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Summary (in English)

Optimization is everywhere. In science and engineering, optimization is widely
used for various applications, and many of the problems that we would like to
solve are nonlinear. In general, we do not have e�cient methods for solving
nonlinear problems, so we have to rely on local optimization methods that pro-
vide a candidate solution to our problem with no guarantee of optimality and
no bound on the possible suboptimality.

For some hard problems, we can use convex relaxation techniques to approx-
imate the original (hard) problem in a certain way by one that we can solve
e�ciently. This approximation, which is a convex optimization problem, gives
us a bound on the optimal value of the original problem. This bound can be
used to gauge the suboptimality of candidate solutions. Bounds on the optimal
value also play an important role in branch-and-bound algorithms for hard com-
binatorial problems. In some cases, the convex relaxation gives us a solution to
the original problem.

In this thesis, we are particularly interested in the so-called Shor semide�nite
relaxation where the convex optimization problem is a semide�nite program, i.e.,
a linear program involving a matrix variable that is constrained to be positive
semide�nite. This relaxation has proven to be a good approximation for many
interesting problems, including the so-called optimal power �ow problem, where
the goal is to generate and distribute power in a power network at a minimum
cost.

The goal of the thesis is to contribute to the understanding of convex relax-
ation and add to the existing toolbox of techniques. We present a numerical
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study that demonstrates that the semide�nite relaxation of the optimal power
�ow problem can be solved reliably for large power networks in a few minutes.
We present a new technique for strengthening the semide�nite relaxation for an
extended trust region subproblem which as an extension of the classical trust
region subproblem. We present a framework for guaranteeing that the semide�-
nite relaxation of a speci�c problem class is exact, which means that the problem
can be solved e�ciently by solving the convex relaxation.



Summary (in Danish)

Optimering er overalt. Indenfor videnskab og ingeniørkunst er optimering meget
udbredt og mange af de problemer vi ønsker at løse er ikkelineære. Generelt har
vi ikke e�ektive metoder til at løse ikkelineære problemer, så vi må nøjes med at
bruge lokale optimeringsmetoder, som giver os en mulig løsning uden garanti for
at den er optimal og uden en begrænsning på dens potentielle suboptimalitet.

For nogle svære problemer kan vi bruge konvekse relakseringsteknikker til at
approksimere det oprindelige problem på en bestemt måde med et problem som
vi kan løse e�ektivt. Denne approksimation, som er et konvekst optimeringspro-
blem, giver os en begrænsing på den optimale værdi af det oprindelige problem.
Denne begrænsning kan bruges til at vurdere hvor suboptimal en mulig løsning
er. Begrænsninger af den optimale værdi spiller også en stor rolle i branch-and-
bound algoritmer til svære kombinatoriske problemer. I nogle tilfælde giver den
konvekse relaksering os en løsning til det oprindelige problem.

I denne afhandling er vi specielt interesserede i den såkaldte Shor semide�nit
relaksering, hvor det konvekse optimeringsproblem er et semide�nit programme-
ringsproblem, hvilket er et lineært optimeringsproblem med en matrix variabel
som skal være positiv semide�nit. Denne relaksering har vist sig at være en god
approksimation for mange interessante problemer, inklusiv det såkaldte opti-
mal power �ow problem, hvor målet er at generere og distribuere strøm i et
el-netværk til den laveste pris.

Målet med denne afhandling er at bidrage til forståelsen af konveks relaksering
og tilføje teknikker til den eksisterende værktøjskasse. Vi præsenterer et nume-
risk studie, der demonstrerer at den semide�nitte relaksering af optimal power
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�ow problemet kan løses pålideligt for større el-netværk på få minutter. Vi præ-
senterer en ny teknik til at styrke den semide�nitte relaksering af et såkaldt
extended trust region subproblem, som er en udvidelse af det klassiske trust
region problem. Vi præsenterer en metode til at garantere at den semide�nitte
relaksering af en speci�k problemklasse er eksakt, hvilket betyder at problemet
kan løses e�ektivt ved hjælp af den konvekse relaksering.
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Chapter 1

Introduction

Optimization is a word that brings many association and is widely used. Broadly
speaking, when there is something we want to optimize, we have a goal that we
want to achieve and perhaps some things that constrain us. The goal and con-
straints are usually somewhat fuzzy, but if we can formulate them mathemati-
cally, there is a chance that we can get a computer to help us out. Mathematical
optimization, where a problem is formulated in a certain mathematical form, is
ubiquitous in science and engineering. Applications are numerous and varied;
they include, for example, �nding an optimal design, optimization of chemical
processes, and �nding the best placement of wind turbines in a wind farm. In-
deed, the demand for optimization is high, and the problems that we wish to
solve are increasingly di�cult. Our world is complex and, as a consequence,
our problems are usually complex too. This means that even though we have a
mathematical formulation of our problem, it is not guaranteed that we have an
e�cient method for solving it.

In this thesis, we explore convex relaxation techniques, where a hard optimiza-
tion problem is approximated in a certain way by one that is easier to solve.
The convex relaxation gives us some information about our original problem
and sometimes it even gives us a solution.

In the following we provide some background and describe the challenges that
we address in this thesis. At the end of this chapter, we de�ne our notation and



2 Introduction

terminology and outline the structure of the thesis.

1.1 Background

A mathematical optimization problem can be formulated as

minimize f(x)
subject to x ∈ F (P)

where the variables are x ∈ Rn, f : Rn → R is the objective function, and
F ⊆ Rm is the feasible set. The feasible set is usually described in terms of a
number of functions:

F = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . ,m}, (1.1)

where gi : Rn → R and the inequalities gi(x) ≤ 0 are called constraints. In
words, the goal is to �nd an x in F for which f attains its lowest value. If a
point x? ∈ F satis�es f(x?) ≤ f(x) for all x ∈ F , we call x? a minimizer, or
a solution, of problem (P) and we call f(x?) the optimal value. If we can �nd
such a point, we say that we have solved (P).

The combination of objective function, f , and feasible set, F , determines the
complexity of solving (P). We consider a problem e�ciently solvable if there
exist an algorithm that solves the problem to a prede�ned numerical accuracy
in polynomial time in the size of the problem (number of variables and con-
straints). For example, when f is linear and F is polyhedral (all gi linear),
problem (P) is called a linear program (LP) and there exist e�cient algorithms
for solving problems of this form [27, 72]. On the other hand, when f or any
gi is nonlinear, we generally do not have any e�cient methods for solving (P)
(to global optimality). When f is a nonlinear function or F is characterized by
nonlinear functions, we call (P) a nonlinear optimization problem.

For nonlinear problems it is common practice to use methods for computing a lo-
cal minimizer. A local minimizer of (P) is a point x` which satis�es f(x`) ≤ f(x)
for all x ∈ {x ∈ F : ‖x−x`‖ ≤ δ} for some δ > 0. In words, a local minimizer is
a point that attains the lowest objective value in a neighborhood around itself.
Note that a (global) minimizer is also a local minimizer by de�nition. Nonlinear
problems can have many local minimizers and the objective value of these can
be di�erent. For a local minimizer, x`, we refer to the di�erence in objective
value to the optimal value f(x`) − f(x?) as a measure of suboptimality. We
call methods for computing local minimizers local optimization methods. In this
context, methods for computing a minimizer are often called global optimization
methods.
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In the distinction between local and global optimization, a particularly interest-
ing class of problems is one where the objective, f , is a convex function and the
feasible set, F , is convex1. We call these problems convex optimization prob-
lems [18, 11]. The appeal of convex optimization problems comes from the fact
that we have e�cient (polynomial-time) methods for many classes of convex
optimization problems and that any local minimizer is also a global minimizer.
Hence, given a local minimizer, one is never left wondering if there exists a
better local minimizer. Even when the problem is convex, it is not necessarily
e�ciently solvable [30]. Problems that can be solved e�ciently include conic
linear programs (cone LPs) of the form

minimize cTx
subject to Ax = b

x ∈ K,
(1.2)

where the variables are x ∈ Rn, the data are A ∈ Rm×n and b ∈ Rm, and K is
a direct product of the following convex cones:

• the nonnegative orthant, Rn+ = {x ∈ Rn : xi ≥ 0, i = 1, . . . ,m};
• the second-order cone (SOC), SOC = {(v0, v) ∈ R× Rn−1 : ‖v‖ ≤ v0};
• the cone of symmetric positive semide�nite matrices, Sn+ = {A ∈ Rn×n :
A = AT ∧ yTAy ≥ 0 ∀y ∈ Rn}.

With convex relaxation techniques we try to use the e�cient solvability of convex
optimization problems to gain information about a nonlinear problem which
cannot be solved e�ciently. An optimization problem

minimize f̃(x)
subject to x ∈ R (R)

is a relaxation of problem (P) if F ⊆ R and f(x) ≥ f̃(x). In words, the objective
function of the relaxation is a global underestimator for the original objective
function and the feasible set of the relaxation should contain the original feasible
set. An illustration of the relationship between the feasible sets can be seen in
Figure 1.1. Note that we can always consider a so-called epigraph formulation
of problem (P) to obtain an equivalent problem with a convex objective:

minimize t
subject to (t, x) ∈ Fepi

(1.3)

where the variables are t ∈ R and x ∈ Rn and the feasible set is Fepi = {(t, x) ∈
R × Rn : x ∈ F , f(x) ≤ t}. Hence, a relaxation can be seen as a problem

1A de�nition of convexity is given in Section 1.3.
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Figure 1.1: Illustration of relationship between the feasible set F of the origi-
nal problem and the feasible set R of the relaxation.

with a larger feasible set in order to avoid the discussion of an underestimator
for the objective. However, many of the problems considered in this thesis are
reformulated in such a way that we can use the original objective as the objective
of the relaxation (f̃ = f). Hence, much of the discussion will revolve around
the feasible sets F and R. Note that a relaxation of (1.3) is

minimize t
subject to (t, x) ∈ Repi

(1.4)

where Repi = {(t, x) ∈ R×Rn : x ∈ R, f̃(x) ≤ t}, which is exactly an epigraph
formulation for problem (R).

There are often multiple ways to obtain a relaxation. For example, one could
chooseR = Rn to obtain an unconstrained problem. However, for the relaxation
to be useful, it is better to choose an R that approximates F well in some sense.
This motivates the term tightness. The tightness of a relaxation is a measure of
how close the relaxation is to the original problem, and it is usually taken to be
the di�erence between their respective optimal values and is referred to as the
relaxation gap. Denoting the optimal value of (P) by p? and the optimal value
of (R) by p?, the relaxation gap can be de�ned as

gap = p? − p?. (1.5)
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This measure requires the optimal value of the original problem, which we gen-
erally cannot compute, so in practice a local solution is often used in place of
p?, when we want to evaluate the tightness of a relaxation. When we solve the
relaxation (R) to obtain p?, it may be the case that the minimizer, which we
will denote x?, is in the original feasible set. If this is the case, it is also a
minimizer of the original problem (P) and we say that the relaxation is exact.
The optimal value of the relaxation, p?, is a lower bound on the optimal value
of the original problem, i.e., f(x) ≥ p? for all x ∈ F . As a consequence, we can
use the relaxation to bound the suboptimality of a local minimizer, x`, since

f(x`)− f(x?) ≤ f(x`)− p?. (1.6)

Hence, f(x`) − p? is an upper bound on the suboptimality of x`. A tighter
relaxation results in a better bound. A relaxation is most useful, when we have
an e�cient method for solving (R). Therefore, it is common practice to use
relaxations where the problem (R) is a convex optimization problem. When
this is the case, we call (R) a convex relaxation of (P).

Suppose that the objective function, f̃ , for a relaxation is given. If we want a
convex relaxation the best choice of feasible set, R, would be to use the convex
hull of the original feasible set, which we will denote

C = conv {x : x ∈ F} . (1.7)

For a set S, conv {S} denotes the closure of the convex hull of S. This is the
smallest convex set that contains F . However, we generally do not know a
tractable representation of C although it can be described for some F [19].

Since a problem can have multiple relaxations, we establish some terminology to
compare relaxations. Consider two di�erent relaxations: relaxation 1 with fea-
sible set R1 and relaxation 2 with feasible set R2, both with the same objective
function. We say that relaxation 1 is stronger than, or dominates, relaxation
2 if R1 ⊂ R2. This is illustrated in Figure 1.2. For a pair of relaxations with
feasible sets R1 and R3, it may also be the case that neither of the relaxations
is stronger than the other. This is illustrated in Figure 1.3.

When the relaxation (R) of a problem (P) is solved, we will �nd ourselves in one
of three scenarios: (1) the relaxation is exact, i.e., p? = p? and x? ∈ F2; (2) the
relaxation is not exact, but provides a lower bound on p?; (3) the relaxation is
infeasible, i.e., R = ∅. These scenarios are illustrated in Figure 1.4. In scenarios

2We note brie�y that it can happen that p? = p? but x? 6∈ F if the solution of the relaxation
is not unique. In this case, a minimizer, x?, of (P) is also a minimizer of (R). One might say
that the relaxation is exact in this case, but we may not have a way to compute x?. For the
semide�nite programming (SDP) relaxation, described in Section 2.1, this is related to �nding
low rank solutions of SDPs [57].
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Figure 1.2: Illustration of the feasible sets of a pair of relaxations where the
relaxation with R1 dominates the relaxation with R2. The sets
satisfy F ⊂ R1 ⊂ R2.

1 and 3, the relaxation provides us with a certi�cate: when the relaxation is
exact it is a certi�cate of global optimality; when the relaxation is infeasible it is
a certi�cate of infeasibility of the original problem. An illustration of an exact
relaxation can be seen in Figure 1.5. Suppose that (R) is infeasible. Then (P)
is also infeasible, so the relaxation is a certi�cate of infeasibility. It is generally
easier to check infeasibility for a convex optimization problem [63, 11], so it is
sensible to use the relaxation to check infeasibility of the original problem.

Di�erent problem classes give rise to di�erent relaxations so there are many
relaxations that one can study. In this thesis, our main focus is (subclasses) of
quadratically constrained quadratic programs (QCQPs) and the so-called Shor
semide�nite programming (SDP) relaxation which is a semide�nite programming
problem. We will interchangeably refer to this relaxation as the Shor relaxation,
the semide�nite relaxation, and the SDP relaxation. The details of the SDP
relaxation are described in Section 2.1.

The idea of convex relaxation dates back to McCormick in the 1970s [65]. The
SDP relaxation was suggested by Shor in the late 1980s [77] and it has proven
useful for many hard combinatorial problems [86, 70, 87, 59]. In the past two
decades, there has been a surge in proposed relaxations and applications of
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Figure 1.3: Illustration of relaxations that do not dominate each other.

convex relaxation. This can be attributed, in part, to the development of good
solvers for convex optimization [69, 41, 79, 82, 91], based on, e.g., interior point
methods [2, 71], and modelling software [26, 58], which allows non-experts to
easily formulate and solve convex relaxations. Convex relaxation is also a major
part of the machinery for solving mixed integer programs; see, e.g., [37, 6, 10].

Convex relaxation techniques should be seen as a complement to local optimiza-
tion techniques, since it is often paramount, in practice, to �nd a feasible point
no matter how suboptimal it may be. Convex relaxation can help quantify the
suboptimality and help inform a decision about whether to look for a new local
solution.

Before we describe the challenges that we have tried to address in this thesis, we
present an example of a problem that admits an exact semide�nite relaxation
to illustrate the technique.

Example 1 Consider the unconstrained minimization problem

minimize f(x) = x− x2 − x3 + x4 (1.8)

where the variables are x ∈ R. The objective function can be seen in Figure 1.6.
Note that the objective function is nonconvex. Problem (1.8) can be equivalently
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Problem

minimize f(x)
subject to x ∈ F

Relaxation

minimize f̃(x)
subject to x ∈ R

Scenario 1:

p? = p?
x? ∈ F

Scenario 2:

p? > p?

Scenario 3:

R = ∅
Relaxation infeasible

Problem infeasibleGlobal solution to problem. Relaxation gap

Figure 1.4: Relaxation scenarios.

formulated as the constrained minimization problem

minimize f̃(x, y) = x− y − xy + y2

subject to y = x2 (1.9)

where x, y ∈ R are the variables. This problem has both a nonconvex objective
and a nonconvex constraint, so we have not gained much by this reformulation.
The problem can be seen in Figure 1.7 We can equivalently formulate (1.9) as

minimize C • Z
subject to Z31 = Z22

Z =




1
x
y






1
x
y



T

=




1 x y
x x2 xy
y xy y2




(1.10)

where C =
1

2




0 1 −1
1 0 −1
−1 −1 2


. The last constraint satis�es the following equiv-

alence:

Z =




1
x
y






1
x
y



T

⇐⇒ Z � 0 ∧ rank(Z) = 1
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Figure 1.5: Illustration of an exact relaxation. The green circle marks the
solution of the relaxation.

where Z � 0 denotes that Z must be symmetric and positive semide�nite. So
problem (1.8) is equivalent to

minimize C • Z
subject to Z31 = Z22

Z11 = 1
Z � 0
rank(Z) = 1.

(1.11)

If not for the rank-1 constraint, this would be a convex problem�more precisely
a semide�nite program. We obtain an SDP relaxation of (1.8) by dropping the
the rank-1 constraint:

minimize C • Z
subject to Z31 = Z22

Z11 = 1
Z � 0.

(1.12)

Solving the relaxation (1.12) we obtain the minimizer

Z? ≈




1.0000 −0.6404 0.4101
−0.6404 0.4101 −0.2626
0.4101 −0.2626 0.1682
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f(x)

x

f
(x
)

Figure 1.6: Plot of the objective function of (1.8).

with objective value C • Z? ≈ −0.6197. Checking the eigenvalues, we �nd that
rank(Z?) = 1, so Z? is also feasible, and a minimizer, for problem (1.11). A
rank-1 decomposition of Z? = z?z?T yields

z? ≈




1
−0.6404
0.4101


 .

So the solution (global optimum) to (1.8) is x? ≈ −0.6404. This is plotted in
Figure 1.8. Note that −z? also de�nes a rank-1 decomposition of Z? but this
can be ruled out since z?3 must be nonnegative.

1.2 Challenges

The three papers contained in this thesis address di�erent aspects of convex
relaxation techniques, which can be summarized as: scalability, strengthening,
and exactness.

As we saw in Example 1, the semide�nite relaxation involves lifting the prob-
lem to a higher-dimensional space. For a problem with n variables, the lifting
procedure introduces n(n − 1)/2 new variables and equally many constraints
(the rank-1 constraint in (1.10)). The new constraints are then relaxed to a
conic inequality. Since the semide�nite relaxation has O(n2) variables and a
conic inequality, there is a concern about the tractability of this relaxation for
large scale problems. Therefore, we investigate the scalability of the semide�nite
relaxation for the optimal power �ow (OPF) problem in Paper A.

When solving a convex relaxation, the hope is that it is exact. Unfortunately,
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Figure 1.7: Contours and constraint of problem (1.9). The red line is the
constraint y = x2.

this is not always the case, which leaves us with di�erent options: Sometimes
we can try a di�erent relaxation, sometimes we can strengthen the relaxation,
and sometimes there is nothing more to be done. One way to try to strengthen
a relaxation is by means of valid inequalities, where constraints of the original
feasible set, F , are used to derive constraints for the feasible set R. We explore
how this can be done for an extended trust region subproblem in Paper B.

Since exactness is a desired property of a relaxation, it is natural to search
for guarantees that the relaxation will be exact. This guarantee can be for a
speci�c relaxation of a speci�c problem class. In Paper C, We focus on QCQPs
with forest structure and present su�cient conditions for exactness of the SDP
relaxation based on the data in the problem.

1.3 Notation and Terminology

We introduce the notation and terminology as it becomes relevant through the
thesis, but Table 1.1 may be used as a reference. We present some of the notation
and concepts here that are central to our presentation.
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f(x)
x`

x?

x

f
(x
)

Figure 1.8: Graph of the objective function of (1.8). The green dot marks the
global optimum at x? ≈ −0.6404 and the red dot marks a local
optimum at x` ≈ 1.0101.

1.3.1 Convexity

A function, f , is convex if it satis�es

αf(x) + (1− α)f(y) ≥ f(αx+ (1− α)y) (1.13)

for all x, y ∈ Rn, for all 0 ≤ α ≤ 1. A set F is convex if

αx+ (1− α)y ∈ F . (1.14)

for all x, y ∈ Rn, for all 0 ≤ α ≤ 1.

1.3.2 Cones

We de�ne the nonnegative orthant as

Rn+ = {x ∈ Rn : xi ≥ 0, i = 1, 2, . . . , n}. (1.15)

We de�ne the second-order cone (SOC) as

SOC = {(v0, v) ∈ Rn+1 : ‖v‖ ≤ v0}. (1.16)

Let Sn ⊆ Rn×n denote the space of symmetric n × n matrices. We de�ne the
cone of symmetric positive semide�nite n× n matrices as

Sn+ = {A ∈ Rn×n : A ∈ Sn ∧ xTAx ≥ 0 ∀x ∈ Rn}. (1.17)

For a cone K, the conic inequality x �K 0 denotes that x ∈ K; we will omit
the subscript K from �K when the cone in question is clear from the context.
The conic inequality x �K y means that x− y ∈ K. For example, for a matrix
A ∈ S, the notation A � 0 means that A is positive semide�nite.
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1.3.3 Matrices and Graphs

Let A and B be a pair of n ×m matrices. We denote the trace inner product
by

A •B = tr(ATB) =

n∑

i=1

m∑

j=1

AijBij

An important property of the trace inner product is its cyclic property: for
conformable matrices A,B,C we have

tr(ABC) = tr(BCA). (1.18)

For a sparse symmetric n×n matrix A, we can consider its o�-diagonal sparsity
pattern as a set of indices, E , indicating the nonzero entries, i.e.,

(i, j) ∈ E ⇐⇒ i > j ∧ [A]ij 6= 0. (1.19)

Its sparsity graph is then de�ned as an undirected graph with vertex set V =
{1, 2, . . . , n} and an edge between vertices i and j if (i, j) ∈ E . For a set of
sparse symmetric matrices, {Ak}mk=0, we de�ne the aggregate sparsity pattern
and graph as the natural extension of this, i.e., an index (i, j) is contained in E
if any of the matrices has a nonzero element:

(i, j) ∈ E ⇐⇒ i > j ∧ ∃k ∈ {0, 1, . . . , n} : [Ak]ij 6= 0. (1.20)

This association between matrix entries and its sparsity graph plays a signi�cant
role in Paper C. Diagonal entries correspond to vertices in the graph and o�-
diagonal entries correspond to edges in the graph. A vertex in a graph is a leaf if
it is only connected to one other vertex, i.e., it has only one edge. For a graph,
G(V, E), we denote the set of leaf vertices by Vl and the set of diagonal entries
associated with leaves by

L = {(i, i) : i ∈ Vl}. (1.21)

We de�ne a non-leaf edge to be an edge where neither of the vertices it connects
is a leaf and we denote the set of non-leaf edges by Enl.

Table 1.1: Overview of notation.

Notation Description

R The �eld of real numbers
C The �eld of complex numbers
ı The imaginary unit (ı =

√
−1)

Re(c) The real part, a, of a complex number c = a+ıb.
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Im(c) The imaginary part, b, of a complex number c =
a+ ıb.

Rn+ The cone of nonnegative real numbers
SOC Second-order cone
Sn The set of n× n symmetric matrices
Sn+ The cone of positive semide�nite n×n symmet-

ric matrices
Hn The set of n× n Hermitian matrices
Hn+ The cone of positive semide�nite n × n Hermi-

tian matrices
tr(A) Trace of a n× n (square) matrix
A •B Inner product of a pair of matrices (A • B =∑n

i=1

∑m
j=1AijBij)

F Feasible set of original problem
R Feasible set of relaxation

G(V, E) Undirected graph with vertex set V and edge set
E

V Set vertices (V = {1, 2, . . . , n})
E ⊆ V × V Set edges
Vl ⊆ V Set of leaf vertices

L Entries associated with leaves in the graph
Enl Entries associated with non-leaf edges in the

graph
ek Canonical vector with a 1 in entry k and zeros

otherwise
Ekl = 1

2 (ele
T
k + eke

T
l ) Matrix with 1

2 in entries (j, k) and (k, j)

Ẽkl = 1
2ı (ele

T
k + eke

T
l ) Matrix with 1

2 in entries (j, k) and (k, j)
On The space of orthogonal n× n matrices

1.4 Outline

In Chapter 2, we describe some common relaxation techniques and the relaxation
of some problem classes and applications. In Chapter 3, we discuss exactness
and how Paper C contributes to addressing this challenge. In Chapter 4, we
discuss how to strengthen a relaxation, when it is not exact, and how Paper B
contributes in this area. We also describe a generalization of the valid inequal-
ities suggested in Paper B. In Chapter 5, we describe the alternating current
optimal power �ow (ACOPF) problem and discuss its impact on this project
and vice versa. In Chapter 6, we summarize the contributions of the papers,
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which are presented in Appendices A�C, draw conclusions, and discuss future
research directions. Appendices D�F contain additional details for the papers
and Chapters 3�5.
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Chapter 2

Problems and Relaxations

Convex relaxations are often tailored to a speci�c application or problem class,
but many of the techniques are similar. In this chapter, we mainly focus on a
speci�c problem class and a natural relaxation, namely, the class of quadrati-
cally constrained quadratic programs (QCQPs) and the semide�nite program-
ming (SDP) relaxation, often called the Shor relaxation. QCQPs are prob-
lems where all functions involved�the objective function and the functions in
the constraints describing F�are (allowed to be) quadratic. We discuss the
semide�nite relaxation of QCQPs in Section 2.1 and, in Section 2.2, we mention
some other problem classes and some applications where convex relaxation is
often used.

2.1 QCQP and the SDP Relaxation

The relaxation that we have focused on in this project is the SDP relaxation.
This is a natural relaxation for QCQPs where both the objective and constraints
are quadratic functions. A QCQP can be formulated as

minimize xTA0x+ aT0 x
subject to xTAkx+ aTk x+ αk ≤ 0, k = 1, . . . ,m

(QCQP)
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where the variables are x ∈ Rn and the data are Ak = ATk ∈ Rn×n, ak ∈ Rn,
and αk ∈ R. If all matrices {Ak}mk=0 are positive semide�nite, then (QCQP) is
a convex problem. Using the trace inner product for conformable matrices and
its cyclic property (1.18), the problem (QCQP) is equivalent to

minimize tr(A0xx
T ) + aT0 x

subject to tr(Akxx
T ) + aTk x+ αk ≤ 0, k = 1, . . . ,m.

(2.1)

We can now introduce n(n − 1)/2 new variables, one for each quadratic term
(taking symmetry into account), as X = xxT to have the equivalent problem

minimize tr(A0X) + aT0 x
subject to tr(AkX) + aTk x+ αk ≤ 0, k = 1, . . . ,m

X = xxT
(2.2)

where the variables are x ∈ Rn and X ∈ Sn. We call (2.2) the lifted problem,
since it is a problem with n(n−1)/2 more variables and equally many (quadratic)
equality constraint. With this reformulation the objective and the constraints
tr(AkX) + aTk x+ αk ≤ 0 are linear, while the constraint X = xxT is nonlinear,
since it involves quadratic equality. We can use the fact that

X = xxT ⇐⇒ X � xxT ∧ rank(X) = 1 (2.3)

to obtain the �nal equivalent problem

minimize tr(A0X) + aT0 x
subject to tr(AkX) + aTk x+ αk ≤ 0, k = 1, . . . ,m

X � xxT
rank(X) = 1.

(2.4)

We can now drop (ignore) the constraint rank(X) = 1 and use that

X � xxT ⇐⇒
(

1 xT

x X

)
� 0 (2.5)

to obtain the Shor semide�nite programming relaxation [77, 78]:

minimize tr(A0X) + aT0 x
subject to tr(AkX) + aTk x+ αk ≤ 0, k = 1, . . . ,m(

1 xT

x X

)
� 0.

(SDR)

Loosely speaking, in going from (QCQP) to (SDR), we have unfolded the prob-
lem to identify and drop the nonconvexity. It is clear that if a minimizer (x?, X?)
of (SDR) satis�es X? = x?(x?)T , then (x?, X?) is also a minimizer of (2.4) and,
in turn, x? is a minimizer of (QCQP).
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A di�erent way to arrive at the SDP relaxation is through Lagrangian duality
[72, 34]. Consider the Lagrangian for problem (QCQP):

L(x, λ) = xTA0x+ aT0 x+

m∑

k=1

λk(xTAkx+ aTk x+ αk) (2.6)

and denote

A(λ) = A0 +

m∑

k=1

λkAk, a(λ) = a0 +

m∑

k=1

λkak, α(λ) =

m∑

k=1

λkαk, (2.7)

Then we can formulate the Lagrangian dual problem of (QCQP) as

maximize t

subject to

(
α(λ)− t 1

2a(λ)T
1
2a(λ) A(λ)

)
� 0

λ � 0.

(2.8)

Problem (2.8) is an SDP and it is also the dual problem of (SDR) [34]. Hence,
when there is strong duality between (SDR) and (2.8), these relaxations give
the same lower bound. However, for the Lagrangian relaxation the condition
for exactness is not as straight-forward as with the SDR.

Consider the feasible set of (2.2) and denote this by Flifted, i.e.,

Flifted =

{
(x,X) ∈ Rn × Sn :

tr(AkX) + aTk x+ αk ≤ 0, k = 1, . . . ,m
X = xxT

}
.

(2.9)
From a relaxation perspective we are interested in

Clifted = conv {(x,X) : (x,X) ∈ Flifted} . (2.10)

Since the objective function is linear in (x,X), having a tractable representation
of Clifted [21] would allow us to solve (QCQP) by solving

min
x,X
{A0 •X + aT0 x : (x,X) ∈ Clifted}. (2.11)

However, we only have tractable representations of Clifted in some special cases
[19].

There are other ways to obtain a relaxation of (QCQP) and the problem is often
augmented with additional constraints, whose structure can then be exploited
[3, 50]. For a survey and comparison of other relaxations, see, e.g., [8].
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2.1.1 Complex-Valued QCQP

A complex-valued QCQP is very similar to a real-valued QCQP (QCQP), except
the variables are complex and the matrices are Hermitian. A complex-valued
QCQP can be formulated as

minimize zHQ0z + Re(qH0 z)
subject to zHQkz + Re(qHk z) + φk ≤ 0, k = 1, . . . ,m

(C-QCQP)

where z ∈ Cn are the variables and the data is Qk = QHk ∈ Cn×n, qk ∈ Cn,
φk ∈ R. This problem formulation has many applications in signal processing
[64, 45, 23] and is also a natural formulation for the OPF problem with some
assumptions.

Any complex-valued QCQP (C-QCQP) can be mapped to an equivalent real-
valued QCQP. De�ne the matrices

Tk =

(
Re(Qk) − Im(Qk)
Im(Qk) Re(Qk)

)
(2.12)

and the vectors

tk =

(
Re(qk)
Im(qk)

)
(2.13)

Then (C-QCQP) can be expressed as

minimize
(
x
y

)T
T0

(
x
y

)
+ tT0

(
x
y

)

subject to
(
x
y

)T
Tk
(
x
y

)
+ tTk

(
x
y

)
+ φk ≤ 0, k = 1, . . . ,m

(2.14)

where the variables are x, y ∈ Rn and the data is Tk ∈ R2n×2n, tk ∈ R2n,
φk ∈ R.

Since any complex-valued QCQP can be mapped to an equivalent real-valued
QCQP, it might seem odd to even consider the complex-valued QCQP at all.
However, since the converse is not true (any real-valued QCQP does not have
an equivalent formulation as a complex-valued QCQP), there is some structure
that may be exploited. For example, there are dedicated exactness results [9,
46] and strengthening results [51] for relaxations of (C-QCQP).

