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Summary (English)

The diameters of axons, the communication cables of the brain, determine the
conduction velocity at which signals are communicated within the brain network.
Some neurodegenerative diseases manifest as damage to axons of a particular
size, and axon diameter is thus an indicator of brain health and a potential
biomarker of disease. Diffusion magnetic resonance imaging (MRI) methods
can non-invasively provide estimates of axon diameter in the living brain, but
many rely on the assumption that axons can be described as cylindrical.

Imaging white matter regions of the vervet monkey brain with synchrotron X-
Ray Nano-Holotomography reveals how blood vessels, cell clusters and vacuoles
modulate the three-dimensional morphologies of axons. The findings challenge
current knowledge of the signal conduction process in axons and shed light on
the validity of enforcing a cylindrical axon shape in biophysical models.

Axonal connections could be traced with structure tensor tractography on X-ray
nanotomography images of healthy and diseased tissue from the mouse brain,
providing a characterisation of the macroscopic organisation of axonal bundles.
Experiments using x-ray nanotomography on the hydrated genu of the vervet
monkey brain revealed features that were difficult to distinguish in samples
treated with conventional sample processing techniques involving dehydration,
indicating a need to image the hydrated white matter environment.

Lastly, powder average approaches to axon diameter estimation with diffusion
MRI were validated using segmented axons from a crossing fibre and splenium
region of the vervet monkey brain. Even in extremely complex white matter
architectures, accurate estimates of axon diameter could be obtained for differ-
ent sequence parameters and diffusion times. At sufficiently low b-values, the
acquisition was sensitive to axonal microdispersion and the intra-axonal parallel
diffusivity showed time dependence, which could be an interesting biomarker of
white matter health and pathology. Ultimately, the signal-to-noise ratio deter-
mined the range of measurable axon diameter.
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Summary (Danish)

Diameteren af aksoner, hjernens kommunikationskabler, afgør ledningshastighe-
den for signaler, der kommunikeres inden for hjernenetværket. Flere neurodege-
nerative sygdomme manifesteres som skader på aksoner af en specifik størrelse,
og aksondiameter er dermed en indikator for hjernesundhed og en potentiel bio-
markør for sygdom. Metoder baseret på diffusionsvægtet magnetisk resonans
billeddannelse (MRI) kan på ikke-invasiv vis bidrage med estimater af aksondi-
ametre i den levende hjerne, men mange afhænger af antagelsen om, at aksoner
kan beskrives som cylindere.

Billeddannelse af regioner af hvid substans fra en abehjerne med synkroton-
røntgen-nano-holotomografi afslører, hvordan blodårer, celleklynger, og vakuoler
modulerer den tredimensionelle aksonmorfologi. Fundene udfordrer den etab-
lerede viden om signaltransmissionsprocesserne i aksoner, og kaster lys over,
hvorvidt det i biofysiske modeller kan antages at aksoner er cylindriske.

Aksonale forbindelser kunne spores med strukturtensortraktografi af røntgen-
nanotomografi-billeder af raskt og patologisk væv fra mussehjernen, hvilket bi-
drager til karakterisering af den makroskopiske organisering af aksonbundter.
Eksperimenter med røntgen-nanotomografi af den hydrerede genu fra en abe-
hjerne afslørede egenskaber, som var svære at adskille i prøver behandlet med
konventionel processeringsteknik, som er betinget af dehydrering. Dette indike-
rer et behov for at udføre billeddannelse af det hydrerede hvid-substans-miljø.

Afsluttende, pulvergennemsnitstilgange til estimering af aksondiametre i dif-
fusionsvægtet MRI blev valideret ved brug af segmenterede aksoner fra den
krydsende fiber, og regioner fra splenium fra en abehjerne. Selv i ekstremt kom-
plekse hvid substans-strukturer kan nøjagtige estimater af aksondiametre op-
nås for forskellige sekvensparametrer og diffusionstider. Ved tilstrækkeligt lave
b-værdier var målingen følsom overfor aksonal mikrodispersion, og den intra-
aksonale parallelle diffusivitet viste tidsafhængighed, hvilket kunne være en in-
teressant biomarkør for sundhed og patologi i hvid substans. Endeligt, afgjorde
signal-støj-forholdet intervallet af målbare aksondiametre.
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Chapter 1

Introduction

Immense volumes of information are constantly processed and communicated
by the brain to ensure our cognitive and physiological function. The workhorse
behind brain communication is the neuron, a cell consisting of a soma that
sends and receives signals, and an axon that connects different brain regions
and relays signals between them. Together, many neurons form the extremely
complex brain network whose exact configuration and function remains elusive.

Although the complex neuronal network has yet to be fully mapped and com-
prehended, it is clear that the structure of different brain regions is adaptable
and related to function. The structure has been shown to change with age [1],
learning of visuo-motor tasks such as juggling [2], training of working mem-
ory [3] and in response to other experiences e.g. exercise or the learning of
new languages [4]. Neurodegenerative diseases such as Multiple Sclerosis and
Alzheimer’s disease also incur structural changes in the brain tissue [5, 6].

The coupling between structure and function exists also on the single-axon level.
Axons, the communication cables of the brain, are long, tubular structures that
constitute a large portion of the brain’s white matter (WM). In the WM, many
axons are wrapped in a fatty layer of myelin that acts to insulate the axon
from the extra-axonal environment. The morphology of an axon – especially
its diameter and the thickness of the myelin sheath – controls the conduction
velocity (CV) with which signals are propagated [7–9]. Axon diameter is thus
indicative of brain function and the speed with which signals are conducted
within the brain network. Furthermore, some neurodegenerative diseases attack
certain sizes of axon. In Multiple Sclerosis, the degeneration of axons with
small diameters has been observed [10, 11], whereas in Amyotrophic Lateral
Sclerosis [12] it is the largest axons that degenerate. Hence, axon diameter
could be a valuable biomarker for the diagnosis of such conditions.
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At present, the only technique to measure axon diameter in the living brain is
diffusion magnetic resonance imaging (MRI). Diffusion MRI utilises the diffusion
of water molecules to probe the WM microstructure. However, axons in the
brain have diameters on the order of micrometres, whereas MRI voxels for in-
vivo studies are on the order of millimetres. To extract microscale information,
therefore, biophysical models that describe the expected geometries of the WM
compartments must be fitted to the acquired diffusion MRI signal. The axons
are often modelled as straight cylinders – just like they were described by Otto
Friedrich Karl Deiters upon their discovery over 150 years ago. The question
is: is this a sufficiently valid description of axonal morphology on the scale of
MRI voxels, or do we need to update our models and methods? Studies show
that diffusion MRI-based axon diameter estimates [13–15] are larger than those
obtained by histology [16]. One potential reason is a mismatch between the
biophysical models and the actual architecture of the WM.

A validation of the three-dimensional (3D) WM anatomy would thus shed light
on the validity of modelling axons as cylinders for diffusion MRI applications,
but also for axonal structure-function relations. 3D electron microscopy (EM)
studies of tissue from the mouse brain confirm that axons, in fact, have in-
herently complex morphologies with varying diameters, shapes and trajecto-
ries [17,18]. The axons are only tracked for up to 20 µm, however, a fraction of
their length in MRI voxels.

1.1 Aim

The work presented in this thesis has two main aims. The second builds directly
on the first:

1. To map the 3D WM environment on scales that approach those of MRI
voxels with x-ray nanotomography. This involves a characterisation of
axonal morphologies against the backdrop of other WM structures, such
as cells and blood vessels.

2. To validate powder-averaging of the diffusion MRI signal as a way of re-
moving orientation bias from axon diameter estimates in the realistic ax-
onal geometries obtained from Aim 1. This involves an investigation of
how sequence parameters, signal-to-noise and angular resolution of the
diffusion MRI measurement determine which diameters can be measured
– and which cannot.
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1.2 Thesis Structure

The thesis is divided into the following chapters:

Chapter 1. Introduction and motivation.

Chapter 2. Theory: The Structure and Function of Axons

Chapter 3. Theory: Axon Diameter Estimation with Diffusion Magnetic
Resonance Imaging

Chapter 4. Theory: Synchrotron X-Ray Nanotomography

Chapter 5. Investigations into 3D White Matter Morphology

Chapter 6. Investigation into Powder Averaging as a Means of Reducing
Bias in MRI Axon Diameter Estimates

Chapter 7. Conclusion

Chapters 1-4 provide the background for Chapters 5-6, which describe the re-
sults of this thesis. Chapter 1 introduces the motivation behind studying axons
and their morphologies. Chapter 2 focusses on the relationship between axon
structure and axon function, methods to image axons and expected axon di-
ameters in the corpus callosum – a reoccurring WM region throughout this
thesis. Chapter 3 summarises the principles of diffusion MRI, the challenges of
axon diameter estimation and the theory behind powder averaging to remov-
ing dispersion bias from the signal. Chapter 4 describes the synchrotron X-ray
Nanotomography techniques used to study the WM in this thesis. Chapter 5
is to a large extent based on Contributions I and III, and presents findings of
the synchrotron X-Ray Nanotomography investigations into the structure and
organisation of the WM and its compartments. Chapter 6 is a summary of Con-
tribution II; it validates and investigates the use of powder averaging techniques
in the complex WM architectures presented in Chapter 5.
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Chapter 2

The Structure and Function
of Axons

"As long as our brain is a mystery, the universe, the reflection of the
structure of the brain will also be a mystery."
Santiago Ramón y Cajal (1852-1934)

The above statement by the father of modern neurobiology, Santiago Ramón
Cajal, rings true to this day. To better understand how the brain functions,
how we function, a deeper knowledge and understanding of the structure of the
brain must be obtained. This chapter aims to outline the basics of brain and
white matter anatomy. To provide a context for the results of the PhD studies,
focus is placed on what is known about axonal physiology and function, the
methods used to study it, and – importantly – what is not yet known.

2.1 Brain Anatomy

The brain, the control centre of the body, is an extremely complex network
of neuronal circuits. It is constantly processing a multitude of information to
regulate both cognitive and physiological processes. Together with the spinal
cord, the brain comprises the central nervous system (CNS). Brain tissue can
be divided into two categories: grey matter and WM.

The grey matter is present in the cerebral cortex – the outer layer of the brain
– as shown in Figure 2.1, the cerebellar cortex as well as other regions of the
cerebrum, cerebellum and brainstem. On the microstructural level, the grey
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matter contains neuronal cell bodies and dendrites, glial cells e.g. astrocytes
and oligodendrocytes, blood vessels and synapses. In terms of function, the role
of the grey matter is to process signals in the brain network.

The WM, on the other hand, is the cabling of the brain. It is organised into
tracts or fascicles of myelinated axons – the tubular bodies of the neuron – that
connect the grey matter regions. Like the grey matter, it also contains blood
vessels, astrocytes, oligodendrocytes and other glial cells. Although sparse, a
population of neuronal cell bodies has also been shown to exist in WM tracts
like the corpus callosum (CC) [19]. The role of the WM is to communicate
signals in the brain network.

Figure 2.1: Brain tissue can be divided into two types: "grey matter", whose
role is to process signals in the brain network, and "white matter",
whose role is to transfer or communicate signals. The different tis-
sue types contain different microstructures, with grey matter con-
taining a high density of neuronal cell bodies and WM containing
a high density of myelinated axons.

Between the different membrane-bound cellular components is the highly com-
plex extra-cellular space (ECS). The ECS provides structural support and an
ideal chemical environment for the cellular structures. In the brain, the ECS
consists of a network of macromolecules, including polysaccharides and proteins,
and has been shown to occupy approximately 20% of the volume [20]. Secreted
by the neurons and glia themselves, the ECS is vital to proper cellular function
and is involved in cell migration, growth of neurites and synaptic plasticity [21].
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The neuron, shown in Figure 2.2, is essentially the building block of the brain.
It consists of a soma (cell body), dendrites that receive signals from other cells,
an axon along which the signal is conducted and axon terminals that conduct
the signal on to other neurons. Many of the axons in WM are "myelinated" and
are wrapped in layers of the lipid, myelin, by an oligodendrocyte. Myelination
occurs in segments, with each myelinated segment called an "internode", sep-
arated from other internodes by shorter segments of unmyelinated axon called
"Nodes of Ranvier". The myelin layers are termed "lamallae". The cytoplasm
of the axon, the axoplasm, contains neurofilaments and microtubules which fa-
cilitate the transport of nutrients along the axon, and mitochondria which cater
to the energy requirements of the axon.

Figure 2.2: The neuron consists of a soma with dendrites, and a long, tubular
axon along which signals are conducted. The axon branches out
into axon terminals. In myelinated axons, myelinating oligoden-
drocytes wrap layers of myelin around segments of the axon called
internodes. Between these internodes are "Nodes of Ranvier" –
short, umyelinated segments of the axon that are important to
the signal conduction.
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2.1.1 Signal Conduction Along Axons

Communication in the brain network takes place via the transmission of signals
and generation of action potentials (AP). APs can be generated in response to
sensory cues, but most commonly, APs are caused by presynaptic neurons. The
dendrites of the neuron receive an incoming chemical signal from a presynaptic
neuron, triggering ion channels in the dendrite to open. At resting state, the
interior of the neuron is negatively charged compared to the ECS around it,
but the change in ionic permeability due to the opening of the ion channels
changes the membrane potential and the membrane becomes either de-polarised
or hyperpolarised. In the case of depolarisation, the change in the potential
propagates to other membrane areas and may also depolarise the axon hillock –
the segment of axon that connects to the soma. If the depolarisation is strong
enough to overcome a threshold, a new AP is created and propagated along the
axon.

In unmyelinated axons, the AP causes a depolarisation of the axonal membrane
further downstream. This triggers the opening of voltage-gated sodium ion
channels in the membrane, allowing positive sodium cations to flow into the
axoplasm. The cations thereafter flow further downstream, depolarising more
distal parts of the axon membrane, and the process is repeated until the AP
reaches the terminals, as shown in Figure 2.3. This is dubbed "continuous"
conduction.

Once the axon hillock has been depolarised, the AP is propagated via a contin-
ued depolarisation of the initial segment of the axon membrane as a result of the
opening of voltage-gated sodium ion channels. However, due to the existence of
the myelin, this cycle of depolarisation and influx of sodium cations cannot occur
continuously along the axon. The presence of myelin has two effects. Firstly,
it increases the membrane resistance of the axon and reduces the number of
cations that can exit or "leak" out into the ECS across the axonal membrane,
leaving a higher number of cations to depolarise more distal segments of the
axonal membrane than in unmyelinated axons. Secondly, the myelin insulates
the axon from negative charges in the ECS and decreases the capacitance of
the axonal membrane. Essentially, the myelin decreases the amount of charge
that can be stored in the axonal membrane and, again, this entails that there
are more cations available to depolarise more distal segments of the axons. In
practise, the sodium cations are able to passively diffuse further along the axon
and they can depolarise the axonal membrane at larger distances than in the
unmyelinated axons. Importantly, depolarisation of the membrane – and a new
influx of sodium cations – can only occur at the exposed Nodes of Ranvier, and
not within the internodes. As such, the signal is said to jump from node to
node. In summary, the myelin boosts the conduction process, and the AP can
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be propagated faster than in unmyelinated axons. For fibres more than few mi-
crons in diameter, the conduction velocity (CV) increases by more than a factor
of 10, compared to in unmyelinated axons of the same diameter [22].

Knowledge of the mechanisms behind the propagation of APs is important when
considering which factors affect the CV of the signal. However, the explanation
of AP propagation and saltatory conduction given above is simplified, and does
not take into account other important aspects such as the effects of the sodium-
potassium pump and potassium channel. For a comprehensive review of axon
physiology, the reader is referred to Debanne et al. [23].

2.2 The Axonal Structure-Function Relationship

The structure of an axon is innately related its function and CV. Structural
factors that affect axon CV include axon diameter [7], thickness of the CV-
boosting myelin sheath [8], internodal distance [9], Node of Ranvier length [9],
and g-ratio [24,25] – the ratio of the outer fiber diameter (inclusive of the myelin
sheath) to the inner axon diameter.

In unmyelinated axons, the CV increases with the square root of the axon di-
ameter [26], whereas in myelinated axons of the CNS, the relationship between
CV (in ms−1) and outer fiber diameter, D is formulated to be [27]:

CV = 5.5 ·D (2.1)

D is related to the axon diameter, d, through the g-ratio, g = d
D . The g-ratio

is thought to be constant across axons, and optimised at a value that promotes
high CVs while minimising energy consumption and taking into account spatial
constraints [28]. Histological studies [29, 30] confirm the findings of simulation
studies [24,25] – that the g-ratio in the CNS has a value around 0.7.

Although it is assumed to be constant, it was shown already in early studies that
the g-ratio depends on axon diameter [28, 31–33]. Berthold et al. formulated a
linear and logarithmic function relating the number of myelin lamellae, nl, to
the axon diameter [31]:

nl = C0 + C1d+ C2 log d (2.2)

where C0, C1 and C2 are the regression coefficients of the fit. Had the g-ratio
been constant for axons of different diameters, the number of lamellae would
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Figure 2.3: I. At resting potential, the interior axon membrane is negatively
charged and the exterior is positively charged. The voltage-gated
Sodium ion channels are closed. II. When an AP propagates
along a myelinated axon it depolarises the axonal membrane at the
Nodes of Ranvier. The voltage-gated Sodium ion channels open
to allow an influx of positively charged Sodium ions. Some ions
"neutralise" negative ions at the membrane, while others propa-
gate to the next node to cause another depolarisation and con-
tinue the propagation of the AP. III. In an unmyelinated axon,
the membrane capacitance is higher and the membrane can hold
more charge. Furthermore, voltage-gated Sodium ion channels are
present along the entire axonal membrane. Here, the AP is prop-
agated continuously along the axon. The lack of myelin entails
that there is a larger leakage of Sodium ions to the ECS and that
the positive Sodium ions diffuse a shorter distance along the axon
membrane than in the myelinated case.
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scale linearly with axon diameter, assuming that the spacing between the myelin
layers remains constant.

Through their electrophysiological experiments on the excised peroneal nerves of
rabbits, Sanders et al. showed that nerves with smaller diameters, but thicker
myelin sheaths conducted APs faster than nerves with larger diameters, but
thinner myelin sheaths. This demonstrated the dependence of CV on the thick-
ness of the myelin, and not only the axon diameter. Considering the effect of
myelin on signal conduction, as described in Section 2.1.1, it is intuitive that it
increases CV.

Further keeping in mind the signal conduction mechanism described in Section
2.1.1, it is reasonable that the internodal length also affects CV. If the internodal
length were too long, it would take longer time to depolarise the Nodes of
Ranvier. If it were too short, the signal would need to make more jumps or
"saltations" along the axon length. This would slow down the CV [34, 35],
and the relationship between internodal distance and CV therefore exhibits a
maximum at one internodal distance [34]. The effect of internode and Node of
Ranvier length on the CV is demonstrated by simulations in Arancibia-Cárcamo
et al. 2017 [9], where it is found that an increasing node length decreases CV if
the number of ion channels remains constant. With increasing node length, the
nodal capacitance increases and the node thus takes longer time to depolarise.
However, if the density of ion channels were to remain constant, the number
of ion channels at each node also increases and the relationship between CV
and node length exhibits a maximum at one particular length, similar to the
internodal distance.

Not only are the structural properties of axons closely linked to CV – they
are also linked to each other. For instance, in an axon that has a large axon
diameter, the flow of charge along the axon experiences less resistance and can
depolarise more distal segments of the membrane, meaning that the internodal
distance should also increase to optimise the signal conduction. The different
properties of the axonal system can be modelled using cable theory [34, 36, 37],
and such formulations are integral to understanding the function of axons and
interplay of the different structural features.

This section has aimed to couple the structural properties of axons to the signal
conduction process, but has not delved into the implications of the diameters and
CVs on the computational properties of the axons within the greater context
of the brain network. For a detailed review of this, the reader is referred to
Innocenti et al. [38, 39].
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2.3 Imaging Axons

Axons have been imaged in a variety of modalities that reveal different struc-
tural or chemical properties. Even so, the classic techniques of light microscopy
(LM) and electron microscopy (EM) are those most widely used to observe and
quantify axon morphology in the dense WM of the CNS.

Conventional Light Microscopy Axons were discovered by Otto Friedrich
Karl Dieters in ca. 1860 – using a light microscope. Conventional LM is 2D and
has a resolution limit of approximately 200 nm under the best conditions, but
in practise is it difficult to achieve resolutions below 1 µm [40]. An example of
LM in a sample from the splenium of the vervet monkey brain is provided in
Figure 2.4. Commonly, samples of brain tissue are fixed to preserve structural
features, dehydrated with an alcohol series and embedded in paraffin or EPON
(EPOXY resin), after which they are sectioned into thin slices of a few microns
in thickness. With LM it is possible to apply a multitude of different stains
to enhance different features of the tissue, such as cell nuclei or the myelin
around the axons. Histological tracer studies, for example, have been used to
show that the diameter – and thus CV – of an axon depend on its origin [41]
and target [30]. Tracer studies also demonstrate the non-straight trajectories of
axonal projections over long distances [41–43].

Electron Microscopy Due to its high resolution, down to a few nanometres,
conventional EM is commonly used to image axons. In particular, by also being
able to image smaller axons, EM has been widely used to quantify axon diameter
distributions (ADD) in tissue. Recent studies on axon morphology have used
3D EM, based on serial imaging of 2D EM sections, to image the WM in the
mouse brain [17,18], segmenting and demonstrating axonal geometries up to 20
µm in length. These studies reveal that axons have non-uniform axon diameters
and – as the LM investigations also demonstrate – varying trajectories. Figure
2.5 shows an example of EM used to image myelinated axons in a section from
the corpus callosum of the monkey brain.

2.3.1 Other Techniques

There are many techniques that have emerged and have the capability to image
structural characteristics of axons. Some of these are: structured illumination
microscopy [45], two photon microscopy [46], coherent anti-Stokes Raman scat-
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Figure 2.4: LM of EPON embedded tissue from the vervet monkey splenium
[44], stained with 0.5% osmium tetroxide to give contrast to the
myelin sheaths of the axons, and imaged with a Toluidine blue
stain. The scale bar is 50 µm.

tering microscopy [47] and confocal microscopy [48]. Expansion microscopy [49]
implements an isotropic expansion of tissue to overcome the resolution limits
of light microscopy. Many of these techniques, however, employ some form
of fluorescence imaging and thereby only structures that are stained for are
imaged. This is excellent for investigating the chemical properties of axons
or isolating specific structures, but as the images only provide information on
select markers/structures, LM and EM constitute a more all-encompassing al-
ternative to image general axon morphology, providing intensity information
on all light/electron absorbing (or deflecting, in the case of scanning electron
microscopy) structures in the tissue. In WM, this includes cell nuclei, cell
membranes, structures within the axoplasm, the myelin and also the ECS. Di-
attenuation imaging and 3D polarised light imaging [50] provide information
on axon orientation, axon diameter and myelination in entire, hydrated tissue
sections, without any form of staining. The resolution, however, is too low to
reconstruct and analyse single axons.



14 The Structure and Function of Axons

Figure 2.5: EM of a section of the monkey CC. Compared to LM, EM pro-
vides more details and reveals internal axonal structure, as well
the organisation of the myelin sheath.

2.3.2 Artifacts and Biases

Imaging neural tissue with LM or EM involve tissue preparation procedures that
may cause artifacts in tissue. The tissue needs to be extracted, fixed, processed,
sectioned and/or stained prior to imaging. Each of these steps can incur tissue
artefacts, some of which are outlined below.

The tissue needs to be fixed to prevent its deterioration via autolysis [51] or pu-
trefaction. It can be either immersion fixated or perfusion fixated. Immersion
fixation involves the extracting the tissue and then placing it in fixative. Perfu-
sion fixation involves the injection of fixative into the cardiac muscle, whereby
the fixative is pumped into the brain and the tissue does not die before it is fixed,
preventing autolysis artifacts. Fixation arifacts can be caused by the use of an
incorrect fixative, inadequate quantities of fixative, or insufficient time spent in
fixative [52]. The most commonly used fixative is formaldehyde, which has been
show to cause some shrinkage in neural tissue [53], although it is unknown if
this shrinkage affects all WM compartments equally [15]. Glutaraldehyde, an-
other common fixative, has been shown to cause shrinkage and distortion of the
shapes of red blood cells [54]. Furthermore, the procedure by which the tissue
is extracted may cause "pressure effects" if care is not taken [52] e.g. if the
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tissue is squeezed by tweezers. To prevent shrinkage and preserve the sample
to as near-native state as possible, cryofixation of the tissue is possible ahead of
LM and EM experiments, and can involve high-pressure freezing in combination
with freeze substitution [55].

After regular fixation, the tissue is typically processed for embedding in paraf-
fin wax or EPOXY resin (EPON). This involves first dehydrating the sample
through an alcohol series, which causes additional shrinkage. Artifacts in the
embedding stage can be caused by inadequate infiltration of the embedding
medium [52].

The resolution and field-of-view (FOV) of the imaging technique may incur
sampling bias. For example, the limited resolution of conventional LM biases
morphological measurements to structures significantly larger than 200 nm, but
the relatively narrow FOV of EM images – typically tens of microns – reduces
the probability of sampling sparse structures, such as very large axons. Large
structures, such as blood vessels or cell bodies may also be difficult to robustly
characterise. In particular, metrics derived from 2D measurements may not ac-
curately represent the 3D environment [56]. However, morphological metrics are
not exempt from bias even if they are obtained in 3D. In their 3D EM studies of
the mouse CC, Abdollahzadeh et al. [17] demonstrated that the volume fraction
of axons present in their volumes heavily depended on the presence of cells or
cellular processes. In this case, the EM volumes of dimension ∼ 15×15×15µm3

were not large enough to robustly characterise the cells, of which there were be-
tween 1-4.

2.4 Axons in the Corpus Callosum

The CC, shown in Figure 2.6, is the largest WM structure in the human brain
and can be found in all placental mammals. It connects the left and right hemi-
spheres of the brain, making it integral to their communication. Studies in
patients in which the CC is to some degree severed, causing a partial discon-
nection of the hemispheres, show that it is essential in the communication of
perceptual, motor and cognitive information [57]. The axons in the CC are well
aligned and are often assumed to be parallel to each other. It has thus been
the subject of many LM/EM [30, 41, 58–63] and MRI studies [13, 14, 64–67] on
axon diameter or axon diameter distribution. The CC can be divided into three
regions: the genu, in the anterior part of the CC; the midbody, in the central
region of the brain; and the splenium, in the posterior part of the CC. In general,
the axon diameter is believed to increase moving from the genu to the midbody,
to then decrease again moving from the midbody to the splenium. This is a
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simplification of the axon diameter trend in the CC and a more comprehen-
sive division of the CC can be made [63]. Throughout this thesis, however, the
three-region division is referred to.

Across species, the number of axons in the CC scales with brain size [68]. Al-
though the median axon diameter does not show significant variability with
species, the CC regions of animals with larger brains exhibit a larger population
of large axons [68], which may impact the mean diameter. Figure 2.6 shows
the mean diameters and standard deviations of axons in the genu, midbody and
splenium regions as calculated from EM of the mouse CC in Sepehrband et al.
2016 [69] and LM of the macaque/human CC from Caminiti et al. 2013 [59].

Figure 2.6: Left: Axon diameters in different regions of the CC, as reported in
[69] from EM of the mouse CC, and in [59] from LM of the macaque
and human brains. Error bars represent the standard deviations
of the measurements. For the mouse data, the CC was divided
into the three regions genu, midbody and splenium. For the LM
measurments, the category "genu" consists of axons projecting
to the prefrontal cortex, axons in the "midbody" project to the
motor cortex and axons in the "splenium" project to the visual
cortex. Right: the CC (dark red) in a mid-sagittal view of the
human brain. The approximate locations of the genu, midbody
and splenium are indicated.

For the mouse data, Sepehrband et al. CC had pre-divided the freely available
data into the three regions genu, midbody and splenium [69]. However, for
the LM in the macaque and human brains, the measurements were reported
differently [59]. Measurements labelled here as "genu" are from tracts projecting
to the prefrontal cortex, those labelled here as "midbody" project to the motor
cortex and those labelled here as "splenium" project to the visual cortex, as
reported by Caminiti et al. Thus, the mean diameters shown in Figure 2.6 for
the macaque/human CC are not representative of all subregions within the genu,
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midbody or splenium. In particular, axons projecting to the visual cortex have
been found to be larger than those projecting to the parietal/temporal cortices,
also from the splenium [43,59].
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Chapter 3

Axon Diameter Estimation
with Diffusion Magnetic

Resonance Imaging

3.1 Principles and Measures of Diffusion

Above a temperature of absolute zero, all liquids and gases experience motion
as a result of their thermal energy. This is termed molecular diffusion and was
first described by Albert Einstein [70] in 1905, almost 80 years after the Scottish
botanist Robert Brown described Brownian motion in 1827 – the apparently
completely random motion of pollen particles suspended in water. Not only did
Einstein’s description of diffusion explain Brownian motion, it also proved the
existence of the atom.

However, already in 1855, German physicist Adolf Fick derived "Fick’s laws of
diffusion" to describe diffusion of particles along a concentration gradient. Fick
related the flux of particles along the gradient to the diffusion coefficient, D,
which quantifies the flux, J , of particles through a defined area over a defined
period of time in Fick’s first law:

J = −DdC
dx

(3.1)

where x is the position, the flux, J , has units of "substance quantity per unit
area per unit time", the diffusivity, D has units of area per unit time and C,
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which describes the concentration, has units of "substance quantity per unit
volume". In the presence of no concentration gradient, as seemed to be the case
for Brownian motion, this would result in zero net flux and motion.

The conservation of mass states that rate of change of the concentration within
a closed surface is equal to the net flux that crosses its boundaries.

dC

dt
= −∇ · J (3.2)

Substituting Equation 3.1 into Equation 3.2, and assuming that the D is con-
stant, one obtains Fick’s second law in the form of a partial differential equation:

dC

dt
= D∇dC

dx
= D

d2C

dx2
(3.3)

Fick’s second law describes how the concentration gradient changes with time.
The solution to the partial differential equation in Fick’s second law takes the
following form:

C(x, t) =
1√

4πDt
e−

x2

4Dt (3.4)

with initial conditions/boundary conditions




C(x = 0, t = 0)→ inf
C(x 6= 0, t = 0) = 0
C(x 6= 0, t→ inf) = 0

(3.5)

By likening the diffusion process to introducing a drop of ink into a pool of water
at time t = 0 and position x = 0, the boundary conditions can be explained
by considering that the concentration gradient is infinitely high at x = 0 in the
instance when the ink droplet is introduced into the water, but 0 at all other
positions x 6= 0. After an infinite amount of time, the ink has spread out and
the concentration gradient at x 6= 0 is 0.

Now, a Gaussian probability density function (PDF) has the form:

f(x) =
1

σ
√

2π
e−

1
2 (

(x−µ)
σ )2 (3.6)
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where µ is the mean of the distribution and σ is its standard deviation. Com-
paring Equations 3.4 and 3.6, it becomes apparent that they are very similar
and that the solution to Fick’s second law in Equation 3.4 takes the form of a
Gaussian that is centred on 0 (µ = 0) with standard deviation σ =

√
2Dt.

In the case of a diffusing spin, we can use the solution to Fick’s second law to
express that the probability of finding a particle at a position x over a time t is
given by:

C(x− x0, t) =
1√

4πDt
e−

(x−x0)2

4Dt (3.7)

where x0 is the initial position (x = 0 in Fick’s second law). To find the time-
dependent mean-squared-displacement (MSD) of a spin over a time t, we now
consider the definition of the MSD:

MSD ≡ 〈(x(t)− x0)2〉 (3.8)

The angle brackets 〈...〉 represent that the displacement of the spin during the
time t is averaged over many small time intervals. Expanding Equation 3.8, we
obtain:

〈(x(t)− x0)2〉 = 〈x(t)2〉+ x2
0 − 2x0〈x(t)〉 (3.9)

where 〈x〉 and 〈x(t)2〉 are the first and second moments of the PDF in Equation
3.7. By calculating them, we can find the expression for the MSD of a freely
diffusing spin. By definition, the first moment of a Gaussian is equal to its µ
and the second is equal to σ2 + µ2. Thus, the moments can be expressed as
follows:

{
〈x(t)〉 = x0

〈x(t)2〉 = 2Dt+ x2
0

(3.10)

Plugging these values for the first and second moments into the definition of the
MSD in Equation 3.8, we obtain:

〈(x(t)− x0)2〉 = 2Dt+ x2
0 + x2

0 − 2x0(x0) = 2Dt (3.11)
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The above is the MSD in one spatial dimension. In n spatial dimensions, it
becomes:

〈x(t)2〉 = 2nDt (3.12)

In his 1905 paper, Einstein presented this formulation. Importantly, he (but
also, independently, Australian physicist William Sutherland in 1904 and Polish
physicist Marian Smoluchowski in 1906) connected D to the properties of the
fluid medium through:

D = µkBT (3.13)

where kB is the Boltzmann constant, T is the absolute temperature and µ is
now the fluid mobility – the ratio of a particle’s drift velocity through a medium
to the force applied to it.

For the particular case of the diffusion of spherical particles in a liquid with
low Reynolds number (in which laminar, and not turbulent, flow is likely to
occur), Einstein used Stokes law describing the frictional force on the particles
to formulate the Stokes-Einstein equation:

D =
kBT

8πνr3
(3.14)

where ν is the viscosity of the medium and r is the particle radius.

This connection of D to the thermal energy of a medium explained the motion of
pollen observed by Robert Brown in the case of zero net concentration gradient.
In the presence of no net concentration gradient, the thermal energy of the
particles in a fluid or gas, along with their collisions, give rise to microscopic,
instantaneous concentration gradients and fluxes. Thus, diffusion – as that
exemplified by Brownian motion – still occurs.

3.2 Free, Hindered and Restricted Diffusion

For an ensemble of spins, the PDF in Equation 3.7 is sometimes referred to
as the ensemble average propagator [71]. The Gaussian nature of propagator
is only valid when the particles are permitted to diffuse freely. In the case of
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the neural tissue, within and around the cellular microstructures described in
2.1, the diffusion process is either restricted or hindered, as shown in 3.1. This
assumes that the boundaries of the cellular microstructures are impermeable.
Allowing permeability further changes the hallmark of the diffusion process.

