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Abstract (in English)
Future low-carbon societies will be driven by renewable energy
sources (e.g. wind and solar power). This will flip the character-
istics of our power system from a production-tracking-consumption
paradigm, to a consumption-tracking-production paradigm. This will
increase the need of complex coordination of our power consumption
as power grids require a strict balancing between power produc-
tion and consumption. This dissertation investigates the poten-
tial of applying nonlinear model predictive control algorithms to
solve complex power market coordination problems, where flexible
consumers leverage the more volatile balancing power prices and
thereby in-directly help neutralizing production and consumption
imbalances.

This dissertation only considers continuous-discrete stochastic
models. Paper A provides a tutorial on how to formulate the entire
algorithm-stack of nonlinear model predictive control algorithms
where system dynamics are governed by stochastic differential equa-
tions with discrete-time observations. The techniques introduced
in Paper A are applied in four case-studies relating to energy sys-
tems. Paper F introduces a new filtering technique that generalizes
the observational model to contain general likelihood models.

Paper B and Paper C propose an optimal control problem to operate
the aeration equipment at wastewater treatment plants with the
criteria to minimize the operational costs and the accumulated
nutrient concentrations of the discharged effluent.

Paper D considers the operation of a non-invasive ice-tank module
added to a small retail refrigeration system located at Danfoss’
test-facility in Nordborg, Denmark. It is shown that the ice-
tank is an efficient method for curtailing the power consumption of
the refrigeration system, without re-arranging and modifying the
entire piping and general hardware infrastructure.

Paper E presents an optimization technique to optimally leverage
the volatile power prices observed in the Northern European reg-
ulating power market using a Vanadium redox-flow battery. This
paper shows that the payback time of investing in grid-scale flow-
batteries are approximately seven years, when implementing this
optimization-based trading strategy.
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Abstract (in Danish)
Fremtidens samfund uden fossile brændstoffer vil primært være
drevet af bæredygtige energikilder som eksempelvis vind og solen-
ergi. Dette vil betyde, at vores elsystem vil gennemgå et paradigme-
skift fra et system, hvor elproduktionen følger elforbruget, til
et system, hvor elforbruget skal følge den varierende elproduk-
tion. Dette vil øge behovet for en kompleks koordinering af vores
elforbrug, i og med at vores elsystem kræver en tæt balancering
mellem elproduktion og forbrug. Denne afhandling undersøger po-
tentialet i at bruge ikke-lineær model prædiktiv regulering til at
løse kompleks koordinering blandt elforbrugere i vores fælles el-
marked. Fleksible forbrugere kan udnytte høj variation i volatile
regulerkraftspriser og derigennem indirekte hjælpe elsystemet med
at neutralisere ubalancer i vores elsystem.

Denne afhandling er afgrænset til udelukkende at håndtere kontinuert-
diskrete stokastiske modeller. Artikel A giver en introduktion
til, hvordan man kan formulere hele algoritme-behovet for ikke-
lineære model prædiktiv reguleringsmetoder, der er drevet af sto-
kastiske differentialligninger med diskrete observationer. Artikel A
danner grundlag for de fire anvendelser, der er arbejdet med i denne
afhandling med relation til energisystemer. Artikel F introducerer
en ny filterteknik, der generaliserer observationsligningen til at
kunne håndtere generelle likelihood observationsmodeller.

Artikel B og Artikel C foreslår en optimeringsbaseret metode til at
regulere beluftningsudstyret hos spildevandsanlæg. Kriteriet for
denne metode er at reducere de operationelle omkostninger samtidigt
med at reducere den akkumulerede koncentration af næringsstoffer i
det udledte spildevand.

Artikel D undersøger, hvordan man kan koordinere det simultane
system bestående af en istank og et kølesystem. Denne testopstill-
ing er sat op hos Danfoss i Nordborg, Sønderjylland. Formålet i
Artikel D er at bekræfte hypotesen, at det er muligt at aflaste
strømforbruget af et kølesystem ved at bruge en ikke-invasiv is-
tankstilkobling og dermed undgå at skulle omlægge rør og ændre den
generelle hardware infrastruktur i kølesystemet.

Artikel E præsenterer en optimeringsbaseret teknik, hvormed man
kan udnytte de volatile elpriser, der optræder på det nordiske
regulerkraftsmarked. Dette studie viser, hvordan man kan bruge
et vanadium redox-flow batteri til at skabe et sikkert afkast,
hvor man udnytter tidsvarierende elpriser på tværs er forskellige
elmarkeder. Artikel E påviser, at tilbagebetalingstiden på bat-
teriet, ved at anvende en optimeringsbaseret metode, er ca. 7
år.
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1 Introduction
In 2019, Denmark passed their first ever Climate Bill, committing to
reduce greenhouse gas emissions by more than 70 % by 2030 compared
to the emission levels of 1990 [1]. This will increase the demand
of renewable energy sources (e.g. wind and solar power) in the
Danish power system to satisfy the existing power consumption of
the power system, but also to saturate the future power demand from
e.g. large power-to-x plants.

One of the most important features of our power system is grid bal-
ancing. Traditionally, it has been large centralized power plants
which have had the role of maintaining coherency between power
production and consumption. However, with an increasing share of
renewable energy sources - and thereby indirectly a decreasing
share of traditional power production from e.g. power plants - the
grid balancing responsibility is slowly transitioning from being
production-based to being consumption-based. This will increase
the importance of coordination between transmission system opera-
tors, distribution system operators and consumers. Consumers who
are able to shift their power demand in time, are often framed as
flexible consumers in the literature [2]; but to unlock this flexi-
bility, consumers have to be incentivised [3, 4]. In Scandinavia
(Denmark, Finland, Norway and Sweden), the regulating power market
provides a market-based mechanism for consumers to price their
flexibility [5] and through this mechanism help the transmission
system operator to balance the power system.

This dissertation applies stochastic modelling in continuous-time
and nonlinear model predictive control to optimize a range of
industrial processes to achieve cost-efficient operation. This is
done by leveraging time-varying power prices, from different power
markets available in Northern Europe, to monetize the potential
flexibility embedded in the industrial processes. The optimization
framework is applied to three industrial processes:

• Wastewater treatment: bio-chemical processes, that remove nu-
trients from the incoming wastewater, can be a very efficient
tool for providing short-term flexibility. Paper B and Paper C
implement and backtest methods for cost-efficient operation of
aeration equipment at wastewater treatment plants.

• Supermarket refrigeration: using an ice-tank it is possible to
curtail the power load of large refrigeration systems. Paper D
tests the cost-savings potential of adding an ice-tank to a
small refrigeration system located at the Danfoss test-facility
in Nordborg, Denmark.

• Vanadium redox-flow battery: flow batteries have a long dura-
bility and can be used to arbitrage time-varying power prices
across multiple power markets and horizons. Paper E presents
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an optimization method based on an optimal control problem,
which can arbitrage varying power prices across multiple mar-
kets.

The publications described above, all use an optimal control formu-
lation and apply the nonlinear model predictive control principle.
In Paper A, a tutorial, on how to formulate the entire algorithm-
stack for nonlinear model predictive control methods, is given.
The entire formulation is based upon continuous-discrete systems
with a continuous-time stochastic model given by a stochastic dif-
ferential equation and discrete-time observational model.

The following sections briefly introduce key concepts contained in
this dissertation and puts the scientific work in context to current
state-of-the-art.

1.1 Stochastic modelling in continuous-time
The starting-point for any dynamical optimization problem is a
dynamical model. This dissertation only focuses on stochastic
modelling in continuous-time with discrete-time observations. The
class of models considered are stochastic differential equations on
the form

x(t) = x0 +

∫ t

0
f(x(τ), u(τ); θ)dτ +

∫ t

0
g(x(τ), u(τ); θ)dω(τ), (1.1)

where x is the state vector, u is the input vector and θ is the
parameter vector. A practical introduction to stochastic differen-
tial equations is given in the next chapter and a more theoretical
introduction to this topic is given in [6, 7].

1.2 Stochastic control theory
Stochastic control theory provides the ultimate formalism to for-
mulate optimization problems of dynamical system with stochastic
disturbances. [8] and [9] define a general stochastic control
problem according to

min
x,u

E
[∫ T

0
q(x(t), u(t))dt+ qf (x(T ))

]
, (1.2a)

s.t.

x(t)= x0 +

∫ t

0
f(x(τ), u(τ); θ)dτ +

∫ t

0
g(x(τ), u(τ); θ)dω(τ), (1.2b)

u(t) ∈ U(t) for t ∈ [0, T ] . (1.2c)

In (1.2a), the objective function is defined using the expectation
operator, E[ · ]. The applications considered in this dissertation,
typically define the objective function according to time-varying
power prices. Thus, the states or controllable inputs will typ-
ically relate to the power consumption of the system and (1.2a)
will relate this consumption to an economic cost. (1.2b) is the
dynamical model (a stochastic differential equation) and (1.2c) is
the physical constraints of the controllable variable, u.

Stochastic Control Theory 3



In general, it is numerically (and analytically) intractable to
solve a general stochastic control problem of the form (1.2) using
existing methods. However, in some special cases it is possible
to solve (1.2); e.g. if the stochastic model in (1.2b) is linear
(or Gaussian) and the objective function (1.2a) is quadratic (or
linear). A Gaussian model with a quadratic objective function
defines the so-called linear-quadratic regulator [8, 9]. This
regulator is an optimal linear feedback strategy (i.e. u(t) = Kx(t)
for a suitable, possibly time-varying, matrix K). However, for
general nonlinear and non-Gaussian models, there exists few (if
any) computationally tractable solution methods.