For complex-valued problems, there is a choice of representing the variables in
rectangular or polar coordinates and this choice can lead to di�erent relaxations.
In Chapter 5, we consider the OPF problem in rectangular variables.
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2.2 Other Problems and Applications

Combinatorial optimization problems often include binary or integer variables.
Hence, we are no longer in the realm of continuous optimization, but we can use
the QCQP problem as a bridge between combinatorial optimization and contin-
uous optimization, since a binary constraint x ∈ {0, 1} can be expressed as the
equivalent quadratic constraint x(1−x) = 0 and relaxed by the lifting described
in Section 2.1, or relaxed to the linear constraint 0 ≤ x ≤ 1. There are other
relaxations for problems with binary variables, so-called (0,1)-programs, and
these problems have received particular attention in the literature [60, 74, 43,
53]. Optimization of binary nonlinear programs is closely related to the study
of pseudo-Boolean optimization [16]. For more details on relaxation of combi-
natorial problems and some applications of SDP relaxations, see, e.g., [42, 84,
87]. Convex relaxations are also widely used in branch-and-bound algorithms,
where it is important to obtain good lower bounds on the optimal value [10].

For polynomial problems, i.e., problems where f, g1, . . . , gm in (P) are polynomi-
als, there exists a hierarchy of SDP relaxations of growing size whose solutions
converge to the solution of the original problem [52]. This is based on sum
of squares polynomials and the dual theory of the moment relaxation. The
interested reader is referred to [54].

As mentioned in the introduction in Chapter 1, the development of good solvers
and modelling tools has spurred an increase in the use of convex relaxation
techniques for various applications. Here, we provide a short list of some appli-
cations:

• Graph applications: MaxCut [39, 75], community detection [1], synchro-
nization [7], o�set selection for tra�c signals [25].

• Signal processing [64]: Multiple input multiple output (MIMO) [66], phase
recovery [85].

• Power systems: optimal power �ow (OPF) [68]. This application has
played a large role in this thesis and is the subject of Chapter 5.

One of the most well-known results of convex relaxation is for the Max-Cut prob-
lem, where the goal is to �nd a two-way partitioning of a weighted graph such
that the edges connecting the two sets have maximum weight. Goemans and
Williamson [39] presented a randomized algorithm, based on SDP relaxation,
guaranteed to deliver a feasible point with objective value at least 0.87856 times
the optimal solution.
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Chapter 3

Exactness

Out of the three scenarios depicted in Figure 1.4, scenario 1 is arguably the best.
In other words, a much desired property of a convex relaxation is exactness.
When a problem has an exact e�ciently solvable convex relaxation, we can
solve the original problem in polynomial time. This does not mean that the
original problem is convex; its solution just happens to coincide with that of a
convex problem. It is non-trivial to pin-point when this will happen. Hence,
the exactness of a relaxation is often gauged on a solve-and-check basis, i.e., the
relaxation is solved and some criterion for exactness is checked.

In this chapter, we consider exactness guarantees, i.e., a theoretical certi�cate
that a speci�c relaxation will provide a solution for an instance of a speci�c
problem. It is unrealistic to expect such a guarantee for a class of NP-hard
problems with a polynomial-time convex relaxation. Hence, we need to restrict
our considerations to problems where the objective function and feasible set
have a speci�c structure. For example, it is well-known that the trust region
subproblem (TRS) can be solved in polynomial time, see, e.g., [88, 80], since it
has an exact relaxation. This problem takes the form

minimize xTHx+ gTx
subject to ‖x‖ ≤ 1

(3.1)

where the variables are x ∈ Rn and the data is H = HT ∈ Rn×n and g ∈ Rn.
This is a problem with a (nonconvex) quadratic objective where F is the unit
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Euclidean ball. Other problems that have a relaxation that admits no relaxation
gap can be found in, e.g., [89, 9, 19, 12].

The condition that we propose in paper C does not guarantee exactness for a
full class of problems. Instead, we present conditions that can be checked for an
instance of a speci�c problem class, i.e., for a problem where the data is given.
We consider the SDP relaxation of QCQPs of the form

minimize xHA0x
subject to xHAkx+ αk ≤ 0, k = 1, . . . ,m,

(T-QCQP)

where the variables are x ∈ Cn, the data are {Ak}mk=0 and {αk}mk=1, and where
the aggregate sparsity graph of the matrices {Ak}mk=0 is a forest. The SDP
relaxation is:

minimize A0 •X
subject to Ak •X + αk ≤ 0, k = 1, . . . ,m

X � 0
(3.2)

where the variables are X = XH ∈ Cn×n. The dual of the SDP relaxation (and
of (T-QCQP)) is:

maximize αTλ
subject to Y = A0 +

∑m
k=1 λkAk

Y � 0
λ � 0

(3.3)

where the variables are λ ∈ Rm and Y = Y H ∈ Cn×n and α is a column vector
with entries αk. Note that we could eliminate the variable Y (and have the
linear matrix inequality A0 +

∑m
k=1 λkAk � 0), but it is convenient to keep it

around, since it is the dual variable for X � 0 and it plays an important role
in the exactness condition. We denote the feasible set of the dual problem (3.3)
by

Ω =



(λ, Y ) :

Y = A0 +
∑m
k=1 λkAk

Y � 0
λ � 0



 . (3.4)

A general QCQP of the form (QCQP) can be formulated as the equivalent
homogeneous QCQP

minimize

(
1
x

)T (
0 1

2a
T
0

1
2a0 A0

)(
1
x

)

subject to

(
1
x

)T (
αk

1
2a
T
k

1
2ak Ak

)(
1
x

)
≤ 0, k = 1, . . . ,m.

(3.5)
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Hence, we can apply the theory of paper C to a general QCQP if the aggregate
sparsity graph of the matrices

{(
αk

1
2a
T
k

1
2ak Ak

)}m

k=0

is a forest.

In the following we summarize paper C. In the paper we have a numerical
example to illustrate the conditions developed; after the summary in Section
3.1, we give some additional examples in Section 3.2.

3.1 Summary of Paper C

In this section, we summarize and discuss the su�cient condition for exactness
of the SDP relaxation of an instance of (T-QCQP) presented in Paper C in
Appendix C. To ease the discussion, we will refer to the data {Ak}mk=0 as the
data matrices and the data {αk}mk=1 as the data vector.

One way to guarantee exactness of the semide�nite relaxation is to guarantee
that a solution X? is rank-1 as we saw in Section 2.1. The condition in paper
C relies on strong duality between (3.2) and (3.3) and the result that a positive
semide�nite matrix whose sparsity graph is a connected tree has rank at least
n − 1 [49] and an extension of this result. Let X? be a solution to (3.2) and
let (λ?, Y ?) be a solution to (3.3). From strong duality and complementary
slackness [72] we have X? • Y ? = 0, which implies that X?Y ? = 0, since both
matrices are positive semide�nite by their feasibility. Sylvester's inequality (see,
e.g., [44]) gives us the bound:

rankX? + rankY ? ≤ n+ rank(X?Y ?) = n. (3.6)

Hence, if we can guarantee that rank(Y ?) ≥ n−1, then we have that rank(X?) ≤
1 and the relaxation is exact. This is the basis of the condition of paper C and
we need the tree structure of Y to utilize a result about the multiplicity of the
smallest eigenvalue for matrices with connected tree structure. We use a number
of feasibility systems that check if it is possible to introduce a zero in strategic
entries of Y ?. We call these the essential feasibility systems and the indices of
these entries comprise the set Eess. In particular, the essential feasibility systems
are those associated with leaves and non-leaf edges in the sparsity graph, so
Eess = L ∪ Enl. Here, L is the set of diagonal entries corresponding to a leaf
in the aggregate sparsity graph and Enl is the set of entries corresponding to
non-leaf edges in the aggregate sparsity graph.
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Let Oij = Rm×{Y ∈ Hn : Yij = Yji = 0} denote the direct product of Rm and
space of Hermitian matrices with a zero in entry (i, j). Then we can express a
feasibility system as checking if the set

Ω ∩Oij (3.7)

is empty, i.e., checking if there exists a dual feasible pair (λ, Y ) for which Yij = 0.
Then the problem has an exact relaxation if

⋃

(i,j)∈Eess
(Ω ∩Oij) = ∅. (3.8)

This checks if there exists a feasible pair (λ, Y ) of (3.3) for which the sparsity
graph of Y does not have the desired structure (connected tree or a variant
thereof). Each feasibility system Ω ∩Oij can be formulated as an SOCP, due
to the presence of tree structure [83]; this derivation can be found in Appendix
D.1.

When the condition (3.8) holds for an instance (a problem with given data
{Âk}mk=0 and {α̂k}mk=1), we refer to this as the nominal instance. The condition
depends only on the data matrices, so if it holds, an instance of (T-QCQP) with
those nominal data matrices and any data vector has an exact relaxation, given
that the instance is feasible.

Given a nominal instance, i.e., one where (3.8) holds, we propose to use pertur-
bation sets to extend the exactness guarantee to instances for which the data
matrices are close to the nominal data matrices in a certain sense. These pertur-
bation sets can be chosen to re�ect any known uncertainty in the data. We use
these perturbation sets to formulate a set of robust feasibility systems. These
can be used to �nd a region of exactness, i.e., a set of perturbations of the
nominal data matrices for which the resulting instance is guaranteed to have an
exact relaxation.

When one of the essential feasibility systems is feasible, the condition (3.8) does
not hold, and we can not guarantee exactness for that instance. However, the
instance may still have an exact relaxation and a solution Y ? to (3.3) which
has the desired sparsity graph. In this case, we propose a number of restricted
feasibility systems with the aim of guaranteeing exactness for instances with the
same data matrices and data vectors that are close to the nominal data vectors.

Given an instance with data {Âk}mk=0 and {α̂k}mk=1 the process of checking ex-
actness of its relaxation is demonstrated in Figure 3.1. The �gure also illustrates
when the robust and restricted feasibility systems become relevant.
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Problem instance

{Âk}mk=0 and {α̂k}mk=1

Feasibility systems
⋃

(i,j)∈Eess(Ω ∩Oij) = ∅

Solve relaxation

Y ? connected tree structure?

Relaxation exact

for problems with {Âk}mk=0

Condition does not hold (Feasible) Condition holds (Infeasible)

Choose perturbation sets

Region of exactness

Restricted
feasibility

No guarantee

YesNo

Robust feasibility systems

Figure 3.1: Process of checking exactness of the SDP relaxation for an instance
of (T-QCQP).

3.2 Additional Examples

In this section, we give some examples of the application of the su�cient con-
dition (3.8).
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3.2.1 Two-Dimensional Problem

Consider a two-dimensional (x ∈ R2) general QCQP:

minimize c11x
2
1 + c22x

2
2 + 2 c12x1x2 + 2 c1x1 + 2 c2x2

subject to ak,11x
2
1 + ak,22x

2
2 + 2 ak,12x1x2 + 2 ak,1x1 + 2 ak,2x2 + γk ≤ 0,

k = 1, . . . ,m.
(3.9)

where the variables are x1, x2 ∈ R and the data are c1, c2, c11, c12, c22 ∈ R
and ak,1, ak,2, ak,11, ak,12, ak,22, γk ∈ R (k = 1, . . . ,m). This problem can be
formulated as a homogeneous problem of the form

minimize




1
x1

x2



T 


0 c1 c2
c1 c11 c12

c2 c12 c22






1
x1

x2




subject to




1
x1

x2



T 

γk ak,1 ak,2
ak,1 ak,11 ak,12

ak,2 ak,12 ak,22






1
x1

x2


 ≤ 0, k = 1, . . . ,m.

(3.10)
The matrices of this problem will have an aggregate sparsity pattern that is a
forest, if there are no bilinear terms in the problem (c12 = a1,12 = · · · = am,12 =
0) or if either of the linear terms is not present (c1 = a1,1 = · · · = am,1 = 0
or c2 = a1,2 = · · · = am,2 = 0). When this is the case, we can apply the
condition (3.8) to check if the problem will have an exact SDP relaxation. In
the following example, we go through the check of the exactness condition (3.8)
for a two-dimensional problem.

Example 3.1 Consider the problem

minimize xTDx+ 2 gTx
subject to x2

1 + x2
2 ≤ 1

x1 ≥ 0
x2 ≥ 0

(3.11)

where the variables are x ∈ R2 and the data is

D =

(
−1 0
0 1

)
, g =

(
−2
1

)
.

The feasible set and contours of the problem can be seen in Figure 3.2. We can
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Figure 3.2: Feasible set and contours of problem (3.11). Yellow indicates in-
feasible points.

formulate this in the form of (T-QCQP) with α = (−1, 0, 0,−1, 1) and

A0 =




0 −2 1
−2 −1 0
1 0 1


 , A1 =




0 0 0
0 1 0
0 0 1


 , A2 =

1

2




0 −1 0
−1 0 0
0 0 0


 ,

A3 =
1

2




0 0 −1
0 0 0
−1 0 0


 , A4 =




1 0 0
0 0 0
0 0 0


 , A5 =



−1 0 0
0 0 0
0 0 0


 .

The aggregate sparsity pattern of these matrices can be seen in Figure 3.3. The
essential feasibility systems are the indices (2, 2) and (3, 3). Hence, to check the
exactness condition (3.8), we need to check if there exists (λ, Y ) ∈ Ω such that
Y22 = 0 or Y33 = 0. We can express the (2, 2) feasibility system as checking if
there exists λ ∈ R5 such that




0 −2 1
−2 −1 0
1 0 1


+ λ1




0 0 0
0 1 0
0 0 1


+ λ2

1

2




0 −1 0
−1 0 0
0 0 0


+

λ3
1

2




0 0 −1
0 0 0
−1 0 0


+ λ4




1 0 0
0 0 0
0 0 0


+ λ5



−1 0 0
0 0 0
0 0 0


 � 0

−1 + λ1 = 0

λ � 0.

(3.12)
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(a) Aggregate sparsity pattern of the
matrices in problem (3.11). The
symbol � denotes a nonzero and
the lack of symbol denotes a zero.

1

2

3

(1, 2)

(1, 3)

(b) Sparsity graph: the vertices cor-
respond to diagonal entries and
edges correspond to o�-diagonal
entries. The solid lines correspond
to the essential feasibility systems.

Figure 3.3: Aggregate sparsity pattern and aggregate sparsity graph of prob-
lem (3.11).

By manual inspection we can see that this is infeasible since a zero on the di-
agonal of a positive semide�nite matrix implies zeros in that row and column
but entry (2, 1) of the linear matrix inequality (LMI) reads −2 − λ2 = 0 which
cannot be zero since λ2 ≥ 0.

Similarly, we can express the (3, 3) feasibility system as checking if there exists
λ ∈ R5 such that




0 −2 1
−2 −1 0
1 0 1


+ λ1




0 0 0
0 1 0
0 0 1


+ λ2

1

2




0 −1 0
−1 0 0
0 0 0


+

λ3
1

2




0 0 −1
0 0 0
−1 0 0


+ λ4




1 0 0
0 0 0
0 0 0


+ λ5



−1 0 0
0 0 0
0 0 0


 � 0

1 + λ1 = 0

λ � 0.

(3.13)

This is clearly infeasible since λ1 ≥ 0.

Hence, both essential feasibility systems are infeasible, so (3.8) holds and we can
guarantee that the semide�nite relaxation of (3.11) is exact for any α for which
the problem is feasible.
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3.2.2 Example in the Complex Domain

An exactness condition that is related to (3.8) is given in [17] and discussed
in Paper C. The condition can be stated as: the relaxation is exact if 0 6∈
int conv{[A0]ij , [A1]ij , . . . , [Am]ij} for all (i, j) ∈ E . That is, if zero is not in the
interior of the convex hull of the point set de�ned by the o�-diagonal entries (in
the complex plane) for all o�-diagonal entries, then the relaxation is exact. In
the following example, this does not hold, but the condition (3.8) does hold.

We remark that, due to the bound r? ≤ b√mc = b
√

3c = 1 [46, 57], the existence
of a rank-1 solution is already guaranteed.

Example 2 Consider the complex QCQP

minimize xHC0x
subject to xHCkx+ bk ≤ 0, k = 1, . . . , 3,

(3.14)

where the variables are x ∈ C4 and the data are b1 = 0, b2 = 0, b3 = 1 and

C0 =




4 1− i 0 0
1 + i 4 2 + i 0

0 2− i 4 −1 + i
0 0 −1− i 4


 , C1 =




−3 1 + 2i 0 0
1− 2i 0 −1− i

2 0
0 −1 + i

2 0 0
0 0 0 0


 ,

C2 =




0 1− i 0 0
1 + i 0 0 0

0 0 0 1 + i
0 0 1− i 0


 , C3 =




0 −1− i 0 0
−1 + i 0 0 0

0 0 0 −1− i
0 0 −1 + i 0


 .

All matrices are Hermitian, C0 is positive de�nite, and C1, C2, and C3 are
inde�nite. The aggregate sparsity pattern and aggregate sparsity graph are shown
in Figure 3.4. From Figure 3.5, we see that this problem does not satisfy the
condition in [17], since the convex hull of {[C0]34, [C1]34, [C2]34, [C3]34} contains
zero in its interior.

For this problem the essential feasibility systems are {(1, 1), (2, 3), (4, 4)} and
they are all infeasible, so we can guarantee that this problem has an exact relax-
ation regardless of the data b1, b2, b3, given that the problem is feasible.
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(a) Aggregate sparsity pat-
tern of the matrices in
problem (3.14). The sym-
bol � denotes a nonzero
and the lack of symbol de-
notes a zero.

1 2 3 4
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(b) Sparsity graph: the vertices corre-
spond to diagonal entries and edges
correspond to o�-diagonal entries. The
solid lines correspond to the essential
feasibility systems.

Figure 3.4: Aggregate sparsity pattern and aggregate sparsity graph of prob-
lem (3.14).
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Figure 3.5: O�-diagonal point sets in the complex plane. The dashed lines
sketch the convex hull.



Chapter 4

Strengthening

In this chapter we consider strengthening techniques. These can be used to
obtain a stronger relaxation and can help us in our pursuit of exactness. When
we relax a problem, we usually throw some information away in order to obtain
a problem that we can solve. In the case of convex relaxation, we disregard
nonconvexities to obtain a convex problem. Depending on the formulation of
the problem, di�erent pieces of information might be thrown away by di�erent
relaxations. In this chapter, we consider valid inequalities. The idea of valid
inequalities is to squeeze some more information out of the original problem�
information that can be used in the relaxation. With this additional information,
we may be able to obtain a stronger relaxation.

Suppose that we have a problem with feasible set

F = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . ,m}, (4.1)

and a relaxation with feasible setR. One idea for obtaining a stronger relaxation
is to look for a set K such that

F ⊆ R ∩K ⊂ R. (4.2)

We call the set K a cut, since it �cuts away� some of the feasible set of the
relaxation. Note that F ⊆ K, so the cut has to contain the feasible set of the
problem. The situation is illustrated in Figure 4.1.
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K

R

F

x1

x
2

Figure 4.1: Illustration of a cut K.

One way to derive cuts is to use valid inequalities. A valid inequality for a
feasible set is a constraint h(x) ≥ 0 such that

x ∈ F =⇒ h(x) ≥ 0. (4.3)

Hence, adding the constraint h(x) ≥ 0 to the problem does not change the
problem. Therefore, a valid inequality h(x) ≥ 0 is also called a redundant
constraint, since it is implied by the other constraints. However, to obtain the
SDP relaxation, the original problem is lifted and relaxed, so the valid inequality
may not be redundant for the feasible set of the relaxation. As a consequence,
we can add the valid inequality, or cut, to the relaxation and perhaps obtain a
stronger relaxation.

A valid inequality can be obtained by combining the constraints of F in some
way. Recall the relationship in Section 2.1 between the feasible set F and the
lifted feasible set Flifted. In particular, note that a constraint gi(x) ≥ 0 that is
quadratic in x is linear in (x,X) in the lifted feasible set. As a consequence, any
valid quadratic constraint h(x) ≥ 0 for F can be added to the SDP relaxation.
In paper B, we derive a class of valid quadratic inequalities for a speci�c F .
Before we describe these and summarize paper B, we mention three techniques
that can be used for obtaining valid inequalities. There exist di�erent techniques
that can be used for speci�c feasible sets; see, e.g., [48] for techniques for QCQP,
or [43, 28, 29] for techniques in combinatorial optimization. We focus on three
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techniques which generally combine a pair of constraints in some way. For
example the reformulation-linearization technique (RLT) combines a pair of
linear constraints to obtain a valid quadratic inequality:

vT1 x+a1 ≥ 0 ∧ vT2 x+a2 ≥ 0 =⇒ xT v1v
T
2 x+(a1v

T
2 +a2v

T
1 )x+a1a2 ≥ 0. (4.4)

We summarize the techniques to obtain RLT constraints, SOCRLT constraint,
and Kronecker SOC constraints in Table 4.1 by the type of constraints they
combine. Note that a SOC constraint can be expressed as an SDP constraint:

‖x‖ ≤ R ⇐⇒
(
R xT

x RI

)
� 0 (4.5)

where I denotes the identity matrix. Hence, a pair of SOC constraints can be
used to obtain a valid KSOC constraint.

Table 4.1: Techniques for obtaining valid inequalities. Here, the symbol ×
denotes multiplication and the symbol ⊗ denotes the Kronecker
product.

Constraints Types of constraints combined
RLT[76] Linear × Linear

SOCRLT[89, 20] Linear × SOC
KSOC[4] SDP/SOC ⊗ SDP/SOC

4.1 Summary of Paper B

In paper B, we add to the techniques for strengthening relaxations by deriving a
new class of valid inequalities. We derive the inequalities for an extended trust
region subproblem of the form

minimize xTHx+ 2 gTx (4.6a)

subject to r ≤ ‖x‖ ≤ R (4.6b)

‖x− c‖ ≤ bTx− a, (4.6c)

where the variables are x ∈ Rn and the data are H = HT ∈ Rn×n, g, c, b ∈ Rn,
α ∈ R, and r,R ∈ R+. Let Fetrs = {x : r ≤ ‖x‖ ≤ R, ‖x − c‖ ≤ bTx − a}
denote the feasible set of (4.6). Some examples of Fetrs with x ∈ R2 are shown
in Figures 4.2�4.4. We are interested in the set Cetrs = conv{(x,X) : x ∈
Fetrs, X = xxT }, since this would allow us to solve (4.6) by solving min{H •
X + 2 gTx : (x,X) ∈ Cetrs} [21]. Using the techniques in Table (4.1), the
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Figure 4.2: The feasible set Fetrs and objective of Example 1 in paper B.
Yellow indicates infeasible points.

strongest relaxation of (4.6) is the Shor relaxation with the KSOC constraint
enforced:

minimize H •X + 2 gTx (4.7a)

subject to r2 ≤ tr(X) ≤ R2 (4.7b)

tr(X)− 2 cTx+ cT c ≤ bbT •X − 2 a bTx+ a2 (4.7c)

0 ≤ bTx− a (4.7d)
(

1 xT

x X

)
� 0 (4.7e)

(
R xT

x R I

)
⊗
(
bTx− a (x− c)T
x− c (bTx− a)I

)
� 0. (4.7f)

We denote the feasible set of this relaxation Rshor ∩Rksoc ⊆ Rn × Sn.

In an e�ort to approximate Cetrs better, we derive a class of new valid inequalities
for Fetrs which can be enforced as cuts in the lifted/relaxation space. The new
inequalities are based on:

• Self-duality of the SOC and the fact that it is a convex cone (α, β ≥
0 ∧ x, y ∈ SOC =⇒ αx+ βy ∈ SOC).
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Figure 4.3: The feasible set Fetrs with a = r = 0, c = 0, b = (2, 2), R = 1. The
contours are for a randomly generated objective. Yellow indicates
infeasible points.

• A pair of nonnegative functions q(x) and l(x), i.e., the functions satisfy
q(x) ≥ 0 and l(x) ≥ 0 for all x ∈ Fetrs. We assume that q is a quadratic
function and l is a linear function. These functions can be chosen, which
is what makes the inequalities a class. In addition to the functions, we
use a lower bound [q + l]min ∈ R+ on the sum of these functions, i.e.,
q(x) + l(x) ≥ [q + l]min for all x ∈ Fetrs.

• A constant [c]max ∈ R+ such that rcTx‖x‖−2 ≤ [c]max. Given a problem
with data r,R, c, b, a, we can compute [c]max. Hence, this is a problem-
dependent constant which can be computed as a preprocessing step before
applying the cuts as we describe later.

We omit the details of the derivations (see paper B in Appendix B) but the
derivation process is summarized in Figure 4.5. The resulting class of cuts can
be stated as follows. Given q(x) = xTHqx+ gTq x+ fq and l(x) = gTl x+ fl, the
following is a valid cut in the (x,X) space:

(r +R)R
(
Hq •X + 2 gTq x+ fq

)
+ (r +R)

(
2 glb

T •X + (flb− 2agl)
Tx− afl

)

≥ [q + l]min tr(X) + rR
(
Hq •X + 2(gq + gl)

Tx+ (fq + fl)
)

−
(
2 glc

T •X + flc
Tx
)
− [c]maxR(2 gTl x+ fl). (4.8)
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Figure 4.4: The feasible set Fetrs with a = 0.2,r = 0.6, c = (0.5, 0.5),
b = (1, 0), R = 1. The contours are for a randomly generated
objective. Yellow indicates infeasible points.

These cuts may look slightly complicated, but note that they are linear in (x,X).
For �xed (x,X), the inequalities are also linear in Hq, gq, fq, gl, fl. This is im-
portant, since it allows us to separate the cuts dynamically, i.e., given a point
(x̄, X̄), we can check if this violates any of the cuts (for any choice of q(x), l(x))
in polynomial time. This means that we can �bootstrap� the cuts onto an SDP
relaxation. Given a relaxation with objective function f̃(x,X) = H •X + 2 gTx
and feasible set R, de�ne R0 = R. Then the bootstrapping can be described
by the following steps.

0. Let k = 0.

1. Solve min{f̃(x,X) : (x,X) ∈ Rk} and denote the solution by (x̄k, X̄k).

2. Solve the separation problem described in paper B to obtain a pair of
functions qk+1, lk+1. (These are given by their coe�cientsHq, gq, fq, gl, fl.)
If (4.8) is not violated by any q, l, stop; otherwise, let Kk+1 denote the
set of (x,X) that satisfy (4.8) with qk+1 and lk+1. Add cut: let Rk+1 =
Rk ∩Kk+1. Increment k by one, so k = k + 1. Go to step 1.

The process keeps going until we �nd a point (x̄∗, X̄∗), which does not violate
(4.8) for any valid q, l. This is the solution of the given relaxation with the class
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‖x− c‖ ≤ bTx− a l(x), q(x) ≥ 0 ‖x‖ ≤ R r ≤ ‖x‖

convex cone

q(x)

(
R
x

)
+ l(x)

(
bTx− a
x− c

)
∈ SOC

(R− ‖x‖)(‖x‖ − r) ≥ 0

(
r +R(

1 + rR‖x‖−2
)
x

)
∈ SOC

self-duality

(
r +R

−(1 + rR‖x‖−2)x

)T (
Rq(x) + l(x)(bTx− a)
(q(x) + l(x))x− l(x)c

)
≥ 0

q(x) + l(x) ≥ [q + l]min and rcTx‖x‖−2 ≤ [c]max

(r +R)Rq(x) + (r +R)l(x)(bTx− a) ≥
[q + l]minx

Tx+ rR (q(x) + l(x))− l(x)cTx− [c]maxR l(x)

Figure 4.5: Outline of derivation of the new class of valid inequalities.

of new cuts added. The bootstrapping process is illustrated in Figure 4.6.

The computational cost of solving the separation problem depends on the re-
laxation that the cuts are bootstrapped to. Some implementation details can
be found in Appendix E.

We can view the bootstrapping as iteratively tightening the relaxation by ob-
taining a sequence K1,K2, . . . ,Kncuts , where ncuts denotes the number of cuts
that are added. With this sequence we have that

R0 ⊃ R1 ⊃ R2 ⊃ · · · ⊃ Rncuts
⊇ Cetrs ⊇ Flifted. (4.9)

In addition to the application to OPF of these cuts, which is described in Section
5.5.2, we derived a class of valid SOC constraints for Flifted when F is the
intersection of the nonnegative orthant and the Euclidean ball. We conducted
numerical experiments which demonstrate that the cuts strengthen both the
Shor relaxation and the Shor relaxation with the KSOC constraint added. The
cuts were particularly strong for the case when c = 0 and a = r = 0. In fact,
we conjecture that the cuts added to the Shor-KSOC relaxation captures the
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Initial relaxation: f̃ ,R
De�ne R0 := R and let k = 0.

Solve relaxation

minimize f̃(x,X)
subject to (x,X) ∈ Rk
Denote solution (x̄k, X̄k).

Solve separation problem with (x̄k, X̄k)

Can it be separated?

Add cut Kk

Let Rk+1 := Rk ∩Kk.
Increment k.

Return (x∗, X∗) := (x̄k, X̄k)

No

Yes

Figure 4.6: Bootstrapping procedure.

convex hull Cetrs = conv
{

(x, xxT ) : x ∈ Fetrs

}
when Fetrs = {x ∈ R2 : ‖x‖ ≤

R, ‖x‖ ≤ bTx} for arbitrary b ∈ R2. This feasible set is depicted in Figure 4.3
for a given b.

4.2 Orthogonal Generalization

The inequalities developed in paper B use the self-duality of the SOC as part of
the derivations. As we can see in Example 1 in the paper, the inequality derived
from just the self-duality (which is included in the class of inequalities) can be
e�ective. As opposed to some of the other derivations, the inequality derived
from the self-duality is quadratic even when the Hessians of the SOCs involved
are di�erent. Hence, for a pair of general SOC constraints

(
bT1 x− a1

H1x− c1

)
,

(
bT2 x− a2

H2x− c2

)
∈ SOC (4.10)
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we can derive the valid quadratic inequality

(
bT1 x− a1

−(H1x− c1)

)T (
bT2 x− a2

H2x− c2

)
≥ 0

m
xT (b1b

T
2 −HT

1 H2)x+ (HT
1 c2 + cT1 H2 − a2b

T
1 − a1b

T
2 )x− cT1 c2 + a1a2 ≥ 0

(4.11)

An observation about using the self-duality is that we have changed the sign
"inside the norm" of one of the SOCs, i.e., we use ‖ − (H1x− c1)‖ ≤ bT1 x− a1

instead of ‖H1x − c1‖ ≤ bT1 x − a1. This is actually a speci�c choice for the
following generalization.

Let On denote the space of n × n orthogonal matrices, and suppose Q ∈ On.
Then we have

‖x‖ ≤ R ⇐⇒ ‖Qx‖ ≤ R.
Using this we can generalize (4.11) to

(
bT1 x− a1

QT (H1x− c1)

)T (
bT2 x− a2

H2x− c2

)
≥ 0

m
xT (b1b

T
2 +QHT

1 H2)x− (QHT
1 c2 + cT1 QH2 − a2b

T
1 − a1b

T
2 )x

+cT1 Qc2 + a1a2 ≥ 0. (4.12)

Since we can choose Q freely, this is an in�nite set of valid inequalities. We
call (4.12) the orthogonal generalization of (4.11). Note that the choice Q = −I
recovers (4.11). This orthogonal generalization can also be applied to the �self-
duality� step in Figure 4.5. This generalization is most interesting when Q can
be chosen e�ciently. Since the inequality (4.11) is linear in Q (for �xed (x,X)),
we can compute the best Q at the cost of an SVD (see Appendix E.3).

We did some preliminary experimentation with the orthogonal generalization
for a simpler version of the inequalities (4.8) and identi�ed some cases where
the orthogonal generalization did not improve the relaxation beyond the cuts
(at that time). Some of this can be seen in Appendix E.3.
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Chapter 5

Optimal Power Flow

The alternating current optimal power �ow (ACOPF) problem is a fundamental
problem in power systems engineering. In this chapter, we provide some back-
ground and discuss the modelling of the ACOPF problem, since it plays a role
in all the papers�explicitly or as a motivation. We �rst describe the problem,
the challenges, and the mathematical formulation that we have worked with.
Then we describe how the papers can contribute to tackling the challenges.