Figure 3.1: In neural tissue, the diffusion process can be either free, hindered
(occuring in the ECS, for example) or restricted to cellular com-
partments such as axons.

The nature of the diffusion process may also depend on the diffusion time. For
example, on very short time scales, diffusion occurring in hindered or restricted
compartments may appear to be free, whereas at longer diffusion times, the
particles are further displaced from their starting positions and have probed
more of the hindrances/restrictions.

At diffusion times sufficiently long for the trajectories of the spins to be impacted
by any obstacles, the diffusion propagator will no longer be Gaussian. The shape
of the diffusion propagator will reflect the geometry of the environment. It is
this property of the diffusion propagator that microstructural diffusion MRI
exploits to characterise the microstructural environment of neural tissue.

3.2.1 The Diffusion Tensor

Diffusion can be modelled in three dimensions x,y and z by the diffusion tensor
(DT):

D =



Dxx Dxy Dxy

Dyx Dyy Dyz

Dzx Dzy Dzz


 (3.15)

The diagonal elements of D represent the diffusion coefficients along the x, y
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and z axes, while the off-diagonals represent the correlation between the direc-
tions. In uncharged media such as water in tissue, the correlation between the
directions is symmetrical such that Dyx = Dxy, Dyz = Dzy and Dxz = Dzx [72].
To calculate the full DT, therefore, only six measurement directions are needed.
In the case of diffusion that is equal in all directions – isotropic diffusion – D is
formulated as:

D = D · I =



D 0 0
0 D 0
0 0 D


 (3.16)

where I is the identity matrix and D is the diffusion coefficient, which is the
same in all directions.

Now, departing from the x, y, z laboratory reference frame, we model the dif-
fusion tensor as an ellipsoid whose main axis is aligned with the direction of
principal diffusion. The ellipsoid can be described in terms of its three, orthog-
onal diffusion directions – called eigenvectors – and its eigenvalues λ1, λ2, λ3,
that describe the magnitude of the apparent diffusion coefficient (ADC) in each
eigenvector direction. This formalism allows the set of eigenvalues to be written
as a diagonal matrix, Λ:

Λ =



λ1 0 0
0 λ2 0
0 0 λ3


 (3.17)

Depending on the eigenvalues, Λ can describe both isotropic and anisotropic dif-
fusion, and is related to the diffusion coefficient, D, by the Einstein formulation
in Equation 3.12.

3.3 DiffusionWeighted Magnetic Resonance Imag-
ing

The geometries of different compartments can be characterised using their dif-
fusion propagators, as mentioned in Section 3.2. By using diffusion times on the
order of milliseconds, diffusion weighted magnetic resonance imaging (DWI) can
be used to non-invasively probe the microstructural features of the intact brain,
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such as axon diameter. This is predominantly done through an estimation of
the ADC – the observed value of D in Fick’s laws.

3.3.1 Nuclear Magnetic Resonance

Depending on their composition of neutrons and protons, some atomic nuclei
have an intrinsic spin, or angular momentum. Given that nuclei are positively
charged due to the protons, and all charges in motion generate a magnetic
field, the angular momentum of the nucleus creates a magnetic field around the
nucleus and it acts as a dipole.

If an ensemble of nuclei are placed in a strong, constant magnetic field, their
magnetic moments will precess around the direction of the external magnetic
field. This precession is not in phase, and as such, the net magnetisation of
all spins is in the direction of the static magnetic field. If the nuclei are then
exposed to an oscillating magnetic field of an appropriate frequency, usually a
radio frequency (RF) pulse, two things occur. They begin to precess in phase,
and the axis around which they precess is now perturbed from the direction of
the static magnetic field, meaning that the net magnetisation changes direction.
Due to interactions with its environment, the nucleus will eventually return
to precessing around the direction of the static magnetic field again. During
the time from excitation (application of RF pulse) to equilibrium (once the net
magnetisation of the spins is in line with the static magnetic field once more),
the spins cause detectable changes in the magnetic field. This is what is known
as Nuclear Magnetic Resonance (NMR), and was first reported by Rabi et al.
in 1938 [73].

The power of the RF pulse affects the initial angle, α with which the net mag-
netisation is rotated away from the axis of the static magnetic field. The angle,
named flip angle, can be estimated by:

α = γ ·B1 · tRF (3.18)

where γ is the nucleus-specific gyromagnetic ratio, B1 is the amplitude of the
RF pulse and tRF is its duration.

A nucleus with angular moment (due to spin), I, has a magnetic dipole moment,
µ as follows:

µ = γI (3.19)

For the most commonly used nucleus for MRI, the Hydrogen nucleus – a single
proton, γ = 42.58 MHzT−1.
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In the presence of a static magnetic field, B0, the nuclei precess around the
magnetic field direction with frequency, ω0:

ω0 = γ|B0| (3.20)

ω0 is also known as the Larmor frequency.

We now refer to the direction of initial magnetisation as the z-axis. If an RF
pulse that has magnetic field B1 with frequency equal to the Larmor frequency
and a flip angle of 90◦ compared to the B0 direction is applied, the nuclei become
excited, and the net magnetisation is rotated into the transverse x − y plane.
The spins are no longer in equilibrium and will return to the equilibrium state
via two mechanisms: T1 and T2 relaxation, describing the interaction of nuclei
with their surroundings (spin-lattice relaxation) and the dephasing of spins due
to local magnetic field fluctuations (spin-spin relaxation), respectively. The
recovery of longitudinal magnetisation is governed by the T1 time constant,
whereas the decay of the transverse magnetisation is governed by the T2 time
constant.

The Bloch equations [74] describe the time-dependent net magnetisation, M, of
an ensemble of spins in all three dimensions as factors of the T1 and T2 time
constants:

dMx(t)

dt
= γ(M(t)×B(t))x −

Mx(t)

T2
(3.21)

dMy(t)

dt
= γ(M(t)×B(t))y −

My(t)

T2
(3.22)

dMzt)

dt
= γ(M(t)×B(t))z −

Mz(t)−M0

T1
(3.23)

Here M0 is the equilibrium net magnetisation. Moving to the rotating (precess-
ing) frame of reference, these equations are simplified and become:

dMxy(t)

dt
=
Mxy(t)

T2
(3.24)

dMz(t)

dt
=
M0 −Mz(t)

T1
(3.25)
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with solutions:

Mxy(t) = Mxy(0) · e
−t
T2 (3.26)

Mz(t) = M0(1− e
−t
T1 ) +Mz(0) · e

−t
T1 (3.27)

whereMxy(0) andMz(0) represent the transverse or longitudinal magnetisation
present at t = 0 as a result of any previous application of an RF pulse. The
decay of the transverse magnetisation is sensitive to inhomogeneities in the B0

field. B0 inhomogeneities can be caused by either a non-perfect generation of B0

due to the MRI hardware (coils) or interfaces between different tissue types that
cause susceptibility artifacts (perturbations of the field). These imperfections
cause a faster decay of the transverse magnetisation than that defined by the
T2 constant, and a T ∗2 time constant, including both the standard T2 decay
and the additional decay caused by field inhomogeneities, is defined. However,
the effects of field inhomogeneities can be eliminated in some sequences, such
as spin echo (SE) sequences, and in these, the transverse magnetisation decays
according to the T2 constant as in Equation 3.26.

3.3.2 Obtaining a Diffusion Weighted MRI Signal

The MRI Signal Magnetic Resonance Imaging (MRI) refers to a measure-
ment of the NMR signal. After an ensemble of nuclei have been excited by
an RF pulse at the Larmor (resonant) frequency, motion of the magnetisation
vector occurs as described by Equations 3.21 to 3.23. According to the laws
of Faraday and Lenz, this motion will generate a magnetic flux, and thereby
a current, in a coil whose axis is placed in the transverse plane. This signal,
first demonstrated by Erwin Hahn [75], and predicted by the Bloch equations,
is called free induction decay (FID).

Almost immediately following his demonstration of the FID, Hanh described the
SE method [76]. A single 90◦ RF pulse gives rise to a FID, but if it is followed
soon after by a second 180◦ RF pulse, a SE that is insensitive to inhomogeneities
in the static magnetic field can be measured. As previously mentioned, a ro-
tation of the net magnetisation vector into the transverse plane, as is the case
when a 90◦ RF pulse is used, the transverse magnetisation (which gives rise to
the measured signal) decays due to T ∗2 interactions and a dephasing of the spins.
However, upon application of a second 180◦ RF pulse, the spins precess in the
opposite direction to before and begin to refocus. The effect of the component
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of the T2∗ decay attributed to field inhomogeneities is reversed, and after a time
defined as the echo time (TE), the nuclei are once more in phase. After this
point, the signal decays according to the T2, and not T2∗, constant. However,
Hahn also outlined one additional feature that impacted the measured signal:
that is, the diffusion of spins in the presence of magnetic field gradients.

Diffusion-Weighting the MRI Signal In 1954, Carr and Purcell further
outlined the effects of diffusion on the NMR signal, and suggested that a mag-
netic field gradient could be employed to measure the ADC of fluids [77]. In
1956, Torrey incorporated the effects of diffusion into the Bloch equations [78].
He derived the rate of change of the magnetisation upon application of a mag-
netic field gradient due to diffusion of spins described by diffusion tensor D to
be:

(
dM

dt

)

D

= ∇ ·D∇(M−M0) (3.28)

This term was added to the Bloch equations in Equations 3.21 to 3.23, and the
modified equations are referred to as the Bloch-Torrey equations.

Using the idea of a magnetic field gradient to sensitize the MRI signal to diffu-
sion, Stejskal and Tanner proposed the Pulsed Gradient Spin Echo (PGSE) in
1965 [79]. The PGSE sequence is essentially a SE, with two gradient pulses on
either side of the 180◦ RF pulse, as shown in Figure 3.2.

After excitation by the 90◦ RF pulse, the application of the magnetic field
gradient pulse of strength G and duration δ gives spins a position-dependent
precession frequency (as in Equation 3.20). The spins thus accumulate phase
according to their position in the magnetic field gradient. The 180◦ RF pulse
reverses the precession direction, and the application of an identical second
gradient pulse, a duration ∆ after the first gradient pulse, once more gives spins
a position-dependent precession frequency, and they again accumulate a phase
according to their position.

If the spins remain stationary between the application of the two pulses, the
phase accumulated by the spins just before the 180◦ pulse at time TE/2 will
be opposite to that accumulated after a total time TE, and they should cancel.
However, if diffusion has occurred, there will be a non-zero net phase and a lack
of phase coherence, causing a reduction in the signal amplitude that is indicative
of the ADC [79].
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Figure 3.2: Simplified diagram of a PGSE sequence, showing the chronology
of the application of RF pulses and gradients, as well as the reg-
istration of signals in the receiver coil. Upon generation of a 90◦
pulse, a FID is generated. A diffusion encoding gradient of dura-
tion δ is then applied. After a duration ∆ from the start of the
gradient pulse, a 180◦ RF pulse is generated. The spins then be-
gin to dephase and a second diffusion encoding gradient is applied.
After a time (TE) from the first RF pulse, an echo, the amplitude
of which is indicative of the diffusion of spins that has taken place
between the two gradient pulses, is registered at the receiver coil.
Note that the amplitude of the second RF pulse is twice that of
the first – the doubled amplitude doubles the flip angle.

Moving to the rotating frame of reference, as in Equations 3.24 to 3.25, the
solution for the Bloch-Torrey evolution of the magnetisation in the transverse
plane is similar to that in Equation 3.26 with the addition of a multiplicative
"attenuation" term. Stejskal and Tanner formulated the solution to the Bloch-
Torrey equations [79] as:

Mxy(t) = Mxy(0) · e
−TE
T2 · e−q2(∆− 1

3 δ)D (3.29)

where q = γ2G2δ2 is the diffusion encoding and td = (∆ − 1
3δ) is the diffusion

time. The factor of q2td is also referred to as the b-value, and is a quantification
of the degree of diffusion weighting applied. The higher the b-value, the higher
the diffusion weighting and the more dephasing a given displacement will cause.
The signal, S, measured at the receiver coil can be formulated as a function of
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b:

S(b) = S(0) · e−bD (3.30)

where S(0) is the signal acquired with the same TE as S(b), but with no diffusion
weighting. That is to say, b = 0.

Importantly, the value of D measured in Equation 3.30 with DWI is not neces-
sarily the true diffusion coefficient, owing to the non Gaussian nature of diffusion
within restricted spaces, as disussed in Section 3.2. Instead, it is the ADC – the
apparent diffusion coefficient.

3.4 Biophysical Modelling of the White Matter
Environment

MRI voxels can be up to several millimetres in side length, while the structures
in brain tissue are on the order of micrometres. Therefore, the measured MRI
signal in a single voxel of the WM, is the combined signal from all compartments:
cells, axons, ECS, etc:

S = S(0)
∑

i

fiSi (3.31)

where S(0) is the signal without diffusion weighting, i is the compartment index,
fi is the volume fraction of the ith compartment and Si is the signal arising from
it. This expression relies on the assumption that T2 relaxation time is the same
for all compartments.

In his PhD thesis, JE Tanner presented analytical predictions of the PGSE
signal arising from different bounded geometries [80]. By modelling different
compartments as different geometries, their expected signal contributions at
different b-values can be predicted. This is necessary in order to explore the
microstructure of the WM.
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3.4.1 Diffusion within Cylinders

In the case of axons, they are often modelled as impermeable cylinders in which
free diffusion occurs along the cylinder axis, and diffusion in all other directions
is restricted. Neuman derived the PGSE signal perpendicular to a cylinder [81]
to be:

lnA = lnA0 − 2γG2
∞∑

m=1

1

D2
0α

6
m(R2α2

m − 1)

· [2D0α
2
mδ − 2 + 2e−D0α

2
mδ + 2e−D0α

2
m∆ − e−D0α

2
m(∆−δ) − e−D0α

2
m(∆+δ)]

(3.32)

where A is the diffusion-weighted signal, A0 is the signal with no diffusion
weighting, γ is the gyromagnetic ratio, G is the strength of the gradient pulse,
D0 is the intrinsic diffusion coefficient, δ is the duration of the gradient pulse,
∆ is the separation of the gradient pulses, R is the radius of the cylinder and
αm is the mth root of the equation:

J ′1(αmR) = 0 (3.33)

where J ′1 is the derivative of the first order Bessel function of the first kind.

If δ � R2

D0
, the cylinders are said to fall within the Neuman limit [81, 82] and

Equation 3.32 can be simplified to:

lnS⊥ = − 7

48

δg2R4

D0
(3.34)

As demonstrated in the work of Van Gelderen et al. [83], it is possible to estimate
the radius of a cylindrical restriction – D0, given the PGSE sequence parameters
and three orthogonal measurements of the DWI signal. Or – if the cylinder
orientation is known – a single measurement perpendicular to the cylinder axis.
The estimate of the radius improves if D0 is known, and vice versa.
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3.4.2 Multi-Compartment Models

There exist several multi-compartment WM models that aim to describe the
signal arising from MRI voxels. Only a few are mentioned here; these are sum-
marised in Table 3.1. A more comprehensive discussion of biophysical models
for diffusion MRI is given in [16,84,85].

The AxCaliber method [14,65] uses the composite hindered and restricted mod-
els of diffusion (CHARMED) model [86,87] to estimate the ADD in each voxel. It
has two compartments: a restricted compartment to represent the intra-axonal
space IAS consisting of parallel cylinders with a gamma-distribution of radii,
and a hindered compartment to represent the ECS, consisting of an anisotropic,
axisymmetric DT whose principal axis is aligned with the main axon direction.

ActiveAx [13,88] uses the minimal model of white matter diffusion (MMWMD)
to provide orientationally invariant whole-brain estimates of the axon diameter
index: an estimation of the volume-weighted average diameter. The MMWMD
employs a four-compartment model, consisting of i) cylinders to model the
(IAS), ii) DT for the ECS, iii) a freely diffusing compartment for the cere-
brospinal fluid (CSF) and iv) a small stationary compartment in which there is
no diffusion. The DT model is that from Basser et al. 1994 [89] and, contrary
to the AxCaliber method, it is assumed that the same parallel diffusivity of
the ECS is the same as that in the IAS. The perpendicular diffusivity of the
hindered DT, Dh⊥ is given by the tortuosity model of Szafer et al. 1995 [90] in
which:

Dh⊥ = Dh‖

(
1− fa

(fa + fh)

)
(3.35)

where fa is the intra-axonal volume fraction and fh is that of the hindered
compartment. The freely diffusing isotropic compartment takes into account
any contamination by the CSF, and the restricted dot compartment was found
to be necessary to explain the MRI signal in ex-vivo tissue [13].

An extension of the CHARMED model takes into account the possible orienta-
tion dispersion (OD) of axons by representing axons as dispersed cylinders to
estimate the diameter index, a′ [91]. The model assumes that the axon OD fol-
lows a Watson distribution. As in the other models, the ECS is represented as a
hindered, anisotropic (and cylindrically symmetrical) DT, and – like ActiveAx
– the tortuosity model in Equation 3.35 is used.

As shown in Table 3.1, the techniques employ different MRI acquisition schemes
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and methods to fit the models to the MRI data. There are many ways to
both acquire diffusion MRI data, and fit many different models to it to extract
microstructural parameters of interest. However, the accuracy of the biophysical
models in describing the anatomical WM environment can be disputed.
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Table 3.1: Comparison of the biophysical models CHARMED, MMWMD, and
the generalised CHARMED model, and the techniques that imple-
ment them: AxCaliber, ActiveAx and [91].

Model CHARMED MMWMD Gen. CHARMED

Compartments
1. Diffusion tensor whose
principal directions coin-
cide with those of the ax-
ons.

2. Parallel cylinders with
radii following a gamma
distribution with parame-
ters α and β.

1. Dot

2. Isotropic, free diffu-
sion.

3. Diffusion tensor.

4. Parallel cylinder
with volume-weighted
diameter index a′.

1. Diffusion tensor.

2. Dispersed cylinders
with Watson distribution
parameter κ and volume-
weighted diameter index
a′.

Technique AxCaliber (can include an
isotropic CSF compart-
ment [14])

ActiveAx "Axon diameter mapping
in the presence of orienta-
tion dispersion with diffu-
sion MRI" [91]

Fitted Parame-
ters

Dh⊥, fh, fiso, fa, α, β n (principal fibre direc-
tion), fa, fh, a′

n (principal fibre direc-
tion), fa, κ (OD parame-
ter), a′

Fixed Parame-
ters/Assumptions • The axonal axial diffu-

sivity, D‖, is known and
constant.

• The principal direction
of the DT coincides with
that of the axons.

• Measurement is made
precisely perpendicular to
fibre direction.

• Fibres/axons are paral-
lel.

• The axonal axial dif-
fusivity, D‖, is known
and constant.

• The principal direc-
tion of the DT coin-
cides with that of the
axons.

• Fibres/axons are
parallel.

• The axonal axial diffu-
sivity, D‖, is known and
constant.

• The OD can be charac-
terised by a Watson distri-
bution

• One main fibre direc-
tion.

Fitting Opti-
misation

Non-linear least squares
with Levenberg-Marquardt
minimisation.

Rician MCMC proce-
dure after an intial grid
search and gradient de-
scent algorithm for ap-
propriate initialisation.

Rician MCMC procedure
after an intial grid search
and gradient descent algo-
rithm for appropriate ini-
tialisation.

Image Acquisi-
tion Example

PGSE. 5 diffusion times
for each of 16 values of
G (80 parameter combina-
tions) in a single direction
perpendicular to fibre axis
[14].

PGSE. 3-4 b−values or
HARDI shells, 90 di-
rections per shell [13].

PGSE. 4 b−values or
HARDI shells, 90 direc-
tions per shell [91].
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3.5 Challenges of Axon Diameter Estimation with
Diffusion Magnetic Resonance Imaging

The extraction of microstructural features of interest, such as axon diameter,
through the fitting of biophysical models to diffusion MRI data has its caveats
and may not provide entirely accurate measures. Axon diameter estimates ob-
tained with diffusion MRI [13, 14] are larger than LM- or EM-based axon di-
ameter estimates [15, 16]. The sources of discrepancy between diffusion MRI-
and histology-based estimates may be several, ranging from the design of the
biophysical model to the potentially questionable validity of comparing the two
metrics from two very different modalities and experimental conditions [15].

3.5.1 Compartment Morphology

The compartments of biophysical models are designed in part with knowledge
of anatomical compartments from LM in mind, and in part with the diffusion
MRI signal profile in mind e.g. the inclusion of the dot compartment in [13].

It would be somewhat unrealistic to expect real, anatomical compartments to
adhere to perfect cylindrical, spherical or zeppelin shapes. However, for the
purposes of microstructural diffusion MRI, it would be sufficient if the restricted
and hindered diffusion occurring within the compartments appears as if it arises
from these shapes. Consequently, the approximation of a certain geometrical
shape may be appropriate at one diffusion time, but not another.

Axons have long been described as cylinders. Undisputably, they are tube-like.
However, as mentioned in Section 2.3, both LM and EM studies [17, 18, 41–43]
indicate non-constant diameters and trajectories of axons. In simulation studies,
axonal undulations [92, 93] and general orientation dispersion [91] have been
shown to cause an overestimation of axon diameter with diffusion MRI. Monte
Carlo (MC) diffusion simulations within short segments of axons segmented from
a 3D EM dataset of the mouse CC also indicate that realistic axonal geometries,
with diameter and trajectory variations, exhibit a time dependent D‖ within the
IAS [94]. Furthermore, no consideration is taken to the effects of mitochondria
or microtubules and neurofilaments on the intra-axonal diffusion.
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3.5.2 Permeability

The estimation of axon diameter based on the diffusion occuring within cylinders
described in Section 3.4.1 makes the assumption that myelinated axons are
impermeable to the exchange of water across the axonal membrane. The same
assumption is made for the other compartments shown in Table 3.1. It is possible
that there is some exchange of water between the IAS and the ECS, meaning
that myelinated axons are not fully impermeable, but it is likely to be negligible
in healthy WM [95]. However, in cases of disease – for which axon diameter
may be a biomarker – the assumption of impermeability becomes less valid [95].

3.5.3 Hardware Limitations

Limitations of the MRI hardware also affect the measurement of axon diameter.
In Dyrby et al. [64], a dependence of the measured axon diameter index on
the amplitude of the gradient pulse is demonstrated. Generally, the higher the
available gradient strength, the smaller axon diameters that can be measured.
At lower gradient strengths, large displacements are required to to produce
detectable attenuation of the signal. As such diameters below a certain limit –
which depends on the signal-to-noise ratio of the MRI signal and the gradient
strength – are indistinguishable from each other [96].

There is an upper cap on the available MRI gradient strengths. Although tech-
nological advancement will most certainly see the development of coils that
produce higher gradient strengths, the use of higher gradient strengths may
not necessarily guarantee an unbiased estimate of axon diameter. The upper
limit of measurable axon diameter depends on two variables: the diffusion time
and also the SNR of the measurement. Sequence parameters that favour the
measurement of small axons via a high gradient strength may cause the sig-
nal perpendicular to larger axons to be attenuated to the extent that it is no
longer distinguishable from noise. Furthermore, elongating the diffusion time of
a sequence is not either a guaranteed method of ensuring sensitivity to larger
axons. An elongation of the diffusion time requires an elongation of the TE,
entailing that more T2 decay has had time to occur, reducing the SNR of the
measurement.

Therefore, for a given PGSE and realistic experimental conditions where there is
some degree of noise (even in MC simulations), there is a "window" of sensitivity
to axon diameter [64].
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3.5.4 Compartmental T2 Time Constants

Although it affects the estimated volume fraction of the IAS, and not the esti-
mated axon diameter, another assumption that is worth mentioning is that the
T2 time constants are are assumed to the same for all compartments. Recent
investigations studying the T2 relaxation times of the IAS and ECS have shown
that they may in fact differ [97–99]. Different T2 relaxation times in different
compartments could affect the estimation of their respective volume fractions,
fi in Equation 3.30, [100].

3.5.5 Validation Limitations

Lastly, there exists a disparity between the tissue that diffusion MRI probes, and
that examined by LM. As outlined in Section 2.3.2, processing of tissue for LM
or EM may cause shrinkage and/or artifacts, and it is unknown to which extent
the IAS compartment is affected [15]. Therefore, there may exist differences
in the axon diameters unrelated to measurement technique itself, but instead
coupled to the tissue processing.

Furthermore, axon diameter distributions from LM and EM are often measured
in 2D, while diffusion MRI is sensitive to the entire, 3D IAS. Measurements in
2D could be biased by a misalignment of the 2D imaging plane relative to the
axonal trajectory.

3.6 Powder Averaging to Remove Orientation Bias

Powder averaging (PA) has been proposed and implemented as a model-free ap-
proach to remove OD bias in diffusion MRI metrics [101–111]. The PA involves
calculating the arithmetic mean of the diffusion MRI signal in isotropically dis-
tributed directions on the unit sphere. The resulting PA signal represents the
spherical mean of the set of micro-domains present in the voxel, regardless of
their individual orientation.

Spins diffusing within a particular compartment will, at typical diffusion times,
not probe the entire compartment. Instead they probe a micro-domain, repre-
sented by the orange arrows in Figure 3.3.
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Figure 3.3: At typical diffusion times, spins will probe only a microdomain of
a compartment (represented by the orange arrows).

If the diffusion MRI signal is measured in many different isotropically distributed
directions, the signal profile of the three fibre configurations shown in Figure
3.3 will be very different. That is to say, the distribution of the signal over
the different directions will differ. On the other hand, the signal obtained by
averaging the signal in all directions will be the same for all fibre configurations,
assuming that the spins do not probe too large a microenvironment. Thus, the
PA diffusion MRI signal can be said to be free of OD bias to some extent. This
approach can be extended to axon diameter estimation, but is not without its
limitations, which we will explore further in Chapter 6. How well PA-based
approaches can recover the axon diameter depends on diffusion time [111], and
axonal dispersion on the scale of the microdomains probed by the spins may
bias the axon diameter estimate.

3.6.1 The PA of the Diffusion MRI Signal in Cylinders

PA approaches to axon diameter estimation assume that the microdomains
probed by spins within the IAS are cylindrical.

The analytical PA of the diffusion MRI signal from cylinders, SSMT , can be
shown to be [112]:

SSMT (b) = fa

(
e−bD⊥ ·

√
π

4b · (D‖ −D⊥)
· erf

(√
b · (D‖ −D⊥)

))
(3.36)
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where fa is the relative contribution of the IAS to the total signal, b is the
diffusion weighting, D‖ is the ADC parallel to the cylinder axis, D⊥ is the ADC
perpendicular to it and erf(x) is the error function of x. Equation 3.36 is what
is here referred to as the spherical mean technique (SMT) implementation.

In cylinders, D‖ > D⊥. At high b−values, it can thus be assumed that b · (D‖−
D⊥)� 1 for cylinders, in which D‖ > D⊥. In these conditions, erf(x) = 1 and
Equation 3.36 can be rearranged to take the form of a power law (PL) [113]:

SPL(b) = βe−bD⊥b−0.5 (3.37)

where β = fa
√

π
4(D‖−D⊥) . The value of β is constant with b−value. Equation

3.37 is what is here referred to as the "PL implementation" and is an alternative
representation of the SMT at high b−values. The PL thus requires the fitting
of only two variables (β and D⊥), compared to the three variables (fa, D‖ and
D⊥) of the SMT.

By fitting the PA signal to expressions for the PA of cylinders, an estimate
of D⊥, the ADC perpendicular to the cylinder axis, can be obtained. This
can be converted into a diameter with Equation 3.30 and the expression for
the analytical signal perpendicular to a cylinder of given diameter in Equation
3.32. As such, knowledge – or an assumption – of D0 is needed. However, since
the radius scales approximately as R ∼ (D0)

1
4 (Equation 3.34), it is relatively

insensitive to small inaccuracies of D0.
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Chapter 4

Synchrotron X-Ray
Nanotomography

4.1 Synchrotron Radiation

Synchrotrons are large-scale facilities, home to the brightest x-rays in the world.
A cyclic particle accelerator accelerates electrons around a storage ring with the
aid of magnetic fields. Broadly speaking, dipole magnets deflect the electrons
to make sure they follow a circular orbit, while quadrupole and sextupole mag-
nets focus the electron beam. The radial acceleration of the electrons results in
synchrotron radiation, a type of bremsstrahlung. The radiation is guided out at
tangents to the central ring into different beamlines or experimental stations.
Using magnetic fields and different optical devices (mirrors, slits, monochroma-
tors, absorption filters), the energy, intensity and beam size of the radiation can
be controlled.

During the PhD studies, experiments were conducted at two synchrotron facili-
ties: Deutsches Elektronen-Synchrotron (DESY), beamline P10, and the Euro-
pean Synchrotron (ESRF), beamline ID16A.
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4.2 X-ray Propagation-Based Phase Contrast Imag-
ing in Soft Tissue

X-rays have wavelengths between 10−2 and 10 nm. For hard (high energy)
x-rays, their propagation through a medium can be described by the complex
refractive index, n, of the medium:

n = 1− δn + iβn (4.1)

where δn is the refractive index decrement and describes the phase shift (∆φ)
experienced by the x-rays as they traverse the medium, and the imaginary term
with βn is the absorption index, describing the amplitude change of the x-ray
wave. Both δn and βn depend on the electron density of the medium. In soft
tissue, δn >> βn, and the interaction process is dominated by ∆φ [114,115]. The
phase shifted x-rays interact with reference x-rays that have not interfered with
the medium (Figure 4.1). These interference effects become stronger the further
the x-rays exiting the sample propagate, forming different imaging regimes at
different sample-detector distances [116]. At short distances, phase contrast
occurs due to diffraction associated with the high spatial frequencies of the
electron density distribution in the sample e.g. edges between structures and
materials, but preserves the lower frequency general shape of the sample. The
intensity image resembles the sample, but exhibits an edge enhancement, and
is sometimes referred to as the direct contrast regime. At longer propagation
distances, even the low spatial frequencies are subject to diffraction and the
intensity image no longer resembles the sample – this is the holographic regime.
In the holographic regime, the observed intensity image at the detector mostly
contains phase contrast, assuming that the sample is sufficiently small. This
differs compared to conventional medical x-ray imaging in which the contrast is
mostly given by absorption.

The phase information of the sample, δn and βn, can then be reconstructed
with appropriate phase retrieval algorithms for the experimental conditions and
imaging regime, for which more details can be found in [114,117–120].

4.3 Experimental Setups

X-ray nanotomography refers to the nano-resolution tomography of samples
using x-rays to produce detailed, 3D maps of their inner structure. More specif-
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Figure 4.1: The entering x-rays (black wavefronts) accumulate both phase and
amplitude changes as they interact with and traverse the sample
(dashed red lines). The self-interaction of the x-rays with non-
disturbed wavefronts gives rise to interference effects (red wave-
fronts) that are amplified by propagation in vacuum or free space.
The intensity patterns in the image formed by the exiting x-rays
encode the information of the complex refractive index of the
medium. Figure inspired by Figure 1.3 of [120].

ically, x-ray nano-holotomography (also called x-ray holographic nanotomogra-
phy [121]), XNH, refers to x-ray nanotomography in the holographic imaging
regime.

The properties of the illuminating x-rays and the experimental setup deter-
mine the FOV and resolution of the acquired images. The GINIX endstation at
beamline P10 of DESY had two possible configurations, shown in Figure 4.2. A
parallel-beam configuration was used for imaging in the direct contrast regime
(small d2) and provided large FOVs (determined either by the detector size or
the upstream slits) between 0.5-1 mm in each dimension, and an effective resolu-
tion that was determined by the detector pixel size of 550 nm. This configuration
was ideal for overview scans of the tissue. The second configuration, the cone
beam setup (Figure 4.2B), had variable effective pixel size and FOV (limited by
the size of the detector). The divergent beam entailed that different geometrical
magnifications M = d1+d2

d1 could be achieved by varying the focus-sample and
sample-detector distances. The cone-beam setup provided resolutions of 50-200
nm and FOVs on the order of hundreds of micrometres, and is described in
more detail in [122, 123]. At DESY, the free space propagation was in air and
the x-ray energies used in the experiments was approximately 13 keV.

The XNH setup at beamline ID16A of ESRF used the cone-beam configuration
shown in Figure 4.3. Contrary to at DESY, the free space propagation took
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Figure 4.2: A) A parallel-beam configuration offers large FOV, but the reso-
lution of the images is limited by the pixel size of the detector.
Imaging is usually performed in the direct-contrast regime, with
a small distance d2 between the sample and the detector. B) A
cone-beam geometry offers the possibility of geometrical magnifi-
cation M = d1+d2

d1 to reduce the effective pixel size and increase
resolution, at the cost of a smaller FOV.

place in vacuum. The x-ray energy used was approximately 17 keV and it was
possible to image the sample at cryogenic temperatures. A pair of Kirkpatrick-
Baez mirrors focussed the beam to a small spot size of around 30 × 30 nm2.
The sample was placed on a high-precision rotation stage and the samples were
imaged with the nano-focussed cone beam [124,125] at different distances with
respect to the focus and the detector to obtain phase maps [117, 125]. The
acquisition of tomograms at different distances serves to reduce artifacts in the
reconstructed phase maps.

For experiments at both DESY and ESRF, rotation stages allowed the sample
to be rotated through 180◦, after which the 3D volumes were reconstructed by
filtered backprojection or computed tomography algorithms.

4.4 Sample Preparation Considerations

The tissue samples had to be carefully prepared for the synchrotron experi-
ments with the aim to reduce image artifacts and absorption of x-rays while
maintaining contrast to the biological structures within the tissue.
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Figure 4.3: In the cone beam setup at ESRF, the x-ray beam is focused by a
pair of Kirkpatrick-Baez mirrors into a small spot size. The sample
is placed on a rotating sample stage, which rotates it through 180◦.
Holograms are acquired at different rotations and sample stage
positions.

Heavy metal staining of tissue Osmium tetroxide is a common heavy metal
stain, used to stain structures containing lipids, such as cell membranes or the
myelin sheath around axons. Thus, it is an optimal stain for the study of WM,
which contains a high density of myelinated axons. However, owing to its high
electron density (and high Z – proton number), Osmium is highly absorbing
and thus places limits on the the dimensions of the tissue samples. Ideally, the
samples should be small enough to allow a high SNR in the acquired images,
while being large enough to span at the very least, the maximum desired FOV.
Furthermore, although many staining protocols recommend a 2% concentra-
tion of osmium tetroxide, preliminary experiments that we performed at the
laboratory µ-CT setups at DTU and the Institut für Röntgenphysik at Georg-
August-Universität Göttingen suggested that this caused excessive absorption,
and that a 0.5% osmium tetroxide concentration would provide a good compro-
mise between contrast and SNR for dense WM samples of approximately 1 mm
in thickness.