One numerically tractable framework for solving (1.2) is nonlinear
model predictive control. This framework uses the perpetual data-
flow (or system feedback) to compute the optimal control strategy,
u, recursively [10–12].

1.3 Nonlinear model predictive control
Model predictive control is an advanced method for optimizing the
operation of dynamical systems; it is referred to as nonlinear
model predictive control, when the dynamics are nonlinear. The
general optimal control problem - solved recursively in nonlinear
model predictive control algorithms - have the form

min
xk,u

{∫ tk+T

tk

q(xk(t), u(t))dt+ qf (xk(T ))

}
, (1.3a)

s.t.

xk(t)= x0(tk) +

∫ t

tk

f(xk(τ), u(τ); θ)dτ , (1.3b)

u(t) ∈ U(t) for t ∈ [tk, tk + T ] . (1.3c)

Comparing to (1.2), xk denotes a single trajectory, representing
the time-varying probability distribution defined in (1.2b) and
x0(tk) denotes the initial value; this parameter will be updated
using a filtering technique, when new data, at time tk, is avail-
able. The problem (1.3) is solved recursively, when new data is
available; this recursive approach will be denoted the nonlinear
model predictive control principle.

1.4 Applications in energy systems
This dissertation contains three applications relating to cost-
efficient operation of energy systems.

The first application is the operation of the aeration equipment
at wastewater treatment plants. During the treatment process of
wastewater, oxygen is blown into treatment tanks to stimulate
certain bio-chemical processes under aerobic conditions. This
aeration process consumes a large fraction of the total power
consumption at wastewater treatment plants [13]. Periods with
aerobic conditions have to be succeeded by periods under anaerobic
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conditions to stimulate different bio-chemical processes. This
phase-switching strategy can be very flexible under some circum-
stances and can be used to leverage time-varying power prices
to ensure cost-efficient operation [14–16]. The results obtained,
through this dissertation, show that significant cost-savings are
available when intelligently coordinating the power prices across
multiple power markets with the dynamics governing nutrient con-
centrations at wastewater treatment plants.

The second application is the operation of a joint refrigeration
system consisting of a retail super market and an ice-tank mod-
ule. The ice-tank can switch between three modes: idle, charging
(accumulating ice) and discharging (curtailing the refrigeration
system by melting the stored ice). The ice-tank is added to the
refrigeration system using a sub-cooler attached to the return-
pipe from the refrigerated display-cases. In practice, this could
be the return-pipe from any refrigeration system (e.g. an HVAC
system). The results from this project show that an ice-tank is
an efficient, non-invasive method, for intelligent curtailment of
refrigeration systems.

The third application is a simulation study of optimal energy ar-
bitraging using a Vanadium redox-flow battery. A fixed-strategy for
the Northern European day-ahead market is derived and short-term
optimal control problems are used to optimally leverage the more
volatile regulating power prices. The impact of special regula-
tion due to a bilateral agreement between Denmark and Germany is
investigated, as this market feature demonstrates very attractable
power prices. The main conclusion is that the pay-back horizon of
flow batteries can be heavily reduced by operating a battery across
multiple power markets.

1.5 Outline
This dissertation is structured as follows:

• The first two chapters describe the theoretical scope. The first
chapter introduces stochastic modelling of continuous-discrete
systems. The second chapter describes numerical methods for
solving (deterministic) optimal control problems of the form
(1.3).

• The third chapter introduces the Northern European power market
and discusses how market participants can leverage time-varying
power prices to optimize and coordinate industrial processes.

• The fourth chapter summarizes the peer-reviewed scientific out-
put of this dissertation.

• The last (fifth) chapter discusses future work and the perspec-
tives of the methods and results contained in this disserta-
tion.

Stochastic Control Theory 5
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2 Stochastic modelling
in continuous time
This chapter introduces stochastic modelling in continuous-time us-
ing stochastic differential equations (SDEs). Two important topics
within the field of modelling using SDEs are introduced; namely state
and parameter estimation. The modelling methods applied in this
dissertation are often referred to as continuous-discrete methods,
since the dynamical model of the states is a continuous-time model
but the system is only observed in discrete-time. There will be
little theoretical attention given to a formal introduction of
SDEs. Instead, this chapter will focus on the more applied details
of using SDEs for optimal control purposes.

2.1 Stochastic differential equations
The general form of an SDE is

x(t) = x0 +

∫ t

0
f(x(τ), u(τ); θ)dτ +

∫ t

0
g(x(τ), u(τ); θ)dω(τ), (2.1)

or in short

dx = f(x, u; θ)dt+ g(x, u; θ)dω, (2.2)

where x : R→Rnx denotes the states, x0 is the initial value of the
states, u : R→Rnu is the known input variables, θ ∈ Rnθ is the model
parameters and ω : R→Rnω denotes a standard (possibly multivariate)
Brownian motion. Brownian motion is defined by its independent
increments which satisfy that for each s, t ∈ R, ω(t)−ω(s) is normally
distributed with zero mean and covariance Iω|t− s| (where Iω ∈ Rnω×nω

is the identity matrix). Another important property of a Brownian
motion, is that increments of ω on non-overlapping intervals are
independent random variables. f : Rnx×Rnu→Rnx is often referred
to as the drift function, while g : Rnx×Rnu→Rnx×Rnω is called the
diffusion function. For further reading, the author refers to [6,
7], which are more theoretical introductions to SDEs.

The systems considered in this dissertation are continuous-discrete
systems with continuous-time dynamics governed by (2.2) and discrete-
time observations. The most common observation equation seen in
the literature is given by

yk = h(x(tk); θ) + vk. (2.3)

Given Nobs + 1 observations {yk}Nobs
k=0 , the random variables {vk}Nobs

k=0 are
assumed to be independent and identically distributed; often it
is assumed that they follow a normal distribution. h : Rnx→Rny is
the observation function that relates the hidden state, x, with an
observation at time tk, yk.

Stochastic Control Theory 7



This chapter will use an example model to demonstrate and evaluate
the performance of the methods introduced later. This example
model is given by

dx =

[
x2

λ(1− x1)x2 − x1

]
dt+

[
0 0
0 σ

]
dω, (2.4)

where x = (x1, x2)
′. The parameter σ > 0 is the diffusivity and λ > 0

defines the stiffness [17] of the system and will be subject to
parameter estimation in a subsequent section. This SDE (2.4) is
often referred to as a stochastic extension to the Van der Pol
oscillator model [18].

It is very challenging to find analytical solutions to most SDEs
and hence numerical schemes have to be applied. The simplest
method for simulating a single realization of an SDE is called
the Euler-Maruyama method [6, 7]. This method is given by the
recursion

x(ti+1)− x(ti) = f(x(ti), u(ti); θ)(ti+1 − ti) + g(x(ti), u(ti); θ)dωi, (2.5)

where dωi is normally distributed with zero mean and covariance
Iω |ti+1 − ti|. This numerical scheme is also used in the theoretical
construction of Itô integrals [6, 7]. The integrals in (2.1) can
be constructed theoretically according to many different limiting
schemes [6, 7]; however, in this dissertation, these integrals
will be interpreted as Itô integrals.

In Figure 2.1, three realizations of the Van der Pol model (2.4)
are shown for parameter values σ = 1/2 and λ ∈ (1, 2, 5); increasing
stiffness of the system (2.4) is clearly observed for increasing
values of λ.

0 25 50
time

−10

−5

0

5

10

x
1,
x

2

λ = 5 (x1)

λ = 5 (x2)

λ = 2 (x1)

λ = 2 (x2)

λ = 1 (x1)

λ = 1 (x2)

Figure 2.1: Three SDE realizations of the Van der Pol model (2.4)
using the Euler-Maruyama method (2.5).
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2.2 State estimation
State estimation is a critical element in the algorithm-stack that
constitutes nonlinear model predictive control algorithms. The
main goal in state estimation is to reconstruct the system state x
at time tk given the previous observations {yj}kj=0. The literature
contains many state estimation methods for continuous-discrete
models: exact filtering [6]; the Kalman filter [19]; the extended
Kalman filter [6]; the unscented Kalman filter [20]; the unscented
particle filter [21] and the efficient iterated filter [22]. The state
estimation method is potentially a time-critical component of the
decision-making algorithm and hence the filtering method used has to
be computationally tractable. In general, exact filtering methods
are computationally intractable and hence filter approximations have
to be applied [6].

This section focuses on two different filtering techniques for
continuous-discrete models: the extended Kalman filter and a class
of Bayesian filtering techniques. But before these methods are
introduced and discussed, the filtering principle and the exact
filtering method are introduced.

2.2.1 The filtering principle
The ultimate goal for any state estimation method is to aggregate
the information given by the process model and the information
coming from the observations. In the continuous-discrete case,
where the process model is given by an SDE (2.1) and the observa-
tion model is given by a likelihood function, dk,lik, the filtering
principle defines two different distributions:

• the predicted (or prior) distribution dk,prior: this is the
conditional density function of x(tk) given all observations
prior to tk,

• the estimated (or posterior) distribution dk,post: this is the
conditional density function of x(tk) given all observations up
until (and including) tk.