Electricity is a commodity that is taken for granted in many parts of the world;
when you plug your device into the wall you expect it to get charged. The power
network that delivers this power is one of the largest human-made engineering
system. The power network, also called the power grid, consists of a set of
geographical locations and some power lines connecting these. A geographical
location is called a node, or a bus, and is an injection/extraction point, where
there is a demand for power and possibly a set of generators capable of delivering
power. The power network consists of a transmission network where most of the
transmission happens and a distribution network which connects the transmis-
sion network to the consumers. The distribution is usually radial, which means
that there are no cycles in the network, so the topology of distribution networks
is generally a tree. The goal of the OPF problem is to minimize the cost of
power generation while meeting the demand in the network. This is achieved
by determining a dispatch�how much power should each generator generate�
and the voltages, which control how the power �ows. The ACOPF problem
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is NP hard [13, 56, 55]. Aside from the immense practical importance of the
OPF problem, it is interesting from the perspective of convex relaxation due to
the many modelling choices one can make; see [14] for a survey on the various
formulations. This has led to many di�erent convex relaxations [5, 15, 51, 47,
24, 67]. For a survey of these, we refer the reader to [68] or the two-part survey
[61, 62]. A detailed description of power systems can be found in, e.g., [38]. For
an account of convex optimization problems in power systems, see, e.g., [81].

5.1 Challenges

The OPF problem is hard to solve and the amount of money involved is huge
[22]. Therefore, it is of interest to obtain a certi�cate of global optimality or a
an upper bound on the suboptimality, which is exactly what a convex relaxation
can provide. Empirical evidence shows that the SDP relaxation is very tight
for many instances [55]. Here we de�ne an instance as the combination of the
network topology and a speci�c demand. However, for large network instances
there has been concern about the tractability of solving the SDP relaxation
within the required time frame, which is around 5�15 minutes [22]. This moti-
vated the numerical study of the scalability of the SDP relaxation conducted in
Paper A. We summarize and discuss this in Section 5.5.1.

The SDP relaxation for the OPF problem is exact for many instances, but for the
instances where the relaxation is not exact, there is an interest in strengthening
the relaxation. One approach for this is to use valid inequalities. The valid
inequalities in Paper B have an application in OPF and we discuss this in
Section 5.5.2. For other approaches to strengthening for OPF, see, e.g., [40].

With the introduction of distributed energy resources (solar cells and other
household generation) there has been an increasing interest in operating the
distribution network in recent years [73]. The distribution network is usually
radial (has no cycles) and for these instances the SDP relaxation has proven to
be particularly e�ective [36]. Under di�erent assumptions it has been proven
that the relaxation will be exact [62, 55, 17, 67] but these assumptions are
not always satis�ed. From a practical point of view, it is probably not so
important that the relaxation is exact for all radial networks. Instead, a system
operator is probably more interested in a guarantee that a particular network
instance has an exact relaxation. This can be loosely translated to guaranteeing
exactness for a problem with speci�c structure and speci�c data (without solving
the relaxation). This is the topic of paper C, where we consider homogeneous
QCQPs with forest structure; we can bring the OPF problem into the form of
a homogeneous QCQP, and for distribution networks we have the desired forest
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structure. We discuss the QCQP formulation of OPF in Section 5.3 and describe
how paper C relates to OPF in Section 5.5.3.

5.2 Mathematical Model

Mathematically, we model the power network as a graph G(V, E), where the
vertices are the buses and the edges are the power lines. At each bus we have a
complex variable describing the voltage and a complex variable describing the
current. We denote the vector of voltages by v ∈ Cn and the vector of currents
by i ∈ Cn. The formulation of the OPF that we consider is

minimize
∑

g∈G
fg(pg) (5.1a)

subject to i∗kvk =
∑

g∈Gk

sg − Sdk k = 1, . . . , n (5.1b)

V k ≤ |vk| ≤ V k k = 1, . . . , n (5.1c)

Sg ≤ sg ≤ Sg ∀g ∈ G (5.1d)

|Fkl(v)| ≤ F kl (k, l) ∈ L� (5.1e)

φ
kl
≤ ∠(vkv

∗
l ) ≤ φkl (k, l) ∈ Lpa (5.1f)

i = Y v (5.1g)

where the variables are i, v ∈ Cn and sg ∈ C (g ∈ G). The data is described in
Table 5.1. The function Fkl(v) describes the �ow from bus k to bus l. Note that
for a power line (k, l) with a �ow (thermal) limit, we have that (k, l), (l, k) ∈ L�
and that F kl = F lk, so (5.1e) covers �ow in both directions. There are several
types of �ow that can be used [92]; current �ow (linear in v), apparent power �ow
(quadratic in v), or real power �ow (quadratic in v). In paper A, we consider the
apparent power �ow, which results in an SOC constraint in the relaxation. To
obtain a QCQP formulation in Section 5.3, we use the real power �ow as in [55,
17]. The network topology (the connections between the vertices) is especially
captured by the admittance matrix Y , since its sparsity graph is the network
graph G(V, E).

It is common practice to eliminate the currents, i, from the problem using Ohm's
law (5.1g):

i∗k = vHY Hek.
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Table 5.1: Sets and data describing a power network.

Notation Description
Y ∈ Hn the admittance matrix of the network
Sdk ∈ C complex power demand at bus k
Smaxk ∈ C maximum power production at bus k
Smink ∈ C minimum power production at bus k
Uk ∈ R+ maximum voltage magnitude at bus k
Lk ∈ R+ minimum voltage magnitude at bus k
Fkl ∈ R+ upper bound on the �ow from bus k to bus l
φkl ∈ (−π, π) maximum voltage angle di�erence between bus k and l
φ
kl
∈ (−π, π) minimum voltage angle di�erence between bus k and l

n = |V| Number of buses
L� ⊆ E Set of power lines with a limit on the power �ow
Lpa ⊆ E Set of power lines with a limit on phase angle
G Set of generators
Gk ⊆ G Set of generators at vertex k

Using vk = eTk v, the problem becomes

minimize
∑

g∈G
fg(pg) (5.2a)

subject to vHY Heke
T
k v =

∑

g∈Gk

sg − Sdk k = 1, . . . , n (5.2b)

V k ≤ |vk| ≤ V k k = 1, . . . , n (5.2c)

Sg ≤ sg ≤ Sg ∀g ∈ G (5.2d)

|Fkl(v)| ≤ F kl (k, l) ∈ L� (5.2e)

φ
kl
≤ ∠(vkv

∗
l ) ≤ φkl (k, l) ∈ Lpa (5.2f)

The model (5.1) is important for a lifting that we describe in Section 5.4 but
the model (5.2) is more convenient for an SDP relaxation.

The constraints (5.2b) and (5.2d) are complex constraints. Denote the real
power of generator g by pg and the reactive power by qg, so that sg = pg + ıqg.
For each bus k = 1, . . . , n, let Pk be the real power demand, let Qk be the
reactive power demand, and de�ne the two matrices Y k = 1

2 (Y Heke
T
k + eke

T
k Y )

and Ỹk = 1
2ı (Y

Heke
T
k + eke

T
k Y ). Then the power balance (5.1b) at bus k can

be split in the real (active) and imaginary (reactive) power

vHY kv =
∑

g∈Gk

pg − P dk , vH Ỹkv =
∑

g∈Gk

qg −Qdk, (5.3)
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and the generator limits can be expressed as

P g ≤ pg ≤ P g, Q
g
≤ qg ≤ Qg, (5.4)

where Sg = P g + ıQg and Sg = P g + ıQ
g
.

The phase angle di�erence constraint can be reformulated as follows. A complex
number vk can be expressed in terms of its magnitude and angle as

vk = |vk|eı(∠vk) = |vk| (cos(∠vk) + ı sin(∠vk)) , (5.5)

where e is Euler's number. Hence, tangent of the angle di�erence between vk
and vl can be calculated from the complex numbers as

tan(∠vk − ∠vl) =
Im(vkv

∗
l )

Re(vkv∗l )
. (5.6)

When −π/2 < φ
kl
≤ φkl < π/2, we can express the phase angle constraint (5.1f)

as

tan(φkl) ≤
Im(vkv

∗
l )

Re(vkv∗l )
≤ tan(φkl)

⇐⇒ tan(φkl) Re(vkv
∗
l ) ≤ Im(vkv

∗
l ) ≤ tan(φkl) Re(vkv

∗
l ). (5.7)
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With the described transformations, we can express the OPF as

minimize
∑

g∈G
fg(pg) (5.8a)

subject to Y k •W =
∑

g∈Gk

pg − P dk k = 1, . . . , n

(5.8b)

Ỹk •W =
∑

g∈Gk

qg − qdk k = 1, . . . , n

(5.8c)

V 2
k ≤Wkk ≤ V

2

k k = 1, . . . , n
(5.8d)

P g ≤ pg ≤ P g ∀g ∈ G
(5.8e)

Q
g
≤ qg ≤ Qg ∀g ∈ G

(5.8f)

|Fkl(Wkl)| ≤ F kl (k, l) ∈ L�
(5.8g)

tan(φkl) Re(Wkl) ≤ Im(Wkl) ≤ tan(φkl) Re(Wkl) (k, l) ∈ Lpa
(5.8h)

W = vvH (5.8i)

where the variables are v ∈ Cn and W = WH ∈ Cn×n. Assume that the
objective function fg(pg) is convex, then a cone LP relaxation can be obtained
by replacing W = vvH with W � 0. Note that (5.8g) is a second order cone
constraint when the �ow constraint is on the apparent power. In the next
section we will describe some assumptions under which the OPF problem can
be modelled as a QCQP.

5.3 OPF as a Homogeneous QCQP

In the following we describe how the OPF can be formulated as a homogeneous
QCQP. We will discuss the objective and constraints of (5.2) one at a time in
order of appearance. We will assume that each bus has at most one generator,
since this allows us to eliminate the generation variables by using the power
balance constraints (5.1b), and that the objective is either linear in the active
power or it is the power loss in the network which is quadratic in the voltages.
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Objective function: Let ck be the (linear) cost of active generation at node
k, then we can consider the objective

n∑

k=1

ck(pk − P dk ) =

n∑

k=1

ckv
HY kv −

n∑

k=1

ckP
d
k = vHCgenv − γ. (5.9)

where Cgen =
∑n
k=1 ckY k and γ =

∑n
k=1 ckP

d
k .

Another objective, which is more obviously quadratic in the voltages is power
loss, where the objective is

vHClossv, (5.10)

where Closs = (Y + Y H)/2.

Power balance and generation limits: When there is at most one gener-
ator at bus k, the power balance (5.1b) can be expressed as

vHY Heke
T
k v = sk − Sdk . (5.11)

De�ne the new bounds

Pmin
k = P k − P dk , Pmax

k = P k − P dk , (5.12)

Qmin
k = Q

k
−Qdk, Qmax

k = Qk −Qdk. (5.13)

Using (5.3), we can substitute the power balance into the generation limits:

Pmin
k ≤ vHY kv ≤ Pmax

k , Qmin
k ≤ vH Ỹkv ≤ Qmax

k . (5.14)

Note that for buses with no generation capacity, the upper and lower bounds
are the same (Pmin

k = Pmax
k and Qmin

k = Qmax
k ) and will essentially result in an

equality constraint in the �nal QCQP.

Voltage magnitude bounds The nodal voltages are constrained by

Lk ≤ |vk| ≤ Uk ⇐⇒ L2
k ≤ vHEkkv ≤ U2

k , (5.15)

where Ekk = eke
T
k .

Phase angle di�erence: We have already seen that under the assumption
that −π/2 < φ

kl
≤ φkl < π/2, we can write the phase angle di�erence con-

straints (5.1f) as

tan(φ
kl

) Re(vkv
∗
l ) ≤ Im(vkv

∗
l ) ≤ tan(φkl) Re(vkv

∗
l ) (5.16)
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We can write the right inequality as

Im(vHele
T
k v)− tan(φkl) Re(vHele

T
k v) ≤ 0. (5.17)

De�ne Ekl = 1
2 (ele

T
k + eke

T
l ) and Ẽkl = 1

2i (ele
T
k − ekeTl ). Then we can write

this as

vH(Ẽkl − tan(φkl)Ekl)v ≤ 0. (5.18)

Similarly, from the lower bound we get

vH(tan(φkl)Ekl − Ẽkl)v ≤ 0. (5.19)

De�ne

Φkl = Ẽkl − tan(φkl)Ekl, Φkl = tan(φ
kl

)Ekl − Ẽkl, (5.20)

so the constraints become

vHΦklv ≤ 0, vHΦklv ≤ 0. (5.21)

Line �ows: Using the active power �ow in (5.1e), we may express Fkl(v) =
vHTklv, where Tkl is a given matrix [92]. Then, the line �ow constraints becomes

|vHTklv| ≤ F kl ⇐⇒ −F kl ≤ vHTklv ≤ F kl. (5.22)

QCQP formulation: Let C ∈ {Closs, Cgen}, then we can write the OPF
problem (5.1) as the QCQP

minimize vHCv (5.23a)

subject to Pmin
k ≤ vHY kv ≤ Pmax

k , k = 1, . . . , n (5.23b)

Qmin
k ≤ vH Ỹkv ≤ Qmax

k , k = 1, . . . , n (5.23c)

Lk ≤ vHJkv ≤ Uk, k = 1, . . . , n (5.23d)

vHΦklv ≤ 0, (k, l) ∈ Lpa (5.23e)

vHΦklv ≤ 0, (k, l) ∈ Lpa (5.23f)

− F kl ≤ vHTklv ≤ F kl, (k, l) ∈ L�. (5.23g)

From this, we can obtain an SDP relaxation with the lifting procedure described
in Section 2.1. This is a homogeneous QCQP, which will have tree structure
when the admittance matrix Y has tree structure.
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5.4 Current-Voltage Relaxation

The main contributor to the large solution time of the semide�nite relaxation,
especially for larger networks, is the cone constraint W � 0. Therefore, many
relaxations proposed in the literature lean more towards the SOCP relaxation
than the SDP relaxation; the SOCP relaxation can be obtained from a branch
�ow model of the OPF [61] or by relaxing the constraint W � 0 to positive
semide�niteness of its 2×2 minors. In the spirit of avoiding the constraintW � 0
one could be tempted to do the following: Instead of eliminating the currents
(going from (5.1) to (5.2)), we can keep the currents and relax (5.1) by the
lifting technique described in Section 2.1. We describe this in the following. For
the sake of presentation we do not consider the �ow and phase angle di�erence
constraints.

Consider the OPF problem (5.1). For each bus we de�ne the vector

zk =

[
vk
ik

]
, k = 1, . . . , n, (5.24)

and the matrix variable

Zk = zkz
H
k =

[
vkv
∗
k vki

∗
k

ikv
∗
k iki

∗
k

]
=

[
|vk|2 vki

∗
k

ikv
∗
k |ik|2

]
(5.25)

Let Eij = eie
T
j be a 2 × 2 matrix with a one in row i column j and zeros

otherwise. Then we can write the OPF problem (5.1) as

minimize
∑

g∈G
fg(pg) (5.26a)

subject to E12 • Zk =
∑

g∈Gk

sg − Sdk k = 1, . . . , n (5.26b)

V 2
k ≤ E11 • Zk ≤ V

2

k k = 1, . . . , n (5.26c)

Sg ≤ sg ≤ Sg ∀g ∈ G (5.26d)

ik =

n∑

l=1

Yklvl, k = 1, . . . , n (5.26e)

Zk =

[
vk
ik

] [
vk
ik

]H
, k = 1, . . . , n (5.26f)

A relaxation of this is readily obtained by relaxing the last constraints to

Zk �
[
vk
ik

] [
vk
ik

]H
⇐⇒




1 v∗k i∗k
vk [Zk]11 [Zk]12

ik [Zk]21 [Zk]22


 � 0, k = 1, . . . , n. (5.27)
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If we look at the constraints of problem (5.26), it is evident that the currents
and voltages only appear in the constraints (5.26e) and (5.26f). If Zk � 0, then
ik = vk = 0 is feasible. Hence, the variables have been decoupled from the
problem and can essentially be eliminated.

If we eliminate vk and ik from the problem, it reduces to

minimize
∑

g∈G
fg(pg) (5.28a)

subject to E12 • Zk =
∑

g∈Gk

sg − Sdk k = 1, . . . , n (5.28b)

V 2
k ≤ E11 • Zk ≤ V

2

k k = 1, . . . , n (5.28c)

Sg ≤ sg ≤ Sg ∀g ∈ G (5.28d)

Zk � 0, k = 1, . . . , n. (5.28e)

Note that the admittance matrix is also eliminated and that [Zk]22 only appears
in the constraint Zk � 0. For the problem to be bounded we need an upper
bound on [Zk]22, which corresponds to the squared current magnitude at bus k.
One way to obtain this is described in Appendix F.1.

This approach is very similar to a diagonalization approach, where the rank-
1 matrices Y k and Ỹk are used to de�ne new variables. We outline this in
Appendix F.2. The diagonalization approach inspired the current-voltage re-
laxation and su�ers from the same drawback that the constraints become de-
coupled. These relaxations are not very useful in approximating the original
problem, but they illustrate the point that diagonalization before lifting is not a
good approach for homogeneous QCQPs. This is also outlined in the discussion
in paper C.

5.5 Contributions

In this section, we describe the contributions of Papers A�C in relation to the
OPF problem. Recall the challenges described in the beginning of this chapter.

5.5.1 Paper A

In paper A, we investigate the scalability and robustness of the SDP relaxation
of the OPF problem. To this end, we formulate the OPF problem as a cone LP
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(similar to (5.8)) of the form

minimize cTx
subject to Ax = b

x ∈ K,
(5.29)

where the cone K is a cartesian product of the nonnegative orthant, a number
of second order cones, and the cone of Hermitian positive semide�nite matrices:

K = Rn+ ×K3
q × · · · × K3

q︸ ︷︷ ︸
nq

×Knh .

The aim of formulating the OPF in this standard form is to facilitate a com-
parison of the robustness and scalability of di�erent solvers. The computational
bottleneck of solving (5.29) for large n is usually the Hermitian positive semidef-
inite cone Knh , but due to the sparsity of the OPF problem we can apply the
conversion of [35], which essentially decomposes the large cone into smaller cones
at the cost of some additional equality constraints. The converted problem can
be formulated as

minimize c̃Tx

subject to Ãx = b

Ẽx = 0

x ∈ K̃,
(5.30)

where
K̃ = Rn+ ×K3

q × · · · × K3
q︸ ︷︷ ︸

nq

×Kr1h × · · · × Krmh .

This is intended to mitigate the computational cost of the large cone Knh . There
are di�erent ways to make the conversion and there is a trade-o� between the
number of equalities that are introduced and the size of the blocks.

In our experiments, we solved the semide�nite relaxation with �ve di�erent
solvers. Comparing the solvers, we found that MOSEK was generally fastest
and most robust; it solved all test instances to the given accuracy. In Figure 5.1
we see the solver time of MOSEK for the OPF problem for di�erent networks.
We can see that the solver time is superlinear in the number of buses, so the
increase in solver time is not as large as one could expect for an SDP. A more
theoretical account of this behavior can be found in [90]. If we instead plot
the time against the largest clique in the network, seen in Figure 5.2, we see
that this is more likely the computational bottleneck of solving the semide�nite
relaxation of the OPF.

The main takeaways of the study are that the SDP relaxation can be a tractable
relaxation for power networks of a fairly large size; the relaxation was solved in
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Figure 5.1: MOSEK solver times compared to the number of buses in the
network (log-log). Tendency lines for linear and quadratic depen-
dency plotted.

less than 10 minutes for all but one case with less than 25,000 buses. Moreover,
the results demonstrate that solution times can be signi�cantly improved by
manually constructing the relaxation compared to the use of modelling tools.

5.5.2 Paper B

An interesting observation about the OPF problem is that it does not involve
any linear terms in the voltages in many formulations, so in essence we only care
about the quadratics. Since the voltages are complex this corresponds to only
caring about the magnitude and the angle between di�erent voltages. Denote
the feasible set of (5.8) by

FOPF = {W : W satis�es (5.8b)�(5.8i)}. (5.31)

Then we would like to derive valid inequalities for this feasible set. One way to
do this is by considering a pair of connected buses with their voltage magnitude
and phase angle di�erence constraints. This is done by Chen et al. [23] where
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Figure 5.2: MOSEK solver times compared to the largest clique smax after
conversion (log-log). Tendency lines for quadratic and cubic de-
pendency plotted.

they consider the set

Ljj ≤Wjj ≤ Ujj ∀ j = 1, 2 (5.32a)

L12W12 ≤ T12 ≤ U12W12 (5.32b)

W12 ≥ 0 (5.32c)

W11W22 = W 2
12 + T 2

12 (5.32d)

where the four variables are (W11,W22,W12, T12) ∈ R4 and the data L =
(L11, L22, L12) and U = (U11, U22, U12) satisfy L ≤ U and Ljj ≥ 0 for j = 1, 2.
Chen et al. prove that the convex hull of this set is captured by the natural
SDP relaxation (relaxing the last constraint to W11W22 ≥ W 2

12 + T 2
12) inter-

sected with a pair of linear inequalities. In paper B, we show that these linear
inequalities can be seen as a special case of the larger class of valid inequalities
that we derive. In particular, we show that they are equivalent to a pair of valid
inequalities for the set

FW =




x ∈ R3 :

√
L11 ≤

∥∥∥
(
x1

x2

)∥∥∥ ≤
√
U11∥∥∥

(
x1

x2

)∥∥∥ ≤ b1x1 + b2x2√
L22 ≤ x3 ≤

√
U22





(5.33)



56 Optimal Power Flow

The details can be seen in the paper. Loosely speaking, the set FW can be
viewed as considering the following set

V 1 ≤ |v1| ≤ V 1

V 2 ≤ |v2| ≤ V 2

φ
12
≤ ∠(v1v

∗
2) ≤ φ12,

which is a subset of C2 and �xing the angle of one of the voltages which takes
us to R3. An illustration of the set FW can be seen in Figure 5.3.
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Figure 5.3: The set FW (5.33).

5.5.3 Paper C

As described in Section 5.3, the OPF problem can be formulated as a complex-
valued QCQP. Paper C is motivated by the distribution networks, which are
radial. In paper C, we consider a speci�c structure but the conditions also
depend on the data in the problem, so that exactness can be checked for a
speci�c distribution network.

In the paper we consider homogeneous QCQPs, but as we can see in problem
(5.23), the QCQP formulation of the OPF has some additional structure: most
of the quadratic terms have a lower and an upper bound. We call this type of
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constraint a quadratic interval constraint, since the quadratic has to be within
a speci�ed interval. Therefore, it is sensible to consider the feasibility systems
for this particular structure:

minimize
x∈Dn

xHA0x

subject to bk ≤ xHAkx ≤ bk, k = 1, . . . ,m.
(5.34)

For this problem the dual problem (3.3) takes the form

minimize
m∑

k=1

(λkbk − µkbk)

subject to A0 +

m∑

k=1

(λk − µk)Ak � 0

λ, µ � 0.

(5.35)

For the feasibility systems we disregard the objective, so if we de�ne

Ωquad−int =

{
(ν, Y ) :

Y = A0 +
∑m
k=1 νkAk

Y � 0

}
,

we can formulate the feasibility systems (3.7) for (5.34) as

Ωquad−int ∩Oij ,

and the exactness condition (3.8) accordingly. Compared to the usual feasibility
systems we do not have the constraint ν � 0.
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Chapter 6

Conclusion

In this thesis, we have provided some background for convex relaxation and
described the research that has been done throughout the project. The main
contributions of the project can be summarized as:

Paper A We have conducted a numerical study of the semide�nite relaxation of
the optimal power �ow problem. The study compares di�erent solvers and
shows experimentally that the formulation of the problem (the modelling)
has a large impact on the time it takes to solve the relaxation and on the
robustness of the solvers. The study demonstrates that the semide�nite
relaxation can be solved within minutes for networks with up to 10.000
buses. Hence, the semide�nite relaxation could be used as a complement
to existing methods for solving the OPF problem, even in larger networks.

Paper B We have derived a new class of valid inequalities for an extended
trust region subproblem. These inequalities can be used to iteratively
tighten a semide�nite relaxation and improve relaxations for this problem.
The inequalities are derived for a speci�c structure of the feasible set
and can be applied whenever this structure is present. The derivation of
these inequalities adds to the existing techniques for obtaining stronger
relaxations.

Paper C We have proposed an exactness condition for the class of homoge-
neous quadratically constrained quadratic programs with forest structure.
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This condition takes the numerical data of the problem into account, and
can be used to guarantee exactness for a subclass of problems (with �xed
data matrices but any data vector as described in Section 3.1 and in paper
C). We propose a framework for guaranteeing exactness when some of the
data in the instance is uncertain.

Some opportunities for future research based on this project include:

• Proving the conjectures of paper B, that the relevant convex hull is cap-
tured by the Shor relaxation intersected with the KSOC cut and the new
cuts for a speci�c feasible set.

• Investigating the orthogonal inequalities in Section 4.2.

• Applying the framework of paper C to distribution networks of the OPF
problem as discussed in Section 5.5.3 and perhaps to other applications.

• It would be interesting to combine the exactness analysis of paper C with
the strengthening techniques of Paper B or other techniques. For larger
problems it may not be tractable to use all valid inequalities, so it may
be necessary to choose which constraints to use. Perhaps the exactness
analysis could be used to determine this.

• In a similar vein, the exactness results of Paper C are for the standard
semide�nite relaxation. It would be interesting to obtain similar results
for strengthened relaxations.
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Abstract Semidefinite relaxation techniques have shown great promise for
nonconvex optimal power flow problems. However, a number of independent
numerical experiments have led to concerns about scalability and robustness
of existing SDP solvers. To address these concerns, we investigate some numer-
ical aspects of the problem and compare different state-of-the-art solvers. Our
results demonstrate that semidefinite relaxations of large problem instances
with on the order of 10,000 buses can be solved reliably and to reasonable
accuracy within minutes. Furthermore, the semidefinite relaxation of a test
case with 25,000 buses can be solved reliably within half an hour; the largest
test case with 82,000 buses is solved within eight hours. We also compare the
lower bound obtained via semidefinite relaxation to locally optimal solutions
obtained with nonlinear optimization methods and calculate the optimality
gap.

Keywords AC Optimal Power Flow · Semidefinite Relaxation · Optimiza-
tion · Numerical Analysis

1 Introduction

The alternating current optimal power flow (ACOPF) problem is a nonlin-
ear optimization problem that is concerned with finding an optimal operating
point for a power system network. Today, more than 60 years after it was
first studied by Carpentier (1962), the problem still receives considerable at-
tention because of the challenging nature of the problem and its important
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role in power system planning and operation. Many optimization methods
have been applied to the ACOPF problem, including general nonlinear opti-
mization techniques, interior-point methods, and meta-heuristic optimization
methods (Taylor, 2015).

Following the work of Jabr (2006) and Bai et al. (2008), the use of con-
vex relaxation techniques applied to the ACOPF problem has been explored
extensively; see e.g. (Low, 2014a,b) for a recent survey. The interest in these
techniques is driven by the fact that the solution to a relaxed problem pro-
vides either a globally optimal solution to the original problem or a global
lower bound that can be used to assess the quality of locally optimal solutions
found by other means. Moreover, a solution to an SDR may also be used to
guide a load flow study (Mak et al., 2018) in order to find a feasible operating
point.

Different convex relaxations of the ACOPF problem have been proposed
and studied, including a second-order cone relaxation (SOCR) (Jabr, 2006),
a semidefinite relaxation (SDR) (Bai et al., 2008; Lavaei and Low, 2012),
moment relaxations (Molzahn and Hiskens, 2015; Josz et al., 2015), and more
recently, a quadratic convex relaxation (QCR) (Coffrin et al., 2016; Hijazi
et al., 2017). The different relaxations vary in tightness and computational
cost; we refer to (Coffrin et al., 2016) for a recent comparison of the SDR, QCR,
and SOCR. For example, the SDR is generally tighter than the SOCR, but it
is generally also more computationally demanding. One direction of research
is dedicated to strengthening the SOCR; see e.g. (Kocuk et al., 2016). In an
attempt to address the computational cost associated with the SDR, Andersen
et al. (2014) and Bingane et al. (2018) have proposed simpler, weaker SDRs
that are cheaper to solve than the standard SDR. The QCR is generally neither
weaker nor stronger than the SDR, but it is computationally cheaper and often
provides a lower bound of similar quality as that of the SDR.

The high computational cost of solving an SDR of a large ACOPF prob-
lem has given rise to concerns about robustness and scalability (Hijazi et al.,
2016, 2017; Madani et al., 2017). These concerns are supported by numerical
experiments that show that solving the SDR is not only much slower than
other approaches, but also more unreliable (Coffrin et al., 2016). Our goal
with this paper is to address concerns regarding robustness and scalability
by demonstrating numerically that an SDR of the ACOPF problem can be
solved both reliably and within minutes using commodity hardware, even for
large networks with on the order of 10,000 buses. Our contribution is therefore
confined to numerical considerations and implementation details (Section 2)
as well as numerical experiments (Section 3) with the purpose of investigating
scalability, accuracy, and robustness for different solvers. What differentiates
our implementation from most implementations that have been described and
investigated in the literature is the fact that we construct the SDR manually
without the use of modeling tools such as YALMIP (Löfberg, 2004) and CVX
(Grant and Boyd, 2008). Although this manual approach can be both inflex-
ible and cumbersome, it is typically much faster and allows us to control the
exact problem formulation, avoiding automatic transformations that may ad-
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versely affect the size and conditioning of the SDR problem. We remark that
some modeling tools allow some degree of control over the problem formula-
tion (e.g., through options), but it is generally difficult for non-expert users to
predict the final problem formulation.

Notation The set Kn
q = {(t, x) ∈ R × Rn−1 | ‖x‖2 ≤ t} denotes the second-

order cone in Rn, Sn denotes the set of symmetric matrices of order n, and
Hn is the set of Hermitian matrices of order n. The sets Sn+ and Hn

+ are the
cones of positive semidefinite matrices in Sn and Hn, respectively. Since the
symmetric matrices of order n form a vector space of dimension n(n + 1)/2,
the cone Sn+ can be reparameterized as Kn

s = {svec(X) |X ∈ Sn+} ⊂ Rn(n+1)/2

where svec(·) is an injective function that maps a symmetric matrix of order
n to a vector of length n(n+ 1)/2. Similarly, we define Kn

h = {hvec(X) |X ∈
Hn

+} ⊂ Rn2

where hvec(·) maps a Hermitian matrix of order n to a vector
of length n2. The inner product between two matrices A,B ∈ Hn is tr(AHB)
where tr(A) denotes the trace of a square matrix A. Given a complex number
c = a + b where  =

√
−1, <(c) denotes the real part a, =(c) denotes the

imaginary part b, and c∗ denotes the complex conjugate of c.

2 Method

2.1 The AC Optimal Power Flow Problem

An AC power system in steady state can be modeled as a directed graph
where the set of nodes N = {1, 2, . . . , n} corresponds to a set of n power
buses, and the set of edges L ∈ N ×N corresponds to transmission lines, i.e.,
(k, l) ∈ L if there is a line from bus k to bus l. The set Lfl ⊆ L consists of all
transmission lines with a flow constraint, Lpa ⊆ L consists of all transmission
lines with a phase-angle difference constraint, Gk denotes a (possibly empty)
set of generators associated with bus k, and G =

⋃
k∈N Gk is the set of all

generators. The power produced by generator g ∈ G is sg = pg + qg, and at
each power bus k ∈ N , we define a complex load (i.e., demand) Sd

k = P d
k +Qd

k,
a complex voltage vk, and a complex current ik. To simplify notation, we
define a vector of voltages v = (v1, v2, . . . , vn) and a vector of currents i =
(i1, i2, . . . , in). With this notation, the ACOPF problem can be expressed as

minimize
∑

g∈G
fg(pg) (1a)

subject to

i∗kvk =
∑

g∈Gk
sg − Sd

k , k ∈ N (1b)

Pmin
g ≤ pg ≤ Pmax

g , g ∈ G (1c)
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Qmin
g ≤ qg ≤ Qmax

g , g ∈ G (1d)

V min
k ≤ |vk| ≤ V max

k , k ∈ N (1e)
∣∣Sfl

k,l(v)
∣∣ ≤ Smax

k,l , (k, l) ∈ Lfl (1f)
∣∣Sfl

l,k(v)
∣∣ ≤ Smax

l,k , (k, l) ∈ Lfl (1g)

φmin
k,l ≤ ∠(vkv

∗
l ) ≤ φmax

k,l , (k, l) ∈ Lpa (1h)

i = Y v (1i)

with variables i ∈ Cn, v ∈ Cn, and s ∈ C|G|, and where i = Y v corresponds to
Ohm’s law in matrix form, given the network admittance matrix Y ∈ Cn×n.
The cost of generation for generator g is given by fg(pg), and we will restrict
our attention to convex quadratic generation cost functions, i.e.,

fg(pg) = αgp
2
g + βgpg + γg, (2)

where the parameters αg ≥ 0, βg, and γg are given. The constraints (1b) are
power balance equations, (1c) and (1d) are generation limits, (1e) are voltage
magnitude limits, (1f) and (1g) are transmission line flow constraints, and (1h)
are phase-angle difference constraints. The flow from bus k to bus l is given by
Sfl
k,l(v) = vHTk,lv + vH T̃k,lv (provided that (k, l) ∈ Lfl or (l, k) ∈ Lfl) where

Tk,l ∈ Hn and T̃k,l ∈ Hn are given.