Embedding medium The medium into which the sample is embedded, if
any, impacts the morphological and absorption properties of the sample. As
outlined in Section 2.3.2, embedding in EPON or paraffin involves processing
the sample with an alcohol series, which causes shrinkage. The choice of EPON,
paraffin, or other embedding medium also affects the contrast formation of mi-
crostructural features in tissue. In studies of the unstained mouse cerebellum,
Töpperwien et al. investigated the structural and contrast differences between:
i) hydrated samples stored in phosphate buffer solution, ii) samples housed in
ethanol and ii) paraffin-embedded samples [126]. They found that the while
there was significant shrinkage in the diameters of the Purkinje and granular
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cells when the tissue was embedded in ethanol or paraffin, the contrast was sig-
nificantly improved compared to in the hydrated tissue. Further investigations
into sample mounting and embedding strategies can be found in [127].

Sample geometry The algorithms used to retrieve the phase maps [117,128]
from the acquired holograms make several assumptions. Some assumptions are:
that the sample is weakly absorbing, that the phase is slowly varying (smooth
electron density distribution) throughout the sample, and that is symmetrical
around its rotation axis. Violations of these assumptions can cause artifacts
in the phase-reconstructed images. Thus, the sample should be designed to be
as axisymmetrical as possible. Sharp edges should be avoided within the FOV
of the scans and the embedding medium should have as smooth a surface as
possible.

In the experiments outlined in this thesis, hydrated or paraffin-embedded sam-
ples were mounted on the rotation stage within cylindrical kapton tubes, while
the EPON blocks were cut and polished to appropriate dimensions and smooth-
ness.



Chapter 5

Investigations into 3D
White Matter Morphology

To explore the morphology of axons and other microstructures in the white
matter, synchrotron x-ray nanotomography was used to study brain tissue from
different brain regions and animals. The first section of this chapter is a sum-
mary of the results of our study on the healthy WM in the vervet monkey brain
with x-ray nano-holotomography (XNH) in Contribution I: "Axon morphology
is modulated by the local environment and impacts the noninvasive investigation
of its structure–function relationship" [44]. Next, what can x-ray nanotomogra-
phy reveal about the organisation of WM in disease? The second section of this
chapter takes the step from healthy WM to the diseased WM and summarises
our findings from a structure-tensor (ST) tractography analysis in the CC of
mice treated with a Cuprizone (CPZ) demyelination model, based on Contri-
bution III [129]. The last section outlines the perspectives of the work, and
potential next steps in imaging of the 3D tissue microstructure.

5.1 Contribution I: "Axon morphology is modu-
lated by the local white matter environment
and impacts the noninvasive investigation of
its structure-function relationship"

This summary of Contribution I aims to give an overarching view of the results
and implications of the study. As such, it excludes many of the technical and
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quantitative details that are present in [44] and included at the end of this thesis,
to which the interested reader is referred.

5.1.1 Aim

Axon diameter and conduction velocity (CV) are closely related. Although
diffusion MRI techniques can estimate axon diameter, a 3D validation of the
biophysical models used is required. 3D EM studies report varying diameters
and trajectories on scales up to 20 µm. The aim of Contribution I was to char-
acterise axon morphology in relation to the WM environment and neighbouring
axons. We sought to investigate the potential sources of morphological variation
in axons on length scales up to several hundred micrometres, and consider the
implications for their estimated physiological function.

The same monkey brain as in Alexander et al. [13] and Dyrby et al. [64] in which
the MRI-derived axon diameter estimates were larger than those estimated by
histology was scanned with the ActiveAx MRI protocol (CC diameters shown in
Figure 5.1). With synchrotron XNH, we then mapped the WM microstructure.
Several XNH volumes were acquired from different WM regions, as shown in
Figure 5.1. The primary characterisation of the morphologies of 54 axons was
performed in the XNH volume of the splenium region, with a cylindrical FOV
of height and diameter 153.6 µm and isotropic voxel size of 75 nm. The combi-
nation of several adjacent XNH volumes enabled a segmentation of cells, blood
vessels and vacuoles within a volume of approximately ∼ 150× 150× 585 µm3.
Axons longer than 660 µm could be tracked and analysed within this extended
volume, providing information on long-range axon behaviour. Diffusion was
simulated within the extracted axons, and the effects of diameter and trajec-
tory variations on the measurement of axon diameter via the diffusion process
were investigated.
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Figure 5.1: XNH volumes were acquired from several different WM regions of
the vervet monkey brain in which ActiveAx overestimated axon di-
ameter in the CC [13,64]. The colourbar represents the ActiveAx-
estimated axon diameter. The splenium was selected for the pri-
mary analysis in Contribution I, and the interhemispheric tract
connecting the visual cortices (V1/V2) and passing through the
sample biopsy location was segmented by tractography (in green)
as in Andersson et al. [44].

5.1.2 Methods

Diffusion Magnetic Resonance Imaging

The vervet monkey brain was scanned with the three-shell ActiveAx protocol
using a maximal gradient strength of 300 mT/m for ex vivo tissue as in Dyrby et
al. [64]. The acquisition used PGSE parameters: b-values, b = [2011, 2957, 9529]
s/mm2; gradient durations δ = [5.6, 7.0, 10.5] ms; gradient separation, ∆ =
[12.1, 20.4, 16.9] ms and G = [300, 219, 300] mT/m in Ndir = [84, 87, 68] direc-
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tions at echo time TE=36 ms. The voxel size of the MRI scans was isotropic
0.5 mm. After denoising [130] and the removal of Gibbs ringing artifacts [131]
in MRTrix, the volume-weighted axon diameter was fitted to a region of inter-
est spanning the midsagittal region of the CC. The interhemispheric connection
linking the V1/V2 visual cortices and passing through the splenium was seg-
mented with streamline-based deterministic tractography [132].

Synchrotron X-Ray Nano-Holotomography Imaging

The sample preparation process for the XNH experiments is shown in Figure
5.2 and was designed in line with the considerations described in Section 4.4.

Figure 5.2: Schematic showing the tissue and sample preparation in prepara-
tion for XNH imaging. 1) Perfusion fixation of 32 month old female
vervet monkey brain; 2) embedding of the brain in agarose for me-
chanical stability; 3) slicing of the brain into ∼ 3 mm thick sagittal
slices in a mold; 4) extracting Ø = 1 mm cylindrical biopsies from
different WM locations, informed by a multi-fibre reconstruction
of DWI images; 5) staining of the tissue samples with 0.5% os-
mium tetroxide and EPON embedding; 6) trimming of the EPON
blocks with a circle saw; 7) polishing of the EPON blocks with
a grinding-polishing machine equipped with sandpaper of varying
fineness and 8) the final EPON-embedded sample.

XNH was performed at beamline ID16A of ESRF. A cone-beam setup (Figure
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4.3) was used to acquire holograms at four different distances and an x-ray
energy of 17 keV. Each XNH volume was acquired using 1800 rotation angles
with an exposure time of 0.22 s, with a full scan taking ∼ 4 hours. The phase
retrieval and tomographic reconstruction were performed on-site.

Segmentation of Cell Clusters, Blood Vessels, Vacuoles and Axons

As described in cite [44], the XNH volumes were first downsampled by a factor
of 5 to achieve volumes of dimension 410× 410× 410 voxels with isotropic voxel
size of 375 nm. This meant that the entire volumes, 32 GB large in their full
resolution, could be loaded in image processing software. A rough segmentation
of the axons from these volumes was then performed using the adaptive paint-
brush in ITK-Snap. From the rough segmentation, the centreline of each axon
could be estimated by calculating the slicewise centroid of the axonal cross sec-
tion. With this as input, a MATLAB-based, in-house segmentation method was
used to extract the axons and update their centerlines from the high-resolution
volumes of voxel size 75 nm.

To segment the cell clusters, blood vessels and vacuoles, we used an intensity-
and morphology-based approach in MATLAB. This was applied on the the
downsampled (by a factor of 5) XNH volumes and made use of classic low-level
image analysis operations such as intensity thresholds, morphological opera-
tions, and a connected components analysis [44].

Monte Carlo Simulations of Diffusion In Synthetic Axons

For each axon segmented from the XNH volumes, four morphological features
were extracted. These were: i) the mean axon diameter, ii) the diameters along
the axon trajectory (diameter variation), iii) the main axon direction (OD) and
iv) the axon trajectory (microdispersion). By modelling the axons as deformable
cylinders, five sets of synthetic substrates G1-G5 were created, with the axons
in each substrate inheriting one or more of the aforementioned morphological
features. Substrate G6 consisted of the XNH-segmented axons.

Simulations within the IAS of each axon were performed with the Monte Carlo
Diffusion and Collision (MCDC) Simulator [133]. Each axon in each geometry
G1-G6 was simulated separately, assuming an intrinsic ex-vivo diffusivity of
0.6 · 10−10 m2s−1 as measured in [64]. The positions of the uniformly initialised
spins were recorded at integer diffusion times between 1 and 50 ms, at which
point the mean-squared-displacements (MSD) parallel and perpendicular to the
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axon bundle (whole substrate) were saved. From the MSDs, the ADCs could be
calculated using Equation 3.12 and the axon diameter could be estimated using
λ2 = R2

2 [83], where R is the radius and λ2 is the MSD in the perpendicular
direction.

5.1.3 Results and Discussion

Volumetric Mesoscopic WM Features

Myelinated axons, cell nuclei and blood vessels were identifiable in the XNH
volumes as shown in Figures 5.3A-D. A segmentation (Figure 5.3F) of the cell
clusters (blue), blood vessels (red) and vacuoles (green) was performed within
the extended volume in Figure 5.3F. The segmentation revealed an even spatial
distribution of vacuoles (volume fraction 1.5%), but a clear clustering of the cells
(volume fraction 4.6%) along the direction of the axons, with many appearing
to be anchored in the blood vessels (volume fraction 0.6%). On average, the
cell nuclei had a diameter of 5.5 µm (SD = 0.73 µm, N = 38). Each cell
cluster thus contained an average of 12 cells. A detailed morphological analysis
of these structures is provided in [44]. A similar WM organisation was observed
in the midbody (Figure 5.1). One WM feature that could not be observed,
however, was the ECS – likely due to the dehydration of the tissue as part of the
sample preparation. It is unknown how much, if any, shrinkage the various WM
compartments are subject to as part of the tissue processing. In Töpperwien et
al. [126], shrinkage of the diameters of different cell types in paraffin-embedded
tissue to 63−93% of their values in hydrated tissue is reported, but the authors
stress that these values should be interpreted with caution as they are based
on measurements of few cells. While it is possible that the reported volume
fractions and quantitative measures of the WM structures are skewed as a result
of the tissue processing, they shed light on the relative prevalence and spatial
distribution of cells, blood vessels and vacuoles. Whether or not vacuoles are a
WM feature or an artifact requires further investigation. Similar vacuoles are
found in 3D EM studies of the mouse CC [17], but can also be associated with
WM pathologies [134] and artifacts related to sample processing [52].

G-ratio variations along single axons are driven by axon diameter
variations. Large axons (>2 µm in diameter) and their Nodes of Ranvier
could also be segmented from the extended volume, as shown in Figure 5.3G.
In six axons, each with two discernible Nodes of Ranvier, the g-ratios and CVs
along the internode between the two nodes could be calculated according to
Equation 2.1 through a quantification of the inner and outer axon diameters.
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The results showed that individual internodes exhibit a distribution of g-ratios.
Along the internodes, the myelin thickness was found to be stable, implying
that the g-ratio – and thus CV – variations are driven by changes in axon
diameter [44]. The average theoretical CVs are higher than those reported from
LM in the larger macaque brain [59], but this can be attributed to the fact that
we studied the largest – and thus, fastest – axons.

Figure 5.3: A) Axons, cells, blood vessels and vacuoles could be identified in
the isotropic 75 nm resolution XNH volume of the vervet monkey
splenium. B) Vacuoles (marked by asterisk) could sometimes be
found within the axon. C) The cell nuclei clustered parallel to
the axons and exhibited dense DNA inclusions. D) LM Nissl-
stain light image showing cell nuclei in the splenium region of an
age-matched monkey (BrainMaps: An Interactive Multiresolution
Brain Atlas; brainmaps.org). E) Four consecutive XNH volumes
like that shown in A were acquired and could be overlapped to
form an extended volume of height 584.5 µm. F) The cells (blue),
blood vessels (red) and vacuoles (green) were segmented in the
extended volume. G) Six long axons, each with two identifiable
Nodes of Ranvier (filled black circles) were segmented from the
extended volume. Figure modified from [44].
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Modulation of Axon Morphology by the Local Environment

Diameter variations. A high resolution quantification of the diameter vari-
ations of a 662 µm long axon, as shown in Figure 5.4A, revealed that diameter
decreases occurred in conjunction with Nodes of Ranvier, as expected from
literature [9, 135–137], and in response to vacuoles. Axon diameter has been
shown to be regulated by the axonal cytoskeleton [138] which, when exposed to
a decrease or increase in tension, can regulate diameter upwards or downwards,
respectively [139, 140]. It is possible that extra-axonal structures such as vac-
uoles place tension on the cytoskeleteon, triggering a decrease in diameter. From
their 3D EM studies, Abdollahzadeh et al. [17] and Lee et al. [94] could attribute
local axon diameter increases to the presence of mitochondria, but they could
not be identified here. Axon diameter increases have also been demonstrated as
a result of signal firing in unmyelinated axons [23,141,142]. The XNH volumes
provide a structural map of the WM environment, but since they provide only
a static snapshot of the tissue, activity-dependent structural effects cannot be
captured. The in-vivo morphologies of axons may thus be more varying and
complex than those described here.

Trajectory variations. Cell clusters, other axons and blood vessels were
found to cause significant trajectory changes in the axons, as illustrated in Fig-
ures 5.4B-D. The theoretical undulation of the IAS has been shown to cause
an overestimation of axon diameter in [92–94]. Considering our findings on the
relationship between cell clusters and axonal trajectories, the question of how
axonal trajectories may be affected in a pathological case arises. Neuroinflam-
matory responses as a result of disease or trauma can cause an accumulation of
microglia, macrophages and astrocytes in the ECS [143,144]. An increased den-
sity of extra-axonal structures may potentially alter axonal trajectories and bias
axon diameter measurements. Similar to how neurite beading has been shown
to decrease the ADC after ischemic stroke [145], a reduced parallel ADC due
to the the modulation of axonal trajectory could potentially act as a diffusion
MRI-sensitive biomarker of inflammation.

Morphologies of Axons

To quantify the Morphologies of axons, 54 axons were segmented from the single
XNH volume shown in Figure 5.3A in 75 nm isotropic resolution using a layered-
surface segmentation algorithm, described in [44]. The segmentations are shown
in Figure 5.5A. The equivalent diameters were quantified every 150 nm perpen-
dicular to the local axon trajectory and calculated to be the diameter of a circle
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Figure 5.4: A) The equivalent diameter of single axon spanning the extended
volume in Figures 5.3E-G was quantified every 150 nm of its 662
µm long trajectory. Along its length, the diameter varied between
1.5 and 5.3 µm and averaged at 3.3 µm. The axon is shown in
the native XNH volume at ROIs labelled r1-r9. The lower plot
shows how the calculated g-ratio (in orange) varies in tune with
the equivalent axon diameter (in blue). For this axon, the most
significant diameter decreases can be attributed to the presence of
vacuoles or Nodes of Ranvier. B) The trajectories of segmented
axons (orange) skirt around cell clusters (blue) – only a selection
of the axons/cell clusters is shown for clarity. C) Segmentation
of axons from a crossing fiber region show how axons travelling
in different directions (yellow, green) navigate around each other.
In particular, two axons (red, yellow) are seen to twist around
each other. D) Axons bend around a blood vessel, deviating from
their predicted linear trajectories based on their positions above
and below the blood vessel. Strong deviation: yellow, little/no
deviation: dark blue. Figure modified from [44].

with the same area as the local axonal cross-section, as in [17, 18]. All axons
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exceeded 120 µm in length and there were therefore at least 800 measurement
points per axon.

Large axons have non-specific diameters. In referring to diameter varia-
tions occurring along individual axons, the terms "longitudinal" axon diameter
and axon diameter distribution (ADD) are used. The segmented axons had
mean diameters between 2 and 4 µm, and the ADD of all measured cross-sections
in the 54-axon population is shown in Figure 5.5B. A positive correlation be-
tween mean axon diameter and the standard deviation of the longitudinal ADD
was found. In other words, the larger axons exhibited larger diameter variations
than the smaller ones, as demonstrated by the wider longitudinal ADD of the
largest-diameter axon in Figure 5.5B compared to that of the smallest axon.
From a computational point of view, the morphological non-specificity of large
axons compared to their smaller counterparts could indicate that they encode
different information [30,146]. It may thus be valuable to consider a categorisa-
tion of axons by diameter, like that of the peripheral nervous system [147]. The
correlation between axon diameter and neuron soma size [148] also supports a
potential categorisation of axons into size-specific categories.

The wider longitudinal ADDs of large axons could potentially also explain the
characteristic heavier tail of the ADD at large diameters, compared to at small
diameters. Furthermore, this perspective on the longitudinal ADD of large axons
suggests that the "giant axons" [16, 60] observed in 2D histological slices may
not represent axons with very large mean diameters, but instead the diameter
variations along large axons. This effect of sampling local diameter variations,
combined with the observed constant myelin thickness along axons, may to some
extent drive Berthold’s observed log-linear relationship between axon diameter
and the number of myelin lamellae [31] (Equation 2.2).

Implications for diameter and g-ratio measurements with classical
histology. To shed light on the robustness of 2D measurements, like those
performed with conventional LM and EM, we assessed how many measurements
of axon diameter were required to accurately estimate the mean diameter of a)
the single long axon in Figure 5.4A and b) the mean diameter of the 54-axon
population. We found that the long axon required sampling (in the plane per-
pendicular to its local trajectory) for up to 200 µm at intervals of 150 nm until
the cumulative mean diameter was stable to within ±150 nm of the mean. The
length of the axon that required sampling depended on the position along the
axon at which sampling commenced. This entails that local diameter variations
can significantly bias the estimate of mean diameter, even when a dense sam-
pling over large distances is available. This stability estimate assumes that an
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axon has a well-defined mean diameter over its 662 µm long trajectory. In this
case, it seems that it does, since the mean axon diameter is accurately estimated
beyond 200 µm of sampling. For the long axon, the equivalent diameter was ap-
proximated in the plane perpendicular to the local axonal trajectory to prevent
bias. In 2D, this would not be possible and measurements would be performed
in the available image plane, which is frequently chosen to be approximately
perpendicular to the direction of axons. Abdollahzahdeh et al. [17] showed that
this aspect of 2D imaging also incurs substantial bias in the estimation of axon
diameter. In stark contrast to the quantification of mean diameter in a single
axon, we found that measuring the mean of the ADD in the xy-plane of the
XNH volumes – similar to what would be done in 2D EM/LM – consistently
gave accurate estimates of the mean ADD throughout the subvolume in which
all axons were present. This highlights how morphological measurements in a
single 2D plane are a sampling of the entire 3D morphology. Thus, accurate
estimates of the mean of the 3D ADD are accessible via 2D histology, provided
that there is a sufficiently large FOV and number of measurement points to
avoid any bias caused by the presence of mesoscale structures such as blood
vessels or cell clusters.

Axons exhibit dispersion on all length scales. On the bundle level, the
axons exhibited a mean OD of 7◦ compared to the average bundle direction
(Figure 5.5C) in the splenium of the CC. On the single-axon level, we quanti-
fied the microdispersion, representing the average angle between axon segments
of a given length and the mean axon orientation (Figure 5.5D). This showed
that axon dispersion exists on all probed length scales, from 1 to 30 µm. Non-
straightness has previously been observed in tracer labelled axons in [41–43] and
in growing axons of the frog and chick [15, 149]. The observed microdispersion
could thus be a combination of the effects of axonal growth and the extra-axonal
obstacles that cause trajectory variations.

Impact of Realistic Axon Morphology on Diffusion MRI Measure-
ments

The MC simulations showed that any morphological deviation from cylinders
causes a time-dependent overestimation of axon diameter, as shown in Figure
5.6B.

The need to account for a general OD, as exhibited in substrate G2, is thus
confirmed [13, 14, 64, 150]. There exist methods to account for general OD ef-
fects [91, 113, 151], but none to remove the bias caused by microdispersion or
diameter variations seen in substrates G2-G6. The realistic axonal geometries
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Figure 5.5: A) 54 segmented axons from the splenium of the vervet monkey,
ranging between 2-4 µm in average diameter and >120 µm in
length. B) Fits of a gamma distribution to the 3D ADD of all
cross sections in the axon population (black striped line), and to
the longitudinal ADDs of the thickest (green) and thinnest (blue)
axons respectively. C) The axons are centred to a common origin
to visualise their OD. The OD of each axon compared to the av-
erage bundle direction is represented by the colorbar. D) There
exists microdispersion on all length scales from 1 to 30 µm. Figure
modified from [44].

also cause a time-dependence of the parallel ADC which may be another source
of bias in axon diameter measurements, as the parallel ADC is commonly used
in place of the intrinsic diffusivity in Equation 3.32. For all diffusion times up
to 50 ms, the difference between the intrinsic ADC and the estimated parallel
ADC was most substantial for substrates that exhibited trajectory variations
than for those that exhibited diameter variations e.g. substrate G4 vs. G3.
However, the time dependence was steeper for substrates with diameter varia-
tions, and it is possible that diameter variations have a stronger effect on the
parallel ADC than trajectory variations on longer time scales, although these
are typically not applied in PGSE acquisitions for estimation of axon diameter.
The time-dependence of the parallel ADC up to 100 ms is also demonstrated in



5.1 Contribution I: "Axon morphology is modulated by the local white
matter environment and impacts the noninvasive investigation of its
structure-function relationship" 59

Figure 5.6: (A) The morphological features of the XNH-segmented axons in
Figs. 3 and 4 are directly mapped to the six different axon classes
generated for MC simulations. G1, straight cylinders of diameter
corresponding to XNH axon mean diameters; G2, same as G1 plus
segmented OD; G3, segmented OD and longitudinal ADD; G4,
segmented OD and microdispersion; G5, segmented OD, microdis-
persion, and longitudinal ADD; and G6, the XNH segmentation.
(B) The variation of estimated axon diameter and (C) parallel
intra-axonal ADC with diffusion time for geometries G1–G6. Er-
ror bars represent the SE, reflecting the spread in diameters/ADCs
across the individual axons. Figure from [44].

the axons from 3D EM of the mouse CC in Lee et al. [94]. In these, the diameter
variations caused a larger discrepancy between the intrinsic ADC and parallel
ADC than simply the trajectory variations. There may be several reasons for
this difference, one of which could be that that smaller axons, like those in Lee
et al., have a higher surface to volume ratio, meaning that a higher fraction of
spins probe the effects of the diameter variations compared to in the larger ax-
ons. Regardless of source, the observed time dependence of the parallel ADC in
the IAS could contribute to the time dependence observed in other studies [152],
as is suggested by Fieremans et al. [153].
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5.1.4 Conclusions

The interplay between extra-axonal structures and the micromorphology of ax-
ons was demonstrated through the segmentation and analysis of high resolution
3D XNH volumes from the WM of a vervet monkey brain. We find that axon
diameter and trajectory vary along the length of the axon, often due to obstacles
in the local microstructural environment. Consequently, we question the valid-
ity of enforcing cylindrical geometries in axonal structure–function relationships
and postulate that the morphological non-specificity of large axons may entail
non-specificity of their CVs. Furthermore, we show that 3D morphologies of ax-
ons may drive previously reported trends in 2D ADDs and g-ratio distributions.
These results have significant impact for axon diameter determination with 2D
techniques and — as we show here — diffusion MRI. The quantifications of OD,
microdispersion and axon diameter variations could also be used to guide the
construction of anatomically informed axonal phantoms for MC simulations.

Naturally, the study has several limitations that call for further investigation.
Firstly, the combination of SNR and image resolution challenged the segmen-
tation of axons smaller than ∼ 2 µm, and the morphological characteristics
of smaller axons – believed to account for the majority of the ADD in WM –
remains to be studied. Combination of XNH with methods like EM and di-
attenuation imaging [50] would be valuable for mapping fiber microstructure
across different scales and resolutions. Secondly, it was not possible to segment
the ECS from the XNH volumes. The structure and diffusion characteristics of
the ECS is an important question in diffusion MRI. Techniques that preserve
the hydrated tissue environment e.g. cryo-EM [154] and super-resolution shadow
imaging [155] may provide avenues for characterisation and exploration of the
ECS. As would tissue preparation procedures that preserve the architcture of
the hydrated environment, for later imaging with XNH or EM. Chapter 5.3.1
further discusses imaging of the innate, hydrated WM environment. Lastly, we
studied here the tissue from a single 32-mo old, female vervet monkey. The
quantifications of axonal diameter and trajectory variation in Figure 5.5 may
differ with species, age, gender, and disease, and it is relevant to pursue further
studies into this matter.
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5.2 Organisation of the White Matter in Health
and Disease

5.2.1 Aim

To better understand how the microstructural architecture of WM couples to
the diffusion MRI signal on the voxel scale, its micro-, meso- and macrostruc-
tural characteristics must be investigated. It is also important to identify how
pathologies affect these structural characteristics and are expressed in the dif-
fusion MRI signal to identify potential early biomarkers of disease. In Contri-
bution I, the microstructural characteristics of axons were quantified. The aim
of the work presented in this section and in Contribution III [129] was instead
to study the meso- and macro-characteristics of axons through a 3D Structure
Tensor (ST) analysis. The ST analysis was applied to X-ray nanotomography
volumes of the CC of healthy mice and mice treated with a Cuprizone (CPZ)
diet. CPZ diets are used as animal models of demyelination [156, 157], similar
to what occurs in Multiple Sclerosis. The ST analysis provides among other
things a measure of the local main direction. In fibre-rich samples such as the
WM this enables deterministic tractography, which we perform to delineate and
visualise tracts extending through the tissue samples.

5.2.2 Methods

Mouse Tissue

The tissue belonged to a) a 13 week-old female C57BL/6 mouse fed with a
normal diet, and b) a 13 week-old female C57BL/6 mouse fed with a 0.2% CPZ
diet for a duration of 5 weeks, beginning at age 7-8 weeks, before which it was
fed a normal diet. The tissue was perfusion fixed with 4% paraformaldehyde,
before being processed for synchrotron imaging.

Synchrotron Imaging

The sample preparation process for the synchrotron imaging experiments was
similar to that shown in Figure 5.2. The mouse brains were sliced into 1 mm
thick coronal slices with a stainless steel matrix and razor blades. Samples from
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the CC were extracted under a microscope by scalpel and excised to be ap-
proximately 500-800 µm thick and several millimetres long. Following this, the
samples were fixed in Glutaraldehyde for 24 hrs, and subsequently stained with
0.5% osmium tetroxide for 2 hrs. After dehydration with an alcohol sequence,
the samples were embedded in EPON and polished so that the final EPON
blocks containing the sample were no more than 700 µm thick to prevent exces-
sive absorption.

X-ray nanotomography was performed at beamline P10 of DESY using the
parallel beam configuration at an energy of approximately 13 keV, shown in
Figure 4.2A, producing volumes with large FOV and an isotropic voxel size of
550 nm. Additionally, the samples were scanned at beamline ID16A of ESRF
with the cone-beam setup (Figure 4.3), giving XNH volumes of smaller FOV,
but voxel sizes of 75-100 nm.

ST Analysis and Tractography

The 3D ST analysis was similar to that in Khan et al. [158]. The parameters σ
and ρ control the degree of smoothing applied to the image and the neighbour-
hood size over which the ST is calculated, respectively. Appropriate values of σ
and ρ are dataset-dependent and depend on the SNR and the size of the struc-
ture to which the ST should be sensitive. For the large FOV DESY datasets,
the parameters were: σ = 1 and ρ = 4, but for the ESRF dataset the parameters
were chosen to be σ = 1 and ρ = 6. These parameters resulted in patch sizes of
18.7 µm and 9.4 µm for the DESY/ESRF datasets respectively.

Similar to the DT in diffusion tensor imaging [159,160], the ST was decomposed
into eigenvectors and eigenvalues, λ′ = [λ′1, λ

′
2, λ
′
3]. The STs from histological

images, however, are different from those obtained from the diffusion MRI sig-
nal [158]. In the ST, the direction corresponding to the smallest eigenvalue rep-
resents the principle directions of highly anisotropic structures such as axons.
In the DT, the principle direction of anisotropy is represented by the direction
with the largest eigenvalue.

Deterministic tractography was performed based on the smallest eigenvector of
the ST using the MRTrix3 toolbox [161]. For each dataset, seeding point regions
were manually defined to control the start- and endpoints of the streamlines.
Furthermore, rejection masks were implemented to limit where streamlines could
travel and terminate, based on intensity thresholding of the images to eliminate
regions or structures that did not include axons e.g. blood vessels, cells. This
was followed by image closing or opening to remove holes or spurious voxels. To
reduce the number of streamlines for visualisation, the QuickBundles streamline
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clustering algorithm [162] was used. The clustering entailed that the streamlines
were likely to represent the direction of axon bundles, as opposed to individual
axons.

5.2.3 Results and Discussion

In the large-FOV DESY image volumes, several fibre tracts were identifiable,
including the CC and cingulum bundle. Although the axons were too small
to segment, their general alignment in the left-right orientation was apparent
(Figure 5.7). In the CPZ-treated tissue, the lesioned area was characterised by
lower electron density owing to the demyelination, while the myelinated, normal
appearing white matter (NAWM) was not visibly different to the tissue from the
control brain. The higher resolution XNH volumes revealed cell processes, cell
clusters and blood vessels in all volumes, and what appeared to be myelin debris
in the CPZ-treated lesion area (Figure 5.7). Even at the higher resolutions of
50 to 70 nm, the axons were too small to be segmented, in contrast to those
from the vervet monkey splenium in Figure 5.3. This agrees with the findings
that mammalian species with larger brains have an increased number of large
axons (see Section 2.4) [68].

Although they are not marked, there are potentially two other tracts just inferior
to the CC: the dorsal fornix tract and the alveus tract. The existence of a tract
inferior to the CC was more clear in Figure 5.7A where there was a discernible
intensity difference in the CC and the tract underneath it, but the same was
not true for the CPZ-treated tissue in Figure 5.7D. The difference in stucture
of the tissue between the two volumes in Figures 5.7A and D could be due to
slightly different positions of the tissue samples within the 1 mm thick coronal
slice from which they were excised.

The calculated ST map for the large-FOV DESY volume of the CPZ-treated
tissue is shown in Figure 5.8. The categorisation of different tracts becomes
very clear with the ST; the CC region matched that of the CC axons which
have a left-right orientation, while the cingulum bundle has an anterior-posterior
orientation, as expected. The ST showed a predominant left-right orientation,
even in the lesioned area. Thus, despite the myelin providing the primary source
of image contrast, the ST could detect more subtle gradients that ensured a
homogeneous ST orientation throughout the CC.

The tissue inferior to the CC, belonging to the hippocampus, showed a hetero-
geneous distribution of ST orientations. This is due to the high density of cells,
the somewhat spherical shapes of which may cause the predominant ST orien-
tation to be arbitrary and subject to local intensity fluctuations in the image,
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Figure 5.7: A) In a coronal slice of the control brain containing the splenium
CC, tissue was extracted in the region of the red striped box. The
large FOV DESY image volume shows the CC and cingulum. B-
C) Orthogonal views of slices from the high resolution (75 nm)
ESRF XNH volume, showing the cingulum, CC and with visible
cell clusters and cell processes. D) In a coronal slice of the CPZ-
fed mouse brain containing the splenium CC, tissue was extracted
in the approximate region of the red striped box. The large FOV
DESY image volume shows the CC and cingulum. The CC can be
divided into two categories: NAWM and a lesioned area, marked
by the asterisk. E-F) Orthogonal views of slices from the high
resolution (50 nm) ESRF XNH volume in the lesioned area, with
visible cell clusters, cell processes, blood vessels and myelin debris.

caused by e.g. noise.

The tractography streamlines for the image volumes in Figures 5.7A-D are
shown in Figure 5.9..

In the large FOV volumes in Figures 5.9A and C, the CC streamlines pro-
jected through the entire CC in Figure 5.7A,D, including through the lesioned
area of the CPZ-treated tissue. In the high resolution ESRF XNH volume in
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Figure 5.8: The ST for voxels in a slice of the large FOV DESY image volume
of the lesioned tissue. The colour represents the ST orientation.
Red: left-right, blue: inferior-superior, green: anterior-posterior.
The STs in the CC region were predominantly oriented in the
left-right direction, while the cingulum STs exhibited an anterior-
posterior orientation.

Figure 5.9: A) Tractography streamlines in the CC (cyan) and cingulum (pur-
ple) regions of the control tissue, in the large FOV DESY image
volume. B) Tractography streamlines in the CC (cyan) and cingu-
lum (purple) regions of the control tissue, in the high resolution (75
nm) ESRF image volume presented in [129]. Segmented cells are
shown in orange. C) Tractography streamlines in the CC region
of the CPZ-treated tissue. In the large FOV DESY image volume.
The streamlines extended from myelinated region (NAWM) into
the lesioned area.

which extra-axonal structures are visible, it was clear how the cells clustered
and aligned with the axons, as found in the vervet monkey splenium [44].

The streamlines represent the paths of axon fascicles. The fascicular nature
of the fibre organisation is most apparent in Figure 5.7C. Thus, even if the
individual axons of the mouse brain cannot be tracked, it is possible to track
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individual tracts and fascicles. Their dispersion on different length scales could
be quantified in the same way as the individual axons in Contribution I [44].
Such an analysis within large FOVs such as those presented in Figures 5.9A
and C would be very valuable in determining the connectivity and organisation
of different brain regions. Additionally, a fibre orientation dispersion (FOD)
analysis could be performed on the data for comparison with diffusion MRI or
histology derived FOD estimates [163–169].

