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“We demand rigidly defined areas
of doubt and uncertainty!”

- Douglas Adams, The Hitchhiker’s Guide to the Galaxy



Summary
The increasing size of wind turbine blades makes quality control of the blades in-
creasingly challenging and costly. At the same time, tighter design tolerances require
manufacturers of blades and blade materials to ensure that structural and material
properties follow the specifications closely.

In this thesis, I use computer-based image analysis to address the challenges of ex-
tracting the structural and material properties needed for quality control of wind
turbine blades. The goal is to present methods suitable for quality control solutions
that can assist human evaluation or automate quality control of wind turbine blades.

For the evaluation of blade structures, I propose a method based on graph cut opti-
mization for segmentation and surface detection in both 2D and 3D ultrasound im-
ages. To make this method scale to large 3D datasets, a new type of graph structure
for multi-label segmentation has been developed along with new high-performance
parallel and serial versions of state-of-the-art graph cut algorithms. The research
contributions are generic and applicable to a range of different optimization and
computer vision tasks. Furthermore, I discuss some of the challenges of analyzing
ultrasound images of wind turbine blades and why the presented method is suitable
for this purpose.

For the evaluation of blade materials, I present an approach for estimating fiber ori-
entations in fiber-reinforced composites using structure tensor analysis. The method
uses Gaussian kernels and analytical eigendecomposition that makes it tolerant to
noise, resolution invariant, and fast. The implementation uses vector operations
for even faster computations on modern hardware. Then, I demonstrate the use of
structure tensor analysis for characterizing fiber orientations in unidirectional fiber-
reinforced composites commonly used in wind turbine blades. Finally, I discuss some
of the challenges and things to consider when dealing with orientation information in
3D.

The work presented in this thesis allows important structural properties to be ex-
tracted from large 3D images which form the basis for automated quantitative evalu-
ation of wind turbine blades and fiber-reinforced composites.
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Resumé
Kvalitetskontrol af vindmøllevinger bliver til stadighed mere udfordrende og omkost-
ningsfuldt i takt med at vingerne bliver større og større. Samtidig medfører strengere
designtolerancer, at producenter af vindmøllevinger og vingematerialer i endnu hø-
jere grad end tidligere har brug for at sikre, at struktur- og materialegenskaber følger
specifikationerne.

I denne afhandling imødekommer jeg disse udfordringer ved at bruge computerbase-
ret billedanalyse til at udtrække struktur- og materialegenskaber, der er nødvendige
for kvalitetskontrol af vindmøllevinger. Formålet er at præsentere metoder, som kan
indgå i løsninger, der kan assistere eller erstatte menneskelig evaluering ved kvalitets-
kontrol af vindmøllevinger.

Til evaluering af vingestrukturer præsenterer jeg en metode baseret på grafoptime-
ring, som kan bruges til billedsegmentering og lokalisering af overflader i både 2D- og
3D-ultralydsbilleder. For at metoden skal kunne skalere til store 3D-datasæt er der
udviklet en ny grafstruktur, rettet mod billedsegmentering med mange etiketter, samt
nye højtydende parallelle og serielle versioner af state-of-the-art algoritmer til grafop-
timering. Forskningsbidragene er generiske og kan anvendes på en række forskellige
optimerings- og datamatsynsopgaver. Desuden diskuterer jeg nogle af udfordringerne
ved at analysere ultralydsbilleder af vindmøllevinger, samt hvorfor den præsenterede
metode er velegnet til denne opgave.

Til evaluering af vingematerialer præsenterer jeg en metode til estimering af fibero-
rienteringer i fiberarmerede kompositter ved hjælp af struktur tensoranalyse. Meto-
den bruger gaussiske kerner og analytisk udledning af egenvektorer og egenværdier,
hvilket gør den tolerant over for støj, uafhængig af opløsning og hurtigt. Implemen-
teringen bruger vektoroperationer til at forøge beregningshastigheden yderligere på
moderne hardware. Efterfølgende demonstrerer jeg brugen af struktur tensoranalyse
til karakterisering af fiberorienteringer i fiberarmerede kompositter, som anvendes i
vindmølleblade. Endelig diskuterer jeg nogle af de udfordringer og forhold, der skal
tages stilling til, når man beskæftiger sig med orienteringsinformation i 3D.

Arbejdet, som indgår i denne afhandling kan bruges til at udtrække vigtige struktu-
relle egenskaber fra store 3D-billeder, som danner grundlag for automatiseret kvanti-
tativ evaluering af vindmøllevinger og fiberarmerede kompositter.
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CHAPTER1
Introduction

Renewable energy is vital, if we are to meet the goal set by the United Nations Paris
Agreement of keeping global warming well below 2 ◦C, compared to pre-industrial
levels. Our demand for electrical energy is one of the single largest contributors
to human emissions of greenhouse gasses. Even though the Paris Agreement was
signed only five years ago, in 2016, the yearly production of renewable energy has
been steadily increasing over the past two decades. According to data from the
International Energy Agency1, the amount of renewable energy generated in 2018
was more than twice that of the year 2000. While hydro-electric power still made up
the majority (69%) of the renewable energy generated in 2018, this is well below the
97% that it accounted for 18 years earlier. The reduced share of hydropower is not a
result of reduced production. On the contrary, the production of hydropower actually
increased by over 60% from 2000 to 2018. Instead, it is a result of an explosive growth
in two other types of renewable energy: solar and wind.

Wind power production began ramping up in the late nineties in countries like Den-
mark and Germany. Still, by the year 2000, the total production of wind energy
world-wide was only 31 348 GWh, corresponding to about 1% of renewable energy
and a mere 0.2% of total energy production. However, from 2000 to 2018, the global
production of wind energy increased over 40 times, increasing its share to 20% of the
renewable and almost 5% of the total energy production world-wide. This makes wind
energy the second largest source of renewable energy after hydropower, with more
than twice the capacity of solar electric power, as of 2018. This incredible growth in
wind energy production was made possible by an equally impressive growth in the size
of the wind turbines, facilitated by rapid technological advancements. As the demand
for cheap renewable energy increases, the pressure on wind turbine manufacturers to
produce even bigger, cheaper, and more reliable wind turbines also increases.

In this thesis, I examine computer-based methods for assisted and automated quality
control of wind turbine blades. Specifically, I propose a number of methods for
quality control of composite blade structures and materials. These methods are based
on computer-based image analysis and applied to ultrasound and X-ray computed
tomography images. The goal is to improve the quality of the blades, while reducing
the manufacturing costs. This combination of cheaper and better blades is necessary
to sustain the growth required to meet the demand for wind energy world-wide.

1See Appendix A.
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Figure 1.1 – Size comparison of some of the largest wind turbines and US monuments
as of 2020. The GE Haliade-X is an offshore wind turbine prototype, while the Vestas
V150 is a commercially available onshore wind turbine. Sources: Vestas, GE and
Wikipedia. Graphic based on illustration by Bloomberg.

1.1 Quality control of wind turbine blades
Modern wind turbines are huge. The latest off-shore wind turbine prototypes are well
over 250 meters tall from base to blade tip, with a blade length of over 100 meters and
a power rating of over 10 MW. These enormous structures (depicted in Figure 1.1)
are expected to operate under harsh off-shore weather conditions for at least 20 years,
with as little downtime as possible. Downtime and repairs are costly due to the poor
accessibility of the off-shore locations, harsh conditions, and not least, loss of uptime.
Catastrophic failures are extremely costly and it is critical for off-shore wind turbine
manufacturers and their customers that such failures are avoided. Therefore, quality
control (QC) during the manufacturing of wind turbines, and in particular the blades,
is essential to the profitability of the wind energy industry. Of course, human safety
is also a major concern in places where turbines are located in populated areas.

The blades of modern wind turbines operate near the physical limits of the structure
and the materials they are made from. Unlike the steel towers, which are often de-
signed with wide tolerances, the composite blades are generally designed with narrow
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tolerances. This is necessary to meet the demands for high stiffness and strength at
low weight. Many blade designs use a combination of glass and carbon fiber compos-
ites, which allows the blades to deal with the extreme forces applied to them, while
remaining relatively light. However, performing QC on these complex composite
structures is both difficult and costly.
In this thesis, I examine and present methods for improving QC of wind turbine blades
at two different scales. At the macroscopic scale, I present and discuss a number of
methods that are useful for computer-based automated inspection at a structural level.
The goal is to reduce the cost of QC during blade manufacturing, by reducing the
time spent on data evaluation. Furthermore, automated data evaluation can also
provide much more consistent, and often more accurate, results than human manual
evaluation. Even in cases, where fully automated data evaluation cannot match the
quality of human evaluation yet, assisted evaluation, where automated and manual
evaluation are combined, can provide faster and more accurate evaluation. At the
microscopic scale, I present a computer-based method for fast and accurate analysis
of fiber orientations in composite materials. The goal is to improve the quality of
the fiber-reinforced composite materials used in blades, by giving researchers and
manufactures a fast, efficient, and simple method for extracting important material
properties.

1.1.1 Structural inspection with ultrasound
Ultrasonic testing (UT), is the preferred method for inspecting the blade structure
not visible from the surface. To my knowledge, all large blade manufacturers use
UT during manufacturing to verify the structural integrity of the load-bearing parts
of the blades. Most people are probably familiar with ultrasound from medicine, in
particular fetal ultrasound, which is the common way to monitor the baby’s growth
and development during pregnancy. However, ultrasound is also a popular method
for nondestructive testing (NDT) of structures in general. The reasons are that it
is safe, flexible, and relatively cheap, when compared to techniques such as X-ray
tomography and magnetic resonance imaging.
Traditionally, UT has mostly been carried out using small hand-held instruments.
However, the large area of the blades subject to inspection makes the use of hand-held
instruments impractical. To overcome this, highly specialized automated ultrasonic
scanning systems have been developed by companies, such as FORCE Technology.
Using this equipment, the several hundred meters of load-bearing blade structure can
be scanned in high resolution in less than two hours – a task that would take days,
or even weeks, to carry out with traditional UT equipment. While special scanning
equipment has sped up data acquisition many times, this is not the case for data
evaluation. Although evaluation of ultrasound data has, in some cases, been helped
by new ways of presenting the data, or better data quality, the task has remained
manual. As a result, evaluation has become the bottleneck of the structural inspection
of blades.
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Reducing the evaluation time of the ultrasonic inspection data from blades has become
a priority for the blade manufacturers. A reduction in evaluation time will not just
reduce the man-hours spent and thereby the cost of the blade. It will also reduce
the time a blade sits on the manufacturing floor occupying valuable space in the
production line. From the scanning is finished to the evaluation of the acquired data
is complete, the blade usually remains in the production line, as potential repairs
must be made before the blade is painted, which is usually the next step. Due to the
size of the blades, most factories only have a limited number of production lines, so
having a blade occupying a production line for many hours, while no work is being
done on the blade, is costly. However, moving the large blades temporarily is also
not viable in most cases. Thus, it is common for manufacturers to employ dedicated
teams of data evaluators, who work around the clock to keep the evaluation time
down.

Evaluating the ultrasonic data from blades is a very complex task. The combina-
tion of composite materials and complex structures makes the interpretation of data
nontrivial, even for trained human experts. To further complicate things, design spec-
ifications often require evaluators to measure structural components to an accuracy
that is close to, and sometimes beyond what is possible given the quality of the data.
Although it is generally assumed that manual evaluation finds most critical defects,
the difficulty of the task, coupled with the large amounts of data, easily leads to
inconsistent, and sometimes incorrect, evaluation.

1.1.2 Fiber characterization using X-ray tomography

While UT is the preferred method for QC of blade structures, X-ray microtomography
provides an excellent way of imaging the microstructures in blade materials. Mate-
rial properties, such as stiffness and compression strength, are highly dependent on
the fiber microstructures. Since these properties are vital to the structural integrity
of the blades, knowledge about the microstructures is important to avoid structural
failures and for designing stronger and lighter blades. Thus, we can use X-ray micro-
tomography for QC of small samples of the fiber-reinforced composite materials used
in blades.

1.2 Research objective
In this thesis, I investigate image analysis methods for automated QC of wind turbine
blades. The analysis is targeted full blade inspection of load-bearing structures and
inspection of blade composite materials at a micrometer scale. The aim is to improve
the accuracy of the QC and reduce the time spent on QC.
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1.3 Project evolution

This project started as an investigation into image analysis and machine learning
methods suitable for automated evaluation of ultrasound data from wind turbine
blades. At the beginning, most of my work focused on machine learning methods, in
particular deep learning. However, as the labels needed for machine learning methods
could not be obtained, my work shifted towards a more traditional image analysis
technique, namely graph cut-based optimization, which turned out to be well suited
for blade data. This work led to the development of a new scalable approach for
solving very large computer vision tasks (e.g., 3D image segmentation) using graph
cut optimization. Later, my co-authors and I also developed parallel versions of
some of the most popular graph cut algorithms, allowing computations to be sped up
significantly. These contributions are presented in this thesis.

Along the way, I assisted other researchers with their studies of fiber composites
used in blades, by segmenting fiber bundles in 3D images using our graph cut-based
method. This lead to a close collaboration with material scientists, whom I further
assisted by creating a GPU-based scalable implementation of the structure tensor
algorithm. With this implementation, we examined the fiber orientation distributions
in several fiber-reinforced composites used in the load-carrying structures of wind
turbine blades. Originally, the orientations were meant to be used with our graph cut
method for segmentation, but the information also turned out to be very valuable by
itself. The results of this work are also presented in this thesis. Although the work on
microstructures was not originally planned, it aligns well with the goal of improving
QC on wind turbine blades through image analysis and artificial intelligence. It also
shows that the methods we developed can be applied to different types of problems
at different scales.

1.3.1 Choice of method

The change of focus from machine learning and deep learning methods was primarily
fueled by a lack of suitable training data. Although I have access to terabytes of
ultrasound data from blades, labels of the types needed for tasks such as image seg-
mentation, do not exist. Other types of labels, such as measurements of structurally
important features, have not been recorded and organized with machine learning in
mind. Moreover, trying to learn measurements from image data could easily result in
a black box model, which would be difficult to validate and implement in production.
Meanwhile, as the process of capturing the data is the same for every blade, we have
a lot of prior knowledge at our disposal. Graph cut-based methods turned out to
be well suited for incorporating this prior knowledge, while also being both fast and
robust enough to handle large noisy 3D images.
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1.4 Included contributions
The contributions to QC of wind turbine blades presented in this thesis can be sepa-
rated into two different categories.

1.4.1 Structural segmentation using graph cuts
The majority of the work presented in this thesis is related to image analysis methods
suitable for structural QC of blades based on UT. The primary methodological con-
tribution consists of three papers about graph cut-based optimization methods with
a focus on image segmentation. All three papers build on the so-called maxflow/min-
cut algorithms and quadratic pseudo-Boolean optimization (QPBO). Below is a brief
description of the three papers:

Paper A: Sparse Layered Graphs for Multi-Object Segmentation In this
paper, we present a novel method for constructing highly efficient graphs for multi-
object segmentation. The method enables graph cut-based instance segmentation
of large 3D datasets, which could not feasibly be solved with previous methods due
to the scale of the tasks. The work was presented as a poster at the Conference
on Computer Vision and Pattern Recognition (CVPR) 2020 and published in the
conference proceedings.

Paper B: Comparing Serial and Parallel Min-Cut/Max-Flow Algorithms
for Computer Vision In this paper, we compare state-of-the-art serial and parallel
graph cut algorithms in terms of performance on a set of different computer vision
tasks. The comparison includes our own implementations and optimized versions of
several well-known algorithms. The work is in preparation and will be submitted to
the journal IEEE Transactions on Image Processing (TIP).

Paper C: Faster Multi-Object Segmentation using Parallel Quadratic
Pseudo-Boolean Optimization In this paper, we present the first parallel QPBO
algorithm and show experimentally that it outperforms the original serial algorithm
by more than an order of magnitude for large segmentation tasks on modern hard-
ware. The work has been submitted to the IEEE/CVF International Conference on
Computer Vision (ICCV) 2021.

1.4.2 Fiber orientation analysis with structure tensor
A part of the work presented in this thesis concerns QC of blade materials, specifi-
cally composite fiber-reinforced materials. The primary contribution is two papers
about characterizing and estimating the individual fiber orientations in glass fiber
and carbon fiber composites. This is done at a microscopic scale, using volumetric
data acquired with X-ray computed tomography (CT). The two papers are:
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Paper D: Characterization of the fiber orientations in non-crimp glass
fiber reinforced composites using structure tensor In this paper, we apply
structure tensor analysis to X-ray CT volumetric data of a fiber composite material
made from so-called non-crimp glass fiber fabric. Using this method, we estimate fiber
orientations, which are important for the stiffness of the materials. We also segment
different fiber bundles in the stitched material and estimate their fraction of the total
fiber volume. The work was presented at the 41st Risø International Symposium on
Materials Science and published in the IOP Conference Series: Materials Science and
Engineering.

Paper E: Quantifying effects of manufacturing methods on fiber orienta-
tion in unidirectional composites using structure tensor analysis In this
paper, we perform structure tensor analysis on three different glass and carbon fiber
reinforced composite materials used in wind turbine blades. Apart from quantifying
the global orientation distributions, we also investigate local patterns in the fiber
orientations, which depend on the manufacturing process. We show that these varia-
tions can be quantified using our structure tensor-based approach, which is based on
our own high-performance GPU implementation for calculating the structure tensor
and eigendecomposition, allowing the analysis to be performed in just a few minutes.
This allows fast quantitative QC of the materials, providing a way for manufacturers
to tune process parameters to minimize unwanted local variations in the fiber orien-
tations. The paper has been submitted to the journal Composites Part A: Applied
Science and Manufacturing.



8



CHAPTER2
Background

In this chapter, I give a brief introduction to the glass and carbon fiber composites
used in wind turbine blades, as well as two of the imaging techniques, X-ray tomogra-
phy and ultrasound, used for inspection of these materials. The goal is to provide a
basic understanding of fiber composite materials used in blades, as well as the bene-
fits and challenges of using the two imaging techniques on composites. First, I briefly
introduce the materials. Second, I cover the basic concepts of X-ray tomography,
data acquisition and data quality. Third, I explain the general concepts of UT and
its application to composite materials. Both X-rays and ultrasound can be used in
many ways. Only the techniques relevant for the contributions included in this thesis
are discussed.

This chapter primarily serves to motivate some of the methodological choices made
in Chapters 3 and 4. Most details related to blade inspection, and how to detect and
characterize specific types of defects, are omitted as the information is not needed to
understand the academic contributions presented in this thesis.

2.1 Fiber composites in wind turbine blades
Composite materials are made from two or more different materials with different
chemical or physical properties, often referred to as constituent materials. Fiber
composites, also known as fiber-reinforced polymers (FRP), consist of a reinforcement
fiber material and a matrix, usually a resin, keeping the fibers together. The two types
of fiber composites relevant to the contributions presented in this thesis are glass and
carbon fiber composites. Both glass and carbon fiber composites are used in wind
turbine blades due to their high strength-to-weight ratio and high durability.

2.1.1 Glass fiber composites
Glass fiber-reinforced composites (fiberglass) are used extensively in wind turbine
blades. The blade surface and large parts of the load-bearing structure are usually
made from fiberglass. Glass fibers are thin soft strands of glass, which can be pro-
cessed similarly to textiles, as shown in Figure 2.1. The glass fibers used in blades
are usually stitched or woven into large mattes (fabrics), which are layered to form
the shape of the blade (see Figure 2.2). The thickness of the fiberglass depends on
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the number of stacked glass fiber layers and varies for different parts of the blade.
Once the appropriate glass fiber fabrics have been placed in the blade form, along
with other materials, resin is added and the blade is baked to solidify the resin.
The glass fiber fabrics used in blades vary depending on where in the blade they are
used. Both the diameter of the fibers themselves and the stitching patterns of the
fabrics are chosen to give the material the desired properties needed at the specific
location on the blade. An example of a commonly used fabric is the unidirectional
(UD) non-crimp fabric (NCF), made from a mixture of 17 µm and 9 µm diameter
fibers, shown in Figure 2.1. This type of fabric is examined in both Paper D and
Paper E.

2.1.2 Carbon fiber composites
As wind turbine blades have increased in size, the need for stronger and lighter ma-
terials has led to the introduction of carbon fiber composites. The superior strength-
to-weight ratio of carbon fiber composites, compared to fiberglass, makes them ideal
for the load-bearing parts of the blade. Thus, despite the high cost of carbon fiber
composites and the increased structural complexity, many, if not all, manufacturers
of large off-shore blades have adopted carbon fiber composites in their designs.
Unlike fiberglass, which is usually made during the manufacturing of the blade, the
carbon fiber composites used in blades generally consist of premade beams, also known
as “slabs”. These are typically up to a couple of hundred millimeters wide and about
5 mm thick (see Figure 2.3). These carbon slabs are stacked to form large beams (see
Figure 2.5) spanning the length of the blade. The stacks are known as pultrusion
stacks, as the carbon slabs are usually manufactured using a manufacturing process
known as pultrusion. The pultrusion process is ideal for creating long uniform slabs
consisting of long unidirectional fibers held together by resin. Paper E examines two
different types of carbon fiber composites used in blades, one of which is manufactured
using pultrusion. The carbon fibers examined here have a diameter of about 7 µm,
making them slightly thinner than the glass fibers described above.

2.2 Blade structure
While the exact blade structure varies between blade models, most blades follow
the same overall design principles. A schematic overview of a wind turbine blade is
shown in Figure 2.4. Some of the most important parts of the blade are the spar caps,
which are the primary load-bearing structures stretching from the root to the tip of
the blade. The spar cap is the area of the shell, where the shear web is attached,
and is usually reinforced with glass or carbon fiber composites (“laminate layer” in
Figure 2.4). The blade shown in Figure 2.5 has a single shear web attached to the
spar caps on either side. However, large blades often have two or three webs and four
or six spar caps.
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(a) Glass fiber fabric (b) Front side 0°

(c) Back side ±45°, 90° (d) Front side 0° (e) Back side ±80°

Figure 2.1 – Photos of unidirectional glass fiber fabrics used in wind turbine blades.
The individual fibers are bundled and stitched together in layers to form the fabric.
Photos by Lars P. Mikkelsen, DTU Wind Energy, 2018.

Figure 2.5 shows a cross-section of a blade near the tip. The leading edge of the blade
is made from thick fiberglass to provide structural rigidity and allow it to withstand
the pressure from the air. The spar caps are made from carbon fiber composites
and glued to the shear web. This structure makes the blade strong and extremely
stiff in the spanwise direction. The remaining part of the shell consists of a light
filler material, such as foam or balsa wood, wrapped in a thin layer of fiberglass. On
the outside of the blade, the fiberglass is coated and painted to make it smooth and
protect it from the elements.

2.2.1 Spar cap defects
For larger blades, pultruded carbon stacks are often used in the spar cap due to their
superior material properties compared to fiberglass. However, in many smaller blade
models or older designs, the spar cap is made entirely from fiberglass. In either case,
since this is the structurally most critical part of the blade, the spar cap and web
adhesive region is subject to thorough ultrasound inspection during manufacturing.
Although other parts of the blade may also be subject to UT, the vast majority of
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Figure 2.2 – Blade technicians at Vestas Wind Systems manufacturing plant in Wind-
sor lay fiber material in a shell of a wind turbine blade. Photo by BizWest/Joel Blocker,
2015. Published by BizWest, June 30 2017.

(a) (b)

Figure 2.3 – (a) Pultruded carbon during production. Photo by Zoltek, published by
CompositesWorld, March 27 2018. (b) Carbon pultrusions manufactured by Fiberline
Composites of the type used in wind turbine blades. Photo published by Environmental
XPRT.
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Figure 2.4 – Schematic overview of blade structure. The laminate (FRP) layers con-
nected by the shear web are the primary load-bearing parts of the blade, known as the
spar caps. Published by Windpower Monthly, 1 July 2012. Based on illustration by
Gurit.

Figure 2.5 – Cross-section of a wind turbine blade near the tip. The different structural
parts of the blade are highlighted. This blade uses carbon fiber composites for the spar
cap. ©2018 Wiley. Used with permission from Martin et al. 2018.
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the ultrasound data is collected from the spar cap and web region.

It is critical for the strength and stiffness of fiber-reinforced composites that all air
between the fibers is replaced by resin. Air, or the lack of matrix material, is the
primary cause of defects in fiber composites and thereby the primary cause of defects
inside the spar cap. The related defect types include:

Porosity Microscopic air bubbles in the matrix material.

Voids Larger air bubbles in the matrix material.

Dry fibers Fibers (or parts of fibers) not in contact with matrix material.

Delamination Disbonds in the matrix material, often due to thin air pockets
or fractures in the matrix.

All four defect types listed above may be critical, depending on the location and
size of the defects. Because they are all variations of “lack of matrix material”,
distinguishing between the defect types can be difficult. A void may result in dry
fibers or lead to a delamination. Thus, an observed defect may belong to several
defect classes. However, in practice, human evaluators usually choose the defect type
they think describes the defect most accurately. Due to overlapping defect definitions
and imperfect data, the human evaluation is quite subjective. This means that both
classification and measurements of defects may vary significantly depending on the
person performing the evaluation.

Another defect type, which occurs more frequently in thicker fiberglass structures, is
out-of-plane wrinkles. A wrinkle is essentially a fold in the fiber fabric, which may be
a result of bad lay-up of the fabric or issues with the infusion process. The severity of
the wrinkle is determined by its height, angle, and width. Wrinkles with high angles
are often accompanied by pockets of air or resin, as shown in Figure 2.6.

The key to detecting these types of defects is being able to recognize structural features
in the data and separate these from unexpected features, i.e. defects. Whether a
significant feature in the ultrasound image is a defect depends very much on where
in the structure the feature is located. In other words, to detect and characterize
defects, we must be able to separate them from structural features and determine their
position in the blade structure. However, defects often obscure the structural features
we rely on for positioning, which along with high levels of noise makes evaluation very
dependent on both prior knowledge and contextual information.

2.2.2 Bond line defects
The adhesive (glue) between the inner surface of the spar cap and the shear web
is critical to the structural integrity of the blade. As a result, blade manufacturers
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Figure 2.6 – Fiberglass cut-out with several out-of-plane wrinkles and pockets of resin.
Photo by FORCE Technology.

inspect the glue area (bond line) looking for glue defects such as voids or delamination.
Manufacturers often measure and record the glue width and glue thickness at intervals
along the length of the blade to ensure they are within specification. Out-of-spec
width or thickness is considered a defect and must, like other defects, be repaired
before the blade can pass QC. Figure 3.16a illustrates how glue width and thickness
may be measured on the cross section of the bond line.

Apart from inspection of the glue, bond line inspection may also include measuring
the chordwise position of the web. If the web is not attached to the spar cap in the
correct position, it could lead to a critical structural failure once significant load is
applied to the blade.

The recording of measurements, such as glue width and thickness, are good examples
of tasks, for which an automated method would be far superior to manual labor. Not
only would it be feasible to record measurements at a much higher resolution, the
consistency between the measurements should also be much better. Such measure-
ments should be useful for blade designers and process managers to quantitatively
compare blades produced using different methods, or for managers to compare blade
quality over time at different factories.

2.3 X-ray computed tomography
X-ray computed tomography (CT) is a powerful nondestructive imaging technique
widely used in science, medicine, and many other places. In tomography, X-rays are
used to create a cross-section image of an object. The object is placed between the
X-ray source and a detector/camera. X-rays penetrate the material but are absorbed
according to the material density, so the image records the projected material density.
For CT, the object that is being scanned is typically rotated relative to the source
and detector to acquire multiple images taken at different angles, which are combined
using a reconstruction algorithm to create a 3D image (volume) of the object. For
laboratory X-ray CT scanners, this is typically achieved by placing the sample on a
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rotating stand between the source and detector as shown in Figure 2.7. Volumetric
CT data was used for experiments in all five papers presented in this thesis.

2.3.1 Micro-CT of composites
Micro-CT (µCT) is CT, where the image resolution (pixel size) is in the micrometer
range. As will be shown in Chapter 4, µCT works well for acquiring high-resolution
volumes of both glass and carbon fiber composites. Due to the difference in density
between the fiber and matrix materials, modern laboratory µCT scanners can create
3D images, where individual fibers are clearly visible, which allow detailed analysis of
the composite material’s microstructure. However, this is a slow process, which can
easily take days, even for samples only a few cubic centimeters in size.

2.4 Ultrasound
Ultrasound is sound at frequencies beyond what is audible to humans. This means
that all sound from around 20 kHz and up is considered ultrasound. Apart from
frequency, ultrasound is no different from regular audible sound in any physical way.
It is simply mechanical pressure waves moving through matter at the speed of sound,
which is approximately 343 m/s for air but much higher for solid materials such as
steel (approx. 5960 m/s). The speed of sound in composites varies depending on the
composition of the material, but for the composites used in blades the speed is often
estimated at 2000 m/s to 3000 m/s for sound travelling perpendicular to the fiber

Detector

Rotating stand

X-ray source Sample

Figure 2.7 – Typical X-ray CT setup with a fixed X-ray source and detector on either
side of a rotating stand.
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orientation. It is the large difference between the speed of the sound in the air and
in the composites that allows UT to detect air trapped inside the blade structure.
Similarly to X-ray tomography, ultrasound transmission tomography (UTT) can be
used to measure the attenuation of an object by placing a transmitter and a receiver
on either side of the object. However, the pulse-echo method, using a transceiver
that both acts as a transmitter and receiver, is more commonly used. Pulse-echo
ultrasound turns out to work well for detection of defects in many types of materials
for a number of reasons.
The primary practical advantage of pulse-echo compared to tomography, is that it
allows one-sided inspection. In many real-world scenarios, being able to image the
internal structure of an object from one side is a huge advantage. This is especially
true for large structures. Instead of measuring attenuation, pulse-echo tells us how
much of the signal was reflected at a certain time. Thus, by measuring the time
between the initial pulse and the reflected signal, and knowing the speed of sound in
the material, it is possible to calculate the depth at which the signal was reflected.
Both sound and light behave like waves and follow the same physical laws of refraction
and reflection. The reflected part of the wave is reflected at the angle of incidence,
while the angle of the refracted wave can be calculated using Snell’s Law. However,
light moves much faster than sound and the X-rays have a much shorter wavelength
than the ultrasound used for UT. And as noted above, the speed of sound is many
times higher in composites than in air. As a result, X-rays practically pass straight
through the composite blade structure including any of the potential defects described
previously. Sound on the other hand, is reflected and refracted whenever it moves
between materials with different sound velocities. How much of the signal is reflected
versus refracted depends on material densities and differences in the sound velocities
of the materials. Thus, interfaces between solid materials and air causes the majority
of the signal to be reflected. This makes pulse-echo ultrasound well suited for locating
imperfections, in particular air, inside solid structures.

2.4.1 UT of blade composites
As previously stated, UT is used to detect a variety of defects in wind turbine blades,
particularly in the spar cap region. Figure 2.8 shows most of the defect types in-
spected for using pulse-echo ultrasound. This includes location and size estimation of
delamination, dry areas, porosity, gelcoat disbonds, kissing bond, as well as measure-
ment of shell thickness, glue thickness, and glue width. However, using ultrasound
in composite materials is actually difficult for the same reason that ultrasound is
effective for detecting certain defects.
The sound is reflected and refracted whenever it passes from one material to another,
and because the blade composites consist of layers of resin, carbon fibers, and glass
fibers, the sound is constantly reflected and refracted in different directions. This
makes the reflected signal received by the probe incredibly noisy. To remove some of
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Figure 2.8 – Common defects in spar cap and bond line (web adhesive). One or
more pulse-echo ultrasound probes (blue box) are moved across the surfaced transmit-
ting ultrasound into the structure and listening for echoes. Illustration by FORCE
Technology.

the noise, a band-pass filter around the probe frequency is used. Furthermore, because
of the high attenuation of the composite materials and the thickness of the shell, it
is necessary to use a relatively low probe frequency (0.5 MHz to 1 MHz). This puts a
limit on the resolution in the direction of transmission, as the resolution depends on
the signal frequency/wavelength.

Figure 2.9 shows an ultrasound image of the fiberglass sample from Figure 2.6. The
type of image shown here is known as a B-scan, and consists of a series of A-scans
stacked together and colored based on the amplitude. An A-scan is simply a series
of sound/pressure wave amplitudes sampled over time. Figure 2.10 shows data from
the same fiberglass sample, with a single A-scan plotted left of the B-scan. In this
specific case, each A-scan contains 3702 amplitude values, sampled at 100 MHz. The
A-scans are collected by moving the probe over the surface while tracking its position.
Every time the probe has moved a certain distance it transmits a wavelet with a
mean frequency of 0.5 MHz and then starts sampling at 100 MHz for a short amount
of time (37.02 µs in this case).

The ultrasonic wavelet is created by applying a small electric current to the piezo-
electric crystal in the probe. The reverse process is used for sampling, where the
sound wave is converted to an electric current by the piezoelectric crystal. Thus, the
raw sampling values are usually measured in mV. However, for easier interpretation,
these values are usually converted to dB. Note that dB is a logarithmic scale, which
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changes the shape of the signal. Figure 2.10a shows the full signal (with positive
and negative values), while Figure 2.10a contains absolute values of the signal. It is
common practice for human experts to use the absolute values for evaluation.
A common misconception in evaluation of ultrasound images of composites is that
the horizontal lines in the B-scans (see Figure 2.10) correspond to glass or carbon
fiber layers in the scanned composite. This is not the case. The pattern is actually
the oscillation of the 0.5 MHz wavelet that was transmitted from our probe in the
first place. Remember, what we are seeing are reflections of our transmitted signal.

2.4.1.1 Instantaneous amplitude

The A-scan oscillation form (phase) can be valuable for analysis, for instance, when
looking for wrinkles. However, when measuring sizes or positions, it may complicate
things. For example, imagine that we want to measure the thickness of the fiberglass
from Figure 2.9. For simplicity, we assume a fixed sound velocity, which allows us to
easily convert time to distance. Thus, all we need to do is to measure the time from
the front surface reflection to the back surface reflection. We assume that the samples
with the highest amplitudes are the ones closest to the surfaces. However, as the signal
changes while passing through the composite material, it may become unclear which
local maximum should be chosen. For instance, the back wall reflection for the A-scan
in Figure 2.10b is somewhere around sample 2500, but it is not clear which of the
three peaks is closer to the surface. In fact, the surface may reside between two of
the peaks. A convenient way to overcome this issue is to calculate the instantaneous
amplitude of the signal. This is done by using the Hilbert transform to determine
the complex analytical signal, where the imaginary part of the signal corresponds to
the phase and the real part is the instantaneous amplitude. Figure 2.11 shows the
instantaneous amplitude for the data shown in Figure 2.10.
As shown in Figure 2.11, the instantaneous amplitude acts as an envelope around
the absolute valued signal. In most cases, this simplifies the task of detecting surface
positions based on the peak signal amplitude. From an image analysis point of view,
the instantaneous amplitude data is much more approachable for surface detection
as well as image segmentation, than the data that includes the phase as shown in
Figure 2.10. For this reason, I use the instantaneous amplitude data for my work on
automatic evaluation of blade structures.
The instantaneous amplitude data in Figure 2.11 contains some minor artifacts due to
the data type used to store the data. It is likely that some high-frequency variations
may be a result of this compression.

2.5 Summary
In this chapter, I have given a brief introduction to glass and carbon fiber-reinforced
composites used in the spar caps of wind turbine blades. Furthermore, I have outlined
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Figure 2.9 – Ultrasound B-scan of fiberglass containing multiple resin pockets and
wrinkles. Markers highlight approximate positions of various prominent reflections.
The top image is a screenshot from the P-scan 4 software. The signal shown is a
rectified signal. Red indicates high amplitudes and blue low amplitudes. The curve to
the right show the rectified A-scan at the cursor (dotted line) position. Data and photo
by FORCE Technology.

the structure of the spar caps, some of the defects commonly found within the spar cap
region, and some of the challenges related to finding and characterizing these defects.
Finally, I have covered the most fundamental aspects of the two imaging techniques
used to acquire data in my work, namely X-ray CT and pulse-echo ultrasound.
The blade materials and structure play a significant role in the choice of the two
imaging techniques presented in this chapter. X-ray CT is used for analysis of fiber
composite microstructures due to its high data quality, allowing separate fibers to be
clearly visible in the data, while ultrasound is used for inspection of blade composite
structures due to its flexibility and sensitivity to changes in sound velocity.
The interpretation of X-ray CT data is fairly intuitive to most people as long as the
densities of the imaged structures are different enough to allow good contrast. The
fiber structures that we see in the datasets presented in Chapter 4 correspond to the
actual fibers. Thus, we can estimate the actual fiber orientations by estimating the
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Figure 2.10 – Ultrasound data from the fiberglass sample shown in Figures 2.6 and 2.9.
The B-scans (right) are made up of a series of A-scans (left) stacked together and colored
using the amplitude.
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Figure 2.11 – Instantaneous amplitude B-scan for the data shown in Figure 2.10. The
dotted line is the absolute valued A-scan signal shown in Figure 2.10b.

orientations of the fiber-like structures in the CT scans. This is inherently different
from the pulse-echo ultrasound, used for blade inspection, where we are measuring
reflections instead of attenuation. While transmission methods, such as X-ray CT can
tell us something about the density of the materials based on attenuation, pulse-echo
ultrasound signals carry information about changes in the materials. As a result,
peaks in the signal amplitude appear at the interface between different materials,
i.e. the material surfaces. Thus, measuring the blade structures often depends on
accurate surface detection, which often relies heavily on prior knowledge due to the
low signal to noise ratio of the data.



CHAPTER3
Graph Cut

Segmentation
In this chapter, I introduce the methods related to the research contributions of my
Ph.D. project. Apart from introducing the methods, the goal of this chapter is to
relate the contributions to each other and to quality control of wind turbine blades.
I give an introduction to some popular graph cut-based optimization methods used
in image analysis and discuss state-of-the-art within the field.

Afterwards, I present our three contributions. The first paper introduces a new
method for creating efficient graph structures when solving multi-label segmentation
tasks, while two other papers focus on parallel maxflow/mincut optimization algo-
rithms. The papers included in this chapter do not discuss the application of the
methods to wind turbine blade structures. The primary reason is data confidential-
ity, which means we are not able to share blade data publicly. However, in Section 3.8
I discuss the interpretation of ultrasound images of the blade spar cap and the moti-
vation for using graph cut methods for analyzing the spar cap structure.

3.1 Maxflow/mincut algorithms
Maxflow/mincut optimization algorithms for s-t graph cut have long been popular in
computer vision due to their excellent performance on many classical vision problems.
This includes image restoration, stereo and motion, image synthesis, image segmen-
tation, and more [Kolmogorov and Zabih 2004]. Common to all of these problems is
that they can be solved by minimizing an energy function of the form

E(x) =
∑
p∈V

θp(xp) +
∑

p,q∈V
θpq(xp, xq) . (3.1)

Here, V is a set of nodes, usually corresponding to the pixels in an image and x =
{xp ∈ {0, 1} | p ∈ V} is the binary labeling of the nodes. The energies θp and
θpq usually encode data terms and interaction terms, respectively. In other words,
minimizing E corresponds to assigning a binary label to each node, such that the
sum of all energy terms is as small as possible. Using s-t graph cut algorithms, it



24 3 Graph Cut Segmentation

is possible to find a global optimal solution (x minimizing E) in polynomial time as
long as E is submodular [Kolmogorov and Zabih 2004]. The energy function E is
submodular when

θpq(0, 0) + θpq(1, 1) ≤ θpq(0, 1) + θpq(1, 0) (3.2)

for all pairs of nodes p, q ∈ V. In Section 3.3, I introduce an algorithm for solving non-
submodular problems. However, in this section, I will focus on submodular problems.
To minimize submodular energy functions using s-t graph cut, we must first construct
a directed graph, G = ({V, s, t}, E), with non-negative edge capacities, where V are
the nodes and E are the graph edges. The set of nodes, V, in the graph correspond
exactly to the nodes in the energy function. However, the graph also has two special
terminal nodes, s (source) and t (sink). The edges, E , are then created from the
energies as shown in Table 3.1.

Energy term Corresponding edge Edge capacity (cap)
θp(0) (p → t) θp(0)
θp(1) (s → p) θp(1)

θpq(0, 1) (p → q) θpq(0, 1)
θpq(1, 0) (q → p) θpq(1, 0)

Table 3.1 – Mapping from submodular energies to edges [Kolmogorov and Rother
2007].

