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Abstract

Sleep is a complex physiological process influenced by intrinsic and extrinsic factors. Everyday, each
person on earth sleeps and if they do not, it will impact them. For that reason sleep has been studied
across the population at large scale, but the research has been limited by self-reported and subjec-
tive data-sets known to recall biases. Some of the key metrics and methods were developed to cater
to these types of data, but today sleep recording technology has been revolutionised and wearable
devices enable objective recordings in-situ over long period of time. With rising numbers of wear-
able device owners and studies using this technology, I see a great potential to accelerate our un-
derstanding of human sleep in modern society. This study sets out to develop newmethods and
metrics appropriate for multi-night recordings of sleep in-situ. Furthermore, I investigate whether
current knowledge regarding sleep patterns persist when explored with a global, large-scale and high-
resolution sleep activity data-set, but also seek to expand on some the fundamental knowledge.
I find detailed sleep trajectories to have complex and multidimensional patterns across the popu-
lation. I introduce new features and visualisation methods, and a novel data-driven metric which
may be indicative of whether individual physiological sleep needs are met or not. Furthermore, I
study age-related changes in sleep timing, duration and life-stage dependent gender differences. I
find novel and unprecedented results regarding associated changes in sleep due to travel, and show
that regional policy and cultural context exerts strong influence on sleep behavior.
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Sofðu unga ástin mín

Úti regnið grætur

Mamma geymir gullin þín

Gamla leggi og völuskrín

Við skulum ekki vaka um dimmar nætur

Jóhann Sigurjónsson

1
The Physiological, Biological, Behavioral &

Contextual Aspects of Sleep

Sleep is a natural daily recurring state that has developed as humans have evolved throughout time.

Our living conditions have changed drastically the last 200-300 years and currently our environment

is governed by artificial light, screen use, smartphone notifications, caffeine consumption, abun-

dance of information at all time and myriads of other things. Due to how fast our daily life and en-
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vironments have changed, the physiology process of sleep has unlikely caught up with our new ways

of living. While these changes have taken place the passed couple of decades, studies have shown that

chronic sleep deprivation and sleep disorders are increasingly more common1. Here I provide high-

level overview of the physiological architecture of sleep and introduce biologically based differences

that can effect sleep. Furthermore, I provide evidence to exemplify how behavioral and contextual

factors in human everyday life can effect sleep.

1.1 The Physiological process of sleep

Sleep is a complex physiological process involving changes in brain activity, neurotransmitters,

parasympathetic nervous system, muscle tone and multiple other functionalities. Nighttime sleep

is typically broken down into different stages that are characterised by certain neuro-physiological

activities. These sleep stages are measured with the gold standard of sleep recording, the Polysomnyg-

raphy (PSG)2,3,4.

Sleep stages The changes that occur in the brain during sleep are grouped together into two

stages; non-rapid eye movement (NREM) and rapid eye movement (REM) which alternate cycli-

cally throughout the night5. Non-rapid eye movement is either split into three or four sub-stages,

dependent on classification standards6,7. NREM1 is characterised by alpha waves (8-12 Hz), emer-

gence of theta waves (4-7 Hz) and slow-rolling eye movements. NREM2 is marked by the pres-

ence of transient electrical phenomena; k-complexes (large-amplitude rapidly fluctuating burst of

brain activity) and sleep spindles (12-15 Hz oscillating signals lasting 0.5-2 seconds). The purpose

of these have not been fully established, but they are believed to support memory consolidation and

filter sensory input. NREM3 is often referred to as slow-wave sleep (SWS) because of high ampli-

tudes and low frequency (1 Hz) in brain activity. As for the other sleep stages, the purpose of SWS is

not fully understood but it is believed to discharge sleep pressure accumulated throughout waking
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Figure 1.1: Example of a hypnogram. Hypnogram is a form of visualisation to depict how an individual cycles through
sleep stages (marked on the y‐axis) during nighttime sleep (x‐axis represent sleep duration).

hours of the day8,9,5. The end of SWS is followed byREM sleep which is characterised by brain ac-

tivity similar to when an individual is awake, all the while there is loss of muscle tone (except for eye

muscles). This stage of sleep is sometimes referred to as the “paradoxical sleep”, since people seem

awake judging from brain activity but are obviously sound asleep if observed in reality5. Slow-wave

sleep (NREM3) has been considered the most restorative sleep stage and often associated with sleep

quality, however MatthewWalker makes an important point in his book “Why we sleep?” that all

sleep stages must serve an important role since we cycle through them repeatedly throughout the

night10,11,12. Figure 1.1 exemplifies a hypnogram, which visualises the alternation between sleep

stages during a night. Figure 1.1 illustrates one example of a hypnogram, but they vary by individu-

als, nights and sleep duration, but the overall structure is fundamentally the same.

The Two ProcessModel A phenomena called the two process model ensures that sleep takes

place every night in healthy humans13,14. The effects at play stem from the process of homeostasis and

the circadian system15,16. Humans accumulate adenosine from last awakening, which is believed

to drive sleep propensity8,9. The circadian system optimizes bodily functions for wakefulness and

sleep for certain intervals of the approximate 24-hours day. In fact, more than 100 variables (e.g.
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body temperature, melantonin, serotonin, dopamine and more), both physiological and psycholog-

ical, have been shown to change their values rhythmically over the course of the day17. All of these

daily changes contribute to wakefulness, which is close to reaching a minimum at night while sleep

propensity is measured the highest – this state is referred to as the sleep gate and where sleep onset

is likely imposed and nighttime sleep begins17,5. The circadian system will be reviewed more intri-

cately in Chapter 2.

1.2 Biologically based differences

Few human biological traits are known to impact sleep – the most prominent ones are age and gen-

der. Additionally, adverse changes in body-mass index (BMI) have been associated with modifica-

tion in sleep which will be addressed below.

Age Age-associated changes include decrease in total time asleep, slow wave and REM sleep, as

well as increased sleep latency, sleep fragmentation, NREM1 and NREM2 sleep18,19,20. It is un-

determined whether changes in sleep occur because older adults need less sleep or they are unable

maintain or produce as much sleep. A study revealed that older adults were more resistant to depri-

vation of slow-wave sleep than younger adults21. However, research has shown that reduced sleep

negatively impacts cognitive performance, irrespective of age, and a recent review confirmed that

there is more evidence that supports the hypothesis that older adults have an impaired ability to gen-

erate sleep rather than a reduced sleep need21,22,23. Age-related changes are not only characterized

by changes in sleep-brain activity and sleep duration, but also by alteration in the circadian system

which include phase advancement and diminished amplitude in daily rhythmicity of variables that

have been related to sleep (e.g. core temperature, melatonin and cortisol)24,25. These phase advance-

ments are also detected in sleep timing, where bed and wake times, as well as mid-sleep, occur at

earlier hours with increasing age26,27,15,28,29,30.
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Sleep variability is an important qualitative indicator and often used in sleep research, since a grow-

ing number of research indicates that irregular sleep is associated with adverse effects on human

health31,32,33,34,35. In sleep epidemiology inter-individual (between-individual) variability is com-

mon to use, due the nature of epidemiological data (single or few data-points per individual), but

a more informative measure is intra-individual (within-individual) variability. Between-individual

variability for sleep onset, offset, duration and mid-sleep declines with age and a sleep diary-based

study found within-individual variability in sleep duration to decrease with age36,31,37. However,

limited evidence exists about age-related changes in sleep variability within individuals, particularly

for separate estimates within weekdays and weekends37,38,31.

Gender Age-related changes in sleep are moderated by gender, and women peak in phase de-

lay earlier than men39,15. Women are found to have a significantly higher melatonin amplitude

and lower core body temperature, and a shorter circadian period compared to men40,41. These

evidence rationalise the fact that women on average are earlier chronotypes than men (reported

via the Munich Chronotype Questionnaire) and more likelier to be ’morning types’ (reported via

Morningness–Eveningness questionnaire)15,42,43. The overall difference between the genders in

phase preferences decreases as people move further into adulthood, and disappear around 50-60

years of age which is the period during the lifespan where menopause usually takes place for women.

These differences between the genders in daily rhythmic behavior goes along with the fact that

women sleep on average more than men up until age 50-6044,45,46,47.

Body-mass Index Another biological trait associated with sleep behavior is body mass index

(BMI), but BMI is typically classified into four group, underweight/normal weight/overweight/obese,

designed by theWorld Health Organization48. The prevalence of obesity (BMI≥30) has increased

the passed decades while average sleep duration has decreased49,50,51,52,53,54,55,56,57,58. There is ev-
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idence that the co-occurrence of these two might be related, where both epidemiological evidence

and clinical interventions studies tie the two together59,60,61,62,63. A clinical study with approx-

imately thousand participants revealed that individuals with short sleep had reduced leptin and

elevated ghrelin measures, which is a state likely to increase appetite and possibly explaining the

increased BMI observed with short sleep duration64. A systematic review with about 20 studies

(both clinical and epidemiological) concluded that short sleep duration might risk obesity due

to adverse effect on parameters of glucose regulation, including insulin resistance and certain dis-

regulation of appetite leading to excessive food intake38,65. Furthermore, a study with about 1200

twins found short sleep duration associated with elevated BMI (adjusting for genetics and shared

environment)66. However, the causality between short sleep duration and obesity has not been fully

established, since majority of clinical studies take place over too short of a period and lack standard-

ized methodological approach67,68.

1.3 Environmental and Contextual effect on sleep

Light exposure Humans have adapted to natural environment of sunlight during the day

and darkness during night, which has created the daily rhythm of rest and activity. In fact, light is

considered the strongest zeitgebar on the circadian system69,70,71,72. Light is absorbed through the

eyes and signals are forwarded to the suprachiasmitic nucelus (SCN) to synchronise and coordinates

all cellular circadian clocks in the body73,74. Currently, we are not only exposed to natural light, but

our surroundings in everyday life are illuminated with artificial light and blue-light from computer

screens and smart phones, all of which has been shown to suppress melantonin onset75,76,77,78. The

extent and magnitude to which this effects human sleep is not fully understood. More longitudinal

studies are required to further confirmmelantonin suppression due to artificial light exposure, and

a deeper understanding of influences from different illumination levels and duration of exposure is
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needed79.

Temperature Another environmental variable that fluctuates over the course of a day, month

and year is outdoor temperature. Core body temperature is an important variable in the physio-

logical process of sleep, but it drops before sleep onset is imposed at night80. Indoor, outdoor and

intrinsic core temperature are interconnected and therefore likely to influence the daily rhythmicity

of sleep. Cold temperature have been shown to increase frequency and duration of nighttime awak-

enings, and the length of REM sleep periods, while hot temperature is associated with later sleep

onset, shorter duration, day-time napping and self-reported sleep deficiencies81,82,83.

Seasonality and Geographic Location The two key variables that change the most with

seasonal fluctuations are daylight and temperature. As discussed above, light exposure and outdoor

temperature influence the daily rhythm of rest and activity, and thus sleep patterns tend to vary

across the year84,85,86. Seasonal variation are more marked in extreme latitudes compared to equato-

rial regions, and tends to exacerbate seasonal variation in sleep behavior87,88.

Cultural Context There are large disparities in sleep patterns across cultures, with the most

prominent contrast between Eastern (Asia) andWestern (Europe and North America) geographic

regions. Studies have shown that sleep duration is shorter among individuals residing in the East

compared to those living in the West30,86,46,89. People in the East tend to go later to bed than those

living in the West, while both groups are waking up at the same time30,86. Weekend-weekday mis-

alignment (measured with social jetlag via Munich Chronotype questionnaire) has been reported

lower in large samples of individuals residing in China and Japan, compared to a European one90,91,44.

Weekend-weekday differences in sleep patterns are also observed minuscule for Eastern countries in

a large scale (∼ 24 0000 users) study with objective measures from wearable devices46. An unex-

plored factor in global sleep differences is day-time napping which is more accepted and common
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in some parts of the world compared to others. For example in Japan, the phenomena of Inemuri

(napping; literally ‘to be asleep while present’) is interpreted as the result of exhaustion from devo-

tion to work and and is considered a subtle method of showing commitment to work92. ‘Siesta’ or

day-time napping are also a culturally accepted phenomenon in the Mediterranean region, especially

during the summer months to escape the grueling heat. However, whether these day-time rest pe-

riods play into global differences in the daily rhythm of rest and activity is yet to be explored in the

literature.

Socioeconomic status A recent literature review concluded that low socioeconomic status

(SES) is associated with higher rates of sleep disturbances (difficulty falling asleep and maintain-

ing sleep) and lower sleep quality93. A study concluded that individuals with lower education were

more likely to experience insomnia (also when controlling for ethnicity, gender, and age) and an-

other showed that individuals raised in households with lower SES spend more time in NREM2

sleep and less time in slow-wave sleep (SWS) than those with higher childhood SES94,95. Some racial

groups are more probable to hold a low socioeconomic status, and in fact, African Americans (in

the US) and other racial minorities are likely to have short and long average sleep duration which are

associated with increased mortality96. Socioeconomic status is considered a fundamental driver in

differences considering population health. Marginalized groups are routinely exposed to stressful

situations such as discrimination and job strain, which require coping mechanism and extra energy

that will impact on sleep in the long run97.

1.4 How can behavior influence sleep?

Physical Exercise Epidemiological studies have consistently associated physical exercise with

better sleep, observed across multiple age groups, gender, race and demographics98. Higher than

average levels of physical activity are associated with less likelihood of insufficient sleep and fewer
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sleep disturbance99,100. A meta-analysis with 41 studies summarized the effect of acute or regular

physical activity on a self-reported or biological measure of sleep, and provided compelling evidence

supporting exercise as an intervention to improve perceived and objective metrics of sleep in healthy

individuals101. In summary, physical exercise does not only provide acute improvement of sleep

quality, but is also inexpensive and accessible to most people, and often a cheaper option than other

standard sleep medicine treatments79.

Dietary consumption Above I discussed that sleep deprivation might risk weight gain and

obesity due to its adverse effects on metabolic regulators. Furthermore, the relationship between

food-intake and sleep is likely bi-directional, meaning the composition of ones diet can influence

sleep quantity and quality. For example, epidemiological studies have associated lower sleep quality

with high carbohydrate food intake, while good sleep quality is associated with more vegetable and

fish consumption102,103,104. Not only does the composition food intake influence sleep but also

the timing of the consumption where late caloric intake has been associated with increased risk of

obesity105,106,107.

Probably the most notorious fluid that people associate with tiredness and sleep is coffee. Adeno-

sine is present throughout the central nervous system (CNS) and believed to mediate the effect

wakefulness108,109. Caffeine causes most of its effects by antagonizing adenosine receptors and con-

sequently relieving the feeling of tiredness. Caffeine consumption is believed to have negative effect

on sleep and large sample studies find association between daily caffeine intake and sleep problems,

as well as daytime sleepiness110,111,112. Generally, good sleep hygiene rules suggest to forgo caffeine

consumption after midday, but studies have shown that caffeine consumption 6h before sleep can

negatively effect sleep113.
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Smartphones & Sleep Technology continuous to play large role in the human daily life and

much of it actually takes place online (especially during the COVID-19 pandemic which is ongo-

ing during the writing of this dissertation). Smartphones are by our side nearly all hours of every

day, vibrating and lighting up with notification which likely distract us from what we are physi-

cally engaged in. The effect that smartphones have on human sleep is a relatively untouched terri-

tory in terms of research. However, there do exist some interesting studies which have associated

screen-time and smartphone addiction with poor sleep and sleep quality114,115. Late-night use of

smartphone has shown to interrupt sleep, and makes people more tired and less ready to work the

morning after116. A recent review concluded that the use of digital and social media can have pos-

itive effect on children and adolescents (e.g. early learning, exposure to new ideas and knowledge,

increased opportunities for social contact and support) but also adverse impact in terms of health,

sleep, attention and confidence117.

When studying the effect of smartphones on sleep there are many aspects to consider. There exist

multiple types of apps (e.g. social media, dating, utility, media, games and more) which might im-

pact us differently. For example the use of utility app such as Google Maps is improbable to leave

a mark on us ‘emotionally’ while social media or dating apps might. Another important aspect is

the time of the day the usage takes place – but usage closer to normal bed-time or during the night

might have more impact on sleep quantity and quality. There is also a potential bi-directional rela-

tionship between sleep quality and smartphone use, where a poor night’s sleep could result in more

day-time fatigue and lack of attention leading to more screen use. The effect of light exposure from

the screens of electronic devices before bed have actually studied closely, and found to prolong the

time it takes to fall asleep, induce delays for circadian clock and REM sleep, and reduce alertness the

following morning77,118,78.
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Other How humans choose to move through life can impact their health, and decisions ranging

from small daily choices to life altering changes can have lasting impact on sleep. For example, hav-

ing a child is likely to impact individual’s sleep quality. Pregnancy and the postpartum period are

associated with physiological changes (for women) and behavioral demands (both parents), known

to disturb sleep quality (more for women than men)119,120,121. Other long lasting changes such as

moving to a new apartment could impact the daily rhythm of rest, since environmental factors such

as noise (e.g. excessively loud neighbours, airplanes and car traffic) can have a negative effect on sleep

health122,123,124. A small innocent decisions such as taking a couple days vacation, can also impact

sleep adversely. Travel and new resting environments are known to influence sleep quantity and

quality, and the phenomena of the First night effect (FNE) was documented in 1964. FNE is char-

acterised with sleep-initiation problems and prolonged sleep-onset latency, found to take place on

the first night of sleep in new environment125,126. This is actually a consequence of a single brain-

hemisphere displaying elevated alertness in new and unfamiliar surroundings127. Furthermore, the

journey to the destination can also induce sleep complication due to travel fatigue128,129, that can be

exacerbated with jetlag, which occurs due to desynchronisation of the body’s internal clock and the

new time zone an individual enters after long-distance travel130,131,132.

Conclusion

Sleep is a complex physiological process, involving changes in different parts of the body which is

though highly influenced by behavioral and contextual aspects in everyday life. The physiologi-

cal changes involve alteration in brain activity that are grouped into four different stages, which

humans cycle through repeatedly over the course of a night. These sleep stages are believed to be

restorative and serve important functionality for human health. Two independent processes called

sleep homeostasis and the circadian system, control the daily rhythm of rest and activity where dif-

ferent bio-markers vary over the course of∼ 24 hour day to optimise the body for sleep and to im-
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pose the feeling of tiredness at night and ensure that sleep takes place. Gender and age exert strong

influences on sleep, which is observed in multiple large scale epidemiological studies. Sleep timing or

the phase preference is advanced to earlier hours with increasing age, and gender differences are life-

stage dependent. The environment and context of human existence also influences sleep behavior,

were for example natural light, seasonality, geographic location and cultural context can have strong

effects on sleep behavior. Furthermore, physical activity, use of blue-light emitting screens, dietary

choices, timing of consumption, travel and multiple other behavioral choices can also influence the

human daily rhythm of rest and activity.
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Bí, bí og blaka,

álftirnar kvaka,

ég læt sem ég sofi,

en samt mun ég vaka.

Bíum bíum bamba,

börnin litlu ramba

fram um fjalla kamba

að leita sér lamba.

Þjóðvísa (Icelandic Folk Song)

2
Methods &Metrics from Sleep

Epidemiology

Every human on earth sleeps, and if they do not it will impact them. Short and irregular sleep dura-

tion contributes to molecular, immune, and neurological changes that play a role in disease devel-

opment, increasing, for example, the risk of obesity and cardiovascular diseases, and substantially af-

fecting mood, motor and cognitive performance133,134,135,136,59,137,138,139. For this reason it has been
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considered important to study sleep across the population where the field of Sleep Epidemiology

dates back to around 1980 with the first documented modern epidemiological studies being con-

ducted140,141. Sleep epidemiology is defined as the study of distribution and determinants of sleep,

sleep-related symptoms and sleep disorders, and the application of this study to improve sleep health

and sleep-health related conditions, including studies of how sleep influences health and disease142,143.

This chapter reviews important measures and methods from the field of sleep epidemiology, mostly

focusing on two aspects; data collection and sleep metrics.

2.1 Large Scale Data Collection

Large-scale studies have been based on self-reported sleep estimates where key metrics were limited

to quantities people could reasonably be expected to recall. There are three main methods that have

been used to collect data about people’s sleep behaviour at scale; questionnaires, surveys and diaries.

All of these methods are classified as self-report, meaning that subjects estimate quantities and quali-

ties about their behavior themselves. Wearable devices or wrist actigraphies are becoming more com-

mon to use in epidemiological studies, however they are the main subject in Chapter 4144,145,146. Al-

though it seems simple to ask an individual about their sleep, it is actually problematic since humans

have never been considered very good at assessing their own behaviour. Multiple studies have esti-

mated the extent to which self-reports of sleep duration (via sleep diaries) reflect on objectively mea-

sured estimates with wearable devices, and found them to correlate poorly147,148,149,150,151. Sleep

surveys contain straightforward questions such as “Howmany hours of sleep do you usually get a

night (or when you usually sleep)?”152. The quality of the assessment obtained from surveys has not

found corresponded well with objective measures of sleep assessed using actigraphy, as well as corre-

sponding poorly with estimates from self-reported sleep diaries.153,154,155,156. Sleep questionnaires

pose a range of questions where the answers are used to obtain a score or estimates for some partic-
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ular aspects of the subject’s sleep behavior. Examples of some popular ones are i) The Pittsburgh

Sleep Quality Index (PSQI), a self-rated questionnaire which assesses sleep quality and disturbances

over a 1-month interval and ii) Morningness-Eveningness questionnaire (MEQ) which aims to mea-

sure whether a person’s circadian rhythm produces peak alertness in the morning, in the evening,

or in between157,158. These are widely used in a range of different studies and have been validated

thoroughly159,160,161,162,163. The PSQI andMEQ ask subjective questions, therefore impossible to

use them for objective measured sleep. However, another widely used questionnaire is the Munich

Chronotype Questionnaire (MCQT) which asses the timing of sleep within the 24 hour day, and

was actually developed to capture the same characteristics as MEQ16,164. The framework of MCQT

enables the use of objectively measured sleep, and renders assessment of the biological phase prefer-

ence (chronotype) and misalignment between the social and biological clock (social jetlag). These

metrics, and others, will discussed more closely in the next section.

2.2 Phase preference andMisalignment

Professor Kleitman proposed the existence of the daily rhythm of rest and activity, or the circadian

rhythm, in his book, Sleep &Wakefulness, first written in 1939165. Daily cycles have in fact been

observed for organisms ranging from unicellular marine creatures to mammals15. The circadian

system - referred to as chronotype - is found within each cell of the human body, where signalling

proteins produce approximately a 24 hour day where certain functionalities are optimized for the

biological day-time while shifting neurobiological activities to favor sleep when it is biological night.

A person’s chronotype is believed to depend on specific alleles of genes but is also a manifestation

of gene-environment interaction166,167,168,169,170,171. The shift between day and nighttime pro-

duces environmental signals (e.g. light, temperature and access to resources) which act as zeitgebars

to synchronise the intrinsic biological clock. Nevertheless the circadian rhythm actually persists in

15



the absence of these environmental cues and is self-sustained - but how can that be?15,172,71. An

individual’s phase of preference is believed to be entrained by environmental cues, not fully con-

trolled by them and chronotype rather varies by their strength. There are multiple examples of this;

i) when individuals exchange urban lives (weak signals due to indoor life and limited natural light

exposure) for natural light conditions, their sleep timing and dim-light melantonin onset (DLMO)

advance significantly, ii) sleep timing is earlier in populations with no access to electricity compared

to those with access to artificial light, iii)chronotype is earlier in rural areas than in urban ones and

iv) average chronotype correlates with the position within a time zone and the further to the East

the earlier the chronotype173,174,175,176,177,178. The assessment of chronotype with the MCQT has

been validated against bio-markers, such as dim-light melantonin onset and cortisol, as well as ob-

jective behavioral measures of sleep, and is believed to be the best estimate of phase preference via

self-reports179,28,180,181,182,171,15,183.

TheMunich Chronotype Questionnaire poses 17 questions about bed-time, wake-up time, sleep

latency and more, where the answers are used to estimate mid-sleep on work-free days (MSF), which

is used to assess chronotype. Work-free days are believed to better reflect the circadian phase prefer-

ence since there is probably less pressure of social or work obligations42. Early morning work sched-

ule and alarms do truncate nighttime sleep on weekdays for many individuals, resulting in shorter

sleep duration than preferred184,44. This recurrent temporal pattern of sleep deprivation, sometimes

referred to as sleep debt, is often compensated for with longer sleep duration on the weekends rather

than earlier bed-times on weekdays42. To make sure that the chronotype is not influenced by sleep

debt, it is corrected for in the calculations:

MSFsc =


SOfree days +

SDfree days
2 if SDfree days ≤ SDwork days

MSF− SDfree days−SDweek
2 = SOfree days +

SDweek
2 if SDfree days > SDwork days

(2.1)

16



WhereMSF is midsleep on free days whileMSFsc is corrected midsleep on free days. SD refers sleep

duration where the subscript ‘week’ denotes weekly average sleep duration, ‘free days’ weekend av-

erages and ‘work days’ weekday averages. SO refers to sleep onset (point in time where people fall

asleep).

Chronotype is a continuous variable (with a fixed range), measured in time (hh:mm), and dis-

tributes normally across the population15,42. Individuals who are late chronotypes (sometimes

referred to as owls) typically sleep less on weekdays and longer on weekends, while the opposite

applies to the earliest risers184,15.

Two temporal dimension have been discussed which govern the daily rhythm of rest and activity;

the biological (innate preferences) and environmental clock. However, there is a third dimension

that might be the most influential one on human sleep - the social clock. A large part of the popula-

tion, or about 75 % of the US and European labor force, maintain a conventional 5 day work week

from 9 to 5 which constrains their weekly sleep patterns185,186. Due the fact that chronotype is a

normally distributed trait with a wide range of behavior, many of these individual are contingent

to day schedule that is out of sync with their phase preference. Wittman et. al. (2006) developed a

concept to describe this misalignment between the biological and social clock called social jetlag, and

is estimated by calculating the difference between midsleep on free days and work days184.

Social jetlag = MSF−MSW (2.2)

whereMSF denotes midsleep on free days (weekends) andMSWmidsleep on work days (week-

days). Groups with high social jetlag, or living against the clock, have been associated with negative

behavioral outcomes such smoking, obesity, less healthy dietary patterns, worse academic perfor-

mance, symptoms of depression and more184,187,183,188,44,189,190,191,192,193,194. Sleep researchers have

for years advocated for more flexible school and work schedules to support those who have a biologi-
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cal clock far out of sync with the social clock, with little results.

2.3 Insufficient sleep and poor sleep quality

An important measure used to quantify sleep behavior at scale is sleep duration. As mentioned in

the section above ( Large Scale Data Collection), there do exist different methods to collect data

about sleep duration at scale - most commonly subjective and retrospective estimates via sleep di-

aries and surveys. These estimates are acknowledged to recall biases, and habitual self-reported sleep

duration should rather be thought of as time in bed than actual physiological sleep195. The term

insufficient sleep is thought of as nighttime sleep too brief to meet physiological needs. Scientist have

debated about what is sufficient sleep duration for the passed years, but today there is a general con-

sensus that recommended amount of sleep for adults is 7-9 hours per night79. Sleeping less than

7 hours per night on a regular basis is associated with adverse health outcomes and sleeping more

than 9 hours per night on a regular basis is associated with health risks196,197,198,199. The only way

to study the prevalence of insufficient sleep across the population is by comparing self-reported esti-

mates of habitual sleep duration to guidelines concerning recommended amount of sleep for adults.

There do exists ways to explore sleep quality, for example measures of sleep fragmentation; number

of awakenings after sleep onset and/or wake after sleep onset (WASO). Sleep fragmentation can

have detrimental effect, and they are known to reduce subjective assessment of mood, decreases

mental flexibility and sustained attention200,201. Sleep latency is also considered a measure for sleep

quality, and used to examine how long it takes an individual to fall asleep, after he or she gets into

bed. Sleep efficiency is another importance parameter and refers to the percentage of total time in bed

actually spent asleep. In a way sleep efficiency summarizes the severity of sleep fragmentation and

sleep latency simultaneously202. Most of these is metrics are difficult to collect via self-reports, but

perhaps the most accessible one is the number of awakenings per night.
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2.4 Sleep variability

Evidence suggest that excessive time in bed and irregular sleep–wake timing, may contribute to the

development of insomnia203,204. For example, if an individual experiences a poor nighttime sleep,

he or she may try to compensate by staying in bed longer the morning after or go earlier to bed the

consecutive night. However, this compensatory behavior may have negative consequences where

homeostatic pressure might be relieved and could reduce the ability to sleep205,206. Sleep variability

is a measure to quantify sleep behavior in epidemiology and has been associated with adverse health

outcomes such as cardio-metabolic risks, poorer sleep quality and lower plasma levels of inflamma-

tory markers in older adults, lower academic performance and lasting impact on brain development

in adolescents207,208,209,210. A meta-analysis of 53 peer-reviewed empirical publications has also as-

sociated sleep variability with age (more variability among younger people), race/ethnicity (more

variability for non-whites), physical health conditions, body-weight (BMI & body-weight gain as-

sociated with higher variability), psychopathology (symptoms of depression and bipolar), insomnia

and stress31.

Sleep variability is typically quantified as the standard deviation of multi-night recordings within

individual (referred to as intra-individual variability)31,38. The variability can be estimated for differ-

ent measured, e.g. sleep duration, chronotype and more. Due to the nature of data-sets in sleep epi-

demiology, they rarely contains numerous data-points per individual, therefore has inter-individual

variability (between subject variability) also become common to use86,36. Nevertheless, new tools

and techniques are constantly being developed, and a recent example is sleep regularity index (SRI),

constructed by Philips et al. (2017) - a measure which captures changes in sleep timing on a day-to-

day (circadian) timescale209.
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2.5 Bed &Wake Time

Bed time (sleep onset) and wake time (sleep offset) represent the point of time when an individual

falls asleep and wakes up. These are not commonly used to study sleep timing across the popula-

tion and most large scale sleep studies rather use mid-sleep or chronotype86,36. In fact, midsleep

or chronotype have been shown to correlate well with multiple bio-markers that are indicators of

sleep – thus midsleep is believed to be the best proxy to measure the biological phase of prefer-

ence179,28,180,181,182,171,15,183. However, in modern society biological preferences might be sup-

pressed rendering a mismatch between innate inclinations for sleep timing and need, and the actual

outcome. Bed and wake time therefore entail important information to help understand behavioral

choices concerning sleep, which in some cases is stronger determinant for the human daily rhythm

of rest.

Conclusion

In this chapter I review some of the important metrics and methods used in sleep epidemiology

to study daily rhythm of rest across the population. There exist limited ways to collect sleep data

at large scale, and most studies rely on self-reported estimates collected via surveys, questionnaires

and diaries – all known to recall biases. Consequently, the quantitative metrics used for analysis

in sleep epidemiology have been constrained by these data types. The most commonmeasures are

retrospective and habitual sleep duration, and questionnaire based estimates for phase preference

(chronotype) and misalignment (social jetlag). Sleep variability is an important element for good

sleep hygiene since irregular sleep behavior has been linked to adverse physiological effects. It is typ-

ically quantified as standard deviation of within individual recordings, but due to the nature of

the data in sleep epidemiology (typically constrained to single or few measures per user), between-

individual variability is also often employed. Interestingly, bed and wake time have mostly been
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excluded when studying sleep across the population, but I believe they entail important information

regarding behavioral aspects of sleep.
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3
Hierarchical Data Analysis

Hierarchical data typically refers to a data-set containing time series observations from number of

individuals or groups, thus observations involve at least two dimensions; one to identify the individ-

ual (or group) and a time series dimension211,212. This type of data can have a complicated structure

with hierarchical group levels, crossed design and unbalanced sampling rate. Hierarchical data is

also sometimes referred to as panel data, longitudinal data or time series cross-sectional data213,212.

The chapter splits into two main parts; first part discusses what has to be conducting analysis with
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raw hierarchical data and the second part reviews an important regression analysis method used to

model panel data.

3.1 Analysis of RawData and Error propagation

The data-set for this project is hierarchical with a set of behaviours measured across thousands of in-

dividuals where multiple effects are at play. Naturally I explore and analyze the data with individual

and population level visualisations and statistics. When doing so, it is important to be considerate of

what is aggregated and averaged at all time, and a key point is that behind every average or any sum-

mary statistic is an underlying distribution with a range of behavior. Thus, even though I observe

statistically significant differences between measures for different groups, the underlying distribu-

tions might overlap extensively. Important element to all of this is how to propagate uncertainty

and what is the origin of uncertainty? Since users have multiple nights recorded for a set of behav-

iors, the measures span a distribution and the average is accompanied by uncertainty. In most cases,

I choose to propagate the uncertainty from individual level. The alternative is to estimate the uncer-

tainty for the distribution of individual summary statistics, see schematic explanation on Figure 3.1.

I quantify uncertainty of an average (μ) with the standard error of the mean (SEM), calculated as

∂μ = σ√
n where σ is the standard deviation of the distribution and n is the number of data-points.

The standard error of the mean (SEM) can both be estimated for distribution at the population

level (Figure 3.1B), and individual level (Figure 3.1A). If I choose to estimate SEM at the individual

level, it must be propagated in the following manner214:

μgroup =
μ1 + μ2 + ... + μm

M
where μi ± ∂μi then ∂μgroup =

√
∂μ21 + ... + ∂μ2m

M
(3.1)
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Figure 3.1: Error propagation A schematic illustration to show that for hierarchical data‐structure, error or uncertainty
group averages can be quantified in two ways; B from the distribution at the population level or A by propagating un‐
certainty from the individual level. C compares the two possibilities (A & B) quantitatively by randomly selecting a group
of users with varying size (Nstep = 10) and estimating the uncertainty (∂μgroup) for the group average (μgroup) at every
step. The red curve represents error estimates at the population level and black curve the error estimates when SEM is
propagated from the individual level.
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where μi are averages for individual’s distributions and ∂μi the respective SEM. On Figure 3.1 I

explore the quantitative difference between the two approaches, by varying a selection of users (who

all reside in the same country) and estimate the uncertainty for group average of sleep duration.

Error estimate at the population level are always slightly higher than those propagated from the

individual level. The difference are substantial for small user groups but whenNgroup ≥ 500 they

become minuscule. One should keep in mind that this comparison might vary by selection of users

and metrics.

3.2 Generalized Linear models

Statistical tools such as analysis of variance and regression analysis are based on strict assumptions

concerning i) normality (each sample is drawn from a normally distributed population), ii) variance

homogeneity (samples are drawn from populations with equal variance) and iii) independence (sam-

ples are independent within and between groups)215. Here I introduce Generalized Linear Models

which provide similar framework as typical regression models but with relaxed assumptions. The

development of Generalized Linear Models dates bake to the 1930’s but studies frommid 70’s in-

troduced the modern framework216,217,218. They can be viewed as population-average models in

which the parameters are interpreted as quantifying effects of covariates on the marginal mean value

of the dependent variable for the entire population. Generalized Linear models consist of two main

types; Fixed effects andMixed effects. For the purpose of this study I only use Mixed effects model

and therefore the main subject of this chapter. However, I do touch upon how the two differentiate

and justify the choice of Mixed Effects Model.
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3.2.1 Data Structure for Generalized LinearModels

The data typically analysed with generalized linear models is panel-data and consists of groups of

cross-sectional units observed over time (as mentioned before). The data can be multilevel and typ-

ically correlated, where there is a source of dependence within a level211,216. A classical example is a

data-set with patient records. Patients can have multiple doctors and be treated at different hospi-

tals. Observations from the same doctor and/or hospital are likely dependent, where the outcome of

treatments can rely on experience and dedication of a doctor and the resources of a hospital.

If I define the case more precisely and consider twenty doctors (independent of one another) where

each has some sample of patient records. The aim is to examine linear dependence between two

measured variables, where ordinary least square (OLS) linear regression can not be applied since

there is dependence between data-points sampled from the same doctor. One way to deal with the

correlations would be to aggregate samples into averages by doctor, and then perform an OLS linear

regression. However, then there is not taken advantage of the full data-set and aggregation can result

in scenario of a Simpson paradox, or a case where trend appears in several different subgroups of the

data but disappears or reverses when these groups are combined, see example on Figure 3.2219.

Another approach would be to fit twenty different models (one for each doctor). However, the

results are then “scattered” and one needs to boil them together to obtain an overall conclusion.

Mixed effects model can be thought off as a trade-off between these two approaches, where their

framework controls for the dependence in the data-set and allows for the hierarchical structure,

while yielding an overall assessment of the linear relations and effects of covariates.

The data-set for this project has a hierarchical structure and is comprised of measures for nighttime

sleep recorded over different periods of time for thousands of users. These users have different coun-

tries of residence, which are known effect sleep, and therefore an added source of dependence on

top of the user level.
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Figure 3.2: The Simpson paradox Example of how linear trend can appear differently in subgroups than across group‐
averages

3.2.2 Fixed or Random Effects?

Generalized linear models are used to infer a relationship between a response variable and covariates,

just like conventional linear models. However, in generalized linear models one of the covariates is

categorical and a source of dependence within the data, usually representing experimental or obser-

vational units of the data-set (also referred to as groups, levels or effects). If the set of possible levels

of the covariate is fixed the data is modelled just using fixed-effects parameters, on the other hand if

the levels are a random sample of all possible outcomes, we implement random effects model220.

The crucial distinction between fixed and random effects models is whether the unobserved in-

dividual effect, or the error term, correlates with any independent variables in the model. In the

case of random effects, the error term is assumed to be uncorrelated with all independent variables,

which allows for time-invariant variables to play a role as explanatory variables (opposite in the case

of Fixed effects). However, one needs to specify these characteristics (random effects) that may or

may not influence the predictor variable, and in some instances these are unknown or unavailable

leading to omitted variable bias221,211,215.
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It is common to model panel data with either fixed or random effects, but in some instances the

choice between the two can depend on ones point of view and the subject is still a debate among

scientists222,223,224,213,225. The argument typically used against random effects model is the fact that

first-level independent variables are required to be uncorrelated with the random effects. Some con-

sider that an unrealistic premise since these independent variables vary both within and between

clusters (random effects)224,226. To the contrary, Bell & Jones (2014) make the rather bold state-

ment that Random Effects model are in fact preferred in almost any occasion if implemented cor-

rectly213. Random effects model have also rendered same results as fixed effects and performed well

even though normality assumptions were violated227,223. Nevertheless, discourse concerning the

preferred choice between mixed or fixed effects model can get lengthy and detailed, and therefore I

rather list examples when the choice between the two is obvious:

• Fixed effects model

– If groups are unique entities and the number of groups is small

– The modelling aims to understand the characteristics of each level

– When there is interested in analysing the impact of variables that vary over time.

– Examples of Fixed Effects: Gender, nationality, eye-color, height and more

• Random effects model

– If groups are regarded as a sample from a wider population

– If the groups are multilevel or, there is at least two sources of random variation

– If groups are small and multiple, and data-points can be in multiple groups (crossed

effects).

– Examples of Random Effects: Individuals, hospitals, schools (randomly sampled

from the entire population) and more

28



Throughout the project I use mixed effects model for different parts of the study and there are two

main reasons for that: i)The grouping factors (or effects) and the source of dependence originates

from subjects (individuals) who are only a sample of the wider population ii) Fixed effects models

require repeated measurements for grouping factors under range of conditions of the primary in-

dependent variable. The primary independent variable is age and median sleep duration and the

dependent variable is only measured under one or few conditions. iii)The data set is multi-level, or

has two sources of dependence (user and country).

3.3 Random effects model

Random effects models are also referred to as mixed effects model because of the way they are de-

fined, but they must always include at least one fixed effect hence, a mix of fixed and random effects.

The mixed effects model with random intercept is specified in matrix form as

y = X β+ Z u+ ε, with u ∼ Nq(0,G) and ε ∼ Nn(0,R), (3.2)

with β representing the fixed effects parameters, u representing the random effects, X representing

the n× p design matrix for the fixed-effects parameters, and Z the n× q design matrix describing

the random effects215. The covariance matrix for the error term isR = var(ε) has dimension n× n

in many examples,R = σ2I. The covariance matrix for the random effect coefficients,G = var(u)

has dimension q × q, where is q is the number of random effect coefficients. If all random effect

coefficients are independent, thenG is a diagonal matrix whereG = var(u)I215.

One should consider that it is possible to have group averages of the independent variable - meaning

there is also a random element to the slope. Groups are then characterized by two random effects;

their intercept and slope225. This variant of the model is not used in the analysis and therefore not

explained further.
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Parameter estimation and significance

Parameter estimations for mixed effects model can not be written exactly and therefore a maximum

likelihood estimation (MLE) typically applied. The mixed effects model parameters are a vector of

the fixed effect, β, and γ which is the vector of parameters used in the two covariance matricesG and

R. Thus, the likelihood function is a function of the observations and the model parameters, which

returns probability of observing a particular observation y, given a set of model parameters. How-

ever, MLE tends to underestimate the random effects and therefore an alternative criterion is used;

the restricted (or residual) maximum likelihood (REML), which is considered the gold standard of

parameter optimization in mixed effects models215,221,218,228. The point of interest in mixed effects

model, is usually estimates of fixed effects but rather random effects, but section A.1 in Appendix A

elicits further details about parameter estimation and significance on fixed effects.