The main goal of the filtering principle is to associate dk,prior and
dk,post in a recursive scheme using the observation model dk,lik at
every new observation. In the interval (tk, tk+1), x evolves according
to the SDE (2.1). Let dk : Rnx ×R → R denote the conditional density
function of x given the information accumulated until tk. For t ≥ tk,
dk is governed by the forward Kolmogorov equation [6]

dk(x, t) = dk,post(x)−
∫ t

tk

∇ ·
[
ν(x, τ ; θ)dk(x, τ)−D(x, τ ; θ)∇dk(x, τ)

]
dτ (2.6)

where the advective flow field, ν : Rnx × R → Rnx, and the diffusivity
tensor, D : Rnx × R → Rnx×nx, are given by

D =
1

2
gg′, (2.7a)

ν = f − divD. (2.7b)

Stochastic Control Theory 9



The new prior distribution at tk+1 is defined according to

dk+1,prior(x) = dk(x, tk+1). (2.8)

Bayes rule associates this prior distribution with the posterior
distribution using the new information observed at tk+1 such that

dk+1,post ∝ dk+1,priordk+1,lik. (2.9)

For the observational model (2.3) with normally distributed noise
variables with covariance Rk, the likelihood is given by

dk+1,lik(x) = (2π)−nx/2 det(Rk)
−1 exp

(
−1

2
(yk − h(x; θ))′R−1

k (yk − h(x; θ))

)
. (2.10)

To summarize; the filtering principle is defined by a time and data
update according to the following recursive scheme:

0. Set initial posterior distribution d0,post and set k = 0.

1. Time update: solve (2.6) to obtain dk+1,prior from (2.8).

2. Data update: compute dk+1,post according to Bayes rule (2.9).

3. Repeat from step [1.].

In many practical use-cases, the time-update is numerically in-
tractable as it involves solving a potentially high-dimensional
advection-diffusion problem as given by the forward Kolmogorov
equation (2.6). Hence, approximations have to be applied. The
following two sections introduce two methods to approximate this
exact filtering method.

2.2.2 Continuous-discrete extended Kalman filtering
The continuous-discrete extended Kalman Filter (CDEKF) is a compu-
tationally tractable alternative to the filtering problem stemming
from the continuous-discrete system in (2.2)-(2.3). The CDEKF
consists of two schemes: a prediction scheme (time update) and
an updating scheme (data update) [6, 18]. These schemes will be
defined in the following where x̂k|k ∈ Rnx and P̂k|k ∈ Rnx×nx denote the
filtered state and covariance estimates at time tk, and, x̂k : R→Rnx

and P̂k : R→Rnx×nx denote the predicted state and covariance values
on the interval (tk, tk+1). The CDEKF assumes independent and normally
distributed random variables {vk}Nobs

k=0 . In this section it is assumed
that vk follows a normal distribution with zero mean and covariance
Rk for any k = 0, ..., Nobs.

The prediction scheme (time update)
Given the initial conditions

x̂k(tk) = x̂k|k, (2.11a)

P̂k(tk) = P̂k|k, (2.11b)

the state- and covariance are predicted by solving the system of
ordinary differential equations (ODEs) given by

∂x̂k
∂t

= f(x̂k, u; θ), (2.12a)

∂P̂k

∂t
=

∂f

∂x
(x̂k, u; θ)P̂k + P̂k

∂f

∂x
(x̂k, u; θ)

′ + g(x̂k, u; θ)g(x̂k, u; θ)
′. (2.12b)

10 Stochastic Control Theory



The one-step predictions of the mean and covariance are obtained
as the solution of (2.11)-(2.12) at the new sample point tk+1.
Consequently, the predictions of the state and covariance are

x̂k+1|k = x̂k(tk+1), (2.13a)

P̂k+1|k = P̂k(tk+1). (2.13b)

The updating scheme (data update)
The literature contains many methods for the updating scheme of
extended Kalman filter algorithms. They all compute the innovation
(or the one-step prediction error) by

ek+1 = yk+1 − h(x̂k+1|k; θ), (2.14)

the Kalman filter gain by

Kk+1 = P̂k+1|k
∂h

∂x
(x̂k+1|k; θ)

′
[
∂h

∂x
(x̂k+1|k; θ)P̂k+1|k

∂h

∂x
(x̂k+1|k; θ)

′ +Rk+1

]−1

(2.15)

and the filtered state estimate by

x̂k+1|k+1 = x̂k+1|k +Kk+1ek+1. (2.16)

The key difference appears in the formulation of the calculation
of the filtered covariance. Two standard updating schemes for the
covariance are

P̂k+1|k+1 =

[
I −Kk+1

∂h

∂x
(x̂k+1|k; θ)

]
P̂k+1|k (2.17a)

= P̂k+1|k −Kk+1

[
∂h

∂x
(x̂k+1|k; θ)P̂k+1|k

∂h

∂x
(x̂k+1|k; θ)

′ +Rk+1

]
K ′

k+1. (2.17b)

Numerical implementations based on either (2.17a) or (2.17b) may
give rise to inferior performance (even divergence), as the nu-
merically computed values are not guaranteed to be both positive
(semi-) definite and symmetric. One alternative to (2.17a) and
(2.17b) is the Joseph stabilization form [18]. This formulation
(which is mathematically equivalent to (2.17a) and (2.17b)) of the
filtered covariance estimate is numerically guaranteed to be sym-
metric positive (semi-) definite [23]. Other numerically stable
alternatives are the so-called array and square root algorithms
[24]. However, these methods are omitted here.

Comparison to the exact filtering principle
The probability density function, p : Rn × Rn×n × Rn→R, of an n-
dimensional normally distributed random variable is given by

p (ξ; Σ, µ) = (2π)−n/2 det(Σ)−1/2 exp
(
−1

2
(µ− ξ)′Σ−1(µ− ξ)

)
, (2.18)

where µ ∈ Rn and Σ ∈ Rn×n are the mean and covariance, respectively.
The CDEKF implements two critical assumptions in the filtering
scheme:

Stochastic Control Theory 11



1. the prior distribution, dk+1,prior, is approximated by the normal

density function p
(
·; P̂k+1|k, x̂k+1|k

)
,

2. and the posterior distribution, dk+1,prior, is approximated by

the normal density function p
(
·; P̂k+1|k+1, x̂k+1|k+1

)
.

Thus, the CDEKF relies heavily on the assumption that these Gaussian
approximations are adequate. Furthermore, the CDEKF does not (di-
rectly) accommodate observation models with different structures
than defined in (2.3); the CDEKF linearizes the possibly nonlinear
observation function, h, to derive a closed-form solution to the
filtered state and covariance estimates. However, this lineariza-
tion is not strictly necessary. This is explained in more details
in the next section.

Example: the Van der Pol model
This section presents an example of using the CDEKF which is shown
in Fig. 2.2. It is assumed that the random variables from the
observation equation (2.3) are independent and follow a zero mean
normal distribution with covariance

Rk =
1

100

[
1 0
0 1

]
, ∀k ∈ {0, ..., Nobs}. (2.19)

It is also assumed that h is the identity mapping; i.e. that h(x) =
x. The sampling time is assumed to be constant; i.e. tk − tk−1 = 2.5
for any k ∈ {1, ..., Nobs}. The nonlinearity of the system is clearly
observed from the expanding and tightening prediction intervals
within one prediction horizon (tk, tk+1). In particular, this is
observed when x2 attains values greater than 2 or less than −2.
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95% prediction interval
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0 25 50
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−1
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Figure 2.2: State estimation using the CDEKF with λ = 1 and σ = 1/2.
The sampling time is assumed to be tk−tk−1 = 2.5 for any k ∈ {1, ..., Nobs}.
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Figure 2.3: Two steps of the CDEKF filtering process with λ = 1 and
σ = 1/2. The sampling time is assumed to be tk − tk−1 = 2.5 for any
k ∈ {1, ..., Nobs}.

In Fig. 2.3 two steps of the CDEKF state estimation process are
shown; the shaded grey area denotes the prior distribution gener-
ated by the CDEKF prediction equations (2.12), the shaded green
area denotes the sampling distribution and the shaded red area
denotes the posterior distribution of the filtered state estimates.
As expected, it is observed that the posterior distribution has a
a tighter confidence region compared to the prior distribution.

2.2.3 Bayesian filtering
In this section, an alternative solution to the filtering prob-
lem is proposed. Using the prior information from the SDE model
(2.1) and the sampling information from the observations (2.3), it
is possible to define an optimization problem that maximizes the
conditional posterior distribution (conditioned on the newest in-
formation) of the unobserved state x(tk). This technique is called
maximum a posteriori (MAP) estimation. The prediction scheme from
the extended Kalman filter is used to approximate the prior distri-
bution. Using this approximation of the prior distribution, the
posterior distribution can be factorized from Bayes rule according
to (identical to the data update defined in (2.9))

dk+1,post(x) ∝ p
(
x; P̂k+1|k, x̂k+1|k

)
dk+1,lik (x) . (2.20)

The optimal state reconstruction can then be defined as the x ∈ Rnx

that maximizes the (non-normalized) posterior distribution (2.20)

x̂k+1|k+1 = arg max
x∈X

{
p
(
x; P̂k+1|k, x̂k+1|k

)
dk+1,lik (x)

}
, (2.21)
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where X is some feasibility set (this might be Rnx). Due to po-
tential numerical issues, it is often beneficial to maximize the
natural logarithm of the posterior distribution. This transforma-
tion preserves the maximum of the optimization problem [25]. The
logarithm of the prior density function is given by

log p
(
x; P̂k+1|k, x̂k+1|k

)
=

− 1

2

[
nx log 2π + log det

(
P̂k+1|k

)
+ (x̂k+1|k − x)′P̂−1

k+1|k(x̂k+1|k − x)
]
.