2.2 Semidefinite Relaxation

Roughly following the steps described in (Andersen et al., 2014), we start by
reformulating the ACOPF problem (1). Specifically, we perform the following
steps:

1. Eliminate i = Y v and substitute Pmin
g + pl

g for pg, Qmin
g + ql

g for qg, and X

for vvH .
2. Drop constant terms in the objective:

f(pg) = αg(Pmin
g + pl

g)2 + βg(Pmin
g + pl

g) + γg

= αg(pl
g)2 + β̃gp

l
g + const.

where β̃g = (βg + 2αgP
min
g ).

3. Introduce an auxiliary variable tg for each g ∈ Gquad = {g ∈ G |αg > 0}
and include epigraph constraint

αg(pl
g)2 ≤ tg ⇔




1/2 + tg
1/2− tg√

2αgp
l
g


 ∈ K3

q.

4. Introduce slack variables to obtain a standard-form formulation.
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These steps yield the equivalent problem

minimize
∑

g∈G
β̃gp

l
g +

∑

g∈Gquad

tg (3a)

subject to

tr(YkX) =
∑

g∈Gk
(Pmin

g + pl
g)− P d

k , k ∈ N (3b)

tr(ỸkX) =
∑

g∈Gk
(Qmin

g + ql
g)−Qd

k, k ∈ N (3c)

pl
g + pu

g = Pmax
g − Pmin

g , g ∈ G (3d)

ql
g + qu

g = Qmax
g −Qmin

g , g ∈ G (3e)

Xkk − νl
k = (V min

k )2, k ∈ N (3f)

Xkk + νu
k = (V max

k )2, k ∈ N (3g)

zk,l =




Smax
k,l

tr(Tk,lX)

tr(T̃k,lX)


 , (k, l) ∈ Lfl (3h)

zl,k =




Smax
l,k

tr(Tl,kX)

tr(T̃l,kX)


 , (k, l) ∈ Lfl (3i)

wg =




1/2 + tg
1/2− tg√

2αgp
l
g


 , g ∈ Gquad (3j)

=(Xkl) = tan(φmin
k,l )<(Xkl) + yl

k,l, (k, l) ∈ Lpa (3k)

=(Xkl) = tan(φmax
k,l )<(Xkl)− yu

k,l, (k, l) ∈ Lpa (3l)

pl
g, p

u
g ≥ 0, g ∈ G (3m)

ql
g, q

u
g ≥ 0, g ∈ G (3n)

νl
k, ν

u
k ≥ 0, k ∈ N (3o)

yl
k,l, y

u
k,l ≥ 0, (k, l) ∈ Lpa (3p)

zk,l, zl,k ∈ K3
q, (k, l) ∈ Lfl (3q)

wg ∈ K3
q, g ∈ Gquad (3r)

X = vvH (3s)

with variables pl, pu, ql, qu ∈ R|G|, t ∈ R|Gquad|, νl, νu ∈ R|N |, yl, yu ∈ R|Lpa|,
zk,l, zl,k ∈ K3

q for (k, l) ∈ Lfl, wg ∈ K3
q for g ∈ Gquad, X ∈ Hn, and v ∈ Cn.

Notice that the constraints (3b)-(3l) are all linear. We refer the reader to

(Andersen et al., 2014) for a definition of the data matrices Yk, Ỹk, Tk,l, and

T̃k,l.
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The only non-convex constraint in (3) is the rank-1 condition (3s). An SDR
of (3) is readily obtained by replacing (3s) by the positive semidefiniteness
constraint X � 0. The resulting SDR is a so-called cone linear program (CLP)
that can be expressed as

minimize cTx
subject to Ax = b

x ∈ K
(4)

where x is the vector of variables and the cone K is a Cartesian product of
three types of cones, i.e.,

K = Rnl
+ ×K3

q × · · · × K3
q︸ ︷︷ ︸

nq

×Kn
h .

Thus, the number of variables is N = nl +3nq +n2 where nl = 4|G|+ |Gquad|+
2|N |+2|Lpa| and nq = 2|Lfl|+ |Gquad|, and the number of equality constraints
is M = 4|N |+ 2|G|+ 2|Lpa|+ 3nq.

2.3 Conversion

The computational cost of solving (4) with a general-purpose interior-point
method becomes prohibitively large when n is large: the cost of an interior-
point iteration is at least O(n3). Fortunately, the problem (4) is generally very
sparse in practice, and hence the conversion method of Fukuda et al. (2001)
may be used to rewrite (4) as an equivalent CLP

minimize c̃T x̃

subject to Ãx̃ = b
Ex̃ = 0

x̃ ∈ K̃
(5)

with

K̃ = Rnl
+ ×K3

q × · · · × K3
q︸ ︷︷ ︸

nq

×Kr1
h × · · · × Krm

h .

The conversion essentially decomposes the cone Kn
h into a Cartesian product

of a number of lower-dimensional cones Kr1
h ×· · ·×Krm

h at the expense of a set
of coupling constraints Ex̃ = 0. This reformulation of the problem can have a
dramatic effect on the computational cost of solving the SDR of the ACOPF
problem, and it effectively mitigates the O(n3) bottleneck that arises with the
formulation (4). Moreover, the conversion technique often induces sparsity in
the system of equations that define the search direction at each interior-point
iteration, reducing the cost per iteration further if the solver can exploit this
type of sparsity. The conversion technique was first applied to SDRs of the
ACOPF problem by Jabr (2012).
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2.4 Implementation

Before turning to our numerical experiments, we briefly outline our imple-
mentation (Andersen, 2018). The code is written in Python and performs the
following steps:

1. Read case file and build the CLP (4).
2. Apply conversion method: convert (4) to (5).
3. Apply Hermitian-to-symmetric transformation: map Kri

h to K2ri
s for i =

1, . . . ,m.
4. Scale the problem data to improve conditioning.

As part of the first step, we allow some preprocessing of the data: (i) slack vari-
ables pg (or qg) for which Pmin

g = Pmax
g (or Qmin

g = Qmax
g ) may be eliminated,

(ii) numerical proxies for infinity which are used to indicate the absence of
limits (e.g., on generation) may be truncated, and (iii) a minimum resistance
of transmission lines may be enforced. The Hermitian-to-symmetric transfor-
mation is a well known trick that is only necessary because the solvers used in
our experiments cannot directly handle cones of Hermitian positive semidef-
inite matrices; see e.g. (Boyd and Vandenberghe, 2004). The scaling of the
problem data in step 4 is a row-scaling of the equality constraints Ãx̃ = b in
the CLP in (5). We define a vector α with elements

αi = max{max
j
|Ãij |, |bi| , 1}

and use the equivalent, scaled constraints diag(α)−1Ãx̃ = diag(α)−1b. Addi-
tionally, we scale the objective to become c̃T x̃/max{‖c̃‖2, 1}. This yields an
equivalent problem, and we found that for some solvers, this can reduce the
computational time by roughly a factor of two; we briefly return to the topic
of scaling in Section 4.

3 Results

3.1 Experiments

To investigate the robustness and scalability of our methodology, we conducted
a series of numerical experiments based on a collection of test cases from
MATPOWER (Zimmerman et al., 2011) (which includes a number of test
cases from (Josz et al., 2016)) and Power Grid Lib (PGLib-OPF, 2018) with
as many as n = 70,000 power buses; we have also included a synthetic case of
the continental USA from the Electric Grid Test Case Repository (Birchfield
et al., 2017) with n = 82,000 power buses. We excluded cases that are infeasible
and cases with generator cost functions that are neither quadratic nor linear.
For each test case, we set up a CLP formulation of the SDR and solved it
using five different CLP solvers: MOSEK 8.1 (MOSEK, 2015), SeDuMi 1.3
(Sturm, 1999), SDPT3 4.0 (Toh et al., 1999), SCS 1.2.7 (O’Donoghue et al.,
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2016), and CDCS 1.1 (Zheng et al., 2016). MOSEK, SeDuMi, and SDPT3 are
interior-point methods whereas SCS and CDCS are first-order methods based
on the alternating direction method of multipliers (ADMM).

To compare our methodology to an approach based on a modeling tool,
we used SDPOPF (Molzahn et al., 2013) from “MATPOWER Extras” to set
up and solve an SDR of each case. SDPOPF uses YALMIP (Löfberg, 2004)
to set up the problem which is then solved numerically using one of several
possible solvers: we used MOSEK in order to facilitate a fair comparison.
Finally, to compare our approach to a nonlinear optimization approach, we
used MATPOWER to set up and solve each case with three different interior-
point methods for nonlinear optimization: MIPS (Wang et al., 2007) from
MATPOWER 6.1, IPOPT 3.12.9 (Wächter and Biegler, 2006) with PARDISO
6.0 (Kourounis et al., 2018), and KNITRO 10.3.1 (Byrd et al., 2006). These
are all called via MATPOWER using its default initialization—the default is
sometimes referred to as “flat start” since all voltages are set to 1 p.u. and the
active power generation is set to the midpoint of its bounds. When successful,
these solvers return a locally optimal solution that provides an upper bound
on the optimal value in contrast to the SDR that provides a lower bound.

3.2 Setup

Using the implementation described in section 2.4, we processed the problem
data before setting up the SDRs. Specifically, we truncated generator bounds
larger than 50 times the base MVA. We remark that SDPOPF enforces a
minimum transmission line resistance of 10−4; in the experiments, we do not
enforce a minimum resistance in our SDR.

All experiments but those involving KNITRO were conducted on an HPC
node with two Intel XeonE5-2650v4 processors (a total of 24 cores) and 240 GB
memory. All experiments with KNITRO were conducted on different hardware
(2.5 GHz Intel Core i5 CPU, 8 GB of memory) because of license restrictions.
As a result, the KNITRO computation times that we report cannot be com-
pared directly to those reported for the other solvers. All MATLAB-based
solvers were used with MATLAB R2017b, and MOSEK was called through
its Python interface in Python 3.6.3. Finally, we modified the default solver
options as follows: for SeDuMi, we raised the maximum number of iterations
from 150 to 250; for SCS and CDCS, we limited the number of iterations to
20,000; for CDCS, we disabled “chordalize” and used the “primal” solver since
this allowed us to solve the most cases; for SCS, we used the direct solver; for
SDPT3 we used a value of 400 for “smallblockdim” and changed the maximum
number of iterations from 100 to 250.

3.3 Robustness

We start with an investigation of robustness. Table 1 contains a summary of
return statuses for the different solvers for a total of 159 test cases. The column
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Table 1 Summary of return statuses by solver.

Solver Success Max. iter. Failure

MOSEK 159 0 0
SeDuMi 53 0 106
SDPT3 52 0 107
SDPOPF 128 0 31
CDCS 146 13 0
SCS 17 142 0

IPOPT 133 0 26
KNITRO 145 0 14
MIPS 116 0 43

labeled “success” refers to return values that indicate successful termination
with an optimal or near optimal (global or local) solution. The “failure” col-
umn refers to return values that indicate some kind of error. We remark that
SDPOPF ignores phase angle constraints and fails in 31 cases because of a
MATPOWER error; the solver is never called in these cases.

The results in Table 1 clearly demonstrate that the SDRs can be solved
reliably using MOSEK: all cases were solved to optimality with MOSEK’s
default tolerances. In contrast, the nonlinear solvers IPOPT and KNITRO
only succeed in roughly 85% of the cases while MIPS succeeds in approximately
75% of the cases. CDCS solves over 90% of the cases, but the accuracy and
speed is poor compared to MOSEK as we show later in this section. Both
SeDuMi and SCS succeed in less than 50% of the cases.

3.4 Accuracy

We now compare the solutions returned by the five CLP solvers. Since the
solvers have different tolerances (i.e., stopping criteria), we will compare the
solvers based on the so-called “DIMACS error measures” described in (Mittel-
mann, 2003). Roughly speaking, these are five relative error measures quanti-
fying the primal residual norm, primal cone violation, dual residual norm, dual
cone violation, and duality gap. Fig. 1 summarizes the results in a box plot of
the DIMACS measures for each solver (the smaller the error, the better).

MOSEK, shown in Fig. 1a, generally performs well with DIMACS errors
below 10−7 in all cases. The SeDuMi errors, shown in Fig. 1c, reveal that
SeDuMi returns a high-accuracy solution whenever it succeeds; the same is
true for SDPT3, shown in Fig. 1e. This suggests that the default tolerances
may be too strict for all but the small cases. Both CDCS and SCS generally
return solutions with larger errors, as shown in Fig. 1b and 1d. This is to be
expected since they are both first-order methods. While CDCS is relatively
robust, it often terminates with sizable dual residuals which are indicative of
low-accuracy solutions.
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(e) SDPT3

Fig. 1 Box plots of logarithm of DIMACS errors. The red markers correspond to cases
where the solver did not succeed. We note that in order to accommodate a logarithmic axis,
we have replaced errors below 10−16 by this value.

3.5 Optimality Gap

Next we investigate the objective values provided by the solvers. We limit
our attention to MOSEK and the nonlinear solvers IPOPT, MIPS, and KNI-
TRO. The nonlinear solvers provide an upper bound when they terminate at
a feasible point. We define the best upper bound as

f = min(fIPOPT, fKNITRO, fMIPS), (6)

i.e., the minimum of the objective values provided by the three solvers (if a
solver does not succeed, we define its objective value to be ∞). Similarly, the
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SDR (MOSEK) provides a lower bound which we denote by f = fMOSEK. The
optimality gap may then be defined as

gap =
f − f
f
· 100%. (7)

The gap is equal to 0 if f = f , implying that we have a globally optimal

solution. On the other hand, if the gap is large, f may be a poor local minimum
and/or the SDR provides a weak lower bound f .

We have made four tables listing objective values and optimality gap for
all cases with more than 300 buses based on their origin: table 2 contains
cases from the MATPOWER library; table 3 contains cases from PGLIB in
typical operating conditions; table 4 contains cases from PGLIB with small
phase angle difference constraints; table 5 contains cases from PGLIB with
binding thermal limit constraints. The cases are sorted by the number of buses
in ascending order. Note that the optimality gap is undefined if none of the
nonlinear solvers succeed. The optimality gap is close to zero in many cases
and below 1% in all but a handful of cases.

3.6 Scalability

We end this section by comparing the time required by each solver to solve
the test cases. Fig. 2 shows the time used by the SDP solvers compared to the
number of buses in the case. To make a fair comparison, we report computation
times without preprocessing, i.e., only the time required by the actual solver
is recorded (we briefly discuss some considerations related to preprocessing in
Section 4).

MOSEK is generally the fastest. The difference between MOSEK and SD-
POPF (which also uses MOSEK, but based on the problem formulation com-
piled by YALMIP) highlights that the formulation of the SDR may have a
significant impact on the computation time as well as robustness. The striking
difference between MOSEK and CDCS, both in terms of computation time
and accuracy, makes it hard to justify the use of first-order methods for highly
sparse problems like these.

In addition to cost function value and optimality gap, tables 2–5 list the
computation times (excluding preprocessing) for MOSEK and the three solvers
IPOPT, KNITRO, and MIPS. MOSEK solves the SDR of all but one case with
less than 25,000 buses in less than 10 minutes; the only exception is the case
4661 sdet from PGLIB (all three operating conditions). Solving this problem
takes MOSEK around 80 minutes. The longer computation time required to
solve this case compared to other cases with a similar number of buses can in
part be explain by looking at the chordal embedding of the network graph.
The largest clique is of size 242 which is similar to the case with 82,000 buses
(238) and around three times the size of all other cases with less than 25,000
buses. The case with 25,000 power buses is solved in approximately an hour
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Fig. 2 Scatter plot of the time used by the SDP solvers against the number of buses for
successful cases. Note that SDPOPF solves an equivalent but different SDR.

by MOSEK, and the largest cases with 70,000 and 82,000 buses are solved in
around seven hours. The nonlinear solvers are typically 5-20 times faster than
MOSEK (they solve a different problem!), but they sometimes fail. The RTE
cases from PGLIB appear to be particularly difficult for the nonlinear solvers:
in some cases, none of the nonlinear solvers succeed, and the computation
times are occasionally large compared to the general trend.

4 Discussion

The difference between our formulation of the SDR and the one constructed by
SDPOPF via YALMIP shows that the problem formulation can have a signif-
icant impact on computation times and robustness. Our experiments demon-
strate that an SDR of the ACOPF problem can be solved accurately and
reliably with the right combination of problem formulation and solver. How-
ever, it is possible that the problem formulation can be further improved. For
example, as mentioned in section 2.4, the conditioning of the problem may
improve with some scaling of the constraints, and this, in turn, may reduce
the number of iterations and/or the computation time. We have conducted
some experiments in this direction, and our preliminary results show that us-
ing MOSEK, the solution time can roughly be cut in half; the geometric mean
of the speed-up obtained by means of scaling was 1.9. Indeed, the solution time
for the largest test case with 25,000 buses was reduced from about one hour
to half an hour with MOSEK. We did not observe a similar improvement with
scaling for the other solvers. We note that SOCR and QCR implementations
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could possibly benefit from scaling in a similar way. Finally, we remark that
scaling may affect stopping criteria, so care must be taken when comparing
the accuracy of solutions obtained with and without scaling. The QCR, pro-
posed by Coffrin et al. (2016), provides a promising alternative to the SDR in
that it is computationally cheaper and often as tight as the SDR (and in some
cases even tighter). However, the findings reported in (Coffrin et al., 2016)
only include SDRs of cases with less than 3,000 buses, and it is therefore un-
clear how the QCR and the SDR compare with respect to optimality gap for
larger test cases. Moreover, the results pertaining to the SDR were obtained
using an implementation based on SDPT3 and the modeling tool CVX, so the
sizable gap between the two relaxations in terms of computational time will
likely shrink if MOSEK and our problem formulation is used for the SDR.

The computation times reported in Section 3 did not include preprocess-
ing time (i.e., the time required to construct the SDR). To give the reader
an idea of the preprocessing workload, we remark that the construction of the
SDR of the case with 25 thousand buses took approximately 25 seconds or ap-
proximately 1/60 of the time required to solve the SDR with MOSEK, and the
geometric average of the ratio of the solution time to the preprocessing time for
cases with more than 300 buses was approximately 13, i.e., preprocessing ac-
counted for around 7% of the total time on average. In contrast, YALMIP (via
SDPOPF) required approximately 6 minutes to compile the case with 25,000
buses. Comparing the ratio of the preprocessing time for YALMIP to that of
our approach, we found that the geometric average was approximately 13, i.e.,
on average it took 13 times longer with YALMIP. We note that our Python-
based preprocessing code may be improved, e.g., by reimplementing critical
parts of the code in C. In principle, the preprocessing time may be amortized
if several problem instances with the same underlying power network need to
be solved. However, this would require a symbolic chordal conversion of the
problem such that the problem data can easily be updated or replaced.

5 Conclusion

SDR is a promising technique that may be used to compute useful global lower
bounds on the optimal value of ACOPF problems. However, concerns about
robustness and scalability have cast doubt on the practical usefulness of the
technique. We have shown experimentally that the problem formulation can
have a significant impact on both robustness and scalability. By construct-
ing the SDR manually instead of using a modeling tool, we avoid problem
transformations that incur significant overhead. Our numerical experiments
establish that SDRs of a large collection of test cases can be solved reliably
with MOSEK. Moreover, the time required to solve an SDR is typically within
an order of magnitude of the time required by state-of-the-art nonlinear solvers
such as KNITRO and IPOPT.
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Abstract

We study an extended trust region subproblem minimizing a noncon-
vex function over the hollow ball r ≤ ‖x‖ ≤ R intersected with a full-
dimensional second order cone (SOC) constraint of the form ‖x − c‖ ≤
bT x − a. In particular, we present a class of valid cuts that improve ex-
isting semidefinite programming (SDP) relaxations and are separable in
polynomial time. We connect our cuts to the literature on the optimal
power flow (OPF) problem by demonstrating that previously derived cuts
capturing a convex hull important for OPF are actually just special cases
of our cuts. In addition, we apply our methodology to derive a new class
of closed-form, locally valid, SOC cuts for nonconvex quadratic programs
over the mixed polyhedral-conic set {x ≥ 0 : ‖x‖ ≤ 1}. Finally, we show
computationally on randomly generated instances that our cuts are ef-
fective in further closing the gap of the strongest SDP relaxations in the
literature, especially in low dimensions.
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1 Introduction

The classical trust region subproblem (TRS) minimizes an arbitrary quadratic
function over the unit Euclidean ball defined by ‖x‖ ≤ R and is solvable in
polynomial-time [10]. Many authors have studied variants of TRS that incor-
porate additional constraints. For example, [20] also imposes the lower bound
r ≤ ‖x‖. We collectively refer to variants of TRS that incorporate more general
constraints as the extended TRS . In this paper, we study the following specific
form of the extended TRS, which incorporates the lower bound r as well as an
additional SOC (second-order cone) constraint, whose “geometry” matches the
ball in the sense that its Hessian is also the identity matrix:

min xTHx+ 2 gTx (1a)

s.t. r ≤ ‖x‖ ≤ R (1b)

‖x− c‖ ≤ bTx− a (1c)

where x ∈ Rn, H = HT ∈ Rn×n, g, c, b ∈ Rn, a ∈ R, and r,R ∈ R+. Note
that H is symmetric without loss of generality and that we have not scaled
the problem to the unit ball (i.e., we do not assume R = 1) as is common
in the TRS literature. The general upper bound R will be convenient for our
presentation, especially in Section 3. The algorithm of Bienstock [3] solves (1)
in polynomial time since it can be written as a nonconvex quadratic program
with a fixed number of quadratic/linear constraints (in this case, four), one of
which is strictly convex. However, in this paper, we are interested in developing
tight convex relaxations of (1). In particular, as far as we are aware, (1) has no
known tight convex relaxation.

Problem (1) includes, for example, the two trust region subproblem—also called
the Celis-Dennis-Tapia subproblem [8]—in which a second ball (or ellipsoidal)
constraint is added to TRS. In this case, r = 0, b = 0, and a < 0. Here, however,
we are interested in the more general structure represented by (1c), which arises,
for example, in the optimal power flow problem (OPF) as discussed in Section
3. More generally, the study of (1) sheds light on any nonconvex quadratically
constrained quadratic program that includes a ball constraint and a second
SOC constraint with identity Hessian. In Section 3, we will also show how this
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structure is relevant for the mixed polyhedral-SOC set {x ≥ 0 : ‖x‖ ≤ R}. (In
the concluding Section 6, we briefly mention an extension for handling different
Hessians.)

Since (1) is a nonconvex problem, a standard approach is to approximate (1)
by its so-called Shor semidefinite programming (SDP) relaxation [19], which is
solvable in polynomial time:

min H •X + 2 gTx (2a)

s.t. r2 ≤ tr(X) ≤ R2 (2b)

tr(X)− 2 cTx+ cT c ≤ bbT •X − 2 a bTx+ a2 (2c)

0 ≤ bTx− a (2d)

Y (x,X) � 0 (2e)

where M •X := tr(MTX) is the trace inner product for conformal matrices and

Y (x,X) :=
(

1 xT

x X

)
(3)

is symmetric of size (n+ 1)× (n+ 1). Note that (1c) is represented as the two
constraints ‖x − c‖2 ≤ (bTx − a)2 and 0 ≤ bTx − a before lifting to (2c)–(2d).
We also define

Rshor := {(x,X) : (x,X) satisfies (2b)–(2e)}

to be the feasible set of the Shor relaxation. Then (2) can be alternatively
expressed as minimizing H •X + 2 gTx over (x,X) ∈ Rshor.

Various valid inequalities can be added to (2) in order to strengthen the Shor
relaxation. For example, if vT

1 x ≥ u1 and vT
2 x ≥ u2 are any two valid linear

inequalities for the feasible set of (1), then the redundant quadratic constraint
(vT

1 x− u1)(vT
2 x− u2) ≥ 0 can be relaxed to the valid RLT constraint [18]:

v1v
T
2 •X − u2v

T
1 x− u1v

T
2 x+ u1u2 ≥ 0.

However, since (1) does not contain explicit linear constraints, in practice one
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would need to separate over valid vT
1 x ≥ u1 and vT

2 x ≥ u2 to generate violated
RLT constraints, but this separation is a bilinear subproblem, which does not
appear to be solvable in polynomial time.

The difficulty of separating the RLT constraints when no linear constraints are
explicitly given can be circumvented in the case of (1) as follows. By multiplying
a valid vT

1 x ≥ u1 with the ball constraint ‖x‖ ≤ R, we have the redundant
quadratic SOC constraint ‖(vT

1 x − u1)x‖ ≤ R(vT
1 x − u1), which in turn yields

the valid SOC constraint

‖Xv1 − u1x‖ ≤ R(vT
1 x− u1) (4)

in the lifted (x,X) space. In a similar manner, vT
1 x ≥ u1 can be combined with

‖x − c‖ ≤ bTx − a. These are known as SOCRLT constraints [21, 5]. In fact,
each SOCRLT constraint is a compact encoding of an entire collection of RLT
constraints. For example, (4) captures all of the RLT constraints corresponding
to vT

1 x ≥ u1 fixed and vT
2 x ≥ u2 varying over the supporting hyperplanes

of ‖x‖ ≤ R. Consequently, the collections of SOCRLT and RLT constraints
for (1) are equivalent,1 but in contrast to the RLT constraints, the SOCRLT
constraints can be separated in polynomial-time based on the fact that TRS is
polynomial-time solvable [5].

Anstreicher [1] introduced a further generalization of the SOCRLT constraints,
called a KSOC constraint, which is based on relaxing a valid quadratic Kronecker-
product matrix inequality. Specifically, the KSOC constraint is constructed from
the following observations: first, defining SOC := {(v0, v) : ‖v‖ ≤ v0} to be the
second-order cone, it is well-known that

(
v0
v

)
∈ SOC ⇐⇒

(
v0 vT

v v0I

)
� 0;

second, it is also well-known that the Kronecker product of positive semidefinite
matrices is positive semidefinite. Hence, for (1) we have the valid quadratic

1This differs from other papers, which often define RLT constraints only for explicitly given
valid linear constraints, of which (1) has none. So, for the sake of generality, we have defined
the RLT constraints allowing for implicit valid linear constraints.
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matrix inequality
(
R xT

x R I

)
⊗
(
bTx− a xT − cT

x− c (bTx− a)I

)
� 0.

After relaxing this inequality in the space (x,X), we obtain the convex KSOC
constraint, which captures all SOCRLT constraints (and hence all RLT con-
straints) and is generally stronger [1], assuming the Shor constraints remain
enforced.

Summarizing, defining Rrlt and Rsocrlt to be the set of (x,X) satisfying all
possible RLT and SOCRLT constraints, respectively, we have

Rshor ∩Rksoc ⊆ Rshor ∩Rsocrlt = Rshor ∩Rrlt

where Rksoc is the set of all (x,X) satisfying the KSOC constraint. Moreover,
the first containment is proper in general. Hence, in this paper, we focus on
improving the relaxation Rshor ∩Rksoc. The paper [13] provides further insight
into the strength of Rshor ∩Rksoc relative to other techniques in the literature.

Let F denote the feasible set of (1), i.e., the set of all x ∈ Rn satisfying (1b)–(1c).
Strengthening the SDP relaxation can alternatively be expressed as determining
valid inequalities that more accurately approximate the closed convex hull

G := conv
{

(x, xxT ) : x ∈ F
}
. (5)

Note that G is compact because F is. Moreover, because linear optimization
over a compact set is guaranteed to attain its optimal value at an extreme point,
solving (1) amounts to optimizing the linear function H • X + 2 gTx over G .
While an exact representation of G is unknown, there are several closely related
cases in which G can be described exactly; see [7, 2].

In this paper, we propose a new class of valid linear inequalities for (1) in
the space (x,X), which in general strengthen Rshor ∩ Rksoc towards G. Each
inequality is derived from several ingredients that exploit the structure of F :
the self-duality of SOC; the RLT-type valid inequality (R− ‖x‖)(‖x‖ − r) ≥ 0;
and knowledge of a quadratic function q(x) and a linear function l(x), each of

5

97



which is nonnegative over all x ∈ F . We combine these ingredients to derive a
valid quartic inequality, which is then relaxed to a valid quadratic inequality,
which in turn yields a new valid linear inequality in (x,X).

As a small illustrative example, consider when c = 0 and r = 0, in which case
F is defined by ‖x‖ ≤ R and ‖x‖ ≤ bTx − a. For the specific choices q(x) = 0
and l(x) = 1, our new inequality can also be derived from the following direct
argument: the chain of inequalities ‖x‖2 ≤ R‖x‖ ≤ R(bTx− a) linearizes to

tr(X) ≤ R(bTx− a). (6)

The following example shows that (6) is not captured by Rshor ∩Rksoc:

Example 1. Let F = {x ∈ R2 : ‖x‖ ≤ 1, ‖x‖ ≤ 1 − x1 − x2}. Then (6)
is tr(X) ≤ 1 − x1 − x2. Minimizing the objective 1 − x1 − x2 − tr(X) over
Rshor ∩Rksoc yields the optimal solution

Y ∗ ≈




1.0000 0.0624 0.0624
0.0624 0.5000 −0.3018
0.0624 −0.3018 0.5000




with (approximate) optimal value −0.1248, i.e., the optimal value is negative,
which demonstrates that (6) is not valid for Rshor ∩Rksoc.

As far as we aware, inequality (6) for this special case has not yet appeared in
the literature. We seek in this paper, however, an even more general procedure
for deriving valid inequalities using the ingredients described in the previous
paragraph.

The paper is organized as follows. In Section 2, we present the derivation of our
new valid inequalities and discuss several illustrative choices of q(x) and l(x).
We also specialize the results to c = 0 and a = 0, a case which further enables
the derivation of a similar, second type of valid linear inequality in (x,X). Then,
in Section 3, we show that our inequalities include those introduced in [9] for
the study of the OPF problem,2 and we extend our approach to derive a new

2Indeed, our initial motivation for this paper was the desire to understand the inequalities
in [9] more fully.
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class of valid SOC constraints for G when F equals the intersection of the ball
‖x‖ ≤ R and the nonnegative orthant. Next, in Section 4, we prove that the
separation problem for our inequalities—which can be viewed as dynamically
choosing the nonnegative functions q(x) and l(x)—is polynomial-time based
on the availability of any SDP relaxation in the variables (x,X), such as the
relaxations Rshor or Rshor ∩ Rksoc. In this sense, we are able to “bootstrap”
any existing SDP relaxation for the separation subroutine to generate valid
cuts. Finally, in Section 5, we provide computational evidence that our cuts are
effective in further closing the gap between (1) and Rshor ∩Rksoc on randomly
generated problems, especially in low dimensions. We close in Section 6 with a
few final thoughts and directions for future research.

This paper is accompanied by the code repository https://github.com/A-Eltved/
strengthened_sdr, which contains full code for the paper’s examples and com-
putational results. In addition, the first author’s forthcoming Ph.D. thesis [12]
will contain additional discussion and extensions.

2 New Valid Inequalities

In the Introduction, we discussed the valid inequality (6) for the specific case
c = 0 and r = 0. Now we assume general c and r. Analogous to (6), we use
‖x‖ ≤ R and ‖x − c‖ ≤ bTx − a along with the self-duality of SOC to obtain
the following quadratic inequality:

(
R

−x

)T(
bTx− a
x− c

)
≥ 0 =⇒ R(bTx− a) ≥ tr(X)− cTx. (7)

Note that this inequality makes use of the equivalent constraint ‖−x‖ ≤ R. We
seek to strengthen it further by incorporating two additional ideas.