Multilevel mixed effects model

The mixed linear model defined in equation 3.2 was defined for a single grouping level, but can be

adapted to multilevel grouped data. The matrix notation for a two-level mixed effects model will

then be:

yij = Xijβ+ Z1,ijbi + Z2,ijbij + εij (3.3)

where bi ∼ Nq1(0,D1), bij ∼ Nq2(0,D2) and εij ∼ Nnij(0,Rij). Observations are grouped into N

first-level groups (indexed i = 1, ...,N) each with second level subgroups (indexed by j = 1, ..., ni)

where random vectors bi, bij and εij are independent of each other. Random effects can either have

nested or crossed designs. Crossed design refers to the random effects in mixed effects models, and

occur when multiple measurements are associated with multiple grouping variables. In a completely

crossed design, all subjects provide responses for all conditions/time-points225.
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In practice The mixed effects models for this study are implemented using R Version 3.5.1 and

the lmerTest package, the lmer function to fit the data set which applies REML and Satterthwaite’s

degrees of freedom to estimate fixed effects parameters and their significance229,230,231. Models are

reduced by removing insignificant fixed effects (one at a time) with the drop1 function which utilizes

F-test for its estimates.

Conclusion

The data-set used for this study is hierarchical, and users are sampled at different time and rate.

There is an added complexity to the structure, since sleep behavior is influenced by cultural con-

text, and a subject’s country of residence is also source of dependence. Above, I discuss what is

important to consider when analysing the raw data, specifically when aggregating estimates into

averages and ways in which error or uncertainty can be quantified. The largest part of the chapter is

spent discussing generalized linear models which are type of regression models that have relaxed as-

sumption concerning normality, variance of homogeneity, and independence. In generalized linear

models one of the covariates is categorical and a source of dependence within the data. These mod-

els are comprised of two main types; fixed andmixed effects models. The fixed effects variant has a

fixed number of possible levels for the covariate with source of dependence, while in mixed effects

they are a random sample of all possible outcomes. For the study sample I use mixed effects model,

since i) the source of dependence or grouping factors are users who are only a sample of the wider

population, ii) the data-set has a two-level structure and iii) fixed effects models require repeated

measurements for levels under range of conditions of the primary independent variable, which is

not the case for the model set-up. Lastly, I introduce the mixed effects model analytical framework,

parameter estimations and practical items for implementation.
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4
Validity of Sleep Activity Data from

Wearable Devices

Over the passed couple of decades it has become more common to use wearable devices to measure

sleep for the purpose of research232. The most common types of these are wrist-actigraph worn on

the surface of the skin, and monitor movements that are used to infer sleep. In this chapter I review

the advantages and disadvantages for the utilisation of these. Furthermore, I introduce the origin of
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the data source used for this project and review how the sleep recordings were validated.

4.1 The Data Source

The data was collected with consumer wearable devices from 2015 to 2019 designed to track phys-

ical activity and sleep behavior from users all across the world (see Figure 4.1). When users first

connect their wearable devices to smartphone, they receive a visual instruction on how and where

(wrist) to place the device and they are advised to wear it on their dominant side. The devices use

proprietary, internally validated algorithms based on movement registered by an internal accelerom-

eter used to infer sleep and wake states in 1-minute interval, or epochs. Epochs are aggregated into

nights with sleep onset, offset and duration, and sleep fragmentation is quantified as wake after sleep

onset (WASO). Thus, for each registered night WASO is the total time an individual is recorded

awake (after defined sleep onset, but also occurring before defined sleep offset)202.

Across the globe

Thousandsof users

Figure 4.1: The data‐set The data stems from consumer wearable devices, which records sleep activity for thousands of
users from all over the globe

Data from all devices this study were wirelessly transmitted via Bluetooth to an accompanying mo-
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bile phone application, which registered user mobile application (app) usage. Furthermore, the lo-

cation data originates from GPS traces; these are not collected at a fixed sampling rate but estimates

are updated when there is a change is the motion-state of the device (if the accelerometer registers

a change). Figure 4.2A shows examples of bed time, wake time and sleep duration recorded over a

period of time for three randomly selective users. These estimates are averaged within individuals for

all users, and the distribution are illustrated on Figure 4.2B, as well as the distribution for median

WASO on Figure 4.2C. Average sleep onset, offset and duration are clearly normally distributed

across the population except for WASOwhich has a large fraction of users with zero instances of

WASO (approximately 85 %). That is not unexpected, since the most problematic validity issue

with actigraphy is the low specificity in detecting wakefulness within sleep periods, which will be

discussed in more details below232.

4.1.1 General consensus concerning validity of wearable devices

There do exist studies dating back to the mid 90’s using wrist-worn actigraphy (wearable devices) to

measure sleep for the purposes of research, and the use of these has increased ever since232. Multi-

ple studies have been conducted to test the validity of wearable devices and recent review by Kolla

et. al (2016), reached same conclusion as Sadeh et al. (2011), and found wrist-worn actigraphy to

underestimate sleep disruptions and overestimate total sleep duration in normal subjects compared

to measurements from polysomnography233. Another literature review found wrist-actigraphy to

consistently overestimate PSG-determined sleep onset latency, but to a comparatively low degree234.

Despite this shortcomings there is a general consensus that wearable devices are usable, and the com-

prehensive review by Sadeh et. al concluded that actigraphy has reasonable validity and reliability

in assessing sleep-wake patterns in normal individuals232. Furthermore a validation study from

2016 for five different commercial devices concluded that wrist-worn actigraphies can be used to

specify total sleep duration235. These devices provide cost-effective methods to objectively assess
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Figure 4.2: Introduction to the data‐set
A: Examples of consecutive recordings (100 days) of sleep onset (blue color), offset (yellow color) and duration (sleep
duration) for three randomly selected users. The x‐axis spans days (0‐100) and y‐axis shows time for sleep onset and
offset, but hours for sleep duration. B: The distribution of average sleep onset (blue), offset (yellow) and duration (green)
separately for weekday (darker colors) and weekend‐nights (lighter colors) across the population C: The distribution of
median WASO for all users in the data‐set
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sleep in-situ over long period of time. They are not considered a substitute for clinical interviews or

overnight polysomnography recordings, but rather provide useful information about sleep in nat-

ural environment for extended period of time enabling a more holistic examination of the human

daily rhythm of rest and activity236.

4.2 Data validation

Aworkshop on wearable devices for measurements of sleep, held by the Sleep Research Society in

2015, recommended that actigraphy or wearable devices should be validated with the gold stan-

dard of polysomnography237. Unfortunately, that has not been conducted for the wearable device

that records sleep for users in this observational study, but I developed an alternative validation

approaches. The data-set used for the validation is the same as in my paperGender differences in

nighttime sleep patterns and variability across the adult lifespan: a global-scale wearables study and

contains 11.14 million nights from 69.650 users, all of who have at least 8 nights of recorded sleep26.

4.2.1 Convergence with Large & Global Scale Data-sets

To explore the convergence of the study sample with other global and large scale sleep data-sets, I

assess whether average estimates of sleep onset, offset and duration at the country-level, and in some

instances also by age-group or gender converge with prior published estimates from several other

sleep studies. Specifically, I compare my sample to results fromWalch et al. (A global quantification

of “normal” sleep schedules using smartphone data)86, Roenneberg et al. (Epidemiology of the

human circadian clock)15, Ong et al. (Large-scale data from wearables reveal regional disparities

in sleep patterns that persist across age)46 and Ford et al. (Trends in Self-Reported Sleep Duration

among US Adults from 1985 to 2012)53.
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Walch et al. (2016) I infer country level estimates of sleep onset, offset and duration from

Figures 3A) and B) in the Walch et al. paper, thus they may differ marginally from their raw esti-

mates86. The data inWalch et al. paper is collected with self-reports of ‘typical bed and wake-time’

rounded to the nearest hour for 5450 users. In order to generate comparable statistics frommy

study sample, I first estimate individual averages by day-type (weekday and weekend-nights sepa-

rately), and then compute weighted overall averages using a standard weekday-weekend ratio (2/7

weekend-nights and 5/7 weekday nights average). The reader should note a few items before look-

ing at the results of the comparison; i) there are fewer users (5450) in the Walch et al. sample, ii) it is

uncertain how comparable the samples are in terms of underlying demographics (especially age and

gender) at the country level and iii) I use objective multi-night recordings to obtain country-level

averages, while Walch et al. used self-reported typical bed and wake-up hours (single estimates) and

did not disclose whether these pertained to weekdays, weekends or overall average behavior.

Tables B.1-B.3 in the Appendix B illustrate the comparison between the two samples. The estimates

of country-level average sleep duration is higher inWalch et al. sample (0.94 hrs at the most), but

the relative order of magnitude by countries matches well between the two samples – e.g. both re-

port the Netherlands to have the highest average sleep duration while Japan and Singapore have the

lowest. Similarly, country-level averages of bed and wake time were earlier in Walch et al. sample,

but the countries with earliest and latest bed and wake-up time are the same across data-sets. I use

a statistical measure, the Spearman rank correlation, to quantify how well the three measurements

correlate between the two data-sets and find ρonset = 0.67, ρoffset = 0.74 and ρduration = 0.78 where

all three estimates are statistically significant (p<0.05).

Roenneberg et al. (2007) Now I compare estimates of sleep duration to those reported by

Roenneberg et al. (2007) but the data was collected with the Munich Chronotype Questionnaire

and therefore entails retrospective habitual estimates of sleep duration on weekdays and weekends
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separately. Since the users in Roenneberg et al. sample are predominantly from Germany, Austria,

Netherlands and Switzerland, I only include users residing in those geographic regions for the com-

parison15. Table 4.1 reveal that estimates of average sleep duration across the two data-sets closely

corresponds, with a weekday average absolute deviation of 3.9% and weekend average absolute devi-

ation of 5.1%. For both weekdays and weekends, my sample has a higher ratio of users in the middle

group (7-7.5 hours weekdays, 7.5-8 hours weekends) but fewer are in the group with the longest

sleep duration. The percentage of users in the group with shortest sleep duration matches well (1.4%

avg. absolute deviation).

Sleep duration Roenneberg et al. [% users] Study sampe [% users]
WEEKDAYS

< 7.0 hours 41.0 % 38.9 %
7.0 - 7.5 hours 21.0 % 26.8 %
> 7.5 hours 38.0 % 34.3 %

WEEKENDS
< 7.5 hours 34.0 % 34.7 %

7.5 - 8.0 hours 15.5 % 22.7 %
> 8.0 hours 50.5 % 42.6 %

Table 4.1: Estimates of %‐point of users within certain range of sleep duration (separately for weekday and weekend‐
nights) for Roenneberg et al. data‐set and study sample

Ong et al. (2019) Ong et al. conducted a study on regional differences with nearly half a million

objectively measured nights from approximately 24 000 users living in five different countries. The

data-set fromOng et al. and the study sample might be the most compatible for comparison since

they both consist of objective multi-night recordings in-situ. However, they differentiate on couple

factors; i) there are different types of wearable devices used to measure sleep (Fitbit in Ong et al.

paper), ii) the sample fromOng et al. has higher number of users per country but fewer countries,

iii) there is a higher proportion of female users in Ong et al. study and iv) a slightly wider age range

than in the study sample of this project.

I compare country-estimates of sleep duration by looking at the percentage of users sleeping more
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than 7 hours, separately on weekends and weekdays (see Table 4.2). These proportions correspond

closely, with a weekday country-level averages differentiate by 3.6 percentage points and weekend

differentiate by 3.5 percentage points. The smallest national deviation between samples was for

Hong Kong (.4%) on weekdays, and the largest difference between the samples was for South Korea

on weekdays, where my sample had 7.3% fewer users sleeping 7 hours or more.

Country Australia Hong Kong Singapore South-Korea
WEEKDAYS

Ong et al.
% users w/ duration >7 hrs 61.0 % 34.0 % 27.0 % 29.0 %

Study sample
% users w/ duration >7 hrs 65.7 % 33.6 % 25.0 % 21.7 %

WEEKENDS
Ong et al.
% users w/ duration >7 hrs 74.0 % 58.0 % 51.0 % 52.0 %

Study sample
% users w/ duration >7 hrs 76.5 % 56.6 % 57.8 % 48.6 %

Table 4.2: %‐point of users sleeping 7 hours or more (separately on weekday and weekend‐nights) for Ong et al. and
study sample

Furthermore, I compare country estimates separately by gender (male/female) for sleep onset, off-

set and duration on weekdays. The averages for Ong et al. data-set are estimated from Figure 2A)

in the paper, thus uncertainties might be imposed46. Error estimates were reported on the figure in

Ong et al. paper, but were too small to read off, nonetheless I report averages with standard error of

the mean from the study sample (see Table 4.3). The estimates for women never fall within range

of standard error of the mean and differences are larger for averages of sleep onset (ranging 27 - 36

minute difference), while sleep duration and wake times match relatively well (ranging 2 - 14 minute

difference). Similar differences are identified for men, while national estimates of sleep onset, off-

set and duration correspond well across Ong et al. sample and the study sample. The differences

for sleep onset across data-sets cannot be explained directly, but the data-sets might differentiate in

terms of age and gender representation of users, or the devices measure sleep onset differently.
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Australia Hong Kong Singapore South-Korea
WOMEN Ong et al. Study sample Ong et al. Study sample Ong et al. Study sample Ong et al. Study sample
Sleep onset
[hh:mm±mm] 22:51 23:22± 4 00:14 00:50±4 23:57 00:24± 7 23:51 00:21± 3

Sleep offset
[hh:mm±mm] 06:45 06:57± 3 07:34 07:45±4 07:06 07:18± 7 07:11 07:13± 3

Sleep duration
[hours] 7.28 7.46±0.05 06:09 6.84± 0.07 6.56 6.80± 0.08 6.71 6.74± 0.03

MEN Ong et al. Study sample Ong et al. Study sample Ong et al. Study sample Ong et al. Study sample
Sleep onset
[hh:mm±mm] 23:06 23:40± 3 00:27 00:45± 3 00:00 00:29± 4 00:00 00:34± 1

Sleep offset
[hh:mm±mm] 06:43 06:52± 3 07:35 07:27± 3 07:00 07:04± 3 07:07 07:02± 1

Sleep duration
[hours] 7.0 07.09± 0.04 6.5 6.6± 0.04 6.45 6.50± 0.05 6.5 6.37± 1

Table 4.3: Average sleep onset, offset and duration (with SEM for the study sample) by country and gender separately
for Ong et al. data‐set and study sample

Ford et al. (2015) Lastly, I compare measures of average sleep duration by gender and age

group for a subset users residing in the US to self-report data from the US National Health Inter-

view Survey conducted in 2012. The results are listed in Table 4.4. The estimates for men differ-

entiate the most for the youngest and oldest groups (18-24 and 55-65), while the standard error of

the mean overlaps for other age groups (except slight deviation for age group 35-44). The differ-

ences across the two data-sets is larger for women, but the sample of women is smaller than for men

(Nwomen = 317 andNmen = 624). Furthermore, we can not know how well the sociodemographic

composition of the two samples correspond.

Age group 18-24 25-34 35-44 45-54 55-64
MenNHIS data-set
[hrs± hrs] 7.45± 0.05 7.08± 0.03 6.99± 0.03 6.94± 0.04 7.09± 0.03

Men study sample
[hrs± hrs] 7.08± 0.07 7.08± 0.05 6.86± 0.06 6.84± 0.04 6.82± 0.1

Women NHIS data-set
[hrs± hrs] 7.46± 0.04 7.13± 0.03 7.05± 0.03 6.98± 0.03 7.05± 0.03

Women study sample
[hrs± hrs] 7.31± 0.2 7.53± 0.08 7.41± 0.08 7.37± 0.08 6.94± 0.1

Table 4.4: Comparison of average sleep duration (with SEM) by gender and age group for users in the study sample
residing in the US to estimates from the US National Health Interview survey sample (2012)
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4.2.2 Consistency of measurements over time

To ensure that hardware or firmware changes over the period of data collection did not influence

the measurements, I estimate average sleep onset, offset and duration for the top three countries for

full years of data collection (2016, 2017 and 2018). The estimates in are illustrated in Table 4.5 and

show no evident trends between years and deviations are small and random.

Sleep Onset
hh:mm±mm

Sleep Offset
hh:mm±mm

Sleep duration
hrs± hrsCountry & Year Weekdays Weekends Weekdays Weekends Weekdays Weekends

Japan 2016 00:18± 1 00:40± 1 06:44± 1 07:38± 1 6.31± 0.01 6.84± 0.01
Japan 2017 00:14± 1 00:38± 1 06:42± 1 07:40± 1 6.35± 0.01 6.84± 0.01
Japan 2018 00:13± 1 00:34± 1 06:39± 1 07:32± 1 6.32± 0.01 6.82± 0.02
Germany 2016 23:31± 1 00:21± 1 06:50± 1 08:20± 1 7.21± 0.02 7.82± 0.02
Germany 2017 23:36± 1 00:18± 2 06:46± 1 08:14± 1 7.21± 0.02 7.78± 0.02
Germany 2018 23:27± 2 00:13± 2 06:44± 2 08:05± 2 7.16± 0.02 7.70± 0.03
UK 2016 23:45± 2 00:17± 2 07:09± 2 08:10± 2 7.28± 0.02 7.75± 0.02
UK 2017 23:43± 2 00:18± 2 07:07± 2 08:11± 2 7.28± 0.03 7.74± 0.03
UK 2018 23:47± 3 00:18± 3 07:09± 3 08:11± 3 7.24± 0.04 7.74± 0.05

Table 4.5: Average sleep onset, offset and duration with SEM (separately for weekday and weekend‐nights) for full year
of data collection (2016, 2017 and 2018) and the three countries with most users

Furthermore, I visualise the median sleep duration by day over the entire period of data collection

on Figure 4.3. There are no obvious jumps outside of characteristic seasonal, monthly and weekly

patterns and no year-over-year trends.

Jan 2016 Jan 2017 Jan 2018 Jan 2019
23:30
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00

Daily median onset
Daily median offset

Figure 4.3: Consistency over time
Daily median estimate of bed and wake‐time for the entire data‐set, throughout the period of data collection
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4.3 Demographic representation

The data-set is global with thousands of users residing in∼ 150 countries and large scale with mil-

lions of recorded nights. In terms of country of residence for users, some geographic areas more

dominant than others, and for example about 1/4 of users live in Japan, and about 50 % of the users

reside in five countries. Users are anonymous and self-report their age, gender, height and weight.

All data analysis was carried out in accordance with the EU’s General Data Protection Regulation

2016/679 (GDPR) and the regulations set out by the Danish Data Protection Agency. The GDPR

describes regulations for data protection and privacy in the European Union and the European Eco-

nomic Area; it also addresses the transfer of personal data outside the EU and EEA areas.

About 1/3 of the users are female and span age range 19-67. To explore representation by age, I

compare how well median age at country-level matches with statistics from the United Nation

Population Division (UN) for the top five countries (see Table B.4 in Appendix B)238. The me-

dian values in our sample and the overall population correspond well: users from Japan are slightly

younger (by 1 year) while those from Taiwan and the United Kingdommatch their respective ref-

erence populations. Users from Germany are younger (by 7 years) and also those from Russia (by 5

years). Additionally, I compare age standardized BMI statistics of the study sample to population

estimates provided by theWorld Health Organization (WHO) in Table B.5 in Appendix B239,240.

Both men and women from all countries fall within or place near the 95% confidence intervals (CIs)

of the WHO reference values. Women from the UK fall 0.5 points above the 95% CI and women

from Japan average 0.5 points below the 95% CI reference range. The data is observational and users

are included if they choose to buy the commercial devices. One must consider that owners of wear-

able devices may not be representative of the wider population due to potential unobserved factors.

Ownership of physical activity tracking devices have been associated with post-secondary educa-

tion and higher prevalence of physical activity241,242. However, there are not many studies that have
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explored biases among wearable device owners and most studies were conducted withinWestern

countries (N-America or Europe). Thus, I can not know how these results translate to a larger sam-

ple and wider range of geographic regions.

4.4 Data Pre-processing

To reduce the risk of including sleep observations from those suffering from insomnia, shortened

night due to users ceasing wristband use in the middle of the resting period, observations from

night-shift workers or any other possible data errors, outliers were removed. Up until now, I have

only managed to find one example of a study which describes standard filters for sleep onset and off-

set (Walch et al. 2016) which was though applied to data with self-reports of typical bed and wake

time rounded to the nearest hour. Users reporting typical wake time before 03:00 or after 11:00,

and those with bed times before 19:00 and after 03:00 were filtered out. In sleep epidemiology there

exist multiple examples of studies which use standard filters for outlier detection for sleep duration.

Typically sleep duration is required to be more than 3 hours, and less than 13 hours15, or even more

conservative (two hours less inclusive) where the criteria is 4 hrs < sleep duration < 12 hrs243,86.

I did try to design filters to adopt to individual level distributions for sleep onset, offset and dura-

tion. For example I experimented with number of standard deviation around the mean, number of

interquartile range around the median, isolation forest and others methods I developed myself. Un-

fortunately, I considered none good enough since in some instances they excluded entries that could

potentially be nighttime sleep. Later it will become evident how wide ranged and unpredictable

sleep behavior actually is, which renders the task of creating individual level outlier detection com-

plex. Throughout the project I filter sleep duration by standard filters (3 hrs < sleep duration < 13

hrs) and apply filtering to sleep onset and offset with different number of standard deviation around

the mean for distributions of all nights.
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Conclusion

The data-set originates from consumer wearable devices, and records sleep activity in 1-minute

epochs which are aggregated into nights with bed time (sleep onset), wake time (sleep offset), sleep

duration andWASO (wake-time after sleep onset). The wristbands have not been publicly vali-

dated using the gold standard of polysomnography as recommended in the Sleep Research Society

Workshop on wearable devices for the measurement of sleep237. However, I find the aggregates of

average sleep onset, offset and duration to converge with country-level estimates from other global

and large-scale sleep studies. The largest discrepancies are detected in the comparison for sleep onset

across data-sets, which could be anticipated since that is were both self-reports and different types

of wearable devices are likeliest to deviate. First considering self-reported estimates of sleep, the vari-

ation occurs since it can be difficult for people to be aware of time when lying bed at night. Their

estimates therefore rely on i) their perception of time and ii) howmuch time has passed since they

last saw a clock. The deviation in sleep onset between different types of wrist-worn actigraphies can

be rationalised due differences in hardware and/or firmware to measure sleep specificity (detecting

wakefulness while lying in bed), which is acknowledged to be the characteristic in which these de-

vices are most imprecise232. Furthermore, I examine whether hardware or firmware changes over

the period of data collection influenced the data, but I find the recordings to demonstrate consis-

tency over the period of data collection. Lastly, I explore country-level demographic representation

and find good agreement between theWorld Health Organization’s estimates of median age and age

standardized BMI.
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Illa dreymir drenginn minn;

Drottinn sendu engil þinn

vöggu hans að vaka hjá,

vondum draumum stjaka frá.

Láttu hann dreyma líf og yl

ljós og allt sem gott er til,

ást og von og traust og trú.

Bergþóra Árnadóttir

5
TheWild andMysterious ways of sleep

Large scale sleep studies have been constrained to self-reported data from sleep surveys, diaries and

questionnaires which are known to recall biases. Consequently, this type of research has been re-

stricted to analysis with a limited set of variables. Here I explore whether any salient features of sleep

may have been missed by these limitation. I present a new visualization method which illustrates

individual characteristic sleep patterns, which inspire a set of features to study sleep patterns across

the population. Furthermore, I propose a novel data-driven metric which may allow us to estimate
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whether or not an individual’s physiological sleep need are met or not. Note that all figures in this

chapter are reused from paper 3.

5.1 TheMultifaceted process of sleep

I begin by studying the range of behaviors that can result in similar estimates of traditional sleep

epidemiology measures such as chronotype, social jetlag and habitual sleep duration. To do that, I

select four users (labelled 1-4) to exemplify how wild and complex sleep actually is when measured

objectively in-situ over long period of time. Estimates of median sleep onset, offset and duration

(separately for weekday and weekend-nights), as well as social jetlag and chronotype are provided for

the users 1-4 in Table 5.1. These summary statistics reveal that there are some similarities but also

distinct differences which I further explore on Figure 5.1.

Visual sleep trajectories A convenient way to visualise sleep recordings over time is shown

in Figure 5.1C-F. The x-axis spans consecutive nights or day number, and the y-axis spans a range

of time (from 20:00 to 12:00). Sleep onset and offset are represented with blue and yellow dots

respectively, and weekends are marked with a gray shaded area of the sleep interval. I call these visual

sleep trajectories and they capture many aspects of sleep patterns, such as typical bed and wake time,

sleep regularity, temporal variations, and differences between weekend and weekday behavior.

Comparing the four sleep trajectories Figure 5.1A shows how user 1 and 2 have nearly

the same chronotype (∼04:30) selected within the range of the dotted lines and similarly. However,

from observing their sleep trajectories on Figure 5.1C and D it is evident that user 1 has high vari-

ability both in terms of bed and wake time but user 2 is super-regular with substantial difference in

wake-time between weekends and weekdays. Figure 5.1A shows how user 3 and 4 have nearly the

overall same median sleep duration (∼7.5 hrs), while in terms of long term patterns user 3 has high
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Figure 5.1: The multifaceted process of sleep
A: The distribution of chronotype (MSFsc) across the population, and the dotted vertical line represent the range in
which user 1 and 2 were selected from. B: The distribution of median sleep duration across the population, and the
dotted vertical lines represent the range in which user 3 and 4 were selected from. C‐F: Temporal patterns, or sleep
trajectories, for 60 consecutive nights of bed and wake time. The y‐axis shows the hours from 20:00 to 12:00. Sleep
onset and offset are marked with blue and yellow dots respectively, and weekend‐nights are shown by a gray shading
of the sleep‐interval. Users 1 & 2 have nearly the same chronotype (∼ 04:30) and users 3 & 4 have nearly the same
overall medians sleep duration (∼ 7.5 hrs). G‐K: The stacked distribution of sleep duration (dark green color represents
weekday‐nights and lighter green color weekends) for users 1‐4 respectively.
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USER 1 2 3 4
Overall

MSFsc [hh:mm] 04:26 04.35 05:13 03:42
Social jetlag [hrs] 0.27 0.88 1.45 0.13
Median duration [hrs] 9.10 4.82 7.30 7.4

Weekdays
Median Onset [hh:mm] 23:27 01:17 23:56 23:24
Median Offset [hh:mm] 08:28 06:05 06:56 07:42
Median duration [hrs] 9.00 4.7 7.0 7.3

Weekends
Median Onset [hh:mm] 23:29 02:00 00:12 23:34
Median Offset [hh:mm] 09:08 07:15 09:52 07:56
Median duration [hrs] 9.2 5.2 9.65 7.5

Table 5.1: Estimates of median bed and wake time (separately for weekday and weekend‐nights), as well as chronotype,
social jetlag and overall median sleep duration for four selected users (labelled 1‐4)

weekend-weekday behavioral differences and user 4 has an interesting behavior of falling asleep at

similar time every night, while he/she wakes up at wide range of hours (see Figure 5.1E and F).

Additionally, I present three other users (labelled 5-7) in Table 5.2, all which have approximately the

same social jetlag (SJ)∼0.75 hrs. These estimate reveal that user 1 has similar wake time on week-

ends and weekdays, but bed time is advanced to later hours on weekends leading to overall less sleep

duration. User 2 shifts both bed and wake-time to later hours on weekends and obtains nearly the

same sleep duration on weekends and weekdays. User 3 goes earlier to bed and wakes up later on

weekends, thus obtains substantial more amount of sleep on weekends (over 3 hours more).

Users with SJ∼ 0.75 hrs 5 6 7
Onset weekdays [hh:mm] 23:09 23:10 02:00
Offset weekdays [hh:mm] 08:15 06:00 07:37
Onset weekends [hh:mm] 01:16 23:53 00:48
Offset weekends [hh:mm] 08:06 06:59 10:28
Weekend-weekday
duration difference [hrs] -1.3 0.0 3.3

Table 5.2: Estimates of median bed and wake time (separately for weekday and weekend‐nights), and weekend‐weekday
median sleep duration difference for three selected users with the same social jetlag (∼ 0.75 hrs)
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A need for newmetrics? The temporal patterns on Figure 5.1 and estimates in Table 5.2 re-

veal that even though one characteristic of sleep is measured approximately the same across users,

there can be very different underlying patterns and behaviors at play. I generalise that conclusion by

providing the distributions of various sleep metrics for users with the similar chronotype (∼04:30),

social jetlag (∼ 0.75 hrs) and median sleep duration (∼7.5 hrs) on Figures C.1-C.3 in Appendix C.

These distributions illustrate all the different characteristic that groups of users with similar epi-

demiological measures of sleep can comprise.

5.2 New visualisation method: Sleep Portraits

Thus far, we have observed some weaknesses in regards to traditional sleep epidemiology metrics.

To help understand the complex patterns we have gotten sense of, I introduce the sleep portrait

that visualises variation in bed and wake time as 2d-histograms (with half hour bins) separately for

weekday and weekend nights. I provide examples of these for users 1-4 in Figure 5.2E-H where each

square represents amount of nighttime sleep, and to make the visualisation more accessible for inter-

pretation, I mark recommended sleep duration (7-9 hrs) with grey stepped lines196,197,198,199. The

sleep portraits reveal and highlight patterns that were just vaguely present in the sleep trajectories for

users 1-4 in Figure 5.2A-D.

Individual-level sleep characteristics The sleep portrait in Figure 5.2E shows that

user 1 has small weekend-weekday differences in sleep behavior, except that wake time is slightly

advanced to later hours on weekends. There is large variability in wake and bed time, clearly identi-

fied from the broad areas that the points cover on the sleep portrait. User 1 tends to sleep a lot, often

more than 9 hours. User 2 has an extremely regular behavior observed on the focused sleep portrait

in Figure 5.2F where the data-points cover a small area. Furthermore, user 2 consistently attains

less sleep than recommended, on weekends as well, since all the data-points are below the line of the

49



Bed-time

20 22 00 02 04 06

20 22 00 02 04 06

20 22 00 02 04 06

20 22 00 02 04 06

20 22 00 02 04 06 20 22 00 02 04 06

20 22 00 02 04 06 20 22 00 02 04 06

04

06

08

10

12

04

06

08

10

12

04

06

08

10

12

04

06

08

10

12

04

06

08

10

12

04

06

08

10

12

04

06

08

10

12

04

06

08

10

12

Wake-up time Range of recommended sleep
duration for adults (7-9 hrs)

Weekdays Weekends

Bed-time [hh]

W
ak
e-
up

tim
e
[h
h]

A)
E)

F)

G)

H)

B)

C)

D)

USER 2

USER 1

USER 3

USER 4

0

4

8

12

16

0
1
2
3
4
5
6
7

0
50

100

150

200

250

0
10

30

50

70

0
2

6

10

14

18

1

0

2

3

4

0
2
4
6
8
10
12
14

0
1
2
3
4
5
6
7

0 10 20 30 40 50 60
20:00

#day

#day

#day

#day

00:00

04:00

08:00

12:00

Bed time
Wake time
Weekends

0 10 20 30 40 50 60
20:00
00:00
04:00
08:00
12:00

0 10 20 30 40 50 60
20:00

00:00

04:00

08:00

12:00

0 10 20 30 40 50 60
20:00

00:00

04:00

08:00

12:00

Figure 5.2: Capturing the complexity with Sleep portraits
A‐D: Sleep trajectories for users 1‐4 with∼60 consecutive nights of bed and wake time. The y‐axis shows the hours
from 20:00 to 12:00. Sleep onsets and offset are marked with dark and light blue dots respectively, and weekend‐
nights are shown by a gray shading of the sleep‐interval. E‐H: Examples of the sleep portraits for users 1‐4, which are
2d‐histograms (1/2 hours bins) of bed time on the x‐axis (range 22:00‐07:00) and wake‐time on y‐axis (range 03:00‐
13:00). For each user, the left plot represent weekdays and right plot weekends. The color‐bar to the right (of each plot)
illustrates the number of nights that take place in each square. The grey step‐lines represent the area of recommended
sleep duration (7‐9 hrs).
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shortest recommended nighttime sleep. The horizontal spread of the data-points on weekdays for

user 3’s sleep portrait in Figure 5.2G, indicates that this is person that has to wake up before certain

point of time on weekdays. This constraint likely induces the “explosion of freedom” on weekends,

where wake times are advanced to later hours and the individual obtains more sleep. Lastly, the data

points span a broad range in the vertical direction, but has a narrow horizontal spread for user 4 in

Figure 5.2H. This implies that user 4 tends to fall asleep at approximately the same time every night,

while they wake up at variable hours.

5.3 Informative features for analysis of multi-night recordings of sleep

The sleep portraits inspire a set of features which I consider informative and helpful to use when

analysing high-resolution sleep activity data-set. As clearly seen in examples of the sleep portraits in

Figure 5.2E-H, the shape and location of the 2d-histograms (also referred to as the point-cloud) can

tell us a lot about a person’s sleep habits.

Typical behavior. To begin with, an estimate which quantifies typical behavior for bed time,

wake time and sleep duration is always informative. I use the median, which gives a better estimate

than the mean which tends to be influence by extreme values (which I provide more details about

later on in section 5.4). Distributions for median sleep onset, offset and duration (separately by day

type) is illustrated in Figure 5.3A.

Sleep regularity. Secondly, the width of individual’s behavior entails important information

and measures sleep regularity. Typically standard deviation (std) is used to quantify sleep regular-

ity36,86, but I rather suggest a measure based on quantiles since they are less impacted by extreme

events, and actually more interpretable. I provide an example to explain; consider having to com-

prehend either “John has 0.74 hours std in wake-up time on weekdays” or “John wakes up 80 % of
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the time within a span of 15 minutes on weekdays”. Thus, I suggest using a measure called width

which is the difference between the 90th and 10th percentile, and provides a range in which 80 % of

a person’s sleep takes place in. The width correlates very well with std (ranging from 0.933 to 0.968,

see Figure C.4 in Appendix C) and the distribution of the width for sleep onset, offset and duration

separately for weekdays and weekends is presented on Figure 5.3B.

Comparison of bed andwake-time regularity Now, the difference between sleep reg-

ularity of bed and wake time can also include valuable information. To compare the two I divide

width of sleep onset with the width of sleep offset (separately for weekdays and weekends), defined

concretely as:

Ronset & offset =
onsetwidth
offsetwidth

The distribution ofRonset & offset can be observed on Figure 5.3C where the average is 1.64 on week-

days and 1.18 on weekends. From the measure I can infer the following:

• Ronset & offset << 1 then there is more variability in wake time than bed-time

• Ronset & offset ∼ 1 the width of bed and wake-time is approximately the same

• Ronset & offset >> 1 then there is more variability in bed-time than wake-time

Weekend-weekday sleep behavior differences Previous research has established the

importance of measuring sleep separately on weekdays and weekends, and to pay attention to the

constraint that weekly social schedules can impose on sleep44. To do so, I derive a variant of the

measure of social jetlag where I calculate the difference between median estimates of a behavior on

weekends and weekdays. The distributions for weekend-weekday median difference for sleep onset,

offset and duration are illustrated in Figure 5.3D. Similarly, it is important to understand how the

behavior changes on weekends compared to weekdays. For example observe the sleep portrait for
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user 3 on Figure 5.2G where an important characteristic is the change in the width of sleep offset

from weekdays to weekends, or the notorious “explosion of freedom”. To capture this, I calculate

the ratio between the width of a measure on weekends divided by its width on weekdays – defined

concretely as ratiowidth = widthweekends
widthweekdays . The distributions of these estimates for sleep onset, offset

and duration is presented on Figure 5.3E, where we can evidently see the effect of alarms on the

distribution weekend-weekday width ratio for sleep offset.

5.4 Skew: TheMeasure for Direction of Preference

Having discussed shortcomings of traditional sleep epidemiological measures and presented new

sleep metrics, I nowmove on to introduce a novel data-driven metric for direction of preference,

discovered by exploration of empirical sleep patterns.

Positive skew as a function of typical sleep duration When observing examples of

individual’s distribution of sleep duration (for example in Figure 5.1C-F and Figure 5.4B) I observe

different shapes and characteristics. I believe that symmetry or asymmetry of a distribution entails

a important information about an individual’s sleep behavior, and may provide information about

direction preference, or sleep need. The first evidence to support that idea is provided in Table 5.3.

There I list the percentage of users that have an average larger than the median within a sleep group,

but a sleep group is defined as the median sleep duration rounded to nearest half hour bin.

Median sleep duration [hour] 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
% of users with μ> M 100 95 84 77 64 53 47 37 28 20 14

Table 5.3: %‐point of users with an average larger than median within sleep group (defined by rounding median sleep
duration to the nearest half hour)

For users who typically obtain short nighttime sleep, it is almost given that their average will be

larger than the median sleep duration, meaning there is disproportional tendency for nights with
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Figure 5.3: Informative features for analysis of multi‐night recordings of sleep
Blue, yellow and green colors represent metrics derived from sleep onset, offset and duration respectively. A: The dis‐
tribution of median bed time, wake time and sleep duration separately for weekend and weekday‐nights. B: The distri‐
bution for the width (10th percentile minus the 90th percentile) for bed‐time, wake time and sleep duration separately
for weekday and weekend‐night. C: The distribution of ratio between width of sleep onset and sleep offset, separately
for weekday (black) and weekend nights (grey). D: The distribution for the weekend‐weekday median difference for
bed‐time, wake time and sleep duration. E:Weekend‐weekday width ratio for bed‐time, wake time and sleep duration.
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longer duration than typically obtained. The prevalence of this behavior within sleep groups de-

creases as median sleep duration increases.

The physiological mechanism relating to skew The physiological mechanism that

likely contributes to this systematic change across the population, is the process of sleep-wake home-

ostasis – an intrinsic mechanism that maintains sleep pressure and ensures that sleep takes place

every night. Individuals accumulate sleep pressure from the end last adequate sleep. Those who

consistently sleep less than physiological needed, will build up sleep pressure which can be elimi-

nated with a long night’s rest, named “catch-up nights”13,244. These “catch-up nights” are more

probable to take place for individuals who consistently sleep little (have low median sleep duration),

resulting in a right skewed distribution of sleep duration. Similarly, the opposite is expected for

those who maintain a longer sleep than they can sustain – leading to disproportionate amount of

shorter nights and a left-skewed distribution.

To further examine this, I employ a more sophisticated measure to quantify asymmetry of a distri-

bution – skewness. I calculate the moment coefficient of skew for each individual’s distribution of

sleep duration the following way245:

skew =
m3

s3
=

1
n ∑n

i=1(xi − x̄)3

[ 1n ∑n
i=1(xi − x̄)2] 32

(5.1)

wherem3 is the sample third central moment, s is the sample standard deviation and n is the number

of data-points.

Linear dependence of skew and median sleep duration Now skew is estimated for

individual’s distribution of sleep duration (some examples of these are provided in Figure 5.4B),

which is then aggregated into averages for each sleep group and illustrated with the standard error of

the mean (SEM). The results are shown in Figure 5.4A, where skew seems to be a function of typical
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sleep duration and is also a normally distributed trait across the population (see insert in lower left

corner in Figure 5.4A). I also observe that the sign of skew changes between 7 and 7.5 hours of sleep,

which is within recommended amount of sleep duration for adults196,197,198,199.

Low skew for extremely short or long typical sleep duration If we assume that the

hypothesis that skew renders information about individual sleep need, then skew estimated to be

∼ 0 for a distribution of sleep duration should be interpreted as such that the individual is getting

sufficient amount of sleep. Therefore it is interesting to consider those that have extremely short

median sleep duration, but have no or even negative skew (disproportional tendency for shorter

than typical nights). In the same manner, individuals with extremely long median sleep duration

with no or positive skew also exhibit ‘out-of-ordinary’ behavior. The box-plot on Figure 5.4A shows

that these individual do exist. I first explore characteristics for those who sleep little (<6.5 hours)

and have neutral or negative skewed distribution of sleep duration (skew <0.25). I find that these

individuals more likely to be old, male and from the East (Asia), all demographic variables associated

with short sleep duration (for further details see section C.3 in Appendix C). Similarly, there are

individuals who sleep long (duration> 8 hours) and have positive or no skew (skew >-0.25), but

turned out more likelier a part of demographic groups associated with long sleep duration – young,

female andWestern (residing in N-America or Europe).

56



-2 -1 0 1 2 3

250

750

1250

1750

Skew

Skew

Median sleep duration [hours]

Median sleep duration [hours] Median sleep duration [hours]

Sk
ew

#u
se
rs

#u
se
rs

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

4.5 5.5 6.5 7.5 8.5 9.5

-2

0

2

4.5 5.5 6.5 7.5 8.5 9.5

-2

0

2

4.5 5.5 6.5 7.5 8.5 9.5

-2

0

2

4.5 5.5 6.5 7.5 8.5 9.5

-2

0

2

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

-0.8

-0.4

0.0

0.4

0.8

1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

Skew: Measure of asymmetry
All day types

Skew for weekday nights Skew for weekend nights

A)

C) D)

E)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
-2 0 2 4

750

1750 Weekdays
Weekends

25th %: - 0.37

50th %: 0.01

75th %: 0.40

25th %: - 0.46

50th %: - 0.13

75th %: 0.18

- 0.8

- 0.4

0.0

0.4

0.8

1.2

4 8 12

40#d
ay
s

#d
ay
s

[hours]

[hours]

[hours]

80

4 8 12

100

200

4 8 12

20

60

100

Weekdays
Weekends

Weekdays
Weekends

Weekdays
Weekends

4 8 12

10

20

30

4 8 12

20

40

4 8 12

10

20

30

4 8 12

60

120

4 8 12

30

60

4 8 12

100

200

Sleep duration < 6 hours with positive skew

Sleep duration ~7 hours with neutral skew

Sleep duration > 8 hours with negative skew

Examples of individual
distributions of sleep duration
B)

25th %: - 0.26

50th %: 0.09

75th %: 0.43

Figure 5.4: Measure of asymmetry of the distribution of sleep duration across the population
A: Aggregated skew, from the individual level for distribution of sleep duration, averaged by sleep group. Sleep groups
are defined by rounding median sleep duration to the next half hour bin and error estimates or marked with the stan‐
dard error of the mean (SEM). The box‐plot in the upper right corner shows the underlying distribution behind the
average for each sleep group, and the insert in the lower left corner illustrates how skew (for individual level distribution
of sleep duration) distributes across the sample. B: Examples of individual level distributions of sleep duration for users
with positive (red), neutral (grey) and negative (blue) skew. The distributions are stacked, where darker colors represent
weekday‐nights and lighter color weekend‐nights. C: Aggregated skew, estimated for individual level for distribution
of sleep duration for weekday‐nights, averaged by sleep group. Error estimates or marked with the standard error of
the mean (SEM). The box‐plot in the upper right corner shows the underlying distribution behind the average for each
sleep group. D: Aggregated skew, estimated for individual level for distribution of sleep duration for weekend‐nights,
averaged by sleep group. Error estimates or marked with the standard error of the mean (SEM). The box‐plot in the up‐
per right corner shows the underlying distribution behind the average for each sleep group. E: The distribution for skew
(estimated for individual distribution of sleep duration) for weekday and weekend‐nights across the population

Skew forweekday andweekend-nights Generally it is consider important to measure

and study sleep separately for weekend and weekday nights, since weekly social schedule tend to

constrain normal behavioral patterns184,44. Skew up until now has been estimated for distribu-
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tion of sleep duration for all nights, but it can also be quantified by day-type. Figures 5.4C and D

respectively show average skew estimated for sleep groups (with SEM) for weekday and weekend

nights separately. The same pattern is observed as before; skew decreases as median sleep duration

increases, both on weekdays and weekends. However, skew is more conservative on weekends and

spans a more narrow range, also clearly observed on Figure 5.4E where the distribution of weekday

and weekend skew are compared. This could be explained by the fact that people are more likely

constrained by the social clock and early morning work schedules on weekdays. Thus, there is less

time and flexibility for sleep and more probability for interruptions to natural behavioral patterns

regarding the daily rhythm of rest.