Once the graph has been constructed, the optimal labeling can be found by solving a
so-called s-t mincut problem: For G, find a cut with a partition of the nodes {V, s, t}
into two disjoint sets, S and T , where s ∈ S and t ∈ T . This is a s-t-cut. The cost of
the s-t-cut is the sum of the capacities of all edges from S to T

cost(S, T ) =
∑

u∈S,v∈T

cap(u, v) , (3.3)

where cap(u, v) is the capacity of the edge (u → v).
The partition with the smallest cost is the mincut. The labeling of the nodes is
determined based on the partition, such that xp = 0 ∀ p ∈ S and xq = 1 ∀ q ∈ T .
The representation of the original energy function, E, as an s-t graph, G, for which
we can compute a minimum cut, is key to solving the problem fast. The reason for
this is the Ford-Fulkerson theorem [Ford Jr and Fulkerson 1962], which states that
finding the minimum cut is equivalent to computing the maximum flow from s to t.
And there are a number of fast so-called maxflow/mincut algorithms for computing
the maximum flow/minimum cut between two nodes in a graph.
Maxflow algorithms generally fall into one of three categories: augmenting path al-
gorithms, push-relabel algorithms, or pseudoflow algorithms, with the latter being a
combination of the first two. A few of the most notable algorithms are listed in Ta-
ble 3.2. The Excess Incremental Breadth First Search (EIBFS) algorithm [Goldberg,
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Hed, Kaplan, Kohli, et al. 2015] is considered state of the art, as it performs the best
overall for a variety of different graph cut problems. However, for certain types of
problems, the Hochbaum Pseudoflow (HPF) algorithm [Hochbaum 2008] performs sig-
nificantly better. The Boykov-Kolmogorov (BK) algorithm [Boykov and Kolmogorov
2004] also remains popular due to its good performance and flexibility. There are
different versions and implementations of all of these algorithms, in particular the
BK algorithm. Benchmarks comparing popular maxflow algorithms can be found in
Goldberg, Hed, Kaplan, Kohli, et al. 2015; Fishbain, Hochbaum, and Mueller 2016,
and Paper B. It should be noted that no single algorithm performs the best for all
problems. Their performance depends on the concrete energy function/graph, as well
as implementation details such as data structures, compiler options, and even system
details such as CPU cache size, memory bandwidth, etc.

Algorithm Type Reference
Ford-Fulkerson Aug. path Ford Jr and Fulkerson 1962
Dinic’s Aug. path Dinic 1970
Push-relabel Push-relabel Goldberg and Tarjan 1988
BK Aug. path Boykov and Kolmogorov 2004
HPF Psudoflow Hochbaum 2008
IBFS Push-relabel Goldberg, Hed, Kaplan, Tarjan, et al. 2011
EIBFS Psudoflow Goldberg, Hed, Kaplan, Kohli, et al. 2015

Table 3.2 – A few notable maxflow algorithms.

It is important to understand that all these maxflow algorithms are interchangeable in
the sense that they all find the global optimal solution. Although, if there are several
global optimal solutions, the results may vary depending on implementation details.
The fact that these algorithms are guaranteed to find a global optimal solution, even
for large complex problems, is really quite impressive. Many, if not most, algorithms
used in image analysis and computer vision operate locally (e.g., using kernels) and/or
are limited to finding good locally optimal solutions (e.g., gradient descent). However,
with maxflow algorithms, we can formulate and solve problems with complex non-local
interactions in reasonable time with guaranteed optimality, as long as the energy
function is submodular.

In summary, many vision tasks can be formulated as submodular binary optimization
problems, which can be solved optimally, and usually fast, using maxflow/mincut
algorithms. However, as we will see, by reformulating the problem slightly, it becomes
possible to formulate, and in many cases solve, non-submodular problems as well. For
a more in-depth explanation of the use of maxflow algorithms for image segmentation,
I recommend the paper by Boykov and Funka-Lea 2006. The article contains good
explanations of the theory, discusses how to formulate energies, and contains examples
of image segmentation in both 2D and 3D using graph cuts.
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3.2 Graph structures
In this section, I will discuss a few common graph structures used when formulating
energies for image segmentation. I will not discuss the formulation of energies based
on actual data (e.g., pixel values), as the exact formulation will usually depend on
the task at hand. Boykov and Funka-Lea 2006 offer some suggestions regarding the
formulation of energies for image segmentation for those interested.

3.2.1 Grid graph

The most common way to structure the energies/graph is creating a node for each
image pixel (or volume voxel) as shown in Figure 3.1. Then unary energies (terminal
edges) are added as data terms, as shown in Figure 3.2, and pairwise terms (non-
terminal edges) are added between neighboring pixel nodes as shown in Figure 3.3a.
Typically a four or eight-neighborhood structure is used in 2D, and a six or 26-
neighborhood structure is used in 3D. Figure 3.3b shows the segmentation found by
solving the maxflow/mincut. Here, the graph has been cut into five regions marked
by orange lines. The cut non-terminal edges are marked with orange and the cut
terminal edges are marked with orange borders on their respective nodes.

This grid structure is very popular, likely due to its simplicity, which has resulted
in a number of specialized implementations of the BK algorithm (e.g., Grid-Cut by
Jamriska, Sykora, and Hornung 2012) for cutting graphs with a fixed neighborhood
or a fixed neighborhood size. For instance, in a fixed four-neighborhood structure,
each node would contain an array of four edge capacities, one for each of the four
neighbors in the grid. This is very efficient, as we do not have to store information
about which node the edge is pointing to. Furthermore, because the information is
stored in the node structure, performance is often improved due to improved cache
efficiency in the hardware. Similarly, fixed size neighborhoods allow us to store edge
information inside the node structures for better cache efficiency.

While a fixed neighborhood allows for more efficient implementation, as shown with
both Grid-Cut and UBK by Goldberg, Hed, Kaplan, Tarjan, et al. 2011, it drastically
limits the flexibility of the implementation, as only graphs with a specific predeter-
mined graph structure can be cut. A hybrid approach, which has a small fixed size
neighborhood, but allows further edges to be added dynamically, could perhaps pro-
vide the best of both worlds. However, to my knowledge, this approach has not yet
been attempted. From an algorithmic point of view, implementation details, such
as how edges are stored, may seem unimportant. Nevertheless, given the relatively
small difference in performance between the fastest maxflow algorithms [Goldberg,
Hed, Kaplan, Kohli, et al. 2015], implementation details often have a significant im-
pact.
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(a) Image (b) Image with nodes

Figure 3.1 – Small sample image with one node per pixel.

High t cap. None High s cap.
Node terminal edge capacity

(a) Terminal capacities

s

t
(b) Terminal edges

Figure 3.2 – (a) Sample image with nodes, where the node color indicates the terminal
edge capacity for the given nodes. As shown in (b) the red edges go from the source
to the nodes, while blue edges go from the nodes to the sink. In this example, the
terminal capacities depend on the pixel intensities.
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High t cap. None High s cap.
Node terminal edge capacity

None High
Edge capacity

(a) Grid edges (b) Cut/segmentation

Figure 3.3 – (a) 4-neighborhood grid graph. Here, the terminal edge capacities depend
on the pixel intensities and the non-terminal edge capacities depend on the difference
in pixel intensities. (b) The mincut segmentation result. The orange lines show the
segmentation boundary/cut separating the nodes connected to s and t. The orange
edges are non-terminal edges that were cut and the nodes with orange border mark
terminal edges that were cut.

3.2.2 Multi-label graph
Being able to solve binary optimization problems, such as binary segmentation is
very useful. However, many segmentation tasks are not binary but rather multi-
label/multi-object problems. I will use multi-label and multi-object segmentation
interchangeably, depending on the context, but in practice, it is the same thing. One
well-known approach for solving multi-label problems using a binary labeling is α-
expansion [Boykov, Veksler, and Zabih 2001], which iteratively computes the maxflow
using different energies for each label. However, this approach does not guarantee an
optimal solution and often gets stuck in bad local minima [Isack et al. 2017].

Another approach is to construct a layered graph using the approach by Ishikawa 2003.
In its simplest form, the Ishikawa layered graph is created by replicating all graph
nodes for each label. Thus, if we want to segment an image with two different labels
(plus a background label), instead of creating one node for each pixel as shown in
Figure 3.1b, we create a graph with two layers, each containing one node for each pixel
as shown in Figure 3.4a. For each layer, the binary node labeling will indicate whether
the node, and thereby the corresponding pixel, belongs to the layer label or not. If
the reader is not familiar with the Ishikawa technique for multi-label segmentation,
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I recommend the paper by Delong and Boykov 2008. It does an excellent job of
explaining how to use the Ishikawa layers for multi-label/multi-object segmentation
on grid graphs with so-called interaction constraints.

Interactions are represented by pairwise energy terms between nodes in different
layers and are essential to the Ishikawa approach. In Figure 3.4 we create hard con-
tainment interaction constraints between the two layers, by adding infinite capacity
edges, corresponding to θpq(0, 1) = ∞, between nodes in layer 1 (L1) and layer 2
(L2). Figure 3.4d shows a small region of the image and nodes, where five contain-
ment edges are highlighted. Other edges are opaque to avoid clutter. The five edges
enforce containment with a margin of one. This means that node q ∈ L2 can be
labeled xq = 1 only if all five nodes p ∈ L1 are also labeled xp = 1. Effectively, this
enforces the segmentation of L2 to be “inside” that of L1, with a margin of one pixel
as shown in Figure 3.4c-f. The margin can be increased by adding more terms/edges
and reduced to zero by using only a single term/edge. As discussed by Delong and
Boykov 2008, hard exclusion can be enforced in a similar way. However, exclusion
between more than two layers cannot be formulated using submodular energies.

The primary advantage of the Ishikawa technique, compared to other multi-label
approaches, such as α-expansion and HINTS [Isack et al. 2017], is that it keeps the
guarantee of optimality. Another advantage is that the solution is found using a single
cut. This also means that any runtime properties of the maxflow algorithm used still
apply. In contrast, this is often not the case for iterative approaches, which may have
to cut the graph many times before converging to a solution.

The most important downside to the Ishikawa technique is arguably the growth in the
size of the graph, which affects runtime and, perhaps more importantly, the memory
footprint. While this is less of a concern than it was a decade or two ago, due to
the increase in system memory and processing power, it is still a concern for 3D
segmentation tasks, and even 2D segmentation with many labels. In Paper A, I will
introduce a method for overcoming this issue. Another limitation of the Ishikawa
technique, as well as α-expansion and HINTS, is that the number of labels must
be known before segmenting the image. Lastly, we are still limited to submodular
energies, which means we can use containment/inclusion interactions, but we cannot
enforce mutual exclusion interactions between more than two labels/objects.

These geometric interactions are extremely powerful tools for multi-object segmen-
tation, but without being able to exclude multiple objects, we have no way of guar-
anteeing non-overlapping segments. I will return to this issue in Section 3.3, but
before that, I will move on to a special type of graph structure known as ordered
multi-column graph. As it turns out, this graph structure applies containment in a
slightly different way than grid-based containment. It could even be argued that the
entire structure is based on geometric containment.
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Image

Layer 1

Layer 2

(a) Ishikawa layers

Image

Layer 1

Layer 2

(b) Containment edges (zoomed)

Image

Layer 1

Layer 2

(c) Segmentation

Image

Layer 1

Layer 2

(d) Segmentation (zoomed)

(e) Layer 1 (f) Layer 2

Figure 3.4 – Ishikawa graph with two layers used to segment two interacting label-
s/objects (green and purple). Each layer is a 4-neighborhood grid subgraph with one
node per image pixel. The layers are connected with infinite capacity edges (black),
which enforce containment with a margin of one. (b) and (d) show the lower left corner
of the image and graph only.
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3.2.3 Ordered multi-column graph
The proper ordered multi-column graph [Wu and Chen 2002] is a special graph struc-
ture, popularized by Kang Li et al. 2006, who demonstrated its usefulness for surface
detection, as well as object segmentation, in both 2D and 3D. If the reader is not
familiar with Li’s paper, I encourage the reader to have a look at it. The structure
used by Li relies heavily on hard containment with infinite energies, corresponding
to infinite edge capacities in the graph.

For surface detection, the simplest approach is to start by creating one node per pixel,
just as we did with the grid graphs. In this case, the nodes inherit the row and column
neighborhood structure from the image pixels. The ordered columns are created by
adding an edge corresponding to θpq(0, 1) = ∞ between each pair of nodes p and
q, where p is “above” q in the same column (see Figure 3.5a). This hard constraint
means that we can never have a node, p, with label xp = 1 below a node, q, with
label xq = 0. As a result, there can be at most one change in labeling of the column
nodes, which can occur only if xp = 1 and xq = 0 where p is above q in the column.
This change in labeling corresponds to the position of the surface marked with the
orange line in Figure 3.5c.

As shown in Figure 3.5, instead of having a one-to-one correspondence between pixels
and nodes, on the vertical axis we instead position the nodes on the pixel borders.
This is mostly a matter of interpretation, and is done because unary energies are
formulated using the difference in pixel intensity along the vertical axis. Positive
differences result in (red) edges from the source and negative differences result in
(blue) edges to the sink. A top row is added to keep the original shape of the data.
All nodes in the top row are connected with infinite capacity sink edges as shown
in Figure 3.5b. The result of this energy formulation is that the surface will pass
through the pixels with the lowest intensity. Clearly, this formulation by itself is
not particularly useful as finding the pixel with the lowest value in each column is
trivial. However, when combined with smoothness and interaction constraints, this
formulation of unary energy terms is useful for many segmentation tasks.

To ensure smoothness, we may add θpq(0, 1) = ∞ terms between nodes in different
columns, where the smoothness is determined by the integer value. Li refers to this
value as ∆x. In Figure 3.6, the hard smoothness constraints have been added with
∆x = 2. As a result, the segmented surface can move no more than two nodes/pixels
up and down between adjacent columns. This completely changes the optimal solution
and thus the segmentation result, as the segmentation is now required to be relatively
smooth along the horizontal axis. As shown in Figure 3.6b, the new optimal surface
is indeed smooth, compared to the unconstrained surface from Figure 3.5c.

For detection of multiple surfaces, Li also uses the Ishikawa layered technique. Li
shows how geometric containment constraints can be efficiently applied to enforce
both minimum and maximum margins between surfaces, even allowing negative mar-
gins. Figure 3.7 shows two interacting surfaces and Figure 3.5b shows the interactions
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High t cap. None High s cap.
Node terminal edge capacity

(a) Column structure

s

t
(b) Terminal edges

(c) Segmentation

Figure 3.5 – Column graph structure with infinite capacity (black) between column
nodes. Terminal edge capacities are based on the difference in pixel values along the
vertical axis. The top row of nodes are connected with infinite capacity edges to the
sink. The orange line indicates the detected surface and nodes with orange border
indicates nodes where terminal edges were cut.
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(a) Column structure with smoothness (b) Segmentation

Figure 3.6 – Column graph with smoothness constraints, ∆x = 2. These constraints
are enforced with infinite capacity edges between nodes in different columns. The
constraint means that the optimal surface cannot move more than two nodes up or
down between adjacent columns, thus resulting in a smooth surface.

between these surfaces. The inner surface (purple) is forced inside (above) the outer
(green) surface with a minimum margin of three and a maximum margin of five. The
smoothness of both surfaces is two. Note that the values of the inner surface unary
data terms have been negated, so that the surface it tracks is bright in the original
image.

The principles behind the interacting surfaces, used by Kang Li et al. 2006 for ordered
multi-column graphs, are fundamentally the same as for interacting objects, as used
by Delong and Boykov 2008. In both cases the θpq(0, 1) = ∞ containment term is
used to restrict the interacting Ishikawa layers. However, the maximum and negative
margin constraints can only be applied to the ordered multi-column structure used by
Li, not the grid structure used by Delong. Furthermore, for minimum margins larger
than zero, the column structure allows much more efficient enforcement of constraints,
as fewer terms/edges are needed than for the grid structure. With Li’s approach, only
a single edge per node is needed to enforce containment between two layers no matter
the size of the margin. Figure 3.8a shows edges enforcing a minimum margin of three
between the two surfaces using a single edge per node in layer 1. Meanwhile, for the
grid structure, the number of edges required for containment depends polynomially
on the size of the margin. For instance for a margin of size one, five edges are needed
per node as shown in Figure 3.4d.
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(a) Outer surface (b) Inner surface

Figure 3.7 – Cut layered ordered multi-column graph with surface smoothness. The
surface smoothness is two. As for previous figures, node colors indicate s, t-edge ca-
pacities. The colored lines indicate the surface, and the node borders of similar color
indicate cut terminal edges. The unary terms for the inner surface are negated, so that
the surface tracks bright pixels in the original image. For details in label-interactions
see Figure 3.8.
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(a) Minimum margin edges
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(b) Maximum margin edges

Figure 3.8 – Cut layered ordered multi-column graph with surface smoothness. Edges
between two layers are infinite capacity interaction constraints, forcing layer 2 to be
inside/above layer one. In (a) edges enforcing a minimum margin for one column are
highlighted, while (b) highlights edges enforcing a maximum margin of five.
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3.2.4 Object segmentation with ordered multi-column graphs

As shown by Kang Li et al. 2006, the ordered multi-column structure is useful, not
just for surface detection, but also for object segmentation. For object segmentation,
the approach relies on resampling the data, e.g., using radial sampling, to “unfold”
the object. First, we sample radially around some known position inside the object
we want to segment as shown in Figure 3.9a. In this case we would like to segment
both the bright inner part of the object and the dark ring, so we create two layers of
nodes as shown in Figure 3.9b. Now that we have the sample positions, we sample
the image intensities at the positions, as shown in Figure 3.10a, which we can then
unfold to a new images as shown in Figure 3.10b.

In this concrete example, we want to detect the edge of the dark ring rather than
the ring itself. Thus, instead of using the difference along the vertical (X-)axis in the
unfolded image for unary energy terms, as we did for the previous example, we use the
second-order difference. Specifically, we use the negated second-order difference for
the outer surface (layer 1) and the regular second-order difference for the inner object
(layer 2). Just as before, we construct an ordered column graph with smoothness
constraints in each of the two layers (see Figure 3.11). The only difference is that we
also add smoothness constraints between the two outermost as we want the object
to be smooth all the way around. Another, in my opinion better, way of illustrating
these graphs is to draw the nodes at their original sample positions, rather than the
unfolded image pixel positions. The graphs in Figure 3.12 and 3.13 are identical to
those in Figure 3.11, except the nodes are drawn at the sampling positions rather than
the unfolded image pixel positions. As shown in Figure 3.14, this simple approach
allows accurate detection of object surfaces, which can either be interpreted as mesh
vertices or converted to a segmentation of the pixels in the original image.

As long as we have the information needed to create an ordered multi-column graph
along the surface(s) of the object we want to segment, the approach used by Li is very
useful. The ability to enforce hard constraints on the problem, while still being able
to compute the optimal solution fast makes it possible to incorporate prior knowledge
very effectively. One thing, not touched upon by Kang Li et al. 2006, is the use of
exclusion constraints between non-overlapping objects. This interaction constraint
is extremely useful for segmentation of non-overlapping objects. For instance, we
know the rings in Figure 3.9a cannot overlap. So, if we wanted to segment several of
them, it would be useful to constrain the results to avoid overlapping outer surfaces.
However, as noted by Delong and Boykov 2008, exclusion between more than two
objects leads to non-submodular energies that we cannot represent using the mapping
from energies to edges shown in Table 3.1. One way around this limitation is using
so-called quadratic pseudo-Boolean optimization (QPBO).
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(a) Sampling positions

Image

Layer 1

Layer 2

(b) Two layers

Figure 3.9 – Radial sampling positions. The same positions are used for both layers.

YX

(a) Sampled intensities

Y

X

(b) Unfolded samples

Figure 3.10 – Sampled values from the image at their sampled positions and unfolded
to a new image. The unfolded dark ring is clearly visible in the unfolded image.
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(a) Outer object surface (unfolded)

(b) Inner object surface (unfolded)

Figure 3.11 – Cut layered ordered multi-column graph with surface smoothness for
outer and inner object, respectively. Node colors indicate terminal edge capacities and
node border color (green or purple) indicate cut terminal edges. Black edges have
infinite capacity. The green and purple lines indicate the segmented surfaces of the
two objects. Interacting edges between outer and inner object are not shown, but use
the same structure as that of Figure 3.8, but with a minimum margin of three and
maximum margin of six. The graphs are identical to those in Figure 3.12 and 3.13.
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Figure 3.12 – Cut layered ordered multi-column graph with surface smoothness for
outer object (layer 1). Node colors indicate terminal edge capacities and nodes with
green border indicate cut terminal edges. Black edges have infinite capacity. The green
line indicates the segmented surface. Interacting edges between outer and inner object
are not shown, but use the same structure as that of Figure 3.8, but with a minimum
margin of three and maximum margin of six. The graph is identical to the one in
Figure 3.11a.
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Figure 3.13 – Cut layered ordered multi-column graph with surface smoothness for
inner object (layer 2). Node colors indicate terminal edge capacities and nodes with
purple border indicate cut terminal edges. Black edges have infinite capacity. The
purple line indicates the segmented surface. Interacting edges between outer and inner
object are not shown, but use the same structure as that of Figure 3.8, but with a
minimum margin of three and maximum margin of six. The graph is identical to the
one in Figure 3.11b.



40 3 Graph Cut Segmentation

(a) Object surfaces (unfolded) (b) Object surfaces

Figure 3.14 – Detected surfaces drawn on top of the data.

3.3 Quadratic pseudo-Boolean optimization
While many problems in image segmentation can be formulated using submodular
energy functions (3.2), there are cases where non-submodular energies are extremely
useful. One such case is instance segmentation of multiple non-overlapping objects.
Of course, there are many other uses of non-submodular energies, but here I will focus
on exclusion constraints as this is a very powerful geometric interaction that has been
important for my work on multi-object graph-based segmentation.

The foundation of the QPBO was laid by Hammer, Hansen, and Simeone 1984, and
Boros and Hammer 2002. Later, Kolmogorov and Rother 2007 implemented a highly
efficient version of the QPBO algorithm based on the BK Maxflow algorithm, which is
400-700 times faster than the previous QPBO implementation [Rother et al. 2007]. As
a result, non-submodular problems can often be solved almost as fast as submodular
problems. QPBO solves non-submodular optimization problems by creating a dual
graph that contains a copy of each node in the original primary graph. Then, instead
of creating one edge per energy term using Table 3.1, we use two edges for each term
as shown in Table 3.3. Where we for submodular problems have one graph node per
node in the energy function and one graph edge per energy term, we use two graph
nodes and two edges per node and energy term, respectively, when using QPBO for
non-submodular problems.

The strength of QPBO is that it allows us to represent the non-submodular energy
terms θpq(0, 0) and θpq(1, 1) as edges in a graph, for which we can use the maxflow
algorithms to find a maxflow/mincut solution. The publicly available QPBO im-
plementation by Kolmogorov uses the BK Maxflow algorithm, but in principle any
maxflow algorithm can be used. The QPBO implementation uses a few “tricks” to
speed up computations, but at its core it relies on the maxflow algorithm to cut the
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Energy term Corresponding edge Edge capacity (cap)
θp(0) (p → t), (s → p̄) θp(0)
θp(1) (s → p), (p̄ → t) θp(1)

θpq(0, 1) (p → q), (q̄ → p̄) θpq(0, 1)
θpq(1, 0) (q → p), (p̄ → q̄) θpq(1, 0)
θpq(0, 0) (p → q̄), (q → p̄) θpq(0, 0)
θpq(1, 1) (q̄ → p), (p̄ → q) θpq(0, 0)

Table 3.3 – Mapping from submodular and non-submodular energies to edges [Kol-
mogorov and Rother 2007]. Using these capacities, the total minimum energy/maxi-
mum flow will be twice that of the non-dual solution. To get the same energy, the edge
capacities may be halved, but this approach is not practical when integer capacities are
used.

graph. As such, QPBO is simply a way of reformulating the problem using a special
graph structure, rather than a competing graph cut algorithm.

The primary drawback of QPBO is that for non-submodular energy functions, the
guarantee of optimality is replaced by one of partial optimality [Kolmogorov and
Rother 2007]. In other words, we are no longer guaranteed a complete solution and
may end up with unlabeled nodes. However, the nodes which are labeled, are labeled
optimally. Thus, if the solution is complete, it is also optimal. The second downside
of using QPBO is that it doubles the size of the graph. This affects performance
negatively as runtime increases and the memory footprint is doubled. For smaller
tasks, this is generally not an issue, especially since the Kolmogorov implementation
uses a clever two-stage approach to re-use calculations between the primary and dual
graphs and avoids creating the dual graph entirely if the problem is submodular.
Papers A and C contain more details on QPBO. For now, the important thing to
note is that QPBO allows us to solve non-submodular optimization problems using
maxflow/mincut algorithms, at least partially.
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3.4 Paper A: Sparse Layered Graphs for Multi-Object
Segmentation

The first contribution in this thesis concerns a method for multi-label segmentation
with geometric interactions, using a flexible layered graph structure, which we refer
to as a sparse layered graph (SLG). The contribution was presented as a poster at
the Computer Vision and Pattern Recognition (CVPR) 2020. The one-minute video
for the presentation is available at https://youtu.be/CFUYuL1J85k. The poster,
which was not presented due to a change in the presentation format as a result of the
COVID-19 pandemic, can be found at http://doi.org/10.5281/zenodo.4575261. Links
to code, notebooks, and data can be found in the paper.

The version of the paper included below is the postprint. The published version can
be found at DOI: 10.1109/CVPR42600.2020.01279. The Open Access version made
available by CVF can be found at https://openaccess.thecvf.com.

https://youtu.be/CFUYuL1J85k
http://doi.org/10.5281/zenodo.4575261
https://doi.org/10.1109/CVPR42600.2020.01279
https://openaccess.thecvf.com/content_CVPR_2020/html/Jeppesen_Sparse_Layered_Graphs_for_Multi-Object_Segmentation_CVPR_2020_paper.html
https://openaccess.thecvf.com
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Abstract

We introduce the novel concept of a Sparse Layered
Graph (SLG) for s-t graph cut segmentation of image data.
The concept is based on the widely used Ishikawa lay-
ered technique for multi-object segmentation, which allows
explicit object interactions, such as containment and ex-
clusion with margins. However, the spatial complexity of
the Ishikawa technique limits its use for many segmenta-
tion problems. To solve this issue, we formulate a general
method for adding containment and exclusion interaction
constraints to layered graphs. Given some prior knowl-
edge, we can create a SLG, which is often orders of mag-
nitude smaller than traditional Ishikawa graphs, with iden-
tical segmentation results. This allows us to solve many
problems that could previously not be solved using general
graph cut algorithms. We then propose three algorithms
for further reducing the spatial complexity of SLGs, by us-
ing ordered multi-column graphs. In our experiments, we
show that SLGs, and in particular ordered multi-column
SLGs, can produce high-quality segmentation results using
extremely simple data terms. We also show the scalabil-
ity of ordered multi-column SLGs, by segmenting a high-
resolution volume with several hundred interacting objects.

1. Introduction
Most image segmentation research using graph cuts is

demonstrated on problems with less than ten labels. This
is enough for high-level segmentation tasks like organ,
brain, and bone segmentation. However, many segmenta-
tion tasks, such as microscopy imaging in medicine and ma-
terials science, involve hundreds or more objects. Segmen-
tation tasks with this number of labels have previously been
difficult, or even impossible to solve using s-t graph cuts.
With our method for constructing graphs, well-known graph
cut algorithms can efficiently solve segmentation tasks with
hundreds of labels.

Computational speed is essential for the practical use of

segmentation. Much of the success of graph cuts is owed to
the Boykov-Kolmogorov (BK) implementation of the Ford-
Fulkerson maxflow/mincut algorithm, which performs well
for many image-related optimization problems and gives
a globally optimal solution for submodular problems [1].
More recently, the Incremental Breadth-First Search (IBFS)
algorithm by Goldberg et al. [6] has shown even better per-
formance and run-time guarantees. Another way to speed
up the computations is to use a parallel algorithm [4, 18].
However, to our knowledge, these algorithms only work on
regular grid-based graphs.

By definition, s-t graph cuts provide a binary labeling.
For multi-label segmentation with graph cuts, one option is
to use the iterative α-expansion method [2]. However, it
often gets stuck in weak local minima. Another common
approach is to use the Ishikawa layered graph construction
[10], where each layer corresponds to one label. Using this
technique, it is possible to solve multi-label problems, while
enforcing label interaction constraints, such as containment
and two-label exclusion [5]. These interaction constraints
are often necessary to ensure that an object is inside another
object or that objects do not overlap. However, because the
exclusion term is non-submodular, the approach of [5] does
not work for more than two exclusive objects.

To enable multi-object exclusion, one approach is to use
the QPBO algorithm [11, 16], which can incorporate non-
submodular terms, at the cost of completeness. The algo-
rithm guarantees partial optimality, but may not find a com-
plete solution, i.e. there may be unlabelled nodes. A higher-
level alternative is the Path-Moves algorithm (HINTS) [8],
which is also able to incorporate non-submodular terms.
Unlike QPBO, it is an iterative algorithm that always pro-
vides a complete labeling and has been shown to find good
solutions, although they are not guaranteed to be optimal.

The number of objects that can be segmented using the
Ishikawa technique is in practice limited by the size of the
layered graph. If Ω is a set of nodes, usually corresponding
to the pixels of an image, and L is the set of labels/objects,
then the spatial complexity of the nodes in the layered graph
is O(|Ω||L|). However, the number of objects is not the
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Figure 1. Time spent solving three differently sized problems using
s-t graph cut with different graph constructions.

only important factor. When applying interactions between
the objects, it is possible, and often useful, to specify a min-
imum margin. For a N -neighborhood regular grid structure
[5], the spatial complexity of the interaction terms, and cor-
responding graph edges, depends polynomially on the size
of the interaction margins. In practice, this means that the
standard N -neighborhood graph structure is only useful for
segmenting a very limited number of objects, with small in-
teraction margins.

An alternative to theN -neighborhood structure is the or-
dered multi-column graph [19]. This approach is very use-
ful for surface detection, but may also be used for object
segmentation, when combined with resampling [13]. The
ordered multi-column structure makes it possible to impose
a certain geometry to the solution. Which geometry is im-
posed, depends on how the data is resampled.

While [13] describes how to handle containment inter-
actions for ordered multi-column graphs, object exclusion
is not described. Also, they assume contained objects are
sampled identically, which means that objects cannot be
sampled at different resolutions or have imposed different
geometries. Unlike the approach used by [5], the spatial
complexity of the ordered multi-column structure by [13]
does not depend on the size of the interaction margins. As
a result, appropriate margins can be chosen freely, without
worrying about the size of the layered graph.

To overcome the complexity issue of layered Ishikawa
graph structure, we introduce the concept of a Sparse Lay-
ered Graph (SLG), along with a general method for adding
object interactions to layered graphs. Using this method, we

construct a N -neighborhood SLG (N-SLG), which is sig-
nificantly smaller than the corresponding dense Ishiskawa
graph. Then, to further reduce the size of the graph, we
construct an ordered multi-column SLG (C-SLG), based on
the method by Li et al. [13]. Like the approach by [13], we
need some prior knowledge in the form of approximate size
and position of the objects. We propose three algorithms for
incorporating interaction constraints in C-SLGs, with very
few terms. Experimentally, we show that SLGs can be used
to reduce segmentation time and accurately solve segmen-
tation problems with hundreds of objects (see Fig. 1). Such
tasks cannot be solved with the traditional dense Ishikawa
layered graphs, used by [5, 8], due to the size of the graph.

We compare the segmentation accuracy, time and graph
size of different configurations of an N-SLG, C-SLG, and
the method by Li et al. [13], on an instance segmentation
task. Our experiments show the advantages of using SLGs,
and in particular C-SLG, over the traditional layered graph.
They also show that ordered multi-column graphs can pro-
vide accurate segmentations, even with extremely simple
models. We then demonstrate the scalability of C-SLGs by
segmenting a large volume with several hundred interacting
objects using a single graph cut.

Our method uses the QPBO algorithm. This means that
we cannot guarantee completeness, but only partial opti-
mality [16]. Thus, we may not be able to label all nodes
if the model contains non-submodular terms. Many unla-
belled nodes will result in a poor segmentation, so it is crit-
ical for the accuracy of our method that unlabelled nodes
are rare. To investigate the frequency of unlabelled nodes,
we segment a large set of images using SLGs. The results
show that accurate segmentation is possible with a simple
model, even on a varied data set. Furthermore, unlabelled
nodes are rare and have little impact on the segmentation.

Along with this paper, we release an open-source Python
package for constructing and solving SLGs (see Section 3).

2. Multi-object segmentation
We consider an image segmentation problem, with sev-

eral objects, which may be interacting. We use the term
object, label and layer interchangeably, depending on the
context – whether we refer to the content of an image, out-
come of a segmentation, or construction of a graph.

A common way to solve image segmentation problems
is by minimizing an energy function of the form

E(x) =
∑
p∈V

θp(xp) +
∑
p,q∈V

θpq(xp, xq) . (1)

For images, the node-set V usually corresponds to image
pixels, where the segmentation can be obtained as a pixel
labeling with labels xp ∈ {0, 1}. Unary energy terms, θp,
usually encode a data term, while pairwise energies, θpq ,
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encode interactions between pixels, as well as interactions
between labels.

If the energy function E is submodular, meaning that all
pairwise terms, θpq , between nodes p and q satisfy

θpq(0, 0) + θpq(1, 1) ≤ θpq(0, 1) + θpq(1, 0) (2)

then it is possible to use the s-t graph cut to find the global
energy minimum in polynomial time [12].

In many segmentation models, pairwise interactions are
symmetric (θpq(0, 1) = θpq(1, 0)), finite (θpq(0, 1) < ∞),
and submodular. Such interaction will encourage smooth-
ness and will be balanced by the unary terms. On the other
hand, asymmetric and infinite terms are useful to impose a
certain geometry or object interaction.

2.1. Sparse layered graphs

In the dense Ishikawa layered structure, used by [5, 8,
13], identical graph layers are created for each object, as
shown in Fig. 2b. This often results in a large number of
irrelevant nodes, as only a fraction of the nodes of a given
layer is usually inside or near the object. In an SLG, we
remove irrelevant nodes from the layers to reduce the size
of the graph. This creates what we call sparse layers, which
are layers where not all pixels are represented by nodes. To
determine which nodes are relevant for each layer, we use
information, which is often available or can be computed in
some way, such as approximate position and size of objects.

We can create a simple N-SLG, similar to the one in
Fig. 2c, by first constructing a dense Ishikawa graph. Then,
we crop each layer to remove nodes that are known to be
outside the layer object. This way, all nodes still correspond
to a single pixel, but not all pixels are represented by nodes.
This approach preserves the pixel neighborhood structure
between nodes in different layers used by previous methods
[5, 8].

A common way to reduce the number of nodes in graph
segmentation problems is to downsample data before cre-
ating the graph. However, this approach will also reduce
the resolution of the segmentation. If we are segmenting
interacting objects of varying sizes, it could be favorable to
downsample large objects, while keeping small objects at a
higher resolution. We could choose to only downsample the
data for layers with large objects, but this breaks the inter-
layer neighborhood structure.

It turns out that resampling can be used, not just for vary-
ing layer resolution, but also to enforce shape priors [13].
However, we need a way of adding object interactions be-
tween differently sampled layers.

2.2. Geometric interactions

We focus on two important geometric interactions:
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Figure 2. Five interacting objects, with different minimum con-
tainment margins, dl, and exclusion margins, de, are shown in (a).
Interactions are defined independently between pairs of objects.
With the Ishikawa technique, a layer is created for each object
as shown in (b). The gray dots at the bottom indicate nodes that
would correspond to pixels in the image. The colored dots are
the layer nodes. In a 4N-SLG, shown in (c), we keep the neigh-
borhood graph structure, but sample only a subset of the original
pixels. Alternatively, we can sample radially and create a column
graph (RC-SLG), as shown in (d).

• Containment. One object must be inside another ob-
ject, with the possibility of specifying a minimum mar-
gin between the objects (dlIJ in Fig. 2a).
• Exclusion. Two objects cannot overlap at any point,

with the possibility of specifying a minimum distance
(deIJ in Fig. 2a).

We propose a general way of applying containment and
exclusion terms between non-identical graph layers, such
as the ones shown in Fig. 2d. All we require, is that we can
calculate a distance between nodes in interacting layers.

In the following, we will consider objects I, J ⊂ R2 and
a set of graph nodes V = VI ∪ VJ , where VI and VJ are
graph layers for objects I and J . We will write i when we
refer to nodes from VI , and similarly j for VJ . The spatial
position of a node is given by a mapping p : V → R2, such
that p(i) denotes the position of node i.

Containment, e.g. object I contains object J , is simple
to enforce by adding an energy term for all pairs of nodes
i ∈ VI and j ∈ VJ

θij(0, 1) =∞ , ‖p(i)− p(j)‖ ≤ dlIJ . (3)

Here, dlIJ is the minimum margin between the outer object,
I , and inner object, J . The energy term θij(0, 1) = ∞ is
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submodular and can therefore be translated to a single edge
in a graph. Thus, we can solve problems with containment
constraints using a standard maxflow solver, such as [1].

Exclusion, e.g. objects I and J are exclusive, can be en-
forced by adding energy terms

θij(1, 1) =∞ , ‖p(i)− p(j)‖ ≤ deIJ , (4)

for all pairs of nodes i ∈ VI and j ∈ VJ , where deIJ is the
minimum margin between I and J . Because θij(1, 1) =∞
is a non-submodular energy term, it cannot be expressed
as a single edge in a graph. To overcome this, we use the
QPBO algorithm.

Since Eq. (3) and (4) can be applied as long as we can
calculate a distance between nodes in interacting layers, we
can now apply object interactions between objects sampled
in any way. It is possible to sample different object us-
ing entirely different sampling schemes and have different
graph structures in different layers. However, doing so will
of course impact the segmentation results and may intro-
duce a bias. Another important point is that the method is
not limited to images in 2D. Interactions can be applied be-
tween nodes sampled in any dimension, although increased
dimensionality will usually also increase the number of in-
teraction terms significantly. To overcome this issue, we
will now look closer at using SLGs with one particular intra-
layer structure.

2.3. Ordered multi-column graphs

Li et al. [13] describe how to use an ordered multi-
column graph to segment multiple interacting surfaces with
a star-shaped prior. When an approximate position of
an object is known, it has several advantages over a N -
neighborhood structure. For instance, the surface smooth-
ness parameter, ∆, makes it very robust, even with noisy
data. Also, the number of containment terms remains al-
most constant for any minimum margin, δl. This overcomes
a major problem of Eq. (3), namely that the number of terms
depends polynomially on the margin size. Furthermore, the
column graph allows for the specification of a maximum
margin, δu, which can be very helpful for many segmen-
tation problems. Such a margin cannot be specified us-
ing a N -neighborhood structure. The δ parameters, used
by [13], specifically refers to the neighborhood distance on
identically sampled layers. Our distance measure, d, used
in Eq. (3) and (4), is an arbitrary distance measure. For
simplicity, we use Euclidean distance in this paper.

C-SLGs can be seen as a generalization of the
resampling-based method used by [13] for object segmen-
tation. Because their method relies on the neighborhood
distance, δ, for containment interactions, all layers must be
sampled at the same positions. If instead, we use Eq. (3)
to add containment terms, based on the Euclidean distance
between the sample locations, layers no longer have to be

(a) Many redundant terms (b) Few redundant terms
Figure 3. Layered containment terms enforcing a minimum margin
between object 1 and 4 in Fig. 2a. (a) No removal of redundant
terms. (b) Most redundant terms removed.

sampled identically. Because of the difference in size and
center position of objects, sampling them differently pro-
vides a much better basis for our segmentation.

Exclusion interactions are not used by [13]. As they
use the BK [1] implementation to cut the graph, non-
submodular terms cannot be used in their model. Also, δ
cannot be used for exclusion margins on radially sampled
ordered multi-column graphs, as non-overlapping objects
would always be sampled differently.

Inspired by the approach of [13], we propose two algo-
rithms for reducing the number of interaction terms in C-
SLGs. We also describe an algorithm for enforcing a maxi-
mum containment margin in C-SLGs.

To reduce the number of terms, without changing the so-
lution, we rely on the fact that the ordered multi-column
graph has infinite cost terms inside each column. As the
interaction terms are also infinite cost, many of the terms
added by Eq. (3) and (4) are redundant. By not adding the
redundant terms to the graph, we can reduce the size of the
graph significantly. Because the nodes are ordered, calcu-
lating which interaction terms are required and which are
redundant, can be done quickly, before constructing the ac-
tual graph.