5.2.4 Conclusion

A 3D ST analysis of x-ray nano-tomography and XNH volumes, combined with
tractography, can reveal the macrostructural organisation of axonal fascicles in
both healthy and pathological WM tissue samples across different FOVs and
resolutions. Despite the demyelination in the CPZ treated tissue, the axonal
organisation seems to be preserved and it is possible that the axoplasm itself
remains intact. Had the axonal membranes been completely compromised, it
is possible that the ST would resemble the hippocampal regions and exhibit
a heterogeneous map of ST orientations, as opposed to the homogeneous ST
orientation throughout the lesion area. The 3D ST and tractography analysis
may, therefore, be a powerful tool for uncovering the microstructural signatures
of pathology in cases where the image resolution is too small for segmentation
of the structures of interest.

A future analysis of the FODs, like in the ST analysis of 3D EM volumes by
Salo et al. [169], and a quantification of fractional anisotropies and fascicle tra-
jectories could guide the development of new diffusion MRI biophysical models
and act as ground-truth data for the validation of diffusion MRI derived FODs.
Since axon morphology is affected by the presence of extra-axonal structures,
such as cells, such metrics would give valuable information on the organisation
of axon bundles in disease vs. health.

5.3 Towards a Characterisation of the Innate and
Full White Matter Environment

5.3.1 Imaging the Innate White Matter Environment

There is uncertainty about the effects of different sample processing techniques
on the microstructure. When we use imaging techniques such as XNH, LM
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or EM to validate diffusion MRI measurements, in which the tissue is always
hydrated, we may be comparing two inherently different tissue environments.
Ways to image the tissue microstructure without structural changes to all com-
partments are therefore of the utmost importance.

Imaging hydrated tissue with x-ray nanotomography is one alternative, as done
for studies of the unstained mouse cerebellum in [126]. Using the direct-contrast
parallel beam setup in Figure 4.2A, we imaged the hydrated genu of the vervet
monkey brain, stained with 0.5% osmium tetroxide and stored in agar and PBS,
at DESY. The reconstructed image volume is shown in Figure 5.10.

Figure 5.10: X-ray nanotomography volume of a hydrated sample from the
vervet monkey genu, acquired at beamline P10 of DESY and
stained with 0.5% osmium tetroxide. The brain is that used
in [44]. The height of the cylindrical FOV is 535 µm and the
voxel size is isotropic 550 nm. Blood vessels, cells and their
processes are visible against the dense background of myelinated
axons.

Inspection of the hydrated volume revealed the presence of the vessel system
and cell clusters, confirming the finding in Contribution I [44] that cell clusters
are closely associated with or "anchored" in blood vessels. Another identifiable
feature in the hydrated volume was the cellular processes that manifested as
’star like’, branching and bright tubular regions. These were not visible to the
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same extent in the dehydrated, EPON-embedded tissue samples of Contribution
I. Furthermore, the voxel size of 550 nm entailed that a segmentation of the genu
axons was not possible, but their density appeared to be high and the majority
of image contrast arose from their stained myelin sheaths.

Imaging hydrated samples at higher resolution in an XNH cone-beam setup is
problematic, since the high water content causes a significant absorption of the
x-rays and a low SNR in the resulting reconstructed volume. Focussing the
x-rays into a small volume, as is done in the cone-beam geometry in Figure 4.2,
may heat and destruct the tissue during the process of the scan. It is, however,
possible. Bartels et al. studied the stained and hydrated optic nerve of the
mouse with XNH at beamline P10 of DESY using a cone-beam setup [170].
Although both the species and the WM regions are different, Bartels et al. also
observe the cell processes and – due to the larger diameters of the axons in
the optic nerve – are able to resolve individual axons. Alternatively, the innate
structural architecture of tissue can be preserved by high pressure freezing and
freeze substitution. The samples can thereafter be embedded in EPON and
imaged with x-ray nanotomography as demonstrated by Bartels et al. in the
sciatic nerve of the mouse [170].

In order to access the morphology of the ECS, higher resolution is needed.
The high pressure freezing and freeze substitution approach can be used in
EM [55, 171] to preserve the ECS, and is one avenue that could be pursued to
accurately estimate the relative volume fractions of all compartments. Another
promising method is stimulation emission depleted microscopy and a labelling
of the ECS using a fluorophore that does not permeate cells to image the ECS in
live brain tissue, as demonstrated by Tønnesen et al. [155] in the hippocampus
of the mouse brain. There are additional techniques that could be employed, but
their discussion is beyond the scope of this thesis; the review by Soria et al. gives
a comprehensive overview of the current (2020) status of ECS imaging [172].

5.3.2 Full segmentation of XNH volumes

Another limitation to characterising the full and innate WM environment is
not only the imaging technique, but also the analysis of the obtained images.
For example, it is clear that the XNH volumes in Contribution I (Section 5.1)
contain more than 54 axons. However, the process of segmenting the axons at
75 nm isotropic resolution and handling the 32 GB large image volumes was
time consuming. Although the segmentation was semi-automatic, it relied on a
clear myelin boundary between the axoplasm and ECS, and therefore had to be
corrected manually in e.g. Nodes of Ranvier or regions of lower contrast.
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To obtain more information from the XNH volumes, an MSc project was formu-
lated in connection with the PhD project with the aim of using convolutional
neural networks (CNN) to segment as much of the IAS as possible. Figure
5.11 shows the preliminary results of applying a 3D U-Net inspired by [173]
to the extended XNH volumes of a crossing fibre region and the splenium re-
gion. The network was trained on only the XNH volumes from the organised
splenium. The segmentations of splenium axons, cells, blood vessels and vac-
uoles from Contribution I [44] were used as training and validation data (30%
of the volume was reserved for validation and data augmentation). The net-
work was applied to the extended splenium XNH volumes, but also the unseen
XNH volumes of the very different crossing fibre region (Figure 5.1) in which it
could be validated against the ground truth segmentation of axons presented in
Contribution II (Chapter 6).

Figure 5.11: 3D U-Net segmentation of axons from the XNH volumes of the
A) crossing fibre region and B) splenium regions of the vervet
monkey brain in Figure 5.1 and [44]. The U-Net was developed
by Harald Løvenskjold Mortensen as part of his MSc thesis.

The automated approach is able to segment thousands of axons from the XNH
volumes, that would have taken significantly longer to segment with the ap-
proach in Contribution I. It thus shows potential as a tool to more completely
segment the IAS for a morphological characterisation and analysis. The use
of U-Net CNNs to segment neurons from XNH data has also recently been
demonstrated by Kuan et al. [121] for the segmentation of neurons in the fruit
fly (drosophilia) leg muscle. There already exist several recent automated ap-
proaches to segment 3D EM data [17, 18, 174, 175], and automating the image
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analysis approach provides a solution to handling and analysing the huge image
data produced by 3D imaging techniques. Nonetheless, these approaches are
not without caveats. It is not always clear how well they generalise to data
with a slightly different appearance than that which they are trained on. The
sample processing technique, image modality, resolution, sampled anatomy and
the type of noise present may all affect their performance. A validation of the
segmentations or anatomical metrics produced by such methods is thus needed
and, in practise, this demands the use of – often difficult to obtain – ground
truth labelled data.



Chapter 6

Investigation into Powder
Averaging as a Means of

Reducing Bias in Diffusion
MRI Axon Diameter

Estimates

With knowledge of the realistic 3D morphologies of axons in different WM re-
gions, it is possible to validate different diffusion MRI-based methods of measur-
ing axon diameter. Recently, powder averaging (PA) techniques have emerged as
a way of removing dispersion related biases in the axon diameter measurement.
This chapter, a summary of Contribution II, is devoted to the methodological
investigation of two of these methods: the spherical mean technique (SMT) and
a power law (PL) implementation. Using the segmented axons from our XNH
investigations, the SMT and PL approaches are validated in segmented axons
from the splenium and crossing fibre regions of the vervet monkey brain.

Throughout this chapter, we refer to three classes of orientation effects: 1) the
macroscopic fibre architecture, describing the the relative orientations of differ-
ent fibre bundles e.g. in crossing fibre regions; 2) the OD, describing the average
dispersion exhibited by axons within each bundle; and 3) the microdispersion,
describing the changes in trajectory and curvature along individual axons on
the length scale of the measured diffusion.
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6.1 Aim

It has been shown that axonal diameter variations, general OD and microscale
trajectory variations (referred to hereafter as microdispersion) bias axon diam-
eter measurements with diffusion MRI [18, 44, 111]. Recent work implements
a PA approach to disentangle axon diameter from the OD in the entire brain
– even in regions of fibre crossings – under in- and ex-vivo conditions. Fan et
al. [176] use a multi-compartment SMT approach in the in-vivo human brain,
while Veraart et al. [113] model only the IAS by fitting a PL to the PA signal
at high b-values that suppress the signal from the ECS [177, 178]. This used
b ≥ 20 ms µm−2 for ex vivo experiments and b ≥ 6 ms µm−2 for in vivo ex-
periments. The SMT approach was applied to the in-vivo human brain, and
the PL approach to both the in-vivo human and ex-vivo rat brains. Both im-
plementations used a dense sampling of b-values. Although the PA techniques
remove fibre architecture and OD effects, they rely on the assumption that the
micro-domain probed by diffusing spins is cylindrical.

The theory of the effects of diameter and trajectory variations on estimated axon
diameter has been laid out in [111], but the diffusion times and b-values for which
the PA-based axon diameter estimate becomes sensitive to the microdispersion
in real axons is unknown. The signal-to-noise ratio (SNR) of the signal [96] and
the gradient strength of the applied magnetic field [64] also place limits on the
upper and lower bounds of measurable axon diameter. How different sequence
parameters, the number of gradient directions or the SNRs affect these bounds
has not been investigated for PA-based axon diameter estimates. Furthermore,
although the PA is expected to factor out the effects of fibre crossings and OD,
it has only been validated on segments of axons from the CC [111] in which the
fibre architecture is simple and does not contain crossings

In Contribution II, we aimed to investigate the impact of different scanning
parameters, SNR and fibre architectures on axon diameter estimates with PA-
based approaches. The analysis is restricted to the IAS. The effects of SNR, the
number of gradient directions, the selected b-values and the validity of assuming
a fixed parallel ADC are explored. To assess the effects of b−value, microdis-
persion, and diffusion time on the estimates of the PL and SMT, we simulated
diffusion within segmented axons of minimum length 120 µm from large FOV
XNH volumes of the CC splenium and a complex crossing fiber region in the
vervet monkey brain. This provided a validation of the PA approaches in both
homogenous and complex WM architectures.
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6.2 Methods

6.2.1 Simulations

The simulations in this study were divided into two categories: simulations of
the signal from cylinders of different diameters and simulations in the IAS of
segmented axons from XNH volumes of the vervet monkey brain presented in
[44]. We restricted the analysis to signals from the IAS only, and did not model
the ECS. Excerpts from the Methods of Contribution II are briefly presented
here, but for a complete account of the technical details, the reader is referred
to the full manuscript.

6.2.1.1 Simulating the Diffusion MRI Signal from Cylinders

For given PGSE parameters δ, ∆ and G, the signal perpendicular to 75 cylinders
of diameter 0.2 to 15.0 µm (at 0.2 µm intervals) was calculated using Equation
3.32, givingD⊥ for each cylinder. The ADC in any direction was then calculated
from:

ADC = G×



D‖ 0 0
0 D⊥ 0
0 0 D⊥


×G′

where G is the gradient vector and D‖ was fixed.

Simulating Diffusion within the Realistic IAS from XNH Images of
the Monkey Brain

The segmented axons originated from two different brain regions of the vervet
monkey brain from [44]. We segmented 54 axons from the splenium of the CC
and 58 axons from a "crossing fiber region", located in the anterior centrum
semiovale where the diffusion MRI data indicated the crossing of the corti-
cospinal tract, interhemispheric callosal fibres and association fibres [44]. All of
axons were of minimum length 120 µm. Details of the XNH volumes, the seg-
mentation of axons, and the analysis of the axon diameters is given in Section
5.1, Contribution I [44] and Contribution II.

For comparison with the diffusion MRI axon diameter estimates, the volume-
weighted axon diameter, d, of each axon was estimated as d =

∑i=1
N 2Ri ·
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(
πR2

i∑i=1
N πR2

i

)
where Ri is the ith measured radius of N equidistant measurement

points along the axonal trajectories.

The MCDC simulator [133] was used to simulate diffusion within each axon
mesh.

The Signal-to-Noise Ratio

The effect of noise on the axon diameter estimation was studied by adding
Rician noise of variable SNR to the noise-free, normalised signals. The standard
deviation of the noise was defined as σ = 1

SNR . Rician distributed noise was
simulated calculating the magnitude of complex Gaussian noise in which the
real and imaginary components each had a standard deviation of σ [179].

Distinguishing the Signal from Noise

To assess whether or not a single signal could be distinguished from noise at
a given SNR, we used the sensitivity criterion of Nilsson et al. [96] for parallel
cylinders. The smallest robustly measurable change of the normalised signal,
∆S was defined as:

∆S =
zα

SNR
√
n

(6.1)

where n was the number of repeated measurements and zα was the z-threshold
for the significance level α. The signal was thus said to be sensitive between
the bounds [∆S, 1 − ∆S]. The diameters that gave rise to the PA signal at
these boundaries were defined as the maximum and minimum bounds of the
measurable diameter. Here, we choose α = 0.05, giving zα = 1.64, as in [96].

To predict whether the PA signal could be distinguished from normally dis-
tributed noise, the sensitivity criterion of Nilsson et al. [96] for fully dispersed
cylinders was used. It is defined as:

∆SPA = bD⊥(d) ·
√
π

4

erf
(√

b(D‖ −D⊥)
)

√
b(D‖ −D⊥)

(6.2)
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where D⊥(d) is the perpendicular diffusivity of the diameter, d, that is defined
as:

d =

(
768

7

∆SD0

γ2δG2

) 1
4

(6.3)

When using Eqs. 6.2 and 6.3, n in Eq. 6.1 was set to the number of unique
gradient directions. From ∆SPA, the theoretical range of measurable diameters
was calculated as the diameters with PA signals within the range [∆SPA, Sstick−
∆S] where Sstick is the signal of a cylinder with diameter equal to zero:

Sstick =

√
π

4b ·D‖
· erf(

√
bD‖) (6.4)

Importantly, Eqs. 6.1-6.3 are formulated for single b-values only and assume
that the noise follows a normal distribution.

6.2.2 Fitting the Spherical Mean Technique and Power
Law to the PA signal

The Spherical Mean Technique Implementation

The SMT equation in Equation 3.36 was fitted to the PA signals with a Matlab-
based Levenberg-Marquardt algorithm. Once D⊥ had been fitted, the diameter
was calculated using Equation 3.32. To assess the robustness of the SMT fit
when keeping different variables fixed, three variations of the SMT fit were
implemented:

(i) SMT-1: a single-shell fit to obtain D⊥ in the range [0, D‖]. Assumes
known fa and D‖ = 0.6 · 10−9 m2s−1.

(ii) SMT-2: a multi-shell fit to obtain D⊥ in the range [0, D‖] and fa in the
range [0, 1]. Assumes known D‖ = 0.6 · 10−9 m2s−1.

(iii) SMT-3: a multi-shell fit to obtain D⊥ in the range [0, D0 · 1.5], fa in
the range [0, 1] and D‖ in the range[D0/2, D0 · 1.5] where D0 was the
known intrinsic diffusivity of the simulations. For ex vivo simulations,
D0 = 0.6 ·10−9 m2s−1 was used, while for in vivo simulations D0 = 2 ·10−9

m2s−1 was used.
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The Power Law Implementation

To assess the diameter estimates from the PL formulation, the expression in
Eq. 3.37 was fitted to the PA signal from cylinders of different diameters,
providing estimates of D⊥ and β. This allowed for a comparison of the PL-
derived diameter, dPL, with those from SMT-2 and SMT-3. To fit the PL
the Matlab-based nonlinear least squares estimator provided by Veraart and
Novikov [180] was used. This implementation assumed the Neuman limit as in
Eq 3.34 to obtain a diameter estimate.

6.3 Results and Discussion

6.3.1 The Diffusion Time and q Influence the Lower and
Upper Bounds of Measurable Diameter

At finite SNR – as is always the case experimentally – there are upper and
lower bounds of measurable diameter that can be measured from the PA signal
as shown in Figure 6.1B. For the high b-value sequence parameters in Figure
6.1A, increasing the SNR widens this range through a reduction of the lower
bound and an increase of the upper bound. Increasing the diffusion encoding,
q = γδG through an increase of the gradient strength lowers the lower bound,
in accordance with the findings of Dyrby et al. [64] and Sepehrband et al. [69],
but narrows the range of measurable diameters.

In general, the upper and lower bounds span a narrower range than those in
methods that estimate axon diameter from measurements perpendicular to ax-
ons [13,14,64,65,91,181] (Equation 6.1). The narrower range occurs due to the
requirement on the PA signal to be sensitive to all length scales present within
an axon, and not only its diameter. The relative angle, α, between the applied
gradient and the axis of the cylinder determines the size of the restriction. With
increasing SNR (Fig. 6.1C, top row), the sensitivity to both the high and low α
increases. Increasing the q-value (bottom row) increases sensitivity to high α,
but reduces sensitivity to low α. This is because the q-value and the diffusion
time of the acquisition act as spatial filters, restricting the maximum detectable
displacements of the spins. A higher q-value increases the sensitivity of the
acquisition to smaller length scales in directions perpendicular to the cylinder.
However, if the q-value is high enough to cause attenuation of the signal from
an ensemble of spins before they have diffused for the entire diffusion time,
the acquisition loses sensitivity in the axial direction and the upper bound of
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measurable diameters decreases. For given PGSE parameters, the sensitivity
profiles to axons of different diameter will differ. It is therefore important to
keep in mind the range of expected diameters in the substrate when designing
an acquisition.

Figure 6.1: Angular sensitivity of the signal with respect to the cylinder axis
A) The angle α is defined as the inclination from the cylinder axis.
The PGSE parameters in the table were used for the sensitivity
analysis. B) The range of measurable diameters using the PA
signal varies with the SNR, as shown using q = 1.1397 · 106 m−1.
For SNR=100, the range of measurable diameters varies with the
q-value (G is varied to obtain different q, but δ and ∆ are as in the
table). The sensitivity analysis is based on Eq. 6.2 and assumes
30 gradient directions. C) Variation with SNR and q−value of the
angular sensitivity range, in terms of α, to which the measurement
is sensitive in cylinders of diameter [1, 5, 10] µm for the PGSE
parameters in B. This sensitivity criterion is as in Eq. 6.1.
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6.3.2 Selecting the Number of Gradient Directions

The angular resolution of the acquisition also placed a lower bound on the
measurable diameter, as demonstrated by the diameter estimates at SNR =∞,
where an increasing number of directions pushed the lower bound of measurable
diameter to lower values. For example, 10 directions were insufficient to resolve
diameters smaller than 4 µm in Fig. 6.2, but 30 directions moved the lower
bound to ∼ 1 µm. This is in line with the findings of Li et al. [182] who show that
at SNR=∞ the number of directions determines how accurately the measured
PA signal reflects the ground truth signal. In this sense, the angular resolution
places separate limit on the lower bound. Similarly, it has been demonstrated
that an increased angular resolution increases the robustness of the PA-derived
metrics to different underlying fibre configurations and OD [110,183].

With Rician noise, the noise-incurred lower bound sometimes masked the ben-
efit of increasing the angular resolution, as evidenced by the the similarity be-
tween dSMT−1 extracted from 30 directions and 512 directions at SNR=100. At
SNR=20, the presence of the Rician bias caused a general underestimation of
cylinder diameters, as in Fan et al. [176]. The Rician bias also meant that the
theoretical predictions of the upper/lower bounds of measurable diameter were
too high/low respectively. This disparity was the clearest using 512 directions.
For Gaussian noise (shown in Contribution II), on the other hand, the symmetry
of the distribution around the mean entailed that the higher number of sampling
points due to the higher angular resolution increased the effective SNR (in line
with Equations 6.1-6.3), widening the range of measurable diameters. In this
case, the theoretical predictions of the upper and lower bounds agreed with the
calculated diameters

The number of gradient directions thus first needs to be sufficient to avoid
incurring a limit on the lower bound due to too low angular resolution. As seen
in Figure 6.2, 6 and 10 directions are too few to characterise the diameters of
segmented axons from the splenium region (with a volume weighted diameter
of ∼ 3 µm), even at unrealistic SNR=∞. Then, the optimal choice of the
number of directions may depend on the SNR of the acquisition, the desired
acquisition time (more directions take longer to acquire) and if the magnitude
MRI volumes (with Rician noise) are sufficient, or if the real valued images with
Gaussian distributed noise will be retrieved. For 30 and 512 gradient directions,
the predicted bounds in Figure 6.2 indicate what there is to gain in terms of
the measurable range of diameters when moving from Rician noise to Gaussian
noise.
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Figure 6.2: Influence of number of directions and SNR (Rician noise) on the
single-shell SMT-1 estimated diameter, dSMT−1, in cylinders of
diameter between 0.2 and 15.0 µm at 0.2 µm intervals. SMT-1 as-
sumes known fa = 1, D‖ = 0.6 · 10−9m2s−1. The lower and upper
bounds of measurable diameter are sensitive to both SNR and the
number of directions. The last row shows the influence of SNR
on dV G as calculated using Equation 3.32. n = 50 repeats of the
acquisition were performed for each diameter, SNR and number of
directions. The black striped lines represent the predicted lower
and upper bounds of measurable diameter based on Equations 6.1
and 6.2.
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6.3.3 Choice, but Not Number, of b-Values Affects the
Range of Measurable Diameters

SMT-2 and the PL were fitted to the signal from different high b−value shells.
All b−values were, however, kept & 20 ms/µm2, in the regime where the ECS
can be said to be suppressed as in [113]. For Rician noise, as in Figure 6.3A, the
estimated diameters dSMT−2 and dPL dropped to 0 at small and large diameters,
and accurately approximated d within a range of intermediate diameters. The
underestimation of dSMT−2 at large diameters was caused by the attribution
of the attenuated signal from large cylinders to an apparent decrease in the
IAS volume fraction, fa, as in [176]. Similarly, the underestimation of dPL
could be attributed to a misestimation of β at large diameters. The majority
of the underestimation of dSMT−2 and fa disappeared at infinite SNR (see
Contribution II), but not for dPL. This could be a consequence of the b · (D‖ −
D⊥) assumption of the PL (Eq. 3.37) not holding at strong diffusion encoding,
q, and large d, where the measured D⊥ approaches D‖.

The use of data with Gaussian distributed noise in Fig. 6.3B produced dSMT−2,
fa and β estimates that were accurate at smaller and larger diameters than with
Rician noise, albeit with a high variance beyond the range of robustly measurable
diameters. Consequently, at diameters & 7 µm, the estimates of fa and β could
not be robustly estimated. One contributor to the high variance was that the
SMT-2 and PL fits failed for many large diameters, defaulting to 0.

To explore the how b−value range and number of shells affected the diame-
ter estimates, the experiments in Fig. 6.3 were repeated for A) three shells
that spanned the same range as in Fig. 6.3 with b = [19.25, 35.79, 63.62]
ms/µm2 , B) three closely spaced b-values at the lower end of the range b =
[19.25, 22.90, 26.88] ms/µm2 and C) three closely spaced b-values at the higher
end of the range, b = [51.54, 57.42, 63.62] ms/µm2. The results are shown in Fig-
ure 6.4 and indicate that, other than a small decrease in variance, there seemed
to be no clear advantage to sampling more shells that cover the same range of
b−values, as clear from the comparison of the results using ten shells in Fig.
6.4A and using three shells in Fig. 6.3A. This lends support to the approach
of ActiveAx [13], where the number of sampled b-values matches the number of
parameters that are estimated. Hence, it may not be necessary to perform a
dense sampling of b-values as in the SMT implementation of Fan et al. [176], Ax-
Caliber [65] and the PL implementation [113]. This was also recently suggested
by Veraaart et al. [184].

Secondly, fitting to the three b-values on the lower end of the range in Fig. 6.4B
resulted in a wider range of measurable diameters than fitting to three signifi-
cantly higher b-values in Fig. 6.4C, although the variance increased somewhat.
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Figure 6.3: Multi-shell fit of SMT and PL to the signal from cylinders of di-
ameter between 0.2 and 15.0 µm at SNR = 100 and different noise
distributions. Fitted dSMT−1, dSMT−2, dPL, fa from SMT-2 and
β from the PL for A) Rician distributed noise and B) Gaussian dis-
tributed noise. The signal is generated usingD‖ = 0.6·10−9m2s−1,
fa = 0.8, 30 isotropically distributed directions and PGSE param-
eters δ = 7.1 ms, ∆ = 20 ms , 10 b values in the range [19.25, 63.62]
ms/µm2 and linearly spaced values of G in the range [550, 1000]
mT/m. n = 50 repeats of each acquisition were performed for
each diameter.

The equivalent experiments using Gaussian noise are shown in Contribution II.
Here, the use of Gaussian noise widened the range of measurable diameters and
provided more accurate estimates of fa. Moreover, while the sensitivity criteria
of Nilsson et al. [96] provided good indications of the range of measurable di-
ameter for SMT-1 fits to a single b−value (Fig. 6.2), no equivalent metric exists
for a multi-shell fit, making simulations of the signal important in predicting
the sensitivity of a multi-shell acquisition to diameter.
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Figure 6.4: The choice of b-values affects the range of measurable diameters.
Multi-shell fit of SMT and PL to the signal from cylinders of di-
ameter sbetween 0.2 and 15.0 µm at SNR = 100 (Rician noise)
and fa = 0.8. Fitted dSMT−1, dSMT−2, dPL, fa and β for ground
truth A) three shells with b = [19.25, 35.79, 63.62] B) three shells
with b = [19.25, 22.90, 26.88] ms/µm2 and C) three shells with
b = [51.54, 57.42, 63.62] ms/µm2. The signal was generated using
D‖ = 0.6 · 10−9m2s−1, 30 directions, PGSE parameters δ = 7.1
ms, ∆ = 20 ms and varying G. n = 50 repeats of each acquisition
were performed for each diameter.

6.3.4 Microdispersion affects PA-based Axon Diameter Es-
timates in Segmented Axons from the Vervet Mon-
key Brain

The axons segmented from the crossing fibre region were significantly larger
and exhibited a wider ADD than those from the splenium (Figure 6.5). In
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comparison to axons from the organised CC environment, they were also very
heterogeneous in terms of length, diameter, shape and orientation. The thinnest,
thickest and longest axons are shown in Fig. 6.5D-F. To measure the axial
diffusivity, the axons were aligned with the z-axis, and the intra-axonal diffusion
of spins was simulated for up to 100 ms. From the mean-squared-displacements
of the spins, the diffusion coefficient in the z-direction (Dz) was approximated
and its variation with diffusion time, td, is shown in Fig. 6.5G-E for the splenium
and crossing fiber axons respectively. The values of Dz in the splenium axons
were lower than those in the crossing fiber region, owing to the more irregular
trajectories of the crossing fiber axons, as seen in Fig. 6.5F.

Figure 6.5: 3D reconstructions of A) 54 splenium axons (segmented at 75 nm
isotropic resolution) and B) 58 crossing fiber axons (segmented
at 500 nm isotropic resolution) in their respective XNH volumes.
C) Combined 3D ADD over all measured diameters in the sple-
nium (yellow) and crossing fiber region (blue). The D) thinnest,
E) thickest and F) longest axons from the crossing fiber region
demonstrate the significant variability of axonal morphology that
can exist on the subvoxel scale. The segmented axons were aligned
with the z-axis and G) and E) show the variation of the progator-
based ADC in the z-direction, Dz, with diffusion time t (data
points every 1 ms).

Four different acquisitions were simulated within the axonal IAS, each with
three shells. They consisted of one high gradient set and one lower gradient set,
each at one short (12.7 ms) and one long (37.7 ms) diffusion time, td. For each
acquisition, SMT-2, SMT-3 and the PL were fitted to the PA signal to obtain
estimates of dSMT−3, D‖ from the SMT-3 fit, dSMT−2 and dPL, shown in Fig.
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6.6.

The simulations within the realistic IAS revealed several interesting properties
of PA-based approaches to axon diameter estimation. Firstly, the sensitivity to
D‖, and thus the microdispersion of axons, was low at high b−values. Using
the set of strong G = [500, 600, 700] mT/m in Figures 6.6A and C, dSMT−3 and
dSMT−2 accurately estimated the axon diameter from both WM regions, regard-
less of diffusion time. In fact, there was little difference between the measures,
suggesting that it is unnecessary to fit D‖ in SMT-3 at high b−values, and that
fitting SMT-2 would give equivalent results. An analysis of the dependency of
dSMT−2 on D‖ at high b−values confirmed this (see Contribution II), and the
D‖ estimates obtained in Figures 6.6A and C did not appear to be meaningful
or physically plausible, compared to the estimates of Dz in Figure 6.5. Under
the same conditions of high G and q, the PL implementation provided accurate
estimates of the diameters in the splenium, but underestimated those in the
crossing fibre region.

Secondly, the diameter estimates were sensitive to the microdispersion of real
axons at low b−values. Using the set of lower gradients G = [100, 200, 300]
mT/m in Figures 6.6B and D, dSMT−3 exhibited a slight overestimation of the
crossing fibre axons that increased with increasing diffusion time. Due to the
lower b−values, the PL implementation failed to provide accurate estimates of
diameter. Furthermore, SMT-3 and SMT-2 did not perform equivalently, and
fitting a variable D‖ was necessary to obtain accurate diameter estimates for
the smaller diameters in the splenium region. There was a positive correlation
between d and the obtained D‖. In accordance with Dz in Fig. 6.5G-H, the
values of D‖ were reduced at longer diffusion times and were similar to or larger
than Dz, as expected. The time dependence of D‖ and dSMT−3 was due to the
microdispersion or diameter variations of the axons, and could potentially be
used as biomarkers of changes to axon morphology.

Simulations within the realistic IAS at in vivo diffusivities (see Contribution II)
highlight the importance of performing sensitivity analyses and simulations to
evaluate the different SMT and PL fits. Even with gradient strengths accessible
to human diffusion MRI experiments only via Connectom scanners, the splenium
ADs could be accurately estimated only: by SMT-3, at the shortest diffusion
time, and provided that D‖ was fitted.
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6.4 Conclusion

In conclusion, we demonstrate that the diameters of axons from diferent fibre
architectures, the splenium CC and a crossing fiber region of the vervet monkey
brain, can be accurately estimated from their PA diffusion MRI signals. To
succeed, the acquisition must have broad sensitivity to different length scales.
This is important partly due to the many different axon sizes present within
a voxel, as presented here, but also because the powder average by definition
probes different length scales. Furthermore, we show how the gradient strength,
diffusion time and number of gradient directions, as well as the SNR and noise
distribution, influence the lower and upper bounds of measurable diameter.
Finally, at low b-values we show that the acquisition becomes sensitive to axonal
microdispersion, which could be an interesting biomarker of WM health and
pathology.

Here, the behaviours and characteristics of PA-based estimates of axon diam-
eter were studied for the IAS only. It is generally regarded that high b-values
suppress the signal contribution from the ECS [177, 178, 185]. However, in the
XNH volumes of the WM we observe cell clusters and vacuoles that together
constitute 6.1% of the total volume fraction [44]. Recent studies show that
the soma of spherical cells could contribute to the PA signal at short diffusion
times [186], complicating the SMT and PL fit to the PA signals. The pres-
ence of any compartment from which the signal remains at high b−values will
complicate a multi-shell fit of the SMT and PL implementations, unless the
compartments are explicitly modelled. These compartments could include ir-
regularities in the axonal myelin, cellular processes, regions of the ECS in very
anisotropic WM regions, or other structures. The observed dot compartment
in ex vivo tissue [13, 113] would systematically bias PA-based axon diameter
measurements, although its contribution to the signal has been shown to be
negligible in in-vivo experiments [178, 187, 188]. At lower b-values, signal con-
tributions from multiple compartments are expected and must be modelled, as
in Fan et al. [176]. Thus, the accuracy of the diameter estimation depends
not only on how accurately the geometry of other compartments are modelled,
but also the compartmental T2 relaxation times [100] and potential exchange
rates. However, assuming that the contribution from the IAS can be reliably
isolated at low b-values, the reduced signal attenuation at low b compared to
high b-values entails that the diameter estimation may be more robust at finite
SNR. Furthermore, the sensitivity to microdispersion and D‖ is higher for low
b-values, and the time-dependence of dSMT−3 and D‖ could provide valuable
insight into axonal morphology [18,93,94,96,111,189].

Lastly, for the splenium CC and crossing fiber axons in this study, the volume-
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weighted means of their ADDs are, in general, well approximated by SMT-3
(Fig. 6.6), but this is because the individual axon diameters are generally above
the lower bound of measurable diameter. How well the estimated diameter can
represent the mean of the ADD when a portion of the ADD is beneath the lower
bound, as is expected in MRI voxels, remains to be investigated.
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Figure 6.6: The estimated parameters dSMT−3, D‖, dSMT−2 with assumed
D‖ = 0.6 · 10−9 m2s−1 and dPL are plotted against the volume-
weighted axon diameter of the 54 axons in the splenium (yel-
low) and the crossing fiber region (blue). The parameters are
calculated for different combinations of short (∆ = 15 ms)
and long (∆ = 40 ms) gradient separations with high (G =
[500, 600, 700] mT/m) or low (G = [100, 200, 300] mT/m) gradient
strengths, as indicated. This gave three-shell acquisitions with
A) b = [11.11, 16.00, 21.77] ms/µm2, B) b = [0.549, 2.198, 4.945]
ms/µm2, C) b = [33.03, 47, 56, 64.73] ms/µm2 and D) b =
[0.795, 3.180, 7.155] ms/µm2. The signals were generated with
MC simulations using D0 = 0.6 · 10−9m2s−1 and were sampled
in 30 gradient directions. For all acquisitions, δ = 7 ms and
SNR=∞ (barring the intrinsic noise associated with MC simu-
lations). Square marker: volume-weighted axon diameter of sple-
nium axon population, cross marker: volume-weighted axon diam-
eter of crossing fiber population.
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Chapter 7

Conclusions

The work presented in this thesis aimed to map the 3D microstructural envi-
ronment of the brain white matter – with a particular focus on the 3D mor-
phologies of axons – and implement the findings in a validation of diffusion MRI
approaches to axon diameter estimation. The contributions are both anatomical
and technical.