5.4.1 Skew group characteristics

Having introduced the different metrics above to quantify sleep (Figure 5.3), I now explore whether

they provide insights to characteristics of different skew groups. I set up a prediction task, where

select individuals with either the most positive, neutral or negative skewed distribution of sleep du-

ration (N=2000 for each group) into three separate groups. For each skew group, I randomly select

2000 other individuals and then try to predict whether individuals where originally selected to the

group or not. For the prediction task I use features introduced on Figure 5.3 (exceptRonset & offset)

as well as traditional epidemiological measures: chronotype, social jetlag and midsleep on weekdays.

By considering the features importance of the prediction task, I can find what separates skew group

from random selection of users and understand what characterises each group. Specifically, I train

a decision tree classifier to predict whether an individual belongs to the skew group or not (baseline

50% accuracy), results are summarised in Figure 5.5.

Overall results of the prediction task Using all metrics introduced on Figure 5.3 (ex-

ceptRonset & offset) and classical sleep epidemiology measures (chronotype, midsleep on weekdays
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and social jetlag), I am able to predict positive and negative skew with substantially better accuracy

(73-79 %) than the baseline (50 %), which is not the case for the neutral group (56-57 % accuracy).

The results from the prediction task are summarised in Figure 5.5. The most important features

in all cases is median sleep duration, but that makes sense due to the close connection of skew with

sleep need. The distinct difference in typical sleep duration between skew groups can be observed

for the distributions in Figure 5.5D-F. In fact, this feature is the primary explanation for the predic-

tion of positive skew estimated for the distribution of sleep duration on weekends. Furthermore,

those that belong to that skew group, also sleep substantially less than other groups on weekday

nights (see Figure C.13 in Appendix C).

Positive skew The group is clearly characterised by shorter sleep duration (see distribution on

Figure 5.5D-F). Furthermore, individuals with positively skewed distribution of sleep duration (esti-

mated for all day-types or weekdays) have higher weekend-weekday median duration difference than

others (see Figure 5.5G and K, and Figures C.11 and C.12 in Appendix C). Substantial weekend-

weekday sleep duration difference is one characteristic of those who are sleep deprived on weekdays

(due to constraints of the social clock), and use the weekends to ‘catch-up’184,44.

Negative skew The group is associated with overall longer nighttime sleep, lower weekend-

weekday median sleep duration difference and narrower distribution of wake-time (see Figure 5.5G,K,H,L

and N. In fact, the distributions on Figures C.11-C.13 in Appendix C, show that individuals with

negative skewed distributions of sleep duration generally sustain more regular sleep behavior com-

pared to the two other groups. All of these characteristics are associated with behaviors of steady

sleepers who obtain sufficient amount of nighttime sleep.

Neutral skew The group is not characterised by anything specific, but rather falls between

the negative and positive skew group in terms of all measured aspects of sleep (see Figure 5.5 and
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distributions in Figures C.11-C.13 in Appendix C).
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Figure 5.5: Information about skew groups from decision tree classifier
Decision tree classifier is trained to predict whether an individual belongs to skew group or not. There are three groups,
and each is comprised of 2000 individuals with either the most positive, neutral and negative skewed distribution of
sleep duration, as well as a random selection of 2000 other individuals. A‐C: Feature importance obtained from decision
tree classifier from prediction of positive and negative skew group, where skew is estimated from the distribution of
sleep duration for all day‐types on A, weekday‐nights on B and weekend‐nights on C.
D‐F: The distribution of median sleep duration for the individuals (N=2000) with the most positive, neutral and negative
skewed distribution of sleep duration for all day‐types on D, weekday‐nights on E and weekend‐nights on F.
G‐J: Scatter plot of median sleep duration (estimated for all day‐types) with weekend‐weekday sleep duration differ‐
ence, offset width (all day‐types) and weekend‐weekday width ratio for median sleep duration where points are colored
by skew group; red, black and blue for positive, neutral and negative skewed distribution of sleep duration respectively.
K‐M: Scatter plot of median sleep duration (estimated for weekday nights) with weekend‐weekday sleep duration differ‐
ence, offset width (weekdays) and onset width (weekdays) where points are colored by skew group; red, black and blue
for positive, neutral and negative skewed distribution of sleep duration respectively. N‐O: Scatter plot of median sleep
duration (estimated for weekend‐nights) with offset width (weekends) and duration width (weekends) where points
are colored by skew group; red, black and blue for positive, neutral and negative skewed distribution of sleep duration
respectively.
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Conclusion

I find high-resolution recordings of sleep measured over long period of time to produce complex

and multifaceted patterns across the population. I introduced a new visualisation method, the

sleep portraits, which illustrate characteristic patterns for individual sleep behavior. Furthermore,

I propose a novel data-driven metric to quantify direction of preference which may be indicative of

whether people’s physiological sleep needs are met or not. The measure is simply the skewness of

individual-level distribution of sleep duration and quantifies disproportionate tendency for long

or short nights, relative to typical behavior. Currently there exist no methods to measure whether

sleep needs are met, except for comparison to the recommended amount of healthy sleep for adults.

Thus, skew may be the first metric to provide a way to infer whether sleep needs are met from esti-

mations of high-resolution recordings of sleep duration. However, one of the limitation is that skew

has not been validated with subjective nor qualitative estimates of sleep. To mitigate those limita-

tion, I show that skew is: i) linearly dependent with median sleep duration across the population,

ii) 5he skew group with an average estimate closest to zero attains typically 7-7.5 hours of sleep per

night, which is within range of recommendation196,197,198,199, iii) individuals who are not skewed

but obtain overall long or short nighttime sleep, are likely to have demographic characteristic which

are associated with either long or short sleep duration, iv) I find the group who has the most positive

skewed individuals (disproportionate tendency for longer nights) to have higher weekend-weekday

sleep offset and duration difference than other groups, which is a behavior linked to unhealthy sleep

patterns184,44,189,190,191,192, and v) to the contrary, individuals with negative skew (disproportionate

tendency for shorter nights) exhibit more sleep regularity – a behavior associated with good sleep

hygiene31,246,35.
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Nú hverfur sól við segulskaut

og signir geisli hæð og laut,

er aftanskinið hverfur hljótt,

það hefur boðið góða nótt.

Árni Þorsteinsson

6
Observed Effects of Biological, Societal and

Cultural Differences on Sleep

In Chapter 1, I discussed how biologically based differences such as age and gender can effect sleep,

as well as the environmental and contextual aspects of everyday life. Here I explore whether this is

observed in the study sample by looking at the differences in sleep patterns betweenWestern and

Eastern geographic regions. I investigate whether influences of contextual aspects and behavioral
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choices, such as country-level policy and having a child, can be detected in the data. I analyse the de-

velopment of sleep timing and duration across the lifespan and examine life-stage dependent gender

differences.

6.1 Sociocultural Variation

I start the examination by observing average sleep onset and duration by age group (for men on

weekdays) in Table 6.1 for the top five countries with the most users in. The country of residence

seems to influence sleep behaviors, and there is a clear difference between geographic regions in the

East (Asia) andWest (Europe). I further explore this difference and put all countries into one of the

three categories; East (Asia), West (Europe and N-America) and Others. On Figure 6.1A I illustrate

the distribution of median sleep onset, offset and duration (by day-type) for users residing either in

Eastern or Western geographic regions (there were too few users in the third category for compari-

son).
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Japan
n=17 231
(∼ 25 %)

Germany
n=7 140
(∼ 10 %)

Russia
n=5 095
(∼ 7 %)

Taiwan
n=5 028
(∼ 7 %)

United Kingdom
n=3 900
(∼ 6 %)

Age groups Average sleep onset (hh:mm)
19-24 00:53 23:55 00:39 01:12 00:24
25-29 00:44 23:52 00:29 00:59 00:07
30-34 00:41 23:40 00:21 00:51 23:52
35-39 00:27 23:36 00:08 00:42 23:46
40-44 00:21 23:37 00:04 00:32 23:41
45-49 00:15 23:30 00:03 00:30 23:45
50-54 00:06 23:31 23:58 00:16 23:36
55-59 23:54 23:26 23:55 23:52 23:45
60-67 23:42 23:26 23:50 23:50 23:42
Age groups Average sleep duration (hrs)
19-24 6.6 7.3 7.0 6.7 7.3
25-29 6.4 7.1 7.0 6.7 7.3
30-34 6.4 7.1 7.0 6.6 7.2
35-39 6.3 7.0 7.0 6.4 7.1
40-44 6.3 6.9 7.0 6.5 7.1
45-49 6.2 7.0 7.0 6.4 7.0
50-54 6.2 7.0 7.0 6.6 7.0
55-59 6.3 6.9 7.0 6.6 7.0
60-67 6.4 7.2 7.1 6.5 7.1

Table 6.1: Development of sleep onset and duration by age split up by the top five countries with the most users in the
data set

The differences observed in Table 6.1 become more evident on Figure 6.1. Users in the East sleep

on average less than those in the West – both on weekdays (6.45 hrs in the East and 7.18 hrs in the

West) and weekends (6.90 hrs in the East and 7.81 hrs in the West). On weekdays individuals in the

East fall asleep on average later (00:20 East and 23:43West) while both groups wake up at similar

hours. On weekends this is reversed and both groups go to sleep at approximately the same time

while people in the West wake up later (on average 07:47 East and 08:25West). This is in accordance

with findings from a recent large scale study exploring geographic disparities with data from wear-

able devices46. In terms of measures for weekend-weekday differences for sleep timing and duration

(Figure 6.1B), I identify a slight distinction between Eastern andWestern geographic regions. Resi-

dence in the West shift their bed marginally more than those in the East and catch overall more sleep

on weekends, compared to weekdays, than Eastern residence. The distinction between the two geo-

graphic regions is most prominent when observing weekend-weekday difference for sleep offset, but
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those residing in the West shift wake time substantially more on weekends than those in the East.
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Figure 6.1: Contrast between sleep patterns for residence in Eastern and Western geographic regions
A: The distributions for median sleep onset, offset and duration separately by day‐type and region of residence. East
(Asia) is represented with normal lines and West (N‐America & Europe) with dotted lines. Sleep duration, onset and
offset are represented with green, blue and yellow colors respectively. B:Weekend‐weekday differences for sleep onset,
offset and duration for Eastern and Western geographic regions.

6.2 Influence of age and gender on sleep

I explore the effect of age and gender on sleep, in two separate analysis: i) Examining the develop-

ment across age groups with classical epidemiological measures, chronotype and social jetlag, where

I also compare those results with estimates from Roenneberg et al.. ii) Additionally, I explore how

more relatable measures, such as sleep onset, offset and duration, develop with age and what are the

differences between men and women.

65



6.2.1 Analysis with Classical sleep metrics: Chronotype & Social jetlag

Chronotype (MSFsc) and social jetlag (SJ) are commonly employed in sleep research to quantify

phase preference and misalignment44,71. I use Roenneberg et al. (2003) methodology to derive

each individual’s phase preference using the methods from theMunich Chronotype questionnaire

(defined concretely in Chapter 2). Although generally I do not use these metrics for an in-depth

analysis in my work, I facilitate comparison to previous findings and depict the development of

these measures with age on Figure 6.2. Looking at the development of chronotype, sleep timing

advances to earlier hours as people get older. Men are later chronotypes up until the middle part of

the adult lifespan and after that point women have a later phase preference than men. Misalignment

between weekend and weekday sleep timing, is most pronounced in the youngest groups of people.

Social jetlag decreases over lifespan, but plateaus or slows down from age 35-49, and then there is

a relatively rapid decline from age 50 to 67. Gender differences are negligible, but there is a clear

separation between men and women from age 40-49 where women have higher social jetlag than

men.

Comparison of social jetlag and chonotype to Roenneberg et al. study I compare

the development of chronotype with age to results from Roenneberg et al. (2007), the estimates

match pretty well although phase preference is more advanced for young men in Roenneberg’s sam-

ple compared to mine15. However, when comparing social jetlag frommy sample to Roenneberg’s

results I find large discrepancies. For example, average social jetlag for 20 year old men is estimated

approximately 3 hours in Roenneberg’s study, while it is about 50 minutes in my sample. Overall,

I find considerably lower levels of social jetlag across all observed age groups compared with the val-

ues reported by Roenneberg et al. (2012)44. In Roenneberg’s study, the sample consisted of ques-

tionnaire respondents from four European countries (Germany, Switzerland, the Netherlands and
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Austria). The differences may reflect a mismatch between global and regional circadian preferences,

recall biases linked to the questionnaire and/or other unobserved differences.
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Figure 6.2: Development of Chronotype and Social jetlag with age
The upper panel illustrates development of chronotype with age, estimated for men and women separately. The lower
panel shows development of social jetlag with age, estimated for men and women separately. All error bars are esti‐
mates of standard error of the mean (SEM).

Regional differences in Social jetlag I further explore regional differences by constrain-

ing my sample to only include the same four European countries as Roenneberg et al. and compare

estimates to the full sample (see Figure 6.3A & B). The estimates of social jetlag are markedly higher

for the four European countries from Roenneberg’s sample. Furthermore, I compare social jetlag

levels between regional strata of my sample from Asia and the four European countries from Roen-

neberg’s study (Figure 6.3C). The figure suggests that social jetlag for young adults may be over

twice as large in the same European region sampled by Roenneberg et al. compared to geographic
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regions in Asia, and∼1.5 times larger for middle-aged and older adults44. I further explore regional

differences by depicting estimates of social jetlag by age groups for users residing in three continents;

Asia, Europe and N-America (see Figure 6.3D). Social jetlag is most pronounced in young Euro-

peans (age 19-29), but overall there is similar behavior identified across the adult lifespan for Euro-

peans and N-Americans. However, social jetlag measures are slightly higher in Europe compared to

N-America, all the while Asia has substantially lower estimates than the other continents for all age

groups.

0.4

19-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-67
[Age-group]

[Age-group]

19-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-67

19-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-67 19-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-67

0.6

0.8

1.0

1.2

1.4

Women

Men

Development of social jetlag with age
For users residing in Austria, Germany, Netherlands and Switzerland

Development of social jetlag with age
For users residing in Austria, Germany, Netherlands and Switzerland

versus residents in Asia

Development of social jetlag with age for continents

Development of social jetlag with age
Full sample, including users from all 47 countries

0.4

0.6

0.8

1.0

1.2

1.4

[h
ou

rs
]

[h
ou

rs
]

Asia Asia
Europe
N-America

Countries from Roenneberg et al. sample:
Germany, Switzerland, Austria & Netherlands

A)

C)

B)

D)

Figure 6.3: Regional differences of Social jetlag
A: Development of average social jetlag with SEM across age groups for the subset of my sample from the primary
geographic regions represented in Roenneberg et al.’s (2012) questionnaire‐based study. B: Development of average
social jetlag with SEM across age groups for the for the full study sample. C: Development of average social jetlag with
SEM across age groups for the subset of my sample from the primary geographic regions represented in Roenneberg et
al.’s (2012) and countries in Asia from my sample as well. D: Development of average social jetlag with SEM across age
groups, separately for residence in the three continents; Asia, Europe and N‐America.
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6.2.2 Development of sleep onset, offset and durationwith age

In order to summarize the development of sleep onset, offset, and duration across the lifespan, I cal-

culate each user’s average value and then aggregate across the study sample by age, gender, and day

type (weekday or weekend), illustrated on Figures 6.4-6.6. The relationship between these measures

(sleep onset, offset and duration) with age is also explored with mixed effects models to confirm

observed trends on Figures 6.4-6.6 with the raw data. Given the longitudinal and hierarchical struc-

ture of the data with repeated measurements within users, and users are then nested within their

country of residence, observations are likely highly correlated on both levels (country and user). To

account for this dependence I adopt a mixed effects modeling framework which controls for user

and country-level variation while examining age-related trends in sleep patterns and assessing the

influence of demographic factors. Figures 6.4-6.6 are re-used frommy paper,Gender differences in

nighttime sleep patterns and variability across the adult lifespan: a global-scale wearables study26.
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Figure 6.4: Development of sleep onset with age
Distributions for sleep onset on weekends split up by gender for different age groups: A age 19–24, B age 40–44, and C
age 60–67. The development of average sleep onset by age group split up by gender and day type (weekend/weekday).
The red/orange colors correspond to women, light/dark blue colors correspond to men, darker colors represent week‐
days and lighter colors signify weekends. The colored envelopes display 95% CIs around each age group mean D. The
equally weighted, between gender sleep onset difference by age group with 95% CI on weekends E and weekdays F.

Sleep onset Figure 6.4D illustrates how sleep onset advances to earlier hours with age, both

for men and women. The difference between bed time on weekends and weekdays is roughly con-

stant across the lifespan. There is a large distinction between bed-time for men and women across

younger age groups or up until age 40-44, and after that the difference grows smaller with increasing

age. Eventually, the statistical difference between the curves is eliminated and the two groups go to

bed at approximately the same time from age 55-67. Even though the 95 % confidence intervals on

Figure 6.4D are narrow, the underlying distributions are quite broad as exemplified on Figure 6.4A-

C, where the distribution for average sleep onset on weekends is illustrated for age group 19-24,

40-44, and 60-67 respectively. I directly visualize the gender differences on Figure 6.4E (weekends)

and F (weekdays), which display the difference of average sleep onset for men and women from the
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weighted average curve of sleep onset by gender. The gender gap in bed-time appears to persist until

about 40 years of age, when the two curves begin to converge.

Figure 6.4D illustrate the aggregated raw data from the study sample but I confirm those results

with mixed effects models. The model estimates an overall 29 ± 0.20 minute difference between

sleep onset on weekends and weekdays for women and 28± 0.20 minute difference for men (age

group 40–44). The model suggests an even steeper rate of decrease of sleep onset for men than the

raw data exhibits (see Figure D.2 and Table D.1 in Appendix D). Consequently, the difference be-

tween men and women at age 40–44 on weekdays is estimated less by the model (15± 1.5 minutes

95% CI) compared to the raw data (24± 1.5 minutes 95% CI). Furthermore, the model estimates

the onset curves for men and women to intersect slightly earlier or within age range 50–54.

Figure 6.5: Development of sleep offset with age
Distributions for sleep offset on weekends split up by gender for different age groups: A age 19–24, B age 40–44, and C
age 60–67. The development of average sleep offset by age group split up by gender and day type (weekend/weekday).
The red/orange colors correspond to women, light/dark blue colors correspond to men, darker colors represent week‐
days and lighter colors signify weekends. The colored envelopes display 95% CIs around each age group mean D. The
equally weighted, between gender sleep offset difference by age group with 95% CI on weekends E and weekdays F.
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Sleep offset Figure 6.5D shows that people tend to wake up earlier as they get older, and there

is a substantial weekend-weekday difference in wake-time that mostly persist across the lifespan.

Interestingly, the patterns identified concerning gender differences in the development of sleep on-

set with age are now reversed, and the two groups wake-up at the same time up-until the middle

of the adult lifespan, and thereafter separate with men rising earlier than women. Thus, to sum-

marise, from age 19 to 39 women and men exhibit an average tendency to go to bed at different

times yet wake up at similar hours. The sleep offset curves for men and women diverge earlier on

weekends (40-44) compared to weekdays (45-49). Gender differences can be studied more closely

on Figures 6.5E (weekends) and F (weekdays) which illustrate the difference of sleep offset by gen-

der and age group from the equally weighted average of the curves for men and women. As before,

I illustrate that even though the 95 % confidence interval for average sleep offset is narrow, the un-

derlying distribution can be broad and span a wide range of behavior (see distribution of sleep offset

on weekends on Figure 6.5A-C for age group 19-24, 40-44 and 60-67 respectively). I compare the

patterns observed for aggregated averages of sleep offset with age on Figure 6.5D with results from

mixed effects model, and observe a close agreement between the two (see Table D.2 and Figure D.3

in Appendix D).
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Figure 6.6: Development of sleep duration with age
Distributions for sleep duration on weekends split up by gender for different age groups: A age 19–24, B age 40–44,
and C age 60–67. The development of average sleep duration by age group split up by gender and day type (week‐
end/weekday). The red/orange colors correspond to women, light/dark blue colors correspond to men, darker colors
represent weekdays and lighter colors signify weekends. The colored envelopes display 95% CIs around each age group
mean D. The equally weighted, between gender sleep duration difference by age group with 95% CI on weekends E and
weekdays F.

Sleep duration Now we turn our attention to sleep duration where Figure 6.6D depicts the

development of aggregated averages with age. Sleep duration generally decreases with increasing age,

except on weekdays from age 55-67 where there is a slight increase. The weekend-weekday contrast

nearly persist for all age group, although the differences grow smaller from age 50-54 for women,

and 55-59 for men. Women sleep on average always more than men, across the entire lifespan. This

is highlighted on Figure 6.6E (weekends) and F(weekdays) which show the difference of sleep dura-

tion by gender and age group from the equally weighted average of the curves for men and women.

The mixed effects model for sleep duration generally confirms the trends observed for the aggregated

raw data visible in Figure 6.6D (see Table D.3 and Figure D.4 in Appendix D). The most prominent

discrepancy is the different rate of change in sleep duration with age (between aggregated averages
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on Figure 6.6 and mixed effects model) resulting in less prominent gender differences than observed

on Figure 6.6D. Consequently, the curves for men and women come close to overlap from age 55 to

67 (see Figure D.4 in Appendix D). The aggregated raw data estimates women at age 40–44 to sleep

23± 1.7 minutes longer than men, whereas the model estimates the difference to be 11± 1.0 (95 %

CI).

6.3 Can policy and gender roles effect sleep?

Societal structure such law, policy, culture and other aspects, can have huge effects on human life.

Thus far I have identified distinct regional differences in sleep patterns most probably rooted in

cultural differences, as well as life-stage dependent gender differences. Now I explicitly examine

whether laws regarding retirement and gender roles can effect sleep.

Effective retirement age Here I explore whether law and policies can effect age-related

changes in sleep by examining whether I am able to detect signals of effective retirement in the study

sample. I use mixed effects model where measures are nested within user (random effect) and age,

gender and country are fixed effects, with a three-way interaction term. I conduct the analysis for

three of the countries with the most data in our sample; Japan, Germany and the United Kingdom,

which are chosen because of the following reasons: i) to make sure each country contained a suf-

ficient number of users and amount data, ii) to ensure there would be at least one country from

Asia and one from Europe (to explore regional differences) and iii) to be able to reference accessible,

official records on effective retirement age for each country. Figures D.5-D.7 in Appendix D illus-

trate the estimates of sleep onset, offset and duration with mixed effects model, and Tables D.4 and

D.5 list out exact numbers of predicted outcomes for selected ages, separately for men and women,

residing in Germany and Japan. A study exploring changes in sleep duration and timing during re-

tirement found the following results, and I quote: “Transitioning to retirement is associated with
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longer sleep duration, later bedtimes, and later wake times. These changes were detectable about

1 y post-work transition and were persistent up to 3 y later”247. I use this example to assess when

retirement occurs in the study sample. Specifically, I require increase in sleep duration and delay

in both sleep onset and offset to proxy for possible changes in work demand. From the exact esti-

mates in Table D.4, referring to individuals living in Germany, I observe increase in sleep duration,

and bed and wake-time become later after 55 years of age for women and 60 years of age for men

in Germany. The increments are small and changes occur smoothly towards the age threshold, 67.

Thus, decreased workload and more flexible work-schedules may begin to occur sometime after 55

years of age for women and 60 for men living in Germany. OECD reports effective retirement age

in Germany at 64 (estimated from numbers from 2013-2018), thus a relatively good match with the

study sample248. Similarly, Table D.5 provides exact estimates of sleep onset, offset and duration

for men and women living in Japan (with mixed effects model). I identify a slight increase in sleep

duration for women aged 58 and men at 65, but only a decrease or plateau for sleep onset and offset.

Thus, transition toward flexible work schedules or retirement is not apparent in these sleep out-

comes before 67 years of age in Japan. This aligns well with official records that indicate the effective

retirement age is 71 for men and 67 for women residing in Japan248.

Gender Roles & Parenting Secondly, I explore gender inequality in sleep quality by using in-

formation about parent mobile application usage to explore life-stage differences in nighttime awak-

enings. Sleep was recorded in 1-min epochs, thus only wake time after sleep onset (WASO) greater

than 60 s were registered by the wearable devices. The percentage of users with nonzero median

WASOwas plotted by age group and gender in Figure 6.7 (taken frommy paperGender differences

in nighttime sleep patterns and variability across the adult lifespan: a global-scale wearables study26).

There is a clear separation between men and women in terms of nighttime awakenings around age

19-39 (see Figure 6.7), and incidentally, these are the years in which people are most likely to pro-
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create249. I investigated the hypothesis that increased prevalence of nighttime awakenings among

women during early adulthood could be associated to infant-rearing, young children exhibit irregu-

lar sleep patterns for the first two years of their life250. I explicitly analyse nighttime awakening for

age group 19–39 or where the curves for men and women in Figure 6.7 diverge. To infer parental

status and infant-rearing, I use information about aggregated mobile phone app usage. Specifically,

I anonymously identify users as probable parents if they have installed and use apps intended for

parents with young children, which I call ‘parent apps’ (see further details about parent app classifi-

cation section D.4 in Appendix D).

Approximately 13.5 % of women aged 19-39 without parent app usage have a non-zero median

WASOwhile that prevalence is 27.1 % for the age matched group with parent apps installed (ab-

solute difference of 13.6 %). However, I find 8.6 % of men (aged 19-39) without parent app usage

to have non-zero medianWASOwhile that prevalence is 11.1 % for men with parent apps in use,

thus the absolute difference is 2.5 % and considerably lower than the 13.6 % difference between the

female groups.
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Figure 6.7: Gender inequality in sleep quality
The plot illustrates percentage of people with non‐zero median WASO, by age group and gender. The red color cor‐
responds to women and blue color to men. The table below illustrates the percentage of users with non‐zero median
WASO within groups of users that do, or do not have parent apps in use, separately for men and women.

Furthermore, I find women (age 19–39) with parent app installed on their devices to have a sig-

nificantly different distribution of median (denotedM)WASO than age-matched women with-

out these application in use (estimated with two sample Kolmogorov–Smirnov (KS) statistics,

p = 9.66x10−21), where MWASOwomen w. parent app = 184 s andMWASOwomen wo. parent app = 65

s. By comparison, the distribution of medianWASO for young adult men with parent app in-

stalled does not differ statistically (estimated with two sample KS statistics p = 0.228, where

MWASOmen w. parent app = 52 s andMWASOmen wo. parent app = 37 s. Similarly, I do the same compar-

ison but only for users with non-zero medianWASO (MWASO ̸= 0). I find women (aged 19–39)
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with a proxied parental status to have a significantly different distribution of mean values (denoted

μ) for their WASO than similarly aged women without parent apps (estimated with two sample KS

statistics, p = 1.38x10−14) where μWASOwomen w. parent app = 1105 s and μWASOwomen wo. parent app =

874 s. In contrast, when the same comparison is carried out for men, I find that their distributions

not to differ significantly (estimated with two-sample KS statistics, p = 0.207) where μWASOmen w. parent app =

905 s and μWASOmen wo. parent app = 867 s.

Conclusion

I find distinct regional differences between sleep patterns within Eastern (Asia) andWestern (N-

America & Europe) countries. Those living in the East go on average later to bed on weekdays, while

both groups wake up at the same time. The pattern is reversed on weekends, where both groups

seem to fall asleep the same time but residence inWestern countries wake up later. These differences

in bed and wake-time result in longer average sleep duration in theWest, both on weekends and

weekdays. This is in accordance with findings from a recent large scale study exploring geographic

disparities with data from wearable devices46.

I study how sleep timing and duration develops with age, but the human phase of preference has

been shown to advance to earlier hours with age15. I confirm those findings but also expand on

them, by documenting the underlying dynamics between sleep onset and offset across age groups

and genders. Men tend to have a later sleep onset than women up until 50–54 years of age, while

both groups wake-up at similar hours up until age 35-39 but thereafter, women tend to wake up

later. The overlap in wake-time between men and women up until middle adulthood may be due to

aligned external demands such as attending university, work, raising young children and more. By

exploring sleep start and end, rather than just midsleep as commonly used in epidemiological sleep

studies, I capture these gender differences which have not been reported before.

I compare my estimates of classical epidemiological measures to other large scale studies, and find
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considerably lower levels of social jetlag in my sample across all observed age groups compared with

the values reported by Roenneberg et al.44. I find the discrepancies partially due to mismatch be-

tween global and regional circadian preferences, but also likely recall biases linked to self-reports via

questionnaire and/or other unobserved differences. This highlights the importance of accounting

for underlying country-level differences when studying sleep misalignment to prevent biased global

estimates.

I perform an exploratory analysis of the possible effect of retirement in age-related sleep changes.

Laws and policy regarding retirement varies by country, thus I explore effective retirement in se-

lected countries, and demonstrates that different regional policies appear to affect people’s sleep

patterns. Furthermore, I identify gender inequality in sleep quality during early adulthood probably

driven by infant-rearing, which other studies have found as well121.
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Það er margt semmyrkrið veit,

minn er hugur þungur.

Oft ég svarta sandinn leit

svíða grænan engireit.

Í jöklinum hljóða dauðadjúpar sprungur.

Jóhann Sigurjónsson

7
Travel & Sleep

Interruptions to everyday life can potentially disrupt the human daily rhythm of rest and activity

for a period of time. Here I explore how travel and new resting environment can effect sleep. Travel

has increased dramatically over the past two decades, with the number of air-travelers nearly tripling

but there are good reasons to believe that travel has negative impact on sleep251. The First night

effect (FNE) is characterised by difficulties with falling asleep and prolonged sleep-onset latency. It

is found to take place on the first night of sleep in new environment and is a consequence of a single
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brain-hemisphere displaying elevated alertness in unfamiliar surroundings125,126,127. Furthermore,

the journey to the destination can also have negative impact on sleep but travel fatigue and jet-lag

are conditions which can cause sleep complications128,252,253,129,130,131,132. Lastly, I note that all

Figures in this chapter are reused from paper 2.

7.1 The change in sleep during travel depends on typical behavior at home

The data In order to classify nights as home/travel I transform raw GPS to stop-locations using

the infostop algorithm254 (with recorded start and end time). A sleep location is defined as the stop

location with start-time closest to the sleep onset, where the user does not leave the location until

after the sleep has ended. The location where most nights take place is defined to be user’s home

location, but I only include users if their percentage of nights-at-home is higher than 70%. From

now on, I refer to nights that take place at least 20 km away from home as travel-nights. The final

data used for analyses consists of 2.4 million weekday nights (6.0% away from home) from about

19 300 users and 0.8 million weekend nights (9.3% away from home) from 13 300 users.

How to measure the change in sleep due to travel Figure 7.1A illustrates an exam-

ple nights recorded for a single user. To quantify the change in sleep due travel relative to at home

behavior, I define a new variable Δs = μs −Mhome where s ∈ {home, travel},M denotes the

median and μ the average. The reason why I estimate Δs for home nights as well, is due to skewness

arising from individual level distribution of sleep duration (introduced in Chapter 5), but this will

be explained in more details below.

The linear dependence of Δtravel and median sleep duration To explore the relation-

ship between the change in sleep duration due to travel, and typical nighttime sleep at home I start

out with examining the distribution of Δs where s ∈ {home, travel} for users with different me-
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dian sleep duration. In fact, I define sleep groups by rounding individual median sleep duration to

the nearest half hour bin. Figure 7.1B illustrates that Δtravel is positive for individuals who obtain

short nighttime sleep at home, but quantity decreases as median sleep duration increases. This is

further explored on Figue 7.1C where the average Δtravel is estimated for each sleep group and il-

lustrated with the standard error of the mean (SEM). From this plot, it is evident the the change in

sleep duration due to travel depends linearly on median sleep duration at home. Thus, those who

habitually attain short nighttime sleep at home (<6.5 hrs) tend to catch more sleep when nights take

place away from home while those who typically sleep a lot at home (>8 hrs) are likely to sleep less

during travel-nights.

The baseline effect for home nights arising from skewed distribution In Fig-

ures 7.1B &C, I also plot Δhome = μhome −Mhome (blue color). This is to illustrate there is a base-

line effect, which relates to the observed systematic change in sleep duration away from home. The

baseline effect refers to decreasing linear trend of Δhome (blue line in Figure 7.1C), which shows

that there is a systematic difference between mean and median sleep duration for home nights. In

chapter 5 I presented the skew of individual level distribution of sleep duration, and showed that it

was linearly dependent on median sleep duration. I believe this pattern arises because of sleep-wake

homeostasis, a physiological process which regulates sleep pressure13. To conclude, there is a baseline

effect for the measure of Δs for home nights, and to obtain the absolute effect of travel on sleep, I

compare Δtravel with Δhome.

Robust of results despite imbalanced sample sizes of travel and home nights I

directly compare Δtravel and Δhome by plotting the distributions in Figure 7.1D. There is a clear dis-

tinction between these two distributions, where Δtravel is much broader. To rule out that these huge

quantitative differences are occurring due to imbalanced sample size of travel and home nights, I
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Figure 7.1: Sleep activity patterns and the relative change in sleep duration for travel‐nights
A: For every individual we measure sleep onset, offset and duration for each recorded night. From these records we
derive three measurements; median sleep duration at home (Mhome) and average sleep duration at home and away
from home (μhome & μtravel). To measure change in sleep duration due to travel, relative to typical behaviour at home, we
derive a new measure Δtravel = μtravel −Mhome. B: The distributions of Δtravel (orange) and Δhome (blue) for groups
with different median sleep duration where users are grouped together by rounding their median to the nearest half‐
hour bin (referred to as sleep groups). C: The average Δtravel for all sleep groups (median duration ranging from 4.5 ‐ 9.5
hours) with the standard error of the mean (SEM). D: The distribution for Δhome, Δhome DS and Δtravel for all users. E: A
larger visual representation (more narrow range of the x‐axis) for the distribution for Δhome and Δhome DS from panel D.
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perform a down-sampling of home nights from individual’s distribution of sleep duration, where

the number of home nights are sampled to be as many as travel nights. The down-sampled distribu-

tion (Δhome DS) is illustrated in Figure 7.1D and with a narrower x-axis in Figure 7.1E. The down-

sampled distribution is in fact, slightly narrower than Δhome and remains quite different from the

broad range of behaviour observed for the distribution of Δtravel (for a more details see section E.1

in Appendix E). The illustrations in Figure 7.1 only shows behaviour on weekdays since I follow

the convention of sleep research and analyse weekdays and weekends separately. In next section, I

include data from weekends to understand the effect of travel on weekend nights as well.

7.2 Effects of travel onweekend-nights & the disproportional impact on mis-

aligned individuals

Figure 7.2A depicts how social jetlag distributes across the study sample where 80 % of the users

have social jetlag ranging from 9-98 minutes. Social jetlag was introduced in Chapter 2, but it quan-

tifies the difference between weekend and weekday sleep timing and was designed to measure mis-

alignment between the biological and social clock184. Figure 7.2B shows that social jetlag depends

on sleep duration and individuals with high social jetlag typically sleep little on weekdays (4-5 hours)

but a lot on weekends (9-10 hours). Figure 7.2B illustrates the distribution of Δtravel for individuals

with different range of social jetlag (defined by percentiles from the overall distribution). It is clear

that the higher the social jetlag, the more sleep is gained during travel nights on weekdays, and to the

contrary – more sleep is lost with increasing social jetlag for weekend travel nights.

Next I explore how travel effects sleep for weekend-nights. Figure 7.2D depicts the distribution of

Δtravel for each sleep group on weekdays (dark orange color) and weekends (lighter orange color),

and the dotted horizontal lines mark the distribution quartiles. Overall the same pattern is identified

for weekend and weekday travel-nights; the change in sleep duration due travel decreases as median
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sleep duration increases. However, the relative change is slightly larger in the positive direction (line

pushed further up on y-axis) for weekday nights, observed when comparing the distribution quar-

tiles in Figure 7.2D and the average Δtravel by sleep groups on Figure 7.2E. These differences can be

explained by the fact that people are usually more constrained by time and alarm clocks on week-

days, consequently sleeping less than they might need and therefore more susceptible to gain sleep -

the opposite is expected for weekends; more room to lose sleep184,44.
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Social jetlag measures the misalignment between biological

circadian preferences and the social clock
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Figure 7.2: Disproportionate effect of travel on individuals with high social jetlag and the connection between weekends
and weekdays
A: Defines social jetlag and visualises how it distributes across the user sample. B: Box‐plots of social jetlag for users
with different range of sleep duration. The horizontal lines represents the median, box limits correspond to upper and
lower quartiles, whiskers define the 1.5x interquartile range and points are outliers. C: Distribution for Δtravel on week‐
ends and weekdays for groups of users with different range of social jetlag (defined by percentiles) D: The distributions
of Δtravel for sleep groups (half‐hour bins for median sleep duration) by day type – weekends (lighter orange color),
weekdays (darker orange color) and the dotted lines mark the quartiles of the distributions. E: The average Δtravel plot‐
ted with the standard error of the mean (SEM) by sleep groups on weekdays (dark orange color) and weekends (light
orange color)

7.3 The change in sleep timing for travel-nights

Thus far, I have observed a systematic change in sleep duration due to travel, but one might wonder

how that translates over to changes in sleep timing. I explore the effect of travel on bed and wake

time in similar manner as I did for sleep duration, where I calculate Δonset travel = μonset travel −
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Monset home and Δoffset travel. These quantities are then aggregated into averages by user groups, de-

fined by percentiles (10th, 25th, 50th, 75th, & 90th) of the distribution of median sleep duration

(see Figure 7.3A1 for weekdays and A2 for weekends) and illustrated with SEM in Figure 7.3B1 for

weekdays and B2 for weekends.
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Figure 7.3: Change in sleep onset and offset for travel‐nights
A.1 & A.2: The distributions of sleep duration on weekdays (A.1) and weekends (B.1) with the 10th, 25th, 50th, 75th
and 90th percentiles marked with dotted lines. B1 & B2: The change in sleep onset and offset relative to typical home‐
sleep (Δonset travel and Δoffset travel) aggregated into averages (with SEM) by user groups defined by percentiles of sleep
duration illustrated on (A1 & A2). C1 & C2: The distributions of Δonset travel and Δoffset travel for all users in the sample.
D1 & D2: The distributions of Δonset travel and Δoffset travel for users with the lowest sleep duration on weekdays (D1)
and weekends (D2) (bottom 10th percentile) E1 & E2: The distributions of Δonset travel and Δoffset travel for users with the
highest sleep duration on weekdays (E1) and weekends (E2) (90‐100th percentile)

The relative change in sleep onset due to travel Figure 7.3B1 and B2 reveal that

Δonset travel seems to have a linear relationship with typical sleep duration at home and bedtime ad-

vances from later hours (relative to typical behaviour at home) as typical home-sleep duration in-
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creases. Those who sleep less than 6.2 hours on weekdays (bottom 25th percentile) go to bed earlier

on weekday travel-nights and those sleeping 7.5 hours or less (bottom 50th percentile) advance their

bed-time to earlier hours on weekends when nights take place away form home.

The relative change in sleep offset due to travel Wake time during travel tends to be

later for all groups on weekdays but earlier on weekends (see yellow curves in Figure 7.3 B1 and B2).

The users that change wake-time marginally the most (relative to typical at-home habits), are users

in the bottom 10th percentile on weekdays (for the distribution of sleep duration) and top 10th

percentile on weekends, waking up 33± 2 minutes later on weekdays and 46± 2 minutes earlier

on weekends during travel-nights. These are the groups most likely to include individuals with high

social jetlag (because of their rank in the distribution of sleep duration), which I showed before are

disproportionately effected by travel compared to those with lowmagnitudes of social jetlag (see

section 7.2) The top 10th percentile on weekdays and bottom 10th percentile on weekends change

their behaviour the least (shift of 8± 2 minutes in wake-up time). The middle groups, 10-90th per-

centile in the distribution of median sleep duration, exhibit more homogeneity on weekdays where

the relative change wake-time on weekdays is 22-28 minutes later, whereas the range is broader on

weekends and I observe a slight linear dependence with typical sleep duration at home.