It should be noted that if the sampling resolution is low,
meaning that the nodes are far apart, compared to the spec-
ified minimum margin, d, margins may not be enforced
properly. This is a result of Eq. (3) and (4) only adding
terms between nodes within the given margin. It is possible
to extend both algorithm 1 and 2 to accommodate for this
issue, but for now we will focus on reducing the number of
terms and assume that the sampling resolution is sufficiently
high compared to the margins.

2.3.1 Algorithm 1: Reducing containment terms

Fig. 3a shows the containment interaction terms for min-
imum margin, dl14, created using Eq. (3). Fig. 3b shows
the same constraint, but with fewer terms. Our algorithm
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(a) Exclusion interaction terms (b) Maximum margin containment
interaction terms

Figure 4. (a) Layered exclusion terms with minimum margin be-
tween object 1 and 2 in Fig. 2a. (b) Layered containment edges
for maximum margin between object 1 and 4 in Fig. 2a

for adding minimum margin interaction with few redundant
terms is as follows:

1. For each inner object node (purple in Fig. 3), find all
outer object nodes (red in Fig. 3) within a distance, dl.
Add all these pairs of nodes to the set of candidates, C.
This is the approach from Eq. (3).

2. Remove pairs from C, so that only one pair remains
for each outer object node, inner object column com-
bination. The pair kept should be the pair with the in-
nermost inner object node.

3. Remove pairs from C, so that only one pair remains
for each inner object node, outer object column com-
bination. The pair kept should be the pair with the out-
ermost outer object node.

4. For each pair in C, add a pairwise term θoi(0, 1) =∞
toE, where o is the outer object node and i is the inner
object node.

As we will show experimentally, this algorithm can re-
duce the number of interaction terms by orders of magni-
tude. Theoretically, if NI is the number of nodes in the in-
ner object layer, NO is the number of nodes in the outer ob-
ject layer, and NIC and NOC are the number of columns in
the inner and outer layers respectively, the worst-case num-
ber of containment terms is reduced fromNI ·NO to approx.
NIC · NO + NOC · NI . In the case of radial resampling,
NIC and NOC are the number of sample angles.

2.3.2 Algorithm 2: Reducing exclusion terms

As with containment, when we create a C-SLG, we can re-
duce the number of exclusion interaction terms compared
to the general approach from Eq. (4). The algorithm is as
follows:

1. For each object 1 node (red in Fig. 4a), find all nodes
in object 2 (blue in Fig. 4a) within a distance, de. Add
all these pairs of nodes to the set candidates, C. This
is the general approach from Eq. (4).

2. Remove pairs fromC, so that only one pair remains for
each object 1 node, object 2 column combination. The
pair kept should be the pair with the innermost object
2 node.

3. Remove pairs fromC, so that only one pair remains for
each object 2 node, object 1 column combination. The
pair kept should be the pair with the innermost object
1 node.

4. For each pair in C, add a pairwise term θo1o2(1, 1) =
∞ to E, where o1 is the object 1 node and o2 is the
object 2 node.

The result of adding exclusion between object 1 and 2 in
Fig. 2a can be seen in Fig. 4a.

2.3.3 Algorithm 3: Maximum containment margin

Because maximum containment margins cannot be en-
forced on N -neighborhood structured graphs, we have no
general method for adding this type of interaction. Never-
theless, as shown by [13], it is possible to add this type of
interaction when using an ordered multi-column graph with
identical layers. However, for non-identical layers, there is
no simple way of determining which columns and nodes in
the two objects should interact.

We propose an algorithm for adding maximum contain-
ment interactions to C-SLGs with non-identical layers. It is
designed to add intuitive maximum margin constraints us-
ing very few terms. The algorithm is as follows:

1. Calculate the node position gradient for both the outer
object (red in Fig. 4b) and inner object (purple in
Fig. 4b) along the columns. This indicates the direc-
tion of the column in the sample space. For columns
where node positions form a straight line, such as radi-
ally sampled columns, the gradient is the same for all
nodes in a column.

2. Move the inner object nodes in the direction of their
gradient with the distance du.

3. For each node in the inner object, find the four nearest
nodes in the outer object and add these pairs to the set
of candidates, C.

4. For each pair in C, calculate the original distance be-
tween the two nodes, as it was before the inner object
nodes were moved. Remove any pairs from C, where
this distance is less than du.

5. For each pair inC, calculate the angle between the two
nodes using the gradient from before. If the angle be-
tween the gradient vectors is more than 90 degrees, re-
move the pair from C.

6. Remove pairs from C, so that only one pair remains
for each outer object node, inner object column com-
bination. The pair kept should be the pair with the out-
ermost inner object node.

7. Remove pairs from C so that only one pair remains for
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each inner object node. The pair kept should be the
pair with the smallest angle between the node gradi-
ents.

8. For each pair in C, add a pairwise term θio(0, 1) =∞
toE, where i is the inner object node and o is the outer
object node.

The result of using this algorithm is shown in Fig. 4b.
We see that the algorithm effectively applies the interaction
terms between nodes in columns pointing in the same direc-
tion, which is what we want.

2.4. Solving the graph

To handle non-submodular terms we use QPBO, because
it is a general algorithm for solving problems of the form
shown in Eq. (1). In general, unlabelled nodes may oc-
cur when using the QPBO algorithm to solve problems with
non-submodular energy terms, such as exclusion. However,
when using QPBO with SLGs, our experience shows that
the number of unlabelled nodes is negligible.

3. Experiments

We have tested our method on two different datasets. A
high-resolution 3D image of nerves, collected using µCT,
and the nuclei image set BBBC038v1, available from the
Broad Bioimage Benchmark Collection [14]. The primary
goal of the experiments is to show the scalability of SLGs
for both 2D and 3D multi-object segmentation. Secondly,
we want to highlight the benefits of using C-SLGs, com-
pared to neighborhood-based graph structures.

All experiments were run on an Azure H8m virtual ma-
chine running an Intel Xeon E5-2667 v3 CPU with 8 virtual
processors and 112 GB memory.

Data, code and Jupyter notebooks for all experiments can
be found at DOI 10.11583/DTU.12016941. A Python pack-
age for building and cutting sparse layered graphs has also
been published to GitHub1.

3.1. Nerve segmentation

The µCT volume is 2048×2048×2048 voxels and con-
tains several hundred nerves. Each nerve consists of a dark
outer ring (myelin) and a bright core (axon). Because the
axon and background have the same intensity, and because
the intensities vary a lot between the nerves, accurately seg-
menting all nerves using the same parameters is difficult.

Before we start our experiments, center lines have been
created for 216 of the nerves. Also, a single slice has been
taken out of the volume and cropped to 512 × 512 pixels.
The slice contains 17 nerves and has been segmented manu-
ally to obtain a ground truth segmentation shown in Fig. 5a.

1https://github.com/Skielex/slgbuilder

(a) Ground truth (b) Li et al.

(c) 4N-SLG (d) RC-SLG

Figure 5. The most accurate nerve slice segmentation for each
method and ground truth. The corresponding accuracy for each
method is shown in Table 1.

4N-SLG RC-SLG Li et al.
Nodes (mil.) 2.46 0.58 0.28

Min Max Min Max Min Max
Edges (mil.) 6.8 1425 3.6 6.1 1.1 1.1
Time (s) 1.95 545 0.48 2.70 0.19 0.74
F1 0.91 0.94 0.92
Precision 0.95 0.93 0.90
Recall 0.90 0.96 0.95

Table 1. Results for nerve slice segmentation using a 250 differ-
ent configurations. The number of configurations was 25, 180 and
45 for the 4N-SLG, RC-SLG, and Li et al., respectively. The pa-
rameters varied were the three interaction margins and the surface
smoothness. For each method, the number of nodes is the same
for all configurations, while the number of edges and solve time
change. The accuracy is calculated as the mean score of all masks
for a given configuration.

3.1.1 Single volume slice

We use the 512 × 512 image to compare the accuracy
and graph size of the original method by Li et al. to a 4-
neighborhood SLG (4N-SLG) and a radially resampled col-
umn SLG (RC-SLG). For each method, we evaluate sev-
eral different configurations for margin sizes and surface
smoothness.

Fig. 5 shows the most accurate segmentation for each
method. As shown in Table 1, the RC-SLG provides the
most accurate segmentation. The 4N-SLG struggles when
the contrast between the myelin and the axon are low, while
the method by [13] does not support exclusion and thus in-
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Figure 6. The two plots show the increase in the number of graph
edges as the minimum interaction margins are increased for the
2D nerve segmentation problem shown in Fig. 5. The numbers
for the Dense Ishikawa graph are theoretical, while the numbers
for the other three methods are based on our experiments. In (a)
we see how the graph size increase for the different methods as
the minimum containment margin is increased. Other parameters
are kept constant and as similar as possible. Li et al. does not have
exclusion terms, which is is the main reason it has fewer edges than
the RC-SLG. In (b) we similarly increase the exclusion margin.
Here Li et al. is omitted since it does not have exclusion.

correctly overlap some segments. We also see that the num-
ber of edges and solve time vary significantly for the 4N-
SLG, depending on the configuration. Fig. 6 shows how
the number of edges changes depending on the margins.
It is clear that the N -neighborhood-based methods do not
scale well, as we increase the interaction margin. In fact,
the Ishikawa graph quickly grows so big we cannot create
the graph due to lack of memory. The two ordered multi-
column-based methods do not have this problem, allowing
us to set appropriate margins with little to no cost.

3.1.2 Full volume

To show the scalability of C-SLGs we segment all 216
nerves (432 objects) in the 2048-cubed volume with a single
graph cut. For this, we used the same radial approach as for
the slice, just in 3D and with a lower resolution. Along the
annotated centerline, we sample points radially on planes
orthogonal to the centerline. In total, we sample 182 mil-
lion different positions in the volume, with which we con-
struct the RC-SLG. It takes 44 minutes to solve the problem
using the QPBO algorithm. The complete graph contains a
total of 363 million nodes and 2.1 billion edges. The result
contains no unlabelled nodes, which means we found the
globally optimal solution to the problem. Solving this prob-
lem with a dense Ishikawa structured graph is not possible
due to hardware limitations.

3.2. Nuclei segmentation

The purpose of this experiment is to compare the 4N-
and RC-SLG on a large number of different images with

Figure 7. Nerve volume segmentation of the myelin and axon of
216 nerves created using a RC-SLG.

ground truth segmentation masks. We compare both com-
plexity and accuracy and investigate the frequency of unla-
belled nodes.

The BBBC038v1 strage1 train image dataset con-
tains 670 images with a total of 29,461 segmented nuclei.
The images were acquired using different imaging modali-
ties and vary in size. The type of cells and their size vary
between images and the number of nuclei per image ranges
from a few to several hundred.

As a part of the experiment, we use the exact same con-
figuration for all images. This allows us to test how sensi-
tive/robust the methods are. Ideally, it should not be nec-
essary to configure parameters for each individual image.
For this reason, we also use the same simple gradient-based
data terms for all images. One of the segmentation results
is shown in Fig. 8.

In Table 2 we see that the RC-SLG significantly outper-
forms the 4N-SLG, both in terms of accuracy and speed.
The low recall and high precision score of the 4N-SLG, in-
dicate that it tends to underestimate the size of the nuclei.
The RC-SLG does not have this issue and accurately seg-
ments nuclei of all sizes, even though they vary from a few
to over a hundred pixels in diameter. Furthermore, segmen-
tations by the RC-SLG have fewer unlabelled nodes than
those by the 4N-SLG, although they hardly impact accuracy
in either case. In fact, for RC-SLG, 99.8% of the masks and
97% of the images are completely labeled.

Fig. 9a further highlights the scalability of SLGs, and
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4N-SLG RC-SLG
Per image Mean Max Mean Max
Nodes (mil.) 2.25 19.2 0.71 6.08
Edges (mil.) 14.6 442 3.12 60.3
Time (s) 2.55 69.5 1.02 26.1
Per mask Mean Max Mean Max
Unlabelled 3.2 428 0.48 876
Per mask Mean Std. Mean Std.
F1 0.48 0.32 0.85 0.12
Precision 0.97 0.09 0.85 0.13
Recall 0.40 0.34 0.89 0.16

Table 2. Results for nuclei segmentation on 670 image with 29,461
segmented nuclei. The RC-SLGs are generally smaller than the
4N-SLGs, which also makes them faster to solve. In terms of
accuracy, the RC-SLGs perform significantly better than the 4N-
SLGs. In terms of unlabelled nodes, the RC-SLGs also perform
best, leaving only 0.006% of nodes unlabelled, compared to 0.04%
by the 4N-SLGs.

Figure 8. Largest nuclei image segmented using the RC-SLG. The
image is 1272×603 pixels and has 375 segmented nuclei. The RC-
SLG had approx. six million nodes and 60 million edges. A dense
Ishikawa graph would have had over one billion nodes and need
over 100 billion edges to enforce exclusion between all nuclei.
With an exclusion margin of five, this number increases to over 10
trillion edges.

in particular C-SLGs. Fig. 9b is interesting as it shows a
linear correlation between the number of graph edges and
the solve time for both methods in our experiment. This
means that as long as we can keep the number of edges low,
we should be able to find a solution fast.

4. Discussion and conclusion

A limitation of our method is that it requires some prior
knowledge about the number of objects, and where they
are. However, most graph cut-based segmentation meth-
ods require this kind of prior knowledge. Another chal-
lenge is that segmentations may be incomplete, as we rely
on the QPBO algorithm for solving non-submodular prob-
lems. Nevertheless, our experiments show unlabelled nodes
are rare, and thus not a problem for the accuracy of the
segmentation. One reason for this could be that we only
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Figure 9. Two plots based on our results from segmenting 670 im-
ages of nuclei. In (a), we see how the number of objects (nuclei) in
the images affect the number of edges. We assume that the reason
the points for the 4N-SLG and RC-SLG are not on a smooth line
is that the number of interaction terms also depends on the rela-
tive positions and sizes of the objects. The numbers for the dense
Ishikawa graph are theoretical. The area indicates the number of
edges for the smallest and largest image in the image set. Plot (b)
shows the correlation between the time it took to solve the graph
cut and the number of graph edges for each image. For both meth-
ods, the Pearson correlation coefficient is over 0.99, which indicate
a linear correlation between the number of edges and solve time.

use non-submodular terms for exclusion. It also appears
that the RC-SLG is better for avoiding unlabelled nodes
than the 4N-SLG. This is interesting, as using QPBO with
N -neighborhood-based geometric priors [9] has previously
been shown to result in many unlabelled nodes [8]. To la-
bel unlabelled nodes, extensions to QPBO, such as QPBO-I
and QPBO-P have been proposed [16]. Although we do not
use these extensions in our experiments, they could be used
to further reduce the small number of unlabelled nodes in
our segmentations.

Overall, our experiments show that SLGs, and in partic-
ular C-SLGs, can be used to segment very large images (2D
and 3D) accurately, even with simple gradient-based data
terms. These tasks are unsolvable using traditional dense
graph structures. Although we have focused on images,
SLGs, as well as Eq. (3) and Eq. (4) are general and can
be used for 4D or point cloud data as well.

It is clear that the C-SLGs, created using our three algo-
rithms, provide a particularly effective way of solving large
segmentation tasks. In this paper, we enforced a star-like
prior for the C-SLGs by using radial resampling. However,
we believe there is a large potential in using C-SLGs with
sampling schemes based on other priors [7, 9, 17], or by
sampling based on surfaces in 3D [3, 15].
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52 3 Graph Cut Segmentation

3.5 Paper B: Comparing Serial and Parallel
Min-Cut/Max-Flow Algorithms for Computer Vision

While SLGs allow maxflow/mincut algorithms to solve much larger maxflow/mincut
problems by providing a way to remove irrelevant nodes and terms, we still rely only
on serial maxflow algorithms to cut the graph. This is less than ideal in a world where
high-performance hardware relies heavily on parallelization to speed up computation.

In the second contribution, we compare state-of-the-art serial and parallel maxflow/min-
cut algorithms on computer vision tasks, such as image segmentation. Our work in-
cludes our own implementation of a parallel algorithm originally proposed by Jiangyu
Liu and Jian Sun 2010 as well as our own optimized versions of several state-of-the-art
algorithms including the BK algorithm [Boykov and Kolmogorov 2004] and EIBFS
[Goldberg, Hed, Kaplan, Kohli, et al. 2015].

The paper included below is still in preparation. Once complete, the paper will be
submitted to IEEE Transactions on Image Processing.
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Abstract—Minimum cut / maximum flow (min-cut/max-flow)
algorithms are used to solve a variety of problems in computer
vision and thus significant effort has gone into developing fast
min-cut/max-flow algorithms. However, most algorithmic develop-
ment has targeted serial algorithms, which do not take advantage
of modern multi-core processors. Furthermore, parallelization
approaches often focus exclusively on the Boykov-Kolmogorov
(BK) algorithm and/or are restricted to structured grids. In this
paper, we review the most popular min-cut/max-flow algorithms
for unstructured graphs in computer vision and the strategies
proposed for parallelization. We perform a comprehensive eval-
uation of both serial and parallel algorithms on a number of
graph cut problems w.r.t. runtime performance and memory
use. To illustrate the importance of how the algorithms are
implemented, we evaluate different implementations of the same
algorithms. Our results show that the Hochbaum pseudoflow
(HPF) algorithm is the fastest serial algorithm for computer
vision problems, followed by the Excesses Incremental Breadth
First Search (EIBFS) algorithm. The fastest parallel algorithm
is the adaptive bottom-up merging approach by Liu and Sun.
The BK algorithm is the most memory efficient serial algorithm,
closely followed by EIBFS, while the adaptive bottom-up merging
and the dual decomposition algorithms are the most memory
efficient of the parallel algorithms. Additionally, we show sig-
nificant variations in performance for different implementations
of the BK and EIBFS algorithms, which highlight the impact
of various implementation and optimization details. Finally, we
note that good implementations of existing parallel min-cut/max-
flow algorithms can scale well on multi-core systems, allowing
them to solve large problems in only a fraction of the time
used by the fastest serial algorithms. However, new and better
implementations are needed for existing parallel algorithms to
reach their full potential. Implementations of all algorithms, as
well as bindings for Python and MATLAB, are available at: (link
to come, see supplementary).

I. INTRODUCTION

Min-cut/max-flow algorithms are ubiquitous in computer
vision (CV) since a large variety of CV problems can be for-
mulated as min-cut/max-flow problems. Example applications
include image segmentation [8, 11, 30, 31, 35, 47], stereo
matching [9, 40], surface reconstruction [43] and fitting [15,
36, 42, 44, 54, 56], and texture restoration [49]. Min-cut/max-
flow algorithms have also found use in conjunction with deep
learning methods – for example, to quickly generate training
labels [37] or to improve CNN segmentations [25].

Formally, the application of min-cut/max-flow in computer
vision involves solving energy minimization problems with an

energy function, E , of the form

E(x) =
∑
i∈V
Ei(xi) +

∑
(i,j)∈V×V

Eij(xi, xj), (1)

where V is a set of binary variables xi, Ei is a unary term
associated with variable i and Eij is a binary term associated
with the pair of variables i, j. In a typical application, such as
binary segmentation with Markov random fields (MRFs) [8],
V would represent pixels in an image and xi the assignment
of pixel i. However, variables can also describe more abstract
things such as candidate positions for mesh vertices [44, 55].

For energy functions which are submodular, meaning that
all binary terms satisfy the condition

Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0), (2)

the minimization can be solved directly as a min-cut/max-flow
problem [18, 41]. If the energy function is not submodular,
one can either use a submodular approximation or an approach
based on quadratic pseudo-Boolean optimization (QPBO) as
described in [6, 26, 39, 49].

Due to the wide applicability of min-cut/max-flow in CV,
many algorithms have been developed to efficiently solve min-
cut/max-flow problems [8, 23, 52]. To increase performance,
several algorithms also utilize that CV problems will often
use a special graph structure. For example, the resulting graph
will often have a grid structure, which has been exploited to
significantly reduce memory use and run-time [32, 33, 48, 53].
Authors have also focused on dynamic problems [38, 23, 57],
where a series of min-cut/max-flow problems are solved in
succession and the individual graphs only differ slightly. By
reusing computations for one graph, the subsequent graphs can
be processed much faster than the initial one. Finally, some
authors [14, 50, 51, 58, 57] have explored methods to solve
min-cut/max-flow problems in a distributed fashion, where the
computations may be split across several computational nodes,
which is suited for graphs that are too large to fit in physical
memory.

In this paper, we focus on generic min-cut/max-flow al-
gorithms, which do not make assumptions about the graph
structure (e.g., requiring a grid structure). Furthermore, we
consider only static problems, where a solution is calculated
once, without access to a previous solution (as opposed to
dynamic problems). Finally, we do not consider whether the
algorithm works well in a distributed setting, but focus only on
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the case where the complete graph can be loaded into physical
memory.

The goal is that our experimental results can help researchers
understand the strengths and weaknesses of the current state-
of-the-art min-cut/max-flow algorithms and help practitioners
when choosing a min-cut/max-flow algorithm to use for a given
problem.

A. Related work

In this section, we give an overview of current efforts
to survey and compare serial and parallel min-cut/max-flow
algorithms.

a) Serial algorithms: Several papers [10, 16, 23, 52]
provide comparisons of different serial min-cut/max-flow
algorithms on a variety of standard benchmark problems.
However, many of these benchmark problems no longer reflect
the scale and/or structure of modern vision problems solved
using min-cut/max-flow, as they mostly consist of small
problems and/or grid graphs. Furthermore, the papers only
evaluate a subset of algorithms currently available or focus
exclusively on the runtime for the min-cut computation. As
shown by Verma and Batra [52], it is important for practical use
to include the initialization time, as some algorithms (or their
implementations) can spend as much time on initialization as
on the min-cut computation. Finally, the papers mostly compare
reference implementations of the different algorithms. However,
as implementation details can significantly impact performance
[52], it is difficult to separate the performance of the algorithm
from that of the implementation.

b) Parallel algorithms: To our knowledge, a systematic
comparison between parallel algorithms for min-cut/max-flow
has not been conducted. Typically, papers only compare with
a serial algorithm [45, 51, 58] or a single parallel algorithm
[5]. The most comprehensive comparison so far was done by
Shekhovtsov and Hlaváč [50]. However, due to the lack of a
publicly available implementation, no paper compares with the
approach by Liu and Sun [45], even though it is suspected to
be the fastest [50, 51]. In addition, the papers use the same
set of standard benchmark problems as the serial algorithms,
which, as previously mentioned, are mostly quite small and
thus neither ideal for parallelization, nor representative for the
scale of modern CV problems.

B. Contributions

We evaluate generic state-of-the-art serial and parallel min-
cut/max-flow algorithms on a number of CV problems with
varying graph structures. We compare the algorithms on
standard benchmark problems, as well as several new problems,
which better reflect the scale of modern vision problems –
especially in the realm of 3D image segmentation.

For the serial algorithms, we evaluate the reference imple-
mentations of the Hochbaum pseudoflow (HPF) algorithm [27,
28] and the preflow push-relabel (PPR) [22] algorithms. Fur-
thermore, to reduce the influence of the implementation details,
we evaluate different versions (including our own) of both
the Excesses Incremental Breadth First Search (EIBFS) [23]
algorithm and the Boykov-Kolmogorov (BK) [8] algorithm.

For the parallel algorithms, we provide the first comprehen-
sive comparison of all major approaches. This includes our own
implementation of the bottom-up merging algorithm by Liu and
Sun [45], our own version of the reference implementation of
the dual decomposition algorithm by Strandmark and Kahl
[51], the reference implementation of the dual the region
discharge algorithm by Shekhovtsov and Hlaváč [50], and an
implementation of the parallel preflow push-relabel algorithm
by Baunstark et al. [5]. In our comparison, we evaluate not just
the runtime but also the memory use of the algorithms, which
has not previously gotten much attention in the literature, even
though memory use is often a limiting factor when working
with large problems.

II. MIN-CUT/MAX-FLOW ALGORITHMS

Serial min-cut/max-flow algorithms can roughly be divided
into three families: augmenting paths, preflow push-relabel, and
pseodoflow algorithms. In this section, we provide an overview
of how algorithms from each category work. However, before
this, we first establish our notation and define the min-cut/max-
flow problem.

We define a directed graph G = (V,E) via its set of nodes,
V , and its set of directed arcs, E. We let n and m refer to the
number of nodes and arcs, respectively. Each arc (i, j) ∈ E
is assigned a non-negative capacity cij . For min-cut/max-flow
problems, we define two special terminal nodes, s and t, which
are referred to as the source and sink, respectively. Arcs to
and from these nodes are known as terminal arcs.

A feasible flow in the graph G assigns a non-negative number
(a flow), fij , to each arc (i, j) ∈ E which satisfies capacity
constraints, fij ≤ cij , (i.e. the flow along an arc cannot exceed
its capacity) and conservation constraints,

∑
(i,j)∈E fij =∑

(j,k)∈E fjk for all nodes j ∈ V \ {s, t} (i.e. the flow going
into a node must equal the flow coming out). A given feasible
flow also induces a residual graph where the set of residual
arcs, R, is given by

R = {(i, j) | (i, j) ∈ E, fij < cij or
(j, i) ∈ E, fji > 0}.

(3)

Each of the residual arcs has a residual capacity given by
c′ij = cij − fij if (i, j) ∈ E or c′ij = fji if (j, i) ∈ E. The
maximum flow problem refers to finding a feasible flow which
maximizes the total flow from the source to the sink.

Finally, an s-t cut refers to partition of the nodes into two
disjoint sets S and T such that s ∈ S and t ∈ T . The sets S
and T are referred to as the source and sink set, respectively.
The minimum cut problem, which is the dual of the maximum
flow problem, refers to an s-t cut which minimizes the sum
of capacities for the arcs going between S and T .

A. Augmenting paths

The augmenting paths (AP) family is the oldest of the three
families and was introduced with the Ford-Fulkerson algorithm
[17]. AP algorithms always maintain a feasible flow and work
by pushing flow along so-called augmenting paths, which are
paths from s to t in the residual graph. Pushing flow refers
to adding a flow, f , to the flow value, fij , for each arc, (i, j),
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along the path. Thus, to maintain a feasible flow, the maximum
flow that can be pushed is given by the minimum residual
capacity along the path. The algorithms terminate when no
more augmenting paths can be found.

The primary difference between various AP algorithms
lies in how the augmenting paths are found. For computer
vision applications, the most popular algorithm is the Boykov-
Kolmogorov (BK) algorithm [8], which works by building
search trees from both the source and sink nodes to find
augmenting paths and uses a heuristic that favors shorter
augmenting paths. The BK algorithm has great performance in
practice, but the theoretical runtime bound is worse than other
algorithms.

In terms of performance, the BK algorithm has been
surpassed by the Incremetal Breadth First Search (IBFS)
algorithm by Goldberg et al. [24]. The main difference between
the two algorithms is that IBFS maintains the source and sink
search trees as breadth-first search trees, which results in both
a better theoretical runtime and better empirical performance.

B. Preflow push-relabel
The preflow push-relabel (PPR) algorithms were introduced

by Goldberg and Tarjan [22]. These algorithms do not maintain
a feasible flow but instead work with a so-called preflow.
A preflow satisfies capacity constraints but allows nodes to
have more incoming than outgoing flow (thereby violating
conservation constraints). The difference between the incoming
and outgoing flow for a node is denoted as its excess, ei ≥ 0.
Moreover, PPR algorithms also maintain a labelling di for
every node. For di < n it is a lower bound on the distance
from node i to t. If di ≥ n the sink cannot be reached from
this node and n− di then gives a lower bound on the distance
s. Labels for s and t remain fixed at n and 0, respectively.

PPR algorithms work by repeatedly applying one of two
actions [12, 22]: push and relabel. A push operation selects a
node with positive excess and pushes flow to a neighbor node
with a label of lower value. If no neighbor has a lower label,
one can use a relabel operation to increase the label of a node
by one. The algorithms terminate when no nodes with positive
excess have label di < n, which means that no more flow
can be pushed to the sink. Note that, at this point, only the
minimum s-t cut can be extracted. To extract the maximum
flow, a second phase of the algorithms must be run. However,
this is generally a small part of the runtime [52] and for vision
applications we are typically only interested in the minimum
cut, so we will not discuss this part further.

The difference between various PPR algorithms lies in the
order in which push and relabel operations are performed.
Early variants used simple heuristics, such as always pushing
from the node with the highest label or using a first-in-first-out
queue to keep track of nodes with positive excess. More recent
versions [3, 20, 21] use sophisticated heuristics and a mix of
local and global operations to obtain significant performance
improvements over early PPR algorithms.

C. Pseudoflow
The most recent category of min-cut/max-flow algorithms

is the pseudoflow family, which was introduced with the

Hochbaum pseudoflow (HPF) algorithm [27, 28]. These al-
gorithms use a so-called pseudoflow and do, like the PPR
algorithms, not maintain a feasible flow. A pseudoflow satisfies
capacity constraints but not the conservation constraints, as
it has no constraints on difference between incoming and
outgoing flow. As with preflow, we refer to the difference
between incoming and outgoing flow for a node as its excess,
ei. A positive excess is referred to as a surplus and a negative
excess as a deficit. The difference between pseudoflow and
preflow is that preflow only allows non-negative excesses.

Pseudoflow algorithms work as a hybrid between AP and
PPR algorithms. They maintain a forest of trees, where each
node with a surplus or deficit is the root of a tree (and all
roots must have a surplus or deficit). Let S and T denote the
forests of trees rooted in s and t, respectively. In each iteration,
the algorithms grow these trees by adding nodes with zero
excess until an arc, a, which connects a tree from S to a tree
from T . The path from s to t going through a now forms
an augmenting path and flow is pushed along it. In contrast
to AP algorithms, the only restrictions on how much flow to
push are the arc capacities, since pushing flow is allowed to
create new deficits or surpluses. If it is not possible to grow a
tree – either by adding a free node or finding a connection to
a tree in the other forest – the algorithms terminate. As with
PPR algorithms, only the minimum cut can be extracted at this
point and additional processing is needed to access the flow.

There are two main algorithms in this family: HPF and
Excesses Incremental Breadth First Search (EIBFS) [23]. The
main differences are the order in which they scan through nodes
when looking for an arc connecting S and T , and how they
push flow along augmenting paths. Both have sophisticated
heuristics for these choices which makes use of many of the
same ideas developed for PPR algorithms – including a distance
labelling scheme to select which nodes from each forest to
merge.

D. Implementation details

As stressed by [52], the implementation details can signifi-
cantly affect the measured performance of a given min-cut/max-
flow algorithm. In this section we will highlight the trends of
modern implementations as well as how they differ.

a) Data structures: The implementations considered in
this paper all use a variant of the adjacency list structure
[13] to represent the underlying graph. However, the Arc
and Node data structures used for these lists vary between
implementations as demonstrated by the differences in the
size of the data structures listed in Table I. For all of the
implementations we consider the memory footprint of the graph
correlates linearly with the size of the Arc and Node data
structures used. Thus, the size of these structures significantly
impact the memory footprint of the graph, which in many cases
also influence performance due to the way the CPU fetches
and caches data from memory. For these reasons it is generally
beneficial to keep the data structures small. Note that some
compilers do not pack data structures densely by default, which
may significantly increase the size of the Arc and Node data
structures.
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b) Indices vs. pointers: One way to reduce the size of the
Arc and Node data structures on 64-bit system architectures
is to use indices rather than pointers to reference nodes and
arcs. As long as the indices can be stored using unsigned 32-bit
integers, we can cut the size of the arc and node references
in half by using unsigned 32-bit integers instead of pointers
(which are 64-bit). This approach can significantly reduce the
size of the Arc and Node data structures, as the majority of
the structures consist of references to other arcs and nodes.
The downside to this approach is that extra computations are
required every time we need to fetch an arc or a node.

c) Arc packing: The order in which the arcs are stored
may impact the performance significantly. Again, this is related
to CPU cache optimization, where we want to ensure that data
is stored in the same order that it is accessed. As the algorithms
mostly access data in a specific order (e.g. by iterating over all
outgoing arcs from a node), it is beneficial to store the arcs in
that same order. We refer to this as arc packaging. However,
as arcs may be added to the graph in any order, packing the
arcs usually incurs extra overhead from maintaining the correct
ordering or reordering all arcs as an extra step before computing
the min-cut/max-flow.

d) Arc merging: In practice, it is not uncommon that
multiple arcs between between the same pair of nodes are
added to the graph. Merging these arcs into a single arc with
a capacity equal to the sum of capacities of the merged arcs
may reduce the graph size significantly.

e) Node packing: Similarly to arc packing, node packing
to match the way they are likely to be accessed by the algorithm
may improve performance.

III. PARALLEL MIN-CUT/MAX-FLOW

Like serial algorithms, parallel algorithms for min-cut/max-
flow problems can be split into families based on shared
characteristics. A key characteristic is whether the algorithms
parallelize over individual graph nodes (node-based parallelism)
or split the graph into sub-graph, which are then traversed in
parallel (block-based parallelism). Other important algorithmic
traits include whether the algorithm is distributed, which we
are not concerned with in this paper, and the guarantees in
terms of convergence, optimality, and completeness provided
by the algorithm.

We should note that since many (but not all) min-cut/max-
flow problems in CV are defined on grid graphs, several papers
[32, 33, 48, 53] have exploited this structure to create very
efficient parallel implementations. However, these algorithms
are not generic, as they only work for specific graph structures,
and thus, are not covered in this paper.

The category of node-based parallel algorithms is generally
dominated by parallel versions of PPR algorithms. In the
block-based category, we investigate the three main approaches:
adaptive bottom-up merging, dual decomposition, and region
discharge. In the following sections, we give an overview of
each approach and briefly discuss its merits and limitations.

A. Parallel preflow push-relabel
PPR algorithms have been the target of most parallelization

efforts [2, 4, 5, 14, 19, 29, 53], since both push and relabel

are local operations, which makes them well suited for
parallelization. Because the operations are local, the algorithms
generally parallelize over each node – performing pushes
and relabels concurrently. To avoid data races during these
operations, PPR algorithms either use locking [2] or atomic
operations [29]. As new excesses are created, the corresponding
nodes are added to a queue, from which threads can poll them.
In [5], a slightly different approach is applied, where pushes
are performed in parallel, but excesses and labels are updated
in a separate later step, rather than immediately after the push.

Since parallel PPR algorithms parallelize over every node,
they can achieve good speed-ups and scale well to modern
multi-core processors [5], or even GPUs [53]. However,
synchronization overhead often means that many threads are
needed to achieve good performance compared to an efficient
serial algorithm.

B. Adaptive bottom-up merging

The adaptive bottom-up merging approach introduced by
Liu and Sun [45] uses block-based parallelism and has two
phases, which are summarized in Fig. 1. In phase one, the
graph is partitioned into a number of disjoint sets (blocks)
and arcs between blocks have their capacities set to 0 –
effectively removing them from the graph. For each pair of
blocks connected by arcs, we store a list of the connecting
arcs (with capacities now set to 0) along with their original
capacities. Disregarding s and t, the nodes in each block now
belong to disjoint sub-graphs and we can compute the min-
cut/max-flow solution for each sub-graph in parallel. Similar
to the original implementation [45], our implementation uses
the BK algorithm.

(a) (b) (c) (d)

Fig. 1: Illustration of the adaptive bottom-up merging approach
for parallel min-cut/max-flow. Terminal nodes and arcs are not
shown. Note that the underlying graph does not have to be a
grid graph. Phase one: (a) The graph is split into blocks and
the min-cut/max-flow is computed for each block in parallel.
Phase two: (b) The topmost blocks are locked, merged, and
the min-cut/max-flow recomputed. (c) As the topmost block is
locked, the next thread works on the bottom-most blocks (in
parallel). (d) Last two blocks are merged and min-cut/max-flow
recomputed to achieve the globally optimal solution.

In phase two, we merge the blocks to get the complete
globally optimal min-cut/max-flow. To merge two blocks, we
restore the arc capacities for the connecting arcs and then
recompute the min-cut/max-flow for the combined graph. This
step makes use of the fact that the BK algorithm can reuse
its internal search trees [38] to efficiently recompute the min-
cut/max-flow when small changes are made to the residual
graph for a min-cut/max-flow solution.
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For merges in phase two to be performed in parallel, the
method marks blocks being merged as locked. The computa-
tional threads then scan the list of block pairs, which were
originally connected by arcs, until they find a pair where
both blocks are unlocked. The thread then locks both blocks,
performs the merge, and unlocks the new combined block. To
avoid two threads trying to lock the same block, there is a
global lock which ensures that only one thread scans the list
of block pairs at a time.

As the degree of parallelism decreases towards the end of
phase two – since there are few blocks left to merge – it
is beneficial to performance that computationally expensive
merges are performed early in phase two. To estimate the cost
of merging two blocks, [45] uses a heuristic based on the
potential for new augmenting paths to be formed by merging
two blocks. This heuristic determines the order in which the
blocks are merged.

By using block-based, rather than node-based parallelism,
adaptive bottom-up merging avoids much of the synchronization
overhead that parallel PPR algorithms suffer from. However,
its performance depends on the majority of the work being
performed in phase one and in the beginning of phase two,
where the degree of parallelism is high. The theoretical speed-
up from using more computational threads – determined
using Ahmdahl’s Law [1] – depends on how much of the
computational workload is done in parallel.

C. Dual decomposition

The dual decomposition (DD) approach was introduced by
Strandmark and Kahl [51] and later refined by Yu et al. [58,
57]. Their algorithm works as follows: First, the nodes of the
graph are divided into a set of overlapping blocks (see Fig. 2a).
Then, the graph is split into disjoint blocks, where the nodes
in the overlapping regions are duplicated in each block (see
Fig. 2b). It is important that the blocks overlap such that if
node i is connected to nodes j in block bj and k in block bk,
then i is also both blocks bj and bk.

(a) (b) (c) (d)

Fig. 2: Illustration of the dual decomposition approach. Ter-
minal nodes and arcs are not shown. Note that the underlying
graph does not have to be a grid graph. (a) Graph nodes are
divided into a set of overlapping blocks. (b) The graph is split
into disjoint sub-graphs and nodes in overlapping regions are
duplicated into each blocks. (c) The min-cut/max-flow for each
block is computed in parallel, and the source/sink capacities
are adjusted for disagreeing duplicated nodes. (d) The min-
cut/max-flow is recomputed and capacities are adjusted until
all duplicated nodes agree.

Once the graph has been partitioned into overlapping blocks,
the algorithm proceeds iteratively. First, the min-cut/max-flow

for each disjoint block is computed in parallel using the
BK algorithm. Next, each duplicated node is checked if all
duplicates of that node are in the same s-t partitioned set,
S or T . In that case we say that the node duplicates agree
on their assignment. If all duplicated nodes agree on their
assignment, the computed solution is the globally optimal one
and the algorithm terminates. If not, the terminal arc capacities
for the disagreeing duplicated nodes are updated according
to a supergradient1 ascent scheme and the min-cut/max-flow
is recomputed. This process of updating terminal capacities
and recomputing the min-cut/max-flow is repeated until all
duplicated nodes agree on their assignment.

A limitation of the original dual decomposition approach is
that convergence is not guaranteed. Furthermore, [58] and [50]
have demonstrated that the risk of nonconvergence increases
as the graph is split into more blocks. To overcome this, Yu et
al. [58] introduced a new version with a simple strategy that
guarantees convergence: If the duplicated nodes in two blocks
do not belong to the same set, S or T , after a fixed number of
iterations, the blocks are merged and the algorithm continues.
This trivially guarantees convergence since, in the worst case,
all blocks will merged, at which point the global solution will
be computed serially. However, performance often significantly
drops when merging is needed for the algorithm to converge,
as merging only happens after a fixed number of iterations
and all blocks may (in the worst case) have to be merged for
convergence.

D. Region discharge

The region discharge approach was introduced by
Shekhovtsov and Hlaváč [50], who generalized earlier work
by Delong and Boykov [14]. The method first partitions the
graph into a set of blocks (called regions in [50]). Each block
R also has an associated boundary defined as the set of nodes

BR = {v ∈ V | (u, v) ∈ E, u ∈ R, v 6= s, t}. (4)

Capacities for arcs going from a boundary node to a block
node are set to zero. This means that flow can be pushed out of
the region into the boundary, but not vice versa. Furthermore,
each node is allowed to have an excess.