The first idea involves exploiting the lower bound r ≤ ‖x‖ and the RLT-type
valid inequality (R− ‖x‖)(‖x‖ − r) ≥ 0. Consider the following proposition:

Proposition 1. Suppose r ≤ ‖x‖ ≤ R, and define r‖x‖−2 := 0 when ‖x‖ =

7
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r = 0. Then (
r +R(

1 + rR‖x‖−2)x

)
∈ SOC. (8)

Proof. If r = 0, then (8) reads (R, x) ∈ SOC, which is true by assumption. So
suppose 0 < r ≤ ‖x‖. Then we wish to prove

(1 + rR‖x‖−2)‖x‖ = ‖x‖+ rR‖x‖−1 ≤ r +R,

which follows by expanding the valid expression (R − ‖x‖)(‖x‖ − r) ≥ 0 and
dividing by ‖x‖ ≥ r > 0.

By the proposition, analogous to (7), we have:

(
r +R

−(1 + rR‖x‖−2)x

)T(
bTx− a
x− c

)
≥ 0

⇐⇒ (r +R)(bTx− a) ≥ xTx+ rR− cTx− rR‖x‖−2 cTx.

However, this inequality cannot be directly linearized in (x,X) due to the non-
quadratic term ‖x‖−2. So we bound the term r‖x‖−2 cTx from above by a
problem-dependent constant [c]max ≥ 0, which satisfies r cTx ≤ [c]max x

Tx for
all x ∈ F . We then have the valid linear inequality

(r +R)(bTx− a) ≥ tr(X) + rR− cTx− [c]maxR. (9)

Such a [c]max clearly exists. For example, [c]max = ‖c‖ works because

r cTx ≤ r‖c‖‖x‖ ≤ ‖c‖‖x‖2,

but naturally it is advantageous to take [c]max as small as possible. One method
for computing a smaller [c]max ≤ ‖c‖ is binary search on [c]max over the interval
[0, ‖c‖], where at each step we check whether the optimal value of

min
x

{
[c]max x

Tx− r cTx : ‖x‖ ≤ R, ‖x− c‖ ≤ bTx− a
}

is nonnegative. The nonconvex lower bound r ≤ ‖x‖ has been excluded from

8
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this subproblem to ensure convexity and polynomial-time solvability, which also
ensures that the binary search is polynomial-time overall. Note also that, when
r = 0 or c = 0, the optimal [c]max equals 0.

Our second idea to improve (7) and (9) is to replace (bTx−a, x−c) ∈ SOC in the
derivation above with another vector—but one that is still in the second-order
cone. In particular, we consider the nonnegative combination

qx

(
R

x

)
+ lx

(
bTx− a
x− c

)
∈ SOC, (10)

where qx := q(x) is a quadratic function and lx := l(x) is a linear function, both
of which are nonnegative for all x ∈ F . This approach is similar to polynomial-
optimization approaches such as the one pioneered in [14], which uses polynomial
multipliers with limited degree to derive new, albeit redundant, constraints.
Then we have the following generalization of (9):

(
r +R

−(1 + rR‖x‖−2)x

)T(
Rqx + lx(bTx− a)

(qx + lx)x− lxc

)
≥ 0

which rearranges and relaxes to

(r+R)Rqx+(r+R)lx(bTx−a) ≥ (qx + lx)xTx+rR (qx + lx)−lxcTx−[c]maxR lx.

Note that the right-hand side is quartic in x, and hence this inequality cannot
be directly linearized in the space (x,X). Hence, we define

[q + l]min := min{qx + lx : x ∈ F} ≥ 0.

to get the valid quadratic inequality

(r+R)Rqx+(r+R)lx(bTx−a) ≥ [q+l]min x
Tx+rR (qx + lx)−lxcTx−[c]maxR lx,

(11)
which can be easily linearized in (x,X) as summarized in the following theorem.
Note that the theorem requires only that [q+l]min be a nonnegative lower bound
on the value of q(x) + l(x) over F .

Theorem 1. Let F be the feasible set of (1), and let [c]max ∈ [0, ‖c‖] be given

9
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such that r cTx ≤ [c]maxx
Tx for all x ∈ F . In addition, let q(x) := xTHqx +

2 gT
q x + fq and l(x) := 2 gT

l x + fl be given such that q(x) ≥ 0 and l(x) ≥ 0 for
all x ∈ F . Also, let [q+ l]min ≥ 0 be a valid lower bound on the sum q(x) + l(x)
over all x ∈ F . Then the linear inequality

(r +R)R
(
Hq •X + 2 gT

q x+ fq

)
+ (r +R)

(
2 glb

T •X + (flb− 2agl)Tx− afl

)

≥ [q + l]min tr(X) + rR
(
Hq •X + 2(gq + gl)Tx+ (fq + fl)

)

−
(
2 glc

T •X + flc
Tx
)
− [c]maxR(2 gT

l x+ fl) (12)

is valid for the convex hull G defined by (5).

Note that both sides of (11) contain the term rR qx, and so the presentation
of both (11) and (12) could be simplified. However, we leave these slightly
unsimplified so as to facilitate our discussion in Section 2.2 below.

Let r̂ be any scalar in [0, r]. Since r̂ ≤ ‖x‖ is also valid for F , we can replace r
by r̂ in (12) to obtain an alternate inequality based on r̂. In fact, considering r̂
to be variable in this inequality while all other quantities are fixed, we see that
the inequality is linear in r̂, which implies that all such valid inequalities over
r̂ ∈ [0, r] are actually dominated by the two extremes r̂ = 0 and r̂ = r. We
summarize this observation in the following corollary.

Corollary 1. Under the assumptions of Theorem 1, the infinite class of inequal-
ities gotten by replacing r with r̂ ∈ [0, r] is dominated by the two inequalities
(12) and

R2 (Hq •X + 2 gT
q x+ fq

)
+R

(
2 glb

T •X + (flb− 2agl)Tx− afl

)

≥ [q + l]min tr(X)−
(
2 glc

T •X + flc
Tx
)
− [c]maxR(2 gT

l x+ fl). (13)

corresponding to the extremes r̂ = r and r̂ = 0, respectively.

2.1 Example: Slab inequalities

In this subsection, we introduce a specialization of our inequalities, which we
will return to in Section 3.2.

10
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Suppose that we have knowledge of s ∈ Rn and λ, µ ∈ R such that

F ⊆ S := {x : λ ≤ sTx ≤ µ}, (14)

i.e., every x ∈ F satisfies λ ≤ sTx ≤ µ. We call S a valid slab and, abusing
notation, we refer to S by its tuple (λ, s, µ). For example, since F is bounded,
for any vector s with ‖s‖ = 1, choosing λ = −R and µ = R yields a valid slab.
Given any slab (λ, s, µ), we discuss two choices of nonnegative qx and lx.

First, define qx := µ− sTx ≥ 0 and lx := sTx− λ ≥ 0. Note that qx is linear in
this case, and [q + l]min = qx + lx = µ− λ. Then (11) becomes

(r +R)R(µ− sTx)+(r +R)(sTx− λ)(bTx− a)

≥ (µ− λ)(xTx+ rR)− (sTx− λ)cTx− [c]maxR(sTx− λ).
(15)

Alternatively, we could also take qx := sTx − λ and lx := µ − sTx to obtain
another, similar quadratic inequality.

Second, given the slab (λ, s, µ), we may assume without loss of generality that
λ + µ ≥ 0 and λ2 ≤ µ2. To see this, we consider three cases. First, if both
λ, µ ≥ 0, then the statement is clear. Second, if both λ, µ ≤ 0, we can use
instead the equivalent representation of S by −µ ≤ −sTx ≤ −λ. Finally, if
λ < 0 and µ ≥ 0 with λ+µ < 0, then we can likewise use (−µ,−s,−λ) instead.
Now, with λ + µ ≥ 0 and λ2 ≤ µ2, we then define qx := µ2 − (sTx)2 ≥ 0 and
lx := (λ+ µ)(sTx− λ) ≥ 0 so that

qx + lx = µ2 − (sTx)2 + (λ+ µ)sTx− λµ− λ2

= µ2 + (µ− sTx)(sTx− λ)− λ2

≥ µ2 + 0− λ2 ≥ 0.

Hence, we obtain (11) with [q + l]min := µ2 − λ2 ≥ 0.

11
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2.2 Example: Special case c = 0, a = 0, and λ ≥ 0

In this subsection, we derive two cuts—see (18) below—that are closely related
to the cuts just discussed in Section 2.1, and these will play a special role in
Section 3.1. We assume c = 0 and a = 0, and we will use a slab (λ, s, µ) with
λ ≥ 0. Note that c = 0 implies [c]max = 0.

For the first cut, consider the inequality (11) with c = 0 and a = 0, which is
further relaxed on the right-hand side:

(r +R)Rqx + (r +R)lxbTx ≥ [q + l]minx
Tx+ rR (qx + lx)

≥ [q + l]min(xTx+ rR). (16)

For the second cut, we consider a pair of functions lx := l(x) and px := p(x)
that satisfy a different relationship than the previously considered lx and qx.
Specifically, we assume linear lx ≥ 0 and quadratic px ≥ 0, and we require
lx − px ≥ 0 for all x ∈ F as well. We also define [l − p]min ≥ 0 to be the
minimum value of lx − px over F . Then we have the following result.

Proposition 2. Suppose c = 0, a = 0, and lx := l(x) and px := p(x) are
nonnegative functions on F such that lx − px is also nonnegative on F . Then

(
lxb

Tx− rpx

(lx − px)x

)
∈ SOC.

Proof. (lx − px)‖x‖ = lx‖x‖ − px‖x‖ ≤ lxbTx− rpx.

Using this proposition, the self-duality of the SOC, and Proposition 1, we have

(
r +R

−(1 + rR‖x‖−2)x

)T(
lxb

Tx− rpx

(lx − px)x

)
≥ 0,

which rearranges and relaxes to

(r +R)lxbTx− (r +R)rpx ≥ (lx − px)xTx+ rR (lx − px)

≥ [l − p]min(xTx+ rR). (17)
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Note that (17) simplifies to R lx b
Tx ≥ [l − p]min x

Tx when r = 0, which is a
consequence of the simpler inequality RbTx ≥ xTx; see (6) with a = 0. In other
words, (17) appears to be interesting only when r > 0.

We now consider a specific choice of qx, lx, and px for the inequalities (16) and
(17) based on the slab 0 ≤ λ ≤ sTx ≤ µ. We choose qx := µ2 − (sTx)2,
lx := (λ+ µ)sTx, and px := (sTx)2 − λ2 as the nonnegative functions, resulting
in

qx + lx = µ2 − (sTx)2 + (λ+ µ)sTx ≥ µ2 + λµ =: [q + l]min

lx − px = λ2 − (sTx)2 + (λ+ µ)sTx ≥ λ2 + λµ =: [l − p]min,

where the inequalities follow from the RLT inequality (µ− sTx)(sTx− λ) ≥ 0.
Plugging these into (16)–(17), respectively, and linearizing, we obtain

(r +R)R(µ2 − ssT •X) + (r +R)(λ+ µ)sbT •X ≥ (µ2 + λµ)(tr(X) + rR)
(18a)

(r +R)(λ+ µ)sbT •X − (r +R)r(ssT •X − λ2) ≥ (λ2 + λµ)(tr(X) + rR).
(18b)

3 Applications

In this section, we explore two applications of the inequalities developed in
Section 2. The first application shows that the valid inequalities for the optimal
power flow problem (OPF) derived in [9] are in fact just special cases of our
inequalities, whereas the derivation in [9] was specifically tailored to OPF. Our
second application investigates the convex hull of G, where—departing from the
form of (1)—F equals the intersection of the ball with the nonnegative orthant,
i.e., F possesses polyhedral aspects as well. We study this form of F since it
is relevant for any bounded feasible set with nonnegative variables, where the
bound is given by a Euclidean ball.
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3.1 Optimal power flow problem

In this subsection, we consider a result of Chen et al. [9], which provides an exact
formulation for the convex hull of a nonconvex, quadratically constrained set
appearing in the study of the optimal power flow (OPF) problem. In particular,
the authors added two new linear inequalities to the Shor relaxation in order
to capture the convex hull. Whereas these two inequalities were specifically
derived for OPF, we will show that they are just special cases of (18) derived in
Section 2.2. For additional background on convex relaxations of OPF, we refer
the reader to the two-part survey [15, 16].

We restate the result of Chen et al. using their notation. Let JC ⊆ R4 be the
convex hull of the following nonconvex quadratic system:

Ljj ≤Wjj ≤ Ujj ∀ j = 1, 2 (19a)

L12W12 ≤ T12 ≤ U12W12 (19b)

W12 ≥ 0 (19c)

W11W22 = W 2
12 + T 2

12 (19d)

where the four variables are (W11,W22,W12, T12) ∈ R4 and the data L =
(L11, L22, L12) and U = (U11, U22, U12) satisfy L ≤ U and Ljj ≥ 0 for j = 1, 2.
Chen et al.’s interest in this particular convex hull arose from an analysis of the
OPF problem, where (19) appears as a repeated substructure. As explained in
[9], JC can alternatively be expressed as the following convex hull using two
complex variables z1, z2 ∈ C:

JC = conv








z1z
∗
1

z2z
∗
2

Re(z1z
∗
2)

Im(z1z
∗
2)



∈ R4 :

Ljj ≤ zjz
∗
j ≤ Ujj ∀ j = 1, 2

L12Re(z1z
∗
2) ≤ Im(z1z

∗
2) ≤ U12Re(z1z

∗
2)

Re(z1z
∗
2) ≥ 0




.

(20)
In particular, equation (19d) is the usual “rank-1” condition, capturing the link
between the linear variables (W11,W22,W12, T12) and the quadratic expressions

14

106 Paper B



in z1, z2. The authors proved that the pair of linear inequalities

π0 + π1W11 + π2W22 + π3W12 + π4T12 ≥ U22W11 + U11W22 − U11U22 (21a)

π0 + π1W11 + π2W22 + π3W12 + π4T12 ≥ L22W11 + L11W22 − L11L22 (21b)

are valid for JC , where

π0 := −
√
L11L22U11U22

π1 := −
√
L22U22

π2 := −
√
L11U11

π3 :=
(√

L11 +
√
U11

)(√
L22 +

√
U22

) 1− f(L12)f(U12)
1 + f(L12)f(U12)

π4 :=
(√

L11 +
√
U11

)(√
L22 +

√
U22

) f(L12) + f(U12)
1 + f(L12)f(U12)

and where f(x) := (
√

1 + x2 − 1)/x when x > 0 and f(0) := 0. In fact, they
proved that (21), when added to the Shor relaxation, is sufficient to capture JC :

JC =





(W11,W22,W12, T12) :
(19a)–(19c)

W11W22 ≥W 2
12 + T 2

12

(21)




.

Here, the convex constraint W11W22 ≥ W 2
12 + T 2

12 is equivalent to the regular
positive-semidefinite condition.

We now relate (21) to our inequalities (18). Defining

F :=




x ∈ R3 :

L11 ≤ x2
1 + x2

2 ≤ U11

L22 ≤ x2
3 ≤ U22

L12x1x3 ≤ x2x3 ≤ U12x1x3

x1x3 ≥ 0, x3 ≥ 0




.

and G by (5), the following proposition establishes an equivalence between JC

and G.

Proposition 3. JC = {(X11 +X22, X33, X13, X23) : (x,X) ∈ G}.
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Proof. Consider (20). Because the quadratic terms z1z
∗
1 , z2z

∗
2 , and z1z

∗
2 are

unaffected by a rotation of C applied simultaneously to both z1 and z2, we
may enforce Re(z2) ≥ 0 and Im(z2) = 0 without changing the definition of
JC . Then writing z1 = x1 + ix2 and z2 = x3 for x ∈ R3, we thus have
JC = conv

{
(x2

1 + x2
2, x

2
3, x1x3, x2x3) : x ∈ F ⊆ R3}, which proves the proposi-

tion.

Our next proposition establishes an alternative form for F , which matches the
development in Section 2 except that the SOCs involve only two scalar variables,
even though F is 3-dimensional. However, the results of Section 2 can easily
be adapted to this case, the key point being that the Hessians of the SOCs are
equal. First we need a lemma.

Lemma 1. For n = 2, let P := {x ∈ R2 : Ax ≤ 0} be a polyhedral cone with
A ∈ R2×2. Then P = {x : ‖

(
x1
x2

)
‖ ≤ bTx} for some b ∈ R2.

Proof. First assume that P is contained in the right side of the plane, i.e.,
P ⊆ {x : x1 ≥ 0} and that P is symmetric about the x1 axis. Then, for some
β ≥ 0,

P = {x : x1 ≥ 0,−βx1 ≤ x2 ≤ βx1}
= {x : x1 ≥ 0, x2

2 ≤ β2x2
1}

= {x : x1 ≥ 0, x2
1 + x2

2 ≤ (1 + β2)x2
1}

= {x : ‖
(

x1
x2

)
‖ ≤

√
1 + β2 x1},

which proves the result in this case. For general P, we may apply an orthogonal
rotation to revert to the previous case, which does not affect the norm ‖

(
x1
x2

)
‖

(but does change the exact form of b).

We next state and prove the proposition. Note that the assumptions L22 > 0
and U12 > L12 in the proposition are realistic for power networks: the first
ensures the voltage magnitude at a bus is positive, and the second allows for a
positive voltage-angle difference between the involved buses.
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Proposition 4. Suppose L22 > 0 and U12 > L12. Then

F =




x ∈ R3 :

√
L11 ≤

∥∥∥
(

x1
x2

)∥∥∥ ≤
√
U11∥∥∥

(
x1
x2

)∥∥∥ ≤ b1x1 + b2x2
√
L22 ≤ x3 ≤

√
U22





where b1 and b2 uniquely solve the system
(

1 L12

1 U12

)(
b1

b2

)
=
(√

1 + L2
12√

1 + U2
12

)
.

Proof. The assumption L22 > 0 implies x3 > 0, which in turn implies

F =




x ∈ R3 :

L11 ≤ x2
1 + x2

2 ≤ U11√
L22 ≤ x3 ≤

√
U22

L12x1 ≤ x2 ≤ U12x1

x1 ≥ 0




.

Next, the assumption U12 > L12 makes x1 ≥ 0 redundant, and clearly the first
constraint in F is equivalent to

√
L11 ≤ ‖

(
x1
x2

)
‖ ≤ √U11.

To complete the proof, we claim that L12x1 ≤ x2 ≤ U12x1 is equivalent to the
SOC constraint ‖

(
x1
x2

)
‖ ≤ b1x1 + b2x2. Indeed, it is clear that the set defined

by these two linear inequalities is a polyhedral cone with the two extreme rays
r1 =

( 1
L12

)
and r2 =

( 1
U12

)
. So, by the lemma, the set is SOC-representable in

the form ‖
(

x1
x2

)
‖ ≤ b1x1 + b2x2 for some b ∈ R2. In particular, the extreme rays

rj must satisfy ‖rj‖ = bT rj . By plugging in the values of r1 and r2, we get the
2×2 linear system defining b, as desired. Note that the 2×2 matrix is invertible
because its determinant U12 − L12 is positive.

Based on Propositions 3 and 4, we now prove that (21) is simply (18) tailored
to the OPF case.

Theorem 2. Inequalities (21) are the inequalities (18) tailored to system (19).

Proof. By Proposition 3, we can translate (21a) to the variables (x,X). After
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collecting terms, (21a) becomes

(π0+U11U22)+(π1−U22)(X11+X22)+(π2−U11)X33+π3X13+π4X23 ≥ 0. (22)

Using Proposition 4, consider (18a) with the following replacements:

x←
(
x1
x2

)
, r ←

√
L11, R←

√
U11, λ←

√
L22, s

Tx← x3, µ←
√
U22.

This results in the following valid inequality:

(√
L22U22 + U22

) X11 +X22 +
√
L11U11√

L11 +
√
U11

≤
(√

L22 +
√
U22

)
(b1X13 + b2X23) + (U22 −X33)

√
U11.

Simple, although tedious, algebraic manipulations establish that this inequality
is precisely (22). A similar argument establishes that (21b) corresponds to
(18b).3

We also verified numerically that (21) is not captured by Rshor ∩ Rksoc in this
case.

3.2 Intersection of the ball and nonnegative orthant

As stated in the Introduction, the critical feature of F studied in this paper is
its intersection of the ball with a second SOC-representable set, which shares
the Hessian identity matrix. However, there are of course many other forms of
F that can be of interest in practice. For example, when F is the nonnegative
orthant, then G is the completely positive cone, which can be used to model
many NP-hard problems as linear conic programs [4]. Another common case is
when F is a box, e.g., the set [0, 1]n [6].

Let us examine the case in which F is the intersection of the nonnegative orthant

3We provide Matlab code for these manipulations at the website https://github.com/
A-Eltved/strengthened_sdr.
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and the unit ball. For general n, define F := {x ≥ 0 : ‖x‖ ≤ 1} ⊆ Rn. Since

x ∈ F ⇒ ‖x‖ ≤ ‖x‖1 = eTx,

we have
F ⊆ {x : ‖x‖ ≤ 1, ‖x‖ ≤ eTx}, (23)

and for n = 2, one can actually show that (23) is an equation. Since F is a subset
of the nonnegative orthant, any inequality, which is valid for the completely
positive cone, is also valid for F , but here we focus on the implied structure in
(23). Section 2 applies with r = 0, R = 1, c = 0, b = e, and a = 0. In particular,
the constraints tr(X) ≤ 1 and tr(X) ≤ eTx are valid for G; see the Introduction
and inequality (6).

We can strengthen tr(X) ≤ 1 and tr(X) ≤ eTx using the slab inequalities of
Section 2.1. Geometrically, given any s ∈ Rn with s ≥ 0 and ‖s‖ = 1, we have
the slab λ := 0 ≤ sTx ≤ 1 =: µ, which is valid for F :

0 ≤ sTx ≤ ‖s‖‖x‖ = ‖x‖ ≤ 1.

After linearization, inequality (15) in this case reads 1− sTx+ sTXe ≥ tr(X).
Moreover, if we switch the role of qx and lx in (15)—recall that qx is linear for
slabs—then we have sTx + eTx − sTXe ≥ tr(X). Rearranging, we write these
two inequalities as

tr(X) ≤ 1 + sT (Xe− x) (24a)

tr(X) ≤ eTx− sT (Xe− x). (24b)

Letting s vary over its constraints ‖s‖ = 1 and s ≥ 0, we derive a compact
SOC-representation of this class of inequalities over various domains of G.

Theorem 3. Let (I, J) be a partition of the index set {1, . . . , n}, and define the
domain

DIJ :=
{

(x,X) : [Xe− x]I ≥ 0
[Xe− x]J ≤ 0

}
.
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Then the following SOC constraints are locally valid for G on DIJ :

tr(X) ≤ 1− ‖[Xe− x]J‖ (25a)

tr(X) ≤ eTx− ‖[Xe− x]I‖. (25b)

Moreover, (25) imply all valid inequalities (15) derived from slabs of the form
0 ≤ sTx ≤ 1, where s is any vector satisfying ‖s‖ = 1 and s ≥ 0.

Proof. Consider the constraints (24), and for notational convenience, define y :=
Xe − x. Because s ≥ 0, the quantity sT y on the right-hand side of (24a)
breaks into sT

I yI ≥ 0 and sT
J yJ ≤ 0 on DIJ . By minimizing the right-hand

side of (24a) with respect to s, we achieve the tightest cut corresponding to
s = (sI , sJ) = (0,−yJ/‖yJ‖), which yields tr(X) ≤ 1 − ‖yJ‖, as desired. A
similar argument for (24b) yields tr(X) ≤ eTx− ‖yI‖.

We remark that, when I is empty, inequality (25b) reduces to the inequality
tr(X) ≤ eTx over DIJ . Similarly, when J is empty, (25a) is tr(X) ≤ 1.

In practice, one idea for using Theorem 3 is as follows. For a given relaxation in
(x,X), solve the relaxation to obtain an optimal solution (x̄, X̄). Then define
the partition (I, J) and corresponding domain DIJ according to X̄e−x̄. Then, if
either of the inequalities in (25) is violated, we can derive a violated supporting
hyperplane of the SOC constraint. After adding the violated linear inequality
to the current relaxation, which is globally valid because it is linear, we can
resolve and repeat the process.

We close this section with an example showing that the cuts derived above are
not implied by Rshor ∩Rksoc.

Example 2. Let n = 2, and consider I = {1, 2} and J = ∅. Then tr(X) ≤
eTx − ‖Xe − x‖ is valid on the domain DIJ = {(x,X) : Xe − x ≥ 0}. In
particular, tr(X) ≤ eTx− uT (Xe− x) for all vectors u satisfying ‖u‖ = 1, and
taking u = e1, we have tr(X) ≤ eTx − [Xe − x]1, which is globally valid since
it is linear. Minimizing eTx − [Xe − x]1 − tr(X) over Rshor ∩ Rksoc yields the
optimal value −0.088562, indicating that Rshor ∩ Rksoc does not capture this
valid constraint.
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4 Separation

In this section, we argue that the inequalities (12)–(13) given by Theorem 1
and Corollary 1 are separable in polynomial time. To state this result precisely,
we assume that [c]max has already been pre-computed and that a fixed convex
relaxation of the convex hull G defined by (5) is available. For convenience, we
write this fixed convex relaxation

R :=
{

(x,X) : Y (x,X) ∈ R̂
}
⊇ G,

where Y (x,X) is given by (3) and R̂ is a closed, convex cone in the space of
(n + 1) × (n + 1) symmetric matrices. In particular, R is just the slice of R̂
with the top-left corner of Y set to 1. Then the relaxation of (1) over R can be
stated as min{H •X + 2 gTx : (x,X) ∈ R} with dual

max
{
y :
(
−y gT

g H

)
∈ R̂∗

}

where R̂∗ is the dual cone of R̂. We state this general form for ease of notation
and to make evident that one can choose different R in computation. For
example, one could take R = Rshor at one extreme or R = Rshor ∩Rksoc at the
other.

In fact, to separate (12)–(13) we will use the following observation concerning
R, R̂, and R̂∗:

Observation. Given a quadratic function q(x) := xTHqx+ 2 gT
q x+ fq, if there

exists y ∈ R such that (
−y + fq gT

q

gq Hq

)
∈ R̂∗,

then q(x) ≥ y for all x ∈ F .

This observation follows by weak duality because y is a lower bound on the
optimal relaxation value of Hq •X + 2 gT

q x+ fq over (x,X) ∈ R, which is itself
a lower bound on the minimum value of q(x) over x ∈ F . As a result, the
following system guarantees that the conditions of Theorem 1 on q(x) and l(x)
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hold, where (Hq, gq, fq), (gl, fl), and [q + l]min are the variables:
(
fq gT

q

gq Hq

)
∈ R̂∗,

(
fl gT

l

gl 0

)
∈ R̂∗, (26a)

[q + l]min ≥ 0,
(
−[q + l]min + fq + fl (gq + gl)T

gq + gl Hq

)
∈ R̂∗. (26b)

Then, separation amounts to optimizing the linear function in (12)—or (13) as
the case may be—over (26) for fixed values of (x,X). However, before we state
the exact separation problem for (12), we require one additional assumption,
namely that F is full-dimensional, i.e., there exists x̂ ∈ F such that ‖x̂‖ < 1
and ‖x̂ − c‖ < bTx − a. In this case, it is well known that G and hence R are
also full-dimensional in (x,X)-space. In particular, (x̂, x̂x̂T ) ∈ int(G) ⊆ int(R),
and hence

Ŷ :=
(

1
x̂

)(
1
x̂

)T

∈ int(R̂).

It thus follows by standard duality theory that R̂∗∩{J : Ŷ •J ≤ 1} is a bounded
truncation of R̂∗. This truncation is important so that the separation problem
below is bounded and thus has a well-defined optimal value.

We are now ready to state the separation subproblem for (12) given fixed values
(x̄, X̄) of the variables (x,X):

min (r +R)R
(
Hq • X̄ + 2 gT

q x̄+ fq

)

+ (r +R)
(
2 glb

T • X̄ + (flb− 2agl)T x̄− afl

)

− [q + l]min tr(X̄)− rR
(
Hq • X̄ + 2(gq + gl)T x̄+ (fq + fl)

)

+
(
2 glc

T • X̄ + flc
T x̄
)

+ [c]maxR(2 gT
l x̄+ fl) (27a)

s.t. (26) (27b)

Ŷ •
(
fq gT

q

gq Hq

)
≤ 1, Ŷ •

(
fl gT

l

gl 0

)
≤ 1. (27c)

The subproblem for (13) is similar—just replace r with 0.

We remark that system (26) could be simplified in certain cases. For example,
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if r = 0 and hence F is convex, then it is not difficult to see that the second
condition of (26a), which ensures that l(x) is nonnegative over F , could be
replaced by a dual system based on F alone, not on R. One could also simplify
by forcing additional structure on q(x) and l(x). For example, one could separate
against the slabs λ ≤ sTx ≤ µ introduced in Section 2.1 by forcing (Hq, gq, fq) =
(0,− 1

2s, µ), (gl, fl) = ( 1
2s,−λ), and [q + l]min = µ − λ, in which case (26b) is

automatically satisfied.

The following example demonstrates the separation procedure, whose imple-
mentation will be discussed in the next section:

Example 3. Consider the 2-dimensional problem

min − x2
1 − x2

2 − 1.1x1 − x2

s.t. ‖x‖ ≤ 1

‖x‖ ≤ 1− x1 − x2

with H = −I, g = (−0.55,−0.5), r = 0, R = 1, a = −1, b = (−1,−1), and
c = (0, 0) in (1). All values reported here are truncated from the computations
and therefore approximate. The optimal value of min{H •X + 2gTx : (x,X) ∈
Rshor ∩Rksoc} is −1.1431 with optimal solution

x̄ =
(

0.2922
−0.1783

)
, X̄ =

(
0.4963 −0.3210
−0.3210 0.5037

)
.

Solving the separation subproblem at (x̄, X̄), we obtain the cut corresponding to

q1(x) = xT

(
−0.3812 0

0 −0.3812

)
x+ 2

(
−0.5578
−0.5531

)
x+ 0.8563,

l1(x) = 2
(

0.3462
0.3608

)
x+ 1,

[q1 + l1]min = 1.42.

We add the corresponding cut, resolve to obtain a new (x̄, X̄), and repeat this
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loop two more times, resulting in the cuts

q2(x) = xT

(
−0.7065 0.1719

0.1719 −0.4368

)
x+ 2

(
−0.7808
−0.7278

)
x+ 1,

l2(x) = 2
(

0.3442
0.3626

)
x+ 1,

[q2 + l2]min = 1.155,

q3(x) = xT

(
−0.6296 0.2398

0.2398 −0.4512

)
x+ 2

(
−0.7868
−0.7580

)
x+ 1,

l3(x) = 2
(

0.3479
0.3591

)
x+ 1,

[q3 + l3]min = 1.149.

We finally obtain the rank-1, and hence optimal, solution

Y (x?, X?) =




1 0.7071 −0.7071
0.7071 0.5 −0.5
−0.7071 −0.5 0.5




with objective value −1.0707. We note that, even though the procedure gener-
ates three cuts, the last cut is actually enough to recover the rank-1 solution.
Moreover, running this procedure starting from Rshor instead of Rshor ∩ Rksoc,
we also get the same optimal (x?, X?) after adding 16 cuts.