(2.22)

Assuming that the observation model is of the form (2.3) with
independent and normally distributed random variables {vk}Nobs

k=0 (with
zero mean), the log transformation of the sampling distribution is
given by

log dk+1,lik(x) = log p (h(x; θ);Rk+1, yk+1) =

− 1

2

[
ny log 2π + log det (Rk+1) + (yk+1 − h(x; θ))′R−1

k+1(yk+1 − h(x; θ))
]
.

(2.23)

The two first terms within the brackets of (2.22) and (2.23) are
independent of x. Hence, the MAP problem (2.21) will be invariant
to these terms. Define l : Rn × Rn×n × Rn→R according to

l(x; Σ, µ) =
1

2
(µ− x)′Σ−1(µ− x), (2.24)

then the MAP problem has the equivalent log-transformed formulation

x̂k+1|k+1 = arg min
x∈X

{
l
(
x; P̂k+1|k, x̂k+1|k

)
+ l (h(x; θ);Rk+1, yk+1)

}
. (2.25)

Note that (2.25) is defined as a minimization program to eliminate
the minus sign. Assuming that the solution to the optimization
problem (2.25) is in the interior of X, then the solution, x∗ ∈ Rnx,
satisfies the first-order optimality condition

P̂−1
k+1|k(x̂k+1|k − x∗) +

∂h

∂x
(x∗; θ)′R−1

k+1 (yk+1 − h(x∗; θ)) = 0. (2.26)

If h is a linear function

h(x) = Cx, (2.27)

for some C ∈ Rny×nx, then (2.26) can be refactored into

P̂−1
k+1|kx̂k+1|k + C ′R−1

k+1yk+1 =
[
P̂−1
k+1|k + C ′R−1

k+1C
]
x∗. (2.28)

Adding and subtracting Cx̂k+1|k to yk+1 in (2.28) yield that

P̂−1
k+1|kx̂k+1|k + C ′R−1

k+1yk+1

= P̂−1
k+1|kx̂k+1|k + C ′R−1

k+1(yk+1 − Cx̂k+1|k + Cx̂k+1|k)

=
[
P̂−1
k+1|k + C ′R−1

k+1C
]
x̂k+1|k + C ′R−1

k+1(yk+1 − Cx̂k+1|k),

(2.29)
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using this and solving for x∗ result in

x∗ = x̂k+1|k +
[
P̂−1
k+1|k + C ′R−1

k+1C
]−1

C ′R−1
k+1(yk+1 − Cx̂k+1|k). (2.30)

The Woodbury matrix identity (or the matrix inversion lemma) [26,
27] defines the matrix identity

P̂k+1|kC
′
[
CP̂k+1|kC

′ +Rk+1

]−1
=

[
P̂−1
k+1|k + C ′R−1

k+1C
]−1

C ′R−1
k+1. (2.31)

Using this relation together with (2.30) yields the same filtered
state estimate as the estimate defined by the CDEKF (2.16)

x̂k+1|k+1 = x∗ = x̂k+1|k + P̂k+1|kC
′
[
CP̂k+1|kC

′ +Rk+1

]−1
(yk+1 − h(x̂k+1|k)). (2.32)

The covariance of x̂k+1|k+1 can be computed using the observed Fischer
Information matrix [28]

P̂k+1|k+1 =[
∂2

∂x2

(
l
(
x̂k+1|k+1; P̂k+1|k, x̂k+1|k

)
+ l

(
h(x̂k+1|k+1; θ);Rk+1, yk+1

))]−1

,
(2.33)

where
∂2l

∂x2

(
x; P̂k+1|k, x̂k+1|k

)
= P̂−1

k+1|k, (2.34)

and
∂2l

∂x2
(h(x; θ);Rk+1, yk+1) =

∂h

∂x
(x; θ)′R−1

k+1

∂h

∂x
(x; θ)

+

ny∑
i=1

[
R−1

k+1(yk − h(x̂k+1|k+1; θ))
]
i

∂2hi
∂x2

(x; θ).

(2.35)

Thus

P̂k+1|k+1 =

[
P̂−1
k+1|k +

∂h

∂x
(x̂k+1|k+1; θ)

′R−1
k+1

∂h

∂x
(x̂k+1|k+1; θ)

+

ny∑
i=1

[
R−1

k+1(yk − h(x̂k+1|k+1; θ))
]
i

∂2hi
∂x2

(x̂k+1|k+1; θ)

]−1

.

(2.36)

If h is a linear function, as in (2.27), then (2.36) simplifies into

P̂k+1|k+1 =
[
P̂−1
k+1|k + C ′R−1

k+1C
]−1

. (2.37)

Using the Woodbury matrix identity, (2.37) can be expanded into

P̂k+1|k+1 = P̂k+1|k − P̂k+1|kC
′
[
CP̂k+1|kC

′ +Rk+1

]−1
CP̂k+1|k. (2.38)

This is exactly the covariance updating formula (2.17) defined by
the CDEKF. Thus, the CDEKF and the MAP methods are equivalent if
the observation function h is linear.

Generally, when h is nonlinear, there are two main differences
between the CDEKF and the MAP methods defined above:

1. the MAP method computes the filtered state estimate as the root
of a nonlinear system of equations (2.26),

2. and the MAP method includes a higher order term of h in the
filtered covariance estimate (2.36).
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Figure 2.4: The first two derivatives of the nonlinear observation
function h. (2.41).

Comparison to the exact filtering principle
One advantage of the MAP method is the ability to have more gen-
eral sampling distributions than the common normal distribution
assumption defined in (2.3). In the general case, the filtered state
estimate is given by

x̂k+1|k+1 = arg min
x∈X

{
l(x; P̂k+1|k, x̂k+1|k)− log dk+1,lik(x)

}
. (2.39)

Assuming that dk+1,lik is twice-differentiable, the filtered covariance
MAP estimate is given by

P̂k+1|k+1 =

[
P̂−1
k+1|k −

∂2

∂x2
log dk+1,lik(x)

]−1

. (2.40)

Thus, the MAP method implements the same two critical Gaussian
assumptions concerning the prior and posterior distributions as
the CDEKF, but contains no assumptions concerning the likelihood
distribution (except of it being twice-differentiable).

Example: the Van der Pol model with nonlinear observations
This section presents an example of using the MAP method for re-
cursive state estimation of the van der Pol model with nonlinear
observations. It is assumed that the random variables from the
observation equation (2.3) are independent and follow a zero mean
normal distribution with covariance given as in (2.19). The ob-
servation function is defined as

h(x) =

[
log(1 + exp(x1))
log(1 + exp(x2))

]
. (2.41)

In Fig. 2.4, h1 and h2 and their first two derivatives are shown;
the Hessian of these functions clearly has significant values in
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the range (−3, 3), which is the primary range of the hidden state x
observed in Fig. 2.1. Using the same constant sampling time and
model parameters as in Fig. 2.2, Fig. 2.5 shows the state estimation
results by recursively applying the MAP method. Fig. 2.6 shows two
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Figure 2.5: State estimation using the MAP method with λ = 1 and
σ = 1/2. The sampling time is assumed to be tk − tk−1 = 2.5 for any
k ∈ {1, ..., Nobs}.
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Figure 2.6: Two steps of the MAP filtering process with λ = 1 and
σ = 1/2. The sampling time is assumed to be tk − tk−1 = 2.5 for any
k ∈ {1, ..., Nobs}.
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steps of the MAP filtering process. Again, it is observed that the
posterior distribution has a tighter confidence region compared to
the prior distribution.

2.2.4 Numerical comparison of the filtering methods
In Tab. 2.1 the two filtering methods presented in the previous
sections have been compared numerically. 100 data-sets have been
used to quantify the performance of the two filtering methods. The
first column is the log-likelihood of the observations given the
true parameters, but using the two different filtering techniques.
The Gaussian approximation of the likelihood function (2.47) (which
is defined in the next section) has been used to approximate the
likelihood. The second column shows the log-density value of the
true state measured in the posterior distribution and the third
column shows the log-density value of the true state measured in the
prior distribution. The last row in each of the table-blocks shows
the percentage of which either method outperforms the other in the
100 data-sets. From this table, it is clearly observed (especially
from the second column) that the MAP method outperforms the CDEKF in
reconstructing the true state value. This is observed consistently
across all three sampling times tested. From the first and third
columns it is observed that improved filtered estimates also seem
to imply statistical improvements in the one-step predictions.