The method then makes of the region discharge operation,
which aims to push as much excess flow to the sink or the
boundary nodes as possible (the source, s, is assumed to have
infinite excess). In [50], this is done either with a PPR algorithm
or the BK algorithm. When using the BK algorithm, excesses
are modelled as arcs from the source, and the possibility to
create excess in a node is modelled by adding an infinite
capacity arc from the node to the sink.

The discharge operation is performed on each block in
parallel. Afterwards, flow along boundary arcs is synchronized
between neighboring blocks, which may create additional
excesses in some blocks, as flow can now move from the
boundary into the block. The process is repeated until no new
excesses are created, at which point the algorithm terminates.
It is proved in [50] that this process will terminate in a finite
number of iterations.

1Analogous to subgradients for convex functions, e.g., see [7].
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(a) (b) (c)

Fig. 3: Illustration of the region discharge approach. Terminal
nodes and arcs are not shown. Note that the underlying graph
does not have to be a grid graph. (a) Graph nodes are divided
into a set of blocks. Then the region discharge operation is
run on each block which pushes flow to the sink or boundary
nodes. (b) Flow is synchronized between boundary nodes. (c)
Region discharge is run again. The process repeats until no
flow crosses the block boundaries.

The guarantee of convergence, without having to merge
blocks, is beneficial, as it means the algorithm can maintain a
high degree of parallelism while computing the min-cut/max-
flow solution. However, because flow must be synchronized
between blocks, the practical performance of the method
still depends on well-chosen blocks and may be limited by
synchronization overhead. For details on the heuristics used
in the algorithm, which are also important for its practical
performance, see [50].

IV. PERFORMANCE COMPARISON

We now compare the performance of the algorithms dis-
cussed in the previous sections. For all experiments, the code
was compiled with the GCC C++ compiler version 9.2.0 with
-O3 optimizations on a 64-bit Linux-based operating system.
Experiments were run on a dual socket NUMA2 system with
two Intel Xeon Gold 6226R processors with 16 cores each and
HTT3 disabled, for a total of 32 parallel CPU threads. The
system has enough RAM to keep all data in memory for all
our experiments. The OS is linux with kernel release 3.10. For
the parallel algorithm benchmarks, we ensure that cores are
allocated on the same socket and memory is allocated on local
RAM where possible.

Run-times were measured as the minimum time over three
runs and no other process (apart from the OS) were running
during the benchmarks.We split our timing into two distinct
phases: build time and solve time. Build time refers to the
construction of the graph and any additional data structures
used by an algorithm. If the algorithm performs arc packing
or similar steps, this is counted in the build time. To ensure
the build time is a fair representation of the time used by
an algorithm, we pre-compute a list of nodes and arcs and
load these lists fully into memory before starting the timing.
Solve time refers to the time required to compute the min-
cut/max-flow. For algorithms, such as PPR, that only compute
a minimum cut we do not include the time to extract the
full maximum flow solution. The reason for this is that for

2Non-Uniform Memory Access
3Hyper-Threading Technology

most CV applications the minimum cut is of principal interest.
Furthermore, converting to a maximum flow solution usually
only adds a small extra overhead [52].

A. Datasets

We test the algorithms on the commonly used benchmark
dataset published by the University of Waterloo [46]. This
dataset includes a variety computer vision problems, such as
stereo matching, image segmentation, multi-view reconstruc-
tion, and surface fitting. Furthermore, our experiments include
the super resolution, texture restoration, and deconvolution
problems from [52]. Finally, we include problems from two
recent papers [34, 35] which perform multi-object image
segmentation via surface fitting. All benchmark data is available
at (DOI link to come).

B. Tested implementations

BK [8] We test the reference implementation (BK) of the
Boykov-Kolmogorov algorithm from http://pub.ist.ac.at/∼vnk/
software.html. Furthermore, we test our own implementation of
BK (MBK), which contains several optimizations. Most notably,
our version uses indices instead of pointers to reduce the
memory footprint of the Node and Arc data structures. Finally,
we test a second version (MBK-R), which reorders arcs such
that all out-going arcs for a node are adjacent in memory. This
increases cache efficiency but uses more memory and requires
an extra initialization step.

EIBFS [23] We test a slightly modified version [30] (EIBFS)
of the excesses incremental breadth first search algorithm
originally implemented by [23] available from https://github.
com/sydbarrett/AlphaPathMoves. This version uses slightly
bigger data structures to support non-integer arc capacities and
larger graphs, compared to the implementation tested in [23].
Although these changes may decrease performance slightly, we
think it is reasonable to use the modified version, as several
of the other algorithms have similar sacrifices in terms of
performance. Additionally, we test our own modified version
of EIBFS (EIBFS-I), which replaces pointers with indices
for a reduced memory footprint. Finally, as both EIBFS and
EIBFS-I performs arc reordering during initialization, we
also test a version without arc reordering (EIBFS-I-NR) to
better compare with other algorithms.

HPF [27] We test the reference implementation of
Hochbaum pseudoflow (HPF) from https://riot.ieor.berkeley.
edu/Applications/Pseudoflow/maxflow.html. This implementa-
tion has four different configurations that we test:

1) Highest label with FIFO buckets (H-FIFO).
2) Highest label with LIFO buckets (H-LIFO).
3) Lowest label with FIFO buckets (L-FIFO).
4) Lowest label with LIFO buckets (L-LIFO).
HI-PR [12] We test the implementation of the preflow push-

relabel algorithm from https://cmp.felk.cvut.cz/∼shekhovt/d
maxflow/index.html4.

4Orignally from http://www.avglab.com/andrew/soft.html, but the link is
now dead.
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P-ARD [50] We test the implementation of parallel augment-
ing paths region discharge (P-ARD) from https://cmp.felk.cvut.
cz/∼shekhovt/d maxflow/index.html. P-ARD is an example of
the region discharge approach.

Liu-Sun [45] Since no public reference implementation is
available, we test our own implementation of the adaptive
bottom-up merging approach based on the paper by Liu and
Sun [45].

P-PPR [5] We test the implementation of parallel push-
relabel from https://github.com/niklasb/pbbs-maxflow.

Strandmark-Kahl [51] We test our own implementation
of the Strandmark-Kahl dual decomposition algorithm based
on the implementation at (link). The original implementation
could only handle grid graphs with rectangular blocks. Our
implementation can handle arbitrary graphs and arbitrary
blocks at the cost of some additional overhead during graph
construction. Note that our implementation does not implement
the merging strategy proposed by [58] and therefore is not
guaranteed to converge. We only include results for cases where
the algorithm does converge.

Table I lists the tested implementations along with their
type and memory footprint. Their memory footprint can be
calculated based on the number of nodes and arcs in the graph
and will be discussed further in Section V.

TABLE I: Summary of the tested implementations including
their memory footprint. Shows the bytes required per node and
arc assuming 32-bit indices where applicable. For arcs, the
cost of a forward and backward arc is reported, since some
implementations store these as a single arcs and some as two
separate arcs. These numbers depend on, but are not the same
as, the Node and Arc structure sizes.

Serial algorithms Algorithm type Node Arc

HI-PPRa [12] Preflow push-relabel 40 B 40 B
HPFb [27] Pseudoflow 96 B 25 B
EIBFS [23] Pseudoflow

EIBFSc Pseudoflow 72 B 72 B
EIBFS-I∗ Pseudoflow 29 B 50 B
EIBFS-I-NR∗ Pseudoflow 29 B 24 B

BK [8] Augmenting path
BKd Augmenting path 44 B 64 B
MBK∗ Augmenting path 23 B 24 B
MBK-R∗ Augmenting path 23 B 48 B

Parallel algorithms

P-PPRe [5] Parallel preflow push-relabel 48 B 68 B
Liu-Sun∗ [45] Adaptive bottom-up merging† 25 B 24 B
Strandmark-Kahl∗ [51] Dual decomposition† 29 B 24 B
P-ARDa [50] Region discharge† 40 B 32 B
†Uses BK (augmenting path).
∗Implemented or updated by us (link will come).
ahttps://cmp.felk.cvut.cz/∼shekhovt/d maxflow/index.html
bhttps://riot.ieor.berkeley.edu/Applications/Pseudoflow/maxflow.html
chttps://github.com/sydbarrett/AlphaPathMoves
dhttp://pub.ist.ac.at/∼vnk/software.html
ehttps://github.com/niklasb/pbbs-maxflow

C. Serial algorithms

The primary experimental results for the serial algorithms
are listed in Table II. The table shows the results for the fastest
variant of each algorithm. For BK and EIBFS, where several

different implementations were tested, only the fastest variant is
shown for each row. The results from Table II are summarized
in Fig. 4, which show the solve time and total time for each
algorithm on each dataset relative to the fastest algorithm on
the dataset. Thus, a relative performance score of 0.5 means
that the algorithm was half as fast as the fastest algorithm for
a given dataset. This gives a clear indication of how well the
different algorithms perform relative to each other across all
datasets.

From Fig. 4a, we see that EIBFS and HPF outperform the
two other algorithms on the majority of the datasets in regard to
solve time. Both algorithms have their upper quartiles equal to
1, meaning that they had the fastest solve time for at least 25%
of the datasets. As indicated by the median, EIBFS had the
fastest solve time for almost half of the datasets, while HI-PR
was about five times slower than the fastest algorithm for over
half of the datasets. The lower quartiles and whiskers are good
indicators of the worst-case scenarios for each algorithm. We
see that all four algorithms have cases where they are over
four times slower than the fastest algorithm in terms of solve
time, and that HPF has slightly better worst case performance
than EIBFS.

While EIBFS generally has the fastest solve times, Fig. 4b
shows that HPF has the fastest total time (build time + solve
time) for the majority of the datasets, as indicated by a
median relative performance equal to 1. Furthermore, the lower
quartile and whisker indicate that HPF performs consistently
well across all datasets, never dropping below 0.5 in relative
performance compared to the fastest algorithm and staying
above 0.7 for three out of four datasets. BK maintains similar
relative performance as for solve time, being around half as
fast as the fastest algorithm for the majority of the datasets.
Meanwhile HI-PR falls even further behind compared to the
results for solve time, with an upper quartile below 0.2 in
relative performance, which means that it is at least five times
slower than the fastest algorithm for three out of four datasets.

The different variants of each algorithm are compared in
Fig. 5, which shows the relative performance of each implemen-
tation compared to a chosen “reference” implementation. For
the BK algorithm, the BK implementation is used for reference,
for the EIBFS algorithm, the EIBFS implementation is used as
a reference, and for HPF the highest label FIFO configuration
is used as reference, since it is the one recommended by
the authors. As we are now measuring relative to a specific
implementation, rather than the fastest one as we did in Fig. 4,
it is possible to get a relative performance score of more than
one.

For the BK algorithms, both MBK and MBK-R outperform
BK for the vast majority of the datasets. MBK is consistently
faster than BK, while MBK-R outperforms MBK for most of
the datasets. Although MBK-R significantly outperforms the
two other variants, its relative speed-up compared to BK is
much less consistent than that of MBK. This clearly reflects the
effect of arc packing (reordering the arcs), in that it typically
decrease solve at the cost of increased build time.

The EIBFS variants show similar results to BK, with our
index-based version (EIBFS-I) outperforming the reference
implementation consistently showing over 20% improved
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TABLE II: Performance comparison of serial algorithms based on both their solve and total (build + solve) times. Only the
fastest variant of each algorithm (measured in total time) is included. The same variant was used for all datasets. The fastest
solve time for each dataset has been underlined and the fastest total time has been marked with bold face.

MBK-R [8] EIBFS-I [23] HPF-H-L [27] HI-PR [12]
Dataset Nodes Arcs Solve Total Solve Total Solve Total Solve Total

BL06-camel-lrg 18 M 93 M 107.53 s 111.42 s 28.55 s 31.54 s 24.44 s 28.82 s 291.71 s 337.91 s
BL06-gargoyle-lrg 17 M 86 M 238.08 s 241.65 s 33.76 s 36.57 s 26.51 s 30.61 s 208.27 s 251.10 s
LB07-bunny-lrg 49 M 300 M 8.71 s 22.95 s 6.38 s 15.25 s 21.87 s 32.13 s 610.24 s 820.64 s
NT32 tomo3 .raw 10 22 M 154 M 52.86 s 63.15 s 50.82 s 60.01 s 36.46 s 44.14 s 645.33 s 741.98 s
NT32 tomo3 .raw 100 183 M 1 B 778.39 s 860.71 s 553.50 s 627.08 s 520.26 s 583.76 s 9732.34 s 10618.81 s
NT32 tomo3 .raw 3 7 M 49 M 15.42 s 18.69 s 24.22 s 27.19 s 15.87 s 18.33 s 176.11 s 200.29 s
NT32 tomo3 .raw 30 67 M 462 M 145.23 s 176.37 s 194.79 s 221.90 s 179.82 s 202.73 s 2939.04 s 3260.63 s
NT32 tomo3 .raw 5 11 M 75 M 23.92 s 28.84 s 42.13 s 46.54 s 30.62 s 34.37 s 286.58 s 326.86 s
adhead.n26c10 12 M 327 M 35.97 s 62.76 s 18.94 s 30.26 s 22.48 s 27.23 s 174.19 s 370.61 s
adhead.n26c100 12 M 327 M 65.81 s 92.57 s 22.60 s 33.93 s 24.29 s 29.03 s 225.38 s 424.67 s
adhead.n6c10 12 M 75 M 10.62 s 14.76 s 8.31 s 10.91 s 10.27 s 12.00 s 45.35 s 87.82 s
adhead.n6c100 12 M 75 M 23.88 s 28.03 s 13.23 s 15.85 s 14.13 s 15.87 s 59.65 s 102.84 s
babyface.n26c10 5 M 131 M 42.07 s 52.65 s 23.58 s 28.17 s 42.87 s 45.08 s 143.68 s 188.10 s
babyface.n26c100 5 M 131 M 82.29 s 92.87 s 30.13 s 34.74 s 54.47 s 56.71 s 183.60 s 228.09 s
babyface.n6c10 5 M 30 M 4.28 s 5.94 s 4.36 s 5.41 s 10.11 s 10.86 s 46.30 s 58.77 s
babyface.n6c100 5 M 30 M 7.78 s 9.44 s 5.56 s 6.61 s 11.56 s 12.24 s 57.28 s 69.66 s
bone.n26c10 7 M 202 M 6.82 s 23.42 s 8.05 s 15.15 s 3.89 s 6.80 s 70.42 s 175.85 s
bone.n26c100 7 M 202 M 9.01 s 25.62 s 9.18 s 16.28 s 4.24 s 7.16 s 68.39 s 173.75 s
bone.n6c10 7 M 46 M 2.87 s 5.44 s 2.28 s 3.89 s 1.81 s 2.86 s 16.61 s 40.11 s
bone.n6c100 7 M 46 M 4.09 s 6.65 s 2.74 s 4.35 s 2.30 s 3.36 s 23.66 s 46.71 s
bone subx.n26c10 3 M 101 M 4.95 s 13.02 s 4.35 s 7.87 s 1.95 s 3.42 s 20.15 s 71.88 s
bone subx.n26c100 3 M 101 M 7.70 s 15.78 s 4.74 s 8.23 s 2.14 s 3.61 s 25.51 s 75.15 s
bone subx.n6c10 3 M 23 M 2.31 s 3.57 s 1.98 s 2.74 s 1.07 s 1.59 s 10.48 s 21.72 s
bone subx.n6c100 3 M 23 M 4.10 s 5.36 s 2.38 s 3.11 s 1.28 s 1.81 s 10.34 s 21.49 s
cells.sd2 3 M 30 M 10.25 s 12.71 s 11.32 s 12.68 s 3.49 s 5.10 s 24.34 s 39.14 s
foam.subset.r120.h210 8 M 113 M 3.12 s 12.93 s 1.91 s 7.63 s 9.25 s 14.20 s 9.24 s 77.57 s
foam.subset.r160.h210 15 M 205 M 6.09 s 23.98 s 3.58 s 14.10 s 17.14 s 26.18 s 23.58 s 162.54 s
foam.subset.r60.h210 1 M 24 M 622 ms 2.70 s 422 ms 1.58 s 1.98 s 3.01 s 2.02 s 13.37 s
graph3x3 2 K 47 K 9 ms 11 ms 3 ms 3 ms 1 ms 1 ms 1 ms 5 ms
graph5x5 2 K 139 K 62 ms 67 ms 6 ms 9 ms 3 ms 4 ms 2 ms 15 ms
liver.n26c10 4 M 108 M 6.47 s 15.06 s 8.52 s 12.22 s 4.53 s 5.31 s 58.78 s 114.95 s
liver.n26c100 4 M 108 M 11.78 s 20.41 s 10.49 s 14.20 s 5.72 s 6.50 s 71.88 s 131.00 s
liver.n6c10 4 M 25 M 4.88 s 6.20 s 4.46 s 5.21 s 4.40 s 4.93 s 25.63 s 37.85 s
liver.n6c100 4 M 25 M 10.08 s 11.40 s 5.82 s 6.57 s 5.70 s 6.24 s 30.49 s 42.71 s
simcells.sd2 955 K 8 M 1.19 s 1.92 s 574 ms 1.00 s 892 ms 1.35 s 5.44 s 9.38 s
simcells.sd3 3 M 35 M 12.69 s 16.38 s 2.94 s 4.96 s 3.84 s 5.65 s 22.56 s 38.99 s
super res-E1 10 K 62 K 2 ms 4 ms 1 ms 2 ms 2 ms 3 ms 1 ms 7 ms
super res-E2 10 K 103 K 5 ms 7 ms 2 ms 3 ms 2 ms 3 ms 2 ms 12 ms
super res-Paper1 10 K 62 K 2 ms 4 ms 1 ms 2 ms 2 ms 3 ms 1 ms 7 ms
superres graph 43 K 742 K 17 ms 55 ms 10 ms 26 ms 7 ms 12 ms 19 ms 162 ms
texture-Cremer 44 K 783 K 1.54 s 1.58 s 353 ms 374 ms 168 ms 190 ms 42 ms 189 ms
texture-OLD-D103 43 K 742 K 605 ms 645 ms 194 ms 210 ms 73 ms 92 ms 41 ms 194 ms
texture-Paper1 43 K 742 K 650 ms 688 ms 186 ms 205 ms 76 ms 95 ms 36 ms 171 ms
texture-Temp 14 K 239 K 219 ms 229 ms 30 ms 34 ms 9 ms 15 ms 6 ms 32 ms

performance for the majority of the datasets and only a
few instances with slightly lower performance than EIBFS.
Meanwhile, EIBFS-I-NR performs worse than EIBFS on
almost all datasets, which further supports the notion that arc
packing is important for the performance of the implementation.

For the HPF algorithm, the H-LIFO configuration
(HPF-H-L) consistently performs the best, while the L-FIFO
and L-LIFO configurations mostly perform worse than the
reference H-FIFO configuration. Although there are a few
cases where L-LIFO performs much better than the others, it
generally performs much worse than both H-LIFO and H-FIFO.

D. Parallel algorithms

Our benchmark results for the parallel algorithms are shown
in Table III, which compares the build and solve time for each
algorithm on each dataset. We do not include results for many
of the small datasets, as the overhead of parallization typically

outweighs any performance benefits. The table includes the
number of CPU threads used by each of the algorithms for
the listed build and solve times. Furthermore, it includes the
solve time of the best serial algorithm for each dataset for
comparison. Although we have included build time in the table,
we focus on the solve time, since we are interested in how
well the algorithms are able to distribute work as more threads
are added. Additionally, a lack of optimization leads to very
long build times for some of the parallel implementations,
especially P-PRR, which leads to an unfair comparison. For
anyone wanting to use the algorithms in practice, the build
time should of course be taken into account.

From Table III, we see that our implementation of the Liu-
Sun algorithm performs the best for most of the larger datasets,
while the serial HPF algorithm performs better on the smaller
datasets. The superiority of the Liu-Sun algorithm among the
parallel algorithms is illustrated in Fig. 6, which shows that
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(b) Relative total times.

Fig. 4: Relative performance for the serial algorithms. For
each dataset, the solve and total times for each algorithm was
compared to the fastest algorithm for that dataset and a relative
time computed. This shows how often an algorithm was fastest
and, if it was not fastest, how much slower than the fastest it
was.

Liu-Sun is faster than the fastest serial algorithm on half of
the datasets and slower on the other half. However, when it is
faster, it is often more than twice as fast, while rarely being
less than half as fast as the fastest serial algorithm. The other
parallel algorithms all have median values well below one,
indicating that they are significantly slower than the serial
algorithms for the majority of the datasets.

While the parallel algorithms do not outperform the fastest
serial algorithm on many of the datasets, it is important
to examine which datasets are better suited for the parallel
algorithms. Figure 7 shows the relative speed-up for each
algorithm on each dataset compared to the size of each problem,
represented by the number of nodes. The results show that
P-ARD and especially Liu-Sun perform better relative to the
serial algorithms as the the size of the problem increases, with
Liu-Sun outperforming the fastest serial algorithm several times
for the datasets with more than 20 million nodes.

V. DISCUSSION

A. Serial algorithms

Measured on solve time, EIBFS performed the best of the
serial algorithms, which aligns with the results presented in
[23]. However, if we look at the total time, the HPF algorithm
performs the best on the majority of the datasets, which does
not align with the results from [23]. We see two possible
explanations for this:

1) [23] use the H-FIFO configuration for HPF, which
according to our results, is consistently outperformed
by H-LIFO. This significantly improves the HPF results
in our comparison.

2) For the most of the datasets benchmarked in [23], they
use 32-bit pointers, which significantly reduces the size
of the Node and Arc data structures. This generally
results in better performance (as demonstrated in our
experiments).

Something we cannot explain, is why the total timings from
our experiments are not significantly lower than those from
[23], given the superior hardware used in our experiments. On
the contrary, when using EIBFS, we actually take longer than
them to build the graph and solve the problem, even for the
adhead.n6c100 dataset where they too use 64-bit pointers.
Even though their EIBFS implementation has a slightly smaller
memory footprint than EIBFS-I and avoids the overhead from
index-based referencing, we do see how this could account
for the difference in observed performance. To investigate this
further, we would have to also benchmark the exact EIBFS
implementation used in [23]. However, as previously mentioned
in Section IV-B, this implementation cannot process some of
the larger benchmark datasets we have used. In the interest
of consistency, we have used the same implementation for all
tests.

The memory footprint of an algorithm dictates the maximum
size of the problems that are practical to solve on a given system.
As shown in Table I, MBK, and the parallel implementations
based on it, has the smallest memory footprint closely followed
by EIBFS-I-NR. This allows MBK to handle datasets over
twice the size of some of the other algorithms. However, as
demonstrated by the implementations using arc packing, it may
be worth using some extra memory to increase performance,
given that the problems still fit in system memory. Meanwhile,
reducing the size of the Node and Arc data structures will both
decrease the total memory footprint and increase performance.
This is demonstrated by the EIBFS-I, which outperforms
EIBFS due to the reduced size of the data structures.

B. Parallel algorithms
The superior performance of the Liu-Sun algorithm, com-

pared to the other parallel algorithms, aligns with previous
results [45] and expectations [50, 51] that this approach should
perform well on multi-core system. While the algorithm cannot
match the serial algorithms on small datasets, it is clear that it
scales well on larger datasets, where our results show it being
more than five times faster than the fastest serial algorithm.

As expected due to its node-based parallelism, P-PPR scales
best with a large number of parallel threads. As shown in
Table III, it achieves its best results with 32 threads for nearly
all datasets. This is very different to the Strandmark-Kahl
algorithm, which never uses more than eight threads for its best
results. This is likely due to convergence issues when splitting
the graph into many blocks [58]. P-ARD is able to utilize
more threads than Strandmark-Kahl, but not nearly as many as
Liu-Sun, which could explain why Liu-Sun performs better. In
both cases, it is clear that larger datasets allow the algorithms
to scale to utilize more threads, which is an important factor
if we were to use the algorithms on very large datasets with
several billion arcs.

For practical use, only the Liu-Sun and P-ARD implementa-
tions appear relevant as is. And of the two, Liu-Sun is clearly
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Fig. 5: Performance comparison of serial algorithm variants. The solve time and total time is compared against the times for
the chosen reference algorithm for each dataset.

TABLE III: Performance of parallel algorithms based on build and solve times. The parallel algorithms were ran with 1, 2, 4,
6, 8, 12, 16, 24, 32, 40, 48, 56, and 64 threads. Only the best time is shown along with the thread count for that run. For
comparison, the solve time for the fastest serial algorithm is also included. All times are in seconds. The fastest solve time for
each dataset has been marked with bold face.

P-ARD [50] Liu-Sun [45] P-PPR [5] Strandmark-Kahl [51] Best serial
Dataset Nodes Arcs Build Best solve Build Best solve Build Best solve Build Best solve Alg. Solve

LB07-bunny-lrg 49 M 300 M 51.78 3.64 8T 6.47 2.10 16T 260.38 37.73 32T 9.01 4.51 4T EIBFS 6.38
NT32 tomo3 .raw 10 22 M 154 M 26.91 28.45 8T 5.12 19.02 16T 141.09 27.67 32T 25.42 83.26 2T HPF 36.46
NT32 tomo3 .raw 100 183 M 1 B 219.76 191.91 16T 40.35 95.16 32T - - - 186.61 645.96 4T HPF 498.94
NT32 tomo3 .raw 3 7 M 49 M 6.34 22.81 1T 1.64 9.94 6T 42.88 7.79 32T 7.44 26.26 1T BK 15.42
NT32 tomo3 .raw 30 67 M 462 M 78.17 85.26 6T 15.28 47.05 32T 430.09 98.17 32T 73.04 301.38 2T BK 145.23
NT32 tomo3 .raw 5 11 M 75 M 12.96 12.13 4T 2.45 12.74 12T 66.34 14.23 32T 12.41 36.80 4T BK 23.92
adhead.n26c10 12 M 327 M 56.63 29.86 4T 7.17 18.42 8T 268.67 25.56 12T 27.86 25.55 4T EIBFS 18.94
adhead.n26c100 12 M 327 M 53.39 37.27 8T 7.22 22.67 8T 262.53 15.33 32T 28.77 21.17 6T EIBFS 22.60
adhead.n6c10 12 M 75 M 13.36 5.14 4T 1.68 5.08 4T 65.58 7.35 32T 2.46 6.00 2T EIBFS 8.31
adhead.n6c100 12 M 75 M 13.07 8.73 4T 1.68 11.23 8T 65.84 9.13 32T 2.71 7.57 4T EIBFS 13.23
babyface.n26c10 5 M 131 M 21.15 38.53 2T 2.98 47.06 4T 102.92 11.74 32T 10.58 28.80 4T EIBFS 23.58
babyface.n26c100 5 M 131 M 22.22 73.55 2T 3.04 79.04 32T 103.81 15.63 32T 9.95 42.74 4T EIBFS 30.13
babyface.n6c10 5 M 30 M 5.03 4.12 2T 0.68 2.59 24T 24.96 5.39 24T 0.85 3.88 1T BK 4.28
babyface.n6c100 5 M 30 M 5.37 7.69 2T 0.68 5.61 4T 24.93 6.93 24T 1.10 5.33 4T EIBFS 5.56
bone.n26c10 7 M 202 M 34.31 8.57 8T 4.54 3.65 16T 159.32 6.62 32T 16.10 10.82 2T HPF 3.11
bone.n26c100 7 M 202 M 34.22 10.84 8T 4.52 4.02 32T 158.84 7.65 32T 16.99 5.26 8T HPF 3.48
bone.n6c10 7 M 46 M 7.94 1.41 8T 1.04 0.78 32T 39.02 4.24 32T 1.46 1.84 2T HPF 1.59
bone.n6c100 7 M 46 M 8.48 1.92 8T 1.04 1.13 16T 39.15 5.06 32T 1.47 1.89 2T HPF 2.04
bone subx.n26c10 3 M 101 M 18.66 7.14 1T 2.36 3.13 16T 78.56 3.90 32T 7.91 3.82 4T HPF 1.95
bone subx.n26c100 3 M 101 M 17.29 9.36 1T 2.37 4.09 16T 78.74 4.65 32T 8.27 4.77 8T HPF 2.14
bone subx.n6c10 3 M 23 M 4.33 2.27 32T 0.52 1.28 16T 19.45 2.97 16T 0.83 1.45 4T HPF 1.07
bone subx.n6c100 3 M 23 M 4.35 2.90 24T 0.53 2.83 8T 19.62 3.29 16T 0.98 2.16 8T HPF 1.28
liver.n26c10 4 M 108 M 13.12 9.17 1T 2.42 11.01 32T 86.56 9.33 32T 1.02 3.81 1T HPF 4.53
liver.n26c100 4 M 108 M 17.11 15.67 1T 2.44 17.88 6T 85.71 10.48 32T 1.00 7.00 1T HPF 5.72
liver.n6c10 4 M 25 M 4.35 5.51 1T 0.56 4.01 6T 21.21 6.06 16T 0.64 3.79 1T HPF 4.40
liver.n6c100 4 M 25 M 4.41 11.11 1T 0.56 8.31 8T 22.14 6.73 16T 0.64 7.91 1T HPF 5.70

P-ARD Liu-Sun P-PPR Strandmark-Kahl
0

1

2

3

4

5

Sp
ee

d-
up

Fig. 6: Speed-up of the parallel algorithms relative to the best
serial solve time for each dataset.
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of nodes in the datasets.
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the superior one, especially when build time is taken into
consideration. While the node-based parallelism of P-PPR
seems like a good idea in theory, the synchronization overhead
results in very poor overall performance. Thus, even with 32
threads, it often cannot match the performance of the serial
algorithms. On the other hand block-based parallelism appears
to scale well, as long as the problems are large and we have a
reasonable way of splitting them into blocks.

The Liu-Sun implementation tested in our experiments relies
on the MBK implementation, which, as we show, is not as fast
as the HPF and EIBFS implementations. As adaptive bottom-
up merging can in theory be used with any min-cut/max-flow
algorithm, one might consider replacing BK with HPF or
EIBFS for improved performance. However, it is important to
remember that for the bottom-up merging to be fast, it requires
an algorithm which is fast when changing the graph and
recomputing the min-cut/max-flow solution. Although EIBFS
allows this, our preliminary tests showed that the overhead of
changing the graph and updating the solution is significantly
higher for EIBFS than BK, which means that parallel EIBFS
based on bottom-up merging is often considerably slower than
serial EIBFS, even for large datasets. To our knowledge, the
HPF implementation tested in the paper does not support
dynamically updating the min-cut/max-flow solution. However,
if HPF or EIBFS can be implemented such that they can match
the performance of BK for dynamic graph problems, they
would definitely be suitable for adaptive bottom-up merging.

VI. CONCLUSIONS AND PERSPECTIVES

We performed an extensive comparison of the state-of-the-art
generic serial and parallel min-cut/max-flow algorithms, some
of which have seen extensive use for optimization problems in
the computer vision community.

For the serial min-cut/max-flow algorithms, we have tested
a total of eight different implementations across four of the
fastest and most popular algorithms: PPR, BK, EIBFS, and
HPF. These four algorithms include representatives for the
three families of min-cut/max-flow algorithms: augmenting
paths, push-relabel and pseudoflow.

Our results clearly show that the two pseudoflow algorithms,
EIBFS and HPF, are significantly faster than the other algo-
rithms, which leads us to conclude that these two algorithms
should be the first choice for anyone looking for a fast min-
cut/max-flow algorithm for static computer vision problems.
For a comparison with dynamic problems, we refer to [23].

Based on our results, we recommend the HPF algorithm
with the H-LIFO configuration, as it performs the best for
the majority of the problems when looking at the total
time spent building the graph and finding the min-cut/max-
flow solution. However, the EIBFS algorithm (EIBFS-I
implementations) is a very close contender and can easily
replace HPF with little impact on performance. The BK
algorithm (MBK implementation) falls significantly behind the
two pseudoflow algorithms, but still provides good performance
for most of the problems tested in this paper. Meanwhile, the
PPR algorithm represented by HI-PPR is much slower than
the three other algorithms and should only be used if there

is a specific reason to, or for very small problems where
performance and memory usage are irrelevant.

Concerning memory usage, the MBK implementation of the
BK algorithm and EIBFS-I-NR implementation of the EIBFS
algorithm are both good options, as they use significantly less
memory than the standard EIBFS implementations and HPF.

We tested four different parallel algorithms for min-cut/max-
flow problems: parallel PPR (P-PPR), adaptive bottom-up
merging (Liu-Sun), dual decomposition (Strandmark-Kahl),
and region discharge (P-ARD). Of these, we found adaptive
bottom-up merging, as proposed by Liu and Sun [45], to be the
best parallel approach, as our implementation of it significantly
outperformed the other parallel algorithms overall. Although
the other algorithms each has the fastest solve time for at least
one of the benchmark problems, their practical use is affected
by their slow build times. However, even if the build times
were improved through new optimized implementations, Liu-
Sun still appears to provide the best combination of parallel
scaling and thread utilization. This allows it to keep up with
serial MBK for smaller problems, while being several times
faster than the fastest serial algorithm on large problems.

P-ARD is not able to scale as well with the number of
threads as Liu-Sun, while Strandmark-Kahl is only able to
utilize up to eight threads. P-PPR on the other hand scales well
will the number of threads, however, it still performs worse than
Liu-Sun in most cases, even when using several times more
parallel threads. Of the four tested parallel implementations,
P-ARD is the only one apart from Liu-Sun that appears to be
able to consistently outperform the serial algorithm on large
problems.

We think there are significant performance improvements to
be gained from combining the optimization approaches used
by the different implementations. For serial algorithms, faster
and better packing of arcs and nodes could help improve the
cache efficient and reduce the build time. For the parallel
algorithm, it may be possible to use adaptive bottom-up
merging with one of the fast pseudoflow algorithms to improve
performance. Another option is to create a hybrid Liu-Sun
implementation that uses the faster pseudoflow algorithms
for the initial min-cut/max-flow computations but switches
to BK once the merging starts. Additionally, the parallel
implementations should take advantage of parallelism when
building the graph.

In conclusion, it is clear that there is a lot of performance to
be gained from good implementations of parallel min-cut/max-
flow algorithms such as adaptive bottom-up merging when
dealing with large optimization problems. Meanwhile, serial
algorithms remain superior for smaller size problems due to
the overhead associated with parallelism. For the serial min-
cut/max-flow algorithms, implementation details, such as data
structure sizes and packing also play an important role for the
performance and may determine which algorithm ends up with
the best performance in practice.
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3.6 Paper C: Faster Multi-Object Segmentation using
Parallel Quadratic Pseudo-Boolean Optimization

In the third contribution, we present our own parallel version QPBO algorithm.
Our parallel QPBO algorithm combines the QPBO optimization techniques by Kol-
mogorov and Rother 2007 with the bottom-up merging strategy by Jiangyu Liu and
Jian Sun 2010 discussed in Paper B. Using our parallel QPBO algorithm with SLGs,
we can solve the large segmentation task from Paper A in less than two minutes,
which is about ten times faster than using serial QPBO.

The included paper is the preprint submitted to the International Conference on
Computer Vision (ICCV) 2021. It is currently awaiting peer review.
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Abstract

We introduce a parallel version of the Quadratic Pseudo-
Boolean Optimization (QPBO) algorithm for solving binary
optimization tasks, such as image segmentation. The origi-
nal QPBO implementation by Kolmogorov and Rother re-
lies on the Boykov-Kolmogorov (BK) maxflow/mincut al-
gorithm and performs well for many image analysis tasks.
However, the serial nature of their QPBO algorithm results
in poor utilization of modern hardware. By redesigning the
QPBO algorithm to work with parallel maxflow/mincut al-
gorithms, we significantly reduce solve time of large op-
timization tasks. We compare our parallel QPBO imple-
mentation to other state-of-the-art solvers and benchmark
on two large segmentation tasks and a substantial set of
small segmentation tasks. The results show that our paral-
lel QPBO algorithm is up to 17 times faster than the fastest
serial QPBO algorithm on the large tasks and over three
times faster for the majority of the small tasks. Although we
focus on image segmentation, our algorithm is generic and
can be used for any QPBO problem. Our implementation
and experimental results are available at: (link will come).

1. Introduction

Computational parallelism is essential to the perfor-
mance and thereby the usefulness of many image segmenta-
tion algorithms. The best example is perhaps deep learning,
which owes much of its success to highly efficient parallel
implementations of the matrix operations used during both
training and inference. However, not all algorithms used in
computer vision rely on easily parallelizable matrix opera-
tions.

Graph cut algorithms are popular for solving binary op-
timization problems in image analysis, due to their speed
and guarantee of optimality. Thus, they provide efficient
solutions to a variety of computer vision problems – on

their own [8, 9, 11, 16, 23, 26, 32, 34], or in combina-
tion with other methods [18, 29, 30]. While some popular
graph cut algorithms have been parallelized [11, 35, 39, 41],
other algorithms have remained serial, which severely lim-
its their ability to utilize modern hardware. An example is
the Quadratic Pseudo-Boolean Optimization (QPBO) algo-
rithm [7, 19, 32, 37], which allows nonsubmodular energy
terms, making it particularly useful for instance segmenta-
tion. Instance segmentation without training data is com-
mon in microscopy and material science, where manually
labeling large volumetric datasets can be highly impracti-
cal. Often, the input needed for segmentation with QPBO
can be obtained much easier.

In this paper, we introduce the first parallel QPBO (P-
QPBO) algorithm. Our goal is to provide an efficient and
scalable algorithm, which can take advantage of modern
multi-core processors. With our P-QPBO algorithm, results
can be obtained over an order of magnitude faster than with
previous serial methods, and the scale of the tasks can be
increased significantly. It enables us to segment a volume
with hundreds of interacting 3D objects in minutes based on
limited user input and no training data. Although we only
demonstrate the advantage of P-QPBO for image segmen-
tation, P-QPBO can be used for any QPBO problem.

This work focuses on our parallel algorithm and its time
and memory efficiency on image segmentation tasks, and
thus the formulation of suitable energy functions for spe-
cific computer vision tasks is outside the scope of this pa-
per.

1.1. Related work

The QPBO algorithm [7, 19], as implemented by Kol-
mogorov and Rother [32, 37], relies on the serial Boykov-
Kolmogorov maxflow/mincut (BK Maxflow) algorithm [9]
for solving optimization tasks. Generally, maxflow/mincut
algorithms can be separated into three groups [40]: push-
relabel algorithms [3, 10, 14, 15], augmenting path algo-
rithms [9, 17], and pseudoflow algorithms [16, 20, 21],
which are a hybrid of the two previous categories. BK
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Maxflow is an augmenting path algorithm. It is the
most popular maxflow/mincut algorithm in computer vi-
sion, due to its performance and ability to handle dynamic
maxflow/mincut scenarios, by reusing computations from
previous solutions when changes are made to the graph
[31]. In the last decade, pseudoflow algorithms like Ex-
cesses Incremental Breadth-First Search (EIBFS) [16] have
outperformed BK Maxflow in most static cases, as well as
some dynamic cases. However, the overhead associated
with graph changes for dynamic problems is still higher for
EIBFS than for BK Maxflow, giving BK an advantage for
highly dynamic tasks.

Push-relabel algorithms have traditionally been the tar-
get of most parallelization efforts [2, 5, 11, 13, 22, 41],
as operations mainly act locally, making them well-suited
for parallel execution. However, synchronization overhead
means that many threads are needed to achieve good per-
formance [6, 38]. More recent works [35, 38, 39, 42, 43]
have focused on parallelizing augmenting path algorithms.
Here, a graph is partitioned into multiple sub-graphs and a
serial algorithm is applied to each sub-graph in parallel. In-
formation is then propagated between sub-graphs, or they
are merged. This process is repeated until a global solu-
tion is found. Parallel pseudoflow algorithms have not been
attempted yet.

Finally, as grid-based graphs are relatively common in
computer vision, algorithms specialized for this structure,
such as Grid-Cut [24, 25] and CUDA cuts [41], have also
been developed. Assuming a grid structure allows for op-
timizations that significantly improve performance. How-
ever, these algorithms are only usable on a limited (but cer-
tainly important) subset of binary optimization problems. In
this paper, we are concerned with a general-purpose paral-
lel QPBO algorithm and will therefore not discuss the grid-
based algorithms further.

1.2. Contribution

We introduce a fast parallel algorithm for solving QPBO
problems. It is based on the efficient two-stage approach of
the QPBO algorithm as presented in [32] and the bottom-up
merging approach from [35]. Our algorithm is fully com-
patible with the original QPBO algorithm and we prove that
it is guaranteed to find equivalent solutions.

We show that our parallel algorithm reduces the solve
time significantly on a large multi-object 3D segmentation
task compared to current state-of-the-art approaches. We
also benchmark our algorithm for segmentation using a
large set of 2D images and show significant performance
improvements, even for smaller segmentation tasks.