5 Computational Results

To quantify the practical effect of the cuts proposed in Theorem 1 and Corollary
1, we embed the separation subproblem described in Section 4 in a straightfor-
ward implementation to solve random instances of the form (1). We consider two
relaxations to “bootstrap” the separation procedure: Rshor and Rshor ∩ Rksoc.
We will denote by Rcuts the points (x,X) satisfying the added cuts, so that our
improved relaxations will be expressed as Rshor∩Rcuts and Rshor∩Rksoc∩Rcuts.
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We implement our experiments in Matlab 9.6 (R2019a) using CVX [11] to model
the relaxations and MOSEK 9.1 [17] to solve them. We run the problem in-
stances on a single core of an Intel Xeon E5-2650v4 processor using a maximum
of 2GB memory. We do not report complete run times because we are most
interested in the strength of the added cuts, but we do report the number of
cuts added to measure the overall effort. Recall that calculating a single cut
requires solving the separation problem (27) described in Section 4, which in
essence involves three copies of the current bootstrap relaxation—Rshor ∩Rcuts

or Rshor ∩ Rksoc ∩ Rcuts. However, to give the reader a sense of the run times,
consider the following: for an instance of our largest dimension, n = 10, solving
Rshor took approximately 0.6 seconds, solving Rshor ∩Rksoc required about 50
seconds, and solving a single separation problem for Rshor∩Rksoc took approxi-
mately 64 seconds. We note that our implementation is rudimentary and makes
no effort to take advantage of, for example, any particular problem structure or
sparsity, so these times can probably be improved significantly.

We generate a single random instance by fixing the dimension n and generating
random data a, b, c, r, R,H, g in such a way that (1) is feasible with a known
interior point x̂, which is also randomly generated. In short, we first set R = 1
without loss of generality, generate r uniformly in [0, R], generate x̂ uniformly
in {x : r ≤ x̂ ≤ R}, generate b, c,H, g with entries i.i.d. standard normal, and
finally set a := bT x̂ − ‖x̂ − c‖ − θ, where θ is uniform in [0, 1] so that F has a
nonempty interior.4 Recall that x̂ is required for the separation procedure as
discussed in Section 4. Before running the separation procedure for an instance,
we compute [c]max by a binary search on [c]max over the interval [0, ‖c‖] as
discussed in Section 2. Then, when running the overall algorithm, we consider
the current relaxation’s optimal solution (x̄, X̄) to be separated if: the objective
value of the separation subproblem (27) is less than τsep = −10−5; or the optimal
value of the separation subproblem for the inequalities (13) in Corollary 1, i.e.,
(27) with r = 0, is less than τsep. If (x̄, X̄) is indeed separated, we add the
resulting cut represented by the data (Hq, gq, fq, gl, fl, [q + l]min) to the current
bootstrap relaxation, optimize for a new point to be separated, and repeat. The
overall loop stops when the current (x̄, X̄) is not separated with tolerance τsep.

4We refer the reader to our GitHub site (https://github.com/A-Eltved/strengthened_
sdr) for the full random-generation procedure.
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Regarding a given relaxation and its optimal solution (x̄, X̄), we say the relax-
ation is exact if Y (x̄, X̄) satisfies

λ1(Y (x̄, X̄))
λ2(Y (x̄, X̄))

> τrank,

where λ1(M) denotes the largest eigenvalue of M , λ2(M) denotes the second
largest eigenvalue of M , and τrank > 0 is a tolerance, which we choose to be 104

in our implementation, ensuring that Y (x̄, X̄) is numerically rank-1. We define
the gap as the difference between the optimal value of (1) and the relaxation
optimal value. Note that an exact relaxation implies a gap of 0.

After running the algorithm on a particular instance, we classify the instance
into one of two categories: exact initial or inexact initial, when the initial boot-
strap relaxation is exact or inexact, respectively. Furthermore, we break all
inexact-initial instances into one of three subcategories: improved, when the ini-
tial relaxation gap is improved but not completely closed to 0; closed, when the
relaxation becomes exact after adding one or more cuts; and no improvement,
when no cuts are successfully added to improve the gap, i.e., the separation
routine does not help. (Actually, in the tables below, we will not directly re-
port information about the exact-initial and no-improvement instances, as these
details will be implicitly available from the other categories.)

We conduct these experiments for several values of n and many randomly gen-
erated instances. In addition, we also consider special cases where some of the
data a, b, c, r, R is fixed to zero in order to assess whether the cuts are more
effective in these special cases. In particular, we consider the following three
cases: the general case, where no data is fixed a priori to zero; the special case
with r = a = 0 and c = 0; and the case of the TTRS (two trust region sub-
problem) with r = 0 and b = 0. For each of these cases, we generate 15,000
instances for each dimension 2 ≤ n ≤ 10, and we solve each instance twice, once
bootstrapping from Rshor and once from Rshor ∩Rksoc.

For the improved and closed instances, we report the average number of cuts
added. Also for the improved instances, we report the average gap closure in
percentage terms, i.e., we report the average relative gap closure. Since we
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do not actually know the optimal value of (1) for the improved instances, to
approximate the relative gap closure from above, we calculate a local minimum
value, vlocal, by taking the lowest value of the quadratic objective function gotten
by running Matlab’s fmincon with 100 random initial points. The relative gap
for the instance is then calculated as

relative gap closure = vrelax final − vrelax initial
vlocal − vrelax initial

× 100%,

where vrelax initial is the optimal value of the initial relaxation and vrelax final is
the optimal value of the final relaxation.

5.1 The general case

We consider 15,000 random instances for each dimension 2 ≤ n ≤ 10 and report
the results separately for the Rshor and Rshor ∩ Rksoc bootstrap relaxations in
Tables 1 and 2, respectively.

In Table 1, we see that our cuts improve the Rshor relaxation in many instances.
For n = 2, it improves more than a third of the inexact instances, and it closes
the gap for about 9%. As the dimension goes up, these proportions go down,
suggesting that our cuts are more effective in lower dimensions.

n
Inexact
initial Improved Avg cuts Avg gap closure Closed Avg cuts

2 2923 1188 15 51% 264 4
3 2582 761 17 46% 175 7
4 2161 422 10 40% 53 7
5 1801 416 10 36% 46 9
6 1583 265 12 36% 29 8
7 1360 186 11 36% 10 11
8 1091 140 14 39% 15 7
9 1029 107 12 34% 4 15

10 896 86 13 30% 4 11

Table 1: Results for the Rshor bootstrap relaxation on 15,000 random general
instances for each dimension n. The columns Inexact initial, Improved, and
Closed report the number of instances out of 15,000 in each category.
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Table 2 shows that Rshor ∩ Rksoc is generally quite strong for instances of the
form (1). Especially for larger n, the number of inexact instances is small, and
the ability of our cuts to improve or close the gaps is limited. In particular,
for n ≥ 4 our cuts do not improve any of the inexact instances, which again
suggests that the cuts are most helpful in lower dimensions.

n
Inexact
initial Improved Avg cuts Avg gap closure Closed Avg cuts

2 251 40 13 45% 3 3
3 84 5 36 48% 0 —
4 44 0 — — 0 —
5 16 0 — — 0 —
6 6 0 — — 0 —
7 7 0 — — 0 —
8 2 0 — — 0 —
9 3 0 — — 0 —

10 3 0 — — 0 —

Table 2: Results for the Rshor ∩Rksoc bootstrap relaxation on the same 15,000
random general instances as depicted in Table 1 for each dimension n. The
columns Inexact initial, Improved, and Closed report the number of instances
out of 15,000 in each category.

5.2 Special case: r = a = 0 and c = 0

We next consider the special case when F equals {x ∈ Rn : ‖x‖ ≤ 1, ‖x‖ ≤ bTx}
with b ∈ Rn. Note that, by rotating the feasible space, we may assume without
loss of generality that b lies in the direction of e, the all ones vector. In particular,
we generate instances with b = βe, where β ∈ [1/

√
n, 1/

√
n + 2n]. The choice

of this interval for β is based on the following observation: for β < 1/
√
n the

feasible space F is empty; for β = 1/
√
n the feasible space F has no interior;

for β →∞, the constraint ‖x‖ ≤ bTx resembles the half space 0 ≤ eTx.

Similar to Tables 1–2 of the previous subsection, Tables 3–4 contain the results
of our separation algorithm on 15,000 randomly generated instances for each
dimension, where Table 3 corresponds to Rshor and Table 4 to Rshor ∩ Rksoc.
Contrary to what we saw in the general case in Tables 1–2, there does not seem
to be a drop in the proportion of instances where the cuts help as n increases.
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Overall, our cuts seem to be quite effective in this special case.

n
Inexact
initial Improved Avg cuts Avg gap closure Closed Avg cuts

2 7744 2755 22 82% 4988 2
3 7635 914 23 86% 6495 3
4 7736 395 13 83% 6966 3
5 7709 401 4 81% 6596 3
6 7584 402 5 67% 7182 3
7 7648 185 5 87% 7463 3
8 7614 131 8 89% 7483 3
9 7566 77 7 93% 7489 2

10 7552 44 7 89% 7508 2

Table 3: Results for the Rshor bootstrap relaxation on 15,000 random instances
with r = a = 0 and c = 0 for each dimension n. The columns Inexact initial,
Improved, and Closed report the number of instances out of 15,000 in each
category.

n
Inexact
initial Improved Avg cuts Avg gap closure Closed Avg cuts

2 15 0 — — 15 2
3 50 7 43 37% 30 2
4 36 4 78 75% 28 2
5 29 0 — — 27 3
6 15 3 8 88% 12 3
7 13 2 4 57% 11 2
8 12 0 — — 12 2
9 6 0 — — 5 1

10 6 0 — — 5 3

Table 4: Results for the Rshor ∩Rksoc bootstrap relaxation on the same 15,000
random instances as depicted in Table 3 with r = a = 0 and c = 0 for each
dimension n. The columns Inexact initial, Improved, and Closed report the
number of instances out of 15,000 in each category.

Specifically for n = 2, the results in Table 4 suggest that Rshor ∩Rksoc ∩Rcuts

is tight, i.e., it captures the convex hull G. To test this further, we generated an
additional 110,000 instances with n = 2. The Rshor∩Rksoc relaxation was exact
for 109,938 of these, and our cuts closed the gap for the remaining 62 instances
with an average of 3 cuts added. Our computational experience thus motivates
a conjecture:

Conjecture 1. For the 2-dimensional feasible space F := {x ∈ R2 : ‖x‖ ≤
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1, ‖x‖ ≤ bTx} with arbitrary b ∈ R2, Rshor ∩ Rksoc ∩ Rcuts equals the convex
hull G defined in (5).

In addition, in Section 3.2, for n = 2 and b = e, we proposed the locally valid
cuts (25), which were derived from slabs of a particular form. (Note that these
cuts would not necessarily be valid for a different scaling b = βe.) By generating
many random objectives, we were able to find 100 additional instances, which
were not solved exactly by Rshor ∩Rksoc, and then separated just these locally
valid cuts—instead of the more general cuts represented by Rcuts. All 100
instances were solved exactly, i.e., achieved the tolerance τrank. We believe this
is strong evidence to support the following conjecture as well:

Conjecture 2. For the 2-dimensional feasible space F := {x ∈ R2 : ‖x‖ ≤
1, ‖x‖ ≤ eTx} = {x ≥ 0 : ‖x‖ ≤ 1}, the constraints defined by Rshor ∩ Rksoc

intersected with the locally valid cuts (25) capture the convex hull G defined in
(5).

5.3 Special case: TTRS (b = 0 and r = 0)

Setting b = 0 and r = 0 in (1) with a < 0 to ensure feasibility, we explore the
two-trust-region subproblem (TTRS). We generate 15,000 random instances of
this type for each dimension 2 ≤ n ≤ 10 and bootstrap from the Rshor and
Rshor ∩Rksoc relaxations. The results are shown in Tables 5 and 6. The trends
in these tables are similar to what we saw in the general case in Section 5.1. In
particular, our cuts are less effective in higher dimensions.

We catalog the following example showing an explicit case for n = 2 in which
our cuts close the gap for TTRS compared to just applying Rshor ∩Rksoc.

Example 4. Consider the instance with n = 2, r = 0, R = 1, a = −0.77, and

b =
(

0
0

)
, c =

(
−0.38

0.18

)
, H =

(
−1.32 0.21

0.21 −0.81

)
, g =

(
−0.25

0.05

)
.

The (approximate) optimal value of min{H • X + 2 gTx : (x,X) ∈ Rshor ∩
Rksoc} is −0.9087 and the solution is not rank-1. Solving the separation problem
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n
Inexact
initial Improved Avg cuts Avg gap closure Closed Avg cuts

2 1404 364 16 33% 86 4
3 1287 172 15 27% 34 4
4 985 79 12 27% 20 5
5 745 34 9 22% 7 3
6 508 14 7 22% 3 2
7 454 4 5 25% 2 3
8 347 5 8 58% 0 —
9 293 0 — — 1 2

10 251 1 4 2% 0 —

Table 5: Results for the Rshor bootstrap relaxation on 15,000 random TTRS
instances for each dimension n. The columns Inexact initial, Improved, and
Closed report the number of instances out of 15,000 in each category.

starting from this relaxation, we obtain the (approximate) cut corresponding to

gl =
(

1.8633
−0.8826

)
, fl = 4.1236, [q + l]min = 1.2604,

Hq =
(
−4.9035 0.0000

0.0000 −4.9035

)
, gq =

(
−1.8633

0.8826

)
, fq = 2.0403.

Solving the relaxation with this cut, results in the (numerically) rank-1 solution

Y (x?, X?) =




1.0000 −0.9065 0.4223
−0.9065 0.8217 −0.3828

0.4223 −0.3828 0.1783




with (approximate) optimal value −0.8943.

6 Conclusions

In this paper, we have derived a new class of valid linear inequalities for SDP
relaxations of problem (1). These cuts are separable in polynomial time, which,
by the equivalence of separation and optimization, ensures that the SDP relax-
ation enforcing all of these inequalities is polynomial-time solvable. We have
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n
Inexact
initial Improved Avg cuts Avg gap closure Closed Avg cuts

2 31 4 20 24% 0 —
3 78 7 43 29% 1 7
4 63 3 55 19% 0 —
5 34 1 59 6% 0 —
6 22 0 — — 0 —
7 16 0 — — 0 —
8 14 0 — — 0 —
9 6 0 — — 0 —

10 4 0 — — 0 —

Table 6: Results for the Rshor ∩Rksoc bootstrap relaxation on the same 15,000
random TTRS instances as depicted in Table 5 for each dimension n. The
columns Inexact initial, Improved, and Closed report the number of instances
out of 15,000 in each category.

also shown that a special case of our cuts has been applied by Chen et al. [9]
to obtain the convex hull of an important substructure arising in the OPF
problem. In addition, we have extended our methodology to derive new, lo-
cally valid, second-order-cone cuts for nonconvex quadratric programs over the
mixed polyhedral-conic set {x ≥ 0 : ‖x‖ ≤ 1}. Using specific examples as well as
computational experiments, we have demonstrated that the new class of valid
inequalities strengthens the strongest known SDP relaxation, Rshor ∩ Rksoc,
especially in low dimensions.

For the specific 2-dimensional feasible set F = {x ∈ R2 : ‖x‖ ≤ 1, x ≤ bTx}, our
computational experiments indicate that our cuts intersected with Rshor∩Rksoc

capture the relevant convex hull G. We leave this as a conjecture requiring
further research. Furthermore, when b = e, we also conjecture that the locally
valid cuts (25), which are derived from slabs, are by themself enough to capture
G. For general F , however, our cuts do not close the gap fully, and so there
remains room for improvement.

One limitation of our approach is the assumption that the SOC constraint (1c)
shares the identity Hessian with the hollow ball (1b). If instead we are presented
with a general SOC constraint ‖Jx−c‖ ≤ bTx−a, where J ∈ Rn×n is arbitrary,
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one idea would be to bound

bTx− a ≥ ‖Jx− c‖
≥ ‖x− c‖ − ‖x− Jx‖
= ‖x− c‖ − ‖(I − J)x‖

≥ ‖x− c‖ −
√
λmax[(I − J)T (I − J)]R,

which yields the valid constraint ‖x−c‖ ≤ bTx−
(
a−

√
λmax[(I − J)T (I − J)]R

)
,

to which our methodology can be applied. Additional options for handling ar-
bitrary Hessians can be considered by refining the deriviations of Section 2.

Further opportunities for future research include streamlining the separation
subroutine, investigating the effectiveness of our cuts in higher dimensions, and
examining other applications where the structure of (1) appears. Also, the idea
of using the self-duality of a cone to derive valid linear cuts could be applied to
other self-dual cones or possibly even non-self-dual cones.
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[2] C. J. Argue, F. Kılınç-Karzan, and A. L. Wang. Necessary and sufficient
conditions for rank-one generated cones. Technical report, 2020.

33

125



[3] D. Bienstock. A note on polynomial solvability of the CDT problem. SIAM
Journal on Optimization, 26(1):488–498, 2016.

[4] S. Burer. On the copositive representation of binary and continuous non-
convex quadratic programs. Math. Program., 120(2, Ser. A):479–495, 2009.

[5] S. Burer and K. M. Anstreicher. Second-order-cone constraints for extended
trust-region subproblems. SIAM Journal on Optimization, 23(1):432–451,
2013.

[6] S. Burer and A. N. Letchford. On nonconvex quadratic programming with
box constraints. SIAM Journal on Optimization, 20(2):1073–1089, 2009.

[7] S. Burer and B. Yang. The trust region subproblem with non-intersecting
linear constraints. Mathematical Programming, 149(1-2, Ser. A):253–264,
2015.

[8] M. R. Celis, J. E. Dennis, and R. A. Tapia. A trust region strategy for
nonlinear equality constrained optimization. In Numerical optimization,
1984 (Boulder, Colo., 1984), pages 71–82. SIAM, Philadelphia, PA, 1985.

[9] C. Chen, A. Atamtürk, and S. S. Oren. A spatial branch-and-cut method
for nonconvex QCQP with bounded complex variables. Mathematical Pro-
gramming, 165(2, Ser. A):549–577, 2017.

[10] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods.
MPS/SIAM Series on Optimization. SIAM, Philadelphia, PA, 2000.

[11] CVX Research, Inc. CVX: Matlab software for disciplined convex program-
ming, version 2.1. http://cvxr.com/cvx, Dec. 2018.

[12] A. Eltved. Convex Relaxation Techniques for Nonlinear Optimization. PhD
thesis, Technical University of Denmark, 2021.

[13] R. Jiang and D. Li. Second order cone constrained convex relaxations for
nonconvex quadratically constrained quadratic programming. Journal of
Global Optimization, 75(2):461–494, June 2019.

[14] J. B. Lasserre. Global optimization with polynomials and the problem of
moments. SIAM J. Optim., 11(3):796–817, 2000/01.

34

126 Paper B



[15] S. H. Low. Convex relaxation of optimal power flow—Part I: Formula-
tions and Equivalence. IEEE Transactions on Control of Network Systems,
1(1):15–27, 2014.

[16] S. H. Low. Convex relaxation of optimal power flow—Part II: Exactness.
IEEE Transactions on Control of Network Systems, 1(2):177–189, 2014.

[17] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual.
Version 9.0.105, 2019.

[18] H. D. Sherali and W. P. Adams. A reformulation-linearization technique
for solving discrete and continuous nonconvex problems, volume 31 of Non-
convex Optimization and its Applications. Kluwer Academic Publishers,
Dordrecht, 1999.

[19] N. Z. Shor. Quadratic optimization problems. Soviet Journal of Computer
and Systems Sciences, 25:1–11, 1987.

[20] R. J. Stern and H. Wolkowicz. Indefinite trust region subproblems and
nonsymmetric eigenvalue perturbations. SIAM Journal on Optimization,
5(2):286–313, 1995.

[21] Y. Ye and S. Zhang. New results on quadratic minimization. SIAM Journal
on Optimization, 14(1):245–267, 2003.

35

127



128 Paper B



Appendix C

Paper C

[31] Anders Eltved and Martin S. Andersen. �Su�cient Conditions for Exact
Semide�nite Relaxation of Homogeneous Quadratically Constrained Quadratic
Programs with Forest Structure�. Submitted. 2020

Status: Submitted.



130 Paper C



Sufficient Conditions for
Exact Semidefinite Relaxation of

Homogeneous Quadratically Constrained
Quadratic Programs with Forest Structure

Anders Eltved∗† Martin S. Andersen†

December 18, 2020

Abstract

We study the semidefinite programming relaxation of nonconvex quadrat-
ically constrained quadratic programs without linear terms and whose ag-
gregate sparsity graph is a forest. We present sufficient conditions for the
semidefinite relaxation to be exact which implies that the original prob-
lem is solvable in polynomial time. The conditions comprise a family of
second-order cone programs that involve some (but not all) problem data
and can be solved in polynomial time. As an extension, we propose a
robust exactness guarantee that applies to a family of similar problems
defined by a region around the nominal data where the relaxation remains
exact.
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1 Introduction

Optimization problems with a quadratic objective and quadratic constraints
form the class of quadratically constrained quadratic programs (QCQPs). This
class of problems has great modelling power and applications in many areas
of science and engineering; see for example [2, 15, 21] and references therein.
Unfortunately, QCQPs are generally NP-hard [27] which means that, generally
speaking, there exists no efficient (i.e., polynomial time) algorithm for solving
such problems. However, many problems in the class of QCQPs can be solved
efficiently, e.g., if the problem is convex or if the problem structure is favorable in
some way. One approach to solving general QCQPs is convex relaxation which
provides a lower bound on the optimal value of the original problem. Moreover,
in some cases it is possible to extract a globally optimal solution to the QCQP
from the solution to its relaxation. In this case we say that the relaxation is
exact.

Our focus in this paper is a priori guarantees of exactness for the so-called
Shor relaxation [24] of a QCQP, i.e., guaranteeing exactness without actually
solving the relaxation which is a semidefinite program (SDP). From a practical
point of view, the a priori knowledge that a single problem instance will have an
exact relaxation may not seem interesting (after all, this can be checked after
solving the relaxation problem). However, exactness guarantees are useful, since
they provide some insight into which classes of QCQPs can be solved to global
optimality via its Shor relaxation. In addition, it provides a natural way to
extend the exactness guarantee to a family of similar problem instances.

The question of when a relaxation of a QCQP is exact has been studied for
various QCQPs in the literature. Especially trust-region type QCQPs, where
the constraints are few and structured, have received a lot of attention; see [7]
for a survey. Results regarding the exactness of the SDP relaxation also exist
for some restricted classes of structured QCQPs with an arbitrary (but finite)
number of variables and constraints. This paper extends this line of research
and builds on the theory developed in [5] and [8]. Both of these papers propose
sufficient conditions for the SDP relaxation to be exact, and the conditions are
based on the problem structure and data.
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We will consider (nonconvex) QCQPs of the form

minimize xHA0x

subject to xHAkx+ αk ≤ 0, k = 1, . . . ,m,
(T-QCQP)

where x ∈ Cn is the variable, {Ak}mk=0 ∈ Hn and {αk}mk=1 ∈ R are the problem
data, and we will restrict our attention to problems for which the aggregate
sparsity pattern of the matrices {Ak}mk=0 is a forest. We call such problems
homogeneous quadratically constrined quadratic programs with forest structure.
Here, R is the field of real numbers, C is the field of complex numbers, Hn
denotes the set of Hermitian matrices of order n, and xH denotes the Hermitian
transpose of x. We will present everything in the complex domain and note
that all theory developed also holds in the real domain. When necessary, we
will make a distinction between the two cases. To simplify exposition, we present
our main result for QCQPs with tree structure; in Section 5 we show how the
theory is readily extended to QCQPs with forest structure.

Complex-valued QCQPs can be reformulated as equivalent real-valued QCQPs
via a simple transformation (see, e.g., [6]). However, the complex-valued QCQP
sometimes has the advantage that its relaxation can be strengthened by adding
valid inequalities [9]. Moreover, the tree structure that we rely on for the condi-
tions in this paper is generally not preserved by the transformation to the real
domain.

Bose et al. [5] consider homogeneous complex-valued QCQPs arising from acyclic
graphs, which corresponds to problems of the form (T-QCQP), and derive suffi-
cient conditions for a problem to be solvable in polynomial time (via its SDP re-
laxation). Their conditions require that the point sets {[A0]ij , [A1]ij , . . . , [Am]ij},
defined for off-diagonal indices i 6= j, are contained in a halfspace defined by a
line that passes through the origin in the complex plane. This is closely related
to the conditions derived in this paper; we will discuss the connection to our
conditions, which are less conservative, in Section 5.

The main inspiration for this paper comes from a recent paper by Burer and
Ye [8] in which they consider (non-homogeneous) real-valued diagonal QCQP
problems, i.e., problems with linear terms, but where all matrices are diagonal.
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The authors prove that the infeasibility of n feasibility systems is a sufficient
condition for the SDP relaxation of such problems to be exact. Moreover, as
they show in the paper, it can also be applied to general QCQPs by means of
lifting.

In this paper, we extend the feasibility systems of Burer and Ye [8] to homoge-
neous QCQPs with tree structure, and we present a sufficient condition for the
relaxation of these to be exact. Moreover, if this sufficient condition holds for
a given problem, we propose a robustness analysis that reveals how much the
problem data can be perturbed in a given way without violating the conditions.
This is based on ideas from robust optimization, and it provides a perturbation
set that characterizes a family of problems for which we can guarantee an exact
relaxation. We call this set a region of exactness.

One particular problem that can be formulated as a QCQP is the alternating
current optimal power flow (ACOPF) problem. The goal is to find an optimal
power dispatch for a given network topology. Distribution networks are usually
radial (i.e., there are no cycles) which means that the resulting QCQP has
tree structure for these topologies. One of the motivations behind this paper
is the observation that the SDP relaxation of the ACOPF problem usually is
exact for radial (acyclic) networks [14]. In the literature, it has been proven
that there exist exact convex relaxations for different practical assumptions on
the network [5, 22, 19, 14, 13]. However, in practice, it is difficult to find an
assumption that is valid for all cases of interest. Therefore, it is of interest to
have several conditions that cover different cases and to understand the cases
that are not covered.

The ACOPF problem is generally solved periodically. The problem data change
from one problem instance to the next, but it is typically only a subset of
{αk}mk=1 in the QCQP formulation that changes. As we will see, the first con-
dition for exact relaxation in this paper does not depend on {αk}mk=1, so if an
ACOPF problem satisfies the condition, we can extend the guarantee of exact-
ness to a family of similar problem instances with arbitrary {αk}mk=1. Moreover,
the problem data {Ak}mk=0 in the ACOPF depends on the network topology
and some physical properties, both of which vary but typically do not vary too
much. With the region of exactness approach presented in Section 3, we aim to
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guarantee exactness of the SDP relaxation for problem instances within some
region of a nominal problem instance.

Related Work

The SDP relaxation is exact if there exists a rank-1 solution. Thus, exactness
can be guaranteed if, e.g., it is possible to show that all solutions have rank
at most 1. We will denote the minimum rank of optimal solutions of the SDP
relaxation by r?. For real-valued QCQP problems, Pataki [23] and Barvinok [3]
proved that

r? ≤
⌊√

8m+ 1− 1
2

⌋
,

where m is the number of constraints in the problems1. This guarantees that
for problems with less than three constraints, the SDP relaxation has a rank-
1 solution. The analog bound for complex QCQP problems is r? ≤ bmc [20,
Theorem 5.1].

For sparse real-valued QCQPs (with x ∈ Rn in (T-QCQP)) we have the bound
r? ≤ tw(G) + 1 where tw(G) denotes the treewidth of the sparsity graph G [18].
Since we limit our attention to problems whose aggregate sparsity pattern is a
forest, we have tw(G) = 1, and hence r? ≤ 2. Thus, the difference between an
exact and inexact relaxation is essentially whether the relaxation has a rank-1
or a rank-2 solution; the same is true for complex-valued QCQPs due to the
tree structure and a result on minimum-rank positive semidefinite completion
[12]. However, this bound never guarantees exactness, and it does not take
the problem data into account. A homogeneous complex-valued QCQP with
Toeplitz-Hermitian structure (i.e., all matrices are Toeplitz-Hermitian), can be
solved in polynomial time [17]—note that the SDP relaxation does not always
yield a rank-1 solution in this case, but there exists a procedure to find one
with the same objective value. In a recent paper, Wang and Kılınç-Karzan [28]
suggest a framework for studying exactness of the SDP relaxation of a general
QCQP (with linear terms and any structure for the matrices) by considering

1These results are for equality constrained SDPs, but they can easily be extended to in-
equality constrained problems, because the introduction of slack variables does not change the
number of constraints.
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the feasible space of the dual of the relaxation. Under the assumption that the
dual feasible space is polyhedral, they provide conditions on the faces of this
to guarantee exactness of the relaxation. The object that they study is similar
to the one that is studied in this paper, but we assume more structure and
therefore get a different set of conditions that can be checked in polynomial
time. In a related line of research, Cifuentes et al. [11] study the geometry of
the region of objective functions for which the SDP relaxation is exact.

The concept of robust feasibility presented in Section 3 is related to the concept
of SDP stability discussed in [10]. In that paper, Cifuentes et al. consider a
parameterized homogeneous QCQP and perturb away from a nominal value
where the SDP relaxation is exact. The authors present conditions for the
SDP relaxation to remain exact for a neighborhood around the nominal value.
Their motivation for considering this problem is parameter estimation problems
with noisy observations. Their conditions guarantee that the solution of the
SDP relaxation is the maximum likelihood estimator in low noise settings. We
assume tree structure of the matrices in this paper and provide a more explicit
characterization of a region of exactness which is defined as a set of problem
instances for which the relaxation remains exact.

A very recent paper by Azuma et al. [1] studies QCQPs with forest structure,
and they present results that are similar in nature to some of the results pre-
sented in this paper. In particular, the main result [1, Lemma 3.5] is similar to
Theorem 1 in this paper.

Contributions

Our contributions can be summarized as follows: (i) we propose a new, suffi-
cient condition for the exactness of the SDP relaxation of (T-QCQP) when the
sparsity graph is a tree or a forest; (ii) as an extension, we propose a robust
exactness condition that allows us to certify exactness for a family of nearby
problem instances; (iii) when the exactness condition does not hold, we pro-
pose a restricted exactness condition that allows us to guarantee exactness for
a restricted set of problems.
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Outline

The paper is organized as follows. We end this section by introducing the
notation and terminology used throughout the paper. In Section 2, we introduce
a set of feasibility systems and a sufficient condition for an exact relaxation
of (T-QCQP). In Section 3, we extend this sufficient condition to a family
of problems that are similar to the nominal problem (T-QCQP) in that the
data matrices {Ak}mk=0 are allowed to vary within some set. In Section 4, we
consider a restricted exactness condition that applies to problems that have an
exact relaxation without satisfying our sufficient condition for it to be exact. In
Section 5, we discuss how to extend our condition to forest-structured QCQPs
and relate our condition to those proposed in [5] and in [8]. We end the paper
with conclusions in Section 6.

Notation and Terminology

Define the linear operatorA : Hn → Rm byA(X) = (A1 •X,A2 •X, . . . , Am •X),
where A0 •X = tr(AH0 X) denotes the (trace) inner product of A0 and X. The
adjoint operator A∗ : Rm → Hn is given by A∗(λ) =

∑m
k=1 λkAk. For conve-

nience, we define Y (λ) = A0 +A∗(λ), since this will play a significant role in our
derivations. Let α = (α1, α2, . . . , αm) denote a column vector. For the problem
(T-QCQP), we consider the Shor semidefinite programming relaxation and its
dual:

minimize A0 •X maximize λTα

(R) subject to A(X) + α �Rm
+

0 subject to Y (λ) �Hn
+

0 (RD)
X �Hn

+
0 λ �Rm

+
0.

where X ∈ Hn is the variable in the primal problem (R) and λ is the variable in
the dual problem (RD). The conic inequality constraint X �Hn

+
0 denotes that

X must be Hermitian positive semidefinite, i.e., zHXz ≥ 0 for all z ∈ Cn, and
λ �Rm

+
0 denotes that λk ≥ 0 for k = 1, . . . ,m. We denote the feasible sets of
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(R) and (RD) by

F =
{
X : X �Hn

+
0, A(X) + α �Rm

+
0
}
, Ω =

{
λ : λ �Rm

+
0, Y (λ) �Hn

+
0
}
.

We define the matrices Eij = 1
2 (eieTj + eje

T
i ) and Ēij = 1

2ı (eieTj − ejeTi ), where
ek denotes the kth canonical vector in Rn and ı =

√
−1 denotes the imaginary

unit. Then, for a Hermitian matrix M = P + ıQ we have Eij •M = Pij and
Ēij •M = Qij . Let 0n denote an n× n matrix with zero in all entries.