The different patterns observed in the change of sleep timing due to travel on weekends and week-

days can be explained by the constraints that the social clock induces. Sleep has a tendency to be

occurring at earlier hours than is desired on weekdays due to morning work schedule, while likely

occurring at hours closer to biological preferences on weekends184,44. Thus, there is more room to

shift sleep timing to later hours on weekdays and flexibility to advance bed and wake time to earlier

hours on weekends. That is exactly what I observe in Figure 7.3; bed and wake-up times is shifted to

later hours for nearly all groups on weekdays, and on the contrary to earlier hours on weekends.
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7.3.1 Effect of Demographics & Robustness of results

In the analysis above, I did not control for any heterogeneity in terms of age, gender and country

of residence. In order to explore whether the change in sleep due travel depends on demographic

covariates, I employed a mixed effects model. Moreover, I do so to validate the patterns identified

in Figure 7.1-7.3 with the aggregated raw data. Overall the results were confirmed and the most

influential covariate was region of residence (East/West). An important parameter in the analysis is

howmany nights of travel-nights user must have to be included in the data-set (Ntravel nights = 2.

To confirm the robustness of the results, I explore whether they depend on the minimum number

of travel days required per user. Estimates of fixed effects are examined, while the inclusion criteria

changes, ranging fromminimum 2 to 12 travels days per user. Overall the same results are found

when number of travel days required per user is increased, with some indications of a slight change

in magnitude (all of these results can be found in Paper 2).

Conclusion

I observe a systematic change in sleep duration for travel-nights, relative to typical at-home be-

haviour. The change due to travel depends linearly on typical sleep quantity at home and decreases

as median sleep duration increases. Individuals are inclined to gain sleep during weekday travel-

nights, but rather lose sleep during weekend-nights. That can likely be contributed to constraints of

the social clock resulting in overall less sleep duration on weekdays at home, and longer nighttime

sleep on weekends44. That is further supported by the fact that misaligned individuals (individuals

who have high social jetlag) are disproportionately effected by travel184,44. Wake time during travel

is on average advanced to later hours on weekdays compared to typical nights at home, but to earlier

hours on weekends. The change in bed time for travel nights is linearly dependent on typical sleep

duration at home, and is advanced to later hours as median sleep duration increases. That empha-
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sizes the fact that wake time is a more controllable factor than bed-time when it comes to sleep, since

alarms can wake people up at specific hours but cannot impose sleep onset at a predefined point in

time. My previous work indicated the same results, where individuals seemed to catch longer night-

time sleep on weekends by shifting their bed-time marginally more than wake time26.

Generally, travel was believed to have deleterious effects on sleep, but the analysis above reveals it has

a more complex impact128,252,130,132,131,253,129. The main finding is that sleep during travel tends to

have a balancing effect, where those who generally obtain short nighttime sleep at home, sleep more

than at home when travelling, while individuals whose overall nighttime is characterized by long

duration, tend to sleep less when nights take place away from home.
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We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

T.S. Elliot

8
Discussion

Drawing on global and large-scale sleep activity data-set, I find the daily reoccurring state of night-

time sleep to produce complex and multidimensional patterns across the population. Research

within the field of sleep epidemiology has been limited to data with self-reported estimates of sleep,

but today sleep recording technology has been revolutionised. Wearable devices can easily be em-

ployed to obtain high-resolution sleep recordings over long period of time. Here I explore whether

there are any salient sleep patterns missed, when traditional sleep epidemiological metrics are used
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to analyse high-resolution sleep recordings. In consequence, I propose new quantitative metrics and

methods to study data-sets with multi-night recordings of sleep. Furthermore, I seek to validate and

expand upon fundamental knowledge regarding age-related changes for sleep timing and duration,

as well as explore life-stage dependent gender differences. I briefly explore how cultural context,

gender roles and regional law can influence sleep. Lastly, I investigate how travel and new resting

environment effects sleep and present results that have not been documented before.

The need for newmetrics? I explore behaviors among groups of users with similar estimates

of traditional sleep epidemiology measures, such as habitual sleep duration, chronotype and social

jetlag71,184,53. I find that these users groups can be comprised of behaviors that differ largely with

respect to multiple characteristics of sleep. I conclude that these metrics are valuable, but only mea-

sure one aspect of the multi-dimensional process of sleep. I present alternative set features to quan-

tify different aspects of sleep, which are partially built upon previous research where I considered i)

the importance of analysing sleep separately for weekend and weekday nights, ii) the misalignment

that the social clock might induce and iii) regarded qualitative information that sleep regularity en-

tails44,31,35.

Complex patterns of sleep I find high-resolution recordings of sleep from thousands of

users from all over the world, to manifest complex and multidimensional patterns patterns. In chap-

ter 1, I summaries findings frommultiple studies, and conclude that sleep is sensitive, or reactive

to contextual, environmental and behavioral factors. This reactivity is reasonable in evolutionary

context, but humans are in a vulnerable state while sleeping, thus we likely evolved this reactivity

to avoid any harmful situation. The theory of ‘social acceleration’ argues that modern day human

life is moving faster, our existence are cluttered with more information than ever and time is a scarce

commodity255,256,257,258,259,260. The compound of the reactivity of sleep to its surroundings and
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high paced modern life, is likely inducing these complex patterns of sleep.

Empirical measure for direction of preference I present a novel data-driven metric,

skew, which quantifies individual direction of preference and is proposed to measure whether phys-

iological sleep need is met or not. This measure is simply skewness of individual distribution of

sleep duration, and quantifies disproportional tendency for long or short nights, relative to typical

behavior. The only existing way to quantify whether an individual is obtaining sufficient amount

of sleep is by comparing their habitual sleep duration to the recommended amount (7-9 hrs for

adults)196,197,198,199. These recommendation are inferred from epidemiological studies by examin-

ing health outcomes for different range of self-reported habitual sleep duration. Recently, the US

National Sleep Foundation conducted a scientifically rigorous review on the matter with an expert

committee, which concluded that medium sleep duration from 4 up to 7 hours may be appropriate

for some people197. Guidelines regarding healthy amount of sleep should be held to high standards,

but arguably may not apply to all and the metric of skew may be the first to identify individuals with

sleep needs outside the range of 7-9 hrs.

Development of sleep durationwith age & life-stage dependent gender differ-

ences I find average sleep duration to decrease over the lifespan and women sleep on average

more than men for all age groups. These dynamics have been documented before and believed to

have both biological and social basis44,46,261,247. I find the difference in average sleep duration be-

tween men and women the largest during young to middle adulthood. That observation coincides

with part of the lifespan when sleep interruptions are considerably more common among women

than men, likely due to the different burden of infant-rearing. Thus, imbalanced care giving de-

mands might contribute to the gender differences in sleep duration during young to middle adult-

hood.
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Development of sleep timingwith age & life-stage dependent gender differences

Previous epidemiological studies have demonstrated that the phase preference advances to earlier

hours with age, and men on average are later chronotypes than women up until 40–50 years of age.

After that point, men’s chronotype overlap or become earlier than women’s15. My exploration

of changes in sleep timing over the lifespan confirm these findings but also expand upon them, by

documenting underlying dynamics between sleep onset and offset across age groups for men and

women separately. I find that men tend to have a later bed-time than women up until 50–54 years

of age, while up until the age range of 35–39 there is no significant difference in wake time. There-

after or frommiddle to late adulthood, women tend to wake up earlier than men. The inversion

in gender differences in bed and wake-time may be indicative of gender-gaps in both domestic and

labor demands.

Observed effects of cultural context & regional policy on sleep Today there are

documented evidence regarding large disparities in sleep patterns across cultures, with the most

prominent contrast between Eastern (Asia) andWestern (Europe and North America) geographic

regions30,86,46,89. I confirm these findings with a brief exploration where residence in the East overall

sleep on less than those in the West. On weekdays the difference is due later sleep onset for Eastern

residence (same sleep offset), while the pattern is reversed on weekends where both groups go to

bed at similar hours but Western residence wake-up later. Furthermore, explore whether regional

policy effects age-related changes in sleep patterns in three countries, Japan, Germany and United

Kingdom. I find that sleep onset and offset begin to advance to later hours in late adulthood for

residence Germany and the United Kingdom, but not evident for Japan within the age range of

the sample. These results coincide relatively well with official records about effective retirement

age248. Thus these regional difference in transitioning out of the labor force may influence age-

related changes in sleep behavior within the country-level sphere.
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Travel serves to balance skewed sleep patterns The change in sleep duration due to

travel depends linearly on median sleep at home, a pattern identified both for weekdays and week-

ends. The main finding is that sleep during travel serves to balance at-home sleep behavior. Those

who typically obtain short nighttime sleep at home, sleep more when travelling relative to home be-

havior, while those who maintain overall long median sleep duration, tend to sleep less than at home

during travel-nights. The effect of travel on sleep has not been studied extensively nor for a cohort of

this size before262,263,264,265,128,266,267,268,269. Interestingly, one of these studies identified the same

pattern as I do – travel was negatively correlated with sleep duration on weekdays among kite surfers

(N=94)267. Generally, travel is believed to have adverse effects on sleep, but my results imply a more

complex impact128,252,130,132,131,253,129.

Future outlook Finally, I hope that this study provides evidence and spikes interest for the

richness of data stemming from consumer wearable devices. Hopefully the landscape of sleep re-

search will transition to fully accept the use of wearable technology to explore and understand com-

plex patterns of human sleep in modern society. I am excited for new paradigm of discoveries, and

hopeful for changes.
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A
Chapter 3

A.1 Parameter estimation inMixed EffectsModels

Parameter estimations for mixed effects model can not be written exactly, and therefore a maxi-

mum likelihood estimation (MLE) used. MLE is a method to estimate parameters of appropriate

probability distribution for observed data by maximizing a likelihood function221. In mixed effects

models, MLE is a function of the observations and the model parameters, which returns probability
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of observing a particular observation y, given a set of model parameters. The mixed effects model

parameters are a vector of the fixed effect, β, and γ is the vector of parameters used in the two covari-

ance matricesG andR. The covariance matrixV, which describes the covariance between any two

observations in the data set, can be calculated directly from the matrix representation of the model:

V = Var(y) = Var(X β+ Z u+ ε) =

Var(X β) + Var(Z u) + Var(ε) =

Var(Z u) + Var(ε) =

ZVar(u)Z′ + Var(ε) =

ZVar(u)Z′ +R

variance of fixed effects are zero and Z is constant.

Other matrix reduction methods applied are based on rules of calculus for stochastic variables. The

negative log likelihood function is given by:

ℓ(y, β, γ) =
1
2
{nlog(π) + log|V(γ)|+ (y−Xβ)′V(γ)−1(y−Xβ)}

∝
1
2
{log|V(γ)|+ (y−Xβ)′V(γ)−1(y−Xβ)}

and the parameters are actually found by minimizing the negative log likelihood function.

(β̂, γ̂) = argmin(β,γ) ℓ(y, β, γ)

The minimum is found in three steps:
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1. Regardless of how the likelihood function estimates the optimal parameters to be, the esti-

mates of fixed effects β can always be expressed as a function of random effects parameters

where B̂(γ̂) = (X′(V(γ))−1X)−1X′(V(γ))−1y

2. The estimates of random effects are found by minimizing ℓ(y, β̂(γ̂), γ)

3. Fixed effects are estimated by β̂ = β̂(γ̂)

However, the maximum likelihood method tends to underestimate the random effects and therefore

an alternative criterion is used; the restricted (or residual) maximum likelihood (REML), which is

considered the gold standard of parameter optimization in mixed effects models215,221,218,228.

The REMLmethodology optimizes the full residuals rather than the observations (y), which can

be justified by the fact that the residuals contain a lot of information about the variance parameters

(V). In traditional linear models, (without fixed or random effects), the error term does not depend

on the variance structure and residuals are independent from the mean parameter estimates. The

residuals in mixed effects models is defined as215

e = y− β̂X

and depend on the variance since β̂ is defined as

β̂ = (X′V−1X)−1X′V−1X

If we consider residuals independent from the fixed effect estimates, then the likelihood function

of the original data can be expressed as product of the likelihoods for residuals and parameter esti-

mates:

L(y, β, γ) = L(e, β, γ)× L(β̂, β, γ)
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Applying negative log likelihood function, ℓ, on L and isolating the expression with residuals on one

side gives:

ℓ(e, β, γ) = ℓ(y, β, γ)− ℓ(β̂, β, γ)

Thus, the likelihood of residuals is the original likelihood subtracted the likelihood of parameter

estimates. The original likelihood is expressed with the ’true’ fixed effects, β, whereas the likelihood

of parameters is expressed with β’s estimated from the data and the distribution expressed as

β̂ ∼ N(β, (X′V−1X)−1)

If p denotes the number of parameters estimated in the mixed effects model, the multivariate normal

negative log-likelihood is defined as:

ℓ(β̂, β, γ) =
1
2
{p× log(2π) + log|(X′V(γ)−1X)−1|+ (β− β̂)′X′V(γ)−1X)−1(β− β̂)}

Since the β estimate is unbiased, it will always be estimated as β̂ and the last term does not contribute

to the likelihood and therefore the residual maximum likelihood is formulated as215

ℓre(β, γ) =
1
2
{nlog(2π) + log|V(γ)|+ (y−Xβ)′(V(γ))−1(y−Xβ)− p× log(2π)− log|(X′(V(γ))−1X)−1|} =

1
2
{(n− p)× log(2π) + log|V(γ)|+ (y−Xβ)′(V(γ))−1(y−Xβ)|+ log|(X′(V(γ))−1X)|}

∝
1
2
{log|V(γ)|+ (y−Xβ)′(V(γ))−1(y−Xβ) + log|(X′(V(γ))−1X)|}

The random effects are not statistical parameters in the model, and therefore not typically estimated.

In some instances they contain desirable information and are then ‘estimated’ with empirical Bayes
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method, the matrix notation is formulated as:

û = GZ′V−1(y−Xβ) (A.1)

These ‘estimates’ of random effects are also called the posterior means and in statistics, referred to as

prediction225,221,220.

Significance of fixed effects

Typically in mixed effects model the point of interest are the estimates of fixed effects rather than

random effects. Now I will examine how the significance of these are estimated. A linear combina-

tion of fixed effects model parameters Lβ′ can be estimated if and only if there is vector λ such that

λX = L′. Estimate of fixed effects β̂will then be:215

Lβ̂ = L(X′V−1X)−1X′V−1y

which can reduced to L′(X′V−1X)−1L applying the rule of cov(Ax) = Acov(x)A′ and other

matrix calculations. Considering that Lβ′ = c is true, then:

Lβ′ − c ∼ N(0,L(X′V−1X)−1X′V−1y)

TheWald test can be applied and is formulated as215:

W = (L′β− c)′L(X′V−1X)−1X′V−1y(L′β− c) (A.2)

W has an approximately χ2df1 distribution where he degrees of freedom is the number of elements

eliminated by the hypothesis. A better approximation can be attained with theWald F-test where
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F = W
df1 , combined with Satterthwaite approximation which supplies the effective degrees of

freedom df2 where the assumption is that F is Fdf1,df2 distributed. The p-value for the hypothesis

L′β = cwill then be215:

PL′β=c = P(Fdf1,df2 > F)

The Satterthwaite approximation can both be applied in the case of parameter estimation with max-

imum likelihood or residual maximum likelihood methodology231. Simulation indicate a Type 1

error is close to 0.05 when models are fitted using REML and p-values estimated with Satterhwaite

approximation. These are considered anti-conservative but the error rates were sensitive to number

of levels and items which became more acceptable with higher number of groups and items231.
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Chapter 4
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B.1 Comparison of study sample toWalch et al. data-set

Country Average sleep duration [hrs]
Walch et al.

Average sleep duration [hrs]
Study sample

Number of users in
study sample

Netherlands 8.14 7.49 586
Belgium 8.10 7.37 202
France 8.10 7.44 2409
Australia 8.10 7.34 677
Canada 8.03 7.22 173
Italy 7.94 7.18 898
United Kingdom 7.94 7.41 3900
United States 7.92 7.08 941
Switzerland 7.90 7.33 518
China 7.89 6.96 2359
Denmark 7.87 7.32 473
Spain 7.86 7.09 3394
Mexico 7.81 6.87 461
Germany 7.74 7.37 7140
Brazil 7.62 6.91 201
Japan 7.50 6.47 17231
Singapore 7.48 6.72 275

Table B.1: Comparison of average sleep duration from the study sample to statistics from the data‐set in Walch et al.
study

Country Average sleep onset [hh:mm]
Walch et al.

Average sleep onset [hh:mm]
Study sample

Number of users in
study sample

Australia 22:49 23:43 677
Belgium 22:53 00:03 202
United States 22:57 00:11 941
Canada 23:03 00:19 173
Denmark 23:05 23:42 473
Switzerland 23:09 23:49 518
Netherlands 23:09 00:03 586
United Kingdom 23:11 23:53 3900
France 23:20 00:03 2409
Germany 23:21 23:42 7140
Japan 23:29 00:23 17231
Mexico 23:32 00:28 461
China 23:36 00:42 2359
Brazil 23:36 00:25 201
Italy 23:45 00:17 898
Singapore 23:48 00:37 275
Spain 23:51 00:43 3394

Table B.2: Comparison of average sleep onset from the study sample to statistics from the data‐set in Walch et al. study

103



Country Average sleep onset [hh:mm]
Walch et al.

Average sleep onset [hh:mm]
Study sample

Number of users in
study sample

Australia 06:52 07:10 677
United States 06:52 07:23 941
Denmark 06:53 07:09 473
Belgium 06:56 07:32 202
Japan 06:58 06:58 17231
Switzerland 06:59 07:16 518
Canada 07:03 07:39 173
Germany 07:07 07:11 7140
UK 07:07 07:25 3900
Brazil 07:11 07:26 201
Singapore 07:15 07:26 275
Netherlands 07:15 07:40 586
Mexico 07:19 07:27 461
France 07:24 07:36 2409
China 07:27 07:45 2359
Italy 07:39 07:36 898
Spain 07:40 07:56 3394

Table B.3: Comparison of average sleep offset from the study sample to statistics from the data‐set in Walch et al. study

B.2 Demographic representation

I compare age statistics (median age) in the study sample to information provided by the United

Nation Population Division (UN) for the five countries with the most users in the data-set in Ta-

ble B.4238. I also compare age standardized BMI statistics of the study sample to population esti-

mates provided by theWorld Health Organization (WHO) in Table B.5239,240.

Country (# users) Study sample
(median age)

UN data-set
(median age)

Japan (N=17231) 45 46
Germany (N=7140) 39 46
Russia (N=5095) 34 39
Taiwan (5028) 40 40
United Kingdom (N=3900) 40 40

Table B.4: Comparison of median age of users from the five countries with the most data in the study sample to popula‐
tion statistics provided by the United Nations
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Country Study sample WHO data set
Male Female Male Female

Japan (N=17231) 24.1 22.8 23.1-24 21.3-22.3
China with Taiwan included (N=7387) 25.2 23.4 23.6-24.7 22.9-24.1
Germany (N=7140) 27.1 26.3 26.5-28.1 24.9-26.8
Russia (N=5095) 26.9 25.4 25.1-26.8 25.5-27.3
United Kingdom (N=3900) 26.5 27.9 26.9-27.7 26.6-27.4

Table B.5: Comparison of age standardized BMI values for users from the five countries with the most data in the study
sample to population statistics provided by the World Health Organization (WHO)3. The range of values displayed for
the WHO data set represents the 95 % confidence interval.
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C
Chapter 5

C.1 Underlying differences across users with same estimates of chronotype,

social jetlag and median sleep duration

On Figure C.1-C.3 we illustrate how different metrics of sleep (sleep duration, bed and wake-time,

weekend-weekday differences, width of sleep onset, offset and duration, and the weekend-weekday

width differences) distributes across users who have one sleep epidemiological metric approximately
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the same.
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Figure C.1: Distribution of different metrics of sleep for users with approximately the same chronotype (∼04:30 and
Ngroup = 2719)
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Figure C.2: Distribution of different metrics of sleep for users with approximately the same social jetlag (∼0.75 hours
andNgroup = 2479) 109



Figure C.3: Distribution of different metrics of sleep for users with approximately the same overall median sleep dura‐
tion (∼7.5 hours andNgroup = 2860)
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C.2 Newmeasure for variability

I introduce a newmeasure to quantify sleep variability. Typically variability is measured as standard

deviation (std) of the distribution for measure, but I rather suggest using the difference between

the 90th and 10th percentile. I consider it more intuitive and provide an example to demonstrate;

imagine the scenario where one has to comprehend either ”John has 0.74 hours std in wake-up time

on weekdays” or ”John wakes up 80 % of the time within a span of 15 minutes on weekdays”. The

two measures correlate nearly perfectly as demonstrated on Figure C.4.
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Figure C.4: Illustrates how width of a distribution (calculated as the 90th percentile minus 10th percentile) correlates
with standard deviation for sleep onset, offset and duration by all day‐types, weekdays and weekends separately
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C.3 Short or long sleep duration but no skew?

I estimate the probability for a randomly sampled individual to belong to different demographic

groups (gender [female/male], age group [19-24/25-29/30-34/35-39/40-44/45-49/50-54/55-

59/60-67] and region of residence (east=Asia/west=Europe &N-America) in the full data-set.

Then I filter the data by certain criteria to obtain two dataframes; i) short median sleep duration

(<6.5 hrs) with no or negative skew (skew<0.25) and ii) long median sleep duration (>8 hrs) with

positive or no skew (>-0.25). For these two different dataframes we look again at the probability to

belong to demographic groups (listed above) and obtain the relative probability by dividing with the

probability of being part of that demographic group in the full data-set.
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Figure C.5: The relative probability that individual belongs to a demographic group in the filtered data with short sleep
duration (<6.5 hrs) and no or negative skew (skew<0.25). Skew is estimated for the distribution of sleep duration for all
day‐types.
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Figure C.6: The relative probability that individual belongs to a demographic group in the filtered data with long sleep
duration (>8.0 hrs) and no or positive skew (skew>‐0.25). Skew is estimated for the distribution of sleep duration for all
day‐types.
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Figure C.7: The relative probability that individual belongs to a demographic group in the filtered data with short sleep
duration (<6.5 hrs) and no or negative skew (skew<0.25). Skew is estimated for the distribution of sleep duration for
weekday‐nights.
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Figure C.8: The relative probability that an individual belongs to a demographic group in the filtered data with long sleep
duration (>8.0 hrs) and positive or no skew (skew>‐0.25). Skew is estimated for the distribution of sleep duration for
weekday‐nights.

C.3.3 Weekends
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Figure C.9: The relative probability that an individual belongs to a demographic group in the filtered data with short
sleep duration (<6.5 hrs) and no or negative skew (skew<0.25). Skew is estimated for the distribution of sleep duration
for weekend‐nights
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Figure C.10: The relative probability that an individual belongs to a demographic group in the filtered data with long
sleep duration (>8.0 hrs) and positive or no skew (skew>‐0.25). Skew is estimated for the distribution of sleep duration
for weekend‐nights

C.4 Skew group characteristics

I plot the distribution of all sleep metrics, by the three skew groups; the 2000 individuals with ei-

ther the most positive, neutral and negative skewed distribution of sleep duration for all day-types,

weekday-nights or weekend-nights respectively Figures C.11–C.13.
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Figure C.11: Distributions of multiple features for the 2000 most positively (red), neutrally (black) and negatively (blue)
skewed individuals. Skew is estimated for the distribution of sleep duration for all day‐types.
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Figure C.12: Distributions of multiple features for the 2000 most positively (red), neutrally (black) and negatively (blue)
skewed individuals. Skew is estimated for the distribution of sleep duration on weekdays.
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Figure C.13: Distributions of multiple features for the 2000 most positively (red), neutrally (black) and negatively (blue)
skewed individuals. Skew is estimated for the distribution of sleep duration on weekends.
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Chapter 6
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D.1 Regional differences
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Figure D.1: The distribution of width (10th percentile subtracted from the 90th percentile) for sleep onset (blue), offset
(yellow) and duration (green) separately by day‐type and residents in either the East (full line) or West (dotted line)
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D.2 Results fromMixed effects models

D.2.1 Sleep onset

Fixed effects Estimate Std.Error Df t-value P(>|t|)
(Intercept) -2.439e-01 6.141e-02 4.753e+01 -3.972 0.000241 ***
age_centered_squared 4.857e-04 4.970e-05 6.969e+04 9.772 <2e-16 ***
weekendTrue 4.887e-01 1.741e-03 1.117e+07 280.716 <2e-16 ***
BMIcategory0 1.605e-01 3.567e-02 6.982e+04 4.499 6.83e-06 ***
BMIcategory2 9.389e-03 1.652e-02 6.967e+04 0.568 0.569778
BMIcategory3 1.039e-01 2.035e-02 7.001e+04 5.106 3.29e-07 ***
genderMALE 2.546e-01 1.291e-02 6.967e+04 19.724 <2e-16 ***
age_centered -1.092e-02 6.427e-04 6.964e+04 -16.983 <2e-16 ***
age_centered_squared:weekendTrue 5.754e-05 5.481e-06 1.118e+07 10.498 <2e-16 ***
age_centered_squared:BMIcategory0 -2.386e-04 1.467e-04 6.947e+04 -1.626 0.103910
age_centered_squared:BMIcategory2 6.793e-05 5.467e-05 6.967e+04 1.243 0.214054
age_centered_squared:BMIcategory3 1.563e-04 7.465e-05 7.000e+04 2.094 0.036235 *
age_centered_squared:genderMALE -2.973e-04 5.302e-05 6.961e+04 -5.608 2.06e-08 ***
weekendTrue:genderMALE -2.341e-02 1.718e-03 1.117e+07 -13.629 <2e-16 ***
weekendTrue:BMIcategory0 -5.131e-02 4.616e-03 1.118e+07 -11.115 <2e-16 ***
weekendTrue:BMIcategory2 6.232e-02 1.787e-03 1.118e+07 34.876 <2e-16 ***
weekendTrue:BMIcategory3 9.841e-02 2.441e-03 1.118e+07 40.318 <2e-16 ***
BMIcategory0:genderMALE -4.704e-02 4.048e-02 6.988e+04 -1.162 0.245187
BMIcategory2:genderMALE 2.895e-02 1.756e-02 6.959e+04 1.648 0.099284 .
BMIcategory3:genderMALE 5.550e-02 2.189e-02 6.988e+04 2.535 0.011236 *
genderMALE:age_centered -1.427e-02 6.810e-04 6.958e+04 -20.947 <2e-16 ***
weekendTrue:age_centered -8.261e-03 7.138e-05 1.118e+07 -115.736 <2e-16 ***
BMIcategory0:age_centered -4.530e-04 2.112e-03 6.886e+04 -0.214 0.830191
BMIcategory2:age_centered 6.269e-03 7.025e-04 6.969e+04 8.923 <2e-16 ***
BMIcategory3:age_centered 9.354e-03 9.484e-04 7.006e+04 9.863 <2e-16 ***

Table D.1: Estimates of fixed effects from mixed effects model for sleep onset
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Figure D.2: Aggregate averages of the raw data for development of sleep onset by age group with 95 % CI split up by
gender, BMI category and day type (weekend/weekday) raw data compared to estimates of mixed effects model fit
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D.2.2 Sleep offset

Fixed effects Estimate Std.Error Df t-value P(>|t|)
(Intercept) 6.970e+00 4.925e-02 4.402e+01 141.529 <2e-16 ***
age_centered_squared 7.999e-04 4.345e-05 6.878e+04 18.407 <2e-16 ***
weekendTrue 1.151e+00 1.721e-03 1.111e+07 669.021 <2e-16 ***
BMIcategory0 1.212e-01 3.324e-02 6.886e+04 3.646 0.000266 ***
BMIcategory2 -5.333e-02 1.476e-02 6.874e+04 -3.612 0.000304 ***
BMIcategory3 -6.564e-02 1.850e-02 6.913e+04 -3.549 0.000387 ***
age_centered -1.786e-02 6.019e-04 6.870e+04 -29.681 <2e-16 ***
age_centered_squared:weekendTrue -5.365e-04 5.426e-06 1.109e+07 -98.873 <2e-16 ***
age_centered_squared:BMIcategory0 -4.940e-04 1.382e-04 6.848e+04 -3.574 0.000352 ***
age_centered_squared:BMIcategory2 1.125e-04 5.134e-05 6.872e+04 2.192 0.028382 *
age_centered_squared:BMIcategory3 3.690e-04 7.027e-05 6.910e+04 5.251 1.51e-07 ***
age_centered_squared:genderMALE -1.257e-04 4.185e-05 6.876e+04 -3.003 0.002672 **
weekendTrue:genderMALE -4.450e-02 1.699e-03 1.113e+07 -26.193 <2e-16 ***
weekendTrue:BMIcategory0 -7.068e-03 4.584e-03 1.109e+07 -1.542 0.123068
weekendTrue:BMIcategory2 6.044e-02 1.768e-03 1.109e+07 34.180 <2e-16 ***
weekendTrue:BMIcategory3 5.904e-02 2.422e-03 1.109e+07 24.380 <2e-16 ***
BMIcategory0:genderMALE 9.549e-02 3.779e-02 6.892e+04 2.527 0.011519 *
BMIcategory2:genderMALE -9.800e-03 1.421e-02 6.873e+04 -0.690 0.490280
BMIcategory3:genderMALE -2.170e-02 1.878e-02 6.909e+04 -1.155 0.248033
genderMALE:age_centered -8.940e-03 6.354e-04 6.864e+04 -14.070 <2e-16 ***
weekendTrue:age_centered -1.221e-02 7.074e-05 1.109e+07 -172.609 <2e-16 ***
BMIcategory0:age_centered -5.052e-03 1.989e-03 6.781e+04 -2.540 0.011098 *
BMIcategory2:age_centered 5.795e-03 6.612e-04 6.874e+04 8.763 <2e-16 ***
BMIcategory3:age_centered 7.412e-03 8.934e-04 6.916e+04 8.296 <2e-16 ***

Table D.2: Estimates of fixed effects from mixed effects model for sleep offset
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Figure D.3: Aggregate averages of the raw data for development of sleep offset by age group with 95 % CI split up by
gender, BMI category and day type (weekend/weekday) raw data compared to estimates of mixed effects model fit
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D.2.3 Sleep duration

Fixed effects Estimate Std.Error Df t-value P(>|t|)
Fixed effects 7.031e+00 4.784e-02 4.927e+01 146.986 <2e-16 ***
(Intercept) 4.060e-04 2.671e-05 6.965e+04 15.202 <2e-16 ***
age_centered_squared 6.355e-01 1.986e-03 1.118e+07 320.009 <2e-16 ***
weekendTrue -2.156e-02 2.806e-02 6.959e+04 -0.768 0.442334
BMIcategory0 -5.557e-02 1.298e-02 6.931e+04 -4.280 1.87e-05 ***
BMIcategory2 -1.705e-01 1.602e-02 6.997e+04 -10.645 <2e-16 ***
BMIcategory3 -1.882e-01 8.525e-03 6.948e+04 -22.072 <2e-16 ***
genderMALE -7.872e-03 5.034e-04 6.935e+04 -15.639 <2e-16 ***
age_centered -5.691e-04 6.252e-06 1.118e+07 -91.025 <2e-16 ***
age_centered_squared:weekendTrue -3.042e-04 1.152e-04 6.884e+04 -2.642 0.008255 **
age_centered_squared:BMIcategory0 6.892e-05 4.287e-05 6.928e+04 1.608 0.107912
age_centered_squared:BMIcategory2 1.890e-04 5.876e-05 6.994e+04 3.217 0.001295 **
age_centered_squared:BMIcategory3 -2.490e-02 1.960e-03 1.118e+07 -12.706 <2e-16 ***
weekendTrue:genderMALE 4.808e-02 5.265e-03 1.118e+07 9.132 <2e-16 ***
weekendTrue:BMIcategory0 -3.909e-03 2.038e-03 1.118e+07 -1.918 0.055158 .
weekendTrue:BMIcategory2 -4.545e-02 2.784e-03 1.118e+07 -16.323 <2e-16 ***
weekendTrue:BMIcategory3 1.102e-01 3.180e-02 6.967e+04 3.465 0.000531 ***
BMIcategory0:genderMALE -6.515e-02 1.380e-02 6.912e+04 -4.721 2.35e-06 ***
BMIcategory2:genderMALE -1.116e-01 1.722e-02 6.970e+04 -6.484 9.00e-11 ***
BMIcategory3:genderMALE 4.861e-03 5.333e-04 6.928e+04 9.116 <2e-16 ***
genderMALE:age_centered -4.022e-03 8.142e-05 1.118e+07 -49.399 <2e-16 ***
weekendTrue:age_centered -5.180e-03 1.655e-03 6.767e+04 -3.130 0.001750 **
BMIcategory0:age_centered -5.370e-04 5.524e-04 6.932e+04 -0.972 0.330993
BMIcategory2:age_centered -2.629e-03 7.468e-04 7.006e+04 -3.521 0.000430 ***
BMIcategory3:age_centered

Table D.3: Estimates of fixed effects from mixed effects model for sleep duration
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Figure D.4: Aggregate averages of the raw data for development of sleep duration by age group with 95 % CI split up by
gender, BMI category and day type (weekend/weekday) raw data compared to estimates of mixed effects model fit
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D.3 Effective retirement age

Figure D.5: Visualization of the mixed effects model fit for development of sleep onset with age, separately for Japan,
Germany and UK

Figure D.6: Visualization of the mixed effects model fit for development of sleep offset with age, separately for Japan,
Germany and UK
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Figure D.7: Visualization of the mixed effects model fit for development of sleep duration with age, separately for Japan,
Germany and UK
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Sleep Onset
[hh:mm]

Sleep Offset
[hh:mm]

Sleep duration
[hours]Age Women Men Women Men Women Men

19 23:29 00:04 07:21 07:28 7.73 7.38
25 23:22 23:53 07:01 07:09 7.54 7.22
30 23:18 23:44 06:49 06:57 7.42 7.11
35 23:15 23:38 06:40 06:47 7.32 7.03
40 23:14 23:34 06:35 06:40 7.25 6.98
45 23:14 23:31 06:33 06:36 7.20 6.96
50 23:16 23:29 06:34 06:34 7.19 6.96
51 23:16 23:29 06:35 06:34 7.19 6.96
52 23:17 23:29 06:36 06:35 7.19 6.97
53 23:17 23:29 06:37 06:35 7.19 6.97
54 23:18 23:29 06:38 06:35 7.19 6.98
55 23:19 23:29 06:40 06:35 7.20 6.99
56 23:19 23:29 06:41 06:36 7.20 7.00
57 23:20 23:29 06:43 06:37 7.21 7.01
58 23:21 23:29 06:44 06:38 7.22 7.02
59 23:21 23:29 06:46 06:38 7.22 7.03
60 23:22 23:30 06:48 06:40 7.23 7.05
61 23:24 23:30 06:50 06:41 7.25 7.06
62 23:25 23:31 06:53 06:42 7.26 7.08
63 23:26 23:31 06:55 06:43 7.27 7.09
64 23:28 23:32 06:58 06:44 7.28 7.11
65 23:29 23:32 07:00 06:46 7.30 7.13
66 23:31 23:33 07:04 06:48 7.32 7.14
67 23:32 23:34 07:06 06:50 7.33 7.17

Table D.4: Exact estimate of sleep onset offset and duration from mixed effects model for men and women residing in
Germany
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Sleep Onset
[hh:mm]

Sleep Offset
[hh:mm]

Sleep duration
[hours]Age Women Men Women Men Women Men

19 00:21 00:56 07:41 07:42 7.08 6.67
25 00:20 00:59 07:22 07:24 6.85 6.5
30 00:18 00:41 07:08 07:10, 6.69 6.5
35 00:16 00:33 06:57 06:58 6.55 6.32
40 00:14 00:25 06:47 06:47 6.44 6.26
45 00:11 00:17 06:40 06:38 6.37 6.24
50 00:08 00:08 06:35 06:29 6.31 6.24
51 00:08 00:06 06:34 06:28 6.31 6.25
52 00:07 00:04 06:34 06:26 6.30 6.25
53 00:07 00:02 06:32 06:25 6.29 6.26
54 00:06 00:01 06:32 06:23 6.29 6.26
55 00:05 23:58 06:32 06:22 6.29 6.27
56 00:04 23:56 06:31 06:21 6.29 6.28
57 00:03 23:55 06:31 06:20 6.29 6.29
58 00:02 23:53 06:31 06:19 6.29 6.30
59 00:01 23:51 06:31 06:17 6.29 6.31
60 00:01 23:49 06:31 06:17 6.29 6.33
61 23:59 23:47 06:31 06:16 6.29 6.34
62 23:59 23:45 06:31 06:14 6.30 6.36
63 23:58 23:43 06:31 06:14 6.31 6.38
64 23:57 23:41 06:31 06:13 6.31 6.39
65 23:57 23:38 06:32 06:12 6.32 6.41
66 23:56 23:37 06:32 06:11 6.33 6.43
67 23:55 23:35 06:32 06:11 6.34 6.45

Table D.5: Exact estimate of sleep onset offset and duration from mixed effects model (with country as fixed effects) for
men and women residing in Japan

D.4 Identifying “parent apps”

I identify mobile applications as “parent apps” if they are intended for parents with young children.

I conducted an online search to create a list of apps that are popular and intended to assist parents

with newborns and young children. Those are; Nurture, Mush, Hoop, Ask the Midwife, TheWon-

der Weeks, Pabobo, Tiny Beans, Breast Feeding Friend, Annabel Karmel’s Recipes, Fisher-Price

Apps, Talkspace, Peanut, Today’s Parent My Family, MyMedela app, Sound Sleeper, Milk Maid,

What to Expect, TheWonder Weeks Milestone Memories, MomMaps, Mama PapaMap, Iku Log,

BabyManager, Wonder Weeks, Famm, Naki Pita! The second filtering method I used was to search

for keywords in app names and if there was a match, the app was categorized as “parent app”. The

key words used were:

130



• In English; baby, infant, breastfeeding, parental control, parenting, pregnancy, pregnant

• In Spanish, Japanese, Chinese and Arabic; I searched for baby
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E
Chapter 7

E.1 Down-sampling nights at home

One of the limitations when studying effect of travel on sleep, is the disproportionate amount travel-

nights compared to nights at home in the data-set (6 % of weekdays and 9.3 % of weekends are travel-

nights).

To contest to that presumption that imbalance sample sizes influence the results, I perform down-
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sampling where I randomly select nights at home to be equal to the number of travel-nights (for

each user) and compare the sample distributions (both visually and by percentiles) for Δhome DS and

Δhome. The process is described step-by-step;

• Repeat 50 times;

– For each user I randomly chooseNtravel nights recorded at home

– For those randomly drawn nights, I estimate Δhome and store it for each user

• Estimate Δhome DS for each user from the 50 trials

• Estimate the quartiles for the sample distribution of Δhome DS

Results are listed in Tables E.1 and E.2 and distributions also visualised on Figure E.1. The distri-

bution for down-sampled home-sleep (Δhome DS) is actually narrower than for the full sample. That

can be rationalized by the fact that 70 % of users have 5 or less days recorded travel-nights, but when

I examined the development of the standard deviation by number of data-points, the standard devi-

ation increases as the number of data-points increases, and did not stabilized until there are about 10

recorded nights. TBD cite paper.

Iteration 1 2 3 4 5 Full sample – Home Full sample – Travel
Minimum -0.565 -0.588 -0.596 -0.619 -0.617 -1.39 -5.25
Lower quartile -0.0532 -0.0515 -0.0533 -0.0524 -0.0534 -0.110 -0.417
Median 0 0 0 0 0 -0.0140 0.239
Upper quartile 0.0342 0.0340 0.0340 0.0363 0.0346 0.086 0.933
Maximum 0.726 0.754 0.711 0.735 0.766 1.16 5.98

Table E.1: Sample quartiles of Δhome DS [hours] home‐nights are randomly selected and equal to the number of travel‐
nights on weekdays
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Iteration 1 2 3 4 5 Full sample – Home Full sample – Travel
Minimum -0.692 -0.841 -0.680 -0.752 -0.746 -1.39 -5.25
Lower quartile -0.0763 -0.0783 -0.0777 -0.0785 -0.0789 -0.110 -0.417
Median 0 0 0 0 0 -0.0140 0.239
Upper quartile 0.0114 0.0110 0.0117 0.0112 0.0134 0.086 0.933
Maximum 0.712 0.604 0.586 0.6454 0.6322 1.16 5.98

Table E.2: Sample quartiles of Δhome DS [hours] home‐nights are randomly selected and equal to the number of travel‐
nights on weekends
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Figure E.1: Distributions of Δhome DS on weekdays and weekends (from the five iterations described above) with Δhome
and Δtravel
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Abstract
Study Objectives: Previous research on sleep patterns across the lifespan have largely been limited to self-report measures and constrained to certain 

geographic regions. Using a global sleep dataset of in situ observations from wearable activity trackers, we examine how sleep duration, timing, 

misalignment, and variability develop with age and vary by gender and BMI for nonshift workers.

Methods: We analyze 11.14 million nights from 69,650 adult nonshift workers aged 19–67 from 47 countries. We use mixed effects models to examine 

age-related trends in naturalistic sleep patterns and assess gender and BMI differences in these trends while controlling for user and country-level 

variation.

Results: Our results confirm that sleep duration decreases, the prevalence of nighttime awakenings increases, while sleep onset and offset advance to 

become earlier with age. Although men tend to sleep less than women across the lifespan, nighttime awakenings are more prevalent for women, with 

the greatest disparity found from early to middle adulthood, a life stage associated with child-rearing. Sleep onset and duration variability are nearly 

fixed across the lifespan with higher values on weekends than weekdays. Sleep offset variability declines relatively rapidly through early adulthood until 

age 35–39, then plateaus on weekdays, but continues to decrease on weekends. The weekend–weekday contrast in sleep patterns changes as people age 

with small to negligible differences between genders.

Conclusions: A massive dataset generated by pervasive consumer wearable devices confirms age-related changes in sleep and affirms that there are 

both persistent and life-stage dependent differences in sleep patterns between genders.