Our C++ implementation, along with a wrapper for
Python and benchmark code, is available at (link will
come).

2. QPBO
We briefly summarize the original QPBO algorithm

here. Both the QPBO algorithm and general-purpose
maxflow/mincut algorithms, can be used to minimize en-
ergy functions of the form

E(x) =
∑
p∈V

θp(xp) +
∑
p,q∈V

θpq(xp, xq) . (1)

Here, V is a set of nodes, xp ∈ {0, 1} are the node labels, θp
are unary energy terms, and θpq are pairwise energy terms.
If E is submodular, meaning that all pairwise energies sat-
isfy

θpq(0, 0) + θpq(1, 1) ≤ θpq(0, 1) + θpq(1, 0) , (2)

maxflow/mincut-based algorithms (including QPBO) are
guaranteed to find the global optimal solution to the min-
imization problem [9, 32]. However, non-submodular en-
ergy terms cannot be represented as edges in the graph
[12, 33]. To overcome this limitation, the QPBO algorithm
uses a primal-dual graph approach, in which every node is
represented by two graph nodes: a primal node p ∈ V and a
dual node p ∈ V . Every energy term is then represented
by two graph edges (see Table 1). This allows the non-
submodular terms to be represented as graph edges between
the primal and the dual graph. Computing the maximum
flow/minimum cut of this primal-dual graph, corresponds
to minimizing the energy function [32].

Table 1: Conversion from energy terms to graph edges [32].
Here, p, q ∈ V represent nodes from the primal graph,
p, q ∈ V are the corresponding nodes of the dual graph,
and s, t represent, respectively, the source and sink nodes.

Energy term Corresponding edges Edge capacity

θp(0) (p→ t), (s→ p) 1
2θp(0)

θp(1) (s→ p), (p→ t) 1
2θp(1)

θpq(0, 1) (p→ q), (q → p) 1
2θpq(0, 1)

θpq(1, 0) (q → p), (p→ q) 1
2θpq(1, 0)

θpq(0, 0) (p→ q), (q → p) 1
2θpq(0, 0)

θpq(1, 1) (q → p), (p→ q) 1
2θpq(1, 1)

However, the support for non-submodular terms means
that the guarantee of finding the global optimal solution
is replaced by one of finding a partial optimal solution
[32]. This means that we may get a solution with unla-
beled nodes, which may lead to bad segmentation results
[23]. However, when non-submodular terms are used only
for exclusion, [26] has shown that unlabeled nodes are rare
and hardly affect the resulting segmentation.
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The original QPBO algorithm uses a two-stage approach
to reduce the solve time [32]. In the first stage, only the pri-
mal graph is created and the maxflow solution is computed
without adding edges corresponding to non-submodular
terms. In the second stage, the dual graph is created by
copying the residual primal graph and reversing the edges.
Afterwards, the edges for the non-submodular terms are
added and the solution is updated. This two-stage approach
reduces the solve time significantly, but it relies on maxflow
solvers that can handle dynamic graphs efficiently, such as
the BK algorithm [31].

3. Parallel QPBO
We now describe our new Parallel QPBO (P-QPBO) al-

gorithm, which combines the two-stage QPBO approach
described in Section 2 with the bottom-up merging paral-
lelization approach by Liu and Sun [35]. Judging from pre-
vious work [35, 38, 39, 42, 43], bottom-up merging pro-
vides good performance on non-distributed multi-core sys-
tems. Like Liu and Sun’s algorithm, ours has two phases.
In Phase I, the QPBO problem is split into disjoint sub-
problems, which are solved independently in parallel. In
Phase II, these partial solutions are merged and re-solved,
also in parallel, to get the complete solution.

In contrast to Liu and Sun’s algorithm, which strictly
works as a maxflow/mincut solver, our algorithm also con-
siders each sub-problem as a QPBO problem. Specifically,
each sub-problem is kept in Stage 1 (i.e. we only consider
the primal graph) as long as it contains only submodular
terms. Thus, in the case of few non-submodular terms, most
sub-problems will remain in Stage 1 for most of Phase I and
II, which delays the introduction of the dual graph. This
significantly reduces the solve time. We now provide a de-
tailed description of the two phases. Here, we also describe
the specific conditions, which will trigger a conversion to
Stage 2 for a sub-problem. A visual summary is shown in
Figure 1.

Phase I: Partitioning of the QPBO problem is done
by splitting the underlying primal-dual graph G. We split
the primal node set V into N disjoint sets V1,V2, ...,VN .
This gives a partition of the graph nodes into blocks
W1,W2, ...,WN where Wi = {p, p | p ∈ Vi}. Then,
for each pair of blocks Wi,Wj connected by one or more
edges, we identify inter-block edges and store these in sepa-
rate lists. From now on, we refer to these edge lists as block
interfaces. After building the block interfaces we remove
the corresponding edges from G.

We now have a series of sub-graphs Gi = 〈{Wi, s, t}, Ei〉
where Ei = {(p → q) ∈ E | p, q ∈ Wi} and E is the
set of all edges in G. Because these sub-graphs are dis-
connected, except through the source and sink nodes, we
can compute their individual maxflow solutions in paral-
lel (see Figure 1a). For each sub-graph, we adapt the two-

stage approach from the serial QPBO algorithm. First, we
only consider the primal graph without adding edges from
non-submodular terms. Then, if (and only if) a sub-graph
contains non-submodular terms, we transition the sub-graph
to Stage 2. During this transition, the dual graph is con-
structed by copying the primal graph, the remaining non-
submodular edges are added, and the maxflow solution is
updated (see Figure 1b). When all sub-graphs have been
solved, we move to Phase II.

Phase II: In this phase we merge the sub-graphs to re-
create the original complete graph, G. Merging two sub-
graphs is done by re-adding the inter-block edges, which
were removed at the beginning of Phase I. If all sub-graphs
and inter-block edges correspond to submodular terms, we
only add primal edges and keep both sub-graphs in Stage 1
(see Figure 1c). If some of the inter-block edges correspond
to non-submodular terms, both sub-graphs are transformed
to Stage 2 (see Figure 1d) before the inter-block edges are
added (see Figure 1e). Furthermore, if the two sub-graphs
are in different stages, the sub-graph in Stage 1 is trans-
formed to Stage 2 before inter-block edges are re-added and
the sub-graphs are merged (see Figure 1f). After merging,
the solution of the combined graph is updated.

To further reduce the solve time, we want merges to hap-
pen in parallel, for which we use the strategy from [35].
As updating the maxflow solution is a serial process, only
one thread can work on a sub-graph at a time. For synchro-
nization, each sub-graph can be locked (meaning it is being
worked on) or unlocked (meaning it is free for merging).

To decide which sub-graphs to merge, each thread scans
through the list of block interfaces created in Phase I, un-
til it finds one that connects two unlocked sub-graphs. The
thread then locks the sub-graphs and merges them. Then, it
re-computes the maxflow solution for the merged sub-graph
and the sub-graph is unlocked. Note that after sub-graphs
have been merged, there may be several block interfaces
connecting the previously merged sub-graphs. Therefore,
when a thread finds a pair of sub-graphs to merge, it con-
tinues to scan the list of block interfaces to find all block
interfaces connecting the pair. The block interfaces are then
removed from the global list and the merge proceeds. We
use a global synchronization object to ensure that only one
thread can scan the list of block interfaces at a time.

At the end of Phase II, the number of remaining merges
will be less than the number of running threads (unless only
one thread is used). Therefore, if a thread scans the whole
list of block interfaces without encountering a pair of un-
locked sub-graphs, it terminates. As a result, the degree of
parallelism is gradually reduced near the end of Phase II.
However, for most problems, the time required for the last
merge will be small compared to the total solve time. In
total, the number of merges performed will be one less than
the number of blocks. The process for each thread is sum-
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Figure 1: Illustration of merging strategy. Blue dots and lines represent nodes and edges in the primal graph, while red
dots and lines are nodes and edges in the dual graph. Green lines represent edges between the primal and dual graphs,
corresponding to non-submodular terms. Dashed lines represent edges between sub-graphs, which are re-added when the sub-
graphs are merged. The exception is green dashed lines between two primal (blue) nodes. These represent non-submodular
energy terms, which will be translated to edges, once the dual graphs are added. Source/sink nodes and edges are not shown.
(a) The graph is split into sub-graphs and the maxflow solution for each primal sub-graph is computed in parallel. (b) Sub-
graph A contains internal non-submodular terms, so it is transformed to Stage 2 and the solution is updated. (c) Sub-graph D
and E are merged. Inter-block edges are re-added and the sub-graph solution is updated. As all intra- and inter-block terms
are submodular the sub-graph remains in Stage 1. (d) A term between B and C is non-submodular, so the sub-graphs are
transformed to Stage 2 to prepare for merge. (e) Sub-graphs B and C are merged. (f) Sub-graph D + E is transferred to Stage
2 to allow merges with the remaining sub-graphs. All sub-graphs are now in Stage 2, and merging can proceed as normal
bottom-up merging.

marized in Algorithm 1.

3.1. Correctness

Our P-QPBO algorithm will always give a solution
equivalent to that of the serial QPBO algorithm.

Energy: The energy of the solution is given by the
unique value of the minimum cut for the primal-dual graph.
Since the final graph is identical for the serial and paral-
lel algorithms, and they both compute a minimum cut, the
solutions must have the same energy.

Labeling: There may be several min-cuts which have
the same cost/energy but label a different number of nodes
[32]. However, given a residual graph, the algorithm from
[4, 32] will choose the min-cut that labels the maximum
number of nodes. It can be shown (proof in supplemen-
tary material) that since both QPBO and P-QPBO compute
a min-cut of the same graph, they must label the same nodes
after running this extra algorithm. Since this extra step is an
insignificant part of the overall runtime, we do not include
it in our runtime experiments.

3.2. Efficient graph partitioning and merging

The partitioning of the graph nodes into blocks is impor-
tant for the performance of the P-QPBO algorithm. Ideally,
we want as much work as possible to be done in Phase I
(computing the partial solutions) and as little as possible
to be done in Phase II (merging sub-graphs and updating
solutions). A good way to achieve this is to separate the
nodes into blocks that are densely packed (many intra-block
terms) and sparsely related (few inter-block terms). This
speeds up the merging by reducing the number of changes
made to the graph. However, the ideal partitioning very
much depends on the energy function.

For image segmentation, we can use the spatial position
of the nodes/pixels when partitioning them into blocks. Cut-
ting the image into evenly sized rectangular blocks, as done
by [35, 39] should result in many intra-block terms, com-
pared to inter-block terms, as long as the blocks are not
very small. When solving instance segmentation tasks us-
ing Sparse Layered Graphs (SLG) [26], an intuitive way to
partition the nodes is to create a block per label/object. This
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Algorithm 1: Phase II of the parallel QPBO algo-
rithm for each thread.

while true do
Lock synchronization object
Let S = ∅
foreach block interface s do

Let Gi and Gj be sub-graphs connected by s
if both Gi and Gj are unlocked then

S = {si | si connects Gi and Gj}
break

Remove entries of S from list of block interfaces
if S is empty then

Unlock synchronization object
return

Lock sub-graphs Gi and Gj connected by S
Unlock synchronization object
/* Ensure sub-graphs are in stage 2 if needed. */
if S contains non-submodular terms or Gi in stage 2

or Gj in stage 2 then
if Gi in stage 1 then Transform Gi to stage 2
if Gj in stage 1 then Transform Gj to stage 2

Unite blocks Gi and Gj to block Gij

/* Re-insert boundary edges */
foreach boundary edge e in S do

Reinsert e in graph
if Gij in stage 2 then

Reinsert dual edge of e in graph
if nodes of a have different labels then

Mark nodes of reinserted edges as active
Update maxflow for subgraph Gij

/* Make Gij available for merges */
Lock synchronization object
Unlock block Gij

Unlock synchronization object

works well when the interaction between the objects is low
compared to the size of the objects (which is usually the
case), and we have at least as many objects as the number
of parallel threads available on the system. We use this nat-
ural way of partitioning the nodes for all our experiments,
as most of our images contain many objects.

For determining the merging order, P-QPBO uses the
same approach as Liu and Sun [35]. After Phase I, we loop
over each block interface and count the number of potential
new augmenting paths, when merging the sub-graphs con-
taining the blocks. This serves as a heuristic for how much
work must be done when merging the sub-graphs. The list
of block interfaces is then sorted in descending order based
on the number of potential new augmenting paths, in the
hope that threads will perform the most expensive merges
first. The goal is to do as much work as possible early in
Phase II, while the degree of parallelism is high.

4. Benchmark results
To test the scalability of our P-QPBO algorithm, we

compare it with two serial QPBO implementations. The
first is a slightly optimized implementation of the origi-
nal QPBO algorithm by Kolmogorov – we call it K-QPBO.
The reason we are using a slightly modified version is that
the original implementation has overflow issues for large
graphs. The second serial implementation is our own re-
implementation of K-QPBO, which contains numerous im-
provements in data structures and optimizations of the code
that improves performance. We call this implementation
Modern QPBO (M-QPBO). M-QPBO is included to pro-
vide a more fair comparison between a serial and paral-
lel implementation since M-QPBO contains the same per-
formance optimization as P-QPBO. When referring to re-
sults for our parallel implementation, we use the notation
P-QPBO(t), where t is the number of parallel threads used
by P-QPBO.

We test the QPBO implementations on the two datasets
used in [26], and use the exact energy functions shared in
[27]. Our notebooks (based on [27]), used to formulate the
energy functions and to benchmark the QPBO algorithms,
are included in our supplementary material (and will be
shared online). However, as our focus in this paper is purely
on the computational performance, the energy formulations
are not included in the paper.

The first dataset used for our experiments is a high-
resolution µCT 3D image of nerves [28] shown to the left
in Figure 2. This is a large segmentation task with many
non-overlapping objects. It allows us to test the scalabil-
ity of the parallel QPBO implementation across many CPU
threads. The second dataset is the BBBC038v1 nuclei im-
age set from the Broad Bioimage Benchmark Collection
[36]. An image from the dataset along with the instance
segmentation results is shown to the right in Figure 2. Us-
ing these images, we test the performance of the QPBO im-
plementations on a variety of small and medium-sized seg-
mentation tasks. Unlike general maxflow problems, where
a number of commonly used benchmark datasets exist [16],
there are no commonly used benchmark datasets specifi-
cally for QPBO.

We use two Intel Xeon Gold 6226R (16 cores / 16
threads) CPUs in dual socket configuration for all our
benchmarks. With this, we test how our implementation
scales on a modern architecture with up to 32 threads exe-
cuting in parallel.

4.1. Large segmentation tasks

The goal of this experiment is to compare the solve times
of the K-QPBO and M-QPBO to those of P-QPBO at vari-
ous parallel thread counts on large segmentation tasks. Al-
though solve times vary between system architectures, this
experiment shows the benefit of using P-QPBO, depending
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Figure 2: Left: Result of N1 nerve segmentation task.
Nodes are split into blocks such that all nodes associated
with either the inner (red) or outer (blue) surface of a nerve
are in the same block (two blocks per nerve). Right: Ex-
ample of nuclei segmentation on an image from the Broad
Bioimage Benchmark. Nodes are split into blocks such that
all nodes associated with a cell are in the same block (one
block per cell).

on the number of CPU cores available.
In the experiment, we segment the myelin and axon of

216 nerves in a 2048×2048×2048 volume at two different
radial sampling resolutions, using the SLG method of [26].
The first resolution (N1) is the one used by [26], while the
second resolution (N2) is higher, resulting in a graph more
than twice the size of N1 (see Table 2). In both cases, the
output is a 3D multi-label segmentation with a total of 432
interacting objects (two per nerve). For P-QPBO we use
one block per object, see Figure 2, left.

As shown in Table 2, our M-QPBO implementation re-
duces the solve time for the N1 task by 24% compared
to the K-QPBO implementation, while P-QPBO(1) outper-
forms M-QPBO slightly for this task, with a 34% reduc-
tion compared to K-QPBO, using only a single thread. Us-
ing two threads, P-QPBO(2) provides a 62% reduction in
solve time, compared to K-QPBO, and a 50% reduction
compared to M-QPBO. The best result is achieved using
40 threads, in which case P-QPBO is over 10 times faster
than K-QPBO. Figure 3a show the relative speed-up when
using P-QPBO compared to K-QPBO. We see that the per-
formance increases up to, and even beyond, the number of
CPU cores (32) in our test system.

For the larger N2 task, we observe even larger perfor-
mance improvements and better scaling of P-QPBO than
for N1 (see Figure 3b). From the solve times in Ta-
ble 2, we see that the bottom-up merging strategy, even
without parallelism, provides a reduction in solve time of
48% for P-QPBO(1) compared to K-QPBO. Meanwhile,

Table 2: Graph details for the nerve segmentation tasks.
Nodes and edges refer to the size of the full primal-dual
graph. The memory footprint is the total memory footprint
of the graph and relevant bookkeeping, which depends on
the number of nodes and edges. P-QPBO and M-QPBO use
32-bit indices for N1, but 64-bit edge indices for N2, be-
cause it has more than 231 edges. K-QPBO always uses
64-bit pointers for indexing. The solve times are shown
for each of the three algorithms, with a number of differ-
ent thread configurations for P-QPBO. Each solve time is
the minimum of ten runs for N1 and three runs for N2.

N1 N2

Nodes 363,748,800 818,434,800
Edges 2,124,073,474 4,864,255,488

Memory footprint

K-QPBO [32] 134.2 GB 306.8 GB
M-QPBO 60.1 GB 182.7 GB
P-QPBO 70.0 GB 224.9 GB

Fastest solve time

K-QPBO [32] 844 s 4,534 s
M-QPBO 638 s 3,897 s
P-QPBO (1) 561 s 2,338 s
P-QPBO (16) 96 s 305 s
P-QPBO (32) 83 s 264 s
P-QPBO (40) 76 s 242 s
P-QPBO (56) 79 s 239 s

M-QPBO only provides a 14% reduction over K-QPBO. In
other words, P-QPBO clearly improves its relative perfor-
mance as the task grows, while M-QPBO actually performs
slightly worse for N2 than for N1, when looking at the rel-
ative improvement over K-QPBO. One explanation for the
reduced relative performance improvement of M-QPBO on
N2 could be the change to 64-bit indices for edges, which
results in a larger relative memory footprint, as shown in
Table 2.

Both Figures 3a and 3b show that the speed-up increases
significantly less past 16 threads. This is expected, as we
are testing on a dual socket system, which means we are
likely to experience some degree of computational over-
head when using both CPUs, especially for cache and mem-
ory intensive tasks such as computing the maximum flow.
Yet, despite the overhead, the combined 32 CPU cores al-
low P-QPBO to scale past 32 threads for both N1 and N2,
with P-QPBO(40) significantly outperforming P-QPBO(32)
in both cases. This is perhaps a result of some threads idling
while waiting for the synchronization lock to be released.

Another reason for the way P-QPBO scales with the
number of threads is the reduction in the degree of paral-
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Figure 3: Plots showing the relative speed-up in the solve time when using P-QPBO compared to K-QPBO and M-QPBO.
The relative speed-up is calculated using the minimum of ten runs for N1 and three runs for N2. K-QPBO and M-QPBO are
represented as horizontal lines, as they always use a single thread. For P-QPBO, we show results with the number of parallel
threads ranging from one to 64 threads. We also show a fit of Amdahl’s law [1] and the parallel fraction, p. Keep in mind
that two 16 core CPUs were used, which means we would expect the speed-up to stagnate or even decrease when using more
than parallel 32 threads. For these tasks, the stagnation appears to start at 40 threads on our test system.
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(b) Images with 16 or more nuclei

Figure 4: Box plots showing the relative speed-up for each image in the Broad Bioimage Benchmark stage1 train
dataset, for M-QPBO and P-QPBO compared to K-QPBO. Following Tukey’s definition, the green line in the box is the
median, the box marks the two quartiles and the whiskers show the minimum and maximum values, excluding outliers.
Outliers are defined as values more than 1.5 times the interquartile range from the nearest quartile and are shown as rings.
In (a) the results are shown for all 670 images, while (b) only includes the 502 images with 16 or more nuclei. The relative
speed-up is calculated using the fastest solve time for each method, with each method having been run ten times.

lelism at the end of Phase II. According to Amdahl’s law
[1], this puts a theoretical maximum to the speed-up, which
in our case will depend on the energies and blocking strat-
egy. For the nerve segmentation tasks we estimate a parallel
fraction of 0.88 and 0.92 (including overhead) for N1 and
N2, respectively, meaning that most of the work is done in
parallel.

We expect that most of the performance improvement
of M-QPBO over K-QPBO is due to the smaller memory
footprint of the graphs shown in Table 2. We achieve this
reduction by using more compact data structures for nodes
and edges. Instead of 64-bit pointers, we use 32-bit indices
where possible. Furthermore, we store forward and back-
ward edges adjacent in memory to avoid storing pointers
between these. P-QPBO and M-QPBO use the same funda-
mental data structures for nodes and edges. The increased

memory footprint of the P-QPBO graph is a result of extra
bookkeeping needed for the bottom-up merging. Reducing
the memory footprint of the graph structures is important
for two reasons. Firstly, we increase performance due to
improved CPU cache and memory efficiency. Secondly, it
allows us to solve larger tasks, without running out of mem-
ory.

It is important to remember that the scaling depends
both on the optimization problem and the system architec-
ture. Generally, we would expect M-QPBO to outperform
P-QPBO(1) on smaller tasks, due to the overhead of merg-
ing the sub-graphs. However, for large tasks, using bottom-
up merging, even without parallel computations, actually
turns out to be faster. This behavior was previously noted
by [16, 35] and is probably due to a combination of shorter
augmenting paths and better cache efficiency.
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For the N1 task, [26] reported a solve time of 44 minutes
for K-QPBO, which is much higher than the 14 minutes we
found in our experiments. We suspect that the main reason
for the big difference is that their system only had 112 GB
memory, while the graph has a footprint of at least 134 GB.
This could have caused memory swapping, which would
likely impact performance negatively.

Comparison with other solvers: As an ablation
study, we compare P-QPBO with other state-of-the-art
maxflow/mincut algorithms. To test the effect of the two-
stage QPBO strategy, we compare with our own imple-
mentation of the parallel maxflow/mincut algorithm by Liu
and Sun [35]. Furthermore, we compare with the serial
EIBFS algorithm [16], as it is currently the fastest se-
rial maxflow/mincut solver, and we compare with our own
parallel version of EIBFS (P-EIBFS) based on bottom-up
merging. Finally, we include a best case estimate for a
QPBO implementation using EIBFS as its maxflow/mincut
solver (EIBFS-QPBO).

We compare the algorithms on the N1 nerve segmenta-
tion task. The maxflow/mincut algorithms are evaluated by
first converting the QPBO problem to the primal-dual graph
and then running the algorithm on this graph. We do not
include this conversion time in the benchmark. Results are
shown in Table 3. We see that our algorithm significantly
outperforms the other methods.

Table 3: Results of ablation experiment on the N1 nerve
segmentation task. The maxflow/mincut solvers were run
on the full primal-dual graph. We do not include the time
used to convert the QPBO problem to a primal-dual graph.

Mem. footprint Fastest solve time

M-QPBO 60.1 GB 638 s
P-QPBO(40) 70.0 GB 76 s

Liu-Sun(32) [35] 70.0 GB 191 s
EIBFS [16] 175.1 GB 922 s
P-EIBFS(32) 175.8 GB 1435 s
EIBFS-QPBO* 175.1 GB 461 s
*Best case estimate (half of EIBFS solve time).

4.2. Smaller segmentation tasks

We use the Broad Bioimage Benchmark, previously used
in [26], to compare the performance of P-QPBO, M-QPBO,
and K-QPBO on a large set of 2D (non-grid) segmentation
problems of varying sizes. Figure 5 shows the distributions
of graph nodes and edges for the images. With a median
of 437,400 nodes and 1,598,060 edges, we consider most of
these segmentation tasks relatively small. A few of the tasks
are significantly larger, with the largest having just over six
million nodes and 60 million edges. To examine the over-

all performance of M-QPBO and P-QPBO for these small
to medium-sized tasks, we compute the relative speed-up
when using our implementations compared to K-QPBO. An
example segmentation is shown in Figure 2, right. Nodes
associated with each cell nuclei are in the same block.

0 1 2 3 4 5 6
Nodes 1e6

0

50

100 Min = 16,200
Med = 437,400
Max = 6,075,000

0 1 2 3 4 5 6
Edges 1e7

0

100

200
Min = 47,700
Med = 1,589,060
Max = 60,284,126

Figure 5: Histograms of the distribution of nodes and edges
for the 2D image segmentation tasks.

Figure 4 shows the relative speed-up for M-QPBO and
P-QPBO for each image in the data set (Figure 4a) and for
each image with 16 or more nuclei (Figure 4b). Both M-
QPBO and P-QPBO show a significant improvement com-
pared to K-QPBO. When we include all images, there are
cases where the relative performance drops. In these few
cases, the tasks are very small (few nodes and terms), such
that the overhead of P-QPBO outweighs the benefits. If
we look only at the 502 images with 16 or more nuclei
(259,200 nodes or more), M-QPBO and P-QPBO signifi-
cantly outperform K-QPBO for all images, except when us-
ing P-QPBO with a single thread. For these smaller tasks,
the overhead of merging blocks is not outweighed by the
shorter augmenting paths. Thus, when using only a single
thread, the best performance is achieved without bottom-up
merging.

For the images with 16 or more nuclei (Figure 4b), M-
QPBO gives a median speed-up of 1.8x, with a maximum
of 2.5x. P-QPBO(4) achieves the best overall performance,
with a median speed-up of 3.2x and a maximum of 5.3x.
While P-QPBO(6) and P-QPBO(8) show the best perfor-
mance in a few of the largest tasks, the overall performance
decreases slightly when compared to using four threads, due
to the majority of the tasks being relatively small.

5. Conclusion
Our P-QPBO algorithm is the first parallel QPBO algo-

rithm. It scales much better than the serial K-QPBO algo-
rithm on modern multi-core hardware, by partitioning the
task into sub-tasks and solving them in parallel. It uses a
bottom-up merging strategy to combine the solutions, also
in parallel. This allows P-QPBO to solve optimization

8



tasks, such as image segmentation, significantly faster than
other current algorithms.

Our experiments show that P-QPBO solves large multi-
object segmentation tasks over 17 times faster than K-
QPBO, with lower memory usage. It does so while re-
maining fully compatible with K-QPBO, making no con-
straining assumptions about the graph structure. Even for
smaller tasks, with just a few hundred thousand nodes, P-
QPBO is 2-5 times faster than K-QPBO, using only four
threads. This indicates that P-QPBO will significantly out-
perform K-QPBO, even on consumer hardware.

The scalability of P-QPBO, when combined with mod-
ern hardware, makes P-QPBO suitable for solving much
larger optimization tasks than previously possible. Fur-
thermore, because it is a parallel algorithm, we expect the
relative performance of P-QPBO to keep increasing in the
future. Finally, P-QPBO is a general algorithm, which is
suitable for many binary optimization tasks, not just image
segmentation. Thus, we are confident that P-QPBO can be
used not just for faster image segmentation, but also for a
wide range of other tasks, both in computer vision and other
fields.
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3.7 Contribution summary
The three research contributions presented above represent a significant step forward
in the application of maxflow/mincut algorithms for large optimization problems, in
particular large multi-object segmentation problems. The SLG structure algorithms,
formulated in Paper A, significantly expand the range of segmentation problems that
can be solved using binary optimization. This is critical for the applicability of graph
cut-based methods on high-resolution 3D and 4D datasets, which appear increasingly
frequent due to technological advancements in scanning equipment. By reducing the
graph size by orders of magnitude, many multi-object segmentation tasks that were
previously impractical are now solvable using graph cut methods.

In practice, Paper A only presents a glimpse of the possibilities made possible by
the SLG structure. The radial resampling scheme and gradient-based energies used
in the experiments work well for many tasks. However, the flexibility provided by
the layered structure is not really explored, as the paper focuses on the scalability
of the method. Furthermore, while the object/label layers in the experiments are all
created the same way, this is not a requirement for the SLG layers. In fact, layers
can be constructed using completely different energy functions/graph structures and
still interact. Similarly, while the experiments only apply simple multi-exclusion and
containment interactions, the Ishikawa, and thus SLG structure, allows any logically
sound combination of valid geometric interactions to be expressed. Another way to
put this is that there are no explicit limitations on which interactions can be used
in combination, as long as they are logically sound. An example of something that
is not logically sound would be to add both containment and exclusion interactions
between two labels at the same time.

While Paper A shows how the size of multi-label problems can be reduced by orders of
magnitude, Paper B and Paper C focus on how to improve the performance of graph
cut algorithms using parallelism. Parallel maxflow/mincut and QPBO algorithms
are essential for proper utilization of modern hardware. We show that it is possible
to implement parallel maxflow and QPBO algorithms, which scale well for larger
segmentation tasks, with speed-ups of more than an order of magnitude compared to
their serial counterparts. Because our implementations will be made publicly available
and are compatible with previous standard implementations, everyone currently using
these algorithms will be able to benefit from our contributions.

3.8 Blade segmentation
At this point, I understand if the relationship between my work on maxflow/mincut
algorithms and the quality control of wind turbine blades covered in Chapter 2 is
unclear. As previously explained, due to the confidentiality of the data (and, to
some extent, the methods), I cannot present results from my work on segmentation
of blade structures in this thesis. However, I will explain the general concepts and
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challenges of segmenting ultrasound data from blades, and why graph cut methods
are well suited for this task.

My work on graph cut-based segmentation methods was motivated by the need for a
robust method for detecting/segmenting surfaces in large ultrasound volumes. The
blade structure often consists of a series of layers (e.g., pultruded carbon stacks and/or
fiberglass), where the approximate thickness, order, and number of material surfaces
are known. As previously covered, the peaks in the ultrasound signals are located at
the material interfaces/surfaces, but the data is noisy and often incomplete. Based
on these factors, I decided to use the graph cut-based surface detection method by
Kang Li et al. 2006 for segmenting major parts of the spar cap structure. The method
is well-suited for this due to the ability to enforce both smoothness and interaction
constraints for the surfaces. However, as the size of the structures grew, and new
equipment dramatically increased the resolution and thereby the size of the datasets,
it was clear there was a need for more efficient graph structures and maxflow/mincut
algorithms.

3.8.1 Ultrasound data from blades
While the B-scan images shown in Section 2.4 consist of a few hundred A-scans, the
volumetric ultrasound datasets used for modern inspection of a single spar cap may
consist of millions of A-scans. Depending on the sampling frequency, a single volume
may take up anywhere from 4 GB to 70 GB when stored as 16-bit floating points.
As blades continue to increase in size, it is very likely that we will be seeing single
ultrasound volumes with over 20, 000 × 500 × 3, 000 voxels, and a voxel resolution
around 5 mm × 1 mm × 0.02 mm, before the end of 2021.

Figure 3.15a illustrates a cross section of a carbon reinforced spar cap and web bond-
ing area of a wind turbine blade, similar to what was shown in Figure 2.5, except the
web is shaped and attached differently. The primary features, shown in Figure 3.15a,
are the outer blade/shell surface, the carbon pultrusion stacks, the filler material (e.g.,
balsa wood or foam), the inner shell surface, the glue, and the web. The mechanical
properties of the materials used for the different structures vary significantly and de-
termine where and how much of the ultrasound is reflected from the different material
interfaces.

As shown in Figure 2.8, the probe is placed on outer surface and moved across the
blade collecting A-scans at a certain interval. Typically, more than one probe is
used to reduce the scan time and modern solutions may consist of more than a
hundred piezoelectric crystals in a so-called phased-array configuration. This allows
the scanner to cover the entire width of the space cap, and allows it to focus the
sound waves by using multiple crystals for transmitting and receiving at the same
time. Because these large scanners can cover the entire width of the spar cap with
a resolution down to 1 mm, the scanner can move along the blade in the spanwise
direction (from root to tip or vice versa) without having to move across the spar cap
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in the chordwise direction (vertical axis in Figure 3.15). This allows the spar cap to
be scanned in less than an hour, even for a large blade. Naturally, there is also the
option to use smaller scanners, which follow a zigzag or meander pattern to cover the
full width of the spar cap. However, this dramatically increases the time it takes to
scan the blade. I will not cover the scanning equipment and process any further in
this thesis. The primary thing to note is that modern equipment allows very large
high-resolution datasets to be captured quickly. In fact, much faster than the time it
currently takes to evaluate the data.

3.8.2 Interpreting ultrasound images of the spar cap
As mentioned a few times at this point, the interpretation of ultrasound data is
generally more difficult than attenuation-based techniques, such as X-ray CT. For
blades, the interpretation is made even harder by the extensive use of different com-
posite materials, which are notoriously difficult to image with ultrasound due to the
anisotropic nature and inconsistent microscopic structure of the materials. However,
with the proper equipment, it is possible to capture reflections from most of the ma-
terial interfaces in the spar cap and web bond as shown in Figure 3.15b. Here, the
red color represents the high amplitude reflections, orange marks weaker reflections,
and yellow indicates very weak interface reflections. The reflections in Figure 3.15b
represent an ideal scenario. The orange, and in particular yellow signals, are often
broken into pieces, or even completely invisible in much of the data. This is primarily
due to the way the sound propagates through the structure, from the surface down
into the structure, and then, ideally, back to the surface again.
The primary surface echo should always be clearly visible, as the signal is strong
when it passes from the probe into the couplant (usually water) and then, almost
immediately, into the spar cap. These two interfaces reflect some of the signal, which
corresponds to the top red line in Figure 3.15b. However, as soon as the signal enters
the fiberglass laminate, the signal gets noisy, as the mixture of glass fibers and resin
cause many small reflects. On either side of the spar cap, the signal passes into
the filler material, usually made of balsa wood or foam. These materials completely
absorb the signal, which means we have no reflections from underneath them. Inside
the spar cap, the signal passes from the fiberglass into the pultruded carbon stacks,
through each of the slabs, and out into another thin layer of fiberglass. Each of these
interfaces reflects a small portion of the signal, marked with yellow in Figure 3.15b.
These are minor reflections, which are often difficult to see.
Afterwards, the signal reaches the inner surface of the blade shell. Near the edge
of the spar cap, the signal hits the fiberglass-to-air interface, reflecting most of the
remaining energy. This interface (two bottom red lines in Figure 3.15b) should be
clearly visible. If this is not the case, it is most likely because a defect inside the shell
is shadowing what is beneath it, or due to issues with the equipment. By “shadowing”,
I mean that something is either absorbing, reflecting, or refracting the signal in such
a way that there is little or no signal beyond this point. Another place shadowing
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Fiberglass
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(a) Spar cap cross section

probe → couplant → fiberglass
fiberglass → carboncarbon → glue → carbon

fiberglass → air

glue → air
glue → web

web → air

fiberglass → glue

carbon → fiberglass

(b) Reflecting interfaces

Figure 3.15 – Cross section of a carbon reinforced spar cab and web bond in a wind
turbine blade. The most important structural components are shown in (a), while the
different interface echoes visible in ultrasound images are shown in (b).
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occurs is where the carbon stacks come together in the center of the spar cap. Here, a
combination of small air pockets and material interfaces almost parallel to the signal
often results in a very weak signal in the center of the bond area.

The fiberglass-to-glue interface is not as clear as the fiberglass-to-air interface, as the
difference in sound velocity is much less for the fiberglass and glue than for fiberglass
and air. If a strong signal is observed at the fiberglass-to-glue interface, it is often a
course of major concern, as it usually indicates that the glue is missing, as shown in
Figure 3.16b.

When the signal reaches the web, it has lost a lot of its energy. To compensate for
the energy lost as the signal travels further from the probe, it is common to amplify
the signal artificially as a function of time. This is known as time-varied gain (TVG).
Applying TVG can often ease the human interpretation, as reflections at different
depths are more even in terms of amplitude. However, it does not improve the signal-
to-noise ratio.

Because the signal has to travel through the entire thickness of the shell before reach-
ing the web, the reflections from the web structure are often weak and inconsistent.
This is the case for both the web-to-air and glue-to-web interfaces. However, the
web-to-air interface usually appears stronger than the glue-to-web interface due to
the large difference in sound velocity between the web material or air. Although both
web interfaces should reflect a significant part of the signal energy, the orientation of
the interfaces, along with shadowing from imperfections in the structure above the
web, means that web interfaces are often not well defined in the ultrasound images.

For automated evaluation of the blades, accurately detecting and characterizing the
material interfaces in the spar cap and web bonding region is essential. A good exam-
ple of this is when measuring the glue width and thickness as shown in Figure 3.16.
Keep in mind that the structure sketched in the figure is not visible in the ultrasound
data. We only have the interface reflects, which are often very difficult to separate
from the noise. However, if we are able to detect and characterize the glue and web
interfaces, we can measure the glue width and thickness, which are important to the
blade’s structural integrity.

3.8.3 Automated surface detection
Human evaluation of ultrasound data from blades relies heavily on prior knowledge
and contextual information to find and evaluate the structural interfaces in the signal.
An image analysis or machine learning method for automated evaluation would also
benefit from being able to utilize prior knowledge about the structure and context.
Surface detection based on the approach by Kang Li et al. 2006 allows both these
things through interaction and smoothness constraints. However, without the scala-
bility and improvements in performance offered by SLGs and parallel maxflow/mincut
algorithms, the use of Li’s surface detection is limited to smaller datasets.
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Glue thickness

Glue width

(a) Spar cap cross section

Glue width

(b) Reflecting interfaces

Figure 3.16 – Cross section of a carbon reinforced spar cap and web bond in a wind
turbine blade, where glue is partially missing from the bond area. (a) shows how glue
thickness and width can be measured, while (b) shows the effect of the missing glue on
the reflected signal. The lack of glue causes strong reflections from the entire left inner
surface, while no reflections are visible from the left side of the web due to shadowing.
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3.8.3.1 Dynamic maxflow algorithms

A topic that was only briefly mentioned in the contributions is the dynamic solving
features of some of the maxflow algorithms, in particular BK Maxflow. It allows cut
graphs to be modified and re-cut, where the runtime of computing the new optimal
solution depends on how many changes were made to the graph and how much they
change the solution. In principle, this allows real-time user interaction, where the
user can correct minor errors in the labeling and recompute the optimal solution
fast enough for the interaction to feel responsive to the user input. I think this user
interaction is critical to the long-term success of graph cut-based segmentation and
surface detection, at least for use in commercial software. From my experience, one
of the biggest issues of applying automated methods in production is that they are
expected to be right every time. It is very much a question of all or nothing, as they
are often thought of as a replacement of human labor, rather than a supplement. I
believe one of the key issues with many automated solutions is that it is very difficult
for users to correct small errors made by the automated solution. In such cases, users
are often required to do everything from scratch through a type of manual backup
procedure, which is completely decoupled from the automated system.

While completely automated evaluation of ultrasound data from blades will likely
happen sometime in the future, for now, I think assisted evaluation is actually a much
more practical solution. Dynamic graph cuts, along with active learning algorithms,
could very well be a part of the solution. An assisted solution that does 90% of the
work 100% of the time is much more reliable than an automated one that does 100%
of the work but only works 90% of the time – because – how do you know when it did
not work? In other words, it is probably better to design an interactive system that
does most of the work than a fully automated non-interactive system that sometimes
fails. At least while failures are relatively common, and in particular if failures may
have large consequences.

3.9 Summary
In this chapter, I have described and discussed some of the most important techniques,
methods, and algorithms related to graph cut-based segmentation and surface detec-
tion. These form the foundation for my contributions, which allow graph cuts to
effectively solve much larger optimization tasks than previously possible. Sparse lay-
ered graphs bring flexibility to the Ishikawa layered technique, making it possible to
segment hundreds or even thousands of interacting objects. Meanwhile, our compari-
son of serial and parallel maxflow implementations shows that there is still plenty of
performance to be gained through optimization and parallelization of existing algo-
rithms. We further demonstrate this with our own parallel QPBO implementation
that outperforms the serial algorithm by an order of magnitude on large segmentation
tasks.
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Our work on faster and more scalable graph cut methods is based on the need for
3D image segmentation and surface detection in a world where data resolution, and
thus size, is ever-growing. One such example is ultrasound data from wind turbine
blades, where the need for assisted and automated evaluation is growing, as both
blade production and blade sizes increase. The work presented in this chapter does
not solve this task on its own, but it provides some useful tools for building solutions,
which can be used to bring down the cost and improve the accuracy of QC on blades.