High resolution synchrotron XNH studies of the vervet monkey WM showed
that axon morphology is modulated by other structures in the local WM, such
as blood vessels, cell clusters and vacuoles. The third dimension of the XNH vol-
umes, beyond the two of classical LM or EM, revealed the highly varying axon
diameters along trajectories up to ∼ 660 µm in length. The detailed character-
isation of axons presented in Contribution I could be thought of as an axonal
"recipe" or "fingerprint", which can be used to construct anatomically realistic
axon phantoms for use in validation of diffusion MRI models and methods. The
quantification of 3D axonal morphology also sheds light on anatomical trends
observed in 2D investigations of axon diameter. These include the relationship
between axon diameter and myelin sheath thickness in Equation 2.2 [31] and the
existence of a sparse population of "giant" axons which might both be driven by
local diameter variations of axons. By isolating single internodes, the entire ax-
onal segment between consecutive Nodes of Ranvier, it could be demonstrated
that the conduction velocity will vary along the length of an axon according
to classical structure-function relations. Furthermore, simulations of diffusion
within the intra-axonal space demonstrated that axon diameter estimates based
on the diffusion MRI signal perpendicular to the axons, even in the corpus
callosum, exhibit a time-dependent overestimation. The findings raise several
important questions, which require further investigation. What do the varying
morphologies of axons entail for the saltatory conduction process in myelinated
axons, and what does this mean for communication within the brain network?
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Do the axon morphologies change in diseased tissue, and can we detect those
changes with diffusion MRI?

The application of x-ray nanotomography to the mouse white matter in Con-
tribution II demonstrated that axonal connections can be traced with structure
tensor tractography in healthy and diseased tissue. This enables a characteri-
sation of the macroscopic organisation of axonal bundles in volumes where the
field of view is large enough to cover a significant portion of a WM structure,
despite insufficient resolution to segment individual axons. Combined with the
high resolution XNH experiments in Contribution I, this approach could pro-
vide multi-scale insight into the WM anatomy in volumes representative of MRI
voxels. The x-ray nanotomography volume of the hydrated monkey genu in Sec-
tion 5.3.1 showed clear cellular processes that could not be easily identified in
the XNH volumes of dehydrated tissue in Contribution I, indicating a need to
image tissue in a closer-to-innate, hydrated state. There is also potential to
earn more from the already analysed XNH volumes, as preliminarily exempli-
fied by the application of a CNN segmentation method to the XNH volumes
from Contribution I, resulting in the segmentation of thousands of axons.

Using the segmentations of axons from XNH volumes of a splenium and cross-
ing fibre-region, powder average approaches to axon diameter were investigated.
Accurate estimates of axon diameter could be made across a range of sequence
parameters and diffusion times, even in complex white matter architectures. At
sufficiently low b-values, the acquisition became sensitive to axonal microdis-
persion and the intra-axonal parallel diffusivity showed time dependence, which
could be an interesting biomarker of WM health and pathology. Unlike for
techniques that base the axon diameter estimation on the signal perpendicu-
lar to the axons, the powder averaging approaches require sensitivity to many
different length scales and are thus typically subject to a narrower range of
measurable diameters. Although the powder average removes dispersion effects,
it places higher demands on the MRI hardware and experimental parameters.
The q-value, SNR and the noise distribution type (Rician vs. Gaussian) are the
key variables that ultimately determine the range of measurable axon diame-
ter. These findings validate the use of powder average approaches even in very
complex fibre architectures, and can be used to guide the design of optimised
sequences for estimation of axon diameter.

This thesis concludes with a quote whose message is relevant to all aspects of
the research presented here: from its aims, to the interpretation of its results,
to the identification of its limitations, and lastly – to future research directions.
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“What we observe is not nature itself, but nature exposed to our
method of questioning.”
Werner Heisenberg (1901-1976)

On the whole, this thesis work has attempted to bridge the gap between the
observations from two different "methods of questioning": the microscale char-
acteristics of axons from synchrotron x-ray imaging and the voxel-scale summary
statistics from diffusion MRI. Future research will need to apply other meth-
ods of questioning in order to observe the white matter anatomy closer to its
inherent state, whether it is with invasive imaging techniques or with diffusion
MRI.
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Additional Information Figures 2.1, 2.2, 2.3, 2.6, 4.1 and 5.2 were partially
created using BioRender.com.
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Axonal conduction velocity, which ensures efficient function of the
brain network, is related to axon diameter. Noninvasive, in vivo
axon diameter estimates can be made with diffusion magnetic
resonance imaging, but the technique requires three-dimensional
(3D) validation. Here, high-resolution, 3D synchrotron X-ray nano-
holotomography images of white matter samples from the corpus
callosum of a monkey brain reveal that blood vessels, cells, and
vacuoles affect axonal diameter and trajectory. Within single axons,
we find that the variation in diameter and conduction velocity cor-
relates with the mean diameter, contesting the value of precise
diameter determination in larger axons. These complex 3D axon
morphologies drive previously reported 2D trends in axon diameter
and g-ratio. Furthermore, we find that these morphologies bias the
estimates of axon diameter with diffusion magnetic resonance im-
aging and, ultimately, impact the investigation and formulation of
the axon structure–function relationship.

axon morphology | conduction velocity | myelination | brain | MRI

Axons form the communication infrastructure of the brain
network. Upon their initial discovery by Otto Friedrich Karl

Deiters circa 1860, they were described as “cylinders”—a de-
scription still widely used today. The saltatory conduction ve-
locity (CV) of action potentials along myelinated axons depends
on their morphology, including axon diameter (AD) (1) and
thickness of the CV-boosting, insulating myelin sheath (2). The
ratio of AD to the outer fiber diameter, the g-ratio, is thought to
be fixed to an optimal value that promotes high CVs and mini-
mizes energy consumption (3). Simulation studies (4, 5) predict
optimal g-ratios around 0.7 in the central nervous system (CNS),
matching histological data (6, 7). The concept of a given g-ratio
along straight, cylindrical axons enables an inference of the outer
fiber diameter from the inner AD, allowing classical structure–
function relations between outer fiber diameter and CV (8, 9) to
be reformulated in terms of AD and a constant g-ratio (8, 9).
This makes an investigation of brain network function accessible
with techniques that can measure AD.
Histological tracer studies of axons between brain sites reveal

that the diameter, and thus CV, of an axon depends on its origin
(10) and target (7), corroborating the functional significance of
AD. AD is potentially also a biomarker for neurodegenerative
diseases like multiple sclerosis, which has been shown to pref-
erentially attack smaller axons (11). To provide useful diagnostic
information, the white matter (WM) microstructure and axon
morphology must be characterized in vivo. Diffusion magnetic
resonance imaging (MRI) uses the diffusion of water molecules
to noninvasively probe the WM microstructure in the living

brain. Although MRI voxels are typically on the scale of ∼1 mm,
it is possible to estimate axonal dispersion (12), the axon diam-
eter distribution (ADD) (13), and the mean of the ADD (14) by
fitting three-dimensional (3D) biophysical models to the ac-
quired diffusion signal (15). However, diffusion MRI-based AD
estimates (14, 16, 17) are larger than those obtained by histology
(15, 18). Potential causes include the following: limited gradient
strength in the diffusion MRI acquisition (19), sequence pa-
rameters (15), tissue shrinkage in histology (17), and—as dis-
cussed here—inaccurate modeling of the WM compartments,
including the century-old representation of myelinated axons as
cylinders. A validation of the 3D WM anatomy could thus im-
prove diffusion MRI-based AD estimations (17) and shed light on
the validity of enforcing a cylindrical geometry and constant
g-ratio in axonal structure–function relations. Recent 3D electron

Significance

Axons, the brain’s communication cables, have been described
as cylinders since their discovery in 1860. Their structure is
linked to how fast they conduct signals and is thus indicative of
brain health and function. Here, we demonstrate an interplay
between the micromorphology of axons and other extra-
axonal structures, showing that axons are noncylindrical and
exhibit environment-dependent diameter and trajectory vari-
ations. The nonspecificity in diameter, and thus conduction
velocity, challenges the current knowledge of how axons
communicate signals. Diffusion magnetic resonance imaging
can be used to measure axon diameter in the living brain in
order to explore the brain network and detect potential bio-
markers of disease, but we show here that the observed
complex morphologies of axons bias these measurements.
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microscopy (EM) studies on axon morphology of the mouse re-
veal, in high resolution, nonuniform ADs and trajectories (20, 21).
However, axons are only tracked for up to 20 μm, a fraction of
their length in MRI voxels.
Here, we characterize the long-range micromorphologies of

axons against the backdrop of the complex 3D WM environment
consisting of blood vessels, cells, and vacuoles. With synchrotron
X-ray nano-holotomography (XNH), we acquire MRI mea-
surements of the WM from the same monkey brain as in Alex-
ander et al. (14) and Dyrby et al. (19), in which the MRI-derived
AD estimates were larger than those estimated by histology. The
3D WM environment is mapped at a voxel size of 75 nm and
volume of ∼150 × 150 × 150 μm3. By combining adjacent XNH
volumes, we extract axons >660 μm in length and show that AD,
axon trajectory, and g-ratio depend on the local microstructural
environment. The 3D measurements shed light on the inter-
pretation of 2D measurements, highlighting the importance of
the third dimension for a robust description of single-axon
structure and function. Last, by performing Monte Carlo (MC)
diffusion simulations on axonal substrates with morphological
features deriving from the XNH-segmented axons, we show that
geometrical deviations from cylinders cause an overestimation of
AD with diffusion MRI.

Results
Volumetric Mesoscopic White Matter Features. The mean AD in-
dices in the corpus callosum (CC) were fitted on diffusion MRI
volumes of the monkey brain and exhibited the expected trend in
diameter from the splenium to the genu, but with overestimated
diameters (19) (Fig. 1A). In the splenium, along the interhemi-
spheric connection between visual cortices V1/V2, the mean AD
index was 1.3 μm. The connection length was delineated by
tractography to 49.7 mm (SD = 1.9 mm) as described inMaterials
and Methods, resulting in a conduction delay of 4.8 ms.
To further investigate the microstructure underlying the dif-

fusion MRI estimates with XNH, we extracted and processed
cylindrical tissue volumes of 1 mm in diameter. Tissue was taken
from the CC and a crossing fiber region, located in the anterior
centrum semiovale at a point where the diffusion MRI data in-
dicated the existence of crossing axon bundles (SI Appendix, Fig.
S2). Four tissue structures were examined, as shown in an XNH
volume of the CC splenium in Fig. 1 B–D: 1) long-range mye-
linated axons, 2) blood vessels, 3) cells, and 4) vacuoles.
Myelinated axons were identifiable as bright, tubular shapes

with dark contours. The contrast was given by the electron
density of the sample, with bright regions corresponding to low-
density structures, while the dark borders were due to the
binding of electron-dense osmium tetroxide to myelin. Axons
exhibited varying diameters throughout the volume. Like axons,
blood vessels appeared as bright, tubular structures. Their larger
diameters and ability to branch distinguished them from axons.
Blood cells were rarely detected since they were flushed out
during the perfusion process. Cell nuclei were distinguishable by
their DNA inclusions (Fig. 1D). Due to its high electron density,
DNA—seen with a Nissl stain in Fig. 1E—gave rise to round,
dark structures, contained within a less dense nucleoplasm.
Generally, the cells clustered and aligned with the axons/blood
vessels in the CC samples. The majority are believed to be glial
cells, but the existence of neuronal cell bodies cannot be ruled out,
as shown in the macaque CC (22). Vacuoles appeared as hyper-
intense spheroids and could be located within axons (Fig. 1C).
A volumetric quantification of the cell nuclei, vacuoles, and

blood vessels was performed within an extended cylindrical vol-
ume, composed of four stitched XNH volumes having a combined
diameter of 153.6 μm and length of 584.5 μm, as in Fig. 2A. The
tissue compartments were segmented and are shown in Fig. 2.
Generally, the cell clusters, blood vessels, and vacuoles were

evenly distributed throughout the volumes, as shown in Fig. 2B.

The average volume fractions of the quantified structures in the
splenium were 4.6%, 0.6%, and 1.5% for the cell clusters, blood
vessels, and vacuoles, respectively. The extracellular space (ECS)
could not be distinguished. Since the samples were dehydrated
during tissue processing, it may have shrunk considerably, and
the remaining volume fraction is thought to be occupied mostly
by myelinated axons. The blood vessels were few but occupied
the largest volume fraction after the axons with diameters be-
tween 4 and 10 μm.
Morphological characteristics of the cell clusters are shown in

Fig. 2E. The cell nuclei had a mean diameter of 5.5 μm (SD =
0.73 μm; N = 38). Assuming spherical nuclei, the average cell
cluster of volume 1,057 μm3 contained 12 cells. They could be
represented by tensors whose principal axes often aligned with
the axons or nearest blood vessels. The typical cell cluster tensor
shape, produced by averaging the first, second, and third prin-
cipal axis lengths of all clusters, is shown in Fig. 2C and has a

A

B

C D E

Fig. 1. Observed anatomical microstructures within the white matter of the
monkey brain. (A) Diffusion-MRI mean AD estimations with the ActiveAx
method in the midsagittal plane of corpus callosum (CC) of the monkey brain
spanning the splenium (S), midbody (M), and genu (G). The arrows show
biopsy locations. The interhemispheric callosal connection between primary
visual cortices (V1/V2) is delineated with tractography and is shown in green.
(B) Three-dimensional XNH volume from the splenium with an isotropic
voxel size of 75 nm, showing detectable anatomical features. The volume
interior is exposed to reveal the vessels. (C) Close-up of a vacuole (asterisk).
(D) Close-up of a cell cluster. (E) Nissl stain light microscopy image showing
nuclei in the same splenium region as D in an age-matched monkey
(BrainMaps: An Interactive Multiresolution Brain Atlas; brainmaps.org).
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fractional anisotropy (FA) of 0.57 and principal axis lengths
between 6.5 and 21.2 μm. The morphological characteristics of
the smaller vacuoles are shown in Fig. 2F. The typical vacuole
tensor shape (Fig. 2C) had FA = 0.31 and principal axis lengths
ranging between 4.2 and 7.8 μm. The vacuoles were scattered
throughout the XNH volume, with some situated within the axons
(Fig. 1C).

Axonal Micromorphology in 3D: Diameters and Dispersion. Axons
differed from cylinders in terms of diameter and trajectory
changes. Axons (N = 54) with mean diameters between 2.1 and
3.8 μm were segmented from the XNH volume in Fig. 1B as
described in Materials and Methods. The 54-axon population,
shown in Fig. 3A, had a mean diameter of 2.7 μm and a volume-
weighted mean diameter of 2.9 μm, both significantly larger than
the diffusion MRI estimate of 1.3 μm. This was expected, since
the diffusion MRI estimate was based on modeling of the signal
from all axons in the image voxels, small and large, while the
XNH estimate was extracted solely from the geometries of larger
axons. Smaller axons were observable, but the image resolution
and signal-to-noise level of the XNH volumes challenged a ro-
bust segmentation. In general, large-diameter (>2 μm) axons
were evenly distributed throughout the tissue at a density of
0.0123/μm2 and were surrounded by smaller axons. The midbody
CC and the crossing fiber region were similarly organized (SI
Appendix, Fig. S3).

Longitudinal AD variations. The trajectories of the 54 segmented
axons, shown in Fig. 3B, ranged in length between 124 and
170 μm, with a combined length of 8.36 mm. Their diameters
varied nonsystematically along their lengths. We define AD to be
the equivalent diameter, the diameter of a circle with the same
area as the axonal cross-section perpendicular to its local trajec-
tory, as in Abdollahzadeh et al. (20). The combined 3D ADD,
representing all diameters measured at 150-nm intervals along all
54 axons, had a mean diameter of 2.7 μm, and followed a gamma
distribution with parameters a = 27 and b = 0.2 (Fig. 3C).
We use the terms “longitudinal” AD and ADD to describe the

ADs and ADDs along single axons. Gamma distributions were
fitted to the individual longitudinal ADDs of the largest and
smallest mean diameter axons, respectively. The longitudinal
ADD of the largest axon was similar in width to that of the
combined 3D ADD, while that of smallest axon was significantly
narrower (Fig. 3C). A weak linear relationship (R2 = 0.29) was
found between the mean AD and the SD of the longitudinal AD
(Fig. 3D), suggesting that larger axons exhibit larger diameter
variations than small axons, but with significant variability. The
maximum encountered SD of 0.5 μm (Fig. 3D) entails that the
majority of diameter fluctuations occur within ±0.5 μm of the
mean AD.
To compare with measurements from 2D techniques, we cal-

culated the slice-wise ADs for the 1,139 slices in which all 54
axons were present. The conventional 2D ADDs from six of

A

E

F

B C D

Fig. 2. Volumetric quantification of cell clusters, vessels, and vacuoles. (A) Two-dimensional slice through four overlapping XNH volumes (13.6-μm overlap) of
the monkey brain splenium. Blue arrow, cell body. Green arrow, vacuole. Red arrow, blood vessel. (B) Three-dimensional reconstructions of the cell clusters
(blue), blood vessels (red), and vacuoles (green) within the cylindrical volume of length 584.4 μm and diameter 153.6 μm. (C) λ1, λ2, and λ3 denote the average
first, second, and third principal-component lengths of tensors fitted to the cell cluster/vacuole structures. These are visualized by ellipsoids. In blue/green:
examples of an individual cell cluster/vacuole. (D) Three-dimensional visualization of cell cluster, blood vessel, and vacuole segmentations. (E and F) Histo-
grams showing the mean values and distributions of the following: inclination angle (compared to the axon population direction), principal axis length, mean
volume, and FA across the cellular (blue) and vacuole (green) components, respectively.
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these slices are shown in Fig. 3E and overlap with the combined
3D ADD. The mean 2D diameter of the fiber population
throughout their common volume was 2.9 μm; from slice to slice,
this value varied at most ±150 nm.
Axonal dispersion. Axonal dispersion is a measure of disorder of
the axonal trajectories. On the bundle level, 54 axons, the ori-
entation dispersion (OD) describes the angular spread of the
axons around the main bundle direction. Although axons in the
CC were expected to be aligned and straight, the mean OD was
7° (Fig. 4 A and B).
On the single-axon level, we used microdispersion to quantify

dispersion on different length scales as described inMaterials and
Methods. The microdispersion describes the angle between the
main axon direction and axon segments of certain lengths. The
microdispersion decayed smoothly with increasing sampling
length (Fig. 4C). Between sampling lengths of 1 and 30 μm, the
average microdispersion decreased from 14 to 7°.
The longitudinal ADD, and not the myelin thickness, dominates longitu-
dinal g-ratio variations. We investigated how the g-ratio, and con-
sequently the CV, varied along axonal internodes—the axon
segment between consecutive nodes of Ranvier—by mapping the
long-range behavior of six axons (>580-μm length) in the mon-
key splenium, as shown in Fig. 5A. The equivalent inner AD and
equivalent outer fiber diameter were evaluated by manual seg-
mentation at N randomly generated locations along the axonal
internodes (Fig. 5B). This revealed a linear correlation between
the inner and outer longitudinal diameters, suggesting a constant
myelin thickness. The distributions of CVs along the internodes
of axons 1, 2, and 6 (Fig. 5C) were calculated using the classical

relationship (8) CV = 5.5·D, where D is the outer fiber diameter.
Using the tract length of 49.7 mm from tractography, the mean
conduction delays along the respective fibers were 2.0, 2.4, and
1.9 ms.
Fig. 5D depicts the morphological changes occurring over the

662-μm-long trajectory of axon 5. Its diameter varied between 1.5
and 5.3 μm, and averaged at 3.3 μm. Of nine selected regions of
interest (ROIs) labeled r1 to r9, local diameter minima occurred at
points r1, r6, r7, and r9. At r1 and r7, we identified nodes of Ranvier
(black stars), separated by 348 μm. At r6, the reduced diameter was
caused by two vacuoles. The g-ratio was evaluated at the nine ROIs
shown in Fig. 5, and at 10 randomly chosen positions inside and
outside the internode, respectively. As expected of a constant my-
elin thickness, the g-ratio followed the trend in diameter, with the
exception of the nodes of Ranvier at points r1 and r7.
In contrast to the 54-axon population for which the mean di-

ameter did not deviate more than ±150 nm in any slice of the
volume, the mean AD in a single axon could not be reliably
established from one measurement. As a measure of stability of
the AD, we calculated the cumulative mean AD along axon 5 in
Fig. 5D. The point at which the cumulative mean diameter be-
came stable to within ±150 nm depended on the position along
the axon at which measurements were commenced and was up to
200 μm for some positions.
Local obstacles such as vacuoles, blood vessels, cell clusters, and crossing
axon bundles alter the morphology of axons. The presence of certain
extra-axonal obstacles gave rise to noticeable trajectory changes.
For example, blood vessels visibly warped the surrounding mi-
crostructure and disrupted axon trajectories as illustrated in
Fig. 6 A–C.
A subvolume spanning 690 slices and containing a blood vessel

of diameter ∼10 μm was isolated (Fig. 6 A and B). The expected
linear trajectories of the axons, based on their positions in the
first and last 75 slices of the volume, were calculated. The axon
trajectories exhibited maximum deviations from their expected
trajectories between 2 and 9 μm, with the most significant devi-
ations occurring along axon segments within ±10 μm of the blood
vessel (Fig. 6C). Axonal trajectory changes were also found in

A C

D

E

B

Fig. 3. Distribution and morphology of large axons. (A) Distribution of 54
large axons (red) in a 2D slice of the monkey splenium. (B) Fifty-four seg-
mented axons from the monkey splenium. The axon lengths range from 124
to 170 μm, with average ADs between 2.1 and 3.8 μm. (C) Combined 3D ADD
consisting of diameter measurements every 150 nm along all 54 axons and
associated gamma distribution fit (black). For comparison, the fits of the
longitudinal ADDs of the thinnest (blue) and thickest axon (green) are
shown. (D) The SD of the longitudinal AD correlates positively with average
AD. (E) Histogram and gamma distribution fit (black striped line) of com-
bined 3D ADD, along with gamma distribution fits of the 2D ADD, sampled
every 200 slices of the image subvolume in which all 54 axons were present.

L

A

C

B

Fig. 4. Trajectory variations of large axons. (A) Histogram of the OD—the
axonal inclination with respect to the main bundle direction—within the
axon population. (B) Fifty-four axons from the splenium of the monkey brain
translated to a common origin to illustrate the mesoscopic dispersion within
the volume. Axon color represents inclination angle compared to the z axis.
The Inset shows the quantification of microdispersion along axons: The axon
is aligned with the z axis and a window of length L slides along the axon
centerline (blue) at intervals of L/4. A principal-component analysis is per-
formed on points within the window to determine their directionality. The
inclination angle to the z axis is calculated and averaged over all windows.
(C) Variation of microdispersion relative to main axon direction with sam-
pling length, L (data points every 1 μm).
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response to cell clusters (Fig. 6D) and other axons in a crossing
fiber region (Fig. 6F), in which two axons were found to twist
around each other three times within the available volume. Al-
though vacuoles did not cause trajectory variations, they caused a
reduction in AD as shown in Fig. 5D (point r6) where two vac-
uoles cause a local decrease in AD, and in Fig. 6E.
The influence of axon morphology on diffusion MRI measurements. To
assess how axon morphology influences noninvasive diffusion

MRI estimates of mean AD, we performed MC simulations of
the diffusion process in six different 54-axon substrates (see
Materials and Methods for details). The substrates differed in
morphological complexity, ranging from the simplest geometry,
G1, parallel cylinders, to G6, the XNH segmentation (Fig. 7A).
Each axon in each substrate inherited its morphological prop-
erties (OD, microdispersion, and mean diameter/longitudinal
diameter) from the respective XNH-segmented axons.

A B C

D

Fig. 5. Long-range quantification of axon morphology and myelination. (A) Six long axons segmented from the extended cylindrical XNH volume of the monkey
splenium shown in Fig. 2 A and D. The stars mark identified nodes of Ranvier. (B) Inner AD vs. outer fiber diameter (including myelin sheath) at N randomly
sampled points along the internodes of the six axons. Straight lines represent linear fits to the six datasets. The high linear correlation suggests that the myelin
thickness remains approximately constant along the internodes, and that the y intercept is representative of twice the myelin thickness. (C) Histograms and
associated gamma distribution fits of CVs along the internodes of axons 1, 2, and 6. (D) Row 1: segmentation of long axon (number 5, black, in A and B), colored
according to diameter. The dotted squares marked r1–r9 indicate nine ROIs. Black stars mark the positions of the nodes of Ranvier. Row 2: ROI intensity images.
The red lines show amanual segmentation of the inner axonal boundary and the outer myelin boundary, respectively. At r1 and r7, nodes of Ranvier are shown in
an orthogonal view. At r6, the axon (yellow) is squeezed by two vacuoles (green). Row 3: on Left: ADD along axon. Blue line: the longitudinal equivalent AD
measured every 150 nm along the axonal trajectory. In orange, the g-ratio for the 9 marked ROIs and 20 additional randomly generated positions along the axon.
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After an initial diffusion time of 6 ms, the mean AD in the
parallel cylinders remained constant, as expected, at the true
volume-weighted mean AD of 2.9 μm. For the other substrates,
however, AD was overestimated. The degree of overestimation
increased with diffusion time and substrate complexity (Fig. 7B).
The simulations also demonstrated the effects of OD (G2) on
AD and revealed that the overestimation of AD is more signif-
icant when there is microdispersion than diameter variations (G3
vs. G4).
The parallel apparent diffusion coefficient (ADC) describes

the rate of diffusion along a cylinder, or axon, and is often as-
sumed to be a fixed value in MRI-based AD estimation. Our
results show parallel ADC in parallel cylinders (G1) was constant
and equal to the chosen intrinsic diffusivity of 6 × 10−10 m2/s.
However, for substrates that exhibited OD, microdispersion,
and/or diameter variations, the parallel ADC decreased with
diffusion time and substrate complexity. Substrates with longi-
tudinal AD variations (G4, G5, G6) exhibited particularly steep
decreases in the parallel ADC with diffusion time. The 3D ef-
fects of AD variation and dispersion (OD and microdispersion)
could thus be distinguished from each other based on the time
dependence of the parallel ADC.

Discussion
By performing high-resolution 3D XNH on intact white matter
samples from a monkey brain, we demonstrate the interplay
between extra-axonal structures (blood vessels, cells, vacuoles)
and the micromorphology of axons. Contrary to Deiters’ century-
old description of axons as cylinders, we find that AD and tra-
jectory vary along the length of the axon, often due to obstacles

in the local microstructural environment. These morphological
changes entail that large axons are nonspecific in terms of di-
ameter and CV. We thus question the value of precisely mea-
suring their diameters and the validity of enforcing cylindrical
geometries in axonal structure–function relationships. Further-
more, we show that the 3D morphologies of axons may drive
previously reported trends in 2D AD distributions and g-ratio
distributions. Our results have significant impact for AD deter-
mination with 2D techniques and—as we show here—diffusion
MRI. We foresee that a thorough morphological characteriza-
tion of axons and their structural context will guide the nonin-
vasive investigation of axon morphology with diffusion MRI and,
consequently, the investigation of brain network function.

The Nonspecificity of the Diameters and g-Ratios of Large Axons.
Single axons lack well-defined diameters, and this has implica-
tions for the interpretation of 2D ADDs. Our findings show that
individual axons exhibit longitudinal ADDs whose widths cor-
relate with AD. Controversially, single axons are not always well
described by classical 2D histological measurements. For one
662-μm-long axon, we show that a robust characterization of its
mean diameter demands that AD be sampled for up to 200 μm at
intervals of 0.15 μm. However, we find the opposite for a
quantification of population mean AD. In axon populations, the
2D slice-wise ADDs match the 3D ADD, indicating that the 3D
longitudinal AD variations are represented in the 2D ADDs.
This has two consequences. First, it entails that previously
reported 2D ADDs from EM (23) and light microscopy (7) also
reflect the 3D ADD of the axon population if quantified over a
sufficiently large volume. Second, contrary to the conventional

A B C

D E F

Fig. 6. Blood vessels, vacuoles, and crossing axons cause axonal trajectory variations. (A) XNH image looking into a vessel, marked V. Cell nuclei, marked by
an asterisk, cluster around the vessel. The vessel significantly impacted the nearby axonal trajectories, depicted by the red arrow. (B) Three-dimensional
reconstruction of A. Fifteen segmented axons are colored according to the deviation from their expected linear trajectories (a linear interpolation of the axon
centerline above and below the blood vessel). Yellow, strong deviation; dark blue, little/no deviation. (C) Deviation from expected linear trajectory as a
function of distance along the axon, centered on the maximum deviation. (D and E) Three-dimensional reconstructions of select cell clusters (blue), vacuoles
(green), and axons, whose diameters are given by the color bar, in the XNH volume of the monkey splenium shown in Fig. 3B. The axon trajectories are
impacted by the presence of cell clusters, and their diameters and shapes are impacted by neighboring vacuoles. (F) Three-dimensional reconstruction of
axons in an XNH volume of a crossing fiber region. Two different projection directions are marked by green and yellow. Two axons, colored red and blue,
twist around each other.
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interpretation of the ADD, it implies that the 2D ADDs are not
directly representative of individual ADs. Instead, the 2D ADD
may be interpreted as the sampling of the longitudinal ADD of
each axon. We thus propose that the characteristic tail of the 2D
ADD may arise as a result of the broad longitudinal ADDs of
large axons. Therefore, observations of “giant axons” (15, 23)
may not indicate the presence of very large axons, but instead the
local AD variations along large axons.
The morphological nonspecificity of large axons may indicate

that they have different functions to smaller axons. Their wide
and overlapping longitudinal ADDs entail that their mean diam-
eters are less defined than those of smaller axons, which exhibit
narrower longitudinal ADDs. Given these effects, we suggest a
categorization of axons into “large” and “small.” Similar catego-
rizations are made in the peripheral nervous system (PNS). The
fast-conducting, larger Alpha/Beta axons of the sciatic nerve have
a broad ADD that partially overlaps the narrower ADD of the
smaller, slower C and Alpha/Delta fibers (24). Although the
structure–function relationship of CNS axons is not as well described
as that of the sciatic nerve, it has been shown that CNS AD corre-
lates with neuron soma size (25). ADs may thus be cell type specific.
The possibility that smaller and larger axons may encode different
functional features (26) further supports a size-specific axon cate-
gorization. Hence, we suggest that it may be meaningful to pursue a
size-specific axon categorization, although explicit definitions of the
“large” and “small” categories are yet to be established—and may
possibly overlap, similar to the PNS categorization.
The longitudinal ADDs drive variations in g-ratio, while my-

elin remains stable between nodes of Ranvier. Along single in-
ternodes, we found a linear relationship between the inner AD
and outer fiber diameter, entailing a nonlinear relationship be-
tween g-ratio and AD. Interestingly, this trend is of similar shape
to that observed in 2D EM measurements of g-ratios in pop-
ulations of CNS axons (27). For such 2D measurements, Bert-
hold et al. (28) formulated a log-linear relationship between the
number of myelin lamellae (proportional to myelin thickness,
assuming a constant lamellar spacing) and the inner AD. For
single axons, however, we did not find that the myelin thickness
varied as a function of local AD within internodes. Instead, the
linear correlation between the longitudinal inner AD and outer

fiber diameter indicated that the myelin thickness along inter-
nodes was constant. Deviations from the linear trend could be
due to too few sampling points, the myelin wrapping mechanism
(29), measurement uncertainty in the inner and outer ADs, or
myelin-disturbing vacuoles or fixation effects. Histological stud-
ies suggest that the myelin thickness shows a stronger correlation
to CV than the AD (2), while simulation studies report that
myelin is energetically inefficient, and potentially time consum-
ing, to remodel (30). A constant myelin thickness along inter-
nodes is thus motivated from a signal timing and energy
perspective, entailing that the longitudinal g-ratio variation can
be driven by the longitudinal ADD. We expect the 2D g-ratio
distributions to represent a sampling of the 3D longitudinal
g-ratio distribution, in the same way as the 2D ADDs reflect the
longitudinal AD variations. Consequently, Berthold’s log-linear
relationship relating the number of myelin lamellae to the AD
may also be partially driven by longitudinal variations in AD.
Furthermore, although large g-ratios can be detected in 2D images,
these may be confined to local axonal segments. The g-ratio mea-
surements of individual axons are therefore not meaningful on their
own, since they capture only a snapshot of the 3D axon morphology.
Indeed, our findings here apply only to large axons with diame-
ters >2 μm, and smaller axons remain to be investigated.
Longitudinally varying axon morphologies suggest that indi-

vidual myelinated axons exhibit varying CVs. The calculated
mean conduction delays along three axons in the interhemi-
spheric, callosal V1/V2 connection were between 1.9 and 2.4 ms,
contrasting with our diffusion MRI-estimated conduction delay
of 4.8 ms. The longer delay of 4.8 ms agrees with the calculated
conduction delay within the same tract in the larger macaque
brain, where the tract length was estimated with tracers to 63.4
mm, the average AD to be 0.95 μm, and the calculated con-
duction delay to be 4.6 ms (SD = 1.2 ms) (31). As expected from
the literature (31), we conclude that the same tract can contain
many different-sized axons, resulting in a range of conduction
delays. Further demonstrating the nonspecificity of large axons,
the range of CVs along single internodes is large, ranging, for
example, between 22 and 35 m/s in axon 6 of Fig. 5. Additionally,
we note that diffusion MRI and tracer-based histology calculations
of CV reformulate Waxman’s classical relation to incorporate a

A B

C

Fig. 7. Examining the diffusion properties of different axonal geometries. (A) The morphological features of the XNH-segmented axons in Figs. 3 and 4 are
directly mapped to the six different axon classes generated for MC simulations. G1, straight cylinders of diameter corresponding to XNH axon mean di-
ameters; G2, same as G1 plus segmented OD; G3, segmented OD and longitudinal ADD; G4, segmented OD and microdispersion; G5, segmented OD,
microdispersion, and longitudinal ADD; and G6, the XNH segmentation. (B) The variation of estimated AD and (C) parallel intra-axonal ADC with diffusion
time for geometries G1–G6. Error bars represent the SE, reflecting the spread in diameters/ADCs across the individual axons.
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constant g-ratio (9, 18), which we show is not the case. Other
factors, such as the internodal spacing, also affect the saltatory CV
along an entire axon (32). Nodes of Ranvier were identifiable and
internodal distances could be measured in the long axons in Fig. 5,
but such an analysis was beyond the scope of this study. Several
studies have investigated the relationship between CV and axon
morphology, e.g., AD (3), node of Ranvier length (30), internodal
length (30), g-ratio (4, 5), and a longitudinally varying AD (33),
but none have yet considered the effects of a longitudinal
distribution of g-ratios.