Key words:  sleep; big data; aging; gender; sleep variability; sleep misalignment; sleep timing and duration

Statement of Significance

A global dataset from wearable devices enables a detailed understanding of age-related tendencies in sleep patterns, controlling for country-level 

and within-individual variation. During early adulthood, we find elevated levels of variability in sleep offset and duration along with high levels of 

weekend–weekday misalignment, suggesting that mismatches between internal timing and external demands are pervasive during this phase of 

human development. In older adulthood, reduced sleep duration and increased sleep disturbances may either contribute to, or correlate with, further 

age-related decline. Gender gaps in average sleep duration, timing and nighttime awakenings are apparent, despite considerable heterogeneity in 

circadian preferences. Information about parenting mobile application usage can be paired with big data from wearable devices to explore lifestage 

gender inequality in sleep quality. Further research on person-centered behavioral interventions that promote regular sleep–wake cycles are needed.
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Introduction

Sufficient sleep is fundamental to healthy human functioning. 
Brief, irregular and/or disturbed sleep are risk factors for infec-
tious disease, cardiovascular disease, depression, and all-cause 
mortality [1–3]. Similar to other physiological functions, sleep 
patterns vary between people across the human population and 
change within individuals over the lifespan [4–6]. Meta-analyses 
and cross-sectional research provide convergent evidence that 
the ability to initiate and maintain sleep declines as people 
age, independent of factors such as medical co-morbidities 
and medication use [7, 8]. However, large-scale in situ data on 
changes in sleep patterns across the lifespan remain scarce and 
geographically constrained.

Age-associated changes in sleep include both decreases 
in total time asleep, deep (slow wave) sleep, and rapid eye 
movement sleep, as well as increases in sleep latency, time 
awake after sleep onset, stage 1 and stage 2 sleep [7, 9, 10]. 
Increases in nighttime awakenings with age suggest a decline 
in the buildup of homeostatic sleep pressure [11]. Evidence 
that healthy older adults exhibit less objective and subjective 
sleepiness after selective slow wave sleep deprivation indi-
cates that sleep need may decline as adults age [12], while 
other research has shown that reduced sleep still negatively 
impacts cognitive performance, irrespective of age [13, 14]. 
A  recent review concluded that while there is still no con-
sensus, the current body of evidence largely supports the 
hypothesis that older adults have an impaired ability to gen-
erate sleep rather than a reduced sleep need [15]. Hence, add-
itional insight is needed to characterize structural changes in 
sleep patterns over the lifespan and to better understand the 
underlying drivers.

Aside from changes in the duration and composition of 
sleep, adult aging is further characterized by changes in circa-
dian regulatory processes, with phase advances and diminished 
amplitudes in daily core body temperature, melatonin, and cor-
tisol rhythms [11]. These changes are associated with, and often 
proxied by, aging-related advances in sleep timing after adoles-
cence, with individuals going to bed and waking up earlier with 
increasing age [16–20].

Previous research has established the importance of 
measuring sleep timing separately on both free and work days, 
since weekly social schedules constrain daily rhythms and can 
induce a misalignment with biological time [21].

In a series of large scale survey-based studies conducted 
with participants from four countries (Germany, Switzerland, 
the Netherlands, and Austria), both the difference between free 
and work day sleep duration and midsleep timing (social jet lag) 
were shown to decline with age [22, 23]. Importantly, the authors 
did not report how underlying differences in sleep onset and 
offset timing between work and free days may contribute to ob-
served developments in misalignment. Since people exert more 
practical influence over the beginning and end of their sleep 
period compared with midsleep, an expectation of how onset 
and offset change on weekdays and weekends with age would 
be useful.

Moreover, while a recent study found that inter-individual 
variability in midsleep timing declines with age [24], far less is 
known about how intra-individual variability in sleep timing and 
duration within work and free day periods changes across the 
life course [25–27]. In situ sleep data collected over an extended 

period is needed to inform expectations about age-related de-
velopments in sleep timing, misalignment, and variability.

Prior research has established that the extent of adult 
age-related changes in sleep patterns is highly moderated 
by gender, with women reaching both puberty and their peak 
eveningness earlier than men in young adulthood and sleeping 
longer than men until age 50–60, a period of adulthood that co-
incides with menopause [23, 28–30]. Well-controlled laboratory 
studies have found that women exhibit phase advanced core 
body temperature and melatonin rhythms, as well as a shorter 
intrinsic circadian period compared with men [31, 32]. While 
some larger sleep surveys have found that females are more 
likely to be morning types compared with males from the end 
of adolescence to late adulthood [17, 33], others have found no 
apparent gender differences [34, 35] and one nationally repre-
sentative study found the opposite trend [36]. Notably, these 
cross-sectional studies were conducted within different coun-
tries using slightly different methodologies, highlighting the 
need for an integrated global assessment of potential gender-
related differences in sleep. Beyond long-term changes in sleep 
patterns, events occurring during certain stages of adult devel-
opment can impact women and men differently. Pregnancy and 
the postpartum period are associated with dynamic physio-
logical changes and behavioral demands known to disturb sleep 
quality for women, although limited in situ evidence exists 
comparing sleep disturbances for both women and men during 
young child-rearing [37, 38].

Despite revealing salient age-related changes in sleep pat-
terns, there are a number of areas where previous research 
can be extended and improved. Early lifespan meta-analyses 
favored data from predominantly Western countries, averaged 
across different sleep assessment methodologies and depended 
extensively on short-term polysomnography recordings that 
may have disrupted participants’ habitual sleep cycles [7, 9]. By 
comparison, cross-sectional sleep survey research has primarily 
relied on subjective measures prone to self-report, recall, and 
rounding biases [17, 24, 39, 40]. Moreover, large-scale sleep sur-
veys typically ask for single estimates of work and free day sleep 
onset and offset times, and thus do not enable measurement 
of the intra-individual variability of sleep patterns during work 
and free day periods [26]. To address these limitations, recent re-
search has drawn upon behavioral data from mobile phones and 
self-tracking apps to infer the dynamics of human activity and 
sleep in everyday contexts across large populations of device 
users [41–47]. Differing from mobile phones, the activity trackers 
employed in the current study were worn by users, enabling 
closely coupled measurements of human sleep patterns. 
Similar to wrist-actigraphs, wearable devices can automatically 
monitor sleep measurements in situ over extended periods of 
use, making it possible to study both average and time-varying 
sleep patterns in daily contexts [20, 48, 49]. Drawing on a dataset 
of objective sleep measurements and mobile application use 
statistics from a large sample of n = 69,650 wearable users over 
multiple years across 47 countries, we investigate the following 
questions:

 1. After controlling for country-level and individual-level var-
iation with mixed effects models, does global data from 
consumer wristband devices confirm gender differences in 
age-related changes in sleep duration, timing, and circadian 
misalignment?
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 2. How does intra-individual variability in sleep duration and 
timing develop across the life course separately on week-
days and weekends, adjusting for country-level variation?

 3. Does child-rearing—as proxied by parenting mobile appli-
cation use—predict life-stage gender differences in night-
time sleep disturbances?

The present study differs from prior self-report studies, most of 
which featured self-report data from single countries or regions, 
and—at the time of writing—represents the most geographically 
extensive analysis of age-associated changes in sleep using con-
sistent, objectively recorded measures of sleep duration, timing, 
misalignment, and variability.

Methods

Data and demographics

The anonymized data set used in this study consists of sleep ob-
servations collected using smart wristbands from 2015 to 2018 
(see the section Data collection below for full details). In total, we 
analyze 11.14 million nights of sleep observations arising from 
69,650 adult nonshift workers, about a third of them women. In 
Table 1, we show the number of individuals and nights broken 
out by the demographic variables age group, gender, and BMI cat-
egory and in Supplementary Table S1 lists all the countries in 
our sample and ratio of users residing there. We compare age 
statistics (median age) in our sample to information provided 
by the United Nation Population Division (UN) [50] for the five 
countries with the most users in the dataset in Supplementary 
Table S2. The median values in our sample and the overall popu-
lation correspond well: users from Japan are slightly younger (by 
1 year) while those from Taiwan and the United Kingdom match 
their respective reference populations. By comparison, users 
from Germany are younger (by 7 years) as well as those from 
Russia (by 5 years). We also compare age standardized BMI stat-
istics of the study sample to population estimates provided by 
the World Health Organization (WHO) in Supplementary Table 

S3 [51, 52]. We find both men and women from all countries fall 
within or near the 95% confidence intervals (CIs) of the WHO 
reference values. Women from the UK fall 0.5 points above the 
95% CI and women from Japan average 0.5 points below the 95% 
CI reference range.

Sleep duration, timing, and variability outcomes

We use nine sleep metrics to assess how sleep patterns change 
across the lifespan. Sleep duration specifies the total recorded 
time a person spent asleep during a given night. To quantify 
sleep timing, we use sleep onset (the registered point in time when 
a person fell asleep) and sleep offset (the recorded time when a 
person woke up). We measure the misalignment between an 
individual’s internal biological clock and external social clock by 
applying a variant of the formula used to compute social jetlag 
[22]. Specifically, instead of calculating social jetlag for midsleep 
(see Supplementary Figure S8 for a comparison) we estimate 
weekend–weekday differences in sleep onset and offset. The 
weekend–weekday misalignment of sleep timing can lead to the 
loss of sleep duration on weekdays and partial compensation 
on weekends, which is quantified by estimating the weekend–
weekday sleep duration difference. These metrics are calculated 
for each week of data collection, resulting in weekly repeated 
measurements for each user, which are then aggregated to pro-
duce user-level averages. We also study the variability of sleep 
onset, offset, and duration in order to estimate the regularity of 
people’s sleep timing and duration. We quantify intra-individual 
variability as the standard deviation of a person’s corresponding 
measurements for each sleep outcome, and compute this separ-
ately for weekends and weekdays [53].

The individual-level covariates for this study are gender (fe-
male/male) and BMI categories (underweight/normal weight/
overweight/obese) which were labelled according to the World 
Health Organization classification [54, 55].

Additionally, we also include temporal variables for day cat-
egory (weekday/weekend) to account for likely differences in the 
social structure over the course of the week. Since we do not 

Table 1. Overview of the data set with a focus on demographics: age, gender, and BMI

# of adult users in sample # of night sleep observations

All Male Female All Male Female

Total 69,650 47,656 21,993 11,144,539 7,673,495 3,471,044
Age groups
 19–24 5,466 3,745 1,721 579,315 383,761 195,554
 25–29 8,976 5,813 3.163 1,105,037 698,471 406,566
 30–34 11,224 7,414 3,810 1,559,445 1,022,033 537,412
 35–39 9,796 6,584 3,212 1,520,749 1,024,874 495,875
 40–44 9,315 6,435 2,880 1,591,014 1,092,829 498,185
 45–49 9,934 6,994 2,940 1,844,717 1,308,604 536,113
 50–54 7,164 5,059 2,105 1,395,210 999,842 395,368
 55–59 4,445 3,180 1,265 879,907 646,560 233,347
 60–67 3,330 2,433 897 669,145 496,521 172,624
BMI categories
 Underweight 2,272 1,197 1,075 350,954 173,220 177,734
 Normal weight 34,063 22,101 11,962 5,773,876 3,843,837 1,930,039
 Overweight 22,936 17,371 5,565 3,558,454 2,687,277 871,177
 Obese 10,379 6,988 3,391 1,461,255 969,161 492,094

The table provides statistics for both the number of adults in the sample, as well as the number of nights analyzed. Note that the data set contains more men than 

women and more people within the normal weight range BMI category.
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directly observe schedules, we assume the likelihood of work-
days is highest on weekdays and work-free days is highest on 
weekends, similar to others [20, 24].

Data modeling

We analyzed the data set using R Version 3.5.1 [56]. Given the 
longitudinal and hierarchical structure of the data with repeated 
measurements within users, and users nested within their 
country of residence, observations are likely highly correlated 
on both levels (country and user). To account for this depend-
ence within the data set, we adopt a mixed effects modeling 
framework [57]. Mixed effects models allow us to control for user 
and country-level variation while examining age-related trends 
in sleep patterns and assessing the influence of demographic 
factors. Concretely, the model can be specified in matrix form as

y = Xβ + Zu+ ε, with u ∼ Nq (0,G) and ε ∼ Nn(0,R), 

with β representing the fixed effects parameters, u repre-
senting the random effects, X representing the n ∗ p design 
matrix for the fixed-effects parameters, and Z the n ∗ q design 
matrix describing the random effects. The models for weekday–
weekend differences and sleep variability are defined without 
user random effects since these measures were computed for 
each user as single values. We use the lmerTest R package, the 
lmer function to fit the data set and apply Satterthwaite’s de-
grees of freedom method to estimate the p-values for the sig-
nificance of fixed factors [58, 59].

We center the age variable around its mean to help improve 
interpretability, prevent multicollinearity, and lower the scale of 
the variables to accommodate the inclusion of age squared in 
the model.

Data collection

Data were collected from 2015 to 2018 via Sony SmartBand 
(SmartBand Talk [SWR30] and SmartBand 2 [SWR12]), designed to 
track physical activity and sleep behavior. The waterproof wrist-
bands use proprietary, internally validated algorithms based on 
movement registered by an internal accelerometer to estimate 
sleeping and waking states in 1-min epochs. When connecting 
the wristband at first, users received visual instruction on how 
and where (wrist) to place the device and were advised to wear 
it on their dominant side. All wearable data included in this 
study were wirelessly transmitted via Bluetooth to an accom-
panying mobile phone application, which also independently 
registered user mobile application usage statistics. Similar to 
many other wearable devices and wrist actigraphs, the devices 
used in the present study detect sleep timing and total sleep 
time but do not detect time in bed, preventing the further study 
of age-related changes in sleep latency and sleep efficiency. 
Moreover, although the armbands have been validated intern-
ally within SONY, we note that the wristbands have not been 
publicly validated using the gold standard of polysomnography 
as recommended inn the Sleep Research Society Workshop on 
wearable devices for the measurement of sleep [60]. The wrist-
bands employed in this study have been shown to produce wake 
and sleep states that converge with objective measures of user 
mobile phone use patterns [46]. However, this global dataset 

offers unique methodological advantages; scale, longitudinal 
coverage, and ecologically valid observations. By using it, we 
follow a growing trend of utilizing commercial devices in sleep 
research to study sleep behavior in naturalistic settings at large 
scales [39, 61, 62]. Further, we have performed an extensive com-
parison of the findings here with multiple independent global 
sleep datasets. We find that this worldwide dataset externally 
converges with country-level sleep measures from separate 
large-scale datasets, demonstrates consistency over the period 
of observation and replicates age-related sleep trends from pre-
viously published self-report studies, including changes in sleep 
duration and timing. These full comparisons are presented in 
the Supplementary Information Sections Comparison of country-
level statistics to other publications and Consistency over time and 
Results. Further, the wristbands employed in this study have 
been shown to produce wake and sleep states that converge 
with objective measures of user mobile phone use patterns [46].

Study participants consist of anonymized users who con-
sented to share their data for research purposes. Age group, BMI 
category, gender, and country of residence were preprocessed 
from self-reported demographic information. All data ana-
lyses were carried out in accordance with the EU’s General Data 
Protection Regulation 2016/679 (GDPR) and the regulations set 
out by the Danish Data Protection Agency. The GDPR describes 
regulations for data protection and privacy in the European 
Union and the European Economic Area. It also addresses the 
transfer of personal data outside the EU and EEA areas.

Data processing and inclusion criteria

To reduce the risk of including sleep observations from those 
suffering from insomnia, artificially shortened sleep observa-
tions due to users ceasing wristband use in the middle of the 
resting period, observations from nightshift workers or any other 
possible problems, outliers from the sleep data were removed 
by applying inclusion filters to sleep duration, onset, and offset. 
We adopt standard filters for sleep duration (3 < duration < 13), 
matching those applied by Roenneberg et al. [23]. These filters 
are more inclusive (by 2 h) than those used by Walch et al. [45] 
and Althoff [62] (4 < duration < 12). Furthermore, we apply the 
following conservative sleep timing filters. First, we remove all 
sleep observations with onset or offset times greater than one 
and a half standard deviations away from the sample average 
computed separately for weekdays and weekends and obtain 
the following time filters:

 • 20:24≤ onset weekends ≤04:52
 • 20:28 ≤ onset weekdays ≤03:59
 • 03:59 ≤ offset weekends ≤12:52
 • 03:21 ≤ offset weekdays ≤11:25

This results in the removal of 12% of sleep observations yielding 
a final dataset consisting of 11.14 million nights from 69,650 
users. The full data preprocessing procedure is described in the 
section Data Filtering in the Supplementary Information.

To help ensure that sleep estimates are representative of 
typical sleeping behavior, we further require all participants to 
have a minimum threshold of sleep observations. Specifically, 
each user must have sleep observations extending over a min-
imum period of 4 weeks, with at least 1 weekday and weekend 
night per week, amounting to a minimum 8 nights per user 
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(median 87 nights per user). We also limit our analysis to adults 
19–67 years of age due to limited across-country data for older 
age groups. Each user is assigned a country of residence, defined 
as the country in which the majority of their sleep entries occur.

Sociocultural variation

This article focuses on how sleep duration, timing, misalign-
ment, and variability develop with age and how other demo-
graphic factors such as gender and BMI may affect these trends. 
Hence, it is important to note that users in the sample reside 
across a wide range of countries around the world. Breaking 
the data set out by country of residence yields cohorts from 
47 distinct countries with at least 150 users in each country. 
Supplementary Table S1 lists out all of the countries and per-
centage of users residing in each country, as well as the ratio 
of male users within each country. Table 2 shows the develop-
ment of sleep onset and duration with age for men split up by 
the top 5 countries with the most users. It is evident that there 
is substantial heterogeneity in the amount and timing of sleep 
obtained between countries. The summary statistics reveal, con-
sistent with the literature, that there are indeed large dispar-
ities in sleep patterns across cultures [20, 45, 63, 64]. Since the 
focus of the present research is to assess and identify age- and 
gender-related changes, we control for these baseline country-
level differences through our mixed effects modeling framework 
described in Data modeling.

Results

Sleep timing and duration over the lifespan

In order to summarize the development of sleep onset, offset, 
and duration across the lifespan, we calculate each user’s 
average value and then aggregate across our study sample by 
age, gender, and day type (weekday or weekend).

The resulting curves for sleep onset, offset, and duration are 
shown in Figures 1–3, D.

Development of onset

The main panel on Figure 1 shows that, overall, sleep onset be-
comes earlier as people age and that people tend to go to bed 
later on weekends (indicated by lighter colors); the difference 
between weekday and weekend is roughly constant for both 
men and women across all age-groups. There are large differ-
ences in mean onset time between men and women (more than 
30 min for the 19–24 young adult age group), which progressively 
become smaller in magnitude across the lifespan, eventually 
falling out of the range of statistical significance for the 60–67 
older adult age group. This eventual confluence of sleep onset is 
driven by a steeper age-related advance in sleep onset time for 
men than women. While the decline in sleep onset time is con-
sistent for men, the rate of decrease in onset time for women 
nearly plateaus after the age 35–39 range. Even though the 95% 
CIs for the mean are narrow, the actual distribution of sleep 
onset is quite broad, as shown in Figure  1, A–C, which shows 
the distribution of onset time for the 19–24 group, the 40–44 age 
group, and the 60–67 group. In order to directly visualize the pro-
gression of sleep onset timing between genders, in Figure 1, E 
(weekends) and Figure 1, F (weekdays), we display the difference 
of male/female onset from the average curve (genders weighted 
equally). The gender gap in onset time appears to persist until 
around age 40, when the two curves begin to converge.

Figure 1, D plots the aggregated raw data from our sample; 
the displayed trends in sleep onset are confirmed by our 
modeling which adjusts for demographic covariates, and 
controls for individual and country baseline behavior. Sleep 
onset has a quadratic relationship with age (p <2 ∗ 10−16, 
Supplementary Table S17). The model estimates a 29 ± 0.20 
min difference between weekends and weekdays for women 
and 28 ± 0.20min difference for men (age group 40–44), with a 

Table 2. Development of sleep onset and duration by age split up by the top five countries with the most users in the data set

Japan, n = 17,231 (24.7%) Germany, n = 7,140 (10.3%) Russia, n = 5,095 (7.3%) Taiwan, n = 5,028 (7.2%) UK, n = 3,900 (5.6%)

Age groups Average sleep onset (hh:mm)

19–24 00:53 23:55 00:39 01:12 00:24
25–29 00:44 23:52 00:29 00:59 00:07
30–34 00:41 23:40 00:21 00:51 23:52
35–39 00:27 23:36 00:08 00:42 23:46
40–44 00:21 23:37 00:04 00:32 23:41
45–49 00:15 23:30 00:03 00:30 23:45
50–54 00:06 23:31 23:58 00:16 23:36
55–59 23:54 23:27 23:55 23:52 23:45
60–67 23:42 23:26 23:50 23:50 23:42

Age groups Average sleep duration (h)

19–24 6.6 7.3 7.0 6.7 7.3
25–29 6.4 7.1 7.0 6.7 7.3
30–34 6.4 7.1 7.0 6.6 7.2
35–39 6.3 7.0 7.0 6.4 7.1
40–44 6.3 6.9 7.0 6.5 7.1
45–49 6.2 7.0 7.0 6.4 7.0
50–54 6.2 7.0 7.0 6.6 7.0
55–59 6.3 6.9 7.0 6.6 7.0
60–67 6.4 7.2 7.1 6.5 7.1

Note there are strong differences between countries with a clear split between European and Asian countries.
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later average onset on weekends. When we consider the rate 
of decrease of sleep onset for men, we find the model results 
suggest an even steeper rate of decrease than the raw data 
(see Supplementary Figure S3 and Supplementary Table S17). 
Consequently, the difference between men and women at age 
40–44 on weekdays is estimated to be 24± 1.5 min based on the 
raw data but 15± 1.5 min (95% CI) by the model. Furthermore, 
the model estimates the onset curves for men and women 
to intersect slightly earlier (within the 50–54 age range) than 
the raw data. From age 55 to 67, the model indicates that men 
are expected to exhibit earlier onset than women. The mixed 
effects model indicates that there is a larger range of country-
level random effect values for onset (1.76  h) than offset 
(1.35 h). This finding is in accordance with the results from a 
study conducted in 2014 using surveys and smartphone data: 
country of residence appears to exert a stronger influence on 
adult sleep onset than offset [45].

Development of offset

Turning to the development of sleep offset, Figure 2, D shows that 
the mean value of sleep offset mostly decreases with age, and 
people tend to wake up earlier as they get older. On weekdays, 
the curve is nearly flat for women between ages 45 and 59, but 
there is an increase for the age interval 60–67. Men consistently 
decrease in wake-up time with age except the slight increase 
from 60 to 67 on weekdays. The contrast between weekends and 
weekdays is nearly fixed across the lifespan with an hour differ-
ence resulting in later wake-up time on weekends. The curves 

on Figure 2, D show roughly the opposite behavior of what we 
observed for sleep onset (Figure  1, D), with the 95% CI of the 
mean values for men and women overlapping until the middle 
of adulthood and thereafter diverging with men rising earlier 
than women. Thus, from age 19 to 39 women and men exhibit 
an average tendency to go to bed at different times yet wake up 
at similar times. The sleep offset curves for men and women di-
verge earlier on weekends (40–44) where the separation occurs 
one age group later (45–49) on weekdays. This can be seen even 
more clearly on Figure 2, E (weekends) and Figure 2, F (weekdays) 
which shows the difference of sleep offset by gender and age 
group from the equally weighted average of the curves for men 
and women.

Similar to the case of onset, the plotted mean offset values 
have small error bars (as indicated by the 95% confidence bands), 
while the actual distributions of sleep offset are quite broad. 
This is depicted in Figure 2, A–C, which shows the distribution of 
offset time for the 19–24 group, the 40–44 group, and the 60–67 
group, respectively. We observe close agreement between the 
plots in Figure 2, D and the model results (Supplementary Table 
S19). Age, gender, and type of day are the most influential fac-
tors on wake-up time, which has a quadratic relationship with 
age (p < 10−16, see Supplementary Table S19). For people aged 
40–44, the model shows men to have the same sleep offset time 
as women, whereas on weekends they are expected to wake 
up 2.7 ± 0.20 min earlier (Supplementary Table S19). This is dis-
played in Figure 2, D, which shows that the sleep offset curves 
for men and women diverge earlier in the lifespan on weekends 
than weekdays.

Development of Sleep Onset with Age
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Figure 1. Distributions for sleep onset on weekends split up by gender for different age groups: (A) age 19–24, (B) age 40–44, and (C) age 60–67. The development of 

average sleep onset by age group split up by gender and day type (weekend/weekday). The red/orange colors correspond to women, light/dark blue colors correspond 

to men, darker colors represent weekdays and lighter colors signify weekends. The colored envelopes display 95% CIs around each age group mean (D). The equally 

weighted, between gender sleep onset difference by age group with 95% CI on weekends (E) and weekdays (F).
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Development of duration

Figure 3, D shows that sleep duration tends to decrease across the 
lifespan. This development is nearly linear for weekends and less 
so on weekdays, with a small increase in duration for the oldest 
age group on weekdays. The difference between weekends and 
weekdays remains similar throughout the lifespan with a slightly 
smaller gap for men and women in the oldest group. This is 
highlighted in Figure 3, E (weekends) and Figure 3, F (weekdays) 
which show the difference of sleep duration by gender and age 
group from the equally weighted average of the curves for men 
and women. Although the average behavior shown in Figure  3, 
D exhibits statistically significant differences between men and 
women across different age groups, each aggregated group mean 
is derived from a broad range of underlying behavior as Figure 3, 
A–C shows the distributions of sleep duration for the 19–24 group, 
the 40–44 group, and the 60–67 group, respectively.

The mixed effects model for sleep duration, which controls 
for individual and country of residence variations, generally 
confirms the trends observed in the aggregated raw data plots 
visible in Figure 3 (for comparison of the raw data and model 
fit see Supplementary Figure S4). The weekend–weekday dif-
ferences in duration are apparent in the model results but the 
magnitude of gender differences turn out smaller, due to dif-
ferent rates of change in sleep duration with age. Consequently, 
the curves for men and women come close to overlapping from 
age 55 to 67, see Supplementary Figure S4. Adjusting for BMI, 
the aggregated raw data estimates women at age 40–44 to sleep 
23 ± 1.7 min longer than men, whereas the model estimates a 

difference of 11 ± 1.0 min (95% CI), see Supplementary Table 
S21 for estimates of fixed effects.

Development of nighttime awakenings with age

Having considered the progression of sleep onset, offset, and 
duration, we now assess how the prevalence of nighttime 
awakenings develops across adulthood. To quantify nighttime 
awakenings, we use wake after sleep onset (WASO) which refers 
to periods of wakefulness occurring after defined sleep onset 
and reflects sleep fragmentation [65]. For each registered night, 
WASO is the total time an individual is recorded awake (after de-
fined sleep onset, but also occurring before defined sleep offset). 
Since sleep was recorded in 1-min epochs, only WASO measure-
ments greater than 60 s were registered by the wristbands. We 
observe a large fraction of users with zero instances of WASO 
(85% of the users have a median WASO value of zero). This is in 
part because accelerometer-based fitness bands may underesti-
mate sleep disruptions if individuals are awake but lying still in 
bed [66]. For that reason, our measure of nighttime awakenings 
may be conservative and correspond to relatively large sleep 
disruptions detectable by the embedded accelerometer. The per-
centage of users with nonzero median WASO is plotted by age 
group and gender in Figure 4. The percentage of individuals with 
nonzero median WASO increases with age; for the 19–24 age 
group, 4.5% of men and 9.7% of women have nonzero median 
WASO compared with 33.4% (men) and 35.6% (women) for the 
60–67 age group.
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Figure 2. Distributions for sleep offset on weekends split up by gender for different age groups: (A) age 19–24, (B) age 40–44, and (C) age 60–67. The development of 
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Figure  4 shows that a higher proportion of women have 
nonzero WASO medians than men from age 19 to 39. Specifically, 
17.5% of women have nonzero WASO median values compared 
with 13.5% for men aged 19–39. The distribution of within indi-
vidual median WASO differs significantly for men and women 
aged 19–39, estimated with two sample Kolmogorov–Smirnov 
(KS) statistics where p  =  3.06 ∗ 10−21. Interestingly, this same 
stage of life marks a biological window where childbirth, infant 
rearing and child caretaking are more likely [67]. As a post hoc 
analysis, we investigate the hypothesis that increased prevalence 
of nighttime awakenings during early adulthood may be linked 
to tending to infants and young children which exhibit irregular 
sleep patterns for the first 0–2 years of life [68]. For that reason, 
we analyze the age group 19–39, where the difference between 
the two curves in Figure 4 diverges between genders. As a proxy 
for information regarding parental status and infant-rearing, we 
reference aggregated app-context information. Specifically, we 
can anonymously identify users as probable parents if they have 
apps installed on their phones intended for parents with young 
children (“parent apps”). We describe how we identify apps as 
“parent apps” in the Supplementary Information: Identifying 
“parent apps.” We find that women in the age range 19–39 with a 
parent app installed on their devices have a significantly different 
distribution of median (denoted M) WASO than age-matched 
women without the application on their phone (estimated  
with two sample KS statistics, p = 9.66 ∗ 10−21), 
where MWASO for women with parent app = 184 s and 
MWASO for women without parent app = 65 s (see distribution  
Supplementary Figure S5). By comparison, the distribu-
tion of median WASO for young adult men with parent 

apps does not differ significantly from those without 
them (estimated with two sample KS statistics, p = 0.228)  
where MWASO for men with parent app = 52 s and 
MWASO for men without parent app = 37 s (see distribution 
Supplementary Figure S5).

Next, we examine the subset of sleep observations for users 
with MWASO 0, but this choice of subset eliminates the skew 
arising from a large fraction of users with zero WASO measure-
ments (Supplementary Figure S5).

After applying the same comparison, we find that women 
aged 19–39 with parent apps installed on their phones have a 
significantly different distribution of mean values (denoted µ)  
for their WASO than similarly aged women without parent 
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apps (estimated with two-sample KS statistics, p = 1.38 ∗ 10−14

) where µWASO for women with parent app= 1105 s and 
µWASO for women with parent app= 874 s (see distribution 
on Supplementary Figure S6). In contrast, when we carry out 
the same comparison for men, we find that their distribu-
tions do not differ significantly between the group with and 
without parent apps (estimated with two-sample KS statistics, 
p = 0.207) and µWASO for men with parent app= 905 s and 
µWASO for men without parent app= 867 s (see distribution 
Supplementary Figure S6).

Development of circadian misalignment with age

Many people (about 75% of the US and European labor force) 
maintain a conventional 5  day work week from 9 to 5 which 
constrains their weekly sleep behavior [69, 70]. This recurrent 
temporal pattern can lead to substantial sleep deprivation 
during weekdays and sleep compensation during weekends, in 
addition to a weekend–weekday contrast in sleep timing [23]. 
Figure  5, D illustrates the development of weekend–weekday 
sleep timing differences over the lifespan (green/pink colors for 
onset and blue/red colors for offset). From approximately age 19 
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to 55, average sleep offset tends to be 55–70 min later on week-
ends while onset tends to be 25–35 min later on weekends over 
the same period. Thus, adults in our sample tend to sleep half 
an hour more on weekends than weekdays. This result is con-
firmed in Figure 6, B which shows the development of weekend-
weekday sleep duration difference with age. We identify sleep 
duration to be 25–40 min longer on weekends from age 19 to 55. 
After age 55, weekend–weekday misalignment in onset timing 
declines to 20± 2.6 min for older adult men, alongside a margin-
ally larger decrease in offset misalignment to 38± 2.3 min (95% 
CI). The distributions for sleep offset and onset split by week-
ends and weekdays for age group 19–24 (offset Figure 5, C and 
onset Figure  5, F) and age group 60–67 (offset Figure  5, E and 
onset Figure 5, G) illustrate this contrast. For example, offset is 
on average 67± 2.2 min later on weekends for men age group 
19–24 but 38 ± 2.3 min for men in the 60–67 year old group (95% 
CI). Interestingly, average sleep offset misalignment remains 
greater than sleep onset misalignment into older adulthood, 
despite an overall convergence toward more similar weekend 
and weekday schedules and a reduction in weekend–weekday 
sleep duration difference.

Figures  5, D and 6, B indicate that misalignment in both 
sleep timing and duration progress similarly for men and 
women across the majority of the lifespan. A possible exception 
is visible during the 35–49 age range, during which both sleep 
offset and onset misalignment are slightly greater for women. 
Increased offset misalignment in this period for women appears 
to be driven by later weekend offset times compared to men, 
while weekday offset times are similar for both genders (see 
section Sleep timing and duration over the lifespan). This gen-
eral similarity between genders is confirmed when observing 
the overlapping distribution for weekday–weekend differences 
of sleep onset and offset times for men and women, respect-
ively, age group 19–24 (offset on Figure 5, A and onset on Figure 5, 
H) and age group 60–67 (offset Figure 5, B and onset Figure 5, I).

As before, we consider the potential biases in the data set 
when drawing conclusions from the figures and compare the ag-
gregated empirical data to our mixed effects model. Our primary 
inferences from Figures 5 and 6 are verified by our modeling re-
sults presented in Supplementary Tables S23, S25, and S27. After 
controlling for country and adjusting for BMI in the mixed ef-
fects model, the slight difference between middle-aged men and 
women (age group 40–44, see Figure 5, D), is no longer evident or 
negligible due to small effect size (the model estimates men to 

have a 1.9± 1.0 min higher weekend–weekday sleep offset dif-
ference and 3.0± 0.8 min higher weekend–weekday sleep onset 
difference than women [95% CI]).

Sleep variability over the lifespan

Figure 7, A and B shows the development of adult onset and 
offset variability with age (green/purple colors correspond to 
onset and blue/red to offset, while the darker shades represent 
weekdays and lighter shades indicate weekends). Interestingly, 
we find that onset variability, measured as the intra-individual 
standard deviation of onset time, is nearly fixed across the life-
span at 1.1  h on weekdays and 1.3  h on weekends. By com-
parison, offset variability decreases relatively rapidly for age 
group 19–24, both for men (weekdays 1.2± 0.015 h and week-
ends 1.5± 0.016 h) and women (weekdays 1.3± 0.021 h and 
weekends 1.4± 0.021 h) up until age 35–39, remaining around 
0.9  h on weekdays while continuing to decrease on week-
ends at a gradual rate. Variability for all measurements (onset, 
offset, and duration) is always higher on weekends than week-
days. We find that young adults have more variable sleep offset 
times than onset times both on weekends and weekdays. 
Figure 7, C and D shows that the difference between offset vari-
ability and onset variability is positive and higher across early 
adulthood (19–29) for men and women on both weekends and 
weekdays. The weekend difference between offset and onset 
variability is larger for men across the age 19–34 range, while 
the weekday difference is larger for women in the 19–24 and 
25–29 age groups.

Figure 7, F illustrates the development of sleep duration vari-
ability over the lifespan, which decreases gradually with age 
such that the youngest group of men have only 14 ± 1.2 min 
higher sleep variability than the oldest group on weekends. 
From Figure 7, A, B, and F, we observe small significant differ-
ences between men and women; higher onset variability both 
on weekends and weekdays after early adulthood and con-
sistently higher sleep offset variability on weekends for all age 
groups. When comparing these results to our mixed effects 
models which control for the influence of country and demo-
graphic covariates, we find that all of the general conclusions 
inferred from the descriptive plots in Figure  7 are verified 
(Supplementary Tables S29, S31, and S33). Taking the age 40–44 
group as an example, the model estimates a 3-min higher onset 
variability for men than women on weekdays, 2-min greater 
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onset variability on weekends and 5-min higher offset vari-
ability on weekends, which are trends that can also be identified 
on Figure 7, A and B.

The effect of BMI

In Table 3, we list average sleep onset, offset, and duration for 
men and women within the four BMI groups estimated with the 
mixed effects model (95% CI) for age group 40–44 on weekdays. 
Overall, differences in sleep timing between BMI groups are stat-
istically insignificant and/or small in effect. As one exception to 
this trend, we find that men within the normal BMI range sleep 
on average 17 ± 2.8 min more than those in the obese BMI cat-
egory, and men in the underweight category sleep on average 
24 ± 4.7 min more than those in the obese category. We carry 
out further discussion concerning these results in section called 
“BMI Discussion” in the Supplementary Information.

Discussion
Drawing on a massive global sleep dataset comprised of 11.14 
million sleep observations from 69,650 adults spanning 47 coun-
tries, we confirm the presence of age-related changes in sleep 
duration, timing, misalignment, and variability. After controlling 
for baseline country-level variation using mixed effects models, 
we find that younger adulthood is marked by both delayed sleep 
onset and offset, and higher intra-individual sleep duration 
variability, offset variability, weekend–weekday misalignment, 
and weekend–weekday sleep duration difference compared 
with older adulthood. Conversely, sleep duration is shorter and 
nighttime awakenings are more prevalent during older adult-
hood. Only sleep onset variability exhibits little to no differ-
ence across the youngest and oldest age groups in our sample. 
Certain changes in sleep behavior progress consistently across 
most age groups observed, while others appear to be highly life-
stage and/or gender dependent. In contrast to studies based on 
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single or short-term observations, our unique dataset of mil-
lions of multi-night sleep recordings enables a consistent, de-
tailed understanding of age-related tendencies in sleep patterns 
including intra-individual variability within inferred working 
and leisure periods as well as misalignment between them. 
We confirm several recognized age-related changes in human 
sleep and provide novel evidence of gender differences across 
key phases of adult development. Further, in the Supplementary 
Information, we provide (1) a comparison of our data with mul-
tiple independent large scale and global sleep datasets, (2) we 
explicitly compare our global estimates of social jetlag to those 
from Roenneberg et al. [23], and perform a quantitative explor-
ation of underlying regional differences that appear to drive 
this disparity of our results compared to Roenneberg et al., and 
lastly, (3) we perform an exploratory analysis of the possible 
effect of retirement age, which varies by country and demon-
strates that different regional policies appear to affect people’s 
sleep patterns.

Misalignment

Circadian misalignment has been found to be associated with 
negative health outcomes such as obesity, metabolic risk fac-
tors for diabetes, and atherosclerotic cardiovascular disease, 
as well as adverse behaviors such as drinking and smoking 
which can negatively impact healthy human development [23, 
71]. Notably, we find considerably lower levels of social jetlag 
in our sample across all observed age groups compared with 
the values reported by Roenneberg et  al. [23] (Supplementary 
Figure S9). In the Roenneberg et al. [23] study, the sample con-
sisted of questionnaire respondents from predominantly four 
European countries (Germany, Switzerland, the Netherlands, 
and Austria). Thus, the discrepancy may reflect a mismatch be-
tween global and regional circadian preferences, recall biases 
linked to the questionnaire and/or other unobserved differ-
ences. Constraining our sample to only include the same pri-
mary European countries as Roenneberg et al. yields markedly 
higher values of social jetlag across the lifespan than in our full 
global sample as well as altered age-related gender differences 
during early and late adulthood, with men incurring marginally 
more social jetlag than women—consistent with the age-related 
dependencies identified by Roenneberg et al. By contrast, in our 
global sample middle-aged women have marginally more social 
jetlag than men, with negligible gender differences in other age 
groups. Comparing social jetlag levels between regional strata of 
our sample from Asia and Europe suggests that social jetlag for 
young adults may be over twice as large in the same European 
region sampled by Roenneberg et al. [23], and ~1.5 times larger 

for middle-aged and older adults (Supplementary Figure S10). 
This provides suggestive evidence that the gap between the at-
tenuated magnitude of social jetlag in our full sample relative 
to Roenneberg et al.’s may not merely be due to different means 
of data collection and associated measurement error (objective 
multi-night recording vs. self-report questionnaires). Rather, 
underlying regional differences appear to play an important 
role. We contend that accounting for underlying country-level 
variation is important to prevent biased global estimates of sa-
lient sleep outcomes and age-related developments.

In line with previous research, we find weekend–weekday 
differences in sleep timing and duration to be more pro-
nounced among younger adults, with these elevated differences 
(Supplementary Figure S8) driven primarily by earlier sleep 
offset on weekdays and later offset on weekends than weekdays. 
Weekend–weekday misalignment in sleep timing and duration 
slightly decrease with age and decline more rapidly around the 
age range of 55–59, leading to near convergence of sleep onset 
timing on weekends and weekdays for older adults aged 60–67. 
Reduced misalignment in older adulthood may signal the so-
cial onset of exiting the labor force for retirement. However, 
some misalignment in both sleep offset, midsleep and duration 
persists across the age groups observed, indicating that perva-
sive work schedules likely continue to exert an influence on 
people’s sleep–wake cycles through most of the adult lifespan. 
Our results indicate that sleep research involving adults should 
account for weekend–weekday heterogeneity in sleep patterns, 
even in older populations where nonstandard weekday sched-
ules might otherwise be presumed.

Variability

A growing body of research indicates that irregular sleep is 
linked to maladaptive responses adverse to human health [25, 
53, 72–80] Outside of research on weekend–weekday misalign-
ment, limited evidence exists about age-related changes in sleep 
variability in sleep patterns within individuals, particularly 
during weekdays and within weekends [81]. Taken together, two 
recent cross-sectional studies found that between-individual 
onset, offset, duration, and chronotype variability decrease 
with age [24, 45]. Similarly, a sleep diary-based study found that 
intraindividual variability in sleep duration decreases with age 
[27]. By comparison, our data set shows that intraindividual 
variability in sleep onset is close to fixed over the lifespan—
implying that young, middle-aged, and older adults may have 
persistently variable sleep onset times, whereas variability in 
wake-up times decreases with age, likely driving the observed 
decline in sleep duration variability.