2.3 Parameter estimation
This section presents a maximum likelihood (ML) method for parame-
ter estimation of continuous-discrete systems with continuous-time
dynamics governed by (2.1) and discrete-time observations given by
(2.3). It is assumed that {vk}Nobs

k=0 are independent and normally dis-
tributed with zero mean and covariance Rk. Define the information
(or observation set) as

YNobs = {yk}Nobs
k=0 . (2.42)

The likelihood function, L : Rnθ → R, is then defined as the joint
probability density of the available information YNobs

L(θ;YNobs) = dθ(YNobs). (2.43)

where dθ : Rnθ → R is the conditional probability density function
of the observations given the parameters θ. Using the product rule
of conditional densities, (2.43) can be factorized according to

L(θ;YNobs) = dθ(y0)

Nobs∏
k=1

dθ(yk|Yk−1). (2.44)

The ML principle defines the ML parameter estimates, θML, as the
parameters that maximize the likelihood function

θML = arg max
θ∈Θ

{
L(θ;YNobs)

}
, (2.45)
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Table 2.1: This table shows a statistical comparison between the
CDEKF and the MAP method. 100 data-sets have been used to quantify
the performance of the two filtering methods. The first column shows
the likelihood of the observations, the second column shows the
density function value of the true state measured in the posterior
distribution and the third column shows the density function value
of the true state measured in the prior distribution. It is
the log-scores that have been used as performance metric in this
table and it is the log-likelihood that is used as metric in the
first column. The last row in each of the table-blocks shows the
percentage of which either methods outperforms the other in each
of the 100 data-sets. The 10 %, 50 % and 90 % percentiles (across
data-sets) are shown for each metric.

Log score h(x̂k+1|k) Log score x̂k+1|k+1 Log score x̂k+1|k

Sampling rate: tk − tk−1 = 2.5
MAP

10 % -0.128 -0.726 1.161
50 % 0.780 -0.017 2.197
90 % 2.749 1.341 4.863
out of 100 52 % 83 % 58 %

CDEKF
10 % -0.130 -0.441 1.154
50 % -0.745 0.507 2.252
90 % 2.935 2.447 5.249
out of 100 48 % 17 % 42 %

Sampling rate: tk − tk−1 = 1.0
MAP

10 % -0.764 -1.034 0.063
50 % -0.580 -0.839 0.334
90 % -0.311 -0.566 0.762
out of 100 70 % 82 % 65 %

CDEKF
10 % -0.762 -0.995 0.072
50 % -0.571 -0.769 0.331
90 % -0.322 -0.499 0.744
out of 100 30 % 18 % 35 %

Sampling rate: tk − tk−1 = 0.5
MAP

10 % -1.048 -1.241 -0.417
50 % -0.924 -1.069 -0.264
90 % -0.785 -0.828 0.022
out of 100 59 % 76 % 61 %

CDEKF
10 % -1.048 -1.215 -0.417
50 % -0.925 -1.053 -0.272
90 % -0.778 -0.811 0.046
out of 100 41 % 24 % 39 %
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where Θ is some feasibility set (this might be Rnθ). Due to
numerical limitations, it is often preferable to consider the log-
likelihood as the objective function. The log-transformation is
monotonically increasing and hence preserves the maximum of the
optimization problem. Thus, the parameter estimation problem is
re-defined according to

θML = arg max
θ∈Θ

{
log dθ(y0) +

Nobs∑
k=1

log dθ(yk|Yk−1)

}
. (2.46)

In [29] it is discussed that under mild regularity conditions, it
is reasonable to assume that the conditional densities in (2.46)
can be well approximated as Gaussian densities. In [29] this
Gaussian approximation is defined such that

dθ(yk|Yk−1) ≈ p

(
yk;

∂h

∂x
(x̂k|k−1; θ)P̂k|k−1

∂h

∂x
(x̂k|k−1; θ)

′ +Rk, h(x̂k|k−1; θ)

)
. (2.47)

In (2.47) it is important to emphasize that x̂k|k−1 and P̂k|k−1 also
depend on θ. The covariance of the parameters can be computed using
the observed Fischer information matrix; i.e. as the negative
inverse of the Hessian of the objective function in (2.46).
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2.3.1 Estimating the van der Pol model
This section presents a case-study applying the parameter estima-
tion method defined above. The van der Pol model is used as a test
model with the true parameters being (λ, σ) = (1, 1/2). It is assumed
that the random variables from the observation equation (2.3) are
independent and follow a zero mean normal distribution with co-
variance given as in (2.19). It is also assumed that σ is known,
but λ > 0 is unknown and has to be estimated from data. The ob-
servations are sampled according to the sampling time tk − tk−1 = 1/2
for all observations and h is the nonlinear function defined in
(2.41). 100 observations are simulated and used to estimate λ. In
Fig. 2.7 the log-likelihood is shown as a function of the unknown
parameter λ using the two filtering methods presented previously
in this chapter. Using a simple golden-section search algorithm
[30], the estimated values of λ are λML,MAP = 0.929 and λML,CDEKF = 0.914.
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Figure 2.7: Negative log-likelihood as a function of λ.
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3 Nonlinear model predictive
control

Model predictive control is an advanced method for optimizing the
operation of dynamical systems. This chapter describes the non-
linear model predictive control (NMPC) principle for continuous-
discrete systems with continuous-time dynamics governed by an SDE
(2.1) and discrete-time observations given by a general likelihood
function dk,lik. This likelihood function could e.g. be given by the
observation model given in (2.3). The previous chapter introduced

DYNAMIC 

OPTIMIZATION

FILTER

PLANT

NMPC

OFFLINE 

SYSTEM

IDENTIFICATION

OFFLINE ONLINE PLANT 

Figure 3.1: This figure shows an overview of the sub-components
that constitutes NMPC software. This figure is a modified version
of a figure used in [18].

the concepts of state and parameter estimation. These methods
are crucial elements in NMPC software: the parameter estimation
process calibrates the model to the most recent data (this is of-
ten done offline) and the state estimation algorithm recursively
readjusts the initial value used in the optimal control algorithm
according to new data (this is an online process). Fig. 3.1 shows
an overview of the sub-components that constitute NMPC software.
The final component of the NMPC stack shown in Fig. 3.1 is the
dynamical optimization component. Several methods can be used to
solve dynamic optimization problems: the Hamilton-Jacobi-Bellmann
equations (or dynamical programming) [31]; indirect methods (based
on Pontryagin’s minimum principle and calculus of variations) [32,
33] or direct methods (e.g. shooting and collocation methods)
[34–36]. This chapter will only focus on the indirect and di-
rect solution methods to solve the dynamical optimization problem.
Methods based on dynamical programming can only be used on low-
dimensional systems (nx ≤ 3) as the underlying principle is cursed-
by-dimensionality [31]. However, this principle may be used for
very specific dynamical systems (e.g. linear systems).
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3.1 The model predictive control principle
The general form of the optimal control problem, considered in this
dissertation, has the structure

min
xk,u

{∫ tk+T

tk

q(xk(t), u(t))dt+ qf (xk(tk + T ))

}
, (3.1a)

s.t. xk(tk)= x̂k|k, (3.1b)
∂xk
∂t

(t)= f(xk(t), u(t); θ) for t ∈ [tk, tk + T ] , (3.1c)

u(t) ∈ U(t) for t ∈ [tk, tk + T ] , (3.1d)

where q : Rnx × Rnu → R is the Lagrangian and qf : Rnx → R is the end-
point cost (or penalty). U(t) is the feasibility set defining the
set of admissible input signals; typical constraints are box-type
or rate-of-change-type constraints. T > 0 is the optimization
horizon. The formulation (3.1) shows the clear relation to the
filtering method used; x̂k|k is the posterior estimate of the hidden
state x(tk) at time tk given the most recent information set Yk. The
dynamical model (3.1b)-(3.1c) is identical to the prediction model
from the prediction scheme from (2.12).

The NMPC principle is defined according to the following recursive
scheme:

0. Set initial posterior estimate x̂0|0 and set k = 0.

1. Optimize: solve (3.1) and implement the optimal input signal,
u∗. u∗ is implemented until a new observation at time tk is
observed.

2. Data update: given new observation, yk+1, compute x̂k+1|k+1 using
a suitable filter.

3. Repeat from step [1.].

3.2 Pontryagin’s minimum principle
Let λk : R → Rnx denote the adjoint variables (or co-states) of (3.1),
then λk satisfies the (backward) ODE given by

−∂λk

∂t

′
=

∂q

∂x
(xk, u) + λ′

k

∂f

∂x
(xk, u; θ), (3.2)

with boundary condition

λk(tk + T )′ =
∂qf
∂x

(xk(tk + T )). (3.3)

This formulation is derived in e.g. [8] using calculus of varia-
tions. The combined boundary value problem of the state and adjoint
variables are given by

∂xk
∂t

= f(xk, u
∗; θ), xk(tk) = x̂k|k, (3.4a)

−∂λk

∂t

′
=

∂q

∂x
(xk, u

∗) + λ′
k

∂f

∂x
(xk, u

∗; θ), λk(tk + T )′ =
∂qf
∂x

(xk(tk + T )), (3.4b)
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where the optimal controllable input, u∗, is defined point-wise as
the solution to the optimization problem [8]

u∗(t) = arg min
u∈U(t)

{
q(xk(t), u) + λk(t)

′f(xk(t), u; θ)
}

for t ∈ [tk, tk + T ]. (3.5)

The combined conditions (3.4)-(3.5) yield one method for solving
the optimal control problem (3.1). This method is called an in-
direct solution method, as it defines the optimality conditions of
the optimal control problem (3.1) in continuous-time. However,
numerical methods still have to be used in order to solve the
combined conditions (3.4)-(3.5). This might be challenging if the
feasibility set, U(t), imposes non-trivial constraints.