Changes to Axonal Morphology May Be Caused by Extra-axonal
Obstacles. The longitudinal variations in AD and trajectory in
the vicinity of extra-axonal structures could contribute to the
high intracellular volume fraction of around 80% in the brain
(34). In the extended volume of the monkey splenium, the blood
vessels, cell clusters, and vacuoles accounted for 6.7% of the
volume. Aside from the cells clustering parallel to the axons and
blood vessels in the CC, the extra-axonal structures occupied
space independently of the surrounding axons in the midbody CC,
splenium, and the crossing fiber region. Morphological variations
and spatial distributions of the extra-axonal compartments could
not be linked to the presence of axons. On the other hand, the
diameter and trajectory variations of axons could be linked to the
presence of extra-axonal structures.
Local AD minima were at times associated with the presence

of vacuoles. Vacuoles have been reported in EM studies of the
healthy CC (20) and described in ref. 35, but it is possible that
vacuolation occurs as a fixation or embedding artifact (36). Re-
duced ADs were also observed at nodes of Ranvier, as described
in the literature. It has been described that AD is regulated by
the axonal cytoskeleton (37), which maintains axon shape and
consists of nanometer-thick neurofilaments. Decreases in AD
have been shown to occur when axons are subjected to axial or
circumferential tension, or microtubule disruption (38). Simi-
larly, a reduction of tension through disruption of the axonal
actin filaments or myosin II causes a diameter increase (38, 39).
Adjacent structures such as vacuoles and neighboring axons may
place local circumferential tension on the axons, affecting the
organization of microtubules and possibly causing the diameter
decreases we observe. This could not be confirmed in the XNH
volumes as the microtubules and neurofilaments were too small to
be resolved. Furthermore, in unmyelinated axons, local AD in-
creases occur in conjunction with signal firing (40). Consequently,
the signal conduction process itself may modulate AD in myelin-
ated axons, meaning that the XNH volumes reveal only a struc-
tural snapshot of a truly complex and dynamic tissue environment.
Axonal trajectory changes were caused by blood vessels

(Fig. 6 A–C), cells (Fig. 6D), and other crossing axons (Fig. 6F).
The 54-axon population exhibited both low- and high-frequency
trajectory changes. We quantified the dispersion effects across
length scales from the microscopic (1 μm) to the mesoscopic (30
μm). Nonstraight trajectories are commonly observed in tracer-
labeled axonal projections over long distances (9, 10, 18), and
axonal growth has been shown to follow nonstraight trajectories
in axons from the frog and chick (17, 41). Although axons may
have predefined targets during axonal growth, we postulate that
their trajectories are modified by the extra-axonal environment.
In our data, the axons skirt around extra-axonal obstacles, i.e., cell
clusters and blood vessels ranging in size from 4 to 10 μm, and this
effect may be a major contributor to the meso-dispersion. The
microdispersion could be a characteristic of axonal growth, or
simply a consequence of the meso-dispersion, which, by definition,
gives rise to microdispersion.
The quantification of axon OD is based on the trajectories of

the 54 axons from the CC splenium and the results from their
analysis are supported by inspection of XNH volumes of the
CC midbody. Axons in crossing fiber regions exhibited similar

nonstraight trajectories and also intertwining; such effects have
previously been observed histologically in tracer-labeled axons
(42). Previously, we have detected indications of local undulations
in the CC [results presented in Dyrby et al. (43)] with histology,
and other studies have derived the theoretical impact of sinusoidal
undulation on the diffusion signal for AD estimation (44). The
axon trajectories observed here, however, were irregular. Our 3D
XNH data suggest that mesoscopic dispersion can occur due to
axons projecting around large obstacles, e.g., blood vessels. If
these obstacles are aligned and evenly distributed, they may result
in the appearance of axonal “undulation.”

Impacts on AD Estimation with Diffusion MRI. Our findings on the
longitudinal ADD and g-ratio variations, as well as the rela-
tionship between axon morphology and extra-axonal obstacles,
impact microstructural MRI techniques for noninvasive AD es-
timation. Our MC simulations show that any morphological
variation from parallel cylinders incurs an overestimation of AD.
This will be the case for all diffusion MRI models that assume a
cylindrical axonal geometry and base the AD estimation on
measurements perpendicular to the axon population, confirming
the need to account for fiber dispersion effects (14, 16, 19, 45).
Some studies implement biophysical models to account for axon
dispersion or crossing axon effects (12, 46), but the intra-axonal
MRI signal profile intermingles with that of the ECS, challenging
a robust fitting (47). We could not extract the ECS from our
XNH data due to insufficient resolution and shrinkage caused by
the tissue processing. As such, we simulated only diffusion within
the intra-axonal space. A recent study uses spherical averaging of
the diffusion MRI signal to eliminate OD effects with sequence
parameters that suppress the ECS signal (48). Although there
exist methods to remove the bias caused by OD, none accounts
for the effects of microdispersion that we see in Fig. 7. Further
challenging accurate AD estimates with diffusion MRI, we found
that the parallel ADC is time dependent for realistic axonal
substrates. Consequently, measured values of the parallel ADC
are likely lower than the true intrinsic diffusivity of the tissue.
This potentially influences the ActiveAx-estimated mean AD of
1.3 μm that we present here, since the model assumes that the
parallel ADC and intrinsic diffusivity of the tissue are equivalent
(14). Simulated substrates with longitudinal AD variations (G3
and G5 in Fig. 7) exhibited stronger time dependence of the
parallel ADC than substrates with constant ADs (G2, G4),
suggesting that diameter variations could be a potential source of
the axial time dependence observed in other studies (49), in line
with the suggestions of Fieremans et al. (50).
To ensure robust fitting of the axon model to the diffusion

MRI data in Alexander et al. (14) and Dyrby et al. (19), one had
to account for a “dot” compartment that represented a small
fraction of isotropically restricted water molecules. From the
XNH volumes, possible dot compartments could potentially be
the cell clusters (4.6% volume fraction) and, assuming their
presence in hydrated tissue, the vacuoles (1.4% volume fraction).

Future Directions. Synchrotron XNH of the monkey WM provides
anatomical information within volumes approaching the size of
MRI voxels, including the micromorphologies of axons and the
volume fractions and morphologies of cells, vacuoles, and blood
vessels. However, the ECS is not visible, perhaps due to tissue
shrinkage, insufficient signal-to-noise ratio (SNR) and limited
resolution at 75 nm. Although scaling factors can be employed to
compensate for shrinkage, it is not known if shrinkage affects all
WM compartments equally (17). To fully reconstruct the volume
fractions of the respective WM compartments, including the ECS,
cryo-techniques could be implemented to preserve the hydrated
microstructure. Both cryo-EM (51) and cryo-XNH provide
alternatives to do so.
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The tissue analyzed here belongs to one female, 32-mo-old
vervet monkey. Given that 3D EM studies of the mouse CC (20,
21) also demonstrate morphological variations in axons, we ex-
pect that the modulation of axonal morphology by extra-axonal
structures is present in the WM regions of other individuals and
species. However, the “fingerprints” of axonal diameter and tra-
jectory variation (Figs. 3C and 4C) may differ with species, age,
gender, and disease, and it is relevant to pursue further studies
into this matter.
As with many imaging techniques, XNH is subject to a trade-

off between the size of the image volume and the resolution. The
image quality depends on the acquisition time and sample pro-
cessing, including the sample size, staining, and smoothness of the
embedding medium. We imaged at voxel sizes of 75 nm (splenium)
and 100 nm (crossing fiber and midbody), but the SNR challenged
the segmentation of axons with mean diameters smaller than
∼2 μm. The morphological behavior of smaller axons thus re-
mains to be studied. This is possible with XNH, given that one
prioritizes resolution and optimizes the sample preparation.
However, EM provides superior resolution and there are on-
going efforts to develop large-scale 3D mapping of neural tissue
by stacking 2D EM images (52). Still, EM is time demanding and
there is a need to combine techniques that bridge different res-
olutions and volumes. Di-attenuation imaging has recently been
demonstrated on sections of the vervet monkey brain at an ef-
fective resolution of 27 μm/pixel, and shows sensitivity to fiber
orientation, diameter, and myelin sheath thickness (53). Further
combination of XNH with EM and di-attenuation imaging would
be valuable for mapping fiber microstructure, and the whole-
brain network architecture.
Last, the axonal diameter variations and dispersion behavior

presented here could act as an axonal “fingerprint” to guide the
construction of anatomically informed axonal phantoms for MC
simulations. Existing frameworks to model morphological fea-
tures such as fiber undulation (44, 54) (although we do not ob-
serve periodic undulations in our data) and diameter variations
(55, 56) exist. Others allow for the generation of a more complex
WM environment with beaded axons and cells (57). None,
however, has yet imposed anatomically realistic trajectory pat-
terns or longitudinal ADDs.

Materials and Methods
Monkey Brain Tissue. The tissue came from a 32-mo-old female perfusion
fixated vervet (Chlorocebus aethiops) monkey brain, obtained from the
Montreal Monkey Brain Bank. The monkey, cared for on the island of St.
Kitts, had been treated in line with a protocol approved by The Caribbean
Primate Center of St. Kitts. The brain had previously been stored and pre-
pared according to Dyrby et al. (58) and ex vivo MRI scanned using the
optimized ActiveAx framework for volume-weighted mean AD estimation
from previous work (14, 19). Prior to synchrotron XNH, the tissue was pre-
pared for whole-brain ex vivo MRI for the estimation of AD and the seg-
mentation of interhemispheric callosal fibers with tractography, as described
in the following.

MRI Scanning, AD Estimation, and Tractography.
MRI scanning. The diffusion MRI dataset was collected on an experimental 4.7-
tesla Agilent MRI scanner with a maximum gradient strength of 600 mT/m.
An optimized three-shell ActiveAx MRI protocol based on a maximal gra-
dient strength of 300 mT/m for ex vivo tissue as in Dyrby et al. (19) was used.
The noncollinear diffusion weighting encoding directions were obtained
from the Camino Toolbox (RRID: SCR_001638) (59). Further details of the
protocol are included in SI Appendix. Prior to AD fitting and tractography,
the diffusion MRI datasets were denoised (60) and processed to remove
Gibbs ringing artifacts (61) in the MRTrix3 software toolbox (RRID: SCR_
006971).
AD estimation. AD estimation was performed using the ActiveAx framework,
based on the four-compartment minimal model of white matter diffusion
(MMWMD) as described in ref. 14.

The MMWMD model was fitted to the diffusion MRI data with the same
parameter settings and multistage fitting method as in Dyrby et al. (19) using

the ActiveAx implementation of the Camino Toolbox. Since MRI probes vol-
umes, larger axons contribute more to the intra-axonal signal than smaller
ones. Hence, the estimated mean AD using diffusion MRI is a volume-
weighted index (14). A ROI was manually drawn to cover the midsagittal
plane of the CC within which the volume-weighted mean AD was calculated
voxelwise as the average of 100 repeated estimations.
Segmentation of interhemispheric brain connections with tractography-based MRI.
Streamline-based tractography was used to estimate the length of the in-
terhemispheric connection that, via the splenium in the CC, connects the two
primary visual cortical areas at the V1/V2 border that represents the vertical
in meridian in most species including cats, monkeys, and humans (62). We
used a constrained spherical deconvolution method (63) implemented in
MRTrix3 to obtain voxelwise multifiber reconstructions of the whole brain.
Probabilistic streamline tractography was then implemented with the SD-
STREAM function in MRtrix3 using standard parameters to extract 2,000
streamlines (64). Further details are included in SI Appendix.
Tractography-based estimation of conduction velocity. To estimate the end-to-end
conduction delay of the interhemispheric connection between the V1/V2
border regions and passing through the splenium, the tract was assumed to
have a g-ratio, g, of 0.7 as in other studies (10, 31). The CV was calculated
according to the following (9): CV = 5.5/g·d, where d is the inner AD. The
inner AD used was the AD index obtained by fitting ActiveAx to the diffu-
sion MRI dataset of the monkey brain, as previously described. Together
with the tract length from tractography, L, the conduction delay (t) was
given by the following: t = L=CV.

Synchrotron XNH Imaging and Segmentation.
Tissue preparation for XNH imaging. After MRI acquisition, the whole monkey
brain was agar-embedded for mechanical stability and cut into sagittal slices
at thicknesses between 2 and 4 mm in a mold. Samples from the midsagittal
CC and crossing fiber regions were extracted with a biopsy punch of diam-
eter 1 mm and fixed in 2.5% glutaraldehyde before being stained with 0.5%
osmium tetroxide (OsO4) at room temperature for 2 h. The OsO4 did not
fully penetrate the tissue sample. However, the stained peripheries of the
samples were large enough to cover the XNH field of view. The stained
tissue was dehydrated with an alcohol series and embedded in EPON resin.
Excess EPON was removed to produce blocks of approximately 1 × 1 × 4 mm.
Synchrotron XNH imaging. XNH was performed at beamline ID16A of the Eu-
ropean Synchrotron Research Facility (ESRF). Samples were imaged using a
nano-focused cone beam (65, 66) of energy 17 keV. Holograms of the
samples were recorded at different distances with respect to the focus and
the detector to obtain phase maps (66, 67). In practice, sequential tomo-
graphic scans were acquired at four different propagation distances by ro-
tating the samples over 180°, and corresponding angular holographic
projections were aligned and combined to generate phase maps of the
sample. For each tomographic scan, 1,800 projections were acquired with
exposure times of 0.22 s using a pixel size of 75 nm. The reconstructed image
volumes were cylindrical, with dimensions 2,048 × 2,048 × 2,048 voxels.
Acquiring one full scan took ∼4 h.
Segmentation of cell clusters, blood vessels, and vacuoles.We implemented an in-
house intensity- and morphology-based approach in MATLAB to segment
the cell clusters, blood vessels, and vacuoles from the four consecutively
acquired XNH volumes (Fig. 2A). This used classic low-level image analysis
operations such as intensity thresholds, morphological operations, and
connected components analysis. Further information can be found in
SI Appendix.
Segmentation of axon diameters. The XNH volumes were downsampled by a
factor of 5 by extracting every fifth slice, and performing a slicewise cubic
interpolation and Gaussian smoothing (kernel width of 5 pixels) in MATLAB
(version 2019b) to achieve volumes of dimension 410 × 410 × 410 voxels with
isotropic voxel size of 375 nm. A rough segmentation of the axons from
these volumes was then performed using the adaptive paintbrush in ITK-
Snap (RRID: SCR_002010). This allowed for the extraction of an approximate
centerline by a simple slicewise estimate of the axon centroid. With the
centerline as input, we employed a MATLAB-based, in-house segmentation
method to extract the axons and update their centerlines from the high-
resolution volumes of voxel size 75 nm. This is described in SI Appendix.

Quantification of Axonal Dispersion of Segmented Axons. For each of the 54
axons, the point-to-point vectors within their centerlines were averaged to
obtain a main axon direction. The average of all 54 main axon directions was
defined as the main bundle direction. The OD of each axon was defined as
the inclination angle between the main bundle direction and the main axon
direction.
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We introduced the concept of microdispersion at different length scales, L,
to quantify the deviation of axons from their linear main directions. To
calculate the microdispersion, we first aligned the axons with the z axis.
Then, the cumulative distance along the centerline was calculated, and the
centerline was divided into segments of length, L, corresponding to the
sampling length. A principal-component analysis was performed on the set
of points within each segment to determine the segment direction in
MATLAB. Thereafter, the inclination angle between the segment direction
and the main axon direction was calculated. The average inclination angle
of all segments (weighted according to the number of points in each seg-
ment) was defined to be the mean inclination angle of the axon at a length
scale L. For a robust quantification, the axon skeleton was queried four times
for each length scale L by shifting the starting position of the quantification
by L/4 as shown in Fig. 4B. We studied length scales, L, ranging between 1
and 30 μm.

MC Simulations of the Diffusion Process in Synthetic Axons. Substrates G1–G5
in Fig. 7 were based on the 54 segmented axons (substrate G6). The 54 axons
in geometries G1–G5 inherited one or more of the following from the
segmented axons in G6: mean AD, longitudinal diameter variation, OD,
microdispersion (trajectory). This was attained through modeling of the
axons as deformed cylinders.

Prior to simulations, the XNH segmentations were meshed and post-
processed as described in SI Appendix.

Simulations were performed using theMonte Carlo Diffusion and Collision
simulator from Rafael-Patino et al. (54). Each axon in each geometry was
simulated separately, and the intra-axonal diffusivity was set to 6.0 × 10−10

m2·s−1 as measured in ref. 19, as is conventional for ex vivo diffusion MRI.
Particles were initialized uniformly within the central region of the axon
meshes at a minimum distance of 20 μm from the axon ends. This confined
initialization ensured that virtually no particle was able to diffuse outside
the mesh. Perfectly elastic mesh boundaries were implemented, as in ref. 54.

The number of particles and time-step duration were chosen using a
bootstrap-based analysis of the convergence of the simulation as explained
in ref. 54. In this investigation, we studied diffusion times, Dt, between 1 and
50 ms at intervals of 1 ms and used 2 × 105 particles and 5 × 105 time steps
with a duration of 1 × 10−5 s. The simulator output the mean-squared dis-

placement, Æ(Δx)2æ, of the particles in the directions parallel and perpen-
dicular to the main bundle direction.

The reported ADCs were calculated from Æ(Δx)2æ by the Einstein
relationship (68):

Æ(Δx)2æ = 2 ·ADC ·Dt .

The AD estimations were based on the analytical expression for diffusion

perpendicular to cylinders (69): λ2 = R2=2, where λ2 is the mean-squared
displacement perpendicular to the cylinder and R is its radius.

Data Availability. The four XNH image volumes of the monkey brain splenium
and the segmentation of cells, vacuoles and blood vessels are publicly
available on the download center of the Danish Research Centre forMagnetic
Resonance (https://www.drcmr.dk/axon-morphology-dataset). The diffusion
MRI datasets of the same brain as the XNH image volumes are also available
on the same link and include the raw diffusion MRI data covering the mid
sagittal region of the corpus callosum, used for axon diameter fitting, and
the whole-brain diffusion MRI data set used for tractography.
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Supplementary Methods 
 

MRI scanning, axon diameter estimation and tractography 

 
Tissue preparation for MRI 

The brain tissue was sealed in a double plastic bag with minimal free fluid and placed for 
temperature stabilization at room temperature overnight prior to scanning. It was then positioned 
in a quadrature volume RF coil on a mechanical stable set up using LEGOTM to minimize short-
term instabilities, seen as a non-linear decreasing motion artifacts in the first hours of an MRI 
acquisition (1). A temperature-stabilized environment was ensured by a constant influx of airflow 
at room temperature, producing stable diffusion MRI images. 

 

MRI scanning 

The diffusion MRI dataset was collected on an experimental 4.7 Tesla Agilent MRI scanner with a 
maximum gradient strength of 600 mT/m. An optimized ActiveAx MRI protocol based on a 
maximal gradient strength of 300 mT/m for ex vivo tissue as in Dyrby et al. (2013) (2) was used. 
The protocol was based on a 2D T2-weighted Pulsed-Gradient-Spin-Echo (PGSE) sequence with 
a single-line readout to reduce geometric image distortions. The optimized ActiveAx diffusion MRI 
protocol included three unique b-values [2011, 2957, 9259]  s/mm2 obtained by the following 
sequence parameters: Gradient pulse duration (ẟ) [5.6, 7.0, 10.5] ms, time between onset of 
gradient pulses (Δ) [12.1, 20.4, 16.9]	ms and gradient strength [300, 219, 300] mT/m. The b-values 
were acquired as shells including [84, 87, 68] non-collinear diffusion weighting encoding directions 
obtained from the Camino Toolbox. For each shell [15, 16, 13] repeats of 𝑏 = 0 s/mm2 were 
collected. All shells used the same echo time (TE) of 36 ms and a repetition time (TR) of 
[4200, 4200, 7200] ms. For whole-brain coverage at an isotropic 0.5 mm3 image resolution, a 
matrix size of 128	 × 	256 was used and 100 sagittal slices were acquired in an interleaved 
manner. The total scan time, excluding a dummy prescan of >6 hours to reduce short-term 
instability artifacts, was 50 hours. Prior to axon diameter fitting and tractography the diffusion MRI 
data sets were denoised (3) and processed to remove Gibbs ringing artifacts (4) using the 
method implementations available in the MRTrix3 software toolbox (RRID: SCR_006971). 

 

Axon Diameter estimation 

Axon diameter estimation was performed using the ActiveAx framework which is based on the 
minimal model of white matter diffusion (MMWMD) – a four compartment biophysical model – as 
described in detail in (5). In short, the compartments and their respective volume fractions (VF) 
are: 

(i) the VF of the extraaxonal space modeled as a symmetric tensor. 

(ii) the VF of intraaxonal space modeled as a single cylinder with a mean diameter that 
best fits the diffusion signal. 

(iii) the VF of the “dot” compartment reflecting a small fraction of stationary water likely 
trapped inside vacuoles and cell bodies. 

(iv) the VF of free diffusion modeled as an isotropic tensor coming from surrounding fluid 
around the CC. 



 
 

4 
 

The MMWMD model was fitted to the diffusion MRI data with the same model parameter settings 
and multi-stage fitting method as in Dyrby et al. (2013) (2) using the ActiveAx implementation as 
part of the Camino Toolbox. Since MRI probes volumes, larger axons contribute more to the intra-
axonal signal than smaller ones. Hence, the estimated mean AD using diffusion MRI is a volume-
weighted index (5) A region-of-interest (ROI) was manually drawn to cover the midsagittal plane 
of the CC within which the volume-weighted mean AD was calculated voxel-wise as the average 
of 100 repeated estimations. 

Segmentation of interhemispheric brain connections with tractography-based MRI 

Streamline-based tractography was used to segment and estimate the length of the 
interhemispheric connection that, via the splenium in the CC, connects the two primary visual 
cortical areas at the V1/V2 border that represents the vertical in meridian in most species 
including cats, monkeys and humans (6). We used a probabilistic streamline approach based on 
a voxel multi-fiber reconstruction method. First, a constrained spherical deconvolution (CSD) 
method (7) implemented in MRTrix3 was fitted to the 𝑏 = 2957 s/mm2 shell dataset to give a 
voxel-wise multi-fiber reconstruction of the whole brain. Thereafter, probabilistic streamline 
tractography was implemented with the SD-STREAM function in MRtrix3 using standard 
parameters to extract 2000 streamlines (8). The probabilistic tractography was initialized in a 
broad seed region covering the splenium of the midsagittal CC. To obtain only streamlines that 
projected towards both V1/V2 of each hemisphere, we defined two inclusive regions through 
which valid streamlines had to project. These regions were manually drawn to be symmetrical in 
both hemispheres and cover a broad region in the most anterior coronal slice at which V2 starts. 
The seed and inclusive regions were manually defined on the 𝑏 = 0 s mm-2 using the FSLeyes 
software. The mean streamline length and its variation were calculated using the TCKSTATS 
method in MRTrix3. Visualization of tractography results used MRtrix3 tools and Blender (RRID: 
SCR_008606). 

 
Segmentation of XNH volumes 
Segmentation of cell clusters, blood vessels and vacuoles 
 
The intensity- and morphology-based segmentation of cell clusters, blood vessels and vacuoles 
from the downsampled XNH volumes was performed for one class at a time, in the order of their 
perceived difficulty, starting with the easiest class. The information gained in previous steps 
served as fixed prior information in the more difficult later steps e.g., once a voxel was classified, 
it could not be re-classified as something else. This approach was taken since it is simpler to tune 
parameters for one class at a time, inspect and manually correct the result until it is satisfactory, 
and then proceed to the next class. The tuning of parameters and segmentation of XNH volumes 
could be performed and visualized in a matter of minutes. This made it simpler to a) fine-tune the 
parameters and b) quality control the final solution, helping to minimize errors. 

In order of decreasing average brightness the segmented compartments could be ordered as: 
blood vessels, vacuoles, and cells. The shape criteria for the different classes were as follows: 

• Blood vessels: large, tubular connected regions (volumes>730 µm3), with no specific 
structures or branching patterns. 

• Vacuoles: relatively spherical (minimum elongation, described below, of 𝑒 = 0.4) with 
volumes ranging between [15, 600] µm3 and spanning maximum 25 µm in the longest 
direction. 

• Cell nuclei clusters: typically appear in relatively large connected regions (estimated to 
span at least 60 µm in the longest direction with volumes ranging between [75, 2300] 
µm3) and containing dark DNA inclusions. 

If a connected component spans 𝑆!! = [𝑠", 𝑠#, 𝑠$] unique rows, columns and slices of the volume 
respectively, the elongation of the component is here calculated as 𝑒 = %&'()!!)

+,-()!!)
. A score of 1 can 

roughly be interpreted as a perfect spherical component. 
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The blood vessels, vacuoles and cell nuclei clusters were large compared to the voxel size of 75 
nm. Each of the four XNH volumes was therefore downsampled by a factor of 5 to improve 
signal-to-noise ratio and speed up computations. Downsampling involved extracting every 5th 
slice and performing a slice-wise cubic interpolation and Gaussian smoothing (kernel width of 5 
pixels) in MATLAB (ver. 2019b) to achieve volumes of dimension 410 × 410 × 410 voxels with 
isotropic voxel size 375 nm. These were then individually segmented to avoid errors due to 
slightly differing contrasts in the separate volumes. Finally, the segmentations were combined as 
in Figure 2D, manually corrected and analyzed by a connected components analysis which 
rejected the smallest, falsely segmented components.  

 
Segmentation of axon diameters 
 
Given their varying intensities, morphologies and occasional nodes of Ranvier, segmentation of 
the axons required a geometrically constrained method, i.e. a segmentation approach which 
could enforce a closed tubular output. Axons were first preliminarily segmented from 
downsampled volumes, and thereafter segmented from the high-resolution volumes with voxel 
size 75 nm.  

The image volumes from the XNH were downsampled to volumes of dimension 410 × 410 × 410 
voxels and isotropic voxel size of 375 nm as above. Each slice was filtered with a Gaussian 
kernel of width 5 pixels in MATLAB (ver. 2019b). A rough segmentation of the axons was then 
performed using the adaptive paintbrush in the program ITK-Snap (RRID: SCR_002010) (9). This 
allowed for the extraction of a centerline by a simple slice-wise centroid estimate from the 
segmentation. 

Given such a centerline, we employed the following MATLAB-based, in-house segmentation 
method on the original, high resolution volumes: 

1.  Sub-volume extraction: Radial image resampling centered from each individual centerline 
point to construct a small fiber-unfolded sub-volume. Here, the axon-myelin interface can be seen 
as a surface with a strong negative gradient (going from bright axon to dark myelin). 

2.  Sub-volume layered segmentation: Perform layered surface segmentation on gradient-
based cost-function of the sub-volume, using a graph cut approach (10). 

3.  Volume labelling: Unfold the solution to the original volume coordinate system to obtain 
the final geometrically enforced solution. 

 

The method is robust towards noise and image intensity variations. Furthermore, it is 
computationally efficient because the centerline serves to provide a much smaller sub-volume, in 
which we can build and solve the graph. 

 

 
 
Segmentation of g-ratios along single internodes 

Within the four overlapping XNH volumes depicted in Figure 2, we performed a rough manual 
segmentation of 6 axons with two visible nodes of Ranvier using the adaptive paintbrush in ITK-
Snap and extracted their centerlines by estimating their slice-wise centroids. 

Thereafter, we generated N random points between the two nodes of Ranvier in MATLAB along 
each axon. We then extracted the relevant slices in which the randomly generated points could 
be found and performed a manual segmentation of the inner axonal and outer myelin boundaries 
with the “roipoly” tool in MATLAB. The g-ratio estimation could be performed slice-wise and not 



 
 

6 
 

perpendicular to the local axon trajectory because – as the ratio between the inner and outer 
axon boundaries – it is insensitive to skewed axons, unlike the equivalent AD. 

 

 

Monte Carlo Simulations of Diffusion 

Post-processing of XNH axon segmentations for Monte Carlo simulations 

Firstly, the raw binary reconstructions were meshed using an octree-based surface extraction 
(11) to ensure a closed surface and high-polygonal density.  Secondly, to reduce small 
irregularities arising from the surface reconstruction, the meshes were smoothed using an 
algorithm as in Desbrun et al. (1999) (12), which ensures volume preservation while reducing 
high-frequency changes along the volumetric contour. Finally, the resulting meshes were 
triangulated and decimated to reduce the computational burden for the simulation. 
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SI Figures 
  

   
 

Fig. S1. Sagittal, axial and coronal views of monkey brain MRI volume and tractography of the 
interhemispheric connection between the V1/V2 visual cortices, passing through the splenium of 
the corpus callosum. 

 

 
 
 
Fig. S.2.  A) The location of the “crossing fiber region” biopsy in a sagittal slice of the monkey 
brain, marked by the hole. The biopsy was taken from the anterior centrum semiovale. B) The 
equivalent location in the MRI data. C) Multi-fiber reconstruction of the axonal pathways in the 
diffusion weighted images, showing the crossing of different tracts believed to be the corticospinal 
tract, interhemispheric callosal fibers and association fibers. Inset: multi-fiber reconstruction at red 
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cross. The red striped box marks the approximate field-of-view of C). The crossing of the red lines 
marks the approximate biopsy location. 

 

   

  

  
Fig. S.3. 2D cross sections of XNH-volumes from the splenium (75 nm voxel size), mid-body (100 
nm voxel size) and crossing fiber (100 nm voxel size) regions. Axons with estimated equivalent 
diameters larger than 2 µm are marked by red dots. The large axons appear to be evenly 
distributed throughout the splenium and mid-body samples but are organized in bands (yellow) in 
the crossing fiber region. Of the three samples, the number density of large axons is highest in 
the splenium and lowest in the mid-body. Photograph inserts show the positions at which 1 mm 
biopsies were extracted from the sagittal slices. 

 
 
 
 
 
 



 
 

9 
 

 
 
Fig. S.4. Left: 2D cross section of the XNH-volume from the splenium (75 nm voxel size). Right: 
Light microscope image of a section from the same EPON-embedded sample of the splenium. A 
Toluidine blue stain is used for visualization. The scale bars represent 30 µm.  

 

 
 
 
 
 

Dataset S1 (separate files). The following datasets are publicly available on 
https://www.drcmr.dk/axon-morphology-dataset  

1. Four XNH volumes from the vervet monkey splenium 

2. High resolution (75 nm) 3D segmentation of axons in one XNH volume of splenium 

3. Low resolution (375 nm) 3D segmentation of cells, blood vessels and vacuoles in all 
four XNH volumes of splenium. 

4. Diffusion MRI volume used for tractography of the interhemispheric V1/V2 connection 
through the vervet monkey splenium.  

5. Diffusion MRI subvolumes used for ActiveAx axon diameter estimation in the vervet 
monkey corpus callosum.  

 
Info files are provided to guide the user and provide more details about the data formats.   
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Abstract

Noninvasive estimation of axon diameter with diffusion MRI holds potential to
investigate the timing properties of the brain network and pathology of neu-
rodegenerative diseases. Recent methods use powder averaging to account for
complex white matter architectures, such as fibre crossing regions. Here, we
investigate the influence of the sequence parameters, signal-to-noise ratio, num-
ber of gradient directions and assumed intra-axonal parallel diffusivity on the
range and accuracy of diameter estimates from powder average approaches. We
show that a broad sensitivity to different length scales is required to accurately
estimate diameter, demonstrating how the range of measurable diameters is reg-
ulated by the SNR and q−value. The powder averaging approaches are then
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investigated within complex and realistic fibre architectures by Monte Carlo
simulations of diffusion within 120 − 313 µm long sections of segmented axons
from X-ray Nano-Holotomography volumes of a splenium and crossing fibre re-
gion of a vervet monkey brain. Our simulations show that powder averaging
techniques succeed in providing accurate estimates of axon diameter across a
range of sequence parameters and diffusion times, even in complex white mat-
ter architectures. At sufficiently low b-values, the acquisition becomes sensitive
to axonal microdispersion and the intra-axonal parallel diffusivity shows time
dependency at both in vivo and ex vivo intrinsic diffusivities. This could be an
interesting biomarker of WM health and pathology.
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Introduction

Axons propagate action potentials along their lengths to enable communication
between different neurons. Their morphology is crucial for the signal conduction
process [1–3] and determines the conduction velocity (CV) with which signals
are propagated. By electrophysiological modelling of the axon, Drakesmith et
al. showed that axon diameter (AD) is the most important determinant of CV
in myelinated axons [4]. AD is also a potential biomarker of neurodegenera-
tive diseases such as Amyotrophic Lateral Sclerosis [5] and Multiple Sclerosis
(MS) [6], and has been suggested to correlate with clinical scores of cognitive
impairment in MS patients [7]. Thus, AD sheds light on brain health, as well
as the structural and functional properties of the brain network.

Diffusion Magnetic Resonance Imaging (MRI) non-invasively probes the mi-
crostructural brain tissue environment by measuring the diffusion of water molecules
across millisecond time scales. By fitting multi-compartment biophysical models
that describe the underlying tissue microstructure to the diffusion MRI signal,
AD can be estimated.