Table 3. Mixed effects model estimates of average sleep onset, offset, and duration for different BMI and gender groups on weekdays age 40–44 
(95% CI)

Onset  
hh:mm ± m

Offset  
hh:mm ± m

Duration  
hours ± hours

Women Men Women Men Women Men

Underweight 23:55 ± 8 00:10 ± 8 07:05 ± 7 07:11 ± 8 7.03 ± 0.0938 6.95 ± 0.114
Normal weight 23:45 ± 7 00:01 ±7 06:58 ± 6 06:58 ± 6 7.03 ± 0.0938 6.84 ± 0.0952
Overweight 23:45 ± 7 00:01 ± 7 06:55 ± 6 06:55 ± 6 6.98 ± 0.0972 6.72 ± 0.102
Obese 23:52 ± 8 00:10 ± 8 06:54 ± 6 06:54 ± 6 6.86 ± 0.0988 6.56 ± 0.106
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We find that young adults tend to have more variable offset 
times than onset times, a trend which inverts after age 35 due to 
a decrease in sleep offset variability. One possible explanation is 
that a concurrent rise in weekday alarm clock use to meet fixed 
workplace, childcare, and/or other social commitments might 
drive this reduction in offset variability. Across our population, 
variability measurements are consistently higher on weekends, 
confirming that sleep patterns are more regulated on weekdays, 
in line with the alarm clock hypothesis. However, the gradual 
decline in both weekend sleep offset variability and duration 
variability across most of the lifespan suggests that both en-
dogenous and exogenous factors may be involved.

Nighttime awakenings

Previous research and reviews found that women are at a 
greater risk than men to develop insomnia, and both insomnia 
and other sleep disorders are more prevalent in women 
during pregnancy and the postpartum period [37, 82–84]. Ours 
is the first study to use the contextual information encoded in 
app usage as a proxy for parental status to explore lifestage 
gender inequality in sleep quality. Importantly, the gender 
difference we observe in nighttime awakenings is more pro-
nounced from young to middle adulthood than from middle 
to late adulthood. Supporting the hypothesis that increased 
sleep disturbances for women during early adulthood might 
be driven by childbirth and raising young children, we find a 
significant difference in the median WASO between women 
with parent apps installed on their phone and age-matched 
women without such applications. When we applied the 
same comparison to the two corresponding groups of men, 
we found no significant difference, a finding which suggests 
that the gap in prevalence of nighttime awakenings between 
women and men aged 19–39 may be driven by the presence 
of infants or young children—as well as gender-associated 
caretaking norms—which disproportionately interrupt the 
sleep of female parents. This finding is in agreement with a 
panel study on changes in sleep satisfaction and sleep dur-
ation after childbirth, which also found a less pronounced de-
crease in sleep satisfaction for men than women [85]. Others 
have interpreted disturbed sleep after childbirth as a con-
tributor and/or symptom of postpartum depression [86, 87].

In line with previous observational studies that suggest 
age-related increases in WASO, we find that the prevalence of 
people regularly experiencing sleep disturbances increases 
with age [7, 9]. A greater proportion of women than men regu-
larly experience some time awake after sleep onset across all 
age groups observed in our study, indicating that more women 
may have difficulty maintaining sleep even though women on 
average sleep longer than men. Taken together, these findings 
contribute to the nascent literature on the unequal burden of 
child rearing on women’s sleep quality [88]. The use of parents 
apps to identify individuals with young children illustrates the 
promise of using contextual information related to app usage as 
a novel way to understand the connection between sleep and 
overall behavior.

Sleep timing and duration

Epidemiological studies have demonstrated that men are, 
on average, later chronotypes than women until 40–50 years 
of age, after which their circadian phase advances to 

overlap or become earlier [17, 24]. Our study both confirms 
(Supplementary Figure S7) and expands on this finding by 
documenting the underlying dynamics between sleep onset 
and offset across these age groups that shape the full sleep 
period and its relative position. We find that men tend to have 
a later sleep onset than women up until 50–54  years of age, 
while up until the age range of 35–39 there is no significant 
difference in offset time between men and women. Thereafter, 
from middle to late adulthood, women tend to rise later. Taken 
together, this inversion may be indicative of gender-gaps in 
both domestic and labor demands during this period from 
mid-late adulthood [89]. It is possible that the general overlap 
in wake-up times for women and men during young to middle 
adulthood may be due to temporarily convergent external de-
mands characteristic of this phase of development, such as 
attending university, work, tending to infants and/or raising 
young children, etc. By choosing to focus our analysis on both 
the beginning and end of the sleep period, rather than just its 
midpoint (Supplementary Figure S7) as commonly used in epi-
demiological sleep studies, we capture these differences and 
changes which have not been consistently described before at 
a global scale.

The finding that men sleep less than women on average 
across age groups [23, 63], confirmed by our study, is believed 
to have both a biological and social basis [89, 90]. For instance, 
we find that the sleep surplus for women relative to men is 
largest during young to middle adulthood when sleep inter-
ruptions are considerably more common for women than for 
men, likely due to the differential burden of caregiving. Thus, 
a combination of imbalanced nocturnal demands and socially 
imposed offset timing due to labor schedules may drive the ob-
served gender differences in onset. Indeed, from middle to late 
adulthood average onset times converge and average offset 
times diverge. Furthermore, in line with previous research [6, 7, 
9], we find that average sleep duration declines with age, with 
increasing portions of the average sleep distributions for both 
men and women falling below 7 h until weekday sleep duration 
slightly rebounds after age 60, a phase associated with attenu-
ated working demands due to retirement [90]. Interestingly, 
later weekday wake up timing in late adulthood was apparent 
in Germany and the United Kingdom, but was not evident for 
Japan within the age range of our sample. Thus regional hetero-
geneity in transitioning out of the labor force may be reflected 
by differences in the manifestation of partial sleep timing re-
covery (see Supplementary Information: Analysis of effective 
retirement age with three-way interaction of age, gender, and 
country). However, such recovery in sleep offset appears to be 
consistently more subdued for older men than women. A recent 
global cross-sectional study found that acute cognitive deficits 
in reasoning and verbal ability can arise from sleeping less than 
7–8 h regardless of age [13]. Importantly, average weekday sleep 
duration for men in our sample was consistently under 7  h 
across all age groups observed.

Limitations

Several considerations should be weighed when interpreting the 
results of this study. First, the wearable fitness bands used rely 
on in-built accelerometers and proprietary algorithms developed 
and internally validated by a global mobile technology com-
pany. Accelerometry-based consumer sleep trackers are known 
to slightly overestimate sleep duration and underestimate sleep 
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disruptions [66], suggesting that actual sleep duration may be 
slightly lower than recorded in this study and that our estimates 
for the prevalence of people with frequent nighttime awakenings 
may be conservative. Second, age and BMI were self-reported. 
Despite possible recall bias, we find good general agreement be-
tween the World Health Organization’s country-level estimates 
of median age and age standardized BMI and the corresponding 
estimates from our data set. Nevertheless, our sampled popu-
lation of wearable users may not be representative of the wider 
population due to potential unobserved factors also associated 
with wearable device ownership, such as post-secondary edu-
cation attainment [91]. Third, given the cross-sectional design 
of the current study, we cannot statistically identify whether 
the observed trends across age groups correspond to within-
individual changes over the lifespan or rather reflect gener-
ational differences in normative sleep patterns. An exemplary 
longitudinal study which analyzed the change in diurnal timing 
preferences of 567 males in Finland across a 23  year period 
found that sleep timing shifted to become earlier with age, sup-
porting the former intuition [92]. However, we cannot distinguish 
whether the age-related sleep patterns we observe are primarily 
driven by physiological or social developments associated with 
different stages of adulthood. Fourth, similar to others, we use 
weekends as a proxy for free days where individuals were not 
working to help distinguish between endogenously and exogen-
ously driven changes [20, 24]. This assumption does not hold for 
the subset of our sample who might be unemployed or other-
wise follow irregular (e.g. service industry) work schedules. Thus, 
our estimates of misalignment may be slightly conservative. 
Despite these limitations, our primary results converge with rec-
ognized age-related trends in both sleep duration and timing [9, 
28]. Furthermore, these trends appear to be generally consistent 
across multiple geographic regions and sociocultural contexts.

Implications

Massive data sets generated by pervasive consumer wearable 
devices can provide globally consistent measurements and 
thus can contribute unique and confirmatory insights about 
the development of human sleep patterns. Interestingly, the 
wide and overlapping distributions of sleep times between 
genders across the life course suggests that even though there 
are characteristic differences in mean values, overgeneraliza-
tion of gender differences should be avoided. Underlying het-
erogeneity in sleep duration and timing across the life course 
proves the rule rather than the exception. Early weekday 
work schedules and norms likely constrain the varied cir-
cadian preferences of individuals, contributing to misalign-
ment. Furthermore, given the pervasive asymmetry between 
weekend and weekday sleep patterns as well as variability in 
day-to-day sleep timing, research on behavioral interventions 
that promote regular sleep wake cycles is needed. Rather than 
impose standard morning start times, organizations might 
explore and evaluate person-centered work schedules and 
jobs that match the diverse circadian preferences of individ-
uals, evident in this study and others.
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Abstract4

The interplay of travel and sleep is well known, with travel generally expected to5

have a deleterious effect on sleep. However, a detailed understanding of the changes6

in sleep associated with travel at an epidemiological scale has been limited by a lack of7

large-scale data. Here we show that travel has a balancing effect on sleep, where under-8

slept individuals attain more sleep while travelling compared to at-home behaviour,9

while individuals who tend to sleep more than 7.5 hours on average, sleep less when10

sleeping away from home. The analysis of our global data-set with 3.2 million nights11

(220.000 travel-nights) for 19.000 users reveals a systematic change in sleep duration and12

timing due to travel relative to typical at-home behaviour. The change in sleep quantity13

for travel-nights depends linearly on typical nighttime sleep at home and decreases as14

median sleep duration increases. On average, wake-up time advances to later hours on15

weekdays when travelling, but moves to earlier hours on weekends. Our study empha-16

sises the potential of identifying novel sleep behaviours in large behavioural data-sets17

from consumer wearable devices, and may inspire future studies to further examine how18

environment and behaviour affects human sleep.19

Introduction20

Attaining sufficient sleep is critical to many aspects of human health [1–3]. Short and irreg-21

ular sleep duration contributes to molecular, immune, and neurological changes that play22

a role in disease development, increasing, for example, the risk of obesity and cardiovascu-23

lar diseases, and substantially affecting mood, motor and cognitive performance [1, 4–10].24

Despite the importance of sleep to health, average sleep duration has continued to decrease25

among economically developed countries: for example, 30% of the US population slept on26

average less than 6 hours in 2013, compared to 3% in 1963 [11–13].27

Concurrently, travel has increased dramatically over the past two decades, with the number28

of air-travelers nearly tripling [14]. There are good reasons to think that traveling impacts29

sleep negatively. Travel and new resting environments are known to influence sleep quantity30
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and quality. Indeed, the First night effect (FNE) was first documented in 1964 where sleep-31

initiation difficulty and prolonged sleep-onset latency was found to occur on the first night32

of sleep taking place in sleep laboratory [15, 16]. Later, in 2016, Tamaki et al. showed that33

FNE is a consequence of a single brain-hemisphere displaying elevated alertness in new and34

unfamiliar environments. The hemisphere with reduced sleep depth showed more enhanced35

response to external stimuli during resting period [17].36

Travel fatigue and Jet-lag are conditions which can cause sleep complications when travel-37

ling [18–24]. Travel fatigue is associated with any long journey, regardless of the mode of38

transport characterised by tiredness, disorientation and headaches which usually last only39

for a day or so, but when flying across several time zones there is the added effect of jet-lag40

with longer-lasting ramification [18–21]. Jet-lag is due to desynchronisation of the body’s41

internal clock and the new time zone an individual enters after long-distance travel [22–24].42

Jet-lag is not only limited to travel. Social jetlag is a term and measure used in sleep epidemi-43

ology to quantity the difference between weekend-weekday behaviour, and if measured44

high, likely happening due to constraints of early-morning work schedule on weekdays,45

which are relieved on weekends [25, 26].46

Most of the existing research to understand the effect of travel on sleep, aims to understand47

the physiological and behavioural changes among professional athletes, and has been car-48

ried out as small scale studies (typically 10-30 study subjects) or to understand subjective49

fatigue and alertness among aircrew staff [18, 27–34]. These studies have found no signifi-50

cant difference in sleep quantity and quality before and after short-haul air travel (without51

crossing of time zones) [28, 35–38]. However, if journeys cross time-zones, the outcome is52

different. Jet-lag was found to cause sleep issues in new time zones, including reduced sleep53

duration, more frequent and longer nighttime awakenings, delayed sleep onset after east-54

ward travel, and advanced sleep offset after westward travel [22, 35, 39]. While multiple55

effects have been discussed, the quantitative changes in sleep due to travel have not been re-56

searched in an epidemiological context. Here, we address this gap in the literature through a57

large and global data-set of sleep activity data recorded with wearable devices. The dataset58

consists of ∼ 19 000 users residing in 95 countries with more than 3.2 million nights and59

thereof ∼ 220 000 away from home60

Our work sheds new light on the effect of travel and new resting environments on sleep61

behaviour. Specifically, we find that sleep during travel tends to depend on sleep patterns62

at home, specifically that it serves a balancing function: People with shorter than average63

home-sleep duration tend to have longer nighttime sleep during travel, while those who64

have longer than average home-sleep duration, tend to sleep less during travel.65
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Methods66

Data collection67

The dataset was collected from 2015 to 2019 via wristbands designed to track physical ac-68

tivity and sleep behavior. The wristbands use proprietary, internally validated algorithms69

based on movement registered by an internal accelerometer to estimate sleeping and wak-70

ing states in 1-minute intervals. The 1-minute sleep states are used to infer sleep onset, offset71

and duration for each night where nighttime awakening or sleep fragmentation is also ac-72

counted for and quantified as wake after sleep onset (WASO). When first connecting the73

wristband to their smartphone, users receive visual instruction on how and where (wrist) to74

place the device and they are advised to wear it on their dominant side. Measurements pro-75

duced by the wristbands exhibit a high degree of face validity and converge with estimates76

of age-related changes from the literature [40]. Measurements have also been validated by77

comparing country-level estimates of sleep onset, offset and duration to numbers from other78

publications [40]. By using these wristbands, we follow a growing trend of utilizing com-79

mercial devices in sleep research to study sleep behavior in naturalistic settings at large80

scales [40–43].81

Users are anonymous and self-report their age, gender, height and weight. The location data82

originates from GPS traces; these are not collected at a fixed sampling rate but estimates83

are updated when there is a change is the motion-state of the device (if the accelerometer84

registers a change). All data analysis was carried out in accordance with the EU’s General85

Data Protection Regulation 2016/679 (GDPR) and the regulations set out by the Danish Data86

Protection Agency. The GDPR describes regulations for data protection and privacy in the87

European Union and the European Economic Area; it also addresses the transfer of personal88

data outside the EU and EEA areas.89

Data pre-processing90

To reduce the risk of including sleep observations from those suffering from insomnia, ar-91

tificially shortened night observations due to users ceasing wristband use in the middle of92

the resting period, observations from night-shift workers or any other possible data errors,93

outliers were removed. The details of the process is described step-by-step in the SI (Data94

Pre-processing).95

We transformed the raw location data to stop-locations using the infostop algorithm [44],96

converting traces to stops, each with an ID, start, and end time. We discard sleep obser-97

vations without associated stop-locations. We define a person’s sleep location as the stop98

location with start-time closest to the sleep onset. To ensure consistency we only accept loca-99
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tions where sleep begins and user does not leave the location until after the sleep has ended.100

We expect people to sleep at home for the majority of the time, and therefore use sleep lo-101

cation to infer home location. The location where most nights take place is defined to be a102

user’s home location. We remove users from the dataset if their percentage of nights-at-home103

is lower than 70%. We use this threshold to ensure that we select individuals with a fixed104

home location and retain approximately 80 % of the users by applying this selection criteria.105

Henceforth, we refer to nights that take place at least 20 km away from home as travel-nights.106

We use the median sleep duration to quantify typical sleep duration (for nights recorded107

at home). In order for the median to be representative of an individual’s typical behaviour108

we require all participants to have a minimum of 10 nights recorded at home; in this we109

treat weekends and weekdays separately. In the SI we provide evidence that 10 nights is a110

reasonable threshold (Filtering & Inclusion Criteria).111

As we wish to understand the quantitative effect of travel on sleep duration and timing, we112

also require users to have a minimum number of nights recorded away from home. We set113

this minimum to two travel days (by day-type; weekdays/weekends). Again, we justify this114

choice using robustness checks and down-sampling as shown in the SI (see Results). Note115

we separate analyses into day-type (weekend vs. weekday) and users may be included in116

the analysis for a single such day-type or both.117

After the pre-processing, the final data-set used for analyses consists of 2.4 million weekday118

nights (6.0% away from home) from about 19 300 users and 0.8 million weekend nights (9.3%119

away from home) from 13 300 users. An in-depth exploration of how users are distributed120

by demographics and data coverage is presented in the SI (Data Coverage & Demographics).121

Data modeling122

In order to support our main findings we employ a mixed effects model – a panel data123

analysis with a hierarchical linear model where the relationship between the change in sleep124

duration away from home (relative to regular behaviour) and typical sleep duration at home125

is explored [45].126

The mixed effects model enables us to retain the hierarchical structure of the data – repeated127

measurements within users and instead of estimating ∆ as a single measurement per user128

(∆ = µ−Mhome where µ is the average sleep duration for travel-nights), we estimate it for129

every recorded night for each user, defined as130

∆i,j = durationi,j −Mj,

where i = 1, ..., N and j = 1, ..., K and where N is the total number of nights for user j and K131
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is the total number of users. The mixed effects model is then specified in matrix form as132

y = X β + Z u + ε, with u ∼ Nq(0, G) and ε ∼ Nn(0, R), (1)

with β representing the fixed effects parameters, u representing the random effects, X rep-133

resenting the n × p design matrix for the fixed-effects parameters, and Z the n × q design134

matrix describing the random effects. The dependent variable is ∆i,j and fixed effects param-135

eters are the demographic variables (gender, generation, BMI category, region of residence)136

and home. The independent variable is median sleep duration (continuous) and we control137

for individual baseline behaviour since user is a random effect (intercept).138

We analyzed the data set using R Version 3.5.1 and the lmerTest package, the lmer func-139

tion to fit the data set and apply Satterthwaite’s degrees of freedom method to estimate the140

p-values for the significance of fixed effects [46–48]. The model is reduced by removing141

insignificant fixed effects (one at a time) with the drop1 function which utilizes F-test (one-142

sided) for its estimates. We center medium sleep duration around its sample mean to help143

improve interpretability and prevent multi-collinearity.144

Results145

Measuring change in sleep duration due to travel On Figure 1A we present an example146

of data collected for a single user. We use the the median sleep duration, Mhome to quantify147

the typical sleep duration at home. In order to evaluate the behaviour when travelling we148

estimate average sleep duration for travel-nights (denoted µtravel). We define ∆s = µs −149

Mhome as the change in sleep duration relative to typical behaviour, where the state s ∈150

{home, travel}. The variable ∆s is estimated for each user in our sample. We explain the151

rationale for comparing mean to median for both home and travel nights below.152

Sleep-behavior during travel depends linearly on sleep at home. We first explore whether153

the change in sleep duration away from home depends on typical sleep duration at home154

by plotting the distribution of ∆s = µs − Mhome where s ∈ {home, travel} for individuals155

with different median sleep duration. The results are shown in Figure 1B, where users are156

grouped into sleep groups by rounding their median to the nearest half-hour bin. The distri-157

butions are broad, but we see a clear trend that the average ∆travel moves from positive to158

negative values as the median sleep duration increases. This implies that individuals who159

sleep little at home (duration≤ 5.0 hours) tend sleep longer when they are away from home.160

On the opposite end of the spectrum, those who sleep longer at home (duration ≥ 9 hours),161

sleep less when they are away from home. To quantify this trend, we calculate the average162

∆travel for each sleep group (ranging from 4.5 - 9.5 hours) which reveals an approximately163
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Figure 1: Sleep activity patterns and the relative change in sleep duration for travel-nights
A: For every individual we measure sleep onset, offset and duration for each recorded night. From these records
we derive three measurements; median sleep duration at home (Mhome) and average sleep duration at home
and away from home (µhome & µtravel). To measure change in sleep duration due to travel, relative to typical
behaviour at home, we derive a new measure ∆travel = µtravel −Mhome. B: The distributions of ∆travel (orange)
and ∆home (blue) for groups with different median sleep duration where users are grouped together by rounding
their median to the nearest half-hour bin (referred to as sleep groups). C: The average ∆travel for all sleep groups
(median duration ranging from 4.5 - 9.5 hours) with the standard error of the mean (SEM). D: The distribution
for ∆home, ∆home DS and ∆travel for all users. E: A larger visual representation (more narrow range of the x-axis)
for the distribution for ∆home and ∆home DS from panel D.
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linear dependence of ∆travel on typical sleep duration at home; error bars in Figure 1C show164

the standard error of the mean (SEM).165

Baseline effect for home nights. In Figures 1B & C, we also plot ∆home = µhome − Mhome166

(blue color). This is to illustrate a baseline effect, which relates to the observed systematic167

change in sleep duration away from home. This baseline effect is a decreasing linear trend168

of ∆home (blue line in Figure 1C), which shows that there is a systematic difference between169

mean and median as a function of median sleep duration for nights at home.170

Our hypothesis is that the slope of ∆home arises because of sleep-wake homeostasis, a physio-171

logical process which regulates sleep pressure. For example, a person who tends to sleep172

less than physiologically needed, will build up sleep pressure from the last adequate sleep173

episode which can be eliminated by a long nighttime sleep (a ‘catch-up’ night) [49,50]. These174

‘catch-up’ nights can result in a skewed distribution of sleep duration, with a disproportion-175

ately larger right tail; a positive skew (exemplified on Figure S6). Similarly, we expect a176

negative skew (a heavy left tail of the distribution) for individuals who tend to have longer177

nighttime sleep than they can sustain.178

This behavior is confirmed on Figure S6, which shows that 95 % of users sleeping 4.5 hours at179

home have a longer average than median sleep duration and on the contrary, 93 % of those180

sleeping 9.5 hours have shorter average than median sleep duration. This explains why181

∆home is positive for median sleep duration of less than 7 hours in Figure 1C, and negative for182

median sleep duration longer than 7 hours. The weak linear trend of ∆home and median sleep183

duration on Figure 1C (which we believe is due to the process of sleep-wake homeostasis)184

explains our comparison of ∆travel with ∆home – to obtain the absolute effect of travel on sleep.185

Results are robust despite imbalanced sample size of travel and home nights. To directly186

compare ∆travel and ∆home we plot both distributions together in Figure 1D. Visually, the two187

distributions are very different with a much broader distribution for travel-nights. To rule188

out that our results are due to this imbalance in sample sizes (e.g. that the broad range of189

∆travel is to due to lower sampling rate for travel nights), we perform an individual-level190

down-sampling of nights at home to balance our data sample. The distribution of down-191

sampled home-values, ∆home DS, (light blue colored distribution) is shown on Figure 1D & E.192

The down-sampled distribution is, in fact, slightly narrower than ∆home and remains quite193

different from the broad range of behaviour observed for the distribution of ∆travel (for a194

more detailed description see Down-sampling nights at home in SI).195

The illustrations in Figure 1 only shows behaviour on weekdays since we follow the conven-196

tion of sleep research and analyze weekdays and weekends separately. In the next section,197

we include data from weekends to understand the effect of travel on weekend nights.198
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Social jetlag measures the misalignment between biological

circadian preferences and the social clock
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Figure 2: Disproportionate effect of travel on individuals with high social jetlag and the connection between
weekends and weekdays
A: Defines social jetlag and visualises how it distributes across the user sample. B: Box-plots of social jetlag for
users with different range of sleep duration. The horizontal lines represents the median, box limits correspond
to upper and lower quartiles, whiskers define the 1.5x interquartile range and points are outliers. C: Distribution
for ∆travel on weekends and weekdays for groups of users with different range of social jetlag (defined by per-
centiles) D: The distributions of ∆travel for groups with different range of sleep duration by day type – weekends
(lighter orange color), weekdays (darker orange color) and the dotted lines mark the quartiles of the distribu-
tions. E: The average ∆travel plotted with the standard error of the mean (SEM) by sleep groups (half-hour bins
for median sleep duration) on weekdays (dark orange color) and weekends (light orange color)
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Amount of social jetlag impacts the change in sleep during travel. Social jetlag (SJ) was199

conceptualised by Wittman et al. (2006) and quantifies the difference between ‘biological200

time preferences’ and ’the social clock’. Stated more plainly, social jetlag measures the dif-201

ference between weekday and weekend sleep behaviour [25]. In Figure 2A we show how202

social jetlag is distributed across our sample. Most users (80 %) have some amount of social203

jetlag ranging from 9-98 minutes. Figure 2B shows that social jetlag depends on sleep du-204

ration and individuals with high social jetlag typically sleep little on weekdays (4-5 hours)205

and a lot on weekends (9-10 hours). This large quantitative difference is usually attributed206

to constraints from an early work schedule on weekdays (social clock), causing substantial207

sleep deprivation on weekdays and sleep compensations during weekends (biological time208

preferences) [25, 26]. In Figure 2C we plot the distribution of ∆travel for weekdays (dark or-209

ange color) and weekends (light orange color) for groups of users with different range of210

social jetlag (defined by percentiles). We observe a larger effect of travel on sleep duration211

for individuals with high values of social jetlag (SJ), and users in the top 10th percentile (SJ212

> 98 minutes) gain on average 44 minutes of sleep when nights take place away from home213

on weekdays but lose 32 minutes of sleep on weekends.214

Effects of travel on weekend nights. Next we examine how sleep duration changes for215

travel-nights on weekends and compare it to the patterns observed previously for weekday-216

nights (see Figure 1). Figure 2D shows the distributions for ∆travel on weekdays (dark orange217

color) and weekends (light orange color) organized by sleep groups, where the dotted black218

lines represent the distribution quartiles. Figure 2E illustrates the averages for ∆travel by sleep219

groups with the SEM. The relationship between ∆travel and typical sleep duration on week-220

ends is fundamentally the same as for weekdays; the change in sleep duration during travel221

decreases as the sleep duration at home increases. However, the relative change is slightly222

larger in the positive direction (line pushed further up on y-axis) on weekdays compared223

to weekends when observing the distribution averages and quartiles on Figure 2D and E.224

These differences can be explained by the fact that people are usually more constrained by225

time and alarm clocks on weekdays, consequently sleeping less than they might need and226

therefore more susceptible to gain sleep - the opposite is expected for weekends; more room227

to lose sleep [25, 26].228

Sleep onset shows a similar behavior to duration for travel nights. Above we have ob-229

served the systematic change in sleep duration for travel-nights, but sleep duration is de-230

rived from two variables; bed time (sleep onset) and wake-up time (sleep offset). We now231

investigate whether the effect of travel extends to sleep onset and offset. In order to ex-232

plore this question, we use the same methodology as above. Thus, we calculate ∆onset travel =233

µonset travel −Monset home and ∆o f f set travel . These quantities are then aggregated into averages234
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by user groups, defined by percentiles (10th, 25th, 50th, 75th, & 90th) of the distribution of235

median sleep duration (see Figure 3A1 for weekdays and A2 for weekends). The average236

∆onset travel (blue color) and ∆o f f set travel (yellow color) are shown with the SEM for weekdays237

on Figure 3B1 and weekends on Figure 3B2. We find that the change in bed time depends238

on the duration of home-sleep; those who sleep less than 6.2 hours on weekdays (bottom239

25th percentile) go to bed earlier on weekday travel-nights. For those sleeping 7.5 hours or240

less (bottom 50th percentile), the travel bed-time on weekends is advanced to earlier hours.241

The dependence of ∆onset travel on typical sleep duration is approximately linear and bed-242

time advances from earlier to later hours (relative to typical behaviour at home) as typical243

home-sleep duration increases.244

Sleep offset shows opposite behavior on weekdays and weekends for travel nights .245

Wake-up time during travel tends to be later for all users on weekdays but earlier on week-246

ends (see yellow curves on Figure 3B1 and B2). The users in the bottom 10th percentile on247

weekdays and top 10th percentile on weekends change their behaviour the most relative to248

typical hours at home, waking up 33 ± 2 minutes later on weekdays and 46 ± 2 minutes249

earlier on weekends when nights take place away from home. The top 10th percentile on250

weekdays and bottom 10th percentile on weekends change their behaviour the least (shift251

of 8 ± 2 minutes in wake-up time). The middle group of users (10-90th percentile in the252

distribution of median sleep duration) exhibit more homogeneity on weekdays where the253

change in wake-up hours on weekdays is 22-28 minutes later, whereas the range is broader254

on weekends and a slight linear dependence with typical sleep duration at home (wake-up255

time occurring 19-35 minutes earlier than at home). The difference between the change in256

sleep timing (onset and offset) due to travel on weekends and weekdays can be explained257

by the fact that sleep patterns have a tendency to be shifted to earlier hours than is natural258

to individuals on weekdays due to morning work schedule [25,26]. This constraint seems to259

extend over to the relative change in sleep timing away from home since bed and wake-up260

times are almost only shifted to later hours for most groups on weekdays and earlier hours261

on weekends.262

Confirming robustness of results via mixed effects models. Our data set contains males263

and females, a wide range of ages, and originates from users across the world, and sleep264

behavior has been shown to depend on these demographic indicators [26, 40, 51–56]. In265

the analysis above, we ignore this heterogeneity and explore sleep behavior during travel266

averaged across our entire population. In order to understand the effects of the underlying267

heterogeneity on our results, we now explore the relationship between the change in sleep268

duration for travel nights (∆travel) and typical sleep duration at home (Mhome) using mixed269

effects model.270
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Specifically, we analyse the effect of the following covariates: generations (Millenials, Gen X271

& Baby Boomers), gender (Male/Female), East/West (Asia/North America & Europe) and272

BMI category (Normal Weight/Overweight/Obese). All of these are defined formally in273

the SI (see Data Coverage & Demographics). We implement a model with a three-way inter-274

action term between home (True/False), every demographic variable and median duration275

centered around the mean (the model is defined formally in Mixed effects model in the SI).276

Our mixed effects model confirms the large difference between the rate of decrease for ∆ at277

home and away from home; 24± 0.5 minute larger decline when travelling than at home (for278

an hour increment in typical sleep duration) on weekdays and 20± 1 minutes on weekends279

(see Tables S4 and S5 in SI). The region of residence is the most influential covariate in terms280

of level of significance and effect size both on weekends and weekdays. The difference be-281

tween East and West is small in terms of the rate of decrease of ∆travel (1 minute difference282

between the slopes on weekdays and none on weekends), but much greater considering the283

intercept – which is 36± 0.5 minutes higher for users in the West on weekdays and 28± 1284

minutes higher on weekends. Gender is measured significant as a single term on weekday285

nights with 7.0± 0.5 minute difference between intercepts (higher for women). To provide286

an overview of these results, we list the model estimates of ∆s where s ∈ {home, travel} for287

different median sleep duration (4.5, 7.5 & 9.5 hours) and by most important covariates in288

Table 1 (also illustrated visually on Figures S7 and S8 in the SI).289

WEEKDAYS
TRAVEL HOME

Sleep duration [hours] 4.5 7.5 9.5 4.5 7.5 9.5
West Men 1.66± 0.017 0.218± 0.016 −0.74± 0.037 0.168± 0.0076 −0.0522± 0.0023 −0.199± 0.089
East Men 1.08± 0.013 −0.407± 0.028 −1.40± 0.056 0.182± 0.012 −0.0825± 0.0072 −0.259± 0.020
West Women 1.82± 0.029 0.316± 0.030 −0.684± 0.069 0.168± 0.0076 −0.0522± 0.0023 −0.199± 0.089
East Women 1.23± 0.025 −0.309± 0.043 −1.34± 0.088 0.182± 0.012 −0.0825± 0.0072 −0.259± 0.020

WEEKENDS
West Men 1.00± 0.078 −0.528± 0.020 −1.55± 0.086 0.225± 0.0094 −0.045± 0.0049 −0.225± 0.014
East Men 1.22± 0.052 −0.0586± 0.0055 −0.910± 0.043 0.225± 0.0094 −0.045± 0.0049 −0.225± 0.014

Table 1: Estimates of ∆s where s ∈ home, travel from mixed effects model for different sleep groups and demo-
graphics (the most important in terms of significance and effect size from model results)

Distance only has a small effect on our main findings. One possible hypothesis is that our290

results may depend on how far someone travels. To investigate this question, we include291

distance (three categories) as a covariate in the mixed effects model (< 1000 km, 1000− 2500292

km & > 2500 km). Initially we explored this question using a model which both included293

nights at home and away from home. It turned out, however, that in this setting distance294

simply behaved as an extra proxy for the distinction between home/travel – signalling that295

this is a small effect. Next, we employed a mixed effects model which only includes travel-296

nights. The model is defined with two-way interaction term between each covariate and297
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distance, as well as a interaction term between distance and median sleep duration (the298

model is defined explicitly in Mixed effects model: Exploring the effect of distance in the SI).299

The interaction term between distance and median sleep duration is not significant, thus the300

slope is estimated to be the same for all distance categories. However, distance has a signif-301

icant effect as a single term. Nights further than 2500 km away from home have 10 minute302

lower intercept on weekdays and 15 minutes lower on weekends compared to the other two303

categories, < 1000 km and 1000 − 2500 km (see estimates of fixed effects in Tables S6 for304

weekdays and S7 on weekends in the SI). Distance has also a significant interaction term305

with other covariates and the distinction between East and West is even more enhanced for306

trips more than 1000 km away from home on weekdays and in the 1000 − 2500 km cate-307

gory on weekends. On weekdays, for example, the difference between East and West for308

trips < 1000km away from home is estimated to be the same as for the full model without309

a covariate for distance (36 minutes), but for trips 1000− 2500 km away from home there is310

added 11 minutes to the baseline (total 47 minutes) and for nights in > 2500 km distance a311

additional 7 minute difference (total 43 minutes).312

Results are robust when varying the amount travel-nights. An important parameter in313

our analysis is how many nights of travel-sleep a user must have to be included in our314

data-set. We explore whether our results depend on the minimum number of travel days,315

we examine the estimates of fixed effects while the inclusion criteria changes, ranging from316

minimum 2 to 12 travels days per user. For this purpose, we use a simplified version of317

the model defined in Robustness in SI. This analysis shows that our estimates of fixed effects318

persist but in some instances become slightly smaller in magnitude. In some cases, the es-319

timated effects fall just outside the range of standard error of the mean for the full data-set,320

see Tables S8 and S9 in the SI. However, the differences with respect to the full data set are321

small, and overall we confirm our findings. For example, the differences between the slope322

for home-nights and travel-nights is [−0.394,−0.386] (estimates with SEM) for the full data-323

set but [−0.376,−0.364] with minimum twelve travel days (for weekdays). This difference324

is larger on weekends, [−0.387,−373] for two travel days (full data-set) but [−0.34 : −32]325

for twelve. However, one most consider that there is less data coverage on weekends (5326

weekdays versus 2 weekend days a week) and more variability as well, which could be ex-327

acerbating the difference [40]. Overall the same results are found when number of travel328

days required per user is increased, with some indications of a slight change in magnitude.329
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Discussion330

Drawing on a data-set of 3.2 million nights and thereof 220 000 recorded away from home331

for approximately 19 000 users, we observe a systematic change in sleep duration and timing332

(onset & offset) for travel nights, relative to typical at-home behaviour. The change in sleep333

duration due to travel depends linearly on typical sleep quantity at home and decreases as334

median sleep duration increases - a pattern identified both for weekdays and weekends. Our335

main finding is that sleep during travel tends to have a balancing effect. Under-slept indi-336

viduals tend to sleep more than at home when travelling, while individuals whose overall337

nighttime is characterized by long duration, tend to sleep less when nights take place away338

from home. The change in sleep onset and offset for travel-nights supports the observed339

changes in sleep duration. Wake-up time is on average advanced to later hours on week-340

days compared to typical nights at home, but to earlier hours on weekends. The change in341

bed time for travel nights is linearly dependent on typical sleep duration at home, and is342

advanced to later hours as median sleep duration increases.343

The dependence of the change in sleep duration for travel nights on typical sleep duration at344

home is found both for the case of weekdays and weekends, where individuals are slightly345

more inclined to gain sleep on weekdays than weekends. This latter finding is likely as-346

sociated with the constraints of the social clock and is further supported by the fact that347

misaligned individuals (individuals who have high social jetlag) are disproportionately ef-348

fected by travel [25, 26]. Our results show that on average wake-up time is shifted to later349

hours during travel nights on weekdays but to earlier hours on weekends, while the change350

in bed-time for travel nights is linearly dependent on median sleep duration at home. This351

highlights the fact that wake-up time is a more controllable factor when it comes to sleep,352

since individuals can set an alarm to wake-up at specific hour but cannot necessarily fall353

asleep at a predefined point in time. Sleep onset depends on intrinsic biological rhythm but354

also influenced by external factors. A previous study indicated the same results, where in-355

dividuals seemed to catch longer nighttime sleep on weekends by shifting their bed-time356

marginally more than wake-up time [40].357

We observe different effects of travel on sleep by demographic variables where the most358

significant and influential factor is region of residence – a variable which identifies whether359

an individual lives in the East (Asia) or West (North America & Europe). Those residing360

in the East are more inclined to lose sleep when travelling, whereas those in the West tend361

to gain sleep. We cannot provide a specific explanation for this difference, but speculate362

that the result may be related to the baseline for at-home behaviour. Individuals in the East363

cohort sleep on average less than those in the West – 6.4 versus 7.1 hrs weekdays and 6.9364

versus 7.8 hrs on weekends – a pattern also identified in other studies [53–56].365

While unprecedented in terms of number of users, our work does have some limitations.366
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First, there are relatively few nights recorded away from home (∼ 7 % out of 3.2 million367

nights). We require users to have at least two travel nights to be included in the sample, but368

that sampling rate might not reflect the full range of behaviour for an individual. To mitigate369

this limitation, we do analyse the effect of travel with panel data analysis using hierarchical370

linear model which uses all data-points simultaneously to examine the effect of covariates371

while controlling for individual baseline behaviour and characteristics. We also perform a372

down-sampling for nights recorded at home (to be equal as number of travel days) which373

demonstrates that the large distinction between the distribution of ∆ at home and away from374

home persist with the same sampling rate. Most importantly, when changing the inclusion375

criteria from 2 to 12 travel days while comparing estimates of fixed effects our results remain376

unchanged. Second, approximately 80 % of travel nights are recorded within the distance cat-377

egory of less than 1000 km away from home, and those nights are on average 240 and 280378

km away from home (weekdays/weekends). Thus, our sample is biased towards relatively379

short-distance travel, however, and thus unlikely to be effected by jetlag. Third, age and BMI380

were self-reported which could recall bias. In a previous study, however, we found good381

agreement between the World Health Organization’s country-level estimates of median age382

and age standardized BMI for our data-set [40]. Our sample of users may also not be repre-383

sentative of the wider population due to potential unobserved factors also associated with384

wearable device ownership [57]. Fourth, we note that the wristbands have not been publicly385

validated using the gold standard of polysomnography as recommended in the Sleep Re-386

search Society Workshop on wearable devices for the measurement of sleep [58]. However,387

we find 1) our data-set converges with country-level sleep measures from separate large-388

scale data-sets, 2) demonstrates consistency over the period of observation and 3) replicates389

age-related sleep trends from previously published self-report studies, including changes390

in sleep duration and timing [40]. The devices have also been internally validated by the391

manufacturer.392

Due to the nature of the data sampling, we cannot know whether individuals are travelling393

to a new destination or not, but that could be influential considering First Night Effect, and394

therefore we suggest it to be considered in future studies [16, 17]. Similarly, since the data is395

observational, the purpose of the trip – business versus pleasure – is unknown which could396

have an effect.397

The effect of travel on sleep behaviour has not been studied for a cohort of this size before398

and most of the research has aimed to understand the effect of travel on sleep to optimize399

athletic performance or to apprehend fatigue among aircrews. [18, 27–34, 59]. Interestingly,400

one of these studies identified the same pattern as we do – travel was negatively correlated401

with sleep duration on weekdays among kite surfers (N=94) [59]. Generally, travel is be-402

lieved to have deleterious effects on sleep, but our study reveals that travel provides a more403

complex impact on the sleep of travellers, providing respite to underslept individuals, while404
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the deleterious effects are reserved for those who tend to be well-rested [18–24].405
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Supplementary Information572

Data Availability Raw data are not publicly available to preserve users’ privacy (according573

to the Privacy Policy of the wearable devices). Aggregated and anonymized data support-574

ing the findings of this study are available from the corresponding authors upon request.575

Figure 1A contains raw data-points from the data-set.576

Code Availability The code used to generate the results of this paper is available for down-577

load on github [link in published paper].578

Data Pre-processing579

The raw data consists 1-minute epochs of sleep activity which are aggregated into nights580

with sleep onset, offset, duration and wake-time after sleep onset (WASO). For each night a581

user can wake up multiple times but each awakening can only last for 60 minutes or less. In582

order to obtain nighttime sleep (exclude naps) and remove outliers we apply the following583

standard filters for sleep duration: 3 ≤ duration ≤ 13 introduced by Roenneberg et.al [26].584

Next we look at the distribution of sleep onset and offset separately on weekdays and week-585

ends (Figure 1) and set filters to be 3 standard deviation away from the mean, or586

• 20:24 ≤ onset weekends ≤ 04:52 and 03:59 ≤ offset weekends ≤12:52587

• 20:28 ≤ onset weekdays ≤ 03:59 and 03:21 ≤ offset weekdays ≤ 11:25588
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Figure 1: Distribution of sleep onset, offset duration plotted separately for weekdays and weekends