3.3 Direct methods
The previous section describes a class of indirect methods that
can be defined based on Pontryagin’s minimum principle. This prin-
ciple defines the optimality conditions of (3.1) in continuous-time
before discretization. This approach is often referred to as first
optimize, then discretize. A different class of methods called
direct methods, adapts the reverse approach to first discretize,
then optimize. In this solution method paradigm, there exists
two main branches of numerical methods: shooting and collocation
methods. These methods are introduced in the next two sections

Common for any direct method, is that a discretization of u has to
be given. For simplicity, it is in this dissertation assumed that
u is discretized according to the piece-wise definition

u(t) =

Nu∑
i=1

vi1τui−1,τ
u
i
(t) and v = (v1...vNu). (3.6)

The indicator function, 1, is defined as

1a,b(t) =

{
1, a ≤ t < b,
0, otherwise,

(3.7)

and Tu = {τui }
Nu

i=0 satisfies the ordering

tk ≤ τu0 < · · · < τuNu
= tk + T. (3.8)

3.3.1 The single shooting method
One of the main motivations of shooting methods is that given an
initial value, x̂k|k, and input trajectory, u, the state trajectory,
xk, is uniquely determined. Hence, there seems to be little need to
consider xk as an unknown trajectory as implicitly stated in (3.1).
Using the input discretization (3.6), xk is uniquely determined by
x̂k|k and v. This means that the optimal control problem (3.1) can
be condensed into

min
v

{
J (v) =

Nu∑
i=1

∫ τui

τui−1

q(xk(t; v, x̂k|k), ui)dt+ qf (xk(τNu ; v, x̂k|k))

}
, (3.9a)

s.t.

vi ∈ U(τui ) for any i = 1...Nu. (3.9b)
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In this formulation, xk(t; v, x̂k|k) stresses the dependence on x̂k|k and
v. The formulation (3.9) is called the single (or sequential)
shooting method. The derivatives of the objective function in
(3.9) can be computed using the adjoint variables defined in (3.4b)
[37, 38]

∂J (v)

∂vi
=

∫ τui

τui−1

[
∂q

∂u
(xk(t), vi) + λk(t)

′∂f

∂u
(xk(t), vi; θ)

]
dt. (3.10)

Using the single shooting formulation (3.9) and the derivative
calculation (3.10), it is straight-forward to implement this method
numerically using e.g. IPOPT [39], which is a framework for solving
large-scale nonlinear optimization problems. There exists many
methods for discretizing the ODE (3.1c), objective function (3.1a)
and derivative calculation (3.10). However, these methods are
not elaborated any further; one should simply use a suitable and
well-established ODE solver (e.g. the C++ libraries odeint [40] or
SUNDIALS [41]).

One well-known limitation with the single shooting method is the
lack of robustness concerning dynamical systems with unstable re-
gions [35]. The single shooting method will fail if an input
sequence v drives the dynamical system (3.1c) to an unstable re-
gion, causing the state trajectory, xk, to diverge (numerically
explode in values).

3.3.2 The collocation method
The class of direct methods called collocation methods take a
different approach to the discretization of (3.1) compared to the
single shooting method. Instead of sequentially computing the input
sequence, v, and state trajectory, xk, the collocation methods
computes these variables simultaneously. Let Tx = {τxl }

Nx

l=0 be defined
such that

tk ≤ τx0 < · · · < τxNx
= tk + T. (3.11)

The values of xk evaluated in Tx is defined according to

sl = xk(τ
x
l ), l = 0...Nx and s = (s0...sNx). (3.12)

To illustrate the structure of collocation methods, the forward
Euler method is used to discretize the state trajectory and for
simplicity it is assumed that Tx = Tu. Using this convention, the
optimal control problem (3.1) is discretized into the nonlinear
program

min
s,v

{
Nx∑
i=1

(τxi − τxi−1)

2
(q(si, vi) + q(si−1, vi)) + qf (sNx)

}
, (3.13a)

s.t. s0= x̂k|k, (3.13b)

si+1 − si= (τxi+1 − τxi )f(si, vi; θ) for any i = 1...Nx, (3.13c)

vi ∈ U(τui ) for any i = 1...Nu. (3.13d)
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The mid-point rule has been used to discretize the integral in the
objective function (3.13a). Using a collocation method to solve
the dynamical optimization problem (3.1), it is very simple to com-
pute both the gradient and the hessian of the objective function
and the Jacobians of the constraints (3.13b)-(3.13d). The hes-
sian of the objective function and the Jacobian of the constraints
will also have a systematic sparse structure, making optimization
problems originating from collocation schemes very suitable for
implementation using IPOPT [18, 35, 42]. One immediate limitation
of any collocation methods is the large amount of decision vari-
ables. In [43] it is described how numerical methods with spectral
convergence can be used to discretize problems of the form (3.1)
and thereby lower the number of decision variables needed to attain
a sufficient accuracy of the solution.

3.3.3 The multiple shooting method
The multiple shooting method is a hybrid method of the single
shooting and collocation methods [34, 35]. The main idea behind
the multiple shooting method is to divide the prediction horizon
(tk, tk + T ) into sub-intervals (much like the collocation method),
but apply the single shooting framework on each of these elements.
Let Tx denote discretization that defines the sub-intervals and for
simplicity assume that Tx = Tu. Let xik denote the i-th trajectory
defined by the ODE

∂xik
∂x

= f
(
xik, vi; θ

)
on t ∈ [τxi−1, τ

x
i ] for any i = 1...Nx. (3.14)

To make these partial trajectories consistent, a continuity condi-
tion must be imposed. This condition can be implemented in multiple
ways. In this dissertation, it is implemented from the following
conditions

xik(τ
x
i ) = si for any i = 1...Nx, (3.15a)

xik(τ
x
i−1) = si−1 for any i = 1...Nx, (3.15b)

where s = (s0...sNx) is the initial values of the Nx state trajecto-
ries from (3.14). The optimal control problem (3.1) can then be
discretized according to

min
s,v

{
J (s, v) =

Nx∑
i=1

∫ τxi

τxi−1

q
(
xik(t; si−1, vi), vi

)
dt+ qf (sNx)

}
, (3.16a)

s.t. s0= x̂k|k, (3.16b)

si−1= xik(τ
x
i−1; si−1, vi) for any i = 1...Nx, (3.16c)

si= xik(τ
x
i ; si−1, vi) for any i = 1...Nx, (3.16d)

vi ∈ U(τui ) for any i = 1...Nu. (3.16e)

The derivatives of this optimization problem can be computed very
similarly to the derivatives computed for the single shooting
problem (3.10). However, the adjoint trajectory, λi

k, will have to
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be defined on the individual sub-intervals [34]. Define the adjoint
trajectory on the i-th interval according to

−λi
k
′
=

∂q

∂x

(
xik, vi

)
+ λi

k
′∂f

∂x

(
xik, vi

)
on t ∈ [txi−1, t

x
i ] for i = 1...Nx, (3.17)

with boundary condition

λi
k(t

x
i ) = 0. (3.18)

The derivatives of the objective function with respect to the
control variables, v, are then defined according to [37, 38]

∂J (s, v)

∂vi
=

∫ τxi

τxi−1

[
∂q

∂u

(
xik(t; si−1, vi), vi

)
+ λi

k(t)
′∂f

∂u

(
xik(t; si−1, vi), vi

)]
dt, (3.19)

for any i = 1...Nu. The derivatives with respect to the initial
conditions are given by

∂J (s, v)

∂si
= λi

k(τ
x
i−1), (3.20)

for any i = 0...Nx − 1 where the last nodal point, sNx, defines the
derivative

∂J (s, v)

∂sNx

=
∂qf
∂x

(sNx). (3.21)

The Jacobian of the constraint (3.16d) also requires the deriva-
tives

∂xik(τ
x
i ; si−1, vi)

∂vi
and

∂xik(τ
x
i ; si−1, vi)

∂si−1
. (3.22)

However, these are simply computed from the sensitivity systems
[38]

∂

∂t

∂xik(t; si−1, vi)

∂si−1
=

∂f

∂x
(xik(t; si−1, vi), vi)

∂xik(t; si−1, vi)

∂si−1
, t ∈ [τxi−1, τ

x
i ], (3.23a)

∂

∂t

∂xik(t; si−1, vi)

∂vi
=

∂f

∂x
(xik(t; si−1, vi), vi)

∂xik(t; si−1, vi)

∂vi
+ Iu, t ∈ [τxi−1, τ

x
i ], (3.23b)

where Iu ∈ Rnu×nu is an identity matrix. The initial values of the
sensitivity system is given by

∂xik(τ
x
i−1; si−1, vi)

∂si−1
= Ix, (3.24a)

∂xik(τ
x
i−1; si−1, vi)

∂si−1
= 0u, (3.24b)

where Ix ∈ Rnx×nx is an identity matrix and 0u ∈ Rnu×nu is a zero
matrix.
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3.4 Examples
This section presents the NMPC framework applied on two test cases:

• A case-study where the observation model is nonlinear but with
additive Gaussian noise.

• A case-study where the observation model is nonlinear and with
a Poisson observation model.