CHAPTER4
Structure Tensor

Analysis
This chapter includes two papers about characterization and quantification of fiber
orientations in composite materials. Both contributions focus on unidirectional fiber-
reinforced composite materials used for structural components, such as the spar cap
in wind turbine blades. Using structure tensor analysis, we estimate the fiber orienta-
tions in µCT scans of composite samples and calculate a number of different metrics
used to characterize and quantify the orientation and alignment of the fibers.

Before presenting the two papers, I give a brief introduction to our structure tensor
formulation. This introduction is similar to, but more detailed than, the descriptions
given in the two papers. Afterwards, I discuss some of the challenges of working with
orientations in 3D and applications of our approach in material science research and
QC.

4.1 Structure tensor
In 3D image analysis, a structure tensor is a 3-by-3 matrix, which summarizes the
orientation of imaged structures in a small neighborhood around a point in space.
The structure tensor S is computed from the gradients of the 3D image and thus
describes the change in image intensity around the point. For orientation analysis,
we exploit the following property of the structure tensor: If u is a (column) unit
vector, then u⊺Su is the sum of the squared change in the intensities for a window
displaced slightly in the direction u. Since the change in image intensity is smallest
when moving parallel to structures in the image, finding the dominant direction of
structures corresponds to finding the u that minimizes u⊺Su, i.e., the direction of
least change.

To understand why this is the case, we must examine the definition of the structure
tensor for discrete 3D images. For a volumetric (3D) image V , the structure tensor
can be written as

S(p) =
∑

r∈N(p)

(∇V (r)) (∇V (r))⊺ , (4.1)
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where N is a fixed neighborhood around a voxel, p is a point, and r is a window
determined by the neighborhood of a point.

Meanwhile, the displacement of the window r by the unit vector u can be written as
V (r + u). Using first-order Taylor expansion, we can write the displacement of the
window as

V (r + u) ≈ V (r) + u⊺∇V (r) . (4.2)

Thus, the sum of the squared change of intensities from the displacement is∑
r∈N(p)

(V (r + u) − V (r))2 =
∑

r∈N(p)

(u⊺∇V (r))2

= u⊺

 ∑
r∈N(p)

(∇V (r)) (∇V (r))⊺
 u

= u⊺Su .

(4.3)

This shows that u⊺Su is the sum of the squared change in the intensities of V ,
when displaced slightly in the direction of u. Furthermore, because (∇V )(∇V )⊺ is
symmetric at every point, S is symmetric. Lastly, because we know that u⊺Su ≥ 0,
S must be positive semidefinite.

Due to the properties described above, S has three non-negative eigenvalues λ1 ≤
λ2 ≤ λ3 and mutually orthogonal eigenvectors v1, v2 and v3, which can be calculated
analytically. The eigenvector v1 corresponding to the smallest eigenvalue, λ1, points
in the direction of least change, i.e., the dominant structural direction for fiber-like
structures.

The relationship between the three eigenvalues can be interpreted as indicators of
the structure “type” at the given position. The case where λ1 ≪ λ2 ≈ λ3 is often
interpreted as a linear/fiber-like structure and the metric cl = λ2−λ1

λ3
is the linear

anisotropy [Westin et al. 2002; Nelson, Smith, and Mienczakowski 2018]. While the
contributions in this thesis use only v1, the other eigenvectors and eigenvalues may
certainly be useful. For instance, we could use cl for weighing the importance of the
eigenvectors and for tasks such as image segmentation.

For calculating the structure tensor S, we rely on Gaussian kernels for computing
gradients and integrating those gradients, similar to Weickert 1998. This leads to the
formulation

S = Kρ ∗ (∇Vσ (∇Vσ)⊺) , (4.4)

where the parameter σ is the standard deviation of the Gaussian derivative kernel
used for computing the gradient ∇Vσ, and ρ is the standard derivation of the Gaussian
kernel Kρ used for integration by convolution.

Our approach is different from the commonly used finite difference, as well as the
5-point numerical differentiation proposed by Straumit, Lomov, and Wevers 2015.
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While computing the gradient using the finite difference would be faster, the approach
is sensitive to noise and image resolution. One way to reduce the noise is to smooth
the data using a Gaussian kernel before computing the gradient, however, this is
equivalent to, and less efficient than, computing the gradient using the Gaussian
derivative. For this reason, we use the Gaussian derivative kernel, which depends on
the noise scale σ, to compute the gradients. For integrating (averaging) the gradients
in a certain neighborhood, the Gaussian kernel also works well, as it is separable,
which means the integration can be done fast, even for large neighborhoods. The
neighborhood size depends on the kernel size determined by the integration scale ρ.
While the use of Gaussian kernels requires two parameters to be chosen, it has the
advantage that it can accommodate different resolutions and noise levels, all while
remaining fast as a result of being separable.
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4.2 Paper D: Characterization of the fiber orientations
in non-crimp glass fiber reinforced composites
using structure tensor

In the fourth paper of this thesis, we use structure tensor analysis to characterize fiber
orientations in a fiberglass material used for wind turbine blades. We show that the
method can be used to estimate fiber orientation distributions based on a laboratory
CT scan of a sample. These distributions can be used to quantify important material
properties and segment fiber bundles in the stitched non-crimp fabric. We share the
entire pipeline, which includes our scalable GPU implementation for calculating the
structure tensor, performing the eigendecomposition, and computing derived metrics,
such as angles from the expected fiber orientation. The work was presented at the
41st Risø International Symposium on Materials Science and published in the IOP
Conference Series: Materials Science and Engineering. Links to code, notebooks and
data can be found in the paper.

The paper included below is the Open Access version published by IOP Publishing
Ltd, which can be found at DOI: 10.1088/1757-899x/942/1/012037.

https://doi.org/10.1088/1757-899x/942/1/012037
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Abstract. The mechanical properties of composite fiber materials are highly dependent on
the orientation of the fibers. Micro-CT enables acquisition of high-resolution 3D images, where
individual fibers are visible. However, manually extracting orientation information from the
samples is impractical due to the size of the 3D images. In this paper, we use a Structure
Tensor to extract orientation information from a large 3D image of non-crimp glass fiber fabric.
We go through the process of segmenting the image and extracting the orientation distribution
step-by-step using structure tensor and show the results of the analysis of the studied non-
crimp fabric. The Jupyter notebooks and Python code used for the data-analysis are publicly
available, detailing the process and allowing the reader to use the method on their own data.
The results show that structure tensor analysis works well for determining fiber orientations,
which has many useful applications.

1. Introduction
Fiber reinforced polymer matrix composites are used in many structural applications due to
their excellent stiffness, strength, and fatigue properties and relatively low weight. Nevertheless,
these properties are very sensitive to the fiber orientations, and therefore characterizing fiber
orientations is an important part of quality control. However, the microscopic nature of the fibers
makes it difficult to bridge the gap between the fiber/matrix scale on the micro-meter scale to
the structural component on the meter scale and thereby examine representative samples, while
maintaining adequate resolution. With modern micro-CT scanners, it is possible to capture
and stitch together high-resolution data for larger samples, which results in large volumetric
data-sets.

To extract orientation information about the fibers, one approach is to track every fiber
individually [1]. This can provide detailed information about the fibers, but often requires some
user interaction and can be very computationally demanding, making it less attractive for large
data-sets. In addition, it is often not the location of the individual fibers but just the fiber
orientation in each material point which is of relevance. An approach addressing this is the
voxel-based Structure Tensor method [2, 3, 4]. This method is relatively simple to use as it
requires only two scalar parameters, σ and ρ. Furthermore, distributing the structure tensor
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calculations on modern multi-core CPU and GPU systems, allows the method to scale well, even
with large volumetric data-sets.

In Sections 2 and 3 we introduce the Structure Tensor method and the data-set, respectively.
Section 4 describes the procedure of using structure tensor analysis to extract orientation
information from the volumetric data-set. A procedure which is demonstrated in the Jupyter
notebook StructureTensorFiberAnalysisDemo which can be downloaded from [5]. In Section 5,
we demonstrate the procedure on a realistic sized composite specimen, a full cross-section of a
tension/tension fatigue test sample. The data and Jupyter notebook for this analysis can also
be downloaded from [5].

2. Structure Tensor
In the context of volumetric (3D) image analysis, a structure tensor is a 3-by-3 matrix, which
summarizes orientation in a small neighborhood around a point in space. The structure tensor
is computed from the gradients of the 3D image. More precisely, if ∇V = [Vx Vy Vz]

T denotes
the gradient of the 3D volume V , we can compute the structure tensor as

S =
∑
∇V (∇V )T , (1)

where summation runs in a certain neighborhood around the point. Nice properties of the
structure tensor in respect to the scale of the analyzed structures are obtained if a Gaussian
window is used for integration, and a Gaussian derivative for computation of the gradient [6],
leading to the following formulation

S = Kρ ∗
(
∇Vσ (∇Vσ)T

)
. (2)

Here, the parameter σ is the standard deviation of the Gaussian derivative kernel used for
computing the gradient ∇Vσ, while ρ is the standard derivation of the Gaussian kernel Kρ used
for integrating by convolution. The parameter σ is called the noise scale, and indicates the
size of the structures filtered out while computing the gradient. The parameter ρ is called the
integration scale and reflects the size of the window where the orientation is analyzed. Therefore,
ρ should be chosen based on the size of the structures to be analyzed.

Given a unit vector u, the product uTSu gives the squared change in intensity for a
small displacement in direction u. Therefore, finding the predominant orientation amounts
to minimizing uTSu, which is achieved through eigendecomposition of S. Being symmetric and
positive semi-definite, S yields three positive eigenvalues λ1 ≤ λ2 ≤ λ3 and mutually orthogonal
eigenvectors v1, v2 and v3. The eigenvector v1, corresponding to the smallest eigenvalue, is
an orientation leading to the smallest variation in intensities, which indicates a predominant
orientation in the volume. In this work, we focus on the information obtained from v1.

3. Data-set
A stitched data-set based on three 3D X-ray CT scans is used in this demonstration of using the
structure tensor method for a fiber orientation characterization. The specimen that is scanned is
a so-called butterfly-shaped tensile test-sample see e.g. [7] with a cross-section of approximately
15 × 4 mm2 and a uniform shaped gauge length of 60 mm. Three 16.5 mm field of view (FoV)
binning 1 scans are reconstructed and stitched into a single Transmission X-ray Microscopy
(TXM) file of 31 GB covering 32 mm of the sample length. Cropping away the air around the
sample results in a 9 GB file, which is saved in the NIfTI format. Both files can be obtained from
[5]. The laminate used in the test-sample contains four unidirectional non-crimp fabrics surround
two biaxial non-crimp fabrics resulting in the following layup [bbiax/biax,bUD/UD,bUD/UD]s
where the “b” indicates the location of the backing layer, which is orientated in the transverse
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Figure 1. The test-sample and the scanned part of the gauge-section with the dimension
32× 15× 4.5 mm3.

direction. The UD and biax layers in the fabric have an area weight of 1134 g/m2 and 384 g/m2,
respectively, and consist of 17 µm diameter glass fibers. The backing layers, bUD and bbiax, have
an area weight of 36 g/m2 and 4 g/m2, respectively, with a glass fiber diameter of 9 µm. With a
sample thickness of 4.4 mm in the scanned area and a glass fiber density on ρ = 2600 kg/m3 this
corresponds to an average fiber volume fraction in the composite laminate of Vf = 54%. The
fraction of fibers in the different directions is calculated later in table 2. The scan settings and
resulting voxel size are listed in table 1.

Table 1. X-ray CT scan information (stitched size: 32 mm×16.5 mm×16.5 mm)

Sample Optical Voltage Exposer Projec- Bins; Scan FoV Voxel
ID mag. time tions Stitch Time Size

HF401TT-13 0.4× 50 keV 24 s 3201 1;3 3×24h 3×16.5 mm3 8.08 µm

4. Procedure
We will now go through the steps needed to analyze the data using structure tensor in Python.
With this paper, we release three Jupyter notebooks and a Python script file/module with helper
functions. The first notebook, StructureTensorFiberAnalysisDemo, goes through the structure
tensor analysis step by step, while the second, StructureTensorFiberAnalysisAdvancedDemo,
offers a more advanced approach for speeding up computations on large volumes using multi-
CPU or GPU systems. The third, HF401TT-13 FoV16.5 Stitch, can be used to recreate the
results of the paper. The Python module file, structure tensor workers.py, contains various
helper functions, including functions for parallel structure tensor computations across many
CPUs and GPUs. The notebooks and helper functions can be obtained from [5].

Step 0: Pre-process data. Depending on available tools and experience it may be useful to
pre-process data. This includes cropping and rotating data, as well as converting it to a suitable
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format for reading (see next step).

Step 1: Reading data. In our case the original data is stored in the TXM file format. To read
this data in Python we can use the dxchange [8] package. However, we prefer either RAW
format, which can be read directly with NumPy [9] memmap, or NIfTI, which can be read using
the nibabel [10] package, due to the excellent functionality and performance of the numpy and
nibabel packages. Another popular format is TIFF for which scikit-image and tifffile

packages are useful. For large data-sets, using a memory-mapped file to access data is often
more practical than reading all data into memory at once.

Step 2: Prepare data. Unless data has already been prepared before reading it, now is the time
to crop, rotate, or otherwise transform the data. Depending on the size of the data-set and the
amount of memory in our system, you can either keep all data in memory while doing this or
use memory-mapped files. It is often convenient to save the prepared data to disk.

Step 2.5: Partition data. For large datasets, calculating the structure tensor for the full data-
set at once is often infeasible due to hardware memory constraints. One way around this is to
partition the data-set into blocks as shown in figure 2 and calculate the structure tensor, Sb, for
each block separately, before merging the results. Here b is the block index. This is not only more
memory efficient but also allows for parallel computations. To ensure consistent results when
calculating S in blocks, the blocks must be padded appropriately. The padding consists of actual
voxels from the data-set, shown as the area between the inner and outer red box in figure 2(c).
The values Sb, which correspond to voxels located inside the padding, will not be correct and
have to be discarded afterward. The size of the padding depends on the σ and ρ parameters, as
they determine the size of the Gaussian filter kernels used to calculate Sb. Because the kernel
is discrete, the kernel radius is rounded to the nearest integer number. In our case the largest
kernel radius is b4ρe = b4 · 2.96e = b11.84e = 12. Thus, for a value in Sb to be valid, the 12
neighboring voxels in all six directions must be included in the same block. Values in Sb, where
the block does not include the 12 neighboring voxels in each direction will vary depending on the
partitioning of the blocks. Since S should not depend on the partitioning of blocks, these values
have to be thrown away. The structure tensor workers.py file includes functions for creating and
merging blocks (referred to as “crops” in the code) with proper padding. In our implementation,

(a) Block 1 (b) All blocks (c) Block 1 (zoomed) (d) Block 1 & 2

Figure 2. We partition the volume (black box) into blocks (colored boxes) as shown in (a)
and (b). The outer red box, more clearly visible in (c), represents block 1, which contains the
data required to calculate the structure tensor for block 1, S1. The inner red box represents the
voxels for which the values of S1 are valid. The overlapping of the blocks needed to calculate a
valid S for the complete volume is more clearly visible in (d).
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the user specifies the size of the blocks using the crop size parameter. The maximum size of a
block is a cube with sides of length crop size plus the kernel radius. Of course, blocks may be
smaller to ensure they fit inside the volume.

Step 3: Compute structure tensor and eigendecomposition. Using the structure-tensor

package, we can calculate S for a volume using the structure tensor 3d function. Although S is
in theory a 3-by-3 matrix, because it is symmetric, we only need to store six values per voxel. As
a result, given a volume with the shape (X, Y, Z), the array returned by structure tensor 3d

function has the shape (6, X, Y, Z). To get the eigenvalues and vectors, we pass S to the
eig special 3d function. By default, given an input with shape (6, ...), the values and vectors
returned by eig special 3d will have shape (3, ...), where (...) is an arbitrary shape. The
values returned are the three eigenvalues in ascending order. For the vectors, only the vector
for the smallest eigenvalue is returned by default. If the other two vectors are needed, setting
full=True will return vectors as a (3, 3, ...) array instead where the first dimension corresponds
to the vectors for each of the three eigenvalues.

In our experiments we choose σ and ρ as

σ =
rf√

2
= 0.74 ρ = 4σ = 2.96, (3)

where rf = 1.05 is the UD fiber radius in voxels. Decreasing σ much further can lead to numerical
instability due to truncation, numerical precision used in the implementation, and the discrete
nature of the data. For ρ, we want to include a large enough area to determine structural
“direction”, while keeping the integration area small enough to avoid to much “bleeding” between
structures (fibers/bundles).

For computing S, the structure-tensor package relies on the SciPy [11] scipy.ndimage.
gaussian filter function. To speed up computation using GPUs, the structure-tensor

package uses the CuPy library [12], which implement GPU targeted versions of large parts of
the NumPy and SciPy libraries.

Step 3.5: Saving results. Depending on the purpose of the analysis and workflow, it may be
relevant to save the computed results. For instance, if we want to view the eigenvalues or vectors
in another application, or if we want to save them for later analysis. Again, saving the data
as NIfTI or RAW is simple with niabel or numpy and the formats are easily loaded in many
applications.

Step 4: Orientation metrics. Since we focus on orientations, we will only be using the
eigenvectors, v1. The eigenvalues have interesting use cases as well, but we will not discuss
those in this paper.

Our analysis of orientations is based on the four directions, in which fiber bundles in our
material are oriented. We represent each of the four directions as a class with a corresponding
class unit vector, co, where o is the counter-clockwise rotation of the bundle in the xy-plane
from the x-axis in degrees. The four class vectors are c0 = [1, 0, 0], c45 = [0.707, 0.707, 0],
c−45 = [0.707,−0.707, 0] and c90 = [0, 1, 0]. The class vectors can and should be specified to
match material composition. At least one class vector must be set.

The first class vector is considered the primary vector, which means it is the direction in
which the orientations are calculated relative to. The remaining class vectors are used solely to
label the voxels, also known as segmentation. In our notebooks we use the calculate angles

function from the structure tensor workers module to get a label (class), stiffness (ηo), angle
(θ), rotation in xy-plane and rotation out of the xy-plane for each eigenvector in v1.



41st Risø International Symposium on Materials Science

IOP Conf. Series: Materials Science and Engineering 942 (2020) 012037

IOP Publishing

doi:10.1088/1757-899X/942/1/012037

6

The calculate angles function works by first determining the class of each vector. Since
each vector belongs to a specific voxel in the volume this results in a complete segmentation of
the volume. The segmentation is done by calculating the angle between the eigenvectors, v1,
and each class vector, co. A vector is assigned the class of the class vector with which is it most
aligned (has the smallest angle). The angle between v1 and the primary class vector, in our
case c0, is the value θ, which is between 0 and 90 degrees. Based on θ we calculate the stiffness
estimate, ηo, which is between 0 and 1. The last two metrics are the orientations in and out of
the xy-plane. Both are between -90 and 90 degrees.

Step 5: Choosing fiber threshold. One issue with the segmentation from step 4 is that it labels
all voxels as belonging to one of the fiber classes. However, the volume is not only fiber material
but also includes epoxy, which have a lower density than the glass fiber but higher density
than air. Segmenting epoxy (or air) into one of the four orientation classes or calculating the
orientation of epoxy voxels does not make sense. Therefore, we create a background class and
use a simple intensity threshold to separate the foreground (fibers) and background (non-fiber).
Using a histogram, it is fairly easy to choose a sensible threshold value. Another option is to
use a statistical method, such as Otsu’s threshold, which we also demonstrate in our notebooks.
When choosing our threshold, we make sure not to include values outside the sample or near the
edge in our histogram. This is because we want to separate foreground and background inside
the sample and intensities outside the sample may be significantly different.

Step 6: Plotting segmentation and orientations. Using the results of steps 5 and 6, we can plot
segmentation and orientations on top of the data to verify the correctness of our calculations.
Here, choosing appropriate color maps for orientations is important for meaningful figures. We
demonstrate this in both our notebooks.

Step 7: Orientation distributions. After qualitatively assessing our results by plotting, we
calculate the class fractions, which tell us how much of the fiber material belongs to each class.
This is easily comparable to the material specifications. Afterward, we can use the segmentation
labels to create histograms for each of the orientation metrics for each class, as well as combined
for all classes. Along with the histograms, we can also calculate variables such as the median,
mean, and standard deviation for the distributions. However, it is important to note that the
orientation metrics are not normally distributed, so we have to be careful with treating them
as such. A more appropriate distribution for describing orientation data would probably be the
Bingham distribution [13], but that is outside the scope of this paper.

5. Results
The results shown here are also available in the HF401TT-13 FoV16.5 Stitch Jupyter notebook
and can be reproduced by running the code in the notebook [5].

The composition of the fabric is critical to its mechanical properties. Table 2 show the
expected fiber distribution across the four classes, as well as the segmented distribution in
the scanned region, estimated using the previously described procedure. The expected fiber
distribution is based on the reported fiber distribution for the individual non-crimp fabric used
for the composite. The segmented fraction estimates are less than 2% from the expected
fractions, indicating both that the material follows the specification closely and that the
segmentation is accurate.

To qualitatively validate our results, we can look at the segmentation results for the analyzed
region of the sample, shown in figure 3. We see that the segmentation appears accurate, although
some voxels near the class interfaces may be mislabeled. This is not surprising, as orientations
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Table 2. Volumetric fractions of the fiber orientations

[b/biax,b/UD,b/UD]s 0◦ 45◦ −45◦ 90◦

Area weight [g/m2] 4×1139 2×384 2×384 4×36+2×4
Calculated fractions 0.729 0.123 0.123 0.024
Segmented fractions 0.746 0.122 0.116 0.016

Figure 3. Segmentation based on fiber orientations of the non-crimp fabric shown in the center
of the sample in the xz and yz-plane and in the xy-plane in a plane with backing bundles. The
four different fiber classes are represented by four different colors, while the background is gray.
The segmentation is shown on top of the original grayscale images.

near the interfaces are integrated over data from both sides of the interface. For instance, this
could cause a voxel near the 0◦/90◦-interface to be classified as −45◦ or 45◦. We see this in
the figure 3 xy-plane image as blue or green “bleeding” between the red and pink areas. One
way to correct for this is to remove/reassign small components, as done in [2]. However, as the
number of mislabeled voxels is relatively small, it should not affect the orientation distributions
much. One exception could be the least represented class, 90◦, where the mislabel voxels near
the interfaces could be contributing to the estimated fraction (1.6%) being smaller than the
expected fraction (2.4%). In general, we suspect that the bleeding effect, which depends on the
integration scale, ρ, could result in slightly underestimated fractions for the less frequent classes,
which is exactly what we see. However, we do not know at this point, if this is actually the
case here. Either way, the estimated fractions and visual inspection of segmented slices makes
us quite confident in the accuracy of our segmentation and estimated orientations.

To distinguish the matrix-rich regions without a material orientation from the fiber-rich
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Figure 4. Distribution of the fiber orientations projected onto the xy-plane.

regions with a material orientation, the fiber regions are segmented using a threshold value
corresponding to the non-black regions in figure 3. In our experiments we use a histogram to
choose a reasonable threshold value. In theory, we can use the threshold to calculate the fiber
volume fraction, Vf . However, with a voxel size of 8 µm3 and a fiber diameter of 17 µm for the
dominating (UD) fibers, this is unlikely to give a good estimate of Vf . With this resolution,
we cannot represent the small pockets of epoxy between the fibers inside the bundles, which
means the majority of the voxels inside the bundles are counted as fiber material. Thus, in our
experiment, the threshold value results in Vf = 75%, which is much higher than the specified
54% for the material. We could increase the threshold value to get closer to the expected Vf ,
however inspecting the intensity distribution and the segmentation qualitatively, this does not
seem like the right solution. For instance, a higher threshold value appears to favor the thicker
UD fibers, thereby over-representing the 0◦ class. Although Vf is not accurate, we should still
be able to trust the estimated ratio between the different fiber orientation classes, as long as
the fiber volume fraction inside the bundles is approximately the same for all the orientation
classes.

To quantitatively evaluate the fabric and bundles (fiber rowings) used for building the
fabric, we can plot the in-plane fiber orientation distributions. Figure 4 shows the distribution
orientations of the fibers projected onto the xy-plane for all fibers in the analyzed sample. In
figure 5 the same distribution has been separated for the four classes: 0◦, −45◦, 45◦, and 90◦.
From figures 5(b) and 5(d) we see that both 0◦ and 45◦ fibers appear to align with the expected
orientation, with means being off by less than a degree and standard deviations of less than four
degrees. However, the −45◦ class is another story. It appears that the fibers in this class follow
two different distributions, shifted around four degrees in opposite directions.

To investigate the −45◦ class further, we have separated the orientation data for the two −45◦

surface biax-plies in the sample. Figure 6 clearly shows that the two plies correspond to the two
peaks in 5(c). The two plies appear to be rotated about four degrees in opposite directions. It
can, therefore, be concluded that there is a mismatch between the expected +45◦/ − 45◦ biax
layup and the actual +45◦/(−45±4)◦. This difference could either come from the manufacturing
of the non-crimp stitched fabric or have been introduced by shearing the fabric during the layup.

Figure 7 shows the out-of-plane fiber orientations for the xy-plane. Here, all classes should
have the same 0◦ orientation, which also appears to be the case, with all means being within one
degree of the expected orientation. Again the UD (0◦) fibers appear to align almost perfectly,
while the biax-ply fibers diverge slightly more. We also note that the −45◦ and 45◦ classes
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Figure 5. Distribution of the in-plane fiber orientations for the xy-plane. The angle is the
orientation of the eigenvectors projected onto the xy-plane. (a), (b), (c) and (d) shows the
distribution for the four classes, 0◦, −45◦, 45◦, and 90◦, with corresponding class vectors, c0,
c−45, c45 and c90. For the first three distribution the mean, x̄, and standard deviation, s, are
also included.
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Figure 6. Distribution of the in-plane fiber orientations for the xy-plane for the two −45◦ plies
in the sample. Together these should be almost equal to the distribution in 5(c).
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Figure 7. Distribution of the out-of-plane fiber orientations for the xy-plane. This is the angles
between the eigenvectors and the xy-plane. (a), (b), (c) and (d) shows the distribution for each
of the classes. For each distribution the mean, x̄, and standard deviation, s, are also included.

appear to be oriented about half a degree in opposite directions. However, this small deviation
could be an artifact from the structure tensor analysis, rather than the fibers actually being
misoriented. While the 90◦ class is also oriented as expected, the orientation distribution for
the class has a large variance. The most likely explanation is simply that it is by far the least
represented class and thus the one most affected by noise and “bleeding” artifacts. Introducing
a fifth class containing fibers, which fit poorly into all the four known classes could remove some
of the noise from the distribution. Trying different values for ρ and σ could also help to reduce
both noise and bleeding.

For a given load direction, the fiber orientation distribution can be quantified with a so-called
fiber orientation efficiency factor [14],

ηo =
∑
i

ai cos4 θi (4)

where θi is the orientation with respect to the loading direction of the i-th fraction ai. The
loading direction is here given as the x-axis. A value of ηo = 1 corresponds to an ideal uni-
directional composite with all fibers in the loading direction while ηo = 0 corresponds to a
composite with all fibers orthogonal to the loading direction. For our sample, the fiber efficiency
factor for fibers belonging to the 0◦ class is found to be ηo(0

◦) = 0.991, while the overall efficiency
factor, including all fibers for all four classes, is ηo = 0.802.

6. Conclusion
We have shown that structure tensor analysis can be used to acquire important information
about fiber orientations from micro-CT data of glass fiber fabrics. We have described how to
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do this step by step and included three Jupyter notebooks and a Python module demonstrating
the procedure.

The results show that structure tensor information can be used for volume segmentation, as
well as to extract important metrics, such as fiber class fractions and orientations. Despite
relativity low resolution with a voxel-size only half the dominating fiber diameter, a good
agreement is obtained with the expected volumetric fractions for the four different orientation
classes. In addition, the method has shown its value as a non-destructive quality control
procedure, in this case, making it possible to identify the ±4◦ misorientation of the −45◦ class.
Furthermore, the method can produce orientation distributions for each class, which amongst
other things, can be used to calculate the fiber orientation efficiency factor. Such mechanical
properties are valuable for quality control, and the scalability of structure tensor on modern
hardware allows acquisition of these properties to be done quickly, even for large samples. In
this paper, we have studied a glass fiber-based composite, but the method should work equally
well for other fiber materials.

The presented segmentation method is simple and works well for cases, where the fiber
classes are known beforehand. That said, there are many ways to improve the accuracy of the
orientation distributions and segmentation. Firstly, methods for noise reduction, normalization,
and image sharpening could enhance the data quality. This could make both threshold-based
segmentation and estimated orientations more accurate. Secondly, using a connected component
approach to eliminate isolated falsely classified voxels, as in [2], and/or introducing another
class for “noisy” fiber voxels, could improve segmentation accuracy. However, we show that a
very simple segmentation method can produce sufficiently accurate results when combined with
structure tensor analysis.
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4.3 Paper E: Quantifying effects of manufacturing
methods on fiber orientation in unidirectional
composites using structure tensor analysis

The fifth paper in my thesis also concerns the use of structure tensor analysis for
quantification of fiber orientation. However, where Paper D focuses on the pipeline,
describing how to obtain distributions and apply them for segmentation on non-crimp
fabric, Paper E investigates and compares fiber orientations in three different compos-
ite materials used in wind turbine blades. Here, we focus on local variations, which
influence material quality and depend on production parameters. We show that these
local variations in the fiber orientations can be quantified using our pipeline, which
allows manufacturers and customers to compare the quality of the material samples
quantitatively. Again, a key feature of our pipeline is that the analysis can be per-
formed in only a few minutes using a modern GPU. All code, notebooks and data
can be found through the link found in the paper (once it has been published).

The version included below is a preprint of the paper, which includes the graphical
abstract. The paper has been submitted to Composites Part A: Applied Science and
Manufacturing and is currently awaiting peer review.
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ABSTRACT
The three most common fiber reinforced composite materials in wind turbine blades are pul-
truded carbon fiber, pre-preg carbon fiber and non-crimp glass fiber reinforced composites. Im-
portant properties for these materials, such as stiffness, compression strength and fatigue resis-
tance are sensitive to the fiber alignment. In this paper, we use a combination of thresholding,
structure tensor decomposition and nearest neighbor classification to characterize the fiber ori-
entations in CT scans of each of the three materials. The results show that the unidirectional
fibers in the pultruded sample are aligned the most, while the non-crimp fabric fibers are the
least aligned. Through local quantitative analysis we show that misalignment of the individ-
ual pre-preg layers contribute to the overall fiber misalignment in the material. Similarly, for the
non-crimp composite, we show that both the stitching of the unidirectional bundles and the back-
ing bundles affect the fiber alignment in unidirectional bundles. Quantifying the misalignment
caused by these effects allow manufacturers to tune production parameters, such as stitching
thread tension, to minimize the misalignment of the fibers. Notebooks, code, and data for all our
experiments are available online.

1. Introduction
Fiber reinforced composites are widely used due to their high stiffness and excellent strength-to-weight ratio. Some

of the largest composite structures currently made are wind turbine blades, with lengths of over 100 meters. For
these structures to withstand the enormous forces applied to them continuously for several decades, understanding
the properties of structural composite materials is critical. This paper investigates the micro-structure of three fiber
composites, commonly used in the load-carrying laminates of wind turbine blades: pultruded profiles, pre-impregnated
composites (pre-preg) and vacuum infused non-crimp fabric (NCF) composites. We show how the alignment of the
unidirectional (UD) fibers can be quantified using a simple and fast approach, based on structure tensor analysis and
X-ray computed microtomography (µCT). This alignment is important for the material stiffness, compression strength
and fatigue resistance – all key material design parameters for the load-carrying laminates in wind turbine blades.

The quality of the composite materials is of high importance to the manufacturers of large structures such as wind
turbine blades. Both destructive testing (DT) and non-destructive testing (NDT) methods are widely used by material
and blade manufacturers to verify material properties. DT is typically used for material certification for wind turbine
blades. However, determining the compression strength and fatigue resistance with destructive testing for UD com-
posites often result in invalid failure modes (failure in the gripping area) of the test coupons leading to conservative
strength and resistance values. This makes it difficult to use strength values determined experimentally for compar-
ing the quality of high-quality UD composites. NDT on blade composites is often done using X-ray tomography or
ultrasonic testing. To image the material microstructures in 3D, µCT is the preferred method in most cases. It allows
material samples to be imaged in 3D at high resolution, such that individual fibers are visible. As axial stiffness,
compression strength and fatigue resistance are highly sensitive to the fiber alignment, quantification of the fiber mi-
crostructures is useful for estimating these material properties. One of the more simplified quantification measures,
which can we can calculate, is the fiber orientation efficiency factor proposed by [1].
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It is well established that the compression strength of composite materials depends on fiber alignment [2, 3], and
the link between fiber orientations and the compression strength of composite materials has been studied extensively,
both in 2D and 3D [4]. While the initial work used generic distributed fiber orientations with a local maximum fiber-
orientation angle, later work looks into the effect of realistic fiber orientation distributions on the compression strength
[5]. By comparison, our method estimates the actual orientations in a given composite component.

The three fiber materials examined in this paper are all UD fiber composites, meaning that most of the fibers are
oriented in the same direction. These materials are used in the spar cap (load carrying part of the blade). The goal of
the UD composites is to maximize the material stiffness, compression, and fatigue strength in the fiber direction (the
axial/spanwise direction of the blade). However, misalignment of the fibers in the materials will reduce the stiffness
and strength in the given direction. Thus, knowledge about how process parameters affect the UD fiber orientations is
highly valuable to the manufacturers and can be used for optimizing the manufacturing process. One way to get this
knowledge is through quantitative analysis of fiber orientations and micro-structure, both locally and globally, in the
materials.
1.1. Related work

A number of different methods can used to characterize the orientations of fibers in composites based on µCT
images. There are two fundamentally different approaches for characterizing fiber orientations, which we will refer to
as instance-based methods and semantic methods. With instance-based methods, fibers are segmented individually,
after which aggregated information like fiber diameters and orientations can be calculated. Commercial software, such
as Avizo, GeoDict, and VGStudio Max, can be used for this [6]. However, these generally require very high-resolution
data, are computationally expensive and time-consuming, and struggle to segment densely packed fibers [6]. Other
methods for tracking fibers in 3D include template matching [7] and dictionary-based methods [8, 9], which have
been shown to work well, even for densely packed fibers at lower resolutions. However, the instance-based methods
are slow for large datasets and often designed for tracking UD fibers only, requiring tracked fibers to be oriented in
approximately the same direction.

Semantic methods do not detect and track individual fibers, but only distinguishes between different classes of
fibers (e.g., UD and backing fibers) and background (e.g., matrix). A popular semantic method is structure tensor-based
orientation characterization [6, 10, 11, 12, 13], as it is a fast and reliable approach for determining fiber orientation
distributions. It can be used to determine fiber orientations across large datasets in only a few minutes, using high-
performance GPU implementations [13]. Furthermore, it works well, even for lower resolution data, where the instance
methods are unable to detect and track individual fibers [6].
1.2. Contribution

Our primary contribution is showing that it is possible to visualize and quantify local misalignment in UD fiber
materials, which are directly related to specific production parameters, using the structure tensor analysis and simple
intensity-based thresholding. This allows manufacturers of these materials to improve the quality of their products.
Not only can they use our approach to detect defects in the materials, they are also able to adjust process parameters
based on local measurements of misalignment and to compare the quality of different material batches.

Using the structure tensor approach, we estimate the global orientation distributions for one sample of each of the
three UD fiber-reinforced materials. For the pultruded and pre-preg materials, we further examine the individual cross-
sectional slices of the sample to determine the effects of each of the manufacturing processes on the orientations. In
particular, we visualize and quantify the effect of the pre-preg layers on the fiber orientations and compare the results to
those of the pultruded sample. For the NCF, we segment the different bundles based on their orientation and estimate
the orientation distributions for the different bundle types. Lastly, we show the effects of the stitching and backing
fibers on the alignment of the UD fibers in the fabric. We show that these effects can be quantified – information that
could be used by manufacturers to adjust the stitching to improve UD fiber alignments.

We share our complete pipeline, including data and all experimental results online (see Section 4). The results are
shared as Jupyter notebooks, making it easy for others to reproduce our results or test our pipeline with their own data.

2. Materials
In this section we introduce the three UD fiber composites examined in this paper.
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(a) Pultruded carbon composite (HyFiSynCF2-01 B2) (b) Pre-preg carbon composite (DY06 B2)

(c) Non-crimp fabric reinforced composite (Stitch-0-1-2-3-4)
Figure 1: 3D renderings of the three CT scans.

2.1. Pultruded carbon fiber composite
The pultruded carbon fiber reinforced composite was supplied in the form of a rectangular profile with a cross-

section of 105 × 1.9mm2. The characteristic fiber diameter was reported in [14] to be Df = (7.0 ± 0.3) µm and the
fiber volume fraction was reported in [15] to be Vf = 0.67 ± 0.01. Note that the carbon fibers are often not cylindricallyshaped [18], and the characteristic fiber diameter specified above is defined as the diameter of a circle, with the same
area as the cross-section area of the carbon fibers, measured using a string vibration method.

The pultruded carbon fiber profile was cut into a 2mm wide sample before scanning. The cut sample was scanned
with the settings given in Table 1 and the result is shown in Fig. 1a. The 3D reconstruction was done in the Reconstruc-
tor Scout-and-Scan software using the default settings for the Zeiss Xradia 520 scanner. During the reconstruction, the
scan was aligned in the YZ-plane with respect to the outer surfaces in the Y-direction of the pultrution. For information

Jeppesen et al.: Preprint submitted to Elsevier Page 3 of 16



Quantifying effects of manufacturing methods on fiber orientation in unidirectional composites using structure tensor
analysis

Material case Pultrusion Pre-preg Non-crimp fabric
Sample ID HyFiSynCF2-01 DY06 Stitch-0-1-2-3-4
Reference [14, 15] [16] [17]

Material
Fibers Carbon Carbon Glass
Fiber diameter [µm] 7.0±0.3 7.4±0.3 17±1
Matrix Vinyl ester Epoxy Epoxy
Fiber volume fraction 0.67 0.61 0.57
Sample size (y;z) [mm] (2.0; 1.9) (2.0; 2.0) (15; 4.3)

Scanning
Voxel size [µm] 2.87 2.87 16.16
FoV: (x; y; z) [mm] (2.84; 2.91; 2.88) (2.84; 2.91; 2.88) (45.0; 15.4; 4.82)
No. of slices (x; y; z) (992; 1013; 1003) (992; 1013; 1003) (2787; 950; 298)
No. of single stitches 1 1 5
Accelerating Voltage [kV] 30 30 50
Power [W] 2 2 4
Filter Air Air LE3
Optical magnification 4x 4x 0.4x
Detector to sample distance [mm] 10.5 10.5 100
Source to sample distance [mm] 7.79 7.79 31
Exposure time [s] 3 3 6
No. of projections 4501 4501 5501
Rotation 360 360 360
Binning 2 2 2
Total scanning time [h] 6 6 69
File type txm txm nii
File-size [GB] 1.99 1.99 1.54

Analysis
Analyzed FoV (x; y; z) [mm] (2.45; 1.89; 1.83) (2.45; 1.73; 1.67) (38.6; 12.8; 4.57)
No. of analyzed slices (x; y; z) (853; 658; 637) (853; 603; 582) (2387; 790; 283)
Threshold value (Otsu) 25181 14463 40956
Vf (Otsu) 0.653 0.547 0.893
� 1.275 1.275 0.525
� 2.55 2.55 1.05

Table 1
Material properties, scan parameters and analysis parameters for the pultruded, pre-preg and NCF samples, respectively.

on the mechanical performance of the fibers and the composite material see [14] and [15], respectively.
2.2. Pre-preg carbon fiber composite

The pre-preg carbon fiber composite was manufactured using six pre-preg plies, resulting in a carbon fiber rein-
forced epoxy laminate with a thickness of 3.3mm. The fiber volume fractionwas estimated toVf = 0.61 in [16]. Before
scanning, the carbon fiber laminate was cut into a stick in the fiber-direction with the cross-section area 2.0 × 2.0mm2,
i.e., cut in both the width and thickness direction. The sample was scanned using the settings shown in Table 1 and the
result is shown in Fig. 1b. Settings are identical to those used for the pultruded profile. Again, 3D reconstruction was
done using Reconstructor Scout-and-Scan with default settings, and the reconstruction was aligned in the YZ-plane
with respect to the cut surfaces. For more details on the mechanical performance of the pre-preg, see [16].
2.3. Non-crimp fabric glass fiber composite

The non-crimp glass fiber-based composite was manufactured using vacuum infusion, based on a [biax/UD4/biax]layup of non-crimp glass-fibre fabrics. The resulting composite has a thickness of approximately 4.3mm and was cut
into typical tension-tension fatigue test samples with a width in the scanned gauge-section of 15mm. The sample was
scanned using the settings shown in Table 1 and the result, consisting of five stitched scans, is shown in Fig. 1c. The
four UD fabrics used in the non-crimp laminate consist of 1152 g∕m2 (2400 tex) fibers in the 0° direction, each stitched
to a backing consisting of 100 g∕m2 ±45° and 19 g∕m2 90° (both 200 tex). The two biax fabrics consist of 528 g∕m2
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Figure 2: Images of the UD + backing (upper) and biax + backing (lower) fabric seen from the two side. The area shown
in the pictures correspond approximately with the area visible in scan Stitch-0-1-2-3-4.

fibers at ±45°, in addition to a backing of 19 g∕m2 90° and 100 g∕m2 randomly oriented chopped strand mat (CSM)
glass fibers. The information is summarized in the first row in Table 2. For more details on the material system see
[17], which includes a tension-tension fatigue damage study performed on this specific material system.