We define the sparsity graph associated with (T-QCQP), denoted G(V, E), to
have vertex set V = {1, 2, . . . , n} and an edge between vertices i and j if and
only if [Ak]ij 6= 0 for some k, i.e., the graph is determined by the aggregate
sparsity pattern of the matrices. In particular, if there is a nonzero in the ijth
element of one of the matrices for i < j (in the lower triangle), then there is an
edge between vertices i and j in G(V, E). In other words, let E ⊆ V × V denote
the edge set, then

(i, j) ∈ E ⇐⇒ i > j ∧ ∃k ∈ {0, 1, . . . ,m} : [Ak]ij 6= 0.

We will assume that for each i ∈ V, there exists a k ∈ {0, 1, . . . ,m} such that
[Ak]ii 6= 0. Note that G(V, E) is a simple undirected graph. As mentioned
previously, we limit our attention to problems where G(V, E) is a tree; in Sec-
tion 5, we discuss how to handle problems where G(V, E) is a forest. For our
conditions, the leaves of the graph and the non-leaf edges are important, so
we proceed to define these formally. A leaf is a vertex that is only connected
to one other vertex; a leaf is also called a simplicial node. Denote the set
of leaves by Vl = {i ∈ V : deg(i) = 1}, where deg(i) denotes the degree of
vertex i. Note that we use the term tree to mean an unrooted tree, so any
vertex with degree one is a leaf. As we often associate a vertex or an edge
with its corresponding matrix entry, it is convenient to define the matrix entries
of the leaves as L = {(i, i) : i ∈ Vl}. Similarly, we define the set of diago-
nal entries as D = {(i, i) : i ∈ V}. An edge is a non-leaf edge if neither of
the vertices that it connects is a leaf. We denote the set of non-leaf edges by
Enl = {(i, j) ∈ E : i 6∈ Vl, j 6∈ Vl}. Figure 1 shows an example of a matrix
with tree structure and its sparsity graph with the leaves and non-leaf edges
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highlighted. In the graph in Figure 1b, vertices correspond to diagonal elements
and edges correspond do off-diagonal elements.




� �
� �

� � � �
� � �

� �




(a) Sparsity pattern.
Nonzero elements are
denoted by X while zero
entries are blank.

1

2

3 4 5

(b) Graph of the sparsity pattern. The leaves are
Vl = {1, 2, 5} and marked by solid circles. The non-
leaf edges are Enl = {(3, 4)} and marked by solid
lines.

Figure 1: A sparsity pattern and its graph.

2 Feasibility Systems

In this section, we define a set of feasibility systems derived from the dual feasible
set. We then use these feasibility systems to state a sufficient condition for the
exactness of the SDP relaxation.

Throughout the paper, we will assume that strong duality holds for the SDP re-
laxation (R) and its dual (RD); this can be ensured by a constraint qualification
such as Slater’s condition. Let X? denote a solution to (R) and let λ? denote
a solution to (RD). This means that Y (λ?) •X? = 0, and hence Y (λ?)X? = 0
since both matrices are positive semidefinite. In turn, we have that

rankX? + rank Y (λ?) ≤ n. (1)

This is Sylvester’s rank inequality. We will use this together with a lower bound
on rank Y (λ?) to introduce an upper bound on rankX?. For a lower bound
on rank Y (λ?), we use the following proposition.

Proposition 1. Suppose H ∈ Hn+. If the sparsity graph associated with H is a
connected tree, then the rank of H is at least n− 1.
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Proof. This is a reformulation of [25, Theorem 3.4] and the proof can be found
therein.

We will refer to a matrix as having connected tree structure if its sparsity graph
is a connected tree, i.e., an undirected graph with no cycles where all vertices
are connected by a path. A solution λ? to (RD) is dual feasible, and hence
Y (λ?) �Hn

+
0 which implies that we have a lower bound on the rank of Y (λ?) if

it has connected tree structure. One way to ensure that Y (λ?) has connected tree
structure is to require that Y (λ) has connected tree structure for all λ ∈ Ω. This
is equivalent to requiring that the following feasibility systems are all infeasible.

Definition 1 (Feasibility systems). For each (i, j) ∈ E ∪ D, we define a feasi-
bility system

∃λ ∈ Ω : Eij • Y (λ) = 0, Ēij • Y (λ) = 0, (FSij)

and we associate with this system a Boolean variable

fij =





1 if (FSij) is feasible

0 if (FSij) is infeasible.

Geometrically, each feasibility system represents the intersection of the dual fea-
sible set with two hyperplanes. For real-valued problems of the form (T-QCQP),
we only need a single equality condition, because Ēij •Y (λ) = 0 is trivially sat-
isfied when Y (λ) is symmetric. The feasibility systems are equivalent to SOCPs
since the presence of tree structure implies that Ω is second-order cone repre-
sentable [26].

For problems with tree structure there are 2n − 1 feasibility systems of the
form (FSij) (n associated with diagonal elements and n− 1 associated with off-
diagonal elements). However, since Y (λ) �Hn

+
0 for all λ ∈ Ω, it is sufficient to

consider the feasibility systems associated with the edges in the sparsity graph,
because the presence of an off-diagonal nonzero implies that the corresponding
diagonal elements must be nonzero as well.

Theorem 1. If (FSij) is infeasible for all (i, j) ∈ E, i.e., ∑(i,j)∈E fij = 0, then
the SDP relaxation (R) of (T-QCQP) is exact.
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Proof. Suppose all edge feasibility systems are infeasible. All diagonal feasibility
systems must also be infeasible because the constraint Y (λ) �Hn

+
0 implies that

the ith column and row of Y (λ) must be zero if Y (λ)ii = 0. Thus, all feasible
dual variables Y (λ) must have connected tree structure which, in turn, implies
that rank Y (λ?) ≥ n−1 by Proposition 1. From Sylvester’s rank inequality (1)
we have that

rankX?+rank Y (λ?) ≤ n ⇐⇒ rankX? ≤ n−rank Y (λ?) ≤ n−(n−1) = 1,

and hence the SDP relaxation must be exact.

Theorem 1 requires that all edge feasibility systems are infeasible as this is
sufficient to ensure that [Y (λ)]ij 6= 0 for all λ ∈ Ω for all (i, j) ∈ E . For the
next theorem, we will need the following result which is a generalization of
Proposition 1.

Proposition 2. A matrix H ∈ Hn+ has rank at least n− 1 if its sparsity graph
has n vertices and is a forest with a single connected tree and isolated nodes
otherwise.

Proof. Denote the number of isolated nodes by d. The matrix H has a block
diagonal structure with d single elements on the diagonal and a block of size
n−d, which we denote B. The matrix B has rank at least n−d−1 by Sylvester’s
criterion (all principal submatrices of a positive semidefinite matrix are positive
semidefinite) and Proposition 1. The full matrix H up to a permutation is equal
to [

B 0
0 D

]

where D is diagonal matrix of order d with positive diagonal elements. From
this we see that

rankH = rankB + rankD = rankB + d ≥ n− d− 1 + d = n− 1.

Theorem 2. The SDP relaxation (R) of (T-QCQP) is exact if the feasibility
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systems associated with non-leaf edges and leaf nodes are all infeasible, i.e.,∑
(i,j)∈Enl∪L fij = 0.

Proof. We consider the possible graph structure of the sparsity pattern for
Y (λ?). Since all non-leaf edge feasibility systems are infeasible, all interior
vertices are in the graph and form a connected tree. Since all leaves are also
in the graph, all nodes are in the graph. We do not know if the leaves are
part of the connected tree or isolated (fallen leaves), but either way, Y (λ?) has
the structure of Proposition 1, so we conclude that rank Y (λ?) ≥ n − 1. This
implies that rankX? ≤ 1 as desired.

We will refer to the feasibility systems associated with leaf nodes and non-leaf
edges as the essential feasibility systems, since the infeasibility of this subset of
feasibility systems is a sufficient condition for the relaxation to be exact. The
essential feasibility systems correspond to the set L ∪ Enl. Theorems 1 and 2
both include n− 1 feasibility systems to check. The relaxation of the condition
from Theorem 1 to Theorem 2 takes advantage of the fact that a zero on the off-
diagonal of a positive semidefinite matrix does not imply a zero on the diagonal,
but the converse is true for positive semidefinite matrices. Therefore, if (FSij) is
infeasible, then (FSii) and (FSjj) are also infeasible. Similarly, if (FSii) and/or
(FSjj) is feasible, then (FSij) is also feasible, i.e., fij ≥ fii and fij ≥ fjj .

The sparsity pattern of Y (λ?) provides an easy way to confirm if a relaxation
is exact without computing any eigenvalues. Indeed, the relaxation is exact if
Y (λ?) has nonzeros in the positions corresponding to the essential feasibility
systems.

The following example demonstrates the application of Theorem 1.

Example 1. Consider the problem

minimize x2
1 + 4x2

2 + 4x2
3 + x2

4 + 2x1x2 − 2x2x3 + 2x3x4

subject to −2x2
1 + 2x2x3 ≤ −3

−2x2
4 + 2x2x3 ≤ −3

−x2
4 + 2x3x4 ≤ 0,

(2)
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where x ∈ R4 is the variable. This can be written in the form of (T-QCQP) as

minimize xTA0x

subject to xTAkx+ αk ≤ 0, k = 1, . . . , 3,

where α1 = 3, α2 = 3, α3 = 0 and

A0 =




1 1 0 0
1 4 −1 0
0 −1 4 1
0 0 1 1



, A1 =




−2 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0



,

A2 =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −2



, A3 =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 −1 −2



.

The matrices A1, A2, and A3 are indefinite whereas A0 is positive definite. The
sparsity pattern and the corresponding sparsity graph for problem (2) are shown
in Figure 2.




� �
� � �

� � �
� � �

� �




(a) Sparsity pattern.

1 2 3 4
(1, 2) (2, 3) (3, 4)

(b) Sparsity graph: the vertices correspond to di-
agonal entries and edges correspond to off-diagonal
entries. The solid lines correspond to the essential
feasibility systems.

Figure 2: Sparsity pattern and sparsity graph for problem (2).

The edge set of interest in Theorem 1 is

E = {(1, 2), (2, 3), (3, 4)}.

The leaves and non-leaf edges of interest in Theorem 2 are

Vl = {1, 4}, Enl = {(2, 3)},
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and hence the essential feasibility systems are

L ∪ Enl = {(1, 1), (2, 3), (4, 4)}.

All the edge feasibility systems are infeasible in this example, and hence all
the essential feasibility systems are infeasible. Theorem 1 (or 2) leads us to
the conclusion that the SDP relaxation is exact. This means that we can solve
(2) in polynomial time by solving the SDP relaxation and computing a rank-1
decomposition of X? regardless of the problem data α1, α2, α3.

To illustrate the difference between the conditions of Theorems 1 and 2, we now
consider a problem where n = 3 and the matrices {Ak}mk=0 are tridiagonal.

Example 2. Suppose n = 3 and the aggregate sparsity pattern of {Ak}mk=0 is
given by 


� �
� � �

� �


 ,

which corresponds to the sparsity graph in Figure 3. The condition of Theorem 1

1 2 3

Figure 3: Sparsity graph.

is satisfied if both edges are present in the sparsity pattern of Y (λ) for all λ ∈ Ω.
This implies that the sparsity graph in Figure 3 is the sparsity graph of Y (λ)
for all λ ∈ Ω. The essential feasibility systems for this example are (FS11) and
(FS33). The condition of Theorem 2 is satisfied if vertices 1 and 3 are present
in the sparsity graph of Y (λ) for all λ ∈ Ω. Then the possible sparsity patterns
for Y (λ) are 


� ?
? ? ?

? �


 ,

where � denotes a non-zero element and ? denotes an arbitrary element (zero
or non-zero). The possible sparsity graphs are shown in Figure 4, and each of
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these guarantees that rank Y (λ) ≥ 2. Thus, the condition of Theorem 2 is less
restrictive than that of Theorem 1.

1 3

1 2 3

1 2 3

1 2 3

1 2 3

Figure 4: Possible sparsity graphs.

Alternative Feasibility Systems

For each of the feasibility system in Theorem 2, we can derive an alternative.
To this end, recall the feasibility system (FSij) which seeks to find a λ such that

−λ �Rm
+

0

−A0 −
m∑

k=1
λkAk �Hn

+
0

Eij • (A0 +
m∑

k=1
λkAk) = 0

Ēij • (A0 +
m∑

k=1
λkAk) = 0.

(FSij)

A (weak) alternative to (FSij), which follows from duality, may be defined as
follows.

Definition 2 (Alternative feasibility system). Given a matrix index (i, j) ∈
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D ∪ E, the corresponding alternative feasibility system is defined as

X �Hn
+

0

A0 • (−X + z1Eij + z2Ēij) > 0

A(−X + z1Eij + z2Ēij) �Rm
+

0.

(A-FSij)

We represent the feasibility of (A-FSij) by the Boolean variable

f̃ij =





1 if (A-FSij) is feasible

0 if (A-FSij) is infeasible.

Lemma 1. At most one of the systems (FSij) and (A-FSij) is feasible, i.e.,
fij + f̃ij ≤ 1.

Proof. This follows from weak duality.

Following this lemma, we can state a theorem that is similar to Theorem 2.

Theorem 3. If (A-FSij) is feasible for all essential feasibility systems, i.e.,∑
(i,j)∈L∪Enl

f̃ij = n− 1, then the SDP relaxation (R) of (T-QCQP) is exact.

Proof. This follows from Theorem 2 and Lemma 1.

Note that the condition in Theorem 3 is a sufficient condition for the condition
in Theorem 2, i.e., Theorem 2 is less conservative. With the added assumption
that strong duality holds, the two theorems become equivalent. However, in
practice, this is not necessary since one can always proceed to check (FSij) if
(A-FSij) is infeasible.

3 Robust Feasibility Systems

When Theorem 3 holds, we can guarantee exactness for a family of problems
with {Ak}mk=0 fixed and α arbitrary. We will now extend the guarantee to a
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larger set of problems with the goal of making a robust guarantee of exactness.
In other words, we would like to guarantee the exactness of the relaxation for a
family of QCQPs for which {Ak}mk=0 belongs to some prescribed set. This is mo-
tivated by the uncertainty in many engineering applications where the problem
data ({Ak}mk=0 and {αk}mk=1) may come from measurements or estimates and
are inherently uncertain. Another motivation is applications where we would
like to solve many similar optimization problems where the data are a little
different each time depending on, for example, outside conditions.

We note that our objective is not to solve a robust optimization problem, i.e.,
optimizing the worst-case objective for problem data within the uncertainty set.
Instead, we wish to certify relaxation exactness for all problem data within some
uncertainty set.

The starting point for robust feasibility is that we have a nominal problem for
which Theorem 3 holds.

Assumption 1. Given a problem of the form (T-QCQP) with data {Âk}mk=0
and {α̂k}mk=1, assume that Theorem 3 holds.

Any problem satisfying Assumption 1 may be used to compute a region of
exactness as we explain next.

Region of Exactness

Suppose that Assumption 1 holds for a nominal problem with nominal data
{Âk}mk=0, i.e., all essential alternative feasibility systems are feasible, and hence
the semidefinite relaxation will be exact regardless of {αk}mk=1. For each nominal
matrix Âk, we define a perturbation set Zk(ρ) ⊆ Hn where ρ ∈ R+ is a param-
eter that controls the size of the set, and Zk(ρ) only contains matrices with a
sparsity pattern contained in that of the nominal matrices (tree-structure). We
allow for different perturbation sets for the individual nominal matrices, but we
limit our attention to perturbation sets that are all parameterized by the same
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parameter, ρ, and are monotonically increasing in this parameter, i.e.,

ζ < η =⇒ Zk(ζ) ⊂ Zk(η).

For a given ρ, we can describe a set of matrices by

{Âk + Uk}Uk∈Zk(ρ).

The choice of perturbation set Zk(ρ) should reflect any knowledge of the uncer-
tainty of the entries of Âk. Some special cases are:

• Zk(ρ) = {0n} if the data in Âk are not subject to any uncertainty.

• Zk(ρ) = {ηEst : |η| ≤ ρ} if Re([Âk]st) is uncertain but the rest of Âk is
not subject to any uncertainty.

• Zk(ρ) = {ηT : |η| ≤ ρ}, where T denotes a matrix of ones whose sparsity
pattern matches that of the matrices {Âk}mk=0, i.e., it has ones on the di-
agonal and on the off-diagonal elements that have an edge in G(T-QCQP).
This would reflect that all entries of Âk are subject to the same amount
of uncertainty.

Analogously to the alternative feasibility systems for a nominal problem, we
define the robust feasibility systems for the set of perturbed problems, i.e.,
problems with data from the perturbed sets.

Definition 3 (Robust feasibility systems). Given perturbation sets {Zk(ρ)}mk=0,
the robust feasibility system for (i, j) ∈ D ∪ E checks if there exists an X such
that

X �Hn
+

0

(Â0 + U0) • (−X + z1Eij + z2Ēij) > 0, ∀U0 ∈ Z0(ρ)

(Âk + Uk) • (−X + z1Eij + z2Ēij) ≥ 0, ∀Uk ∈ Zk(ρ), k = 1, . . . ,m.
(R-FSij(ρ))
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We represent the feasibility of (R-FSij(ρ)) by the Boolean variable

rij(ρ) =





1 if (R-FSij(ρ)) is feasible

0 if (R-FSij(ρ)) is infeasible.

The label of the system and input of the Boolean variable emphasizes the de-
pendency ρ. Note that if we choose uncertainty sets that collapse to zero, i.e.,
Zk(0) = {0n} for all k, then rij(0) = 1 for all (i, j) by Assumption 1. Each
of the robust feasibility systems (R-FSij(ρ)) include m+ 1 linear, and possibly
semi-infinite, inequalities.

The following extension of Theorem 3 establishes that the relaxation will be ex-
act for all perturbed problems if all essential robust feasibility systems (R-FSij(ρ))
are feasible.

Theorem 4. Let Zk(ρ) be monotonely increasing in ρ, i.e., ζ < η =⇒ Zk(ζ) ⊂
Zk(η). If the essential robust feasibility systems (R-FSij(ρ)) are feasible for some
ρ ≥ 0, then the SDP relaxation is exact for all problems with matrices from the
set {Âk + Uk}mk=0, where Uk ∈ Zk(ρ).

Proof. Suppose that all essential robust feasibility systems (R-FSij(ρ)) are fea-
sible for a given ρ. For any problem with matrices from the sets Ak ∈ {Âk +
Uk}Uk∈Zk(ρ), the alternative feasibility system contains a subset of the inequal-
ities of the the robust feasibility system, so the alternative feasibility system is
feasible. Hence, Theorem 3 guarantees exactness for any problem with matrices
Ak ∈ {Âk + Uk}Uk∈Zk(ρ).

To guarantee exactness for all perturbed problems, we need to check the fea-
sibility of (R-FSij(ρ)). Each of the sets of inequalities in (R-FSij(ρ)) can be
represented by its robust counterpart [4]. We can express this as

inf
Ul∈Zl(ρ)

(
(Âl + Ul) • (−X + z1Eij + z2Ēij)

)
≥ 0. (3)

Whether (3) can be expressed in a way that makes (R-FSij(ρ)) tractable depends
on the perturbation sets. An important observation is that the infimum in (3) is
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taken over an expression that is linear in X, and this means that we can handle
many perturbation sets that are affinely parameterized [4]. To illustrate this,
we consider interval uncertainty in Example 3.

The robust feasibility systems in Theorem 4 depend on the parameter ρ, and
hence an obvious question is how large can we make ρ while maintaining fea-
sibility. In other words, we are interested in the largest possible ρ for which
Theorem 4 holds in order to guarantee exactness for as large a family of prob-
lems as possible.

Recall that rij(ρ) = 1 when (R-FSij(ρ)) is feasible. Since we require the pertur-
bation sets to be increasing in ρ, we have that rij(ζ) ≤ rij(η) for ζ < η. It follows
that rij(ρ) = 1 for (i, j) ∈ L ∪ Enl if ρ is less than sup{ρ : rij(ρ) = 1} which
may be computed using bisection. Similarly, the largest ρ for which Theorem 4
holds, denoted ρ?, may be expressed as

ρ? = sup{ρ : rij(ρ) = 1 ∀(i, j) ∈ L ∪ Enl}.

Thus, we can guarantee exactness for all problems with matrices from the set
{Âk + Uk}mk=0, where Uk ∈ Zk(ρ) with ρ < ρ?, and we will refer to the pertur-
bation sets {Zk(ρ?)}mk=0 as a region of exactness.

The following example demonstrates how to derive the robust counterpart when
we have a single uncertain element in a matrix and how to compute the largest
interval.

Example 3 (continuation of Example 1). We will consider a problem with inter-
val uncertainty on a single element. We start by deriving the robust counterpart.
Suppose we have interval uncertainty on the real part of element st of matrix l,
i.e., Zl(ρ) = {ηEst : |η| ≤ ρ}. We need to distinguish between two cases: when
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i = s∧ j = t and when i 6= s∨ j 6= t. When i = s∧ j = t, we can express (3) as

inf
{η∈R : |η|≤ρ}

(
(Âl + ηEst) • (−X + z1Est + z2Ēst)

)
≥ 0

⇔ inf
{η∈R : |η|≤ρ}

{
η(z1 −Xst) + Âl • (−X + z1Est + z2Ēst)

}
≥ 0

⇔ − ρ |z1 −Xst|+ Âl • (−X + z1Est + z2Ēst) ≥ 0

⇔




ρu ≤ Âl • (−X + z1Est + z2Ēst)

−u ≤ z1 −Xst ≤ u,
(4)

where X,u, z1, z2 are the variables. Similarly, when i 6= s∨j 6= t, we can express
(3) as

inf
{η∈R : |η|≤ρ}

(
(Âl + ηEst) • (−X + z1Eij + z2Ēij)

)
≥ 0

⇔ inf
{η∈R : |η|≤ρ}

{
−ηXst + Âl • (−X + z1Eij + z2Ēij)

}
≥ 0

⇔ − ρ |Xst|+ Âl • (−X + z1Eij + z2Ēij) ≥ 0

⇔




ρu ≤ Âl • (−X + z1Eij + z2Ēij)

−u ≤ Xst ≤ u.
(5)

Hence, the lth set of inequalities in (R-FSij(ρ)) can be replaced by three inequal-
ities; it is replaced by (4) in the st-feasibility system and by (5) in the rest.

The problem in Example 1 satisfies Assumption 1, i.e., all essential alternative
feasibility systems are feasible. Now suppose that the entry in the third row and
fourth column (and fourth row and third column) of A3 is uncertain while the
rest of the entries are certain, i.e., [A3]34 = [A3]43 = −1 + η, |η| ≤ ρ. We
wish to compute the largest interval such that the SDP relaxation remains exact
for all problems where [A3]34 = [A3]43 is within this interval. This corresponds
to choosing the perturbation sets Z0(ρ) = {0n}, Z1(ρ) = {0n}, Z2(ρ) = {0n},
and Z3(ρ) = {ηE34 | |η| ≤ ρ} The essential robust feasibility systems are
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(i, j) ∈ {(1, 1), (2, 3), (4, 4)}. We can use (5) to formulate these as

X �Sn
+

0

−X11 − 2X21 − 4X22 + 2X23 − 4X33 − 2X34 −X44 + z1[A0]ij > 0

2X11 − 2X23 + z1[A1]ij ≥ 0

− 2X23 + 2X44 + z1[A2]ij ≥ 0

2ρu ≤ 2X34 + 2X44 + z1[A3]ij
− u ≤ X34 ≤ u.

(6)

The data [A0]ij , [A1]ij , [A2]ij , [A3]ij depend on which feasibility system we con-
sider:

[A0]11 = 1, [A1]11 = −2, [A2]11 = 0, [A3]11 = 0,

[A0]23 = −1, [A1]23 = 1, [A2]23 = 1, [A3]23 = 0,

[A0]44 = 1, [A1]44 = 0, [A2]44 = −2, [A3]44 = 0.

Using bisection for the essential robust feasibility systems, we obtain the values
in Table 1. We see that ρ? = 1, so the SDP relaxation will be exact if [A3]34 ∈
(−2; 0).

i j max{ρ : rij(ρ) = 1}
1 1 ∞
3 2 ∞
4 4 1

Table 1: Maximal radius in the essential robust feasibility systems for uncer-
tainty in [A3]34.

4 Restricted feasibility systems

Recall that the problem data {αk}mk=1 neither play a role in the feasibility sys-
tems (FSij) nor in Theorem 2; the feasibility systems only rely on {Ak}mk=0.
Consequently, if Theorem 2 holds for a set of matrices {Ak}mk=0, the SDP re-
laxation is guaranteed to be exact for any {αk}mk=1 in the constraints, provided
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that the original problem (T-QCQP) is feasible. We now address the situation
where the relaxation is exact but Theorem 2 does not hold. In this case, we
may still be able to guarantee exactness for a range of problems if the solution
Y (λ?) to the dual problem (RD) has connected tree structure. The basic idea
is to introduce a restriction in the feasibility systems, so that we only consider
λ ∈ Ω that are close to λ?.

Our starting point for the restricted feasibility systems is the following assump-
tion.

Assumption 2. Given a problem of the form (T-QCQP) with data {Âk}mk=0
and {α̂k}mk=1 assume that:

(i) Theorem 2 does not hold, i.e., at least one essential feasibility system is
feasible.

(ii) The solution Y (λ?) to the dual problem (RD) has connected tree structure.

Now suppose that Assumption 2 holds. Then there exists a feasible λ such that
Y (λ) does not have connected tree structure, but for the given problem, Y (λ?)
does have connected tree structure. However, since Theorem 2 relies on con-
nected tree structure of Y (λ) for all λ ∈ Ω, we have no a priori guarantee of
exactness which can be attributed to the fact that Theorems 1–3 guarantee the
exactness for any {αk}mk=1. However, in many applications the {αk}mk=1 of inter-
est is restricted in some way—for example, it may be known that α �Rm

+
0. In

this section, we try to use the information that Y (λ?) has connected tree struc-
ture to guarantee exactness for {αk}mk=1 that are close to {α̂k}mk=1. Unfortu-
nately, we were not able to obtain an explicit characterization of a perturbation
set defined by a neighborhood around {α̂k}mk=1, but rather as a perturbation set
defined by a neighborhood around a nominal, optimal dual variable λ? obtained
by solving the nominal problem. We now define a set of restricted feasibility
systems.

Definition 4 (Restricted Feasibility System). Suppose Assumption 2 holds and
let λ̂ denote the solution to (RD) with the data {Âk}mk=0 and {α̂k}mk=1. Let
Ω̂(ρ) ⊆ Ω be a restriction of the dual feasible set that is monotonely increasing
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in ρ ∈ R+ and where λ̂ ∈ Ω̂(ρ) for all ρ. Given (i, j) ∈ D ∪ E, the restricted
feasibility system is given by

∃λ ∈ Ω̂ : Eij • Y (λ) = 0, Ēij • Y (λ) = 0. (Res-FSij(ρ))

The point λ̂ is optimal for (RD) with the objective α̂Tλ, and the restricted
feasibility systems are an indication of how much the data {α̂k}mk=1 can be
perturbed while still having an exact relaxation. The restriction set is increas-
ing in ρ, and we are interested in finding the largest set that yield an exact
relaxation. This is illustrated in the following example for the restriction set
Ω̂(ρ) = {λ ∈ Ω : ‖λ− λ̂‖ ≤ ρ}.

Example 4. Consider the problem

minimize x2
1 + 4x2

2 + 4x2
3 + x2

4 + 2x1x2 − 2x2x3 + 2x3x4

subject to −2x2
1 + 2x2x3 ≤ −3

−2x2
4 + 2x2x3 ≤ −3

−x2
4 + 2x3x4 ≤ 0

‖x‖2 ≤ 5.

This is the problem from the previous example with a norm constraint added. In
the form of (T-QCQP) it can be written as

minimize
x∈R4

xTA0x

subject to xTApx+ rp ≤ 0, p = 1, . . . , 4,
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where r1 = 3, r2 = 3, r3 = 0, r4 = −5 and

A0 =




1 1 0 0
1 4 −1 0
0 −1 4 1
0 0 1 1



, A1 =




−2 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0



, A2 =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −2



,

A3 =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 −1 −2



, A4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



.

The matrices A1, A2, and A3 are indefinite while A0 and A4 are positive def-
inite. Compared to the problem in Example 1, the extra constraint ‖x‖2 ≤ 5
provides added freedom in the dual problem, so all feasibility systems are no
longer infeasible, as was the case in Example 1. In particular, the essential
feasibility systems (2, 3) and (4, 4) are feasible.

However, the solution to the SDP relaxation (R) is the same as before (rankX? =
1 and Y (λ?) has connected tree structure), so Assumption 2 holds. Solving the
dual of the relaxation, we have

λ̂ =




3.66 · 10−1

3.66 · 10−1

0
0




For the systems that are now feasible, we find the smallest ρ for which the
restricted feasibility system is feasible by solving

minimize ρ

subject to Y (λ) �Sn
+

0

Eij • Y (λ) = 0

λ �Rm
+

0

‖λ− λ̂‖ ≤ ρ.

(7)
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We solve this for (i, j) ∈ {(2, 3), (4, 4)} = L∪Enl \ {(1, 1)} and get the following
radii (denoting the radius with the index for the feasibility system):

ρ23 ≈ 0.3027, ρ44 ≈ 1.461.

Thus, for all λ within a radius of ρ < 0.3027 from λ̂, we can guarantee that the
relaxation is exact. This means that all problems parameterized by {αk}mk=1 for
which the optimal dual variables are within this ball are guaranteed to have an
exact relaxation.

The idea of the restricted feasibility systems is essentially to guarantee exactness
for a limited set of problem data {αk}mk=1 instead of guaranteeing exactness for
all {αk}mk=1 ∈ Rm (where (T-QCQP) is feasible). Ideally, we would like to
guarantee exactness for any {αk}mk=1 ∈ C with an explicit characterization of
the set C ⊂ Rm. Unfortunately, we do not have a way to compute this, so for
the current restrictions, we must rely on an assumption that small perturbation
from {α̂k}mk=1 results in small perturbations from λ̂.

5 Discussion

In this section, we first present an example with a problem structure for which
we can guarantee the exactness of the SDP relaxation. We then outline how
our theory extends to forest-structured QCQPs, and we relate our conditions to
existing conditions from the literature. Finally, we discuss some future research
opportunities.

Tree Objective with Diagonal Constraints

Consider a problem of the form

minimize
x∈Cn

xHTx

subject to xHDkx+ rk ≤ 0, k = 1, . . . ,m,
(8)
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where T has connected tree structure and the matrices Dk are diagonal. The
matrix T can have zeroes on the diagonal as long as the off-diagonal elements
form a connected tree.

For this problem structure—regardless of the data in the matrices—the SDP
relaxation is exact. To see this, we consider the feasibility systems, which take
the form

∃λ ∈ Ω : Eij • Y (λ) = 0, Ēij • Y (λ) = 0, (i, j) ∈ D ∪ E .

Since all the matrices Dk are diagonal, the conditions Eij • Y (λ) = 0 and
Ēij•Y (λ) = 0 cannot both be satisfied for any edge feasibility system ((i, j) ∈ E),
since Tij 6= 0. Hence, Theorem 1 holds for problem (8).

In conclusion, due to the connectedness of the objective and the sparsity of the
constraints, we can guarantee the exactness of the semidefinite relaxation of (8)
regardless of the data in the problem if (8) is feasible.

Forest-Structure Quadratic Programs

We consider a forest-structured QCQP to be a homogeneous quadratic program
whose sparsity graph (the graph of the aggregate nonzero pattern of the ma-
trices) is a forest, i.e., it has two or more connected components, which are all
trees. We briefly outline how the conditions for tree-structured QCQPs may be
extended to forest-structured ones. The following argument uses two trees for
the sake of presentation, but it extends to any number of trees by induction.
Specifically, we consider a problem with two connected components of the form

minimize xH

[
T0,1 0

0 T0,2

]
x = xH1 T0,1x1 + xH2 T0,2x2

subject to xH

[
Tk,1 0

0 Tk,2

]
x+ αk = xH1 Tk,1x1 + xH2 Tk,2x2 + αk ≤ 0,

k = 1, . . . ,m,

(9)
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where the aggregate sparsity pattern of {Tk,1}mk=0 and that of {Tk,2}mk=0 are
both connected trees. Hence, the aggregate sparsity pattern of the matrices

{[
Tk,1 0

0 Tk,2

]}m

k=0

is a forest with two trees. The semidefinite relaxation of (9) can be formulated
as

minimize T0,1 •X1 + T0,2 •X2

subject to Tk,1 •X1 + Tk,2 •X2 + αk ≤ 0, k = 1, . . . ,m,
X1 �Hn

+
0, X2 �Hn

+
0.