The AxCaliber method [8, 9] uses pulsed gradient spin echo (PGSE) measure-
ments with numerous combinations of gradient strengths and diffusion times to
output the AD distribution (ADD), as demonstrated in vivo in the rat [8] and
human [10] brains. AxCaliber requires prior knowledge of the axon orientation
since it relies on measurements being made perpendicular to the axons. The
ActiveAx approach has been demonstrated in vivo in humans and ex vivo in pri-
mates [11,12] and outputs a mean AD index. Contrary to AxCaliber, ActiveAx
is invariant to the orientation of the main fibre direction and implements an op-
timised acquisition consisting of three b−value shells, the minimum number of
shells required to fit the three parameters in the signal model used by ActiveAx.
These are sampled in ∼ 90 unique directions distributed uniformly on the unit
sphere. These two methods have in common that they do not account for non-
parallel axons, i.e. orientation dispersion (OD), or multiple bundles of crossing
axons, factors which bias the AD measurement. Zhang et al. extended the
ActiveAx approach in two approaches. They relaxed the assumption of a single
main fibre direction to enable AD estimation in regions of the ex vivo monkey
brain in which there were crossing axon bundles [13], but the OD within those
bundles was not taken into account. Later, Zhang et al. modelled the OD as a
Watson distribution to fit AD in the in vivo human brain [14], but the method
assumed a single main bundle direction. As such, diffusion MRI-based AD stud-
ies have mostly targeted the corpus callosum (CC), an organised white matter
(WM) region that consists of aligned interhemispheric axonal connections. The
homogeneous architecture of the CC has also made it the subject of light and
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electron microscopy (EM) studies on AD, and these have been used as validation
for the diffusion MRI-based AD metrics [8,15,16]. However, recent 3D imaging
studies in the monkey and mouse CC demonstrate the complex morphologies,
OD and trajectory variations of axons [17–19], and show how – even in the highly
organised CC – these will bias AD measurements [17,18,20,21]. Diffusion MRI-
based estimates of AD should thus take into account three different classes of
orientation effects: 1) the macroscopic fibre architecture, describing the the rel-
ative orientations of different fibre bundles e.g. in crossing fibre regions; 2) the
OD, describing the average dispersion exhibited by axons within each bundle;
and 3) the microdispersion, describing the changes in trajectory and curvature
along individual axons on the length scale of the measured diffusion.

The effects of the macroscopic fibre architecture and OD can be removed by
powder averaging (PA). The PA involves calculating the arithmetic mean of the
diffusion MRI signal in isotropically distributed directions on the unit sphere.
Each diffusing spin can be described as probing a micro-domain – a microscopic
region of the tissue environment within a voxel. The PA signal thus represents
the spherical mean of the set of micro-domains, regardless of their individual
orientation or organisation within the voxel. Several studies have used the PA
to disentangle the effects of fibre architecture and OD from diffusion metrics [20,
22–31], and it has recently been implemented to estimate AD in the entire brain
WM [32,33]. To obtain estimates of AD index in the in vivo human brain, Fan
et al. [32] fitted a multi-compartment spherical mean technique (SMT) model
to the PA signal. The signal was sampled in up to 64 uniformly distributed
directions for two diffusion times. In total, 16 unique b−values up to b =∼ 20
ms µm−2 were acquired, enabled by the high in vivo gradient strengths of up
to 300 mT/m of the Connectom scanner [34–36]. Veraart et al. [33], on the
other hand, modelled only the intra-axonal space (IAS) by fitting a power law
(PL) to the PA signal at high b−values that suppress the signal from the extra-
axonal space (EAS) [37,38]. This used b ≥ 20 ms µm−2 for ex vivo experiments
and b ≥ 6 ms µm−2 for in vivo experiments. The signal was measured along
60 uniformly distributed gradient directions at a single diffusion time for up
to 18 b-values. AD was calculated for the ex vivo rat brain and, also using a
Connectom scanner, the in vivo human brain.

Although the PA techniques remove fibre architecture and OD effects, they rely
on the assumption that the micro-domain probed by diffusing spins is cylindri-
cal. With increasing diffusion times, the spins diffuse further and increasingly
probe the microdispersion of the axons, violating the assumption of a cylindri-
cal micro-domain and making the AD estimate time-dependent. The theory of
the effects of diameter and trajectory variations on estimated AD has been laid
out in [20], but the diffusion times and b-values for which the PA-based AD
estimate becomes sensitive to the microdispersion in axons is unknown. The
signal-to-noise ratio (SNR) of the signal [39] and the gradient strength of the
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applied magnetic field [12] affect the sensitivity profile of the acquisition, placing
limits on the upper and lower bounds of measurable AD. How different sequence
parameters, the number of gradient directions or the SNRs affect these bounds
has not been investigated for PA-based AD estimates.

Validating the estimated ADs from the PA methods for different sequence pa-
rameters and in realistic axons is therefore important. The PL implementation
from Veraart et al. was evaluated within the axon segments of length ∼ 20
µm from electron microscopy (EM) of the mouse CC using Monte Carlo (MC)
simulations of diffusion in [20]. Given that non-axonal structures in the EAS
can impact the trajectories of axons for up to 20 µm [17], longer axonal seg-
ments may to a greater extent represent the characteristics of the IAS. Notably,
although the PA is expected to factor out the effects of fibre crossings and OD,
it has only been validated on segments of axons from the CC in which the fibre
architecture is simple and does not contain crossings.

In this study, we adopt a simulation-based modus operandi to investigate the
impact of different scanning parameters, SNR and fibre architectures on AD esti-
mates with PA-based approaches. We restrict the analysis to the IAS to analyse
how accurately it is represented by the PA signal at different b-values, and the
results are relevant to both multi-compartment and single-compartment mod-
els that include the IAS. Firstly, we consider how the SNR, gradient strength
(hence, also b-value) and number of unique gradient directions interplay to de-
termine the bounds and range of measurable AD. Secondly, we demonstrate the
impact (or lack thereof) on estimated AD of using inaccurate assumptions of the
parallel diffusivity in the SMT and PL implementations for different b-values.
Lastly, large field of view (FOV) X-ray nano-holotomography (XNH) volumes
of the vervet monkey brain provided access to long axon segments, between 120
and 313 µm in length, from two inherently different fibre architectures: a) the
ordered CC of the splenium and b) a heterogeneous crossing fibre region. We
validated the AD estimates from the SMT and PL at different diffusion times,
gradient strengths, diffusivities (in vivo/ex vivo) and, pertinently, within the
complex IAS of the primate brain where ADs are similar to those of the human
brain [40].

Theory

To model the IAS, the SMT and PL approaches both assume that the micro-
domains probed by spins within the IAS are cylindrical. Here, we present an
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outline of the origins of the SMT expression for cylinders, based on the theory
presented elsewhere in [41,42]. It is this expression that is used to represent the
IAS in the SMT-based approach of Fan et al. [32]. From the SMT expression,
the assumption of high b−values entails that the SMT can be formulated as a
PL, as that in Veraart et al. [33].

Modelling the PA signal of a cylinder

In a cylinder, the apparent diffusion coefficient (ADC) at any angle α to its axis
is [43]:

D(α) = cos2(α)D‖ + sin2 (α)D⊥ (1)

where D‖ is the ADC parallel to the cylinder axis and D⊥ is that perpendicular
to it, and carries the information regarding cylinder diameter. Powder averaging
of the diffusion MRI signal involves integrating it over an infinite number of
uniformly distributed angles α [41] to give the powder averaged signal, SSMT :

SSMT (b) =

∫ π

0

P (α)e−b(cos2(α)D‖+sin2 (α)D⊥)dα

=

(
e−bD⊥ ·

√
π

4b · (D‖ −D⊥)
· erf(

√
b · (D‖ −D⊥)

) (2)

where P (α) = sin(α)
2 ensures that the weighting of the angles is uniform, erf(x)

is the error function of x, and b is the diffusion weighting. Equation 2 is what is
here referred to as the "SMT implementation" and is the analytical description
of the spherically averaged signal within a cylinder. Aside from the b−value, the
signal depends on two variables: D‖ and D⊥. Only a finite number of directions,
N , can be used in practise. As such, N is one of the variables that determines
the accuracy of the measurement.

In cylinders, where D‖ > D⊥ and at high b−values, it can be assumed that
b · (D‖ − D⊥) � 1. In these conditions, erf(x) = 1 and Equation 2 can be
rearranged to take the form of a PL:

SPL(b) = βe−bD⊥b−0.5 (3)
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where β =
√

π
4(D‖−D⊥) . Equation 3 is what is here referred to as the "PL imple-

mentation" and is an alternative representation of the SMT at high b−values.

In practise, whether using single- or multi-compartment models of the WM, the
fraction of the total signal that the IAS represents, fa, is unknown. It thus needs
to be included as a multiplicative constant in Equations 2 or 3. This introduces
an additional third variable into the SMT implementation in Equation 2, such
that the signal depends on fa, D‖ and D⊥. In the case of the PL, fa can simply
be incorporated into the existing constant β such that β = fa ·

√
π

4(D‖−D⊥) .

This removes the need to fit a third parameter to the PA signal.

Converting D⊥ into diameter

By fitting Equations 2 or 3 to the PA signal, the ADC perpendicular to the cylin-
drical micro-domains, D⊥, is obtained. The cylinder diameter can be calculated
from D⊥ using [43,44]:

− bD⊥ = lnS⊥ =

lnS0 − 2γG2
inf∑

m=1

1

D2
0α

6
m(R2α2

m − 1)

· [2Dfα
2
mδ − 2 + 2e−D0α

2
mδ + 2e−D0α

2
m∆ − e−D0α

2
m(∆−δ) − e−D0α

2
m(∆+δ)] (4)

where S⊥ is the diffusion-weighted signal perpendicular to the cylinder, S0 is
the signal with no diffusion weighting, γ is the gyromagnetic ratio, G is the
strength of the gradient pulse, D0 is the intrinsic diffusivity, δ is the duration
of the gradient pulse, ∆ is the separation of the gradient pulses and αm is the
mth root of J ′1(αmR) = 0 where J ′1 is the derivative of the first order Bessel
function of the first kind. In this case, Eq. 4 is calculated up to m = 6.

If δ � R2

D0
, as is in practise the case for most axons [33], the cylinders are said

to fall within the Neuman limit [44,45] and Equation 4 simplifies to:

lnS⊥ = − 7

48

δg2R4

D0
(5)
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Importantly, both the SMT and PL require knowledge – or an assumption –
of D0 in order to estimate a diameter from D⊥. However, since R ∼ (D0)

1
4 in

Equation 5, R is relatively insensitive to small inaccuracies of D0.

Materials and Methods

Simulations

The simulations in this study are divided into two categories: simulations of
the diffusion MRI signal from cylinders of different diameters and simulations
in the IAS of segmented axons from XNH volumes of the vervet monkey brain
presented in [17]. By simulating the signal from cylinders, the impact of scan-
ning parameters, SNR and model assumptions on estimated diameter could be
isolated. By simulating diffusion within segmented axons from the splenium
and crossing fibre regions, the impact on the estimated AD of realistic fibre
architectures, OD and microdispersion was investigated.

Simulating the Diffusion MRI Signal from Cylinders

The signals arising from cylinders of different diameter, aligned with the z-
axis, were generated analytically. For given PGSE parameters δ, ∆ and G and
radius R, Equation 4 was used to calculate D⊥ for each cylinder. From this,
the ADC and signal in any direction G = [Gx, Gy, Gz] could be calculated from

ADC = G×



D‖ 0 0
0 D⊥ 0
0 0 D⊥


×G′.

Simulating Diffusion within the Realistic IAS from XNH Volumes of
the Monkey Brain

We used segmented axons from the brain of a 32-month female vervet monkey,
imaged with 3D synchrotron XNH acquired at the European Synchrotron Re-
search Facility, beamline ID16A. The axons originated from two different brain
regions: the splenium of the CC and a "crossing fiber region", located in a
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position of the anterior centrum semiovale where the diffusion MRI data in-
dicated the crossing of the corticospinal tract, interhemispheric callosal fibres
and association fibres [17]. A description of both XNH volumes, as well as the
segmentation and analysis of splenium axons is given in Andersson et al [17].
In short, the XNH volume of the splenium had an isotropic voxel size of 75 nm
and cylindrical FOV of diameter and length 153.6 µm. From the splenium, 54
axons of minimum length 120 µm were segmented at the native 75 nm image
resolution. The XNH volume of the crossing fibre region had an isotropic voxel
size of 100 nm and cylindrical FOV of diameter and length 204.8 µm. The
much larger diameters of axons in this region entailed that the segmentation
of 58 axons of minimum length 120 µm could be manually performed in ITK-
Snap (RRID:SCR_002010) at a downsampled isotropic voxel size of 500 nm.
This was significantly less time consuming than segmenting the axons at higher
resolution. Smaller axons were present in both XNH volumes, but could not
be segmented due to their small diameters in comparison to the voxel size and
low SNR [17]. After segmentation, the equivalent diameters of the axons were
quantified in the plane perpendicular to their local trajectory [17]. The volume-
weighted AD, d, of each axon was estimated as d =

∑i=1
N 2Ri ·

(
πR2

i∑N
i=1 πR

2
i

)
where

Ri is the ith measured radius of N equidistant measurement points along the
axonal trajectories. The volume-weighted mean diameters of the population of
splenium axons and crossing fibre axons were similarly calculated.

The axon segmentations were converted to triangulated surface meshes, after
which the Monte Carlo Diffusion and Collision (MCDC) framework [46] was
used to simulate diffusion within each axon mesh. The simulations used an
intrinsic ex vivo diffusivity of D0 = 0.6·10−9 m2s−1, 2·105 uniformly distributed
spins per axon (with initialisation at least 20 µm from the ends of the axons)
and 1 · 10−5 seconds per time step, as in Andersson et al [17]. Simulations were
also performed using an in vivo diffusivity of D0 = 2 · 10−9 m2s−1, but with
3.4 · 10−6 seconds per time step to ensure the same step length at the higher
diffusivity. The 2 ·105 uniformly distributed spins were initialised at least 30 µm
from the ends of the axons to prevent their escape from the IAS with regards
to the diffusivity and maximum diffusion time probed.

Diffusion MRI Scanning Parameters

For all experiments, the PGSE waveform was used. Throughout the investiga-
tion, different sequence parameters were varied to isolate the effects of different
variables on the estimated diameter.

In the simulations on cylinders, a gradient duration of δ = 7.1 ms was used,
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similar to in [32, 33]. The gradient separation was kept at ∆ = 20 ms, and
the effective diffusion time, td, was given by td = ∆ − δ

3 . The simulations on
cylinders used only ex vivo diffusivities, and b-values were referred to as "high"
if they surpassed & 20 ms µm−2, the value at which the EAS was said to be
suppressed in [33]. Most simulations in cylinders used high b-values in the range
of b = [19.25, 63.62] ms µm−2 to allow a direct comparison between the SMT
and PL implementations, the latter of which required the use of high b-values.
Different b-values were obtained by varying the gradient strength, G, given that
b = q2td where q is the diffusion encoding q = γδG. In the simulations of the
realistic IAS, δ = 7 ms was used. Both G and ∆ were varied to assess the effects
of different diffusion times. In these simulations, the SMT and PL were fitted
to many different b-values, ranging between b = [0.55, 65] ms µm−2 for ex vivo
diffusivities and b = [0.44, 11.89] ms µm−2 for in vivo diffusivities.

For the most part, fits of the SMT and PL to the PA signal from several b-values
used three shells, similar to ActiveAx [11, 12], since three was the minimum
number of shells needed to calculate fa, D‖ andD⊥ in the SMT implementation.
Uniformly distributed directions on the unit sphere were generated according to
the electrostatic repulsion method in [47,48].

The Signal-to-Noise Ratio

The effect of noise on the AD estimation was studied by adding Rician noise
of variable SNR to the noise-free, normalised signals. The total variance of
the noise was defined as σ2 = 1

SNR2 . Rician distributed noise was simulated
calculating the magnitude of complex Gaussian noise in which the real and
imaginary components each had a standard deviation of 1

SNR [49].

Distinguishing the Signal from Noise

To assess whether or not a single signal could be distinguished from noise at
a given SNR, we used the sensitivity criterion of Nilsson et al. [39] for parallel
cylinders. The smallest robustly measurable change of the normalised signal,
∆S was defined as:

∆S =
zα

SNR
√
n

(6)

where n was the number of repeated measurements and zα was the z-threshold
for the significance level α. The signal was thus said to be sensitive between
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the bounds [∆S, 1 − ∆S]. The diameters that gave rise to the PA signal at
these boundaries were defined as the maximum and minimum bounds of the
measurable diameter. Here, we choose α = 0.05, giving zα = 1.64, as in [39].

To predict whether the PA signal could be distinguished from normally dis-
tributed noise, the sensitivity criterion of Nilsson et al. [39] for fully dispersed
cylinders was used. It is defined as:

∆SPA = bD⊥(d) ·
√
π

4

erf
(√

b(D‖ −D⊥)
)

√
b(D‖ −D⊥)

(7)

where D⊥(d) is the perpendicular diffusivity of the diameter, d, that is defined
as:

d =

(
768

7

∆SD0

γ2δG2

) 1
4

(8)

When using Eqs. 7 and 8, n in Eq. 6 was set to the number of unique gradient
directions. From ∆SPA, the theoretical range of measurable diameters was
calculated as the diameters with PA signals within the range [∆SPA, Sstick−∆S]
where Sstick is the signal of a cylinder with diameter equal to zero:

Sstick =

√
π

4b ·D‖
· erf(

√
bD‖) (9)

Importantly, Eqs. 6-8 are formulate for single b-values only and assume that
the noise follows a normal distribution.
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Fitting the Spherical Mean Technique and Power Law to
the PA signal

The Spherical Mean Technique Implementation

The volume fraction of the IAS, fa, was incorporated into the SMT formulation
in Equation 2 such that:

S = fa

(
e−bD⊥ ·

√
π

4b · (D‖ −D⊥)
· Φ(

√
b · (D‖ −D⊥)

)
(10)

The SMT was fitted to the PA signals with a Matlab-based Levenberg-Marquardt
algorithm. Once D⊥ had been fitted, the diameter was calculated using Equa-
tion 4. To assess the robustness of the SMT fit when keeping different variables
fixed, we implemented three different variations of the SMT fit:

(i) SMT-1: a single-shell fit to obtain D⊥ in the range [0, D‖]. Assumes
known fa and D‖ = 0.6 · 10−9 m2s−1.

(ii) SMT-2: a multi-shell fit to obtain D⊥ in the range [0, D‖] and fa in the
range [0, 1]. Assumes known D‖ = 0.6 · 10−9 m2s−1.

(iii) SMT-3: a multi-shell fit to obtain D⊥ in the range [0, D0 · 1.5], fa in
the range [0, 1] and D‖ in the range[D0/2, D0 · 1.5] where D0 was the
known intrinsic diffusivity of the simulations. For ex vivo simulations,
D0 = 0.6 ·10−9 m2s−1 was used, while for in vivo simulations D0 = 2 ·10−9

m2s−1 was used.

SMT-1 was used to assess the effect of the number of directions and SNR on
the estimated diameter in the best case scenario in which fa and D‖ are known.
Moving to a more realistic scenario, SMT-2 was used to assess the accuracy
of SMT-based diameter estimation at different, unknown values of fa. SMT-2
was also used to investigate the consequences of enforcing an incorrect value
of D‖ at different b−values and SNRs. Lastly, SMT-3 placed no assumptions
on any of the variables, similar to the PL implementation. SMT-3 was used to
investigate the ability of the SMT to estimate AD in real axons for in vivo and
ex vivo intrinsic D0, assuming no prior knowledge of diffusivities (other than
their upper and lower bounds). SMT-3 also outputted estimates of D‖ in the
axons.
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The Power Law Implementation

To assess the diameter estimates from the PL formulation, the expression in
Eq. 3 was fitted to the PA signal from cylinders of different diameters, provid-
ing estimates of D⊥ and β. This allowed for a comparison of the PL-derived
diameter, dPL, with those from SMT-2 and SMT-3. To fit the PL the Matlab-
based nonlinear least squares estimator provided by Veraart and Novikov [50]
was used. This implementation assumed the Neuman limit as in Eq 5 to obtain
a diameter estimate.

Results

The Results section is organised as follows. First, we examine the effects of the
number of gradient directions and SNR on the estimated diameter, dSMT−1,
from SMT-1 of cylinders. This is done for both Rician and Gaussian noise.
Next, we relax the assumption of the known volume fraction, and investigate
the range of measurable diameters obtained by fitting SMT-2 and the PL to
different sets of high b-values. We then investigate the validity of assuming a
known parallel diffusivity in SMT-2 for low and high b-values. Moving away from
the assumption of a cylindrical microdomain, we present segmentations of axons
from the splenium and a crossing fibre region of the monkey brain. In these, we
then investigate the ability of the SMT-2, SMT-3 and PL implementations to
estimate the volume-weighted ADs within real axonal geometries for in/ex vivo
diffusivities, different gradient strengths and diffusion times between ∼ 10− 40
ms.

Angular sensitivity of the diffusion MRI signal in cylinders

Diameter estimates using the PA demand that the diffusion MRI signal is sen-
sitive to the different length scales probed by measuring the signal at angles α
relative to the cylinder axis. The range of diameters that can be measured with
the PA can be predicted from Eq. 7, and are shown in Fig. 1B for a range
of SNRs and q-values. The widening/narrowing of the sensitivity range can be
explained by the sensitivity of the PGSE acquisition to different angles α. As
shown in Fig. 1C, the range of α that ensures a sensitive signal varies with the
SNR and the diffusion encoding q (and hence the gradient strength). Sensitivity
of the signal was defined according to Eq. 6. For the same parameters, angu-
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lar sensitivity profiles were different for cylinders of different diameter. With
increasing SNR (Fig. 1C, top row), the sensitivity to both the high and low
α increased. At SNR = 100, an increasing q increased the sensitivity to high
α, but the additional attenuation of the signal caused by the higher diffusion
weighting decreased the sensitivity to small α.

Fig. 1: Angular sensitivity of the signal with respect to the cylinder axis A)
The angle α is defined as the inclination from the cylinder axis. The PGSE
parameters in the table were used for the sensitivity analysis. B) The range
of measurable diameters using the PA signal varies with the SNR, as shown
using q = 1.1397 ·106 m−1. For SNR=100, the range of measurable diameters
varies with the q-value (G is varied to obtain different q, but δ and ∆ are as in
the table). The sensitivity analysis is based on Eq. 7 and assumes 30 gradient
directions. C) Variation with SNR and q−value of the angular sensitivity
range, in terms of α, to which the measurement is sensitive in cylinders of
diameter [1, 5, 10] µm for the PGSE parameters in B. This sensitivity criterion
is as in Eq. 6.
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Effect of Number of Gradient Directions and SNR

The number of uniformly distributed directions affects the accuracy of the PA
signal in describing the underlying microstructure, but also determines the total
scan time. The signals from cylinders of different diameters with different num-
bers of gradient directions and different levels of Rician noise were generated,
emulating the noise distribution present in magnitude diffusion MRI images.
The sequence parameters were the same as in Fig. 1 and SMT-1 was fitted to
the PA signal, giving a diameter estimate dSMT−1, as shown in Figure 2. For
comparison, the diameter estimated from a single measurement perpendicular
to the cylinders, dV G, was also calculated from Eq. 4. The theoretical upper
and lower bounds of dSMT−1 were calculated from Eq. 7, while those of dV G
were calculated from Eq. 6.

At SNR =∞, the higher the number of directions, the more accurate dSMT−1

was at smaller diameters. At low SNRs <2, the asymmetric Rician noise is
known to introduce a bias [49]. Even at high SNRs of 100 in non-diffusion
weighted b = 0 images, considerable signal attenuation in cylinders with large
diameters incurs a low effective SNR of the measurement. This, combined with
the Rician bias, caused an underestimation of large diameters in Fig. 2. Simi-
larly, the Rician bias caused the PA signal of small cylinders to appear as sticks
(Eq. 9), resulting in dSMT−1 = 0. In general, the theoretical lower and up-
per bounds agreed well with the diameter trend using an intermediate number
of directions; in this case 30. Due to the assumption of normally distributed
noise in the sensitivity criteria, the theoretical lower bound should decrease
with increasing number of directions. The advantage of using a higher number
of directions was masked by the Rician bias. For example, at SNRs = [20, 100],
there appeared to be no significant difference between dSMT−1 extracted from
30 directions or 512 directions. In general, the higher the number of directions,
the smaller the variance in the estimate. The diameter calculated from the di-
rection perpendicular to the cylinders, dV G, accurately estimated the diameters
of smaller cylinders than dSMT−1 without underestimation, but had a higher
variance owing to the fewer sampling points.

Furthermore, the behaviour of dSMT−1 at small diameters varied when few
directions were used. It either plateaued (as it did using 6 directions) or dropped
to 0 (as it did using 10 directions). This indicated a dependence of the PA
signal on the orientation of the gradient sets relative to the cylinder axis. The
sensitivity of dSMT−1 to the orientation of the direction sets was examined by
generating the signals of cylinders that were rotated around the y-axis at 1 deg
intervals between [0, 90] deg. Fig. S2 shows the standard deviation and mean
of dSMT−1 estimated from these 91 orientations. In general, the estimated
diameter was more rotationally invariant (the standard deviation was lower)
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the higher the higher the angular resolution.

To mitigate the effects of the Rician bias on the signal, it is possible to extract
the real-valued diffusion MRI data in which the noise distribution is Gaussian.
We thus repeated the experiments in Fig. 2 for Gaussian distributed noise, and
the results are shown in Fig. S1. The Gaussian distributed noise allowed for
more accurate estimates of the diameter at both smaller and larger diameters
than with Rician noise, for 30 or more directions. The theoretical upper and
lower bounds gave accurate predictions of sensitivity, but beyond these, the
variance of the measurements was significantly higher due to the difference in
variance between the Gaussian and Rician distributions.

Estimating Diameter and Intra-Axonal Volume Fraction from Multi-
ple High b−Value Shells

The impact of different b-values on diameter estimation was studied by fitting
SMT-2 and the PL to the PA signals from cylinders with ground truth values
of fa = 0.8, an approximation of the expected axonal volume fraction. The
b-values were chosen to cover a similar range to those in the ex vivo acquisition
in [33], and all were & 20 ms µm−2 to simulate suppression of the ECS. For one
set of b-values, Fig. 3 shows the estimated parameters from the SMT-1, SMT-2
and PL fits at SNR=100 with Rician and Gaussian distributed noise.

For Rician noise in Fig. 3A, dSMT−2 and dPL exhibited parabolic shapes, drop-
ping to 0 at small and large diameters, in contrast to the single shell SMT-1
which plateaued at large diameters. At large diameters, the underestimation
of diameter was accompanied by a reduction of the fa estimate for the SMT-2
approach, and a reduction in β by the PL approach, as the significant atten-
uation at large diameters was instead attributed to a smaller volume fraction.
The use of data with Gaussian distributed noise in Fig. 3 produced dSMT−2, fa
and β estimates that were accurate at smaller and larger diameters than with
Rician noise, albeit with a high variance (at large diameters). Consequently, at
diameters & 7 µm, the estimates of fa and β could not be robustly estimated,
even with the mean of n = 50 repeats. One contributor to the high variance
was that the SMT-2 and PL fits failed for many large diameters, defaulting to
0.

To explore the how b−value range and number of shells affected the diameter
estimates, the experiments in Fig. 3A were repeated for A) three shells that
spanned the same range as in Fig. 3 with b = [19.25, 35.79, 63.62] ms/µm2 , B)
three closely spaced b-values at the lower end of the range b = [19.25, 22.90, 26.88]
ms/µm2 and C) three closely spaced b-values at the higher end of the range,
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Fig. 2: Influence of number of directions and SNR (Rician noise) on the
single-shell SMT-estimated diameter, dSMT−1, in cylinders of diam-
eter between 0.2 and 15.0 µm at 0.2 µm intervals. The single-shell
SMT assumes known fa = 1, D‖ = 0.6 · 10−9m2s−1. The lower and upper
bounds of measurable diameter are sensitive to both SNR and the number of
directions and calc. The last row shows the influence of SNR on dV G as cal-
culated using Equation 4. n = 50 repeats of the acquisition were performed
for each diameter, SNR and number of directions. The black striped lines
represent the predicted lower and upper bounds of measurable diameter.

b = [51.54, 57.42, 63.62] ms/µm2. The results are shown in Fig. 4. Other than
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Fig. 3: Multi-shell fit of SMT and PL to the signal from cylinders of di-
ameter between 0.2 and 15.0 µm at SNR = 100 and different noise
distributions. Fitted dSMT−1, dSMT−2, dPL, fa from SMT-2 and β from
the PL for A) Rician distributed noise and B) Gaussian distributed noise.
The signal is generated using D‖ = 0.6 · 10−9m2s−1, fa = 0.8, 30 isotropi-
cally distributed directions and PGSE parameters δ = 7.1 ms, ∆ = 20 ms ,
10 b values in the range [19.25, 63.62] ms/µm2 and linearly spaced values of
G in the range [550, 1000] mT/m. n = 50 repeats of each acquisition were
performed for each diameter.

a very small decrease in variance, there seemed to be no clear advantage to
sampling more shells that cover the same range of b−values, as clear from the
comparison of the results using ten shells in Fig. 4A and using three shells in
Fig. 3A. Secondly, fitting to the three b-values on the lower end of the range
in Fig. 4B resulted in a wider range of measurable diameters than fitting to
three significantly higher b-values in Fig. 4C, although the variance increased
somewhat. The equivalent experiments using Gaussian noise are shown in Fig.
3. Here, the use of Gaussian noise widened the range of measurable diameters
and provided more accurate estimates of fa.

How different noise levels influenced the diameter estimates from the SMT-2
and PL fits was examined by repeating the experiment in Fig. 4B for SNR
= [∞, 20], as shown in Fig. S4. At SNR= ∞, dSMT−2 and fa were accurate
estimated up to ∼ 13 µm, aside from at the very smallest diameters, but dPL
underestimated diameters & 5 µm. At SNR=20 with Rician noise in Fig. S4B
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Fig. 4: The choice of b-values affects the range of measurable diameters.
Multi-shell fit of SMT and PL to the signal from cylinders of diameter sbe-
tween 0.2 and 15.0 µm at SNR = 100 (Rician noise) and fa = 0.8. Fit-
ted dSMT−1, dSMT−2, dPL, fa and β for ground truth A) three shells with
b = [19.25, 35.79, 63.62] B) three shells with b = [19.25, 22.90, 26.88] ms/µm2

and C) three shells with b = [51.54, 57.42, 63.62] ms/µm2. The signal was gen-
erated using D‖ = 0.6 · 10−9m2s−1, 30 directions, PGSE parameters δ = 7.1
ms, ∆ = 20 ms and varying G. n = 50 repeats of each acquisition were
performed for each diameter.

the range of measurable diameters narrowed significantly as the lower and up-
per bounds of measurable diameter approached each other, and the estimate of
fa was highly dependent on the diameter. At SNR=20 with Gaussian noise in
Fig. S4C, the variance in the parameter estimates was higher than at SNR=100
in Fig. S3A and at diameters & 6 µm, the estimates of fa and β could not
be robustly estimated from the mean of n = 50 repeats. Furthermore, an in-
crease/decrease in ground truth fa had the same effect on the fitted parameters
as an increased/decreased SNR as shown in Fig. S5, either widening or narrow-
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ing the range of measurable diameters.

The Dependence of Estimated Diameter on D‖

The validity of fitting SMT-2 to a multi-shell acquisition depends on how ac-
curately D‖ must be approximated. The percentage errors in dSMT−2 and
dV G for different assumed values of D‖ are shown in Fig. 5, with ground
truth D‖ = 0.6 · 10−9m2s−1. For the diameter estimation, it was assumed that
D‖ = D0 for all D‖. The range D‖ ± 15% is marked and approximately covers
the spread of in- and ex vivo axial diffusivities reported in the literature [51–53].

Using an incorrect value of D‖ to within ±15% of the ground truth did not
noticeably change the percentage error of dSMT−2 for cylinders with d > 2 µm
at high b−values and infinite SNR in Fig. 5A. For diameters > 2 µm, there
was thus little dependence of dSMT−2 on the value of D‖. For cylinders with
d = 2 µm, the use of a larger-than ground truth D‖ caused the SMT-2 fit
to fail. Diameters of 1 µm could not be resolved, regardless of the assumed
value of D‖. The value of dV G showed little sensitivity to the assumed value
of D0. The inclusion of Rician noise in Fig. 5B caused a somewhat increased
dependency of dSMT−2 on the assumed value of D‖, apparent from the increased
slope of the plots. As expected from Fig. 3, the Rician noise caused a general
underestimation of all diameters, particularly evident in the larger diameters for
which the fit misattributed the large signal attenuation to a decreased volume
fraction (e.g. 7 µm in Fig. 5B). For the low b−values in Figs. 5C-D, there was a
much clearer time dependence of dSMT−2 on D‖ for all but the largest cylinders.
The trends were almost identical for the noise-free/noisy conditions. Although
dV G was very unstable for d = 1 µm, it again showed little dependence on D0.
From these results, it is clear that the dependence of estimated diameter on the
assumed value of D‖ depends on the b-values used.
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Fig. 5: The sensitivity of dSMT−2 and dV G to assumed value of D‖ de-
pends on b-value RANGE. Percentage error in estimated dSMT−2 and
dV G in cylinders vs. assumed value of D‖ for high diffusion weighting A)
b = [19.25, 35.79, 63.62] ms/µm2 and SNR=∞ , B) b = [19.25, 35.79, 63.62]
ms/µm2 and SNR=100 (Rician), and lower diffusion weighting C) b =
[0.636, 2.545, 5.726] ms/µm2 and SNR=∞ and D) b = [0.636, 2.545, 5.726]
ms/µm2 and SNR = 100 (Rician). The signal was generated using 30 isotrop-
ically distributed directions, fa = 1 and PGSE parameters δ = 7.14 ms and
∆ = 20 ms. The higher b shells use G = [550, 750, 1000] mT/m and the “low
b” shells use G = [100, 200, 300] mT/m. The true D‖ = 0.6 · 10−9m2s−1 is
marked by the black striped line, and D‖ ± 15% is represented by the green
shaded area. The datapoints represent the mean of n = 50 repeats.

Diameter estimation in realistic axons

Fibre architecture, axonal OD and axonal microdispersion differed considerably
between the splenium and crossing fibre regions of the vervet monkey brain. The
axons segmented from the splenium region, shown in Fig. 6A, were significantly
smaller (mean AD= 2.75 µm, SD = 0.53 µm) and exhibited a narrower ADD
than those from the crossing fibre region (mean AD= 4.00 µm, SD = 1.26 µm)
in Fig. 6B. In comparison to axons from the organised CC environment, the
axons from the crossing fibre region were very heterogeneous in terms of length,
diameter, shape and OD. The thinnest, thickest and longest axons are shown
in Fig. 6D-F. To measure the axial diffusivity, the main direction of the axons,
calculated via a principal component analysis of their trajectories, were aligned
with the z-axis. Intra-axonal diffusion of spins was simulated for up to 100 ms.
From the mean-squared-displacements of the spins, the diffusion coefficient in
the z-direction (Dz) was approximated and its variation with diffusion time, td,
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is shown in Fig. 6G-E for the splenium and crossing fiber axons respectively.
The values of Dz in the splenium axons were higher than those in the crossing
fiber region, owing to the more irregular trajectories of the crossing fiber axons
as seen in Fig. 6F.