We separate the fiber orientations into four different classes based on their angle, �, from the UD orientation. The
classes are: C = {0,−45, 45, 90}. We distribute the randomly oriented CSM fibers evenly across the four classes.
The fibers in class 0 (UD) have an average diameter of 17 µm, while the fibers in the other classes have an average
diameter of 16 µm. The expected volume fractions, Vc | c ∈ C (with distributed CSM), for each fiber bundle class in
the material (also reported in Table 2) are:

V0 = 0.7160 , V−45 = V45 = 0.1294 and V90 = 0.0252 . (1)
Using these volume fractions and the expected orientations of the bundles, we calculate the expected fibre orientation
efficiency factor [1] as

�o =
∑

c∈C
Vc cos4(�c) = 0.7807 . (2)

Our analysis focuses on the UD bundles, visible in the upper left picture in Fig. 2, as these are most important for
the material stiffness in the axial direction. In this picture, we clearly see the stitching holding the UD bundle onto
the backing bundles (shown in the upper right picture). Although the stitching is clearly visible here, the polymeric
threads used for stitching are difficult to see in the CT scans, as their density is similar to that of the matrix material.
The two sides of the biax-fabric are shown in the lower pictures in Fig. 2.

3. Method
Our analysis of the materials is done through an estimation of the local fiber orientation at every fiber voxel position

in each scanning volume. Once the fiber orientations have been estimated for at each voxel position, we can examine
both global orientation distribution, as well as local variations in the fiber orientations. To estimate the local fiber
orientations across the volumes, we use the approach by [13], which uses a combination of intensity-based thresholding,
structure tensor decomposition, and nearest-neighbor classification (for the NCF sample). We use the classification of
the bundles to separate the UD fiber bundles from backing and biax bundles.
3.1. Separating fibers from matrix

The first step of the method is to separate the fibers from the background (i.e., matrix and air). Since the fibers
are denser than the matrix and air, voxels containing fibers have higher intensities than matrix and air voxels in the
reconstructed CT volume. The contrast, and thus our ability to separate fiber voxels from the background, is highly
dependent on the scan resolution, scan time, and difference in density between the fiber and matrix materials. The
density of the carbon fibers is close to the matrix density, which results in a low contrast between the fibers and matrix
Jeppesen et al.: Preprint submitted to Elsevier Page 5 of 16



Quantifying effects of manufacturing methods on fiber orientation in unidirectional composites using structure tensor
analysis

Intensity

Air
Matrix

Fiber

(a) Pultruded carbon fiber
Intensity

Air Matrix

Fiber

(b) Non-crimp glass fiber
Figure 3: Volume intensity distribution for the pultruded carbon scan (a) and non-crimp scan (b).

in the pultruded carbon and pre-preg materials. For the NCF, the contrast is higher due to the larger difference in
density between the glass fibers and the matrix material.

To examine the intensity distribution, we can plot a histogram of the intensities of the voxels, as shown in Fig. 3. The
histogram can be used to manually pick a threshold value, which is used to classify voxels as either fiber or background
voxels. However, when the contrast between the matrix and fibers are low, as is the case for our carbon fiber scans
(see Fig. 3a), choosing a good value becomes difficult. Furthermore, the voxel intensities, and thereby the appropriate
threshold value, will vary from scan to scan, depending on scanner settings, samples being scanned, etc. This means
a new value should be chosen for every scan, but at the same time, the value should be chosen in a consistent manner
to reduce variation in the results. In cases where Vf is already known, we could choose the threshold based on this.

One method for automatically choosing an appropriate threshold value, without accurate prior knowledge about
Vf , is Otsu’s method [19]. The method works by maximizing the intra-class intensity variance and works well if the
intensities can be assumed to have a bimodal distribution, preferably with a valley between the two peaks. However,
this is clearly not the case for our scanning data (see Fig. 3), which contains three different distributions (fiber, matrix
and air). Luckily, as the air is almost exclusively outside the sample, we can easily create a smaller subvolume, strictly
inside the sample, which contains little to no air. This leaves us with only matrix and fiber distributions, which we
can separate using Otsu’s method to obtain a threshold value. We can use this threshold value to determine whether a
voxel is fiber or background. The accuracy of this naive approach depends on the data quality, i.e. contrast, noise and
resolution.
3.2. Calculating the structure tensor

The structure tensor method is an effective way of determining orientations of imaged structures in both 2D (im-
ages) and 3D (volumes). In particular, it has been shown to work well for fiber-like structures in 3D [6, 10, 11, 12, 13].
In this paper, we use the same structure tensor implementation as [13]. For completeness, a short description of the
structure tensor method follows.

In 3D, a structure tensor is a 3-by-3 matrix that captures the local orientation around a point in space. For each
point in the volume, V , we can compute the structure tensor, S, as

S =
∑

∇V (∇V )T , (3)

where ∇V =
[

Vx Vy Vz
]T is the gradient of V and the summation/integration is limited to a certain neighborhood

around the point. There are different approaches to calculating gradients and integrating the neighborhood information.
Here, we use a Gaussian kernel window for integration and a Gaussian derivative kernel for computing the gradients,
which has several nice properties [20]. This leads to the formulation

S = K� ∗
(

∇V� (∇V�)T
)

, (4)
where the parameter � the standard deviation of the Gaussian derivative kernel used for computing the gradient ∇V�and the parameter � is the standard derivation of the Gaussian kernel K� used for integration. The parameters � and �
are also known as the noise scale and integration scale, respectively. The noise scale � determines the scale at which
the gradient is calculated and is useful for suppressing high-frequency noise. Higher values of � will result in smoother
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gradients by suppressing features that are small relative to �. The integration scale � should be chosen relative to the
size of the structures that we are calculating the orientations of. It should be large enough to include the context around
a point required to see the structure of interest. For fibers, this means that � should depend on the fiber diameter, given
that the resolution is greater than the fiber diameter. When the voxels are similar in size or larger than the fiber diameter,
choosing � based on fiber diameter no longer makes sense, as the individual fibers are not clearly visible in the data.
It that case it is less clear how to chose �. However, as shown by [6], ST-based estimation of orientation distributions
is still viable.
3.3. Estimating local fiber orientations

For fiber-like structures in a CT volume, the orientation of a structure corresponds to the direction of least change in
intensity. This corresponds to minimizing the expression uT S u in each point, where u is a unit vector. In other words,
the direction of u, for which uT S u gives the smallest value for each point, is the direction of the least change for that
point. The solution can be found analytically using eigendecomposition of S. Because S is symmetric and positive
semi-definite, the eigendecomposition results in three positive eigenvalues and their corresponding mutually orthogo-
nal eigenvectors. The predominant orientation (direction of least change) is that of the eigenvector, v, corresponding
to the smallest eigenvalue. Thus, for fiber-like structures, v is the local orientation of the fiber-like structure at a certain
point in space. Note that fiber-like structures are characterized by the smallest eigenvalue being much smaller than
the other two eigenvalues. However, we currently do not use the eigenvalues in our analysis. Also, the eigenvector
captures only orientation, not direction. Depending on the implementation of the eigensolver, an eigenvector may be
computed as either v or −v. This has to be taken into account in the subsequent analysis.

Using the eigendecomposition, we can estimate the structure orientations in every single point where S was calcu-
lated. However, we are actually only interested in determining the orientation of points that are inside fibers. Unlike S,
which depends on the neighborhood, the eigendecomposition is calculated independently for each point. As a result,
we can choose not to perform the decomposition for points that are not of interest to us. We only decompose S at points
that are classified as being inside fibers based on our segmentation. This means that v should generally correspond to
local fiber orientations, as v is only calculated at fiber voxel positions. These local orientations can be used to describe
the global fiber orientation distribution, and investigate local distributions in the sample.
3.4. Fiber classification

For the pultruded and pre-preg carbon samples, all the fibers are UD, so we assume all fibers belong to the same
distribution. Meanwhile, the NCF is composed of a number of differently oriented fiber bundles. To determine which
fiber voxels belong to each of the different bundle orientations (classes), we can use the estimated fiber orientations.
This paper uses a naive, yet effective way of determining which bundle type each fiber voxel belongs to. Classification
of image pixels/voxels, as done here, is known as semantic segmentation. The segmentation is done by having the user
specify the orientation of each fiber class using a class unit vector. Each fiber voxel is then assigned to the class where
the angle between the class vector and the local fiber orientation at the voxel is the least. This strategy corresponds to
using a K-nearest neighbor classifier with K = 1.
3.5. Calculating �, �o, in-plane and out-of-plane orientations

Once the local fiber orientations have been estimated, we can calculate a number of different metrics, which can
help us interpret the orientations. Since all three materials studied in this paper are UD fiber materials, the first metric
is the angle between the expected UD orientation (X-axis) and the local fiber orientation v = [vx, vy, vz]. We denote
this value �(v) = | arccos(vx)|. As previously noted, v captures orientation, not direction. Thus, we take the absolute
value when calculating �. Besides providing information about the alignment of the UD fibers, � can also be used to
calculate the fiber orientation efficiency factor [1]

�o =
N
∑

i=1
ai cos4 �i , (5)

where �i is the angle with respect to the loading direction of the i-th fraction ai. In our case N is simply the number
estimated angle values and ai = 1∕N .

While � is useful for determining the deviation from the expected fiber orientation, it does not fully explain the
actual orientation of the fibers. Describing and visualizing 3D orientation distributions in not trivial. Thus, projecting
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the orientations onto a 2D plane can be useful. For fibers oriented along the X-axis, projections onto the XY- and XZ-
planes are useful. After projecting, we compute the angle between the projection and the X-axis. The angles between
the X-axis and the projections of v onto the XY- and XZ-planes can be calculated as

ΘXY(v) = arctan
vy
vx

and ΘXZ(v) = arctan
vz
vx

, (6)

respectively. Due to the lay-up of the different fiber bundles in the NCF, we want to calculate the signed out-of-XY-
plane angle

sX�XY(v) = sgn(vx) arcsin(vz) , (7)
rather then calculating ΘXZ(v). Here, sgn is the sign function, which is used to flip all vectors with a negative x-
component. We need this to consistently interpret the sign of the z-component, used to calculate the out-of-plane
angle. However, it also means that vector orthogonal to the X-axis (vx = 0) will be interpreted as having an out-of-
plane angle sX�XY(v) = 0°, even if vz ≠ 0. But since vx = 0 is very unlikely, this has little to no effect on the results.
This approach makes sense for investigating the out-of-plane waviness of all the fiber bundles that are angled ±45°
or less to the X-axis. If we wanted to investigate the signed out-of-plane waviness of the 90° backing bundles, we
should use sY�XY = sgn(vy) arcsin(vz) instead. Note that both these signed approaches only work when fibers are
relatively straight, which is the case for the three materials investigated here. An alternative is to calculate the absolute
out-of-XY-plane angle

�XY = arcsin ||vz|| . (8)
Here, we do not have to choose a positive direction, but this also means that we no longer distinguish between positive
and negative z-components. In other words, without choosing a positive fiber direction, we cannot distinguish between
fibers moving up and down through the XY-plane.

4. Results
Using the method described in the previous section, we examine the CT scans of the three fiber materials from

Table 1. For each scan, we show a number of histograms of the fiber orientation distributions describing the degree
of misorientation in the fiber samples compared to the expected orientations of the fiber material. For the NCF scan,
we also segment the fibers into different classes, depending on their expected orientations, and show the in-class
orientation distribution for the 0° UD class. Lastly, we plot local orientations in key areas of the scans, highlighting
themisalignment of fibers due to themanufacturing processes. All results are available in, and can be reproduced by, the
Jupyter notebooks and data published online [21]. For structure tensor calculations we rely on our structure-tensor
package for Python [22].
4.1. Pultruded carbon fiber composite

The pultruded carbon sample in scan HyFiSynCF2-01 B2 has the simplest structure of the three samples examined
in this paper. This is evident in Fig. 4, which shows a single slice of data along each axis overlaid with colors showing
�. Note that � angles of 10 or more degrees are all shown using the same color to enhance the contrast for values
between 0 and 10 degrees. From the cross-section of the fibers (Fig. 4a), the material appears quite homogeneous,
although there are clearly some fibers that are misaligned.

The distribution of � for the estimated orientations, along with distributions of ΘXY and ΘXZ, are shown in Fig. 5.We see that the fibers of the pultruded material appear very well aligned overall, with a median � angle of only 1.3°.
The reason the distribution of � decays close to 0° is that the � angles are calculated as the distance between two points
on a half sphere. As the the area on the sphere, and thus the bin [0, 1)° is much smaller than that for [1, 2)°, points are
less likely to fall into the [0, 1)° bin. In other words, it very unlikely that two points on the half sphere are very close
to each other.

Some of the estimated misalignment could be explained by misalignment of the sample in the scanner. This could
also explain why the mean values of the projected orientations are not zero, but rather 0.19° and−0.46° for theΘXY and
ΘXZ respectively. However, it is also possible that the fibers are just slightly misoriented overall in the cut out sample.
The standard deviation is 1.75° for ΘXY and 1.18° for ΘXZ, which corresponds with our observation from Fig. 4 that
Jeppesen et al.: Preprint submitted to Elsevier Page 8 of 16



Quantifying effects of manufacturing methods on fiber orientation in unidirectional composites using structure tensor
analysis

0.5 mm
0

1

2

3

4

5

6

7

8

9

10

An
gl

e 
(°

)

(a) YZ-slice
0.5 mm

0

1

2

3

4

5

6

7

8

9

10

An
gl

e 
(°

)

(b) XY-slice
0.5 mm

0

1

2

3

4

5

6

7

8

9

10

An
gl

e 
(°

)

(c) XZ-slice
Figure 4: Slices of the pultruded composite, HyFiSynCF2-01 B2, along each of the three axis. The intensities of the CT
data are shown as grey-scale, overlaid with colors representing the estimated local � angle. Data is oriented so that the
fibers should align with the X-axis and high values of � (angle from X-axis) corresponds to more misalignment.

0 2 4 6 8 10
Angle (°)

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n

Med = 1.3°

(a) Angle from X-axis (�)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Angle (°)

0.0

0.1

0.2

0.3

Fr
ac

tio
n

0°
x = 0.19°
s = ± 1.75°

(b) In XY-plane (ΘXY)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Angle (°)

0.0

0.1

0.2

0.3

0.4

Fr
ac

tio
n

0°
x = 0.46°
s = ± 1.18°

(c) In XZ-plane (ΘXZ)
Figure 5: Estimated orientation distributions of the pultruded carbon sample, HyFiSynCF2-01 B2. (a) is the angle between
the estimated local orientation and the X-axis, (b) is the angle of the orientation projected onto the XY-plane and (c) is
the angle of the orientation projected onto the XZ-plane.

the fibers are very well aligned overall. As a result, we get an orientation efficiency factor, defined in Eq. (2), very
close to unity, with a value of �o = 0.9973. The higher variation in the XY-plane orientations could result from the
large width (Y-axis), compared to thickness (Z-axis) of the pultruded material.
4.2. Pre-preg carbon fiber composite

The pre-preg carbon material from scan DY06 B2 is structurally slightly more complex than the pultruded sample.
The material is composed of layers of pre-impregnated layers of fibers. We see the interfaces between some of these
layers in both Fig. 6a and 6c, where small pockets of air (dark spots) are visible and � is higher in some cases. Compared
to the pultruded sample, the pre-preg appears to have more variation in the fiber orientations (see Fig. 7), with a median
� of 1.9° and a standard deviation of 3.42° and 2.75° for ΘXY and ΘXZ, respectively. In particular, the larger variationin the XY-plane, which corresponds to the pre-preg layers, is interesting.

Further investigating ΘXY locally, it is clear that the individual layers of the sample are not oriented the same.
Fig. 8a shows a single cross-sectional (YZ) slice from the scan, overlaid with colors representing ΘXY, as well as aplot of the median orientations along the Z-axis. From the colored image, it appears that some layers have been rotated
a bit, causing fibers in those layers to be slightly misoriented in the XY-plane. This is confirmed by the plot, which
takes the median of ΘXY along the horizontal slice axis (Y-axis). The plot clearly shows that the fibers of some layers
are oriented ∼2° different from others. This pattern is consistent throughout our pre-preg sample, but not present for
the pultruded sample as shown in Fig. 8b.
4.3. Non-crimp fabric glass fiber composite

The non-crimp glass fiber laminate has the most complex structure of the materials examined in this paper. The
primary UD fibers are stitched together in bundles and supported by bundles of backing fibers as shown in Fig. 2
and 9. The expected (spec.) fiber class fractions are shown in Table 2, along our estimated fractions, based on our
semantic segmentation of the fibers. The table shows agreement between the expected class fractions and the estimated
ones. The biggest difference is for the 90° bundle class, where the estimated fraction is 20% below expected. This
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Figure 6: Slices of the pre-preg composite, DY06 B2, along each of the three axis. The intensities of the CT data are
shown as grey-scale, overlaid with a colors representing the estimated local � angle. Data is oriented so that the fibers
should align with the X-axis and high values of � (angle from X-axis) corresponds to more misalignment.
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Figure 7: Estimated orientation distributions of pre-preg carbon sample, DY06 B2. (a) is the angle between the estimated
local orientation and the X-axis, (b) is the angle of the orientation projected onto the XY-plane and (c) is the angle of the
orientation projected onto the XZ-plane.

[bBiax/bUD/bUD/UDb/UDb/Biaxb] 0° −45° 45° 90° CSM
Area weight [g∕m2] 4×1152 4×50+2×296 4×50+2×296 6×19 2×100
Vc (spec.) 0.7083 0.1217 0.1217 0.0175 0.0307
Vc (spec. CSM dist.) 0.7160 0.1294 0.1294 0.0252
Vc (out method) 0.7304 0.1273 0.1222 0.0200
Difference [%] 2.01 1.62 5.56 20.63

Table 2
Composition of the non-crimp fiber sample. The fraction calculated from the material specification is compared to the
fraction estimated using structure tensor-based semantic segmentation.

is likely due to scarcity of the 90° bundles, which only represent about 2.5% of the total fiber volume. Based on the
specification, we calculated an �o value of 0.7807, which is slightly higher than the value of 0.7761 estimated using
our method.

For the NCF, we can investigate the distributions per fiber bundle class. Fig. 10 shows the distributions of �, ΘXYand sX�XY for all fibers, while Fig. 11 shows the distributions for the 0° UD class only. The UD fibers are generally
well-aligned, with a median � of 4.87°, and a standard deviation of 5.44° for ΘXY and 4.53° for sX�XY. The mean of
−0.06° for both the in- and out-of-plane angles indicate that the data is aligned correctly with the X-axis.

All three backing bundle classes also appear to be aligned correctly, based on their mean orientations (see [21]).
There is a clear correlation between the volume fraction of the class and the in-class variation of the orientations.
This is probably partially related to the integration scale of the structure tensor method, which causes some “bleeding”
between the bundles. This impacts the less common classes the most, since they have more surface area compared to
their volume.

Although the standard deviation of ΘXY is quite low for the 0° class, it is significantly higher than for the carbon
samples. One contributing factor is an in-plane waviness, which appears to be the result of the stitching of the UD
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Figure 8: Estimated local ΘXY for a single slice of the pre-preg carbon sample (a), DY06 B2, and pultruded sample (b),
HyFiSynCF2-01 B2, respectively. The images show a single slice overlaid with colors representing ΘXY values. The plots
show the median of the ΘXY along the horizontal axis (Y-axis). In (a), we see that the pre-preg layers are rotated slightly,
creating a significant variation in the orientations along the Z-axis. As expected, (b) does not contain this type of variation.

bundles. Fig. 12 shows local ΘXY values for a single slice inside the UD bundles and a plot of median ΘXY values
along the X-axis. The waviness of the bundles matches the stitching pattern of the material. The black dashed lines,
corresponding to the peak gradient of the smoothed median, mark the estimated location of the stitching. The mean
interval between these lines along the X-axis is 4.381mm with a standard deviation of 0.453mm. This aligns with
the stitching interval of approximately 4.1mm measurable in the upper left image in Fig. 2. The pattern is persistent
across all four UD layers of the NCF (see [21]). The degree of in-plane waviness is likely dependant on the tension of
the stitching thread.

Another periodic pattern visible in the UD bundles is found in the out-of-XY-plane angles, sX�XY. The pattern,shown in Fig. 13, appears to be a result of the adjacent±45° backing fiber bundles exerting pressure on the UD bundles,
which creates a slight out-of-plane waviness. By rotating the slice 45° and calculating the median sX�XY values for
the slice along both axes, we clearly see the periodic pattern (see Fig. 13a). We can then find the local extrema using
the smoothed median values along both axes, which are likely located near the edge of the backing bundles. This is
confirmed by drawing the lines on top of a nearby slice, where the backing bundles are visible (Fig. 13b). Along both
axes, the dashed lines align well with the visible 45° bundles. The degree of this out-of-plane waviness will likely
depend on the structure of the backing bundles and the pressure on the fabrics during resin infusion.

5. Discussion
Our investigation of the three composite material systems using structure tensor analysis demonstrates that we can

measure small differences in fiber orientation that are important for material characteristics. This has also previously
been shown, and it has likewise been shown that the structure tensor measures orientations that are similar to what can
be measured using other methods [6, 23].

Our analysis approach, however, takes the quantification further by integrating the measured orientations in the
directions of change, such that deviations become very clear. This is the case for the pre-preg sample, where we
see deviations in the layers that have been laid up, but most pronounced in the stitched NCF composite sample. The
stitching gives deviations relative to the main UD fiber direction that are largest between the stitches, which can be
seen from the color overlay in Fig. 12, but even more when aggregating these, as illustrated in the plot showing clear
periodic patterns. This implies that the structure tensor analysis enables quantifying orientation differences that allow
for optimizing the production of the fiber fabric and the composite.

The structure tensor takes two parameters, � and �, that were adjusted according to the size of the structures that
we measured, i.e. the fiber diameters. We did not do an extensive study of how these parameters should be set, because
we experienced little change in the quantification when changing these parameters. Another parameter is the intensity
threshold, but that too did not influence the result very much. This makes the basis for our structure tensor analysis
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Figure 9: Slices of NCF composite, Stitch-0-1-2-3-4, along each of the three axis. The intensities of the CT data are
shown as grey-scale, overlaid with a colors representing the estimated local � angle (top) and semantic class (bottom).
Data is oriented so that the UD fibers should align with the X-axis and high values of � (angle from X-axis) corresponds
to more misalignment.
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Figure 10: Estimated orientation distributions of non-crimp sample, Stitch-0-1-2-3-4. (a) is the angle between the
estimated local orientation and the X-axis, (b) is the angle of the orientation projected onto the XY-plane and (c) is the
signed out-of-XY-plane angle.

easy, and we trust the measures that come out.
An important contribution of our work is the open-source GPU-based implementation of structure tensor and

eigendecomposition [22], which makes computation exceptionally fast without a limit on how large a volume that can
be processed [21]. The ability to process a volume in few minutes, that on a lab-scanner takes many hours or days
to record, gives interesting perspectives. Instead of lab µCT we could use synchrotron imaging, and here the analysis
could be done in a similar pace as the scanning, give the possibility for large-scale studies.

We find it interesting that our pultruded sample shows better fiber alignment than the pre-preg sample, with a lower
standard deviation for both ΘXY and ΘXZ. As previously mentioned, the DY06 sample is 2mm2 cut from a 3.3mm
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Figure 11: Estimated orientation distributions of non-crimp sample, Stitch-0-1-2-3-4, for the 0° (UD) class (red in
Fig. 9). (a) is the angle between the estimated local orientation and the X-axis, (b) is the angle of the orientation projected
onto the XY-plane and (c) is the signed out-of-XY-plane angle.
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Figure 12: Single XY-slice inside one of the four UD layers overlaid with estimated local ΘXY values, and a plot of the
median ΘXY value along the vertical axis. We see a clear periodic pattern in the ΘXY values along the X-axis. Using
the gradient smoothed median value, local extrema have been found and marked with dashed black lines. These are the
estimated positions of the stitches.

thick 6-ply laminate. The cut contains four plies, with the first and last being cut in half. As shown in Fig. 8a, the large
standard deviation for ΘXY (3.42°) partially explained by inconsistent alignment of the plies. However, this does not
explain the larger deviation forΘXZ. Further examination of the orientation distributions of the two central plies of the
pre-preg sample (see Fig. 14) show that the standard deviation for ΘXY and ΘXZ, within each of the plies, is still largerthan that of our pultruded sample (Fig. 5). The difference in the ply orientation between ply 2 and 3 is also clearly
visible in Fig. 14a and 14b. We should note that the pre-preg and pultruded samples are not manufactured using the
same type of carbon fiber bundles. It should also be noted that ΘXY and ΘXZ are not normally distributed. However,
we still think the standard deviation is a convenient metric for describing the variation in the UD fiber distributions.

6. Conclusion
We show that it is possible to estimate and quantify fiber orientations, both globally and locally, from X-ray CT

images using structure tensor-based analysis. In particular, we show that it is possible to detect and quantify different
effects of the manufacturing process and material structure in three different fiber composites used in wind turbine
blades.

For all three materials, we show how to estimate the fiber orientations, calculate the in-plane and absolute mis-
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Figure 13: Out of plane waviness in UD bundles due to ±45° backing bundles. (a) shows a single slice inside one of the
four UD bundle layers rotated 45°. The slice is overlaid with colors representing the estimated local sX�XY values. The
plots left and below the slice show the median of sX�XY along the vertical and horizontal axes, respectively. The blue and
red lines are the local extrema on the smoothed median. (b) shows the extrema from (a) on top of a nearby slice (0.34mm
further along the Z-axis), where we see the ±45° backing bundles. We see that the local extrema align well with the edges
of the bundles. The coloring is based on the estimated local fiber angle to the X-axis, (�).

alignment from the specified UD direction. For the pre-preg sample, we show how misalignment of the plies, which
may reduce the overall material quality, can be found and quantified. We also see that even when excluding the effects
of misalignment of the plies, our pultruded sample still shows better fiber alignment than the pre-preg sample. To
determine if pultruded carbon composites are generally more aligned than pre-preg carbon composites, more sample
will have to be examined. Our method is well suited for such a study, as the computations only take a few minutes on
modern GPUs. Thus, collecting and scanning samples are by far the most time-consuming part of this task.

For the NCF composite, we estimate orientations and separate the bundles into classes, as previously done in [13].
Our contribution is showing the effects of stitching and backing bundles on the UD fiber orientations. We quantify
these effects locally in the images and show that the periodic waviness of the UD bundles correlate with the stitching
and backing bundles. The quantification of these effects allow manufacturers to choose production parameters, which
minimize the waviness of the UD fibers, thereby improving important material properties. For instance the tension of
the stitching thread can be tuned to minimize in-plane waviness of the UD bundles. Of course, we examine only a few
of many potential effects, which are related to production parameters.

All in all, our publicly available code and notebook, built entirely on open source libraries, allow both manufac-
turers of composite structures (e.g., wind turbine blades), manufacturers of composites, and researchers, to perform
quantitative quality control of UD composite materials. While this paper focuses on UD fiber materials used in blades,
most of our approach is applicable to CT images of many different types of fiber materials.
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4.4 Contribution summary
The two papers show that structure tensor analysis is very effective for extracting fiber
orientations from CT scans of fiber-reinforced composites, and that this information is
detailed enough to detect and quantify local variations in the orientations. Because
the information can be retrieved in a matter of minutes, the barrier to access for
researchers and manufacturers is reduced significantly.
As mentioned in both contributions, one of the key advantages of using the structure
tensor method for estimating fiber orientation, compared to methods based on indi-
vidual fiber tracking, is the speed and scalability of the structure tensor method. By
utilizing vector operations on the CPU, or in particular the GPU, we can compute
the structure tensor and the eigendecomposition fast. Both the separability of the
Gaussian filter and the analytically calculated eigendecomposition play a significant
role in the performance of our method.
As shown in Paper D, the structure tensor is computed locally, which means we
can split large problems into blocks and compute the structure tensor for each block
individually. This allows us to deal with volumes of any size and to distribute the task
across any number of CPUs and/or GPUs. The proposition of being able to work on
very large volumes without having to wait days for the results is very interesting, as it
allows researchers and analysts to work on much larger, and thus more representative
samples.
The results in Paper E show that we still have much to learn about how the manufac-
turing process effects the fiber microstructures. They also show that structure tensor
analysis is an excellent tool for extracting the information about fiber orientations
needed to characterize and quantify these variations.

4.5 Discussion
A major challenge with the type of work presented in Paper D and Paper E is validat-
ing the results, specifically the estimated orientations. These depend on data quality,
background segmentation, and structure tensor implementation details (e.g., how gra-
dients are calculated and which integration window is used). In both contributions,
we perform qualitative validation by coloring volume slices based on the estimated
orientations. This shows that the results align well with the fibers visible in the data.
However, performing a quantitative validation of the results is more difficult, as it
requires accurate knowledge about the fiber orientations, which is what we are try-
ing to obtain in the first place. One way to test the validity of the structure tensor
results is to compare them to results obtained using a completely different method.
This was done by Karamov et al. 2020, who compared their structure tensor results to
results obtained with several other methods. Similarly, we have compared our struc-
ture tensor results to results obtained using a different method based on individual
fiber tracking (see Appendix B). In both cases, the fiber orientations obtained with
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structure tensor analysis align well with results from other methods. However, I still
think there is a need for more quantitative validation of the accuracy of structure
tensor-based orientation analysis of fibers.

One way to quantify the accuracy of the structure tensor method would be to create a
simulated CT volume, where all fiber orientations are known. This way, the accuracy
of the estimated fiber orientations could be studied in detail. Furthermore, this
approach would be well-suited for studying the effects of varying resolution, noise,
and choice of structure tensor parameters σ and ρ, on the accuracy. However, for the
results to generalize to real data, the simulated data needs to be realistic.

Our two contributions use a relatively simple approach for identifying which voxels
belong to the fibres. This is done intentionally to keep the pipeline simple and keep
focus on the estimation and characterization of the fiber orientations. Thus, we use
simple intensity-based thresholding to separate fiber and background voxels. This
approach is sufficiently accurate for our purpose, as we always aggregate at least a few
hundred samples at a time. However, we could improve the background segmentation
accuracy by using more of the information acquired from the eigendecomposition, such
as the eigenvalues and derived metrics such as linear anisotropy, cl. These values
could also be used to weigh the contribution of the individual eigenvectors when
calculating the orientation distributions, rather than relying on binary segmentation
of the background.

Although the interpretation of the eigenvectors is simple for fiber-like structures (the
eigenvector corresponding to the smallest eigenvalue, v, encodes the fiber orientation),
it is important to remember that we want to estimate orientations, not directions, and
that the eigenvectors v and −v both encode the same orientation. This is known as
antipodal symmetry and is important to keep in mind whenever we want to say
something about an orientation based on a vector.

As long as the fibers are expected to be oriented in the same direction, it is reasonable
to describe the orientation distribution by choosing the pole to be at the expected
orientation and flipping vectors, so all vectors are pointing towards the pole. We use
this approach in both Paper D and Paper E to describe and compare the different
unidirectional fiber composites. However, it is important to remember that although
we think it is reasonable to use the mean and standard deviation here, the angles
calculated from the projected orientations are not normally distributed.

4.6 Summary
In this chapter, I have introduced our structure tensor method for 3D images. The
method uses separable Gaussian filters to calculate the structure tensor and an ana-
lytical solution to the eigendecomposition. This makes the method both fast, robust
to noise, and resolution invariant.
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Then, I presented two papers where we apply structure tensor analysis to three differ-
ent types of unidirectional glass and carbon fiber-reinforced composites used in wind
turbine blades. We show that our method can be used to estimate fiber orientation,
which can be used to characterize and segment the fibers. The estimated distributions
also allow quantitative analysis and comparison of materials. Furthermore, we show
that subtle local variations in the fiber orientations can be detected and quantified,
allowing for parameter optimization of production parameters to improve material
quality.

Finally, we have discussed validation of the accuracy of the estimated orientations,
utilization of the eigenvalues, and the importance of keeping the antipodal symmetry
in mind when dealing with orientations.
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CHAPTER5
Conclusion

As of March 2021, 191 out of the 197 Parties to the COP21 convention in Paris have
ratified the Paris Agreement1, committing them to combat climate change and adapt
to its effects. While countries are scrambling to take the actions required to reduce
greenhouse gas emissions, it is clear that renewable sources of electrical energy play
a key role in these efforts.

Wind energy is the second largest source of renewable energy, after hydropower.2
Thanks to technological development fueled by investments from consumers, industry,
and governments, wind energy has not just seen a large expansion in capacity, but
has also become economically competitive compared to traditional fossil-fueled energy
sources. As the demand for renewable energy remains high and the price of wind
energy is decreasing, it is hard to imagine that the demand for wind energy will slow
down anytime soon.

The cost of electricity from wind turbines depends largely on the nameplate capacity,
especially for off-shore sites. The nameplate capacity is limited by the swept area
of the wind turbine, which increases significantly as the rotor diameter increases.
However, increasing the rotor diameter is not easy and is therefore both the limiting
and driving factor behind the increasing size of wind turbines. Due to the advantages
of larger capacities, I expect wind turbines to keep increasing in size as long as our
engineering skills allow. With the increasing size, structures and materials are pushed
closer to their limits, and QC becomes increasingly important to reduce the risk of
costly structural failures.

5.1 Better quality control
Artificial intelligence has the potential to provide more consistent, much faster, and
even more accurate QC than human experts. However, for highly complex tasks,
such as inspection of wind turbine blades using ultrasound, creating reliable auto-
mated solutions based on AI is challenging. Even with state-of-the-art deep learning
techniques, such tasks generally require large high-quality labeled datasets and years
of development. Furthermore, creating labeled datasets, particularly for 3D image
data, can be very costly. While such an investment might be worthwhile for generic

1https://unfccc.int/process/the-paris-agreement/status-of-ratification, March 13, 2021
2See Appendix A.

https://unfccc.int/process/the-paris-agreement/status-of-ratification
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problems like natural image and language processing, this is often not the case for less
generic problems, such as blade inspection. Therefore, we need solutions that do not
require large investments into the creation of labeled datasets for training machine
learning algorithms.

The work that has been presented in this thesis takes a non-learning approach to the
extraction of important material and structural properties from 3D image data. This
allows us to rely on prior knowledge, which we can model, rather than large labeled
datasets, which are impractical to obtain. The non-learning approach is suitable for
many QC scenarios, where we have a clear expectation of what the data should look
like and a high degree of control over the data capturing process.

However, learning and non-learning methods are not mutually exclusive. In fact, a
feasible way of obtaining large amounts of labeled data for training machine learning
models could be to use non-learning methods, such as the ones presented in this
thesis. Refining such datasets generally requires human intervention to correct bad
labels. The interactive approach discussed in Section 3.8.3.1, would allow users to
easily fix bad labels, while still benefiting from the assistance of the AI model. This
could also be combined with active learning techniques, which allow users to refine
the trained models interactively.

I think the key to better QC on blades using AI is to provide users with a good
initial AI model, which can extract relevant information from the data with little to
no user interaction. However, the user must be able to easily interact with the model
to correct any errors made by the AI. This is important not only to allow automated
reporting of the evaluation results, but also to ensure that the results are correct, and
thus suitable for training machine learning methods, which can further improve the
AI.

5.2 Contributions
The goal of the work, which has been presented in this thesis, is to reduce the cost
and improve the consistency of QC of wind turbine blade structures and materials.

5.2.1 Faster graph cut-based segmentation
This thesis includes three papers related to graph cut-based image segmentation,
which is suitable for analysis of blade structures based on ultrasound images.

• In Paper A, we proposed the sparse layered graph structure, which can be
used to reduce the size of graphs in multi-label segmentation tasks by orders
of magnitude compared to previous methods. This enables the use of graph
cut-based for multi-label segmentation of large 3D volumes, which was not
previously feasible.
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• In Paper B, we benchmarked state-of-the-art serial and parallel maxflow/mincut
algorithms on a set of computer vision tasks, including our own implementations
and optimized versions of known algorithms. Our results provide useful insights
into which algorithms perform the best for image segmentation tasks. Further-
more, the results highlight the potential of parallel maxflow/mincut algorithms
for large segmentation tasks.

• In Paper C, we proposed our own parallel version of the QPBO algorithm. This
is, to my knowledge, the first parallel implementation of the QPBO algorithm.
The results presented in the paper show that our parallel algorithm can speed
up the segmentation of large 3D images by an order of magnitude compared to
the serial QPBO algorithm.

When combined, these contributions significantly increase the size of image segmen-
tation tasks, for which graph cut methods are useful. Furthermore, as these tasks can
be solved faster, it opens the door for real-time user interaction, which is important
for the correction and refinement of the segmentation results. Some of the methods
presented here are already being used in AI models for blade evaluation by FORCE
Technology. All code, notebooks, and data used for the experiments presented in the
three papers are (or will be) shared online as open-source, allowing others to benefit
from our fast implementations.

5.2.2 Structure tensor analysis of fiber orientations
The two last papers included in this thesis are concerned with estimating and quan-
tifying fiber orientations in fiber-reinforced composites used in blades.

• In Paper D, we presented a structure tensor-based pipeline for fast estimation of
fiber orientations in fiber-reinforced composites. The usefulness of our approach
was demonstrated on a unidirectional stitched fiberglass composite commonly
used in blades. The results show that we can estimate the different orientation
distributions in the glass fiber fabric and segment the different bundles based
on the estimated orientations.

• In Paper E, we used our fast structure tensor pipeline to examine local vari-
ations in fiber orientations in three unidirectional fiber-reinforced composites
commonly used in blades. We showed that our method can be used to quantify
local changes in orientation, which depend on manufacturing process parame-
ters. Besides quantifying misalignment effects, our method is fast and scalable,
making it suited for process parameter optimization, as many large volumes can
be analyzed in a short time.

Structure tensor analysis appears to provide a robust, and certainly fast, way of esti-
mating fiber orientations in composites. The two contributions included in this thesis
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describe our pipeline, which we have also shared online, allowing both manufactur-
ers and researchers to estimate and characterize fiber orientations. This provides a
foundation for automated quantitative QC of fiber-reinforced materials.

5.3 Summary
The work presented in this thesis provides new methodological and algorithmic tools,
which can be used for better and cheaper QC of wind turbine blades and fiber-
reinforced composites.

The presented graph cut-based method provides a solution to the challenge of detect-
ing surfaces in ultrasound images of blade structures. Surface detection is essential
for the extraction of structural features in the AI-based solution for automated blade
inspection developed by FORCE Technology. In this solution, the graph cut-based
method plays a key role when measuring structural properties such as glue thickness,
which can be measured automatically for an entire blade in less than a minute with
a resolution 200 times higher than that usually recorded through manual evaluation.
As such, the graph cut-based method achieves the goal of providing better and faster
QC of blades.

Similarly, the contributions related to fiber characterization provide an effective tool
in the form of a pipeline for automatic extraction of fiber properties that can be used
directly in QC. The pipeline can be used by manufacturers of composite materials
to determine the quality of their products in terms of fiber alignment in only a few
minutes, once they have acquired the necessary X-ray CT scans of the materials. This
allows both faster and more comprehensive QC of the composites than previously
possible.

These new tools for faster and better QC are of high importance, not just to the
manufacturers of wind turbines, who want to cut the cost and improve the quality of
their products, but also to the international community, in the process of transitioning
to renewable sources of energy.