Filtering & Inclusion Criteria589

To motivate our choice for the minimum number of nights required per user, we examine the590

development of the standard deviation for sleep duration by the number of days recorded,591
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both at home and away from home (Figure 2). The standard deviation seems to stabilize592

around 10 recorded nights, both at home and away from home. That threshold is reasonable593

for at nights at home but would eliminate majority of our data (more than 90 %) if applied594

to travel-nights. Thus, we decided to require users of two recorded nights away from home595

by day type. One should pay attention to the fact that users can be included for the analysis596

just on either weekdays or weekends – not necessarily both day types.597
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Figure 2: Development of the standard deviation of sleep duration aggregated by number of nights recorded at
home and away from home

In most of our analysis we use the median sleep duration to quantify typical at home be-598

haviour, consequently we also examine how the distributions for the standard error of the599

median (SEMe) develops as the inclusion criteria changes (Figure 3). Naturally, the distri-600

butions become tighter, the average and standard deviation decrease in magnitude as the601

number of days required per user is increased. We chose to require users of 10 recorded602

nights at home on by day type.603
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Figure 3: Distributions for the standard error of the median (SEMe) by day type while changing the number
home-nights required per user (weekdays left column and weekends right column)
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Data Coverage & Demographics604

Sleep behaviour is dependent on internal and external processes and differentiates by demo-605

graphic variables such as gender, age, cultural context and day type. To explore those effects606

we use individual-level covariates; gender (female/male), generations (Baby Boomers born607

1946-64, Gen X born 1965-80, Millennial’s born 1981-96 and Gen Z born 1997 or later) and608

BMI categories (underweight/normal weight/overweight/obese) which were labelled ac-609

cording to the World Health Organization classification [60, 61]. There are large disparities610

in sleep patterns across cultures, especially the contrast between Eastern (Asia) and West-611

ern (Europe and North America) regions. Studies have shown that sleep duration is shorter612

and bed times later among people residing in the East than those living in the West [53–56].613

Thus, we use region of residence (also called East/West) as a covariate where East represents614

residents in Asia and West for those living N-America and Europe. All plots and models are615

implemented separately for weekdays and weekends because of likely differences in the so-616

cial structure over the course of the week. Since we do not directly observe schedules, we617

assume the likelihood of work days is highest on weekdays and work-free days is highest618

on weekends [25]. Trips are categorized by distance; less than 1000 km, 1000-2500 km and619

more than 2500 km travelled.620

Figure 4 visualises 1) the distribution of the number days users have recorded at home and621

away from home, 2) how users distribute by gender, BMI categories and generations, 3) lists622

out the ten largest geographic regions and 4) shows how far away from home travel-nights623

typically are. Approximately 1/3 of the sample is women and 2/3 men. Most users are624

either normal weight or overweight and from generation x or millennial’s. Users distribute625

similarly by age and BMI for both genders. Most travel-nights are 1000 km or less away from626

home. There are dominant geographic regions in the sample, where more than 60 % of users627

live in 5 countries. We do explore and control for the effect of all demographic variables in628

our analysis.629
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Figure 4: A) Displays the distribution of number of days users have recorded at home on weekends and week-
days. B) Illustrates the ratio of female and male users and how they distribute by BMI categories and genera-
tions. C1) Shows the percentage of users by number of travel days, separately on weekdays and weekends. C2)
Displays how travel-nights distribute by distance categories and lists the average distance within each category,
separately on weekends and weekdays. D) Lists the top ten countries with most residence and the percentage
of users living there, as well as the percentage of users living within the three regions (East/West/Other)

Down-sampling nights at home630

As mentioned in the manuscript - one of the limitations of this study is the disproportionate631

number of nights recorded away from home in comparison to nights at home (6 % of week-632

days and 9.3 % of weekends are travel-nights). One might consider that the change in sleep633

behaviour away from home could be happening incidentally – meaning that if we randomly634

choose the same amount of nights at home as number of nights recorded away from home,635

then the sample distributions for ∆home and ∆travel would look more alike.636

To contest to that presumption, we perform down-sampling such that we randomly select637

nights at home to be equal to the number of nights recorded away from home (for each user)638

and compare the sample distributions (both visually and by percentiles) for ∆home DS and639

∆home. The process is described step-by-step;640
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• Repeat 50 times;641

– For each user we randomly choose Ntravel nights recorded at home642

– For those randomly drawn nights, we estimate ∆home and store it for each user643

• Estimate ∆home DS for each user from the 50 trials644

• Estimate the quartiles for the sample distribution of ∆home DS645

Results are listed in Tables 2 and 3 and distributions also visualised on Figure 5. The dis-646

tribution for ∆home DS is actually narrower than for the full sample. That can be rationalized647

by the fact that 70 % of users have 5 or less days recorded away from home but when we648

examined the development of the standard deviation by number of data-points (see section649

Filtering & Inclusion Criteria in SI) – the standard deviation increases and is not stabilized650

until there are about 10 recorded nights. The distribution for ∆home DS moves further away651

from the distribution ∆travel when down-sampled.652

Iteration 1 2 3 4 5 Full sample – Home Full sample – Travel
Minimum -0.565 -0.588 -0.596 -0.619 -0.617 -1.39 -5.25
Lower quartile -0.0532 -0.0515 -0.0533 -0.0524 -0.0534 -0.110 -0.417
Median 0 0 0 0 0 -0.0140 0.239
Upper quartile 0.0342 0.0340 0.0340 0.0363 0.0346 0.086 0.933
Maximum 0.726 0.754 0.711 0.735 0.766 1.16 5.98

Table 2: Sample quartiles of ∆home DS [hours] home-nights are randomly selected and equal to the number of
travel-nights on weekdays

Iteration 1 2 3 4 5 Full sample – Home Full sample – Travel
Minimum -0.692 -0.841 -0.680 -0.752 -0.746 -1.39 -5.25
Lower quartile -0.0763 -0.0783 -0.0777 -0.0785 -0.0789 -0.110 -0.417
Median 0 0 0 0 0 -0.0140 0.239
Upper quartile 0.0114 0.0110 0.0117 0.0112 0.0134 0.086 0.933
Maximum 0.712 0.604 0.586 0.6454 0.6322 1.16 5.98

Table 3: Sample quartiles of ∆home DS [hours] home-nights are randomly selected and equal to the number of
travel-nights on weekends
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Figure 5: Distributions of ∆home DS on weekdays and weekends (from the five iterations described above) with
∆home and ∆travel
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The baseline effect at home653

Figure 6: Here we illustrate how the asymmetry of an individual’s distribution emerges due to homeostasis. In
the table the majority of individuals who regularly have shorter nighttime sleep at home (4.5 or 5.0 hours) have
a median larger than the mean and a positively skewed distribution – indicating heavier right tail. The opposite
can be observed for individuals typically obtaining longer nighttime sleep – where majority of the users have an
averages smaller than the median and a negative skew suggesting disproportional tendency for shorter nights.
The distributions on the bottom of the figure are representative for six randomly selected users, 3 of which have
low sleep duration (orange color) and 3 who have high sleep duration (green color).

Mixed effects model654

To analyse the data-set with mixed effects model we implement a model with a three-way655

interaction term between home (True/False), every demographic variable and median dura-656

tion (centered around the mean). Measurements are nested within user (random effect) and657
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the model is defined in equation below.658

Yi = µ + α(duration_centeri) + β(homei) + δ(bmi_cati) + ε(east_westi) +

ζ(genderi) + η(generationi) + θ(homei × duration_centeri) + ι(homei × bmi_cati) +

κ(homei × east_westi) + λ(homei × genderi) + ν(homei × generationi) +

ξ(duration_centeri × bmi_cati) + π(duration_centeri × east_westi) +

ρ(duration_centeri × genderi) + σ(duration_centeri × generationi) +

τ(duration_centeri × homei × bmi_cati) + υ(duration_centeri × homei × east_westi) +

φ(duration_centeri × homei × genderi) + χ(duration_centeri × homei × generationi) +

+y(useri) + εi where i = 1, . . . 773 132 or i = 1, . . . 2 386 370

Furthermore y(useri) ∼ N(0, σ2
w), and εi ∼ N(0, σ2)

Estimates of fixed effects659

Fixed effect Estimate Std. Error P-value
(Intercept) -3.092e-03 2.847e-03 0.28
dur_C -7.357e-02 3.298e-03 <2e-16 ***
homefalse 5.589e-01 7.955e-03 <2e-16 ***
east_westeast -2.004e-02 2.748e-03 3.25e-13 ***
genderFEMALE 2.367e-03 2.706e-03 0.381774
bmi_cat2 -2.639e-03 2.646e-03 0.318754
bmi_cat3 -8.979e-03 3.554e-03 0.011546 *
generationbaby boomers -1.982e-02 2.915e-03 1.07e-11 ***
generationmillenials 1.231e-02 2.930e-03 2.66e-05 ***
dur_C:homefalse -4.070e-01 7.447e-03 <2e-16 ***
homefalse:east_westeast -5.943e-01 7.931e-03 <2e-16 ***
homefalse:genderFEMALE 1.121e-01 8.115e-03 <2e-16 ***
homefalse:bmi_cat2 -3.994e-02 7.602e-03 1.49e-07 ***
homefalse:bmi_cat3 -1.399e-01 1.022e-02 <2e-16 ***
homefalse:generationbaby boomers -7.463e-02 8.321e-03 <2e-16 ***
homefalse:generationmillenials -6.835e-02 8.478e-03 7.53e-16 ***
dur_C:east_westeast -1.452e-02 2.982e-03 1.14e-06 ***
dur_C:genderFEMALE 5.005e-03 3.008e-03 0.096 .
dur_C:bmi_cat2 -1.738e-03 2.885e-03 0.55
dur_C:bmi_cat3 5.294e-03 3.798e-03 0.16
dur_C:generationbaby boomers 1.156e-03 3.101e-03 0.71
dur_C:generationmillenials -1.167e-02 3.326e-03 0.00045 ***
dur_C:homefalse:genderFEMALE -1.940e-02 8.768e-03 0.027 *
dur_C:homefalse:bmi_cat2 3.116e-02 8.327e-03 0.00018 ***
dur_C:homefalse:bmi_cat3 7.372e-02 1.100e-02 2.06e-11 ***
dur_C:homefalse:generationbaby boomers 4.440e-02 8.991e-03 7.87e-07 ***
dur_C:homefalse:generationmillenials -7.136e-02 9.698e-03 1.87e-13 ***

Table 4: Estimates of fixed effects from mixed effects models for home-nights and travel-nights on weekdays
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Figure 7: Illustration for the mixed effect model for the most important fixed effects in terms of significance and
effect size on weekdays
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Fixed effect Estimate Std. Error P-value
(Intercept) -4.158e-02 4.732e-03 <2e-16 ***
dur_C -9.015e-02 4.732e-03 <2e-16 ***
homefalse 1.193e-02 1.416e-02 0.40*
east_westeast 1.623e-03 4.554e-03 0.72
genderFEMALE -5.180e-03 4.343e-03 0.23
bmi_cat2 -6.223e-03 4.301e-03 0.15
bmi_cat3 -7.051e-03 5.850e-03 0.23
generationbaby boomers -2.446e-02 4.684e-03 1.80e-07 ***
generationmillenials 1.375e-02 4.920e-03 0.0052 **
dur_C:homefalse -3.355e-01 1.409e-02 <2e-16 ***
homefalse:east_westeast -4.659e-01 1.426e-02 <2e-16 ***
homefalse:genderFEMALE -2.479e-02 1.353e-02 0.067 .
homefalse:bmi_cat2 -7.138e-02 1.330e-02 7.93e-08 ***
homefalse:bmi_cat3 -1.376e-01 1.770e-02 7.58e-15 ***
homefalse:generationbaby boomers -1.897e-03 1.476e-02 0.90
homefalse:generationmillenials 7.500e-04 1.474e-02 0.96
dur_C:east_westeast -5.679e-03 4.489e-03 0.21
dur_C:genderFEMALE 2.864e-03 4.334e-03 0.51
dur_C:bmi_cat2 6.384e-04 4.207e-03 0.88
dur_C:bmi_cat3 5.256e-03 5.587e-03 0.35
dur_C:generationbaby boomers 4.635e-03 4.525e-03 0.31
dur_C:generationmillenials -1.546e-02 4.992e-03 0.0020 **
dur_C:homefalse:east_westeast -8.511e-02 1.388e-02 8.74e-10 ***
dur_C:homefalse:genderFEMALE -5.676e-02 1.329e-02 1.94e-05 ***
dur_C:homefalse:bmi_cat2 2.853e-02 1.295e-02 0.028 *
dur_C:homefalse:bmi_cat3 5.596e-02 1.695e-02 0.00096 ***
dur_C:homefalse:generationbaby boomers 3.018e-02 1.426e-02 0.034 *
dur_C:homefalse:generationmillenials -6.285e-02 1.477e-02 2.10e-05 ***

Table 5: Estimates of fixed effects from mixed effects models for home-nights and travel-nights on weekends
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Figure 8: Illustration for the mixed effect model for the most important fixed effects in terms of significance and
effect size on weekends

Mixed effects model: Exploring the effect of distance660

To explore the effect of distance on the relationship between ∆travel and typical sleep du-661

ration we implement a mixed effect model only for days away from, defined in equation662

below.663

Yi = µ + α(duration_centeri) + β(distance_categoryi) + δ(bmi_cati) + ε(east_westi) +

ζ(genderi) + η(generationi) + θ(distance_categoryi × duration_centeri) +

ι(distance_categoryi × bmi_cati) + κ(distance_categoryi × east_westi) +

λ(distance_categoryi × genderi) + ν(distance_categoryi × generationi) +

y(useri) + εi where i = 1, . . . 73 265 or i = 1, . . . 144 582

Furthermore y(useri) ∼ N(0, σ2
w), and εi ∼ N(0, σ2)
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Estimates of fixed effects664

Fixed effects Estimate Std. Error P-value
(Intercept) 5.922e-01 1.675e-02 <2e-16 ***
dur_C -4.867e-01 8.127e-03 <2e-16 ***
distance_category2500 5.271e-02 3.354e-02 0.12
distance_category2500++ -1.705e-01 3.555e-02 1.61e-06 ***
east_westeast -5.926e-01 1.642e-02 <2e-16 ***
genderFEMALE 1.170e-01 1.619e-02 5.13e-13 ***
bmi_cat2 -7.324e-02 1.591e-02 4.16e-06 ***
bmi_cat3 -1.751e-01 2.099e-02 <2e-16 ***
generationbaby boomers -1.050e-01 1.774e-02 3.36e-09 ***
generationmillenials -9.293e-02 1.714e-02 5.98e-08 ***
distance_category2500:east_westeast -1.823e-01 3.258e-02 2.19e-08 ***
distance_category2500++:east_westeast -1.127e-01 3.361e-02 0.0008 ***
distance_category2500:genderFEMALE -1.116e-01 3.269e-02 0.00064 ***
distance_category2500++:genderFEMALE -5.883e-03 3.607e-02 0.87
distance_category2500:bmi_cat2 -1.968e-02 3.318e-02 0.55
distance_category2500++:bmi_cat2 9.754e-02 3.504e-02 0.0054 **
distance_category2500:bmi_cat3 3.896e-03 4.430e-02 0.93
distance_category2500++:bmi_cat3 1.698e-01 4.863e-02 0.00048 ***
distance_category2500:generationbaby boomers -1.009e-02 3.627e-02 0.78
distance_category2500++:generationbaby boomers 2.282e-02 3.771e-02 0.55
distance_category2500:generationmillenials 6.709e-02 3.601e-02 0.062
distance_category2500++:generationmillenials 1.041e-01 3.955e-02 0.0085 **

Table 6: Estimates of fixed effects from mixed effects models for travel-nights on weekdays

Fixed effects Estimate Std. Error P-value
(Intercept) -2.887e-02 1.610e-02 0.073 .
dur_C -4.880e-01 8.952e-03 <2e-16 ***
distance_category2500 -5.428e-02 4.038e-02 0.179
distance_category2500++ -2.481e-01 4.506e-02 3.67e-08 ***
east_westeast -4.587e-01 2.008e-02 <2e-16 ***
bmi_cat2 -7.956e-02 1.922e-02 3.51e-05 ***
bmi_cat3 -1.602e-01 2.560e-02 4.09e-10 ***
distance_category2500:east_westeast -2.180e-01 5.098e-02 1.90e-05 ***
distance_category2500++:east_westeast -5.567e-02 5.489e-02 0.310
distance_category2500:bmi_cat2 6.107e-02 5.313e-02 0.250
distance_category2500++:bmi_cat2 5.953e-02 5.724e-02 0.298
distance_category2500:bmi_cat3 -2.831e-02 7.159e-02 0.692
distance_category2500++:bmi_cat3 2.508e-01 8.116e-02 0.002 **

Table 7: Estimates of fixed effects from mixed effects models for travel-nights on weekends
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Robustness665

Yi = µ + α(duration_centeri) + β(homei) + δ(bmi_cati) + ε(east_westi) +

ζ(genderi) + η(generationi) + θ(homei × duration_centeri) +

ι(homei × bmi_cati) + κ(homei × east_westi) +

λ(homei × genderi) + ν(homei × generationi) +

y(useri) + εi where i = 1, . . . 773 132 or i = 1, . . . 2 386 370

Furthermore y(useri) ∼ N(0, σ2
w), and εi ∼ N(0, σ2)

travel days ≥ 2 travel days ≥ 4 travel days ≥ 6 travel days ≥ 8 travel days ≥ 10 travel days ≥ 12
Fixed effect

Estim. ± SEM Estim. ± SEM Estim. ± SEM Estim. ± SEM Estim. ± SEM Estim. ± SEM
Intercept -0.0013 ± 0.003 -0.0033 ± 0.003 -0.0039 ± 0.004 -0.0055 ± 0.005 -0.0049 ± 0.005 -0.0046 ± 0.006
dur_C -0.081 ± 0.001 -0.080 ± 0.002 -0.078 ± 0.002 -0.077 ± 0.002 -0.076 ± 0.003 -0.075 ± 0.006
home=false 0.56 ± 0.008 0.55 ± 0.008 0.54 ± 0.009 0.53 ± 0.01 0.53 ± 0.01 -0.52 ± 0.01
dur_C and
home=false

-0.39 ± 0.004 -0.39 ± 0.005 -0.38 ± 0.005 -0.38 ± 0.005 -0.38 ± 0.006 -0.37 ± 0.006

east_west=east
and home=false

-0.59 ± 0.008 -0.59 ± 0.009 -0.58 ± 0.009 -0.58 ± 0.01 -0.58 ± 0.01 -0.58 ± 0.01

Table 8: Estimates of most important fixed effects (in terms of significance and effect size) with increasing num-
ber minimum of travel days required per user on weekdays

travel days ≥ 2 travel days ≥ 4 travel days ≥ 6 travel days ≥ 8 travel days ≥ 10 travel days ≥ 12
Fixed effect

Estim. ± SEM Estim. ± SEM Estim. ± SEM Estim. ± SEM Estim. ± SEM Estim. ± SEM
Intercept -0.040 ± 0.005 -0.43 ± 0.006 -0.39 ± 0.007 -0.33 ± 0.009 -0.46 ± 0.009 -0.33 ± 0.01
dur_C -0.093 ± 0.002 -0.090 ± 0.003 -0.083 ± 0.004 -0.081 ± 0.005 -0.078 ± 0.005 -0.080 ± 0.006
home=false 0.019 ± 0.01 0.033 ± 0.01 0.021 ± 0.02 0.015 ± 0.02 0.017 ± 0.02 0.015 ± 0.02
dur_C and
home=false

-0.38 ± 0.007 -0.36 ± 0.008 -0.35 ± 0.009 -0.35 ± 0.01 -0.34 ± 0.01 -0.33 ± 0.01

east_west=east
and home=false

-0.46 ± 0.01 -0.44 ± 0.02 -0.42 ± 0.02 -0.40 ± 0.02 -0.38 ± 0.02 -0.34 ± 0.03

Table 9: Estimates of most important fixed effects (in terms of significance and effect size) with increasing num-
ber minimum of travel days required per user on weekends
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Quantifying complex patterns in high-resolution sleep
activity data

Sigga Svala Jónasdóttir, Jari Saramaki and Sune Lehmann

February 27, 2021

Abstract

Until very recently, large-scale studies have been based on self-reported sleep esti-
mates where key metrics were limited to quantities people could reasonably be expected
to recall. Today, sleep recording technology has been revolutionized by wearable device,
and sleep can easily be measured objectively in situ over long period of time. Conse-
quently, the number studies drawing on such sleep recording devices is rapidly rising.
However, it is not clear if methods and metrics of classical sleep epidemiology – devel-
oped for questionnaire research – are the right ones for detailed high-resolution sleep
recordings. Thus, in this paper we ask whether there are salient features of sleep that
the traditional metrics fail to capture? We begin to answer that question by first showing
that sleep is multi-faceted process which manifests complex patterns across the popula-
tion. We find wildly different sleep dynamics can appear similar in terms of traditional
epidemiological sleep measures. Next, we introduce the sleep portrait that capture and
visualise the richness of long-term patterns of individual sleep behavior. Finally, we
propose a novel data-driven metric based on the skewness of sleep duration. The distri-
bution of duration-skew across the population suggests that this new metric may allow
us to estimate whether or not an individual’s physiological sleep needs are met. Today,
there is no method to quantify whether an individual is getting sufficient sleep, except
comparing their typical sleep duration to official recommendations. Sleep duration con-
tinues to decrease across the world and sleep disorders become more prevalent, while
the number of wearable device owners increases. We see a potential to accelerate un-
derstanding about the human sleep in modern society and conceivably improve health
outcomes linked to poor sleep. Here we begin the process of identifying the appropriate
tools and techniques for future studies of such data-sets.

Introduction

As humans have entered the modern era we have begun to collect data on a wide range
of human behaviors [1, 2]. Our knowledge of sleep has developed from scattered mentions
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throughout historical sources to questionnaire data [3, 4] and to today’s massive datasets
[5–9]. While data collection on sleep behavior has been revolutionized over the past few
years [5,7,10,11], the commonly used metrics for analyzing sleep behavior [12–14] originate
from a time when the key data source was questionnaire data.

Large scale sleep studies. There is no shortage of evidence that sleep is an essential part
of human health but regardless, average sleep duration keeps decreasing across the world
[3, 15–29]. For this reason, scientists have been interested in sleep at least since the days
of Aristotle [30]. However, the study of quantitative population-level sleep patterns, sleep
epidemiology, only dates back to around 1980, when the first documented studies were con-
ducted [31, 32]. The most common ways to collect data about sleep at scale are i) sleep di-
aries, ii) sleep surveys, iii) sleep questionnaires, and the most recent technique, iv) wearable
devices.

Bias in sleep epidemiology. In the case of sleep diaries and surveys, subjects self-report
quantities and qualities regarding their sleep (e.g. bed-time, sleep duration and subjec-
tive tiredness). Studies have explored the extent to which self-reported sleep duration via
sleep diaries and surveys corresponds to objectively measured estimates from wearable
devices, and found them to correlate poorly, with systematic biases related to certain at-
tributes [33–39]. Sleep questionnaires usually pose multiple questions to obtain a single
score or estimate, intended to evaluate one aspect of an individual’s sleep behavior. Exam-
ples of surveys are The Munich Chronotype Questionnaire (to quantify chronotype), Pitts-
burgh Sleep Quality Index (assesses sleep quality for the passed month) and the Karolinska
Sleepiness scale (measure sleepiness) [4,12,14,40,41]. These questionnaires are validated and
widely used, but only focus on one aspect of the multidimensional process of sleep [42–45].

Wearable devices for sleep epidemiology. Wearable devices are worn on the surface of
the skin, most commonly around the wrist (wrist actigraphy) and monitor the users’ move-
ments to infer sleep. Wearables with built-in sleep tracking have become more common in
the recent years, and thus have grown in importance for sleep research [5, 7–9, 46, 47]. Sleep
trackers facilitate multi-night recordings in-situ and enable a more holistic examination of
sleep [10, 48]. It is important to emphasize that sleep trackers are not perfect and are gener-
ally known to overestimate sleep duration and underestimate sleep fragmentation [10, 11].
However, as we argue below, despite these shortcomings consumer-grade sleep trackers are
likely to provide better insights than self-reported single estimates of habitual sleep behav-
ior. The dataset for this study stems from consumer wearable devices: an observational,
global and large-scale sleep activity data from ∼ 15 000 users residing 149 countries, where
each user has at least 56 recorded nights which amount to ∼ 5.5 million nights in total.

Brief overview of this paper. In this paper, we argue that the classic metrics from sleep epi-
demiology, while valuable, are not necessarily a perfect fit for data collected from consumer-
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grade sleep trackers. Specifically, we explore which aspects of sleep may remain hidden
when focusing on classic measures of sleep, such as the habitual sleep duration, chronotype
and social jetlag, as seen from the perspective of large-scale high-resolution sleep datasets.
We introduce the idea of sleep portraits for quantifying sleep patterns and show how metrics
derived from sleep portraits enable us to understand the factors behind the skewness of in-
dividual level sleep duration statistics. This skewness, apparent in our empirical electronic
traces of sleep, is a feature that has been partially obscured by traditional measures of sleep.
We explore the hypothesis that skewness of an individual’s distribution of sleep duration is
related to whether their sleep needs have been met.

Methods

Data collection & Pre-processing

The data analyzed here were collected with consumer wearable devices from 2015 to 2019
designed to track physical activity and sleep behavior. Users connect their devices to smart-
phones, and receive a visual instruction on how and where (wrist) to place the device. The
devices use proprietary, internally validated algorithms based on movement registered by an
internal accelerometer to infer sleep and wake states to 1-minute intervals (epochs). Epochs
are aggregated into nights with sleep onset, offset and duration, and sleep fragmentation are
quantified with wake after sleep onset (WASO) [49]. Measurements from the wristbands ex-
hibit a high degree of validity since they i) replicate age-related sleep trends from previously
published self-report studies, and ii) converge with country-level estimates of sleep mea-
sures from number of data-sets from other publications [7]. To reduce the risk of including
sleep observations from those suffering from insomnia, shortened nights due to users ceas-
ing wristband use in the middle of the resting period, observations from night-shift workers
or any other possible data errors, outliers were removed. The details of the filtering pro-
cess are described step-by-step in the SI, Data Pre-Processing. After the pre-processing, the
final dataset used for analyses consists of ∼ 4 million weekday nights and ∼ 1.5 million
weekend nights from approximately 15 000 users. By using these wristbands, we follow a
growing trend of utilizing commercial devices in sleep research to study sleep behavior in
naturalistic settings at large scales [6, 7, 38, 48].

Privacy & GDPR Users are anonymous and self-report their age, gender, height and weight.
All data analysis was carried out in accordance with the EU’s General Data Protection Reg-
ulation 2016/679 (GDPR) and the regulations set out by the Danish Data Protection Agency.
The GDPR describes regulations for data protection and privacy in the European Union and
the European Economic Area; it also addresses the transfer of personal data outside the EU
and EEA areas.
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Measuring skewness

A key element in our analysis below is skew or skewness, which measures the asymmetry
of a probability distribution of random variable around its mean. We use the following
expression for the skewness of a sample with n data points [50]:

skew =
m3

s3 =
1
n ∑n

i=1(xi − x̄)3

[ 1
n ∑n

i=1(xi − x̄)2]
3
2

(1)

where m3 is the sample third central moment, s is the sample standard deviation and n the
number of datapoints. Note that real world data is almost never exactly symmetric (skew=0)
due to noise, and therefore Bulmer et al. (1979) suggests the following rule of thumb to
consider when working with empirical data [51]:

1. If skew is less than -1 or larger than 1 then the distribution is highly skewed

2. If skew is between -1 and -0.5 or between 0.5 and 1, then it is moderately skewed

3. If skew is measured between -0.5 and 0.5 then the distribution is approximately sym-
metric

Results

Sleep is wild and complex!

Summary of four sleep trajectories We begin our study by showing how a range behaviors
can result in similar values for ‘classical’ measurements of sleep. In order to exemplify the
wide range of behaviors observed when sleep is measured objectively in-situ over a long
period of time, we choose four users (1-4) to analyze in detail. Table 1 exhibits their median
bed-time (sleep onset), wake time (sleep offset) and sleep duration separately on weekdays
and weekends, as well as their chronotype (MSFsc) and social jetlag (SJ) [12,13]. Chronotype
and social jetlag are widely used in sleep epidemiology and details on how they are derived
is provided in section called ‘Chronotype & Social jetlag’ in the SI. These summary statistics
show a range of similarities and differences between the four users, which are further ex-
plored in Figure 1.
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USER 1 2 3 4
Overall

MSFsc [hh:mm] 04:26 04.35 05:13 03:42
Social jetlag [hrs] 0.27 0.88 1.45 0.13
Median duration [hrs] 9.10 4.82 7.30 7.4

Weekdays
Median Onset [hh:mm] 23:27 01:17 23:56 23:24
Median Offset [hh:mm] 08:28 06:05 06:56 07:42
Median duration [hrs] 9.00 4.7 7.0 7.3

Weekends
Median Onset [hh:mm] 23:29 02:00 00:12 23:34
Median Offset [hh:mm] 09:08 07:15 09:52 07:56
Median duration [hrs] 9.2 5.2 9.65 7.5

Table 1: Estimates of median bed and wake time (separately by weekdays and weekend), and estimated chrono-
type (MSFsc), social jetlag (SJ) and overall median sleep duration for four selected users

Defining visual sleep trajectories. A convenient way to represent sleep recordings of an
individual is shown in Figure 1C-F where the x-axis represents consecutive nights, and the
y-axis shows the hours from 20:00 to 12:00. Sleep onsets and offset are indicated with blue
and yellow dots respectively. Weekend-days are shown by a gray shading of the sleep-
interval. We call these plots visual sleep trajectories and enable us to capture many aspects
of sleep patterns, such as typical bed and wake-time, sleep regularity, particular habits on
weekends, long-term trends, and more.

Analysis of four sleep trajectories: Figure illustrates how users 1 & 2 have nearly the same
chronotype (both chosen within the range of dotted lines on Figure 1A), but their visual sleep
trajectories are quite different; user 1 fluctuates in terms of sleep timing and does not exhibit
a clear distinction between weekends and weekdays. In contrast, user 2 has consistent bed
and wake time, but wake-time is shifted to later hours on weekends. Similarly, users 3 &
4 have nearly the same overall median sleep duration (7.3 and 7.4 hrs respectively, chosen
withing the range of the dotted lines on Figure 1B), however their temporal patterns are
quite different. User 3 is likely constrained by early morning work schedule (same wake-
up time on weekdays), which is relieved on weekends. User 4 has an interesting behavior
of falling asleep at almost the same time every night, all the while waking up at relatively
random hours.
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Figure 1: The multifaceted dynamics of sleep A: The distribution of chronotype (MSFsc) across the population,
and the dotted vertical line represent the range in which user 1 and 2 were selected from. B: The distribution of
median sleep duration across the population, and the dotted vertical lines represent the range in which user 3
and 4 were selected from. C-F: Temporal patterns, or sleep trajectories, for 60 consecutive nights of bed and wake
time. The vertical axis shows hours from 20:00 to 12:00 (next day). Sleep onset and offset are marked with blue
and yellow dots respectively, and weekend nights are shown by a gray shading of the sleep-interval. Users 1 & 2
have nearly the same chronotype (∼ 04:30) and users 3 & 4 have nearly the same overall medians sleep duration
(∼ 7.5 hrs). G-K: The stacked distributions of sleep duration (dark green color represents weekday-nights and
lighter green color weekends) for users 1-4 respectively.

Same social jetlag but different weekend-weekday sleep duration difference. In Table 2
we provide examples of three additional users with nearly the same value of social jetlag
(around 45 minutes), but different underlying sleep dynamics [13]. User 5 has similar wake
time on weekends and weekdays, but bed-time is shifted to later hours on weekends, result-
ing in 1.3 hour shorter sleep duration on weekends. User 6 shifts both bed and wake time to
later hours on weekends and therefore obtains the same amount of sleep both on weekday
and weekend-nights. Lastly, user 7 goes earlier to bed on weekends compared to weekdays,
and wakes up later resulting in more than three extra hours of sleep on weekends.

We believe that new metrics for sleep are needed. All of the examples of above (in Figure 1
and Table 2) illustrate that even though one aspect of sleep is measured to be similar across
users, other (related) characteristics can be quite different. Users can have the same chrono-
type but have nearly two hour absolute difference in both bed and wake time (4 hrs in total,
see median sleep onset and offset for user 1 and 2 in Table 1). Similarly, two users can change
their mid-sleep marginal an equal amount between weekends and weekdays, but one might
lose a lot of sleep by doing so, while the other gains substantial amount. Furthermore, we
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generalise these conclusions by illustrating the wide range of behaviors that distributions
of different sleep metrics span for users with approximately the same chronotype (∼04:30),
social jetlag (45 minutes) and median sleep duration (∼ 7.5 hrs) in Figures S2-S4. Taken
together, these observations point out that existing measures and methods in sleep epidemi-
ology may not be quantifying the complex patterns manifested during human sleep.

Users with SJ ∼ 45 minutes 5 6 7
Onset weekdays [hh:mm] 23:09 23:10 02:00
Offset weekdays [hh:mm] 08:15 06:00 07:37
Onset weekends [hh:mm] 01:16 23:53 00:48
Offset weekends [hh:mm] 08:06 06:59 10:28
Weekend-weekday
duration difference [hrs]

-1.3 0.0 3.3

Table 2: Estimates of bed and wake-up time (separately on weekends and weekdays), and weekend-weekday
median sleep duration difference for three selected users with the same social jetlag (∼45 minutes)

Skew: Measuring the direction of preference

Introducing sleep-duration skew, Σ. Having discussed some shortcomings of the more tra-
ditional measures of sleep, we now move on to discuss possible new metrics driven by our
exploration of empirical sleep patterns. Perhaps the most striking finding we have come
across arises from investigating individual-level distributions of sleep duration over time.
To see examples of distributions of an individuals’ sleep duration over time, consider Fig-
ure 1C-F, which show the distribution of sleep duration for users 1-4 (see also Figure 2B for
additional examples). User 1 is characterized by a relatively symmetric distribution except
a thin left tail, user 2 has a narrow and balanced distribution, user 3 has an asymmetric dis-
tribution with more mass in the right-hand-side tail, consisting mainly of weekend nights
(displayed in light green), and user 4 appears to have a bi-modal distributions which spans
a broad range of behaviors.

Positive skew as a function of sleep duration. The symmetry or asymmetry of distributions
of sleep duration (from now on Σ) may provide information about individual direction of
preference, or sleep need. As a first observation, consider Table 3, which shows the per-
centage of users whose average sleep duration (µ) is larger than their median sleep duration
(M). We show this fraction as a function of a user’s sleep group, defined by rounding an
individual’s median sleep duration to the nearest half-hour bin.
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Median sleep duration [hour] 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
% of users with µ> M 100 95 84 77 64 53 47 37 28 20 14

Table 3: Percentage of users with average (µ) larger than median (M) within sleep group (which are defined by
rounding M sleep duration to the nearest half hour). Notice the monotonically decreasing trend.

The table clearly displays a monotonically decreasing trend in the fraction of users with the
µ larger than M as a function of average sleep duration. Stated differently, the less someone
sleeps, the more likely it is that they will experience an ‘unusually’ long (longer than median)
sleep once in a while.

Skew and the direction of preference. We believe that a promising explanation (which we
explore in more detail in the following) of this observation arises from the physiological
process of sleep-wake homeostasis [52]. Sleep-wake homeostasis regulates sleep pressure and
ensures that sleep takes place every night. For example, an individual who tends to sleep
less than physiologically needed will build up sleep pressure from the last adequate sleep
episode which can be eliminated by a long nighttime sleep (a ‘catch-up’ night) [52, 53]. In
the case of insufficient sleep, these ‘catch-up’ nights result in a skewed distribution of sleep
duration, with a disproportionately larger right tail or a positive skew. Similarly, we expect
left-asymmetrical distributions for individuals who tend to have longer nighttime sleep than
they can sustain.

Sleep skew across the population In order to study trends as a function of sleep duration,
we estimate Σi for each individual i’s distribution of sleep duration. Figure 2B shows ex-
amples of individual sleep duration distributions. Next, we aggregate individuals into the
aforementioned sleep group, and calculate the average value for individuals in that group.
The results are shown in Figure 2A, which shows that values of Σ tend to decrease as a func-
tion of sleep duration. In the Figure, error bars encode the standard error of the mean (SEM)
Strikingly, we find that for all but the most extreme sleep duration (median sleep of less
than 4.5 hours and 9 hours or more), we see a close-to-linear trend of average Σ for the sleep
groups. We also observe that the sign of the average Σ changes between 7 and 7.5 hours of
sleep coinciding with the recommended sleep duration [54–57]. The rightmost inset shows
box-plots for the sleep groups and the leftmost inset shows shows that Σ is approximately
normally distributed across the entire population.
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Figure 2: Systematic patterns of asymmetry for distribution of sleep duration across the population A: Aggre-
gated skew, from the individual level for distribution of sleep duration, averaged by sleep group. Sleep groups
are defined by rounding the median sleep duration to the next half hour bin and error estimates are marked
with the standard error of the mean (SEM). The box plot in the upper right corner shows the underlying dis-
tribution behind the average for each sleep group, and the insert in the lower left corner illustrates how skew
(for individual level distribution of sleep duration) distributes across the sample. B: Examples of individual
level distributions of sleep duration for users with positive (red), neutral (grey) and negative (blue) skew. The
distributions are stacked, where darker colors represent weekday nights and lighter color weekend nights. C:
Aggregated skew, estimated for individual level for distribution of sleep duration for weekday nights, averaged
by sleep group. Error estimates are marked with the standard error of the mean (SEM). The box plot in the
upper right corner shows the underlying distribution behind the average for each sleep group. D: Aggregated
skew, estimated for individual level for distribution of sleep duration for weekend nights, averaged by sleep
group. Error estimates are marked with the standard error of the mean (SEM). The box plot in the upper right
corner shows the underlying distribution behind the average for each sleep group. E: The distribution for skew
(estimated for individual distribution of sleep duration) for weekday and weekend nights across the population

Considering weekday & weekend-night skew separately. Generally, it is considered im-
portant to measure sleep separately on both free (weekends) and work days (weekdays)
since weekly social schedules are known to constrain the daily rhythm of rest and activ-
ity [12]. In terms of Σ, it also turns out to be interesting to consider the distribution of skew
for weekday and weekend nights separately. Figure 2C and D illustrate the average skew es-
timated for sleep groups for weekdays and weekends, respectively. We observe same trend

9



as before: skew decreases as median sleep duration increases. However, when we zero in
on the absolute values of Σ, we see that the curve covers a wider range on weekdays com-
pared to weekends. That difference can be explained by observing the comparison of the
population-level distributions of skew (calculated from individual’s distribution of sleep
duration) separately for weekdays and weekends, shown in Figure 2E. The probability of
having skew close to zero on weekends is substantially higher, and the distribution of week-
day skew is slightly more symmetrical around zero, with the right tail shifted towards pos-
itive values. The observation that weekends are less constrained by social schedules might
explain the difference in weekend and weekday skew [12]. On weekdays there is overall less
time and flexibility, which might impose interruptions and alter typical behavioral patterns.

Low Σ for extreme median values of sleep duration. If we accept the hypothesis that Σ
captures information about an individual’s need for sleep by showing their direction of pref-
erence in terms of sleep homeostasis, it means that individuals with values of Σ close to zero
are getting sufficient amounts of sleep. Therefore it is interesting to consider individuals
who sleep very little (or a lot) and still have low values of Σ. This would potentially enable
us to find people who require much less sleep than average – or individuals with an excep-
tionally high requirement for sleep. These individuals do exist: The box plot in Figure 2A
illustrates the underlying distributions behind the average skew of each sleep group, and
reveals that are individuals who have tend to have short sleep duration (<6.5 hrs) but a sym-
metric or negatively skewed distributions (disproportionate tendency for shorter nights). In
exploring the characteristics of these ‘out-of-the-ordinary’ groups, we find that individuals
that have a median sleep duration less than 6.5 hours and a negatively skewed or symmetric
distribution (skew < 0.25) are likely to be older, from the East (Asia) and male – all demo-
graphic variables associated with short sleep duration. Similarly, those who tend to sleep for
longer (> 8 hrs) and have positive or no skew (> 0.25) are more likely to be young, western
(from Europe or North America) and female, all factors affiliated with long sleep duration.
We provide a more in-depth exploration for these findings in the SI (Short or long sleep dura-
tion but no skew?). It is important to note here that there could be other explanations of low
skew. For example, anyone sleeping according to a highly controlled schedule (e.g. going to
bed at 1am and waking up at 6am every day), would also have short median sleep duration
and low skew.

Capturing sleep complexity with sleep portraits

Introducing sleep portraits. So far, we have mainly discussed the strengths and weaknesses
of existing, ‘traditional’ measures from sleep epidemiology in the context of high-resolution
sleep recordings. We now turn our attention to novel measures, intended to capture the
richness of empirical sleep trajectories. In the following, we will also aim to understand the
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phenomenon of skew in more detail and connect the different patterns observed in Figure 2.
Figure 1 and 2. We begin by introducing sleep portraits that visualise the variation in bed
and wake time as 2d-histograms (here using half-hour bins) separately for weekday and
weekend nights. Figure 3 displays sleep portraits for the same users as in Figure 1. The color of
each square represents the number of nights observed in that bin. To make the visualisation
more interpretable, we have marked recommended sleep duration (7-9 hrs) with the grey
step-lines [54–57]. We find that the sleep portraits reveal and highlight patterns that were
not necessarily easy to see in the visual sleep trajectories (the illustrations from Figure 1 are
shown above each sleep portrait in Figure 3).