Fig. 6: Properties of realistic axons from different WM fiber architectures
in the vervet monkey brain. 3D reconstructions of A) 54 splenium axons
(segmented at 75 nm isotropic resolution) and B) 58 crossing fiber axons (seg-
mented at 500 nm isotropic resolution) in their respective XNH volumes. C)
Combined 3D AD distributions over all measured diameters in the splenium
(yellow) and crossing fiber region (blue). The striped lines mark the means,
d, or weighted means dw, of the distributions. The D) thinnest, E) thickest
and F) longest axons from the crossing fiber region demonstrate the signif-
icant variability of axonal morphology that can exist on the subvoxel scale.
The segmented axons were aligned with the z-axis and G) and E) show the
variation of the progator-based ADC in the z-direction, Dz, with diffusion
time td (data points every 1 ms per axon).

For evaluation of the SMT and PL implementations in the realistic IAS and
under different conditions, we simulated four acquisitions within the axons from
the splenium and crossing fibre regions. To isolate the effects of the realistic
axonal geometries on the estimated diameter, the SNR was set to ∞. The four
acquisitions consisted of three shells sampled in 30 gradient directions each and
used either a high or low gradient strength set, and either a short (td = 12.7
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ms) or a long (td = 37.7 ms) diffusion time. The intrinsic diffusivity D0 was
set to an ex vivo diffusivity of 6 · 10−9 m2s−1. SMT-2, SMT-3 and the PL were
fitted to the PA signals to obtain estimates of dSMT−3, D‖ from the SMT-3 fit,
dSMT−2 and dPL, as shown in Fig. 7.

At high b (Fig. 7A,C), dSMT−3 and dSMT−2 provided accurate approxima-
tions of both the individual AD and the volume-weighted mean AD of the sple-
nium/crossing fiber axon populations at short and long diffusion times. dPL
provided accurate estimates of the diameters of the splenium axons, but under-
estimated those of the larger crossing fibre axons. For all methods, the only
visible difference due to diffusion time was the underestimation of some of the
smallest diameters at longer diffusion times. The D‖ estimates from the SMT-3
fit either defaulted to D0 as some did in Fig. 7C, or were scattered over the
range of possible D‖ values. As a result of the unexpected distribution of D‖ at
high b, the fitted values of fa were studied for three different diffusion times in
Fig. S7. For all diffusion times, the fa of the splenium axons were accurately
estimated. The fa values of the crossing fibre axons, on the other hand, were
underestimated at large diameters and short diffusion times, but were mostly
accurate at longer diffusion times.

Using lower b and short diffusion times, as in Fig. 1B, dSMT−3 slightly over-
estimated the diameters of all axons. There was a subtle positive correlation
between d and D‖, the values of which were similar to or higher than Dz in Fig.
6G-H. dSMT−2 underestimated the diameters of the smaller splenium axons,
but overestimated those from the crossing fibre region. The PL fit failed for all
but one of the axons, which was greatly overestimated (Fig. 7B). Interestingly,
at longer diffusion time, as in Fig. 7D, there was a further overestimation of
dSMT−3 for the crossing fibre axons and a shift in D‖ towards lower values.
In dSMT−2, the under- and overestimation of the splenium and crossing fibre
axons respectively were both enhanced. At this longer diffusion time, dPL was
non-zero for some of the larger crossing fibre axons, but was significantly under-
estimated. The effects of a finite SNR=100 on the AD estimates are shown for
the short diffusion times in Fig. S6; they produces very similar results to Fig.
7A-B.

To evaluate the methods of AD estimation with in vivo diffusivities, the simula-
tions were repeated for G = [100, 200, 300] mT/m and different diffusion times,
using an intrinsic diffusivity of D0 = 2 · 10−9 m2s−1. The results are shown in
Fig. 8. Strikingly, the volume-weighted mean diameter of the splenium axon
population was only non-zero for one metric and under one condition: it was
accurate for dSMT−3 at the shortest investigated diffusion time td = 12.7 ms in
Fig. 8A. At longer diffusion times, dSMT−3 provided accurate estimates of a sub-
set of the individual axons, but the mean of the population could not be fitted.
The individual and population mean ADs of the splenium axons could not be
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Fig. 7: In realistic axons, a fixed D‖ can be assumed at high b and short
td. The estimated parameters dSMT−3, D‖, dSMT−2 with assumed D‖ =
0.6 · 10−9 m2s−1 and dPL are plotted against the volume-weighted AD of the
54 axons in the splenium (yellow) and the crossing fiber region (blue). The
parameters are calculated for different combinations of short (∆ = 15 ms)
and long (∆ = 40 ms) gradient separations with high (G = [500, 600, 700]
mT/m) or low (G = [100, 200, 300] mT/m) gradient strengths, as indicated.
This gave three-shell acquisitions with A) b = [11.11, 16.00, 21.77] ms/µm2,
B) b = [0.549, 2.198, 4.945] ms/µm2, C) b = [33.03, 47, 56, 64.73] ms/µm2 and
D) b = [0.795, 3.180, 7.155] ms/µm2. The signals were generated with MC
simulations using D0 = 0.6 · 10−9m2s−1 and were sampled in 30 gradient
directions. For all acquisitions, δ = 7 ms and SNR=∞ (barring the intrinsic
noise associated with MC simulations). Square marker: volume-weighted AD
of splenium axon population, cross marker: volume-weighted AD of crossing
fiber population.
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estimated using the SMT-2 or PL approaches for any parameter combinations.
The ADs of the crossing fibre axons were generally somewhat overestimated by
SMT-3 at all diffusion times. Contrary to the splenium axons, SMT-2 could fit
the ADs of the largest crossing fibre axons, but failed for more axons the longer
the diffusion time was. The PL implementation could fit only very few axons at
short diffusion times ( Fig. 8A), but its performance improved with increasing
diffusion time (Fig. 8C). As for the simulations using the ex vivo diffusivities,
the values of of D‖ decreased with increasing diffusion time.

Fig. 8: Axon diameter estimation in realistic axons using in vivo intrinsic
diffusivity D0 = 2 · 10−9 m2s−1. The estimated parameters dSMT−3, D‖,
dSMT−2 and dPL are plotted against the volume-weighted AD of the 54 axons
in the splenium (yellow) and the crossing fibre region (blue). The parameters
are calculated for acquisitions with A) ∆ = 15 ms and b = [0.44, 1.78, 4.00]
ms µm−2, B) ∆ = 30 ms and b = [0.97, 3.88, 8.73] ms µm−2, and C) ∆ = 40
ms and b = [1.32, 5.28, 11.89] ms µm−2. Each acquisition consisted of three
shells with 30 gradient directions, G = [100, 200, 300] mT/m, δ = 7 ms and
SNR=∞. Square marker: volume-weighted AD of splenium axon population,
cross marker: volume-weighted AD of crossing fiber population.
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Discussion

By segmenting axons from a crossing fibre region of the vervet monkey, we
demonstrate that axons significantly larger than those in the corpus callosum
exist in other white matter regions. Despite the extremely complex morpholo-
gies of the axons, accurate measures of diameter could be obtained with powder
averaging approaches, in axons from both the splenium and crossing fibre re-
gion. At low b-values, we fit the intra-axonal parallel diffusivities and show
how the diameter estimates exhibit time dependence. The analysis of sequence
parameters reveals that the accuracy of a powder average-based diameter esti-
mation depends on the sensitivity of the acquisition to different length scales.
Although, the lower and upper bounds depend on the gradient strength, as in
Dyrby et al. [12], they also depend on the diffusion time and number of gradient
directions. Ultimately, the SNR is a key limiting variable of measurable diam-
eter, and we show the importance of removing Rician bias from the diffusion
MRI signal.

The diffusion time and q influence the lower and upper
bounds of measurable diameter

We find that PA-based estimates of AD are subject to lower and upper bounds
that are determined by the angular sensitivity profile of the acquisition (Fig.
1C). The q-value and the diffusion time of the acquisition act as spatial filters,
restricting the maximum detectable displacements of the spins. A higher q-value
increases the sensitivity of the acquisition to smaller length scales in directions
perpendicular to the cylinder. However, if the q-value is high enough to cause
attenuation of the signal from an ensemble spin before it has diffused for the
entire diffusion time, the acquisition loses sensitivity in the axial direction. For
a given diffusion time and SNR, an increase in q often narrows the angular sen-
sitivity profile. Although an increased gradient strength will move the lower
bound to smaller diameters, in accordance with the findings of Dyrby et al. [12]
and Sepehrband et al. [54], this will narrow the range of measurable diameters.
This is true also for methods that estimate AD from measurements perpendic-
ular to axons [8, 9, 11–14], but the increased attenuation of the PA due to its
averaging across many directions and length scales demands a higher q-value or
effective SNR to achieve the same lower bound.
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Choosing the number of gradient directions

The number of uniformly distributed gradient directions is shown here to influ-
ence lower bound of measurable AD, with smaller diameters demanding mea-
surements with higher angular resolution. This is in line with the findings of
Li et al. [55] who show that at SNR= ∞, the number of directions determines
how accurately the measured PA signal reflects the ground truth signal. The
angular resolution thus places a lower bound on the measurable AD, separate
to that incurred by the SNR and sequence parameters. Too low an angular
resolution will shift the lower bound of measurable AD to higher diameters,
regardless of SNR. For example, 10 directions are insufficient to resolve diam-
eters smaller than 4 µm in Fig. 2, while 30 directions move the lower bound
to ∼ 1 µm. With Rician noise, increasing the angular resolution cannot de-
crease the SNR-incurred lower bound. For Gaussian noise, however, the higher
number of sampling points given by the higher angular resolution may increase
the effective SNR and provide access to smaller diameters. In practise, if an
increased sampling is required, it is better to increase the number of directions,
as opposed to performing many repeats of the same shell [56]. Both will have
the same effect on the precision of the measurement, but acquisitions with a
higher angular resolution hold the potential to resolve smaller diameters the
real valued images with a Gaussian noise distribution are retrieved (Fig. 2 vs.
Fig. 1). Furthermore, an increased angular resolution increases the robustness
of the AD estimate to different underlying fibre configurations and OD, as seen
in Fig. S2. This agrees with the findings of Lundell et al. [31] who showed
more gradient directions lower the variance in parameter estimates from the PA
signal. Our results also indicate that an increased angular resolution does not
yield a significantly more robust estimate after a certain number of directions,
similar to the findings of [57] where the rotational invariance of the fractional
anisotropy measurement improved with increasing angular resolution, although
little improvement was found beyond 20 directions at b = 1 ms µm−2.

All simulations on cylinders in this investigation assume a single cylinder direc-
tion. In practise, this is not realistic even in the CC [17,18]. For methods that
assume a single fibre direction [8,9,11,12], this is a limitation. For PA methods,
it is the opposite and the single cylinder direction presents a worst case scenario.
The less anisotropy there is on the voxel scale, the fewer directions are required
to obtain rotational invariance of the PA [55, 57]. If the voxel-scale anisotropy
is so low that the sub-voxel structures can be approximated to be uniformly
distributed as in Palombo et al. [58], few gradient directions are needed, saving
scan time.
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Is it necessary to fit the intra-axonal parallel diffusivity?

We show here that the need to fit D‖ depends on the b-value regime. At high
b-values, the signals at low α (roughly parallel to the cylinder axis) are heavily
attenuated and contribute little to the overall PA. The dependency of the esti-
mated diameter on D‖ is therefore low and the assumption of erroneous D‖ and
D0 did not have a significant impact on the estimated diameter (Fig. 5A-B).
At lower b, as in Fig. 5C-D, on the other hand, the contribution of the low α
signals to the overall PA is more significant and the dependency on D‖ cannot
not be ignored. Some AD estimation methods, such as ActiveAx [11] and the
SMT implementation by Fan et al. [32] assume a value of D‖ based on previous
literature. Other methods e.g. AxCaliber [8,9] and the PL implementation [33]
(either directly or indirectly) fit it. For PA methods, this entails that estimates
of D‖ reported in literature or calculated from the diffusion tensor images are
likely to be sufficient at ex vivo intrinsic diffusivities at least for b ≥ 20 ms µm2,
but potentially also for smaller b−values as in Fig. 7A where SMT-2 and SMT-3
both provided accurate estimates of AD.

The importance of the Signal-to-Noise Ratio and Noise Dis-
tribution

We show here how an increase in SNR increases the angular sensitivity range
of the acquisition (Fig. 1). As such, increasing SNR decreases the lower bound
and increases the upper bound (Fig. 2, Fig. S4, Fig. S6), provided that the
angular resolution is sufficiently high. The increased sensitivity to smaller length
scales is expected from the senstivity criteria presented in [39]. In combination
with D0 and diffusion time, the SNR also determines whether or not there is
sensitivity to D‖, and hence if it needs to be fitted.

We found that Gaussian distributed noise prevented the systematic underesti-
mation of diameter at high b-values (Fig. 3, Fig. S1) seen with Rician noise.
This agrees with the findings of Fan et al. [32], in which it is also argued that
the use of real-valued diffusion MRI data with Gaussian noise is more inde-
pendent of the underlying fiber orientation distributions. Importantly, we show
that Gaussian distributed noise results in a wider range of measurable diame-
ters when fitting PA approaches to multi-shell data (Fig. 3 and provide more
accurate estimates of intra-axonal volume fraction. The advantages of analysing
signals with Gaussian noise are therefore similar to increasing the SNR of the
measurement. In light of this, recovery of the the real-valued diffusion MRI data
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with Gaussian distributed noise by performing a phase correction [59] is likely
an important step in improving both the range and accuracy of measurable
ADs. However, in Fan et al. [32] and in this investigation, the variance of the
estimated diameters using Gaussian distributed noise were higher than those
obtained when using Rician distributed noise, especially for large diameters.
This stems from the higher variance of the Gaussian distribution compared to
the Rician distribution. Under time constrains where few measurement points
(either in the form of gradient directions or repeats) are available, but SNR
is high, it may be advantageous to analyse the magnitude data with Rician
distributed noise.

Choice, but not number, of b-values affects measurable range
of diameter

Fitting the SMT and PL implementations to the signal from different sets of
b-values (all b & 20 ms µm2 to simulate suppression of the ECS signal [33])
showed that there may be little advantage to increasing the q−value (and thus
the b−value) of an acquisition. This supports the trend in Fig. 1B, in which
an increase in q-value after a certain point does little to lower the lower bound,
but narrows the range of measurable diameter. Furthermore, the finding of
no noticeable advantage of densely sampling many b-values lends support to
the approach of ActiveAx [11], where the number of sampled b-values matches
the number of parameters that are estimated. This suggests that it may not be
necessary to perform a dense sampling of b-values as in the SMT implementation
of Fan et al. [32], AxCaliber [9] and the PL implementation [33]. This was
also recently suggested by Veraaart et al. [60]. Moreover, while the sensitivity
criteria of Nilsson et al. [39] provided good indications of the range of measurable
diameter for SMT-1 fits to a single b−value (Fig. 2, Fig. S1), no equivalent
metric exists for a multi-shell fit, making simulations of the signal important in
predicting the sensitivity of a multi-shell acquisition to diameter.

The parabolic shapes of estimated diameter resulting from multi-shell fits in Fig.
3 introduce a problematic degeneracy: two different diameters may estimated to
be the same. As in Fan et al. [32], we observed a correlation between estimated
diameter and IAS volume fraction at high diameters. This correlation mostly
disappeared at infinite SNR, indicating that it may not be an issue at lower
b-values, where the signal attenuation is not as large. We demonstrate here a
similar trend for the PL, in which diameter and the parameter β are underes-
timated at large diameters. The underestimation remains at infinite SNR and
may be a result of the assumption b·(D‖−D⊥ � 1) (Eq. 3) does not holding for
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large diameters and strong diffusion encoding, q, where the measured D⊥ ap-
proaches D‖. When interpreting the fitted metrics – from either the SMT or the
PL – it is integral to consider if they may be correlated. For example, estimates
of large diameters are sometimes accompanied by an apparent, but erroneous,
decrease in the volume fraction. Ideally, simulations should be performed to
predict the diameter responses as in Fig. 3 to aid choice of implementation to
use and interpretation of the metrics.

Microdispersion affects PA-based Axon Diameter Estimates
in Segmented Axons from the Vervet Monkey Brain

The SMT and PL approaches were both able to recover the ADs from complex
WM architectures given the correct conditions. At high b-values and ex vivo
intrinsic diffusivities, we show that AD could be accurately estimated using
the SMT implementation for axons from both WM architectures, regardless
of diffusion time. The PL underestimated some of the larger crossing fibre
axons. Unlike Lee et al. [20], we did not observe an overestimation of AD. The
sensitivity to D‖ was low at the high b−values, as evidenced by the similarity
between the SMT-2 and SMT-3 fits. Due to the insensitivity of the signal in
the parallel direction, the fitted values of D‖ in Figs. 7A and C did not appear
to be meaningful.

At lower b-values, the effects of axonal microdispersion manifested as a slight
overestimation of the crossing fibre axon ADs that increased with increasing
diffusion time. Fitting D‖ was necessary to obtain accurate AD estimates for
the smaller splenium axons. Despite the extremely tortuous trajectories of the
crossing fibre axons, their fitted D‖ were generally higher than those of the
smaller splenium axons. It is possible that axons exhibit similar microdispersion
somewhat independently of the fibre architecture, given that axonal trajectories
are modulated by obstacles in the local environment [17]. If so, the correlation
between D‖ and diameter could be due to spins in smaller axons probing the
curvature of the IAS to a greater extent. The reduction of D‖ could be caused
by microdispersion and diameter variations [17, 20, 61, 62]. In contrast to the
PA estimates of D‖, the diffusivities measured in the single main direction of
each axon (Dz) were markedly lower in the crossing fibre region than in the
splenium (Figs. 6G,E). This further corroborates the need for PA methods
to remove macroscale fibre architecture and OD effects to obtain an accurate
characterisation of the IAS. Lastly, we observed a decrease in D‖ at longer
diffusion times, agreeing with the time-dependence of Dz in Fig. 6. The nature
of this time dependence could be indicative of the diameter variations and degree
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of microdispersion of the axons [17,61], and thus also an indication of the density
of cells or other extra-axonal structures in the WM [17]. The time dependence of
bothD‖ and the diameter could potentially act as biomarkers of situations where
the WM cell density is expected to change, such as in pathology or inflammation.

The simulations within the realistic IAS at in vivo diffusivities (Fig. 8) highlight
the importance of performing sensitivity analyses and simulations to evaluate
the different SMT and PL fits. Even with gradient strengths accessible to hu-
man diffusion MRI experiments only via Connectom scanners, the splenium
ADs could be accurately estimated only: by the SMT, at the shortest diffu-
sion time, and provided that D‖ was fitted. At increasing diffusion times, the
volume-weighted mean AD of the splenium population could not be estimated.
Additionally, the overestimation of the ADs of the crosssing fibre axons at all
diffusion times could be explained by the high in vivo intrinsic diffusivity entail-
ing that spins probe larger distances, and thus more microdispersion, than at
ex vivo intrinsic diffusivities. The lack of time-dependence in the crossing fibre
ADs could be due to the spatial filtering effect of the q-value.

Limitations

This investigation restricted the analysis of PA-based AD estimates to the IAS,
for different sequence parameters and SNRs. At high b-values, the observation
of a signal decay proportional to b−0.5 at indicates that the signal mostly arises
from thin, cylindrical structures [37, 38, 63], and that the ECS is suppressed.
However, in the splenium XNH volume, we observed cell clusters and vacuoles
that together constituted 6.1% of the total volume fraction [17]. Recent studies
show that the cell somas could contribute to the PA signal at short diffusion
times [64], complicating the SMT and PL fit to the PA signals. The presence
of any restricted or hindered compartment from which the signal remains at
high b−values will complicate the fits, unless it is explicitly modelled. These
compartments could include e.g. irregularities in the axonal myelin or cellular
processes. The observed dot compartment in ex vivo tissue [11,33] – completely
restricted in all directions – will systematically bias PA-based ADmeasurements,
although its contribution to the signal has been shown to be negligible in vivo
[38,52,65].

Furthermore, use of the single-compartment PL implementation as in Veraart
et al. [33] requires high b-values both for the suppression of the ECS and to fulfil
the assumptions of the PL model. In Fan et al. [36] and Veraart et al. [33], the
use of Connectom scanners for the in vivo applications enabled high gradient
strengths, and thus high q and b-values. On regular clinical scanners with limited
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gradient strengths, high b-values could be achieved with longer diffusion times,
but this would be at the cost of a reduced sensitivity to small diameters and a
long echo time that would reduce the SNR of the acquisition.

At lower b-values, only the SMT implementation provides an adequate fit to
the PA signals and the signal contributions from other compartments must be
modelled, as in Fan et al. [32]. The the accuracy of the AD estimate thus depends
not only on how accurately the geometry of other compartments are modelled,
but also the compartmental T2 relaxation times [66] and potential exchange
rates. Assuming that the contribution from the IAS can be accurately separated
from other compartments at low b-values, the reduced signal attenuation at low b
entails that the AD estimation may be more robust. Furthermore, the sensitivity
to microdispersion and D‖ at low b-values is higher, and the time-dependence
of dSMT−3 and D‖ could provide valuable insight into axonal morphology [18,
20,39,61,67,68].

One key challenge to AD estimation with diffusion MRI is that real WM voxels
contain a an ADD, and not single diameters. The contribution of each axon
to the overall signal scales as a function of its radius ∼ R4 in Equation 5 and
as R2 due to the volume-weighting [11,69]. The diffusion MRI-based estimates
of diameter are thus heavily weighted by the tail of the ADD [33, 70] and the
larger axons – like those presented in this study – significantly contribute to the
signal. On the other hand, the insensitivity to smaller diameters complicates
the interpretation of the estimated AD. In a complex substrate with many ADs,
axons below the lower bound of measurable diameter still contribute to the total
signal and will cause an underestimation of the average AD index, as seen for
the splenium axons at in vivo diffusivities.

Lastly, we have not investigated whether the conversion of perpendicular dif-
fusivity to a diameter estimate with the assumption of the Neuman limit in
Eq. 5 (used in the PL implementation) differs to that of the full expression in
Eq. 4 (which we use here in the SMT implementation), although the expres-
sions are generally considered to be equivalent for typical ADs [33]. To obtain a
diameter estimate, both expressions assume a value of the intrinsic diffusivity.
One new study suggests that it is meaningful to interpret the perpendicular
diffusivity independently [71]. While this is true, the diameter metric carries
direct anatomical significance and can be used for neuroscience applications e.g.
estimations of axonal conduction velocities.
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Conclusion

We demonstrate that powder averaging techniques can succeed in providing
accurate estimates of axon diameter, even in a complex crossing fibre region of
the vervet monkey brain. To succeed, the acquisition must have broad sensitivity
to different length scales. This is important partly due to the many different
axon sizes present within a voxel, as presented here, but also because the powder
average by definition probes different length scales in anisotropic micro-domains.
Furthermore, we show how the gradient strength, diffusion time and number of
gradient directions, as well as the SNR and noise distribution, influence the
lower and upper bounds of measurable diameter. Finally, at low b-values we
show that the acquisition becomes sensitive to axonal microdispersion, which
could be an interesting biomarker of WM health and pathology. We foresee that
this characterisation of the limits and potential of PA-based approaches to AD
estimation will contribute to the development of new methods and models to
study the WM microstructure with diffusion MRI.
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Supplementary Materials

Fig S. 1: Influence of Gaussian noise and number of directions and on the
single-shell SMT-estimated diameter, dSMT−1, in cylinders of di-
ameter between 0.2 and 15.0 µm. The single-shell SMT assumes known
fa = 1,D‖ = 0.6 · 10−9m2s−1. The last row shows the influence of SNR on
dV G as calculated using Eq 4. n = 50 repeats of the acquisition were
performed for each diameter, SNR and number of directions. The black
striped lines represent the predicted lower and upper bounds of measurable
diameter.

44 of 50



Fig S. 2: The PA is sensitive to fibre direction. The standard deviation of
dSMT−1 of cylinders rotated around the y-axis in the interval [0, 90]◦ at
1◦ intervals, and the estimated mean diameter dSMT−1, depend on the
number of gradient directions. PGSE parameters δ = 7.1 ms, ∆ = 20 ms
and G = 600 mT/m were used.
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Fig S. 3: Multi-shell fits with different b-shell and Gaussian noise. Multi-
shell fit of SMT and PL to the signal from cylinders of diameter between 0.2
and 15.0 µm at SNR = 100 (Gaussian noise) and fa = 0.8. Fitted dSMT−1,
dSMT−2, dPL, fa and β for ground truth A) 3 with b = [19.25, 35.79, 63.62]
B) three shells with b = [19.25, 22.90, 26.88] ms/µm2 and C )three shells
with b = [51.54, 57.42, 63.62] ms/µm2. The signal is generated using D‖ =
0.6 · 10−9m2s−1, 30 directions, PGSE parameters δ = 7.1 ms, ∆ = 20 ms
and varying G. n = 50 repeats of each acquisition were performed for each
diameter.
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Fig S. 4: Multi-shell fit at A) SNR = ∞, B) SNR = 20 with Rician noise
and C) SNR = 20 with Gaussian noise . Fitted dSMT−1, dSMT−2,
dPL, fa and β for

b = [19.25, 35.79, 63.62]

ms/µm2 in cylinders of varying diameter. The signal is generated using
D‖ = 0.6 · 10−9m2s−1, 30 directions and PGSE parameters δ = 7.1 ms,
∆ = 20 ms and G = [550, 750, 1000] mT/m. n = 50 repeats of each
acquisition were performed for each diameter.
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Fig S. 5: Multi-shell fit of SMT and PL to the signal from cylinders of di-
ameter between 0.2 and 15.0 µm at SNR = 100 (Rician noise)
and different fa. Fitted dSMT−1, dSMT−2, dPL, fa and β for ground
truth A) fa = 1 B) fa = 0.8 and C ) fa = 0.5. The signal is gener-
ated using D‖ = 0.6 · 10−9m2s−1, 30 isotropically distribued directions and
PGSE parameters δ = 7.1 ms, ∆ = 20 ms , G = [550, 600, 650] mT/m,
b = [19.25, 22.90, 26.88] ms/µm2. n = 50 repeats of each acquisition were
performed for each diameter.
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Fig S. 6: Axon diameter estimation in realistic axons at finite SNR=100
(Rician noise). The estimated parameters dSMT−3, D‖, dSMT−2 and dPL

are plotted against the volume-weighted AD of the 54 axons in the splenium
(yellow) and the crossing fibre region (blue). The parameters are calculated
for A) heavy diffusion weighting b = [11.11, 16.00, 21.77] ms/µm2 and B)
weaker diffusion weighting b = [0.549, 2.198, 4.945] ms/µm2. For the heavy
diffusion weighting, G = [500, 600, 700] mT/m, and for the lower diffusion
weighting, G = [100, 200, 300] mT/m, as indicated. For all acquisitions,
δ = 7 ms, ∆ = 15 ms and SNR=100. An ex-vivo difusivity ofD0 = 0.6·10−9

m2s−1 was used for the simulations. Square marker: volume-weighted AD
of splenium axon population, cross marker: volume-weighted AD of crossing
fiber population.
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Fig S. 7: The time-dependence of fa estimates from high b-value acqui-
sitions. A) The estimated dSMT−3 and fa plotted against the volume-
weighted AD of the 54 axons in the splenium (yellow) and the crossing
fiber region (blue) with A) ∆ = 15 ms, B) ∆ = 30 ms and C) ∆ = 40
ms. For all acquisitions, ground truth fa = 1, G = [500, 600, 700] mT/m
and δ = 7 ms. An ex-vivo difusivity of D0 = 0.6 · 10−9 m2s−1 was used
for the simulations. Square marker: volume-weighted AD of splenium axon
population, cross marker: volume-weighted AD of crossing fiber population.
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Streamline tractography for 3D mapping of axon bundle organization in one MRI voxel using
ultra-high resolution synchrotron radiation imaging
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ray Nanoprobe Group, ID16A, The European Synchrotron, Grenoble, France, University College London, London, United Kingdom, Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital,
Copenhagen NV, Denmark

Synopsis
We present an efficient image analysis pipeline that enables us to reveal white matter organization in high-resolution 3D non-MRI structural datasets,
in cases where a strict image segmentation is not required nor possible. We apply the method to a synchrotron X-ray holographic tomography scan
from a healthy mouse sample, and show the organization of axon bundles in a region covering parts of the corpus callosum and the cingulum. The
method has a potential to improve our general understanding of white matter organization and our ability to generate realistic phantoms for
validation of microstructure modelling from low-resolution diffusion MRI scans.

Introduction
Diffusion-weighted MRI (DWI) allows us to probe and model the microstructure of white matter tissues from in-vivo scans. Validation of those models is an on-
going and crucial challenge for the community. The key is to work on a ground truth structural data set. Phantom-based validation is typically the go-to option,
but they are in themselves simplified models of the real anatomy! Eventually, we end up studying high-resolution volumetric datasets of microstructure. In this
context, a high resolution corresponds to images with enough detail, so that individual axons and other microstructures can be resolved. 

Making a thorough data analysis of these large volumes is required, but too time consuming and difficult to do manually. Semi- or fully automated segmentation
approaches are being developed . However, they are challenging to make generally applicable and work best at really high resolutions, where all structural
boundaries are clearly defined. Another downside is that the high resolution typically is traded for a smaller field-of-view (FOV) and this obscures the ability to
study the larger organization of tissues and the long-range behavior of white matter bundles etc. 

Clearly, we need to deal with a class of white matter structural datasets, where axons are resolved almost as streamlines. Tracking and segmentation of an
individual axon is in such a case almost impossible to achieve reliably. However, as we will show, it is possible to extract information about the organization in a
relatively simple manner, by the use of structure tensor analysis and tractography as illustrated in Figure 1.

Methods
Data Acquisition: In this preliminary study, we demonstrate the method using a single healthy mouse sample. After perfusion fixation, the brain was sliced and
a biopsy (approx. 2.5 x 0.7 x 0.7 mm) extracted from a region covering the splenium in Corpus Callosum (CC) and cingulum. The biopsy was stained with
osmium (OsO , 0.5%), and embedded in EPON. Imaging of the sample took place at the European Synchrotron and Radiation Facility (ESRF) at beamline
ID16A using X-ray holographic nano-tomography. The obtained volume used in this study, see Figure 2, covers an extended FOV of 0.24 x 0.24 x 0.24 mm in a
voxel resolution of 75 nm. 

Structure Tensor: The primary workhorse for the data analysis is the 3D structure tensor estimation , here using a local Matlab implementation. In short, the
image gradients in all three axis directions are measured in a small neighborhood around each voxel and collected in a 3x3 matrix. Using an Eigen-
decomposition, we extract information about the local orientation. In the case of a fiber-like material such as white matter, we can estimate a clear dominant
direction aligned with the main fiber orientation, see Figure 3. The concept is very similar to DTI , but based on structural data content and not a diffusion MR
signal. 

Tractography: While the structure tensor provides an estimate of the orientation information in all voxels, it does not reveal how structures are connected. That
we have to probe using deterministic tractography, here using the MRTrix implementation . The inspiration comes from DWI-based connectivity data analysis,
but the application to structural data is still novel. Based on a seed point, a particle trajectory through the volume is simulated using the local main orientation
for direction until some stopping mask or criteria is met, see Figure 4. 

Clustering: The output of the tractography is a large number of unorganized streamlines without a direct biological interpretation. It is then beneficial to apply a
streamline clustering method, which collects multiple streamlines into meaningful axonal-bundles. We use the QuickBundles method  for its simplicity and
scalability, and the result can be seen on Figure 1.

Results
Axon-bundles are clearly revealed both within the CC and cingulum. An immediate observation is that bundles trajectories are non-parallel and perform subtle
bends and dispersions to move around cellular structures. An analysis on the cluster centroid trajectories, shows that bundles turn with angles up to 28.6 and
7.8 degrees in CC and cingulum respectively. Such information is valuable in the design of realistic white matter phantoms.

Discussion
While we demonstrate our method on a synchrotron X-ray tomography dataset, it is in principle no hindrance to apply it to other structural and volumetric
modalities. The synchrotron is a good option, as it provides relatively large FOVs with enough resolution to generate the streamline characteristic in white
matter that our method targets. It is further a non-destructive technique, allowing us to cover an even larger volume with overlapping FOVs. Extensions to our
work includes exploring more white matter regions of the brain and comparing healthy vs. diseased samples. More advanced approaches of both tractography
and clustering can be investigated, which might be beneficial in crossing fibers regions.
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Conclusion
We have demonstrated an efficient image analysis pipeline based on structure tensor and tractography to investigate the 3D white matter organization. The
method is ideally applied to high-resolution 3D structural datasets, in cases where a strict image segmentation is not required nor possible. It can serve to
improve our general understanding of white matter organization and our ability to generate realistic phantoms for validation of microstructure modelling from
low-resolution diffusion MRI scans.
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Figures

Figure 1: The concept of this study: Given a high resolution 3D structural dataset where axons are seen as steamlines. We present a method that can find
realistic axon-bundles using structure tensor, tractography and clustering techniques.

Figure 2: Location of sample biopsy position shown in a mouse brain MRI (MPRAGE), and a corresponding coronal slice from the synchrotron FOV (coronal
slice). Fatty tissues (myelin and cell nuclei) appear dark due to osmium staining. The synchrotron FOV would correspond to approximately 3x3x3 voxels in the
shown MRI dataset.
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Figure 3: Structure tensor output overlaid on the corresponding image slice from Figure 2. Coloring is according to the local main direction, as shown on the
spherical widget (bottom right), so that red corresponds to R-L direction, green is A-P direction and blue is I-S direction.

Figure 4: All tractography streamlines close to the corresponding image slice from Figure 2 and 3. Streamlines are colored according their local main direction,
as shown on the spherical widget (bottom right).
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