ume 6813, page 681308. International Society for Optics
and Photonics, 2008. 3

[16] D. Miyazaki and K. Ikeuchi. Inverse polarization raytrac-
ing: estimating surface shapes of transparent objects. In
Proceedings of CVPR 2005, volume 2, pages 910–917.
IEEE, 2005. 3, 5

[17] D. Miyazaki and K. Ikeuchi. Shape estimation of trans-
parent objects by using inverse polarization ray tracing.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 29(11):2018–2030, November 2007. 1, 3, 5

[18] D. Miyazaki, M. Kagesawa, and K. Ikeuchi. Polarization-
based transparent surface modeling from two views. In
Proceedings of ICCV 2003, volume 3, page 1381, 2003. 3

[19] D. Miyazaki, M. Saito, Y. Sato, and K. Ikeuchi. Deter-
mining surface orientations of transparent objects based on
polarization degrees in visible and infrared wavelengths.
Journal of the Optical Society of America A, 19(4):687–
694, 2002. 2, 3

[20] D. Miyazaki, R. T. Tan, K. Hara, and K. Ikeuchi.
Polarization-based inverse rendering from a single view.
In Proceedings of ICCV 2003, page 982. IEEE, 2003. 3

[21] N. J. Morris and K. N. Kutulakos. Reconstructing the sur-
face of inhomogeneous transparent scenes by scatter-trace
photography. In Proceedings of ICCV 2007, pages 1–8.
IEEE, 2007. 2

[22] S. K. Nayar, X.-S. Fang, and T. Boult. Separation of re-
flection components using color and polarization. Interna-
tional Journal of Computer Vision, 21(3):163–186, 1997.
2

[23] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hobe-
rock, D. Luebke, D. McAllister, M. McGuire, K. Mor-
ley, A. Robison, and M. Stich. OptiX: A general pur-
pose ray tracing engine. ACM Transactions on Graphics,
29(4):66:1–66:13, 2010. 4

[24] Y. Qian, M. Gong, and Y. Hong Yang. 3D reconstruction
of transparent objects with position-normal consistency. In
Proceedings of CVPR 2016, pages 4369–4377, 2016. 1, 2

[25] S. Rahmann and N. Canterakis. Reconstruction of specu-
lar surfaces using polarization imaging. In Proceedings of
CVPR 2001, pages I–149–I–155. IEEE, 2001. 2

8



[26] E. Reinhard, E. A. Khan, A. O. Akyz, and G. M. Johnson.
Color Imaging: Fundamentals and Applications. A. K.
Peters, Ltd., USA, 2008. 5

[27] M. Saito, Y. Sato, K. Ikeuchi, and H. Kashiwagi. Measure-
ment of surface orientations of transparent objects by use
of polarization in highlight. Journal of the Optical Society
of America A, 16(9):2286–2293, 1999. 2

[28] S. S. Sajjan, M. Moore, M. Pan, G. Nagaraja, J. Lee,
A. Zeng, and S. Song. ClearGrasp: 3D shape estimation
of transparent objects for manipulation. arXiv:1910.02550
[cs.CV], October 2019. 1

[29] S. Savarese, M. Chen, and P. Perona. Local shape from
mirror reflections. International Journal of Computer Vi-
sion, 64(1):31–67, 2005. 3

[30] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In Interna-
tional Conference on Learning Representations, 2015. 5

[31] J. D. Stets, A. Dal Corso, J. B. Nielsen, R. A. Lyngby,
S. H. N. Jensen, J. Wilm, M. B. Doest, C. Gundlach, E. R.
Eiriksson, K. Conradsen, A. B. Dahl, J. A. Bærentzen,
J. R. Frisvad, and H. Aanæs. Scene reassembly after mul-
timodal digitization and pipeline evaluation using photo-
realistic rendering. Applied Optics, 56(27):7679–7690,
September 2017. 2, 6, 8

[32] J. D. Stets, Z. Li, J. R. Frisvad, and M. Chandraker. Single-
shot analysis of refractive shape using convolutional neural
networks. In IEEE Winter Conference on Applications of
Computer Vision (WACV 2019), pages 995–1003, 2019. 1,
4, 5, 6

[33] C. Stolz, M. Ferraton, and F. Meriaudeau. Shape from po-
larization: a method for solving zenithal angle ambiguity.
Optics Letters, 37(20):4218–4220, 2012. 3

[34] M. Tarini, H. P. A. Lensch, M. Goesele, and H.-P. Seidel.
3D acquisition of mirroring objects using striped patterns.
Graphical Models, 67(4):233–259, 2005. 3

[35] M. Vedel, S. Breugnot, and N. Lechocinski. Full stokes
polarization imaging camera. In Polarization Science and
Remote Sensing V, volume 8160, page 81600X. Interna-
tional Society for Optics and Photonics, 2011. 3

[36] Z. Wang, Y. Zheng, and Y.-Y. Chuang. Polarimetric cam-
era calibration using an LCD monitor. In Proceedings of
CVPR 2019, pages 3743–3752, 2019. 3

[37] L. B. Wolff and A. G. Andreou. Polarization camera sen-
sors. Image and Vision Computing, 13(6):497–510, 1995.
3

[38] B. Wu, Y. Zhou, Y. Qian, M. Gong, and H. Huang. Full
3D reconstruction of transparent objects. ACM Trans-
actions on Graphics (SIGGRAPH 2018), 37(4):103:1–
103:11, 2018. 1, 2

[39] X. Xu, Y. Qiao, and B. Qiu. Reconstructing the surface of
transparent objects by polarized light measurements. Op-
tics Express, 25(21):26296–26309, 2017. 1, 3

[40] Q. Zhou and A. Jacobson. Thingi10k: A dataset of 10,000
3d-printing models. arXiv preprint arXiv:1605.04797,
2016. 3

9



Technical
University of
Denmark

Richard Petersens Plads
Building 324
2800 Kgs. Lyngby
Tlf. 4525 3031

www.compute.dtu.dk