If X?
1 and X?

2 are both rank-1 matrices, then the relaxation is exact. To
guarantee this, we can apply Theorem 2 twice; once with the linear opera-
tor Y1(λ) = T0,1 +

∑m
k=1 λkTk,1, and again with the linear operator Y2(λ) =

T0,2 +
∑m
k=2 λkTk,2. This results in two sets of feasibility systems:

∃λ ∈ Ω : Eij • Y1(λ) = 0, Ēij • Y1(λ) = 0

and
∃λ ∈ Ω : Eij • Y2(λ) = 0, Ēij • Y2(λ) = 0

where
Ω = {λ : Y1(λ) � 0, Y2(λ) � 0, λ � 0}.

If the essential feasibility systems are all infeasible for both Y1(λ) and Y2(λ), then
the relaxation of (9) is exact. The robust feasibility systems can be extended
to QCQPs with forest structure analogously.

Related Conditions

We now discuss some similarities with the condition proposed by Bose et al. [5],
which applies to homogeneous QCQPs with tree structure, and the condition
proposed by Burer and Ye [8], which applies to diagonal QCQPs as well as
general QCQPs by means of diagonalization and lifting.
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Off-Diagonally Linearly Separable The condition of [5] checks if the set of
points Pij = {[A0]ij , [A1]ij , . . . , [Am]ij} is linearly separable from the origin for
all i 6= j (off-diagonal elements). This means that there exists a closed halfspace,
defined by a line through the origin in the complex plane, that contains Pij . As
mentioned in the proof in [5], this corresponds to checking that zero is not in
the interior of the convex hull of Pij . Expressing the convex hull in barycentric
coordinates, zero is included in the convex hull of Pij if the following system is
feasible

ν0[A0]ij + ν1[A1]ij + · · ·+ νm[Am]ij = 0, 0 ≺ ν ≺ 1,
m∑

k=0
νk = 1.

Thus, the condition of Bose et al. [5] corresponds to requiring that the above
system is infeasible for all off-diagonal elements in E . Notice that since ν0 > 0,
we eliminate ν0 and define λk = νk/ν0, resulting in the equivalent formulation:

[A0]ij + λ1[A1]ij + · · ·+ λm[Am]ij = 0, λ � 0. (10)

This is essentially the feasibility system (FSij) without the constraint Y (λ) �Hn
+

0 and excluding the boundary of the nonnegative orthant (i.e., λ � 0 instead
of λ � 0. This illustrates that the condition proposed in this paper is closely
related to that in [5] but generally less conservative.

The off-diagonal linearly separable condition of Bose et al. is cheaper to check
but generally also weaker, since it requires all edges to be present in the graph.
However, our condition includes only the essential feasibility systems, allowing
us to ignore certain edges in the graph. Furthermore, the feasibility systems
also include the constraint Y (λ) �Hn

+
0, so even if there exist multipliers in (10)

that remove an edge from the graph, those multipliers may not be feasible (i.e.,
Y (λ) �Hn

+
0).

Diagonal QCQPs and Diagonalization The diagonal QCQPs considered
by Burer and Ye [8] can be formulated as a homogeneous QCQP with arrow
structure—which has a graph that is a star—by introducing two inequality
constraints. For this particular QCQP, the essential feasibility systems are all
the diagonal elements except the first (which corresponds to the internal vertex
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of the star), and these are the ones considered in [8]. Hence, in the case of
real-valued diagonal QCQPs, our conditions are equivalent to those in [8]. We
briefly discuss diagonal QCQPs and diagonalization.

A diagonal QCQP takes the form

minimize xTD0x+ qT0 x

subject to xTDkx+ qTk x+ rk ≤ 0, k = 1, . . . ,m,
(11)

where x ∈ Rn is the variable and for p = 0, . . . ,m, Dk is a diagonal matrix and
qk ∈ Rn. This can equivalently be formulated as

minimize
[

1
x

]T [
0 qT0

q0 D0

][
1
x

]

subject to
[

1
x

]T [
rk qTk
qk Dk

][
1
x

]
≤ 0, k = 1, . . . ,m

which, in turn, can be written as

minimize yTA0y

subject to yTAky ≤ 0, k = 1, . . . ,m+ 2
(12)

where y ∈ Rn+1 is the variable and

Ak =
[
rk qTk
qk Dk

]
, k = 0, . . . ,m,

Am+1 = e1e
T
1 , Am+2 = −e1e

T
1 and bm+1 = bm+2 = 1. Here we have introduced

two inequalities for the equality y1 = 1 to fit the form of (T-QCQP). Since the
matrices Dk (k = 0, . . . ,m) are diagonal, the graph of (12) has tree structure.
In particular, the graph—which can be seen in Figure 5b—is a star, which is
also mentioned in [8]. To extend the methodology to general QCQPs, Burer
and Ye note that a general QCQP of the form

minimize xTQ0x+ qT0 x

subject to xTQkx+ qTk x+ rk ≤ 0, k = 1, . . . ,m,

can be reformulated to diagonal QCQP as follows. To this end, we letQk = VkΛkV Tk
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(a) Sparsity pattern.
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n
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(b) Graph of the sparsity pattern. Vertices corre-
spond to diagonal entries and edges correspond to
off-diagonal entries. The vertices and edges corre-
sponding to essential feasibility systems are marked
by solid lines.

Figure 5: Sparsity pattern and its graph for diagonal QCQPs.

be the eigendecomposition of Qk, and we introduce the new variables yk = V Tk x,
which results in the equivalent problem

minimize yT0 Λ0y0 + qT0 x

subject to yHk Λkyk + qTk x+ rk ≤ 0, yk = V Tk x, k = 1, . . . ,m,
(13)

which has additional variables and constraints.

The Shor relaxation of (13) is given by

minimize Λ0 • Y0 + qT0 x

subject to Λk • Yk + qTk x+ rk ≤ 0, yk = V Tk x, k = 1, . . . ,m,[
1 yTk
yk Yk

]
� 0, k = 0, . . . ,m,
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and substituting V Tk x for yk, we have

minimize Λ0 • Y0 + qT0 x

subject to Λk • Yk + qTk x+ rk ≤ 0, k = 1, . . . ,m,[
1 xTVk

V Tk x Yk

]
� 0, k = 0, . . . ,m,

where Y0, . . . , Ym ∈ Sn and x ∈ Rn are the variables. It is clear from (5) that
the coupling of the constraints comes from the original variable x, and that the
lifting (the diagonalization) has made the problem more decoupled. Consider,
in particular, the case without linear terms (qk = 0, k = 0, . . . ,m), which will
be diagonalized and relaxed to

minimize Λ0 • Y0

subject to Λk • Yk + rk ≤ 0, k = 1, . . . ,m,[
1 xTVk

V Tk x Yk

]
� 0, k = 0, . . . ,m.

For any feasible Y0, . . . , Ym it is always possible to choose x = 0 without changing
the objective or compromising feasibility. In other words, x can be eliminated
from the relaxation. However, in the case where qk 6= 0, the values of qk play a
significant role, and the analysis becomes more cumbersome. This example illus-
trates that without the presence of linear terms, the diagonalization decouples
the variables.

Future Research

The results in this paper rely on the assumption that the sparsity graph as-
sociated with the QCQP of interest is a tree or a forest. A natural question
to ask is therefore if similar results can be derived for other types of structure
which would make it possible to construct exactness conditions for other classes
of QCQPs.

Another topic of interest is techniques for tightening SDP relaxations. One such
approach is to add valid cuts (additional constraints) to the relaxation (R); see,
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for example, [16]. The strengthened SDP relaxation is a relaxation of the same
problem as the (standard) SDP relaxation, but it is generally stronger and will
be exact for a larger set of problem instances. Therefore, it is tempting to
believe that one can guarantee exactness for the strengthened SDP relaxation
for more instances.

6 Conclusions

We have presented new conditions for the exactness of the SDP relaxation of
homogeneous QCQPs with forest structure. These can be checked a priori and
in polynomial time by solving n− 1 SOCPs, where n is the number of variables
in the problem. When the conditions hold for a given problem, we propose
a new way to guarantee exactness for problems that are similar to the given
problem. When our conditions do not hold for a given problem that does have
an exact SDP relaxation and satisfies a technical condition, we explore a way to
guarantee exactness for problems with data {αk}mk=1 that are similar to those
in the given problem. We presented a numerical example to demonstrate the
theory.
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Appendix D

Details for Chapter 3 and
Paper C

D.1 Feasibility System as a SOCP

In this section we outline how to solve a feasibility system as a second-order
cone program.

Let
Qn =

{
(t, x) ∈ R× Rn−1 | t ≥ ‖x‖2

}

denote the second-order cone of order n and let

Qnr =
{

(s, t, x) ∈ R× R× Rn−2 | 2st ≥ ‖x‖22 , s, t ≥ 0
}

denote the rotated second-order cone, such that

x ∈ Qn ⇔ Tnx ∈ Qnr

where

Tn =
1√
2




1 1 0
1 −1 0

0 0
√

2In−2


 .



168 Details for Chapter 3 and Paper C

Fixing i and j, a single feasibility system takes the form

�nd λ

subject to Eij • Y (λ) = 0

Ēij • Y (λ) = 0

Y (λ) � 0, λ � 0.

(D.1)

Letting E denote the aggregate sparsity pattern of the matrices {Ak}mk=0, and
SnE denote the set of symmetric matrices of order n with sparsity pattern E, we
can formulate the problem as

�nd λ

subject to Eij • Y (λ) = 0

Ēij • Y (λ) = 0

Y (λ) ∈ Sn+ ∩ SnE , λ � 0.

(D.2)

Since the sparsity graph of E is a tree, and therefore chordal, the cone of positive
semide�nite matrices with sparsity pattern E can be decomposed ([83], Theorem
9.2) as

Y (λ) =
∑

β∈C
PTβ HβPβ , Hβ � 0 (D.3)

where C is the set of cliques, and the matrix Pβ �picks out� the right elements
to be multiplied with the clique. This means that we can replace the PSD
constraint on Y (λ) with PSD constraints on smaller matrices for each clique, so
long as we make sure that the sum of overlapping elements is consistent with the
element in Y (λ). For our speci�c problem (homogeneous QCQPs with forest
structure) all cliques consist of two nodes, so we can denote the set of cliques
by

C = {(k, l) : (k, l) ∈ E},
so the decomposition (D.3) consists of n − 1 2 × 2 matrices. Denoting the
elements of these matrices by

Hkl =

[
αkl γkl
γkl βkl

]
,

the constraint Hkl � 0 is equivalent to the rotated quadratic cone constraint
(nonnegative determinant)

αklβkl ≥ |γkl|2 ⇔




αkl
βkl√

2 Re(γkl)√
2 Im(γkl)


 ∈ Q

4
r.
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In conclusion the constraint Y ∈ Sn+∩SnE can be replaced by n−1 rotated second-
order cone constraints, and 2n−1 equality constraints (n diagonal elements and
n− 1 o�-diagonal elements). The o�-diagonal elements are non-overlapping, so
the sum consists of a single element, becoming

Ykl = γkl.

The diagonal elements give rise to the equality constraints

Ykk =
∑

l∈adj+(k)

αkl +
∑

l∈adj−(k)

βkl, (D.4)

where adj+(k) and adj−(k) denotes the upper and lower adjacency sets for vertex
k with respect to some ordering. Using these in place of the matrix equality,
the feasibility problem becomes the SOC given by

�nd λ ∈ Rm (D.5a)

subject to Yij = [A0]ij +

m∑

p=1

λp[Ap]ij = 0 (D.5b)

Ykl = [A0]kl +

m∑

p=1

λp[Ap]kl, k = l ∨ (k, l) ∈ E (D.5c)

Ykl = γkl, (k, l) ∈ E (D.5d)

Ykk =
∑

l∈adj+(k)

αkl +
∑

l∈adj−(k)

βkl, k = 1, 2, . . . , n (D.5e)




αkl
βkl√

2 Re(γkl)√
2 Im(γkl)


 ∈ Q

4
r, (k, l) ∈ E (D.5f)

λ � 0 (D.5g)

Note that the equalities (D.5b)�(D.5d) are complex when the matrices are com-
plex.



170 Details for Chapter 3 and Paper C



Appendix E

Details for Chapter 4 and
Paper B

E.1 Implementation

Here we outline some details for the implementation of the separation problem of
paper B. An implementation can be found at https://github.com/A-Eltved/
strengthened_sdr.

E.1.1 Generating Instances with a Known Interior Point

The separation procedure assumes that F has a non-empty interior. A way to
ensure that this is the case for our experiments is to generate instances with a
known interior point x̂ that can be used in the separation, where we need the
rank-1 matrix Ŷ . The important observation that makes this possible is that
we can choose a after everything else is �xed to make sure that F has interior
(e.g., a→ −∞ and r < R).

Let U(l, u) denote the uniform probability distribution over the interval [l, u]
and let N (µ,Σ) denote the normal distribution with mean µ and covariance Σ.

https://github.com/A-Eltved/strengthened_sdr
https://github.com/A-Eltved/strengthened_sdr
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We can generate instances by following Algorithm 1.

Algorithm 1: Generate instances with a known interior point

Result: r,R, a ∈ R; b, c ∈ Rn; x̂ ∈ int(F)
Input: Problem dimension n;
Parameters: β = 1 (width of uniform distribution for a);
R← 1;
r ← U(0, R) (draw from uniform distribution);
x̃← N (0, I);
r̃ ← U(r,R);
x̂← x̃

‖x̃‖ r̃;

b← N (0, I);
c← N (0, I);
amax ← bT x̂− ‖x̂− c‖;
a← U(amax − β, amax);

E.1.2 Computing [c]max

We compute [c]max by doing bisection over the interval [0, ‖c‖] as outlined in
Algorithm 2.

Algorithm 2: Compute [c]max by bisection

Result: [c]max

Input: problem data r,R, a ∈ R and b, c ∈ Rn;
Parameters: ε = 10−5 (tolerance for bisection interval);
Local variables: l, u (lower and upper bound) and µ, v;
l← 0;
u← ‖c‖;
while u− l > ε do

µ← l + u−l
2 ;

v ← min{µxTx− rcTx : ‖x‖ ≤ R, ‖x− c‖ ≤ bTx− a};
if v < 0 then

l← µ;
else

u← µ;
end

end
[c]max ← u;
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E.1.3 The Cone R̂

For the separation problem we need the cone R̂ ⊆ Sn+1
+ for the chosen relax-

ation. In the following we state this cone for the Shor relaxation Rshor and the
Shor relaxation intersected with the KSOC constraint Rshor ∩Rksoc.

E.1.3.1 Shor

We wish to implement the separation procedure for the relaxationRshor of (4.6),
which takes the form

min H •X + 2 gTx (E.1a)

subject to γ2 ≤ tr(X) ≤ ν2 (E.1b)

tr(X)− 2 cTx+ cT c ≤ bbT •X − 2α bTx+ α2 (E.1c)

0 ≤ bTx− α (E.1d)

Y (x,X) � 0 (E.1e)

To do the separation we need to write it in the form of Y (x,X) ∈ R̂, where R̂
is a closed convex cone. De�ne the matrices

A1 :=

(
−γ2 0

0 I

)

A2 :=

(
ν2 0
0 −I

)

A3 :=

(
α2 − cT c cT − αbT
c− αb bbT − I

)

A4 :=

(
−α 1

2b
T

1
2b 0

)

and the half spaces

H1 := {Y (x,X) : A1 • Y (x,X) ≥ 0}
H2 := {Y (x,X) : A2 • Y (x,X) ≥ 0}
H3 := {Y (x,X) : A3 • Y (x,X) ≥ 0}
H4 := {Y (x,X) : A4 • Y (x,X) ≥ 0}.

Let R̂shor := Sn+1
+ ∩ H1 ∩ H2 ∩ H3 ∩ H4, where Sn+1

+ denotes the cone of
symmetric positive semide�nite matrices of order n + 1, and note that this is
the intersection of closed cones and therefore closed. Then we can write the
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Shor relaxation as

min

(
0 gT

g H

)
• Y (x,X) (E.2a)

subject to Y (x,X) ∈ R̂shor (E.2b)

Using that, for a pair of cones K1 and K2, the dual of the intersections is
(K1∩K2)∗ = K∗1 +K∗2 (where + denotes set addition {u+v : u ∈ K∗1 , v ∈ K∗2}),
we have

R̂∗shor = (Sn+1
+ ∩H1 ∩H2 ∩H3 ∩H4)∗

= (Sn+1
+ )∗ +H∗1 +H∗2 +H∗3 +H∗4

= Sn+1
+ +R1 +R2 +R3 +R4

where Ri is the ray given by

Ri := {ζAi : ζ ≥ 0}

For the Shor relaxation, we have the separation problem:

min Cq • Jq + Cl • Jl − tr(X̄)[q + l]min

subject to Jq ∈ R̂∗, Jl ∈ R̂∗, Jq + Jl −
(

[q + l]min 0T

0 0

)
∈ R̂∗

[Jl]2:n+1,2:n+1 = 0, [q + l]min ≥ 0, Ŷ • Jq ≤ 1, Ŷ • Jl ≤ 1

where the variables are Jl, Jq ∈ Sn+1 and [q + l]min ∈ R. The data is

Cq := R2

(
1 x̄T

x̄ X̄

)

and

Cl :=

(
[Cl]11 [Cl]

T
•1

[Cl]•1 0

)
.

where

[Cl]11 := (r +R)(bT x̄− a)− rR+ cT x̄+ [c]maxR,

[Cl]•1 := (r +R)(X̄b− ax̄)− rRx̄+ X̄c+ [c]maxRx̄.

For the r = 0 cut mentioned in Corollary 1 of Paper B, the objective is di�erent
in the separation: we have

Cl :=

(
R(bT x̄− a) + cT x̄+ [c]maxR

(
R(X̄b− ax̄) + X̄c+ [c]maxRx̄

)T
R(X̄b− ax̄) + X̄c+ [c]maxRx̄ 0

)
,
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while Cq stays the same.

With the Shor dual cone given, we can write the separation problem as

min Cq • Jq + Cl • Jl − tr(X̄)[q + l]min

Jq = Zq +

4∑

i=1

ζiqAi

Zq � 0, ζiq ≥ 0, i = 1, . . . , 4

Jl = Zl +

4∑

i=1

ζilAi

Zl � 0, ζil ≥ 0, i = 1, . . . , 4

Jq + Jl −
(

[q + l]min 0T

0 0

)
= Zq+l +

4∑

i=1

ζiq+lAi

Zq+l � 0, ζiq+l ≥ 0, i = 1, . . . , 4

[Jl]2:n+1,2:n+1 = 0, [q + l]min ≥ 0, Ŷ • Jq ≤ 1, Ŷ • Jl ≤ 1

where the variables are Jl, Jq, Zq, Zl, Zq+l ∈ Sn+1 and
[q + l]min, ζ

1
q , . . . , ζ

4
q , ζ

1
l , . . . , ζ

4
l , ζ

1
q+l, . . . , ζ

4
q+l,∈ R.

E.1.3.2 Shor and KSOC

We wish to implement the separation procedure for the relaxation Rshor∩Rksoc

of (4.6), which takes the form

min H •X + 2 gTx (E.3a)

subject to r2 ≤ tr(X) ≤ R2 (E.3b)

tr(X)− 2 cTx+ cT c ≤ bbT •X − 2 a bTx+ a2 (E.3c)

0 ≤ bTx− a (E.3d)

Y (x,X) � 0 (E.3e)
(
R xT

x R I

)
⊗
(
bTx− a xT − cT
x− c (bTx− a)I

)
� 0. (E.3f)

To do the separation we need to write it in the form of Y (x,X) ∈ R̂, where R̂
is a closed convex cone.

Compared to the Shor cone in the previous section we need to incorporate the
Kronecker constraint (E.3f). To this end, we de�ne a (n+ 1)2× (n+ 1)2 matrix,
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B, where each element is formed as the inner product of a matrix Bijpq and
Y (x,X). The structure of B is block-arrow with arrow n+ 1×n+ 1 blocks and
the pq index determines the block while the ij index determines the element
within that block. We will use zero-indexing such that the indices run from
0, 1, . . . , n.

The diagonal elements of the large matrix are formed with the matrix

Bijpq =
R

2

(
−2a bT

b 0

)
, i = j, p = q.

The row and column elements of this diagonal block is given by

Bijpq = Bjipq =
1

2

(
0 −aeTj
−aeTj ejb

T + beTj

)
, i = 0, j = 1, . . . , n, p = q.

The qth block row (column) of the �rst block column (row) has the diagonal

Bijpq = Bijpq =
R

2

(
−2cq eTq
eq 0

)
, i = j, p = 0, q > 0.

The �rst column/row of these blocks are given by

Bijpq = Bijpq =
1

2

(
0 −cqeTj

−cqej eje
T
q + eqe

T
j

)
, i = 0, j > 0, p = 0, q > 0.

For all other elements we have

Bijpq = 0.

We can now form the elements of the large matrix with elements

Bp(n+1)+i,q(n+1)+j = Bijpq • Y (x,X).

We will denote the matrix as (Bijpq •Y (x,X)) to emphasize the dependency on
Y (x,X). With this we can de�ne the cone

Kksoc := {Y (x,X) : (Bijpq • Y (x,X)) � 0}.

Then we can de�ne the closed convex cone

R̂shor+ksoc := Sn+1
+ ∩H1 ∩H2 ∩H3 ∩H4 ∩Kksoc

with dual cone

R̂∗shor+ksoc := Sn+1
+ +R1 +R2 +R3 +R4 +K∗ksoc,
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where
K∗ksoc = {

∑

ijpq

wijpqBijpq : W = (wijpq) � 0}.

Here the sum runs over the indices of the large matrix, so that it has (n+1)2(n+
1)2 = (n+ 1)4 terms.

With the dual cone given, we can write the separation problem as

min Cq • Jq + Cl • J l − tr(X̄)[q + l]min

Jq = Zq +

4∑

i=1

ζqi Ai +
∑

ijpq

wqijpqBijpq

Zq � 0, ζqi ≥ 0, i = 1, . . . , 4, (wqijpq) � 0

J l = Zl
S+

+

4∑

i=1

ζliAi +
∑

ijpq

wlijpqBijpq

Zl � 0, ζli ≥ 0, i = 1, . . . , 4, (wlijpq) � 0

Jq + J l −
(

[q + l]min 0T

0 0

)
= Zq+l +

4∑

i=1

ζq+li Ai +
∑

ijpq

wq+lijpqBijpq

Zq+l � 0, ζq+li ≥ 0, i = 1, . . . , 4, (wq+lijpq) � 0

H l = 0, [q + l]min ≥ 0, Ŷ • Jq ≤ 1, Ŷ • J l ≤ 1

E.2 Separation of Slab Inequalities in the Con-

vex Case

In this section we consider the special case when γ = 0 and restrict the nonneg-
ative functions to be given by a slab (q(x) := µ− sTx and l(x) := sTx− λ) as
described in Section 2.1 of Paper B. Note that we can take [c]max = 0, so the
cuts become

R2(µ−sTx)+R(bsT •X−asTx−λ(bTx−a))−(µ−λ) tr(X)+csT •X−λcTx ≥ 0.
(E.4)

The following Theorem and proof describes the separation procedure in this
special case.

Theorem E.1 If r = 0, the slab inequalities (E.4) are separable in polynomial
time.
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Proof. We will refer to a slab by its tuple (λ, s, µ). The proof is motivated by
the observation that λ, s, and µ appear linearly in (E.4). Let (x̄, X̄) be given.
We wish to determine whether (x̄, X̄) ∈ Rslab and, if not, to �nd a slab (λ, s, µ)
and corresponding inequality (E.4) separating (x̄, X̄) from Rslab.

Let fx̄,X̄(λ, s, µ) denote the linear function of (λ, s, µ) de�ning the left-hand side
of (E.4) when (x,X) is �xed at the values (x̄, X̄), and consider the optimization

minimize
λ,s,µ

fx̄,X̄(λ, s, µ) (E.5a)

subject to λ ≤ min
x∈F

sTx (E.5b)

max
x∈F

sTx ≤ µ (E.5c)

Note that (E.5b)�(E.5c) enforce that (λ, s, µ) is a valid slab. If the optimal value
of (E.5) is negative, then any optimal slab (λ, s, µ) yields a SI (E.4) that cuts o�
(x̄, X̄). On the other hand, if the optimal objective value is nonnegative, then
we have proven (x̄, X̄) ∈ Rslab.

We claim that (E.5) can be expressed as a SOCP of polynomial size. First, as
mentioned above, the objective is linear. Second, consider the constraint (E.5b),
which ensures that λ is no larger than the minimum value of sTx over x ∈ F .
With both s and x varying, (E.5b) contains the bilinear term sTx. However, as
is standard, this constraint is equivalent to forcing λ to be no larger than the
objective value of a feasible point for the dual of min{sTx : x ∈ F}:

maximize
λ1,λ2∈R, y1,y2∈Rn

−Rλ1 + aλ2 + cT y2 (E.6a)

subject to s = λ2b+ y1 + y2 (E.6b)

‖y1‖ ≤ λ1, ‖y2‖ ≤ λ2 (E.6c)

Constraint (E.5c) can be handled similarly. The resulting SOCP is

minimize
λ,s,µ,λ1,λ2,y1,y2,µ1,µ2,z1,z2

fx̄,X̄(λ, s, µ) (E.7a)

subject to λ ≤ −Rλ1 + aλ2 + cT y2 (E.7b)

s = λ2b+ y1 + y2 (E.7c)

‖y1‖ ≤ λ1, ‖y2‖ ≤ λ2 (E.7d)

µ ≥ Rµ1 − aµ2 − cT z2 (E.7e)

s = −µ2b− z1 − z2 (E.7f)

‖z1‖ ≤ µ1, ‖z2‖ ≤ µ2 (E.7g)

We can solve this SOCP in polynomial time, which means that we can separate
the slab inequalities over all valid slabs in polynomial time.
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E.3 Orthogonal Inequalities

In this section we present some results for the orthogonal generalization de-
scribed in Section 4.2 for a special case of problem (4.6) where r = 0. In this
case, the SOCs can be combined with an orthogonal matrix Q ∈ On to form

b− aTx+Q • (x− c)xT =

(
1

Qx

)T(
bTx− a
x− c

)
≥ 0.

Relaxing, we obtain the valid inequality

bTx− a+Q • (X − cxT ) ≥ 0. (E.8)

We call the class of all such inequalities the orthogonal inequalities (abbreviated
OIs), and we de�ne Rorth to be the set of all (x,X) satisfying all OIs.

The following result establishes that the OIs are separable in polynomial time.

Theorem E.2 The orthogonal inequalities (E.8) are separable in polynomial
time over all Q ∈ On at the cost of a singular value decomposition of size n×n.

Proof. With (x,X) at �xed values (x̄, X̄), the separation problem involves
minimizing the linear objective bT x̄−α+Q•(X̄−cx̄T ) over Q ∈ On. As On is a
compact set, let Q∗ be an optimal orthogonal matrix. If the optimal value at Q∗

is negative, then we have discovered a violated cut using Q∗; otherwise, we have
proven that (x̄, X̄) ∈ Rorth. Hence, separation amounts to linear minimization
over On.

We next argue that, for any square matrix M ∈ Rn×n, M •Q can be minimized
over Q ∈ On in polynomial time. First, suppose thatM is nonnegative diagonal
so that M • Q = M11Q11 + · · · + MnnQnn with every Mjj ≥ 0. Noting that
each Qjj satis�es |Qjj | ≤ 1, then Q∗ should be diagonal with each Q∗jj = −1,
i.e., Q∗ = −I, to ensure that M •Q∗ is indeed minimum. Now suppose that M
is not diagonal, and let M = UΣV T be its singular value decomposition with
U, V orthogonal and Σ nonnegative diagonal. Then the change of variables Q̃ =
V QUT shows that min{M •Q : Q ∈ On} is equivalent to min{Σ • Q̃ : Q̃ ∈ On},
i.e., the non-diagonal case reduces to the diagonal case.

The following result establishes that the orthogonal generalization of the slab
inequalities (E.4) does not improve the relaxation with just the slab inequalities
when c = 0.

Proposition E.3 When c = 0, the optimal orthogonal matrix is Q∗ = −I.
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Proof. Suppose c = 0. Then the orthogonal generalization of the slab inequal-
ities (E.4) is

R2(µ− sTx) +RsbT •X −RasTx−Rλ(bTx− a) +Q • ((µ− λ)X) ≥ 0. (E.9)

Minimizing this over Q ∈ On for �xed (x,X) corresponds to minimizing the
term Q•X, since µ−λ ≥ 0. Since X � 0, we can make an eigenvalue decompo-
sition as X = V ΣV T , where V is an orthogonal matrix and Σ is diagonal with
nonnegative diagonal elements. Hence, we have

Q •X = tr(QTX) = tr(QTV ΣV T ) = tr(V TQTV Σ).

Since Q and V are both orthogonal and Σ is diagonal with nonnegative elements,
we must have

V TQTV = −I ⇐⇒ Q = −I,
as desired.



Appendix F

Details for Chapter 5

F.1 Upper Bound on Squared Current Magni-

tude

One way to obtain an upper bound is to consider the power injection and the
voltage bounds at the node. From the power balance (5.1b) we have that

i∗k =
s̃k
vk

(F.1)

Lemma 1 For two complex numbers a, b ∈ C we have

∣∣∣a
b

∣∣∣ =

∣∣∣∣
|a| eiθa
|b| eiθb

∣∣∣∣ =
|a|
|b|

∣∣∣∣
eiθa

eiθb

∣∣∣∣ =
|a|
|b|
∣∣∣ei(θa−θb)

∣∣∣ =
|a|
|b|

Taking the squared magnitude we have

|ik|2 =

∣∣∣∣
s̃k
vk

∣∣∣∣
2

=
|s̃k|2

|vk|2
≤
∣∣s̃k
∣∣2

V 2
k

(F.2)
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The upper bound on the complex power injection can be obtained by the gen-
eration limits

∣∣s̃k
∣∣2 =


max




∑

g∈Gk

P g − Re(Sdk),−
∑

g∈Gk

P g − Re(Sdk)








2

(F.3)

+


max




∑

g∈Gk

Qg − Im(Sdk),−
∑

g∈Gk

Q
g
− Im(Sdk)








2

(F.4)

F.2 Diagonalization

Here, we outline a diagonalization approach for the OPF problem (5.1). The
idea is to exploit the rank-1 nature of Y HekeTk .

Consider a complex matrix M = abH , where

a = Y Hek, b = ek. (F.5)

The matrix can be decomposed into two Hermitian matrices

M+ =
1

2

(
abH + baH

)
(F.6)

and
M− =



2

(
abH − baH

)
. (F.7)

The original matrix is given byM = M++M−. The �rst matrix is diagonalized
by

1

4
M+ = (a+ b)(a+ b)H − (a− b)(a− b)H

The same vectors ((a+b) and (a−b)) can be used to factorM− = 2
(
abH − baH

)

as

1

4
M− = (a+ b)(a− b)H − (a− b)(a+ b)H

The constraint for active/reactive power in these variables is can be expressed
as

vHM+v = p̃ (F.8)

vHM−v = q̃ (F.9)

(F.10)
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Introducing the linear constraints

xk,1 = (a+ b)Hv (F.11)

xk,2 = (a− b)Hv (F.12)

we can write (F.8) as
x∗k,1xk,1 − x∗k,2xk,2 = 4p̃k (F.13)

and (F.9) as
x∗k,1xk,2 − x∗k,2xk,1 = 4q̃k (F.14)

Note that we introduce two new variables for each bus.
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