Individual-level sleep patterns. The sleep portraits in Figure 3A reveal that user 1 has
similar behavior on weekends and weekdays except that the wake time is slightly advanced
to later hours on weekends. The large variability of bed and wake-times is clearly visible
from the broad areas that the points cover in the sleep portrait. Furthermore, user 1 tends to
sleep long, often >9 hrs. User 2 is highly regular, seen in the focused sleep portrait, where
the data-points cover a very small area. While their sleep on/offset is shifted to later hours
on weekends (the main mass of their sleep portrait is shifted to the right and up), this user
consistently sleeps less than recommended both on weekdays and weekends, as all sleeps
occur below the line of the shortest recommended sleep. The horizontally flat shape of user
3’s data indicates that this person tends to wake up at approximately 7:30am on weekdays
irrespective of sleep onset, which may be due to alarm clock on weekdays. On weekends we
observe an ‘explosion of freedom’, and the user seems no longer constrained to wake up at
7:30. This behavior is common to many users in our dataset and, as we shall see below, part
of what drives the positive skew of sleep durations discussed earlier. User 4’s sleep portrait
is flat in the vertical direction. This implies that user 4 tends to fall asleep at almost the
same time all nights (midnight), while they wake up at highly variable hours. This unusual
pattern is observed for both weekday and weekend nights.
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Figure 3: Sleep Portraits A-D: Examples of the sleep portraits for users 1-4 from Figure 1. The sleep portraits are
2d-histograms (1/2 hours bins) of bed time on the x-axis (range 22:00-07:00) and wake-time on the y-axis (range
03:00-13:00). For each user, the left plot represents weekdays and right plot weekends. The color-bar illustrates
the number of nights taking place in each square. The grey stepped lines represent the area of recommended
sleep duration (7-9 hrs).
Features suggestion E: The distribution of median bed-time, wake time and sleep duration separately for week-
day and weekend-nights. F: The distribution for the width (10th percentile minus the 90th percentile) for bed-
time, wake time and sleep duration separately for weekday and weekend-nights. G: The distribution for the
weekend-weekday median difference for bed-time, wake time and sleep duration. H: Weekend-weekday width
ratio for bed-time, wake time and sleep duration.

Large-scale descriptors based on sleep portraits

Based on the sleep portraits, we now introduce a set of sleep descriptors, which we argue are
an interesting alternative set of measures for sleep epidemiology based on high-resolution
data. As is clear from our discussion of the individual users above, the shape and location of
the data displayed in the individual sleep portraits can tell us a lot about a person’s sleeping
habits.

The center, height, and width of the point cloud on the sleep portraits. The first descriptor
is simply the center of the 2d-histogram or the ‘point-cloud’ (referred to as such henceforth)
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on the sleep portraits, which captures the typical sleep on/offset of a user. We use the me-
dian, which gives us a better estimate of typical behavior, since the mean tends to be highly
influenced by the extreme values, which characterize many users (cf. our discussion of Σ
above). The distributions for median sleep onset, offset and duration, separately by day
type, are shown in Figure 3A. Next, as we argued above, the width of an individual’s distri-
bution of data in the sleep portrait contains important information about their sleep regular-
ity. Typically, the standard deviation (std) is used to quantify sleep regularity [58–60], but we
suggest using a measure based on quantiles. As is the case for the median, quantiles are less
impacted by extreme events, and we also consider them to be more intuitively interpretable
than, e.g., the standard deviation: We simply find it easier to understand the statement ‘John
wakes up 80 % of the time within a span of 15 minutes on weekdays’ than ‘John’s has a stan-
dard deviation of 0.74 hours on weekdays’. As a specific measure, we suggest reporting the
difference between the 90th and 10th percentile, which provides an estimate of where 80%
of a person’s sleep takes place. Therefore, we call this measure the width at 80%. We define a
similar measure for the height (bed time) of the point-cloud. Other quantile-based measures
could be equally meaningful. Finally, we do note that the width at 80% correlates well with
std (ranging from 0.933 to 0.968, see Figure S5 in SI for more details). The distribution of the
width at 80% for sleep onset, offset and duration on weekdays and weekends is presented
in Figure 3B.

Weekdays and weekends. As is clear from the examples above, there is often a large dif-
ference in sleep behavior between weekdays and weekends, also established in previous
research [61]. For this reason, we calculate portraits for weekdays and weekends separately,
and also calculate measures that compare the weekday to weekend behavior, an analog to
social jetlag Specifically, we measure the weekend-weekday median difference for sleep onset,
offset and duration – distributions presented in Figure 3C. Lastly, we introduce a measure
based on the ‘explosion of freedom’ observed in the sleep portrait for user 3 in Figure 3. To
quantify this behavior, we propose to use the ratio between the width of a measure on week-
ends compared to weekdays, concretely defined as ratiowidth = widthweekends

widthweekdays
. The distribution

for the weekend-weekday width ratio for sleep onset, offset and duration is illustrated in
Figure 3D. We clearly observe the effect of alarm clocks on sleep offset, where the distribu-
tion is broader with a long right tail.

Connecting new measures to skew

Starting from a large scale dataset with high-resolution sleep recordings, our paper has three
main parts. In the first part we pointed out skew as an important new metric for sleep, and
reasoned that it might provide information about whether an individual is getting sufficient
sleep or not. Our argument is two-fold; i) the observed correlation of skew with typical

13



sleep duration across the population, and ii) a plausible physiological explanation relating to
sleep/wake homeostasis. In the second part we proposed a number of new metrics for high-
resolution sleep data (based on sleep portraits). However, what is still lacking is comparison
between the richness of our novel metrics and traditional measures from sleep epidemiology.
That is what we will investigate in the third part of the paper.

Setting up the prediction task To connect skew to other measures of sleep behavior, we
define three user groups based on skew characteristics. For each of the groups, we select
individuals with either the most positive, neutral and negative skewed distribution of sleep
duration (N = 2000). To understand the relationship between classic and novel measures
of sleep, we set up a prediction task for each of the skew group, where we add a random
sample of 2000 individuals and then try predict whether users were originally selected to
the group or not. The features used for the prediction task are novel sleep metrics proposed
in Figure 3 alongside traditional measures of sleep from sleep epidemiology (chronotype,
social jetlag as well as midsleep on weekdays). By considering the feature importance in this
prediction task we can understand i) which metrics enable us to separate the skew groups
from a set of random users, ii) what characterizes each of the skew group, and iii) allow us to
compare the efficacy of the new metrics to traditional ones with respect to explaining skew.
Specifically, we train a decision tree classifier to predict whether an individual belongs to the
skew group or not (baseline 50% accuracy), results are summarised in Figure 4.

Duration plays a key role. Using all metrics introduced in Figure 3 alongside the traditional
sleep epidemiology measures (chronotype, midsleep on weekdays and social jetlag), we are
able to predict positive skew with 79 % accuracy for all day types, 76 % when skew is esti-
mated for sleep duration on weekdays alone and with 73 % accuracy for weekend nights.
The most important feature in all cases is the median sleep duration, which makes sense
because of the close connection to sleep need. Accordingly, we also see a distinct difference
between the groups on distributions of median sleep duration in Figure 4D-F. This feature is
the primary explanation for the prediction task of positive skew on weekends (see Figure 4C
and distributions in Figure S14). Furthermore, this skew group (positive skewed distribu-
tion for weekend-nights) also has significantly shorter median sleep duration on weekdays,
thus overall sleeps less than the other groups (see Figure S14).

Characterizing positive skew. Another important characteristic for positively skewed in-
dividuals when estimated for all day types or weekdays alone, is that they are likelier to
have higher weekend-weekday median sleep duration difference (see Figure 4G and K, as
well as distributions in Figures S12 & S13 in the SI). As mentioned above, this characteristic
describes those who are likely sleep deprived on weekdays due to the social clock [13, 61],
and use the weekends to catch up. Furthermore, individuals in positive skew group have
a broader distribution of sleep duration on weekends compared to weekdays, which is an-
other indication of misalignment induced by the social clock.
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Figure 4: Information about skew groups from decision tree classifier A decision tree classifier is trained to
predict whether an individual belongs to skew group or not. There are three groups, and each comprising 2000
individuals with either the most positive, neutral and negative skewed distribution of sleep duration, as well
as a random selection of 2000 other individuals. A-C: Feature importance obtained from decision tree classifier
from prediction of positive and negative skew group, where skew is estimated from the distribution of sleep
duration for all day-types on A, weekday-nights on B and weekend-nights on C.
D-F: The distribution of median sleep duration for the individuals (N=2000) with the most positive, neutral and
negative skewed distribution of sleep duration for all day-types on D, weekday-nights on E and weekend-nights
on F.
G-J: Scatter plot of median sleep duration (estimated for all day-types) with weekend-weekday sleep duration
difference, offset width (all day-types) and weekend-weekday width ratio for median sleep duration where
points are colored by skew group; red, black and blue for positive, neutral and negative skewed distribution
of sleep duration respectively. K-M: Scatter plot of median sleep duration (estimated for weekday nights) with
weekend-weekday sleep duration difference, offset width (weekdays) and onset width (weekdays) where points
are colored by skew group; red, black and blue for positive, neutral and negative skewed distribution of sleep
duration respectively. N-O: Scatter plot of median sleep duration (estimated for weekend-nights) with offset
width (weekends) and duration width (weekends) where points are colored by skew group; red, black and blue
for positive, neutral and negative skewed distribution of sleep duration respectively.
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Characterizing negative skew. People in the negative skew group can be predicted with 78
% accuracy if skew is estimated for all day types, 75 % accuracy if skew estimated for either
weekday or weekend nights alone. As before, median sleep duration sets the user group
apart from the rest with substantially longer overall nighttime sleep, clearly visible in the
distributions displayed in Figure 4A-C. Individuals with negative skew, when classified by
the distribution of sleep duration for all day types or just weekdays, tend to have shorter
weekend-weekday median sleep duration difference than the other groups (see Figure 4G
and K, as well as distributions in Figures S12 & S13 in the SI). Additionally, individuals in
the negative skew group generally have more regular sleep patterns and span a narrower
distributions of width at 80 % for sleep onset, offset and duration than the other groups (see
Figure S14 in the SI). All of these characteristics are qualities of stable sleepers who sleep
enough.

Characterizing neutral skew. The neutral skew group can only be predicted with slightly
better accuracy than the baseline (57-58 % accuracy). The group is not characterised by any
specific quality and their behavior falls between the positive and negative skew groups in
all measured aspects of sleep (see Figure 4, and Figures S12-S14 in the SI).

Discussion

Drawing from a data-set of 5.5 million nights from approximately 15 000 users with high
resolution objective recordings of sleep in-situ, we show that the detailed trajectories of
nighttime sleep have complex and multifaceted patterns across the population. The most
commonly used metrics to analyse sleep at large-scale were developed during a time where
the key data source were self-reported estimates of sleep. However, wearable technologies
are becoming more commonly used in sleep research and we argue that there is a need
for new metrics and methods to study high-resolution sleep activity data-sets they pro-
duce [2, 5–8, 10]. We introduce a new visualisation method called the sleep portrait which
illustrates the complexity of individual-level sleep behavior. Furthermore, we propose a
novel data-driven metric, skew, to estimate whether individual direction of preference indi-
cates an overall lack of sleep or adequate attainment.

Skewness of individual-level distribution of sleep duration quantifies an individual’s ten-
dency for long or short nighttime sleep, relative to typical behavior. We find skew to depend
nearly linearly on median sleep duration. Those who tend to have short nighttime sleep
(< 6.5 hrs) are likely positively skewed and have a higher proportion of nights with longer
than their median sleep duration. The prevalence of positive skew decreases as median
sleep duration increases and the skew becomes negative for those who have long (> 8 hrs)
median sleep duration or a higher tendency for short nights (relative to their typical behav-
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ior). In this work we argue that a person’s skew may reveal whether or not that person’s
physiological sleep needs are met.

The finding that skew may contain information about sleep need is important because of the
ways in which we are currently able to measure the fraction of individuals that are getting
sufficient sleep depends on self-reports. Information about sleep needs have been estab-
lished by studying health outcomes for groups with different range of self-reported habitual
nighttime sleep [54–57]. Recently, the US National Sleep Foundation conducted a scientifi-
cally rigorous update on the the topic of sleep need, where an expert committee concluded
that median sleep duration from 4 up to 7 hours may be appropriate for some individu-
als [55]. These guidelines set the current standards, but it has been argued that they are
generalized and may not apply to all [54–57]. With further validation, our metric may make
it possible to provide a data-driven way to understand whether individual sleep needs are
met directly from high-resolution recordings of sleep duration.

Sleep has been studied at large scale across the population for decades, but the research has
been shaped by characteristics of data sources, self-reports via sleep diaries, surveys or ques-
tionnaires, all of which are known to be subject to recall biases [33–39,62,63]. Naturally, these
data collection strategies have influenced the development of methods and metrics used in
the field, where some of the main quantitative estimates for analysis of sleep across the popu-
lation are retrospective, and refer to typical self-reported sleep duration, chronotype & social
jetlag estimated with Munich Chronotype Questionnaire (MCQT) [3,4,12,60,61,64,65]. Our
work argues that individuals with similar estimates of any of these three metrics, can differ
largely with respect to other characteristics of sleep.

In terms of visualising multi-night recordings of sleep, there is no convention for any fixed
approach in the literature, but we find both Walch et al. (2016) and Roenneberg et al. (2012)
to visualise sleep start and end to span a horizontal line [59, 61]. The sleep portraits provide
an alternative to that approach, since their purpose is to highlight characteristic patterns of
individual sleep behavior. The new features we have introduced were partially inspired by
the sleep portraits, but also built upon knowledge from previous sleep studies. In construct-
ing these features we emphasized the importance of analysing sleep separately for weekend
and weekday nights, considered the misalignment that the social clock might induce and
regarded qualitative information that sleep regularity entails [58, 61, 66].

Our work has a number of limitations that are important to discuss. First, we underline
that our proposed metric of skew has not been validated using subjective nor qualitative
estimates of sleep. To mitigate these limitation we show that: i) skew depends approxi-
mately linearly on median sleep duration across the population, ii) the skew group with
an average estimate closest to zero attains typically 7 hours of sleep per night which is in
accordance with current recommendation [54–57], iii) individuals who are not skewed but
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obtain overall long or short nighttime sleep, are likely to have demographic characteristic
which are associated with either long er short sleep duration, and iv) we find the group
with the most positive skewed individuals to have higher weekend-weekday sleep offset
and duration difference than other groups, which is behavior linked to unhealthy sleep pat-
terns [13, 61, 67–70], and v) individuals with negative skew exhibit more sleep regularity – a
behavior associated with good sleep hygiene [58, 66, 71].

Our sample of users may not be representative of the wider population due to potential
unobserved factors also associated with wearable device ownership [72]. We also note that
the wristbands have not been validated using the gold standard of polysomnography as
recommended in the Sleep Research Society Workshop on wearable devices for the mea-
surement of sleep [73]. However, we find that i) our data-set converges with country-level
sleep measures from separate large-scale data-sets, ii) demonstrates consistency over the pe-
riod of observation, and iii) replicates age-related sleep trends from previously published
self-report studies, including changes in sleep duration and timing [7]. The devices have
also been internally validated by the manufacturer. Due to the nature of the data sampling,
we can not compare estimates of skew to subjective nor qualitative estimates of sleep, but
we consider the most pressing matter for future studies.

Finally, we note that while we are hopeful that this study will spark debate about novel
measures suitable for large-scale and high-resolution sleep recordings, we also acknowledge
that this is only a first step. We are excited for a new paradigm of discoveries within sleep
research driven by these data sources. In particular, while our sleep portraits and novel
metric of skew capture some new patterns of the complex phenomenon that is sleep in the
wild, we have not considered temporal correlations in the data, something which we believe
holds a new richness of behavior to discover.

18



References

[1] Bruno Gonçalves and Nicola Perra. Social phenomena: From data analysis to models.
Springer, 2015.

[2] Ignacio Perez-Pozuelo, Bing Zhai, Joao Palotti, Raghvendra Mall, Michaël Aupetit,
Juan M Garcia-Gomez, Shahrad Taheri, Yu Guan, and Luis Fernandez-Luque. The fu-
ture of sleep health: a data-driven revolution in sleep science and medicine. NPJ digital
medicine, 3(1):1–15, 2020.

[3] Earl S Ford, Timothy J Cunningham, and Janet B Croft. Trends in self-reported sleep
duration among us adults from 1985 to 2012. Sleep, 38(5):829–832, 2015.

[4] Till Roenneberg, Tim Kuehnle, Myriam Juda, Thomas Kantermann, Karla Allebrandt,
Marijke Gordijn, and Martha Merrow. Epidemiology of the human circadian clock.
Sleep medicine reviews, 11(6):429–438, 2007.

[5] Ju Lynn Ong, Jesisca Tandi, Amiya Patanaik, June C Lo, and Michael WL Chee. Large-
scale data from wearables reveal regional disparities in sleep patterns that persist across
age and sex. Scientific reports, 9(1):1–8, 2019.

[6] Stuti J Jaiswal, Giorgio Quer, Michael Galarnyk, Steven R Steinhubl, Eric J Topol, and
Robert L Owens. Association of sleep duration and variability with body mass index:
Sleep measurements in a large us population of wearable sensor users. JAMA Internal
Medicine, 180(12):1694–1696, 2020.

[7] Sigga Svala Jonasdottir, Kelton Minor, and Sune Lehmann. Gender differences in night-
time sleep patterns and variability across the adult lifespan: a global-scale wearables
study. Sleep, 2020.

[8] L Kuula, M Gradisar, K Martinmäki, C Richardson, D Bonnar, K Bartel, C Lang,
L Leinonen, and AK Pesonen. Using big data to explore worldwide trends in objec-
tive sleep in the transition to adulthood. Sleep Medicine, 62:69–76, 2019.

[9] Guy Fagherazzi, Douae El Fatouhi, Alice Bellicha, Amin El Gareh, Aurélie Affret,
Courtney Dow, Lidia Delrieu, Matthieu Vegreville, Alexis Normand, Jean-Michel Op-
pert, et al. An international study on the determinants of poor sleep amongst 15,000
users of connected devices. Journal of Medical Internet Research, 19(10):e363, 2017.

[10] Avi Sadeh. The role and validity of actigraphy in sleep medicine: an update. Sleep
medicine reviews, 15(4):259–267, 2011.

[11] Bhanu Prakash Kolla, Subir Mansukhani, and Meghna P Mansukhani. Consumer sleep
tracking devices: a review of mechanisms, validity and utility. Expert review of medical
devices, 13(5):497–506, 2016.

19



[12] Till Roenneberg, Anna Wirz-Justice, and Martha Merrow. Life between clocks: daily
temporal patterns of human chronotypes. Journal of biological rhythms, 18(1):80–90, 2003.

[13] Marc Wittmann, Jenny Dinich, Martha Merrow, and Till Roenneberg. Social jetlag:
misalignment of biological and social time. Chronobiology international, 23(1-2):497–509,
2006.

[14] Janet S Carpenter and Michael A Andrykowski. Psychometric evaluation of the pitts-
burgh sleep quality index. Journal of psychosomatic research, 45(1):5–13, 1998.

[15] Michael R Irwin. Why sleep is important for health: a psychoneuroimmunology per-
spective. Annual review of psychology, 66:143–172, 2015.

[16] Michael A Grandner, Nicholas J Jackson, Bilgay Izci-Balserak, Rebecca A Gallagher, Re-
nee Murray-Bachmann, Natasha J Williams, Nirav P Patel, and Girardin Jean-Louis.
Social and behavioral determinants of perceived insufficient sleep. Frontiers in neurol-
ogy, 6:112, 2015.

[17] Rebecca A Bernert, Joanne S Kim, Naomi G Iwata, and Michael L Perlis. Sleep dis-
turbances as an evidence-based suicide risk factor. Current psychiatry reports, 17(3):15,
2015.

[18] Andrea N Goldstein and Matthew P Walker. The role of sleep in emotional brain func-
tion. Annual review of clinical psychology, 10:679–708, 2014.

[19] Faith S Luyster, Patrick J Strollo, Phyllis C Zee, and James K Walsh. Sleep: a health
imperative. Sleep, 35(6):727–734, 2012.

[20] Francesco P Cappuccio, Daniel Cooper, Lanfranco D’elia, Pasquale Strazzullo, and
Michelle A Miller. Sleep duration predicts cardiovascular outcomes: a systematic re-
view and meta-analysis of prospective studies. European heart journal, 32(12):1484–1492,
2011.

[21] Francesco P Cappuccio, Lanfranco D’Elia, Pasquale Strazzullo, and Michelle A Miller.
Sleep duration and all-cause mortality: a systematic review and meta-analysis of
prospective studies. Sleep, 33(5):585–592, 2010.

[22] Francesco P Cappuccio, Frances M Taggart, Ngianga-Bakwin Kandala, Andrew Currie,
Ed Peile, Saverio Stranges, and Michelle A Miller. Meta-analysis of short sleep duration
and obesity in children and adults. Sleep, 31(5):619–626, 2008.

[23] Christopher Ryan King, Kristen L Knutson, Paul J Rathouz, Steve Sidney, Kiang Liu,
and Diane S Lauderdale. Short sleep duration and incident coronary artery calcification.
Jama, 300(24):2859–2866, 2008.

20



[24] June J Pilcher and Allen I Huffcutt. Effects of sleep deprivation on performance: a
meta-analysis. Sleep, 19(4):318–326, 1996.

[25] Matthew P Walker. A societal sleep prescription. Neuron, 103(4):559–562, 2019.

[26] Charles A Czeisler. Perspective: casting light on sleep deficiency. Nature, 497(7450):S13–
S13, 2013.

[27] Saverio Stranges, William Tigbe, Francesc Xavier Gómez-Olivé, Margaret Thorogood,
and Ngianga-Bakwin Kandala. Sleep problems: an emerging global epidemic? findings
from the indepth who-sage study among more than 40,000 older adults from 8 countries
across africa and asia. Sleep, 35(8):1173–1181, 2012.

[28] Erkki Kronholm, Timo Partonen, Tiina Laatikainen, Markku Peltonen, Mikko Härmä,
Christer Hublin, Jaako Kaprio, Arja R Aro, Markku Partinen, Mikael Fogelholm, et al.
Trends in self-reported sleep duration and insomnia-related symptoms in finland from
1972 to 2005: a comparative review and re-analysis of finnish population samples. Jour-
nal of sleep research, 17(1):54–62, 2008.

[29] Kristen L Knutson, Eve Van Cauter, Paul J Rathouz, Thomas DeLeire, and Diane S
Lauderdale. Trends in the prevalence of short sleepers in the usa: 1975–2006. Sleep,
33(1):37–45, 2010.

[30] David Gallop. Aristotle: On sleep and dreams. Oxford University Press, 1996.

[31] Edward O Bixler, Anthony Kales, Constantine R Soldatos, Joyce D Kales, and S Healey.
Prevalence of sleep disorders in the los angeles metropolitan area. The American journal
of psychiatry, 1979.

[32] Peretz Lavie. Sleep habits and sleep disturbances in industrial workers in israel: main
findings and some characteristics of workers complaining of excessive daytime sleepi-
ness. Sleep, 4(2):147–158, 1981.

[33] Diane S Lauderdale, Kristen L Knutson, Lijing L Yan, Kiang Liu, and Paul J Rathouz.
Sleep duration: how well do self-reports reflect objective measures? the cardia sleep
study. Epidemiology (Cambridge, Mass.), 19(6):838, 2008.

[34] Chandra L Jackson, Sanjay R Patel, W Braxton Jackson, Pamela L Lutsey, and Susan
Redline. Agreement between self-reported and objectively measured sleep duration
among white, black, hispanic, and chinese adults in the united states: Multi-ethnic
study of atherosclerosis. Sleep, 41(6):zsy057, 2018.

[35] Elizabeth M Cespedes, Frank B Hu, Susan Redline, Bernard Rosner, Carmela Alcan-
tara, Jianwen Cai, Martica H Hall, Jose S Loredo, Yasmin Mossavar-Rahmani, Alberto R

21



Ramos, et al. Comparison of self-reported sleep duration with actigraphy: results from
the hispanic community health study/study of latinos sueño ancillary study. American
journal of epidemiology, 183(6):561–573, 2016.

[36] Katarina Aili, Sofia Åström-Paulsson, Ulrich Stoetzer, Magnus Svartengren, and Lena
Hillert. Reliability of actigraphy and subjective sleep measurements in adults: the de-
sign of sleep assessments. Journal of Clinical Sleep Medicine, 13(1):39–47, 2017.

[37] Marcela Zambrim Campanini, Esther Lopez-Garcia, Fernando Rodríguez-Artalejo, Al-
berto Durán González, Selma Maffei Andrade, and Arthur Eumann Mesas. Agreement
between sleep diary and actigraphy in a highly educated brazilian population. Sleep
medicine, 35:27–34, 2017.

[38] Jennifer Girschik, Lin Fritschi, Jane Heyworth, and Flavie Waters. Validation of self-
reported sleep against actigraphy. Journal of epidemiology, 22(5):462–468, 2012.

[39] Erin O’Brien, Chantelle Hart, and Rena R Wing. Discrepancies between self-reported
usual sleep duration and objective measures of total sleep time in treatment-seeking
overweight and obese individuals. Behavioral sleep medicine, 14(5):539–549, 2016.

[40] Till Roenneberg, Luísa K Pilz, Giulia Zerbini, and Eva C Winnebeck. Chronotype and
social jetlag: a (self-) critical review. Biology, 8(3):54, 2019.

[41] Torbjörn Åkerstedt and Mats Gillberg. Subjective and objective sleepiness in the active
individual. International Journal of Neuroscience, 52(1-2):29–37, 1990.

[42] Jason C Cole, Sarosh J Motivala, Daniel J Buysse, Michael N Oxman, Myron J Levin,
and Michael R Irwin. Validation of a 3-factor scoring model for the pittsburgh sleep
quality index in older adults. Sleep, 29(1):112–116, 2006.

[43] Sherry A Beaudreau, Adam P Spira, Anita Stewart, Eric J Kezirian, Li-Yung Lui, Kristine
Ensrud, Susan Redline, Sonia Ancoli-Israel, Katie L Stone, Study of Osteoporotic Frac-
tures, et al. Validation of the pittsburgh sleep quality index and the epworth sleepiness
scale in older black and white women. Sleep medicine, 13(1):36–42, 2012.

[44] Michael A Grandner, Daniel F Kripke, In-Young Yoon, and Shawn D Youngstedt. Crite-
rion validity of the pittsburgh sleep quality index: Investigation in a non-clinical sam-
ple. Sleep and biological rhythms, 4(2):129–136, 2006.

[45] Kosuke Kaida, Masaya Takahashi, Torbjörn Åkerstedt, Akinori Nakata, Yasumasa Ot-
suka, Takashi Haratani, and Kenji Fukasawa. Validation of the karolinska sleepiness
scale against performance and eeg variables. Clinical neurophysiology, 117(7):1574–1581,
2006.

22



[46] Till Roenneberg, Lena K Keller, Dorothee Fischer, Joana L Matera, Céline Vetter, and
Eva C Winnebeck. Human activity and rest in situ. In Methods in enzymology, volume
552, pages 257–283. Elsevier, 2015.

[47] X Xu, MP Conomos, O Manor, JE Rohwer, AT Magis, and JC Lovejoy. Habitual sleep
duration and sleep duration variation are independently associated with body mass
index. International Journal of Obesity, 42(4):794–800, 2018.

[48] Sonia Ancoli-Israel, Roger Cole, Cathy Alessi, Mark Chambers, William Moorcroft, and
Charles P Pollak. The role of actigraphy in the study of sleep and circadian rhythms.
Sleep, 26(3):342–392, 2003.

[49] Deepak Shrivastava, Syung Jung, Mohsen Saadat, Roopa Sirohi, and Keri Crewson.
How to interpret the results of a sleep study. Journal of community hospital internal
medicine perspectives, 4(5):24983, 2014.

[50] David P Doane and Lori E Seward. Measuring skewness: a forgotten statistic? Journal
of statistics education, 19(2), 2011.

[51] Michael George Bulmer. Principles of statistics. Courier Corporation, 1979.

[52] Alexander A Borbély. A two process model of sleep regulation. Hum neurobiol, 1(3):195–
204, 1982.

[53] Serge Daan, DG Beersma, and Alexander A Borbély. Timing of human sleep: recov-
ery process gated by a circadian pacemaker. American Journal of Physiology-Regulatory,
Integrative and Comparative Physiology, 246(2):R161–R183, 1984.

[54] Consensus Conference Panel, Nathaniel F Watson, M Safwan Badr, Gregory Belenky,
Donald L Bliwise, Orfeu M Buxton, Daniel Buysse, David F Dinges, James Gangwisch,
Michael A Grandner, et al. Recommended amount of sleep for a healthy adult: a joint
consensus statement of the american academy of sleep medicine and sleep research
society. Journal of Clinical Sleep Medicine, 11(6):591–592, 2015.

[55] Max Hirshkowitz, Kaitlyn Whiton, Steven M Albert, Cathy Alessi, Oliviero Bruni, Lydia
DonCarlos, Nancy Hazen, John Herman, Eliot S Katz, Leila Kheirandish-Gozal, et al.
National sleep foundation’s sleep time duration recommendations: methodology and
results summary. Sleep health, 1(1):40–43, 2015.

[56] Sutapa Mukherjee, Sanjay R Patel, Stefanos N Kales, Najib T Ayas, Kingman P Strohl,
David Gozal, and Atul Malhotra. An official american thoracic society statement: the
importance of healthy sleep. recommendations and future priorities. American journal
of respiratory and critical care medicine, 191(12):1450–1458, 2015.

23



[57] Marie-Pierre St-Onge, Michael A Grandner, Devin Brown, Molly B Conroy, Girardin
Jean-Louis, Michael Coons, and Deepak L Bhatt. Sleep duration and quality: impact on
lifestyle behaviors and cardiometabolic health: a scientific statement from the american
heart association. Circulation, 134(18):e367–e386, 2016.

[58] Bei Bei, Joshua F Wiley, John Trinder, and Rachel Manber. Beyond the mean: a system-
atic review on the correlates of daily intraindividual variability of sleep/wake patterns.
Sleep medicine reviews, 28:108–124, 2016.

[59] Olivia J Walch, Amy Cochran, and Daniel B Forger. A global quantification of “normal”
sleep schedules using smartphone data. Science advances, 2(5):e1501705, 2016.

[60] Dorothee Fischer, David A Lombardi, Helen Marucci-Wellman, and Till Roenneberg.
Chronotypes in the us–influence of age and sex. PloS one, 12(6):e0178782, 2017.

[61] Till Roenneberg, Karla V Allebrandt, Martha Merrow, and Céline Vetter. Social jetlag
and obesity. Current Biology, 22(10):939–943, 2012.

[62] Christopher B Miller, Christopher J Gordon, Leanne Toubia, Delwyn J Bartlett, Ronald R
Grunstein, Angela L D’Rozario, and Nathaniel S Marshall. Agreement between simple
questions about sleep duration and sleep diaries in a large online survey. Sleep Health,
1(2):133–137, 2015.

[63] Lianne M Kurina, Martha K McClintock, Jen-Hao Chen, Linda J Waite, Ronald A
Thisted, and Diane S Lauderdale. Sleep duration and all-cause mortality: a critical
review of measurement and associations. Annals of epidemiology, 23(6):361–370, 2013.

[64] Yoko Komada, Isa Okajima, Shingo Kitamura, and Yuichi Inoue. A survey on social jet-
lag in japan: a nationwide, cross-sectional internet survey. Sleep and Biological Rhythms,
17(4):417–422, 2019.

[65] Zhiwei Liu, Yingying Dong, Ying Xu, and Fei Zhou. Chronotype distribution in the
chinese population. Brain Science Advances, 6(2):81–91, 2020.

[66] Danica C Slavish, Daniel J Taylor, and Kenneth L Lichstein. Intraindividual variability
in sleep and comorbid medical and mental health conditions. Sleep, 42(6):zsz052, 2019.

[67] Anitra DM Koopman, Simone P Rauh, Esther van ‘t Riet, Lenka Groeneveld, Amber A
Van Der Heijden, Petra J Elders, Jacqueline M Dekker, Giel Nijpels, Joline W Beulens,
and Femke Rutters. The association between social jetlag, the metabolic syndrome, and
type 2 diabetes mellitus in the general population: the new hoorn study. Journal of
biological rhythms, 32(4):359–368, 2017.

24



[68] Susan Kohl Malone, Babette Zemel, Charlene Compher, Margaret Souders, Jesse Chit-
tams, Aleda Leis Thompson, Allan Pack, and Terri H Lipman. Social jet lag, chrono-
type and body mass index in 14–17-year-old adolescents. Chronobiology international,
33(9):1255–1266, 2016.

[69] Michael J Parsons, Terrie E Moffitt, Alice M Gregory, Sidra Goldman-Mellor, Patrick M
Nolan, Richie Poulton, and Avshalom Caspi. Social jetlag, obesity and metabolic disor-
der: investigation in a cohort study. International Journal of Obesity, 39(5):842–848, 2015.

[70] Femke Rutters, Sofie G Lemmens, Tanja C Adam, Marijke A Bremmer, Petra J Elders,
Giel Nijpels, and Jacqueline M Dekker. Is social jetlag associated with an adverse
endocrine, behavioral, and cardiovascular risk profile? Journal of biological rhythms,
29(5):377–383, 2014.

[71] Hylton E Molzof, Sarah E Emert, Joshua Tutek, Mazheruddin M Mulla, Kenneth L Lich-
stein, Daniel J Taylor, and Brant W Riedel. Intraindividual sleep variability and its as-
sociation with insomnia identity and poor sleep. Sleep medicine, 52:58–66, 2018.

[72] Soultana Macridis, Nora Johnston, Steven Johnson, and Jeff K Vallance. Consumer
physical activity tracking device ownership and use among a population-based sample
of adults. PloS one, 13(1):e0189298, 2018.

[73] Christopher M Depner, Philip C Cheng, Jaime K Devine, Seema Khosla, Massimiliano
de Zambotti, Rébecca Robillard, Andrew Vakulin, and Sean PA Drummond. Wearable
technologies for developing sleep and circadian biomarkers: a summary of workshop
discussions. sleep, 43(2):zsz254, 2020.

[74] Tim Althoff, Eric Horvitz, Ryen W White, and Jamie Zeitzer. Harnessing the web for
population-scale physiological sensing: A case study of sleep and performance. In
Proceedings of the 26th international conference on World Wide Web, pages 113–122, 2017.

25



Supplementary Information

Data Pre-Processing

The raw data consists 1-minute epochs of sleep activity which are aggregated into nights
with sleep onset, offset, duration and wake-time after sleep onset (WASO). For each night a
user can wake up multiple times but each awakening can only last for 60 minutes or less. For
each the day, the longest sleep was considered "nighttime sleep". Users were then required
to include six weeks of data (12 weekend nights and 30 weekday) resulting in a dataframe
with ∼ 10.8 million nights. We then observed the distribution of bed-time, wake-time and
sleep duration, separately for weekdays and weekends (see Figure 1), which reveal outliers
both in terms of sleep timing and duration.
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Figure 1: Distribution of sleep onset, offset and duration plotted separately for weekdays and weekends

In order to obtain nighttime sleep (exclude day-time naps and remove outliers) we apply
a data-driven filtering. Entries with sleep onset and offset (separately on weekends and
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weekends) greater than one and a half standard deviations away from the sample average
are removed, which eliminates approximate ∼ 11% of the entries. The filters were:

• 19:36 ≤ onset weekdays ≤ 06:05

• 19:49 ≤ onset weekends ≤ 06:59

• 02:42 ≤ offset weekdays ≤ 12:21

• 03:30 ≤ offset weekends ≤ 13:40

If the same approach would be employed for sleep duration, the filters would be [2.96 : 9.67]
on weekdays and [2.93 : 10.67]. We rather choose to apply standard filters from the literature
(since the both the distributions are oddly shaped at the left tail), where sleep duration is
required to be 3 hours or more, but less or equal to 13 hours (3 ≤ duration ≤ 13). These
filters are more inclusive (by 2 hours) than those used by Walch et al. [59] and Althoff et
al [74] (4 < duration < 12). After all data filtering has been implemented, the data contains
∼ 9.3 million nights. However, for our in-depth analysis we choose to apply an even stricter
requirement in terms of number of nights and data coverage. Users need to have 8 weeks
(56 days) of data with 70 % cover ratio (meaning the span of their recording must include at
least 70 % of the days).

Chronotype & Social jetlag

The Munich Chronotype Questionnaire was created by Roenneberg et al. (2003) and poses
17 questions about individual’s sleep behavior [12]. Answers are used to estimate corrected
mid-sleep on work-free days, or chronotype (MSFsc), calculated as:

MSFsc =

SO f ree days +
SD f ree days

2 if SD f ree days ≤ SDwork days

MSF − SD f ree days−SDweek
2 = SO f ree days +

SDweek
2 if SD f ree days > SDwork days

(1)

Where MSF is midsleep on free days while MSFsc is corrected midsleep on free days. SD
refers sleep duration where the subscript ‘week’ denotes weekly average sleep duration,
‘free days’ weekend averages and ‘work days’ weekday averages. SO refers to sleep onset
(point in time where people fall asleep).

Wittman et. al. (2006) developed a concept to describe this misalignment between the bi-
ological and social clock called social jetlag, and is estimated by calculating the difference
between midsleep on free days and work days [13].

Social jetlag = MSF − MSW (2)
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where MSF denotes midsleep on free days (weekends) and MSW midsleep on work days
(weekdays).

Underlying differences across users with same estimates of chrono-
type, social jetlag and median sleep duration

On Figure 2-4 we illustrate how different metrics of sleep (sleep duration, bed and wake-
time, weekend-weekday differences, width of behaviors, and the weekend-weekday width
differences) distributes across users who have one sleep epidemiological metric approxi-
mately the same.
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Figure 2: Distribution of different metrics of sleep for users with approximately the same chronotype (∼04:30
and Ngroup = 2719)
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Figure 3: Distribution of different metrics of sleep for users with approximately the same social jetlag (∼45
minutes and Ngroup = 2479)
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Figure 4: Distribution of different metrics of sleep for users with approximately the same overall median sleep
duration (∼7.5 hours and Ngroup = 2860)
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New measure for sleep regularity

In our analysis we present a new measure to quantify sleep variability. Typically variability
is measured as a standard deviation (std) of a distribution for measure, but we rather suggest
using the difference between the 90th and 10th percentile. We consider it a more intuitive
than the std and provide an example to demonstrate; imagine the scenario where one has to
comprehend either "John has 0.74 hours std in wake-up time on weekdays" or "John wakes
up 80 % of the time within a span of 15 minutes on weekdays". The two measures correlate
nearly perfectly as demonstrated on Figure 5.
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Figure 5: Illustrates how width of a distribution (calculated as the 90th percentile minus 10th percentile) corre-
lates with its standard deviation for sleep onset, offset and duration by all day-types, weekdays and weekends
separately

Short or long sleep duration but no skew?

We estimate the probability for a randomly selected individual to belong to different de-
mographic groups (gender [female/male], age group [19-24/25-29/30-34/35-39/40-44/45-
49/50-54/55-59/60-67] and region of residence (east=Asia/west=Europe & N-America)
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in the full data-set. Thereafter, we filter the data by criteria to obtain two dataframes; i)
short median sleep duration (<6.5 hrs) with no or negative skew (skew<0.25) and ii) long
median sleep duration (>8 hrs) with positive or no skew (>-0.25). For these two different
dataframes we look again at the probability of belonging to demographic groups (all listed
before) and obtain the relative probability by dividing with the probability of a member of
the demographic group in the full data-set.
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Figure 6: The relative probability that individual belongs to a demographic group in the filtered data with short
sleep duration (<6.5 hrs) and no or negative skew (skew<0.25). Skew is estimated for the distribution of sleep
duration for all day-types.
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Figure 7: The relative probability that individual belongs to a demographic group in the filtered data with long
sleep duration (>8.0 hrs) and positive or no skew (skew>-0.25). Skew is estimated for the distribution of sleep
duration for all day-types.
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Figure 8: The relative probability that individual belongs to a demographic group in the filtered data with short
sleep duration (<6.5 hrs) and no or negative skew (skew<0.25). Skew is estimated for the distribution of sleep
duration for weekday-nights.
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Figure 9: The relative probability that individual belongs to a demographic group in the filtered data with long
sleep duration (>8.0 hrs) and positive or no skew (skew>-0.25). Skew is estimated for the distribution of sleep
duration for weekday-nights.
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Figure 10: The relative probability that individual belongs to a demographic group in the filtered data with short
sleep duration (<6.5 hrs) and negative or no skew (skew<0.25). Skew is estimated for the distribution of sleep
duration for weekend-nights

35



Female Male
0.0

0.2

0.4

0.6

0.8

1.0

1.2

P(
gr

ou
p|

lo
ng

_d
ur

_p
os

_o
r_

no
_s

ke
w

)
P(

gr
ou

p)

Gender

19
-24

25
-29

30
-34

35
-39

40
-44

45
-49

50
-54

55
-59

60
-67

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Age group

East West
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Continent (East or West)

Figure 11: The relative probability that individual belongs to a demographic group in the filtered data with long
sleep duration (>8.0 hrs) and positive or no skew (skew>-0.25). Skew is estimated for the distribution of sleep
duration for weekend-nights

Skew group characteristics

We plot the distribution of all sleep metrics, by the three skew groups; the 2000 individuals
with either the most positive, neutral and negative skewed distribution of sleep duration for
all day-types, weekday-nights or weekend-nights respectively Figures 12–14.
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Figure 12: Distributions of multiple features for the 2000 most positively (red), neutrally (black) and negatively
(blue) skewed individuals. Skew is estimated for the distribution of sleep duration for all day-types.
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Figure 13: Distributions of multiple features for the 2000 most positively (red), neutrally (black) and negatively
(blue) skewed individuals. Skew is estimated for the distribution of sleep duration on weekdays.
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Figure 14: Distributions of multiple features for the 2000 most positively (red), neutrally (black) and negatively
(blue) skewed individuals. Skew is estimated for the distribution of sleep duration on weekends.
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