This does, however, not mean that the contributions presented in the five papers
included in this thesis are only useful for image analysis of blades and blade materials.
Both the methodological contributions and the open-source software implementations
are generic and represent important steps forward within the respective fields of graph
cut-based computer vision, maxflow/mincut algorithms and structure tensor-based
fiber characterization.



APPENDIXA
Electricity generation
and greenhouse gas

emissions

Year 1990 1995 2000 2005 2010 2015 2018

Coal 4,429,911 4,993,261 5,994,185 7,316,600 8,662,447 9,534,199 10,159,646
Oil 1,322,975 1,228,863 1,183,808 1,129,445 970,042 1,027,686 783,703
Natural gas 1,748,624 2,020,958 2,774,747 3,706,208 4,841,878 5,525,879 6,150,200
Biofuels 105,435 95,068 113,780 169,500 277,740 415,631 518,467
Waste 24,142 34,770 49,544 58,142 89,291 101,843 118,773
Nuclear 2,012,902 2,331,951 2,590,624 2,767,952 2,756,288 2,570,070 2,710,430
Hydro 2,191,674 2,545,918 2,695,591 3,019,509 3,535,266 3,982,151 4,325,111
Geothermal 36,426 39,895 52,171 58,284 68,094 80,562 88,956
Solar PV 91 197 800 3,732 32,038 250,076 554,382
Solar thermal 663 824 526 597 1,645 9,605 11,321
Wind 3,880 7,959 31,348 104,465 342,202 833,732 1,273,409
Tide 536 547 546 516 513 1,006 1,005
Other sources 19,939 23,864 22,049 32,983 33,704 35,741 34,662
All numbers are in GWh.
Based on data from IEA (2020) IEA Electricity Information, www.iea.org/statistics. All right reserved.

Table A.1 – Worldwide electricity generation by source.

Year 1990 1995 2000 2005 2010 2015 2018

Geothermal 36,426 39,895 52,171 58,284 68,094 80,562 88,956
Solar thermal 663 824 526 597 1,645 9,605 11,321
Hydro 2,191,674 2,545,918 2,695,591 3,019,509 3,535,266 3,982,151 4,325,111
Solar PV 91 197 800 3,732 32,038 250,076 554,382
Tide, wave, ocean 536 547 546 516 513 1,006 1,005
Wind 3,880 7,959 31,348 104,465 342,202 833,732 1,273,409
All numbers are in GWh.
Based on data from IEA (2020) IEA Renewables Information, www.iea.org/statistics. All right reserved.

Table A.2 – Worldwide renewable electricity generation by source (non-combustible).

www.iea.org/statistics
www.iea.org/statistics


130 A Electricity generation and greenhouse gas emissions

Greenhouse gas emissions by sector, World, 2016
Greenhouse gas emissions are measured in tonnes of carbon dioxide-equivalents (CO₂e).
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Fugitive emissions 2.88 billion t
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Source: CAIT Climate Data Explorer via. Climate Watch OurWorldInData.org/co2-and-other-greenhouse-gas-emissions • CC BY

Figure A.1 – Greenhouse gas emission by sector.
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Abstract. This study presents a holistic segmentation procedure, which can be used to 

obtain individual fibre inclination angles from X-ray computed tomography. The 

segmentation approach is based on principal component analysis and was successfully 

applied for a unidirectional and an air textured glass fibre reinforced composite profile. 

The inclination results show a weighted mean fibre inclination of 2.1° and 8.0° for the 

unidirectional and air textured profile, respectively. For the air textured composite, fibre 

inclinations of up to 55° were successfully segmented. The results were verified by 

comparative analysis with equivalent results obtained from structure tensor analysis – 

showing no notable deviation. The comparable characteristics in combination with the 

distinct differences of the two material systems make this case study ideal for verification 

and validation of idealized models. It is shown how this approach can provide fast, 

accurate and repeatable inclination estimates with a high degree of automation. 
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Keywords: Glass fibre composites, Fibre undulation, Segmentation verification, Singular 

value decomposition, Structure tensor.  

1.  Introduction 

The demand for lightweight materials in the form of fibre reinforced polymer (FRP) composites has 

consistently increased and the growth is expected to continue [1]. FRP composite materials are heavily used 

for structural applications where high specific mechanical properties are required, e.g. high stiffness to 

weight ratio. In that regard, the FRPs can easily compete with most metal alloys and are therefore heavily 

used in e.g. offshore-, construction-, and wind turbine industry [2-3]. This is one of the reasons why the 

growth rate of composites usage has exceeded that of steel and aluminum in the last decades [4].  

The macroscopic properties of FRPs are inherently related to their microstructure, which is mainly 

described by the fibre volume fraction and the fibre architecture. This enables tailoring of mechanical 

properties for a given application. Hence, numerous studies are found in literature investigating the relation 

between composite microstructure and macroscopic properties, e.g. stiffness, compressive strength and 

fatigue properties. 

In the study by Paluch [5], the effect of fibre undulation in unidirectional (UD) composite was 

investigated by destructive characterization, i.e. regularly cut sections examined by optical microscopy. It 

was concluded that considering a composite material as a series of mutually parallel fibres undulating in 

phase is a poor assumption. Non-destructive confocal laser scanning microscopy was used in [6] to 

investigate fibre undulation. However, this method is limited to sufficient transparent samples, i.e. 

composites where the matrix fluoresces strongly and with fibre volume fraction below 30 percent.  

X-ray Computed Tomography (XCT) is widely used to characterize material properties of fibre 

reinforced polymers, as well as for materials like concrete and metals [7-9]. XCT has the advantage of non-

destructive testing and a high resolution, i.e. micron level voxel size [10-11]. However, the resolution 

obtained by XCT cannot compete with that obtained by scanning electron microscopy (SEM), reaching 

sub-micron resolutions [12]. XCT was used to investigate the effect of varying off-axis angles in non-crimp 

fabrics [13-14]. 

In a recent study [15], the effect of fibre misalignment on the longitudinal compressive and tensile 

failure was investigated by micromechanical modelling, introducing the fibre misalignment using a 
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stochastic process. Similar mechanical modelling was conducted on characterized microstructures by 

Auenhammer et al. [16]. The main objective of this study was to develop a highly automated process to 

transfer XCT data into robust finite element models. The model was evaluated by its ability to predict 

Young’s moduli of UD fibre composites loaded in tension and it was concluded that the methodology did 

not suffice to predict the correct trend. It was concluded that the reason for the deviations most likely was 

attributed to the single bundle fibre tracking segmentation process and in particular the mean fibre 

orientation, fibre volume fraction and bundle to volume ratio. The influence of the segmentation method 

was investigated in [17] and the waviness induced by backing bundles was captured by generating a 

boundary between the backing and UD bundles. The approach in [16-17] focusses on the bundle level rather 

than the fibre level, hence, the influence of the single fibre scale was not investigated. It is argued that the 

advantage of the methodology is automation, but it is also mentioned that the user needs experience in 

Avizo to set up the right parameters depending on the composite architecture and the fibre to matrix 

attenuation contrast. 

The structure tensor (ST) segmentation method was used by Advani and Tucker to predict fibre 

orientations in short fibre composites [18]. The ST method was recently used to characterize a non-crimp 

glass fibre fabric and the Jupyter notebooks and Python code behind the segmentation process were publicly 

shared [19]. This ST segmentation approach uses thresholding to separate fibre and matrix material, which 

necessitates a proper attenuation contrast. 

Emerson et al. [20] developed an interactive fibre tracking algorithm, which was used to characterize a 

UD composite. The algorithm was developed in Matlab, publicly shared, and statistical validated in [10]. 

Its applicability for a textured fibre composite was investigated in [21]. It was found that the algorithm 

made some erroneous fibre detections for high angle fibres but it was in general applicable for textured 

fibre composites. 

In a study by Amrehn et al. [22], it was concluded that interactive segmentation methods are beneficial 

for complex structures as opposed to fully automated segmentation methods that inherently lack domain 

knowledge. 

1.1.  Objective 

FRP composites are often designed with large safety margins because of incomplete knowledge about 

the connection between the microstructure and the macroscopic properties. 
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The main objective of this study is to use XCT to quantify the fibre undulation of two mutually distinct 

composite systems. The first one is a pultruded UD glass fibre profile and the second one is a pultruded air 

textured glass fibre profile. The air textured fibre reinforced composite is expected to have a complex 

structure, which calls for an interactive segmentation method. The segmentation will build upon the 

individual fibre tracking algorithm developed in [20]. The inclination of the fibres will be analysed using a 

novel segmentation method developed by the authors of the present work. The new segmentation approach 

will include a semi-automatic segmentation module based on principal component analysis (PCA). The 

quantified inclination results will be verified by comparison with corresponding results obtained by the ST 

method, as described in [19]. Finally, the prospects of novel insight into the connection between 

microstructure and macroscopic properties will be discussed. 

 

2.  Materials 

This study is carried out on two mutually distinct FRP composite systems, namely a UD glass fibre 

reinforced thermoset composite (UD-fib) and an air textured glass fibre reinforced thermoset composite 

(air-tex). The two composites are both manufactured by the resin injection pultrusion process using solely 

fibre bundle rovings. Hence, the fibre architecture is inherently continuous through the profile and any 

observable fibre inclinations are thus not a result of misaligned layup, which sometimes is the case in pre-

preg and non-crimp fabric composites [23]. 

The UD-fib and the air-tex composites are manufactured as a rod with a diameter of ~13mm and a large 

beam with a square cross-section of ~100×100mm2, respectively. But, for the purpose of the current study, 

both pultruded samples were machined to obtain a rod with a diameter of ~5mm, see Figure 1. The 

continuous UD- and air textured glass fibre rovings used for the two composites are of the same glass fibre 

type with an estimated average diameter of ~23.4µm, i.e. the air textured rovings are a textured version of 

the UD rovings. This makes the two composite systems suitable for comparative analysis.  The two 

composite rods together with a schematic illustration of their respective fibre reinforcement are depicted in 

Figure 1. 

FIGURE 1 
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It should be noticed how Figure 1 is set up with a) UD-fib and b) air-tex. This figure setup is continued 

throughout the paper to ease comparative analysis and is additionally directly comparable with the 

corresponding a) and b) figures in the data article published by the authors [12]. 

 

3.  X-ray Computed Tomography 

To recap, the scope of the current study is to characterize the fibre orientation of the two mutually distinct 

FRP composite systems, i.e. the UD-fib and air-tex material described in the previous section. This is done 

using XCT followed by an advanced novel segmentation approach. In the following section the 

experimental XCT method is described. 

3.1.  Experimental Method (XCT) 

The XCT experiments were carried out on a Zeiss Xradia Versa 520 scanner with a voltage of 40kV. The 

scan was performed with 4× optical magnification obtaining 4501 projections at binning 2. A tomographic 

volume of 988×1013×999 voxels with a voxel size of 1.99µm was obtained. The tomographic data is 

published in the data article [12], including a detailed description of the X-ray tomography settings. The 

same procedure was used for the two composite systems and the resulting 3D tomograms are depicted 

together with an example of a tomographic cross-sectional slice in Figure 2. 

FIGURE 2 

The tomographic reconstruction shown in Figure 2 has a high resolution, i.e. a voxel size of 1.99µm. It 

also has a high attenuation contrast, which eases the separation of the constituent fibre and matrix materials 

by the naked eye. However, obtaining a segmented mathematical description of the individual fibres is not 

a trivial task, as the fibres are often bundled closely together, making separation difficult, even with high 

attenuation contrast data. A novel segmentation process is described in the following chapter. 

 

4.  Individual Fibre Segmentation 

In the current study the segmentation process is divided into three steps: i) a slice by slice fibre center 

detection, ii) a fibre tracking procedure relating centers of the individual image slices to each other to form 

continuous fibres, and iii) a fibre inclination segmentation step, i.e. assigning an inclination angle to each 

individual fibre trajactory. The first two segmentation steps were conducted using the Matlab algorithm 
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developed by Emerson et al. in [20]. The third and final segmentation step was performed using a novel 

approach developed in this study. The three segmentation steps are the subject of the following 3 sections. 

The segmentation process was continuously evaluated for both material systems to ensure a generic 

segmentation process applicable for both material systems. This chapter is concluded with a summary 

including a table with an overview of the user input and running time for each of the three segmentation 

process steps (see Table 1). 

4.1.  Fibre center detection 

The first step of the segmentation process, i.e. the slice-by-slice fibre center detection, was conducted using 

the algorithm developed my Emerson et al [20]. This segmentation algorithm uses a training step to set up 

a dictionary of corresponding image and label patches. The dictionary was set up using the following steps: 

i) Per default the middle slice of the tomographic stack of slices was chosen for the training step, 

i.e. slice no. 500 out of the 999 slices  

ii) The region of interest (RoI) was chosen to include the entire tomographic volume. 

iii) An image region for the training step was chosen somewhat smaller than the RoI but still 

covering a major part of a tomographic slice. 

iv) An optimal patch size of 11 pixels, corresponding to approximately 1 fibre diameter, was 

chosen based on the voxel size of 1.99µm. 

v) Finally, the graphical user interface was used to setup the dictionary. 

The accuracy of the fibre center detection algorithm was evaluated qualitatively by manual inspection 

of individual tomographic slices and the corresponding fibre centers detected. Figure 3 illustrates an 

example of a tomographic slice and the corresponding detected fibre centers. It should be noticed how the 

dictionary successfully detects the fibre centers with very few exceptions. The few erroneous double 

detections and missing fibre detections are considered insignificant for the overall evaluation of the 

microstructure and hence the scope of this study (see Figure 3). 

FIGURE 3 

The dictionary based fibre center detection algorithm was applied for the stack of 999 images resulting 

in a processing time of approximately one hour for each of the two tomographic volumes. The total 3D 

volume of detected fibre centers are depicted by four evenly spaced stacks of five image slices, see Figure 

4. 



 

 

 

 

 

 

7 

 

FIGURE 4 

The fibre centers shown in Figure 4 clearly illustrates a pattern of continuous fibres for both material 

systems. In addition, it should be noticed how the air-tex sample indicates a trend of fibres with notable 

inclination angles. 

At the top and bottom of the tomographic stack of image slices significantly increased noise was 

observed. The noise arises from the well-known cone beam effect and results in missing fibre detections. 

However, missing fibre detections in one image has no influence on the fibre detections in the other images. 

It does however influence the second step of the segmentation process, i.e. the individual fibre tracking. 

This problem is accounted for by excluding the top and bottom 50 image slices. This will be discussed in 

the following section about the fibre tracking segmentation step. 

4.2.  Fibre tracking 

When the fibre center detection has been conducted for the full stack of tomographic image slices (cf. 

Figures 3 and 4), the next step is to track the 2D slices of fibre centers through the depth of the volume, i.e. 

along the x-axis. Hence, connecting fibre centers belonging to the same fibre and thereby obtaining the 

individual fibre trajectories. This segmentation step is also performed using the algorithm by Emerson et 

al. [20]. The only user input for the fibre tracking algorithm is how many pixels a fibre center is allowed to 

move from one slice to the next, i.e. a 2D planar distance. Thus, this is naturally a function of the voxel size 

and the fibre diameter. From simple geometrical considerations an allowable fibre center movement from 

one slice to the next of 6 pixels will allow for a maximum inclination angle of approximately 80°. Hence, 

an allowable movement of 6 pixels was chosen as a conservative input (cf. Figure 2). 

The fibre tracking algorithm is set up so the number of fibre centers detected in the very first image 

slice dictates how many fibres in total the tracking algorithm will allow. Thus, the less accurate fibre center 

detection at the very top or bottom image slices, results in too few fibre trajectories. Therefore, it was chosen 

to ignore the top and bottom 50 image slices. This solved the above-mentioned problem at the expense of 

a decreased tomographic volume. 

The individual fibre tracking algorithm was applied for both material systems, each with a processing 

time of less than five minutes. The 3D volume of all fibre trajectories obtained from the fibre tracking 

algorithm are shown in Figure 5. 

FIGURE 5 
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Figure 5 illustrates how the fibre tracking segmentation algorithm was successfully used to track the 

fibre centers for both material systems. A 3D volume representing 10 percent of the fibre trajectories is 

depicted in Figure 6. 

FIGURE 6 

Figure 6 shows that the tracking algorithm is able to track both low and high inclination fibres. However, 

taking a closer look at Figure 6(b) one can notice a few fibre trajectories with piecewise unlikely geometries, 

i.e. UD fibre kink segments along the edge of the tomographic volume. This is most likely due to the fact 

that the fibre tracking algorithm does not allow termination or initiation of fibre trajectories running in or 

out of the tomographic volume. Hence, two individual fibres might get connected by a UD fibre segment 

to form a single fibre connected by this “fictive” UD fibre kink. However, this error is only rarely observed 

and would therefore not have any significant influence on the scope of this study, i.e. characterizing the 

fibre undulation. Using the fibre trajectories it is now possible to evaluate and quantify the inclination of 

the individual fibres. 

4.3.  Fibre inclination estimation using PCA 

The third and final step of the segmentation process is inclination estimation of the individual fibre 

trajectories. The segmentation algorithm, used for fibre detection and fibre tracking, does have a third 

module for orientation estimation which was successfully used for UD fibre composites [10,20]. However, 

the module assumes a straight fibre trajectory between the fibre centers at the top and bottom image slice 

and does not take any undulation into account. From Figure 6 it is evident that the air textured fibres in the 

air-tex sample exhibit significant undulation, which should be resolved. To do so, a novel inclination 

segmentation algorithm was developed. The idea behind the current approach is to evaluate the inclination 

of each individual fibre as a weighted mean of fibre sub-segments, e.g. each individual fibre is divided into 

a number of sub-segments by dividing the total stack of image slices into smaller stacks. For instance, the 

stack of 900 image slices is divided into two stacks of 450 image slices, hence, each fibre is represented by 

two fibre sub-segments (see Figure 7). 

FIGURE 7 

The straight lines representing the fibre sub-segments (cf. Figure 7) are obtained from linear regression 

analysis using Principal Component Analysis (PCA) [24]. 
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The PCA analysis is a statistical interpretation of the singular value decomposition (SVD) of a data 

matrix 𝑨. Once the matrix 𝑨 is set up, the SVD is done in Matlab. The results of the SVD are the matrices 

𝑼, 𝚺 and 𝑽𝑻. The covariance matrix 𝑼 contains the left singular vectors, 𝚺 is a diagonal matrix with the 

singular values ordered by importance and 𝑽𝑻 is a transposed matrix containing the right singular vectors. 

Hence, the SVD yields 

 𝑨 = 𝑼𝚺𝑽𝑻 (1) 

The steps of the regression analysis are: i) Setup a matrix 𝑿 with all fibre center coordinates from the 

fibre segment of interest. ii) Compute the mean fibre center coordinate �̅�, i.e. the centre point of the 

regression line of interest. iii) Compute the matrix 𝑨 = 𝑿 − �̅�. iv) Compute the covariance matrix 𝑼 by 

singular value decomposition of 𝑨. The first left singular vector 𝒖𝟏 of the covariance matrix 𝑼, 

corresponding to the highest singular value 𝜎1, is the first principal component and gives the direction of 

the best fit line. Hence, the regression line, representing the fibre sub-segment of interest, goes through the 

mean center point �̅� and has the direction 𝒖𝟏. v) Compute the coordinates of the best fit line using the 

parametric vector equation of a line in three dimensions given by 

 𝑿𝒇𝒊𝒕 = �̅� + 𝑡 ⋅ 𝒖𝟏 (2) 

where, 𝑿𝒇𝒊𝒕 is the resulting coordinates of the best fit line and 𝑡 is a scaling factor 

Finally, the increments Δ𝑥, Δy and Δz are readily obtained from the endpoint coordinates of 𝑿𝒇𝒊𝒕. The 

inclination of the linear fibre sub-segments is then computed using simple trigonometry. The inclination 

angle, i.e. the angle with respect to the x-axis, is calculated as 

 𝜃𝑥 = arctan (
√Δ𝑦2+Δ𝑧2

Δ𝑥
) (3) 

The individual fibre inclination is weighted by their corresponding fibre length. Thus, the fibre length 

of each fibre sub-segment is also calculated. The length of each fibre segment is given as 

 𝐿𝑓 = √Δ𝑥2 + Δ𝑦2 + Δ𝑧2 (4) 

The alignment of the samples prior to the X-ray scan can be evaluated by projected inclinations and 

these are therefore also computed. The projected inclination angles and corresponding projected ‘fibre 
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lengths’ are calculated using the simplified 2D version of equations (3) and (4). The equations for the xy-

projections are 

 𝜃𝑥𝑦 = arctan (
Δ𝑦

Δx
) (5) 

 𝐿𝑓
𝑥𝑦

= √Δ𝑥2 + Δ𝑦2 (6) 

and the equivalent equations for the xz-projection are (5) and (6) with z substituted for y. 

 

4.3.1.  Segmentation discretization. An example of a fibre trajectory and the corresponding representation 

by five linear sub-segments are illustrated in Figure 8.  

FIGURE 8 

Figure 8 shows that the linear segments, obtained from the regression analysis, represents the undulation 

of the individual fibre well, i.e. each straight sub-segment follows the local fibre trajectories, while 

imposing a piecewise smoothing effect to the trajectory. This is beneficial because it minimizes the effect 

of the noise, which arises from the uncertainty of the fibre center detections. Hence, there is a trade-off 

between resolving the fibre undulation while maintaining the smoothening effect, i.e. the uncertainty related 

to the fluctuating fibre center detections should not be resolved (cf. Figure 8(a)). Therefore, a proper 

discretization of the fibre trajectories must be chosen to obtain the best results. The fibre trajectories are 

now discretized into fibre sub-segments with a fixed height Δ𝑥 corresponding to an integer number of image 

slices. For instance, each of the five fibre sub-segments in Figure 8 contains fibre centers of (up to) 180 

image slices corresponding to a fibre sub-segment height of approximately Δ𝑥 = 358µm.  

For the sake of generalization, the segmentation mesh will be described using the normalized mesh size 

Δx 𝐷𝑓⁄ , using an average fibre diameter of 𝐷𝑓 = 23.4µm, confer chapter 2. Which, in the case with five 

fibre sub-segments illustrated in Figure 8 corresponds to a normalized segmentation mesh size of Δx 𝐷𝑓⁄ ≈

15. The method was tested by varying the normalized mesh size from 77 (i.e. including all 900 tomographic 

image slices to represent the fibre trajectory as a single straight fibre segment, cf. Figure 7) to 1 (i.e. 

representing the fibre trajectories by 81 straight fibre sub-segments each obtained by 12 tomographic image 

slices). Figure 9 illustrates a fibre trajectory and the corresponding representation by straight fibre sub-

segments obtained using the fine segmentation mesh where Δx 𝐷𝑓⁄ ≈ 1. 
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FIGURE 9    FIGURE 10 

Figure 9 shows that a fine segmentation mesh captures some of the noise related to the uncertainty of 

the fibre center detections. This indicates that a mesh size of  Δx 𝐷𝑓⁄ ≈ 1 does not provide sufficient 

smoothing. The goal is to obtain a good resolution of the fibre undulation while maintaining the smoothing 

effect from the regression analysis. A dimensionless segmentation mesh size of Δx 𝐷𝑓⁄ ≈ 10, which 

corresponds to including 113 image slices for each fibre sub-segment, provides a good trade-off for the 

current data. The choice of Δx 𝐷𝑓⁄ ≈ 10 is based on the known voxel size of 1.99µm, an expected fibre 

diameter of ~23.4µm as well as considerations regarding the physical limitation of the frequency of the 

fibre undulation. Figure 10 shows a well-defined fibre trajectory from the air-tex sample using the 

dimensionless segmentation mesh size of Δx 𝐷𝑓⁄ ≈ 10. Each linear fibre sub-segment was only accepted 

for PCA if it contains at least 95% of the possible fibre centers. This conservative criterion was chosen to 

minimize any artificial inclination effects from erroneous fibre detection and fibre tracking. 

The PCA based individual fibre inclination segmentation algorithm was applied for both materials 

systems using a normalized segmentation mesh size of Δx 𝐷𝑓⁄ ≈ 10, resulting in a processing time for each 

of the material systems of less than 15 seconds. 

4.4.  Individual fibre segmentation summary 

A schematic overview of the three-step segmentation method used in the present study is summarized in 

Table 1.  

TABLE 1 

The three segmentation steps consist of: i) Fibre center detection, ii) Fibre tracking and iii) Inclination 

estimation. The first two steps are performed using the fibre tracking algorithm [20], while a novel 

segmentation algorithm, using PCA, was developed for inclination estimation in this study. The user inputs 

for the three step segmentation modules are summarized in Table 1, together with the running time for each 

of the three segmentation steps (using a standard laptop). The total processing time of the complete 

segmentation procedure is only a little more than one hour. This is, to the knowledge of the authors, faster 

than similar commercial fibre tracking algorithms, which usually require several hours to perform a similar 

analysis. 
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5.  Results 

The PCA algorithm was used to obtain the fibre inclination distribution for both material systems. The 

results are presented in section 5.2, but first the choice of segmentation mesh is evaluated in the following 

section. 

5.1.  Segmentation mesh 

The choice of Δx 𝐷𝑓⁄ = 10 as an ‘optimal’ dimensionless segmentation mesh size (cf. chapter 4) was 

determined by varying the dimensionless segmentation mesh size from 77 (representing each fibre using a 

single straight line) to a value of 1 (representing each fibre by 81 sub-segment straight lines). The influence 

of the variation in segmentation mesh on the overall inclination estimation was evaluated by comparing the 

weighted mean inclination for the total volume, calculated as 

 �̅�𝑥 = ∑ (𝜃𝑖 ∙
𝐿𝑓,𝑖

𝐿𝑓
𝑡𝑜𝑡)

𝑁𝑠
𝑖=1  (7) 

where the summation index 𝑖 is used to sum over the total number of fibre sub-segments 𝑁𝑠 and 𝐿𝑓
𝑡𝑜𝑡 is the 

total fibre length of the segmented 3D volume, given by the sum of all the fibre sub-segments 

 𝐿𝑓
𝑡𝑜𝑡 = ∑ 𝐿𝑓,𝑖

𝑁𝑠
𝑖=1  (8) 

The weighted mean inclination as a function of the dimensionless segmentation mesh size is depicted 

in Figure 11. 

FIGURE 11 

Figure 11 shows how the refinement of the segmentation mesh from Δx 𝐷𝑓⁄ = 77 to Δx 𝐷𝑓⁄ = 10 results 

in an increase in the mean fibre inclination of approximately 15% and 20% for the UD-fib and air-tex 

material systems, respectively. Hence, the segmentation mesh has a significant influence on the inclination 

estimation for both material systems, i.e. the fibre undulation is resolved. 

It should further be noticed how the mean inclination increases significantly at fine mesh sizes, in 

particular when Δx 𝐷𝑓⁄ = 1. This increase highlights the importance of reducing the impact of the noise, 

by using more slices for each segment (cf. Figure 9). This is particularly evident for the UD-fib sample, 

where the deviations in the center detections cause a significant relative increase in the mean fibre 

inclination when Δx 𝐷𝑓⁄  is low. This is expected because the noise becomes significant due to the low 

inclination angles inherently expected from a UD fibre reinforced composite. 
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Hence, a value of Δx 𝐷𝑓⁄ = 10 was found to provide a good tradeoff between resolving fibre undulation 

while maintaining the smoothing effect of the analysis, and is therefore used in the analysis henceforth. 

5.2.  Inclination distribution 

The weighted inclination distribution obtained using a segmentation mesh size of Δx 𝐷𝑓⁄ = 10 is illustrated 

in Figure 12. 

FIGURE 12 

The inclination distributions depicted in Figure 12 consist of the actual inclination distribution (top) and 

the projected inclination distributions Figure 12 (middle and bottom). The inclination distributions in Figure 

12 (top) are right-angled distributions, which inherently arises from the nature of the fibre reinforcement, 

i.e. continuous fibre bundles. The main characteristics of the inclination distributions illustrated in Figure 

12 are summarized in Table 2, i.e. the weighted mean and the quartiles of the inclination distribution as 

well as the weighted mean of the projected inclination distributions. 

TABLE 2 

The results illustrated and summarized in Figure 12 and Table 2 show expected magnitudes of 

inclination angles compared with the corresponding 3D tomograms depicted in Figure 2. From Table 2 it 

should be noticed how �̅�𝑥 ≫ �̅�𝑥𝑦 and �̅�𝑥 ≫ �̅�𝑥𝑧, which indicate little tilting of the samples in the XCT setup. 

Hence, the inclination estimation is qualitatively acceptable. The fibre trajectories are plotted with colors 

corresponding to their individual mean fibre inclination using the quartiles as interval boundaries (see 

Figure 13). 

FIGURE 13 

The fibre trajectories coloured according to their inclination angle (see Figure 13) show that the PCA-

based segmentation algorithm estimates the inclination of the individual fibres well. A cross-sectional view 

of the coloured fibre trajectories is illustrated in Figure 14. 

FIGURE 14 

The cross-sectional view in Figure 14 shows how fibres with similar inclination angles tend to group in 

bundle like structures. A study of these trends could be of interest for future studies. 

The estimated inclinations can be used to evaluate mechanical properties, e.g. estimation of longitudinal 

stiffness using the fibre efficiency formula proposed by Krenchel [25]. The microstructural effect on 

mechanical properties is the subject of ongoing studies by the authors. The preliminary results indicate that 
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the inclination estimations obtained in this study can be used to explain some of the deviation in longitudinal 

stiffness observed comparing tensile test results with classical rule of mixture estimates. Hence, this would 

be of great interest in future studies. 

For verification, the results of the PCA segmentation method were compared to equivalent fibre 

inclination estimates obtained using the structure tensor method - this is the subject of chapter 6. 

 

6.  Verification 

Microstructure investigations using XCT and subsequent numerical segmentation will inherently contain 

errors since the segmented tomogram is a discretized mathematical representation of the microstructure 

features. Hence, verification is necessary to evaluate the error of this mathematical segmentation method. 

The developed mathematical method using PCA is verified by comparison with equivalent results obtained 

for the same XCT scan using the structure tensor (ST) method. 

6.1.  The structure tensor method 

The ST method, when applied on volumetric data, can be used to extract local structural information 

from the data, such as local orientations of fibre-like structures. The structure tensor itself is a 3-by-3 matrix, 

summarizing local gradient information around a point in space. One way to calculate the structure tensor 

is using a Gaussian derivative for computing the gradient and a Gaussian window for integration [19]. The 

size of the Gaussian derivative kernel is determined by the parameter 𝜎, while the size of the Gaussian 

integration kernel is determined by the parameter 𝜌. The parameters 𝜎 and 𝜌 are also known as the noise 

scale and integration scale, respectively. Formally, the structure tensor 𝐒 can be formulated as 

 𝐒 = 𝐾𝜌 ⋅ (∇𝑉𝜎(∇𝑉𝜎)𝑇) (9) 

where ∇𝑉𝜎  is the gradient computed using the Gaussian derivative kernel that depends on 𝜎 and 𝐾𝜌 is the 

Gaussian integration kernel, which depends on 𝜌. 

Once 𝐒 for a point has been computed, the predominant orientation can be determined through 

eigendecomposition of  𝐒. The result is three positive eigenvalues 𝜆1 ≤  𝜆2 ≤  𝜆3 and their corresponding 

mutually orthogonal eigenvectors 𝐯1, 𝐯2 and 𝐯3. The direction of least variation is the one of 𝐯1 

corresponding to the smallest eigenvalue 𝜆1. 
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The structure-tensor Python package [19] is used to compute 𝐒 for each voxel in the 

tomographic volume. The parameters used are 𝜎 = 1.045 and 𝜌 = 4.18, which were chosen based on the 

voxel resolution and fibre diameter. After this, the dominant orientation, 𝐯1, is calculated using the same 

Python package. The structure tensor 𝐒 is computed for each voxel position. However, the goal is to estimate 

the fibre orientation distribution, not the volume voxel orientation distribution. To exclude non-fibre 

material, such as matrix and air, an intensity threshold is used to filter out non-fibre voxels. The threshold 

value is determined using Otsu’s threshold, which gives a threshold value of 30.463 for UD-fib and 32.700 

for air-tex. Only voxels with values larger than the threshold value are considered to be fibre voxels. 

Having filtered out values of 𝐒 corresponding to non-fibre voxel positions, the dominant orientation 𝐯1 

is computed for all remaining (fibre) voxels. This orientation can be interpreted as the orientation of a small 

piece of a fibre with the size of a single voxel. The orientations of all the fibre voxels are the fibre orientation 

distribution. At this point, 𝜃𝑥, 𝜃𝑥𝑧 and 𝜃𝑥𝑦 values for each fibre voxel can be calculated. 𝜃𝑥 is calculated as 

the absolute angle between 𝐯1 and the x-axis. 𝜃𝑥𝑧 is calculated by projecting 𝐯1 onto the xz-plane and taking 

the angle between the projection and the x-axis. 𝜃𝑥𝑦 is calculated by projecting 𝐯1 onto the xy-plane and 

taking the angle between the projection and the x-axis. 

The ST method described above has a processing time of less than 10 min. for each of the tomographic 

volumes analyzed in this study. 

6.2.  Comparative verification 

The results using the PCA approach (cf. Figure 14) are compared with the equivalent inclination 

distribution estimations obtained using the ST method, see figure 15. 

FIGURE 15 

The inclination distributions obtained using the ST method show a great resemblance with the results 

of the PCA method developed in this study (see Figure 15). No significant deviations are observed between 

the two methods and since the methods are inherently different the resemblance of the results serve as 

mutual verification of both methods. 

In the current case with both high attenuation contrast and high resolution, the fibre tracking approach 

is considered superior to the thresholding approach used for the PCA and ST methods. However, it is be 

noted that the ST method has a statistical advantage while the PCA method has the advantage of a 

straightforward physical interpretation. 



 

 

 

 

 

 

16 

 

 

7.  Conclusion 

Continuous fibre reinforced composites are increasingly used for structural applications demanding a high 

stiffness to weight ratio. However, in-depth knowledge of the relation between the, often complex, fibre 

architecture and macroscopic properties is still lacking. Many recent studies have used X-ray computed 

tomography (XCT) to characterize the internal three-dimensional microstructure of composite materials. In 

this study, a novel semi-automatic segmentation procedure is presented. The segmentation algorithm uses 

an existing fibre tracking algorithm and a novel algorithm using principal component analysis (PCA) to 

obtain individual fibre inclinations from XCT data. The present approach using PCA is to the knowledge 

of the authors not found anywhere in literature. The focus of the current segmentation approach is on the 

single fibre level rather than on the bundle level and is therefore suitable for complex random fibre 

architectures. 

The PCA segmentation algorithm was used to characterize two mutually distinct composites systems, 

namely a unidirectional glass fibre reinforced thermoset composite (UD-fib) and an air textured glass fibre 

reinforced composite (air-tex). 

The novel segmentation approach resolves the fibre undulation by discretizing the tomographic volume 

into finite volumes along the length direction of the continuous fibres, i.e. the x-axis. A normalized 

dimensionless segmentation mesh size of Δx 𝐷𝑓⁄ = 10 was found to be suitable for both material systems. 

The segmentation algorithm was used to obtain the inclination distribution for both material systems. 

The results show a weighted mean inclination of 2.1 and 8.0 as well as the corresponding set of quartiles 

[1.4, 1.9, 2.6, 11.3] and [3.7, 5.9, 10.0, 55,7] for the UD-fib and air-tex sample, respectively. These results 

are well within the expected inclination angles for the two material systems. The inclination results for the 

air-tex sample clearly show how the PCA segmentation approach is capable of resolving high inclination 

fibre undulation, which was the major goal of the study.  

The segmentation approach using PCA was verified by comparison with equivalent inclination 

distribution results obtained using the structure tensor (ST) method. The qualitative comparative analysis 

of the two methods showed no significant deviations, i.e. the methods are mutually verified. 

The main advantages of the suggested PCA segmentation approach and the individual fibre inclination 

results obtained can be summarized as: 
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a) Semi-automated segmentation approach with physical based user input, allowing accurate and 

repeatable segmentation results. 

b) The full segmentation procedure is presented, i.e. fibre detection, fibre tracking and fibre inclination 

estimation. 

c) The novel inclination estimation approach using PCA is verified by comparison with the structure 

tensor method. 

d) The interactive user input is chosen from physical considerations, i.e. the normalized segmentation 

mesh size Δx 𝐷𝑓⁄ . 

e) Resolving individual fibre undulation of complex fibre architectures. 

f) The quantified inclination results serve as a benchmark dataset for future segmentation research 

because both the raw XCT data and the corresponding inclination results are available for download 

in [12]. 

 

 

8.  Data availability 

The raw XCT data and the corresponding inclination segmentation results produced in this study are 

available for download in [12]. 
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Figure 1. Pictures of composite samples and their respective fibre reinforcement: 

a) UD-fib, b) air-tex. 

 

 

Figure 2. 3D tomograms of 988×1013×999 voxels with a voxel size of 1.99µm together with a 

corresponding 2D cross-sectional image slice in the yz-plane: 

a) UD-fib, b) air-tex. 
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Figure 3. 2D image slices from XCT with fibre center detections:  

a) UD-fib, b) air-tex. 

 

 

Figure 4. Four evenly spaced stacks of five image slices with detected fibre centers:  

a) UD-fib, b) air-tex. 
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Figure 5. All the 3D fibre trajectories obtained by the fibre tracking segmentation algorithm: 

a) UD-fib, b) air-tex. 

 

 

Figure 6. 10% of the 3D fibre trajectories obtained by the fibre tracking algorithm: 

a) UD-fib, b) air-tex. 
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Figure 7. Example of a fibre trajectory and the corresponding linear 

representation by 1 or 2 segments: a) UD-fib, b) air-tex. 

 

 

Figure 8. Example of a fibre trajectory and the corresponding linear representation by five fibre sub-

segments with a dimensionless height of Δx 𝐷𝑓⁄ ≈ 15 (to be explained): 

a) UD-fib, b) air-tex. 
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Figure 9. Fibre trajectory and corresponding linear 

representation using a segmentation mesh with 

Δx 𝐷𝑓⁄ ≈ 1, UD-fib. 

 Figure 10. Fibre trajectory and 

corresponding linear representation using a 

segmentation mesh with Δx 𝐷𝑓⁄ ≈ 10, air-

tex. 
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Table 1. Summary of the three individual fibre segmentation steps. 

Segmentation step Segmentation 

algorithm 

User input Processing 

time 

i)    Fibre center detections 

 

 

 

[20] 

 

 

 

RoI: the full 988×1013×999 

voxels volume 

Patch size: 11 pixels 

Threshold: 0.5 

~1h 

ii)  Fibre tracking 

 

[20] 

 

Image slices: 51-950 

Δ𝐶𝑚𝑎𝑥
* = 6 pixels 

< 5min 

iii) Inclination estimation 

 

 

 

 

 

PCA 

 

 

 

 

 

Δ𝑥

𝐷𝑓

= [77: 1] 

{
Δ𝑥

𝐷𝑓

}
𝑜𝑝𝑡

= 10 

min(𝑁𝐶)∗∗ ≥ 95% 

< 15s 

* Maximum allowed fibre center movement from one slice to the next. 

** Minimum fraction of fibre centers detected to accept PCA. 

 

 

Figure 11. Weighted mean inclination as a function of dimensionless segmentation mess: 

a) UD-fib, b) air-tex. 
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Figure 12. Inclination distribution and projected inclination distributions obtained with a 

segmentation mesh size of  
Δ𝑥

𝐷𝑓
= 10: a) UD-fib, b) air-tex. 
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Table 2. Weighted mean and quartiles of the inclination distribution and weighted mean projection 

inclinations (cf. Figure 12). 

Material System �̅�𝑥 �̅�𝑥𝑦 �̅�𝑥𝑧 𝑄𝑥1 𝑄𝑥2 𝑄𝑥3 𝑄𝑥4 

(a) UD-fib 2.1 -0.7 -0.4 1.4 1.9 2.6 11.3 

(b) Air-tex 8.0  -1.5° 2.6° 3.7 5.9 10.0 55.7 

 

 

 

Figure 13. 3D volume of fibre trajectories colored according to their individual mean inclination 

using the quartiles as interval boundaries: a) UD-fib, b) air-tex. 
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Figure 14. Cross-sectional view of fibre trajectories colored according to their individual mean 

inclination using the quartiles as interval boundaries: a) UD-fib, b) air-tex. 

 

 

Figure 15. Comparison of the inclination distributions obtained using the PCA 

method (red) and the ST method (blue): a) UD-fib, b) air-tex. 
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