The case-studies will use CasADi [44] to interface the discretized
optimal control problem to IPOPT. The MAP estimation method is used
to conduct the state estimation in order to recursively solve the
optimal control problem (3.1) according to the NMPC principle. The
van der Pol oscillator model is used as test model with parameters
(λ, σ) = (1, 1/10). The goal in both case-studies is for x1 to track
a set-point trajectory, x1. This set-point trajectory is shown in
Fig. 3.2. The optimal control problem, which repeatedly will be
solved according to the NMPC principle, is defined according to

min
xk,u

{∫ tk+T

tk

[(
xk,1(t)− x1(t)

)2
+ εu(t)2

]
dt

}
, (3.25a)

s.t. xk(tk)= x̂k|k, (3.25b)

∂xk
∂t

(t)=

[
xk,2(t)

(1− xk,1(t))xk,2(t)− xk,1(t) + u(t)

]
for t ∈ [tk, tk + T ] , (3.25c)

u(t) ∈ [−1, 1] for t ∈ [tk, tk + T ] . (3.25d)

As seen from from (3.25c) it is assumed that it is only possible
to control the system via the dynamics governing x2. Via (3.25d)
it is imposed that the control signal of u is constrained to be
in the (box-type) interval [−1, 1]. ε > 0 is a small regularization
coefficient, which penalizes non-zero values of u.

0 20 40 60time

−1

0

1

x1

Figure 3.2: Set-point trajectory for the case-studies.
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3.4.1 Nonlinear observations with additive Gaussian noise
In the first case-study, it is assumed that the observational model
is nonlinear, but with additive Gaussian noise. Thus, the obser-
vation equation is of the type defined in (2.3); i.e. that

yk =

[
log(1 + exp(x1(tk)))
log(1 + exp(x2(tk)))

]
+ vk. (3.26)

It is assumed that the random variables in (3.26) are independent
and follow a zero mean normal distribution with covariance given
as in (2.19). It is assumed that the sampling time is tk − tk−1 = 1/5
between any observations. The regularization coefficient is chosen
such that ε = 1/1000.

In Fig. 3.3, a simulation using the NMPC principle, to track the
set-point trajectory shown in Fig. 3.2, is shown. Using the NMPC
principle it is clearly possible to track x1 with the true state,
x1, oscillating around the set-point trajectory. It is important
to note that the sampling time is very important; especially for
systems with strong diffusion. If the sampling time is too long,
the feedback is not sufficient to recursively re-adjust the optimal
input, u. However, this is expected as the optimal control problem
only optimizes against a simplified version of the true dynamical
system.
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Figure 3.3: NMPC case-study results with nonlinear observations
with additive Gaussian noise.
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3.4.2 Nonlinear and non-Gaussian likelihood function
In the second case-study, it is assumed that the observational model
is nonlinear and with non-additive Gaussian noise. The likelihood
of an observation yk at time tk is given by

dk,lik(x) =

(
γ(x1(tk))

yk,1

yk,1!
exp(−γ(x1(tk)))

)(
γ(x2(tk))

yk,1

yk,2!
exp(−γ(x2(tk)))

)
. (3.27)

This likelihood function is the conditional density of yk given the
hidden state x(tk). Note that yk attains only discrete values. The
γ function in (3.27) is defined according to

γ(x) = 10log (1 + exp(x)) . (3.28)

It is assumed that the sampling time is tk − tk−1 = 1/20 between any
observations. The regularization coefficient is chosen such that
ε = 1/1000.

In Fig. 3.4, a simulation using the NMPC principle, to track the
set-point trajectory shown in Fig. 3.2, is shown. Again, it is
clearly possible to track x1 with the true state state, x1. It
is important to note that this is only possible using the MAP
method defined in (2.39) for state estimation; the CDEKF does not
accommodate observational models of the form (3.27).
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Figure 3.4: NMPC case-study results with nonlinear observations
and non-Gaussian noise.
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4 The Northern European power
market

The main field of application in this dissertation has been en-
ergy systems. This chapter will introduce the Northern European
power market and discuss which opportunities that exist for market
participants which operate dynamical systems under (potentially)
time-varying power prices. Hence, while the previous two chap-
ters were dedicated to the theoretical and computational aspect of
nonlinear model predictive control algorithms, this chapter will
bridge nonlinear model predictive control with applications relat-
ing to energy systems. The power prices (and the power markets
under consideration) will define the structure of the objective
function (3.1a) in the optimization problems used to operate the
dynamical energy systems.

The Northern European power market consists of many markets which

DK1

NO1

DK2

NO2

NO3

NO4

NO5

SE1

SE2

SE3

SE4

FI

EE

LV

LT

Figure 4.1: Nord Pool price zone topology.

Stochastic Control Theory 33



all yield different opportunities for market participants. However,
this chapter will focus on three of these markets:

• the day-ahead market,

• the intra-day market,

• and the regulating power market.

Thus, it is only the markets trading with the shortest horizons
that are considered, and the financial contracts traded on e.g.
the NASDAQ commodities exchange (with horizons of weeks, months
and years) are omitted from discussion in this dissertation. The
day-ahead and intra-day markets are operated and cleared by Nord
Pool [45]. Nord Pool’s market clearing algorithm for the day-ahead
market is responsible for setting the day-ahead (or spot) price
in 15 inter-connected price zones as shown in the topology-map
in Fig. 4.1. The Nordic Transmission System Operators (TSOs) in
Denmark (Energinet), Norway (Statnett), Sweden (Svenska Kraftnätt)
and Finland (Fingrid) are responsible for managing and clearing
the regulating power market. In Fig. 4.2, the different horizons
and key settlement time-points are shown; this figure should be used
as a reference in the following sections. The following sections,
describing the three power markets listed above, are inspired by
and follow the power market descriptions given in Paper C with
some visual modifications. Details concerning the day-ahead and
intra-day markets are given in [45] and an elaborate introduction
to the regulating power market is given in [5].

day-ahead
closes

12:00

DAY - 1 DAY + 1DAY

SHORT HORIZON

LONG HORIZON

REAL-TIME

MONTH - 1 MONTH + 1MONTH

intra-day and
regulating power

closes

-45 min

HOUR - 1 HOUR + 1HOUR

HOURLY PRICES

Figure 4.2: Different horizons and market closures in the Northern
European power market.
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4.1 The day-head market
The day-ahead market has the largest trading volume and electricity
can be purchased and sold for the up-coming day. Bidding to the
day-ahead market closes at 12pm on the day prior to the day of
operation (as shown in Fig. 4.2), and hence the planning horizon
is 12-36 hours. Participants can choose between a wide range of
bidding-types; e.g. block-bids, where bids for multiple hours can
be aggregated into one combined bid, or traditional single-hour-
bids, where bids only are valid for the given hour. The spot
price is settled as the intersection between the ordered bids of
power purchases and sales, constrained by the physical limitations
of the power grid and the possible constraints of the variety of
bids available to the participants. It is voluntary for market
participants to participate in the day-ahead market.

4.2 The intra-day market
The intra-day market is open for trading when the day-ahead market
closes. This market has traditionally been used to eliminate
imbalances between the expected power production/consumption and
the power production/consumption plans traded in the day-ahead
market. The trading volume in the intra-day market is significantly
smaller than the trading volume in the day-ahead market. The intra-
day market closes 45 minutes prior to the hour of operation but
is open for trading up until then. Fig. 4.3 compares the trading
volume in DK1 of the day-ahead, intra-day and regulating power
markets during the first 11 months of 2020; as stated, the trading
volume of the intra-day market is significantly smaller than the
day-ahead market volume.

The power prices settled in the day-ahead and intra-day markets
have the least volatile prices of the three markets considered in
this chapter. However, these markets play a key role in optimal
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Figure 4.3: Market volumes in DK1 during the first 11 months of
2020.
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power market speculation [46] as all three markets typically clear
very different power prices; thereby create interesting arbitraging
opportunities.

4.3 The regulating power market
Simultaneously with the closure of the intra-day market, bidding
to the regulating power market also closes. The regulating power
market is a market operated and settled by the TSOs in the Nordic
countries and all regulating power bids are aggregated within the
Nordic Operational Information System (NOIS). The regulating power
market is one (of many) mechanism the TSOs use to maintain grid
stability. The regulating power market is relevant if the grid
imbalance (a discrepancy between power production, consumption and
net import) is expected to be of significant volume and duration.
Given that the system imbalance is expected to be significant, the
sign of the imbalance define:

↑ If the imbalance is negative, there is a deficit of electricity
- an increase of the production or a decrease in the consumption
is needed. This is called up-regulation.

↓ If the imbalance is positive, there is a surplus of electricity
- a decrease of the production or an increase in the consumption
is needed. This is called down-regulation.

The TSOs work as intermediaries in the regulating power market.
The TSOs sell electricity when there is up-regulation and buy
electricity when there is down-regulation. The counter parties
responsible for these imbalances are settled in the balancing power
market. In this market the TSOs also function as intermediaries.
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Figure 4.4: Regulating power prices in DK1 during the first 11
months of 2020.
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The balancing power market is settled after the operating hour when
the actual meter measurements are available. Thus, the regulating
power market works as a neutralization mechanism to alleviate
imbalances and the balancing power market is a physical market
which holds the responsible parties accountable for their grid
imbalances.

The regulating power market functions, similarly to the day-ahead
market, across 12 of the 15 interconnected price zones shown in
Fig. 4.1 (Estonia, Lithuania and Latvia are not included in the
Nordic regulating power market). The regulating power price might
differ between price zones but is always settled as the intersec-
tion between the ordered bids of down- and up-regulation and the
activated regulating power volume. Hence, all activated bids are
activated at the same price. The day-ahead price is used as the
basis for the regulating- and balancing power pricing procedures:

• The down-regulation price is less than or equal to the day-
ahead price.

• The up-regulation price is greater than or equal to the day-
ahead price.

• Consumption imbalances with an opposite sign of the system
imbalance is settled at the regulation power price in the
balancing power market. Production imbalances with an opposite
sign of the system imbalance is settled at the day-ahead price.

• Imbalances with the same sign as the system imbalance is settled
at the regulating power price in the balancing power market.

This structure implies that consumption imbalances are settled
at the regulating power prices in the balancing power market,
while production imbalances are not. This settlement structure
for production imbalances implies a net profit for the TSOs. This
profit is used to partially finance the reserve capacity and thereby
implicitly lowering the system tariff [5]. This pricing procedure
yields hourly regulating power prices.

In Fig. 4.4, a distribution of the observed regulating power prices
are shown. The regulating power prices are measured relative to
the day-ahead prices, since the day-ahead prices are used as a
reference-point in the regulating power market. This means that
negative prices in Fig. 4.4 imply down-regulation and positive
prices imply up-regulation. The prices shown in Fig. 4.4 are
the prices observed in DK1 (the Western Danish price zone) during
the first 11 months of 2020. The right-axis shows the level of
congestion of the Skagerak transmission line, connecting DK1 to NO2
(a Southern Norwegian price zone). From Fig. 4.4 it is seen, that
when the transmission line between DK1 and NO2 has spare capacity,
the regulating power prices become very competitive; they only
deviate slightly from the spot prices. This is because NO2 (often)
has a large capacity of hydro-power [47] which has very low marginal
power costs. On the other hand, when this transmission line is
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congested, the regulating power prices show larger deviations from
the spot prices. This is due to less liquidity of the regulating
power market in DK1, when NO2 is unable to provide regulation to
DK1.

4.3.1 Special regulation
In recent years there has been a rapid development of the activated
volumes of a market feature called special regulation in DK1. This
is also observed from Fig. 4.3; the demand for special down-
regulation has been the largest source of regulation during the
first 11 months of 2020 in DK1. Special regulation can occur as both
down- and up-regulation. Special regulation is in effect when the
TSOs skip the usual pricing procedure and in the event of special
regulation, the activated bids are paid-as-bid.

During the last three years (2017-2019), one of the main sources
of special down-regulation in DK1 has been excessive wind power
production in Northern Germany. In Tab. 4.1 the total special down-
regulation volumes activated in DK1, due to special regulation from
the German TSO, TenneT, is shown. This table shows that in 2019
a total of 1,312 GWh was activated for special down-regulation in
DK1 due to large (positive) imbalances in Northern Germany. This
table also shows that in 2019, 32 % of the special regulation was
handled by curtailment of wind turbines in Denmark. Energinet is
only allowed to publish yearly average prices; in 2019 the average
special down-regulation price was -12.3 EUR/MWh.

In general, Tab. 4.1 shows that the need for special down-regulation
in DK1 is increasing with corresponding power prices being vary
attractive for consumers. Thus, there is a great potential for flex-
ible consumers to participate in this market and ideally eliminate
the need of curtailing Danish wind turbines.

Table 4.1: GWh of Special down-regulation received from the German
TSO, TenneT, for 2017-2019. The activated volumes are activated
volumes for Danish participants and the average price is in EUR/MWh.

2019 2018 2017

Special regulation in GWh 1,312 1,114 781
Thermal power plants 46 % 53 % 64 %
Electric boilers 22 % 21 % 22 %
Wind turbines 32 % 26 % 14 %

Average price in EUR/MWh -12.3 -9.3 -7.7
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5 Applications in energy systems
This dissertation presents 6 papers (3 acceptet, 2 submitted and 1
in preparation); 4 of these are applications in energy systems and
2 are methods relevant for general nonlinear model predictive con-
trol. Paper A provides a tutorial introduction for formulating the
entire algorithm-stack for continuous-discrete systems governed by
SDEs as presented in Section 3.4.2 and Section 3.4.1. Paper F
presents the theoretical contribution shown in Section 2.2.3 where
an optimization-based filtering method is introduces and compared
to the continuous-discrete extended Kalman filter. This chapter is
dedicated to summarizing the key findings and contributions of the
4 other papers, dedicated to application in energy systems.

5.1 Optimal operation of wastewater treatment
plants

Paper B and Paper C both consider the operational challenge of
cost-efficient operation of a wastewater treatment plant. Paper B
states that approximately 1 % of a country’s total electricity
consumption is due to wastewater treatment and Paper C explains
that the aeration process is responsible for approximately 40 %
to 75 % of the total power consumption at a treatment plant.
Fig. 5.1 shows the schematics of the control strategies implemented
in Paper B and Paper C; the main goal is to reduce the nutrient
concentrations of e.g. ammonium (NH4) and nitrate (NO3) while also
minimizing the power consumption due to aeration. The aeration
process is a switching process, meaning that it can be switched on
or off. Paper B and Paper C uses the same two-dimensional SDE to
model the response of the nutrient concentrations (the states, x)
to the aeration switching process (the input, u).

NO3 NH4
NO3

NOIS

DAY-

AHEAD

air
price

Figure 5.1: This figure is taken from Paper C. This figure shows a
schematic overview of the components in the optimal control problem
and how the energy flexibility is unlocked by a coupling to power
markets. NOIS represents participation in the regulation power
market.
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Paper B introduces a concept framed as a flexibility-diagram that
describes how the power consumption responds to changing power
prices; a similar concept is introduced in e.g. [2]. Paper C
conducts a backtest which investigates the performance using day-
ahead and regulating power prices compared to using a constant
power price. This indicates how much flexibility that is available
at wastewater treatment plants. Fig. 5.2 demonstrates 24 hours of
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Figure 5.2: This figure is taken from Paper C. Example day from the
backtest: 20th March 2019. The regulating power price model with
ps=0 EUR/MWh (price assumption when there is special regulation)
is used to design the optimal aeration cycles. The top plot shows
the price input to the price models: the left y-axis measures the
demand for special down regulation and the right y-axis measures
the day-ahead and regulating power prices. The middle plot shows
the state realization using the aeration sequence shown in the same
plot. This is illustrated for the regulating power and special
regulating price model and the baseline with constant electricity
price (dashed lines). The bottom plot shows the savings relative
to the constant price model.
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simulated operation using the control strategy defined in Paper C.
The top plot shows the power market data, the middle plot shows the
simulated state values and optimal input (output from an optimal
control problem) and the bottom plot shows the accumulated savings
compared to operating against a constant power price. The main
conclusion from Paper B and Paper C is that high variations of the
the power prices used in design of the optimal input, u, leads
to larger economical savings, compared to optimization against a
constant power price. Cost-savings of up to 40 % are observed in
the backtest simulations.

5.2 Optimal operation of a joint ice-tank and
refrigeration system

Paper D presents a method for operating the joint refrigeration
system consisting of a small retail refrigeration system and an
ice-tank. The test-system is physically located at Danfoss’ test-
center in Nordborg, Denmark. Fig. 5.3 shows a schematic overview of
the test-system; the ice-tank is added in the return loop from the
refrigerated racks via a sub-cooler. The user can choose between
three states of the ice-tank: idle, charging and discharging. The
idle-mode is defined as a no-action mode, where the ice-tank is stay-
ing idle. In the charging-mode, the ice-tank starts accumulating
ice. In the discharging-mode, the ice-tank starts curtailing the
refrigeration system by melting ice and lowering the temperature
of the return refrigerant. For many refrigeration systems, the
outdoor temperature is very significant for the performance; to
eliminate this feature and only consider the effect of operating
an ice-tank, the outdoor temperature is simulated using a water
heater with a fixed temperature.

A first-order and one-dimensional SDE is proposed as model of the
response of the compressor capacity, from the refrigeration system,
to switching modes of the ice-tank. The model is calibrated using
13 hours of training-data by applying the parameter estimation
method described in Section 2.3. Fig. 5.4 shows the cost-savings

Sub cooler HX

Expansion valve

Ice storage

Refrigeration system InputControllable

Compressor rack

Evaporator

Water pump

Water heater

Condenser

Figure 5.3: This figure is taken from Paper D. This figure shows
an overview of the total refrigeration system used to test the
performance of optimally controlling an ice-tank.
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Figure 5.4: This figure is taken from Paper D. This figure visualizes
the effect of having the ice-tank installed. The top plot shows
the accumulated cost of actively operating the ice-tank vs. not
having the ice-tank. The bottom plot shows the relative savings of
operating the ice-tank. The bottom plot shows how the predicted
savings compare to the realized savings. It is assumed that the
ice-tank has been charged with zero cost.

of optimally curtailing the refrigeration system using the ice-
tank compared to not having an ice-tank available. During the 24
hours of online tests, the control strategy shows savings of up-to
20 %. The main conclusion from Paper D is that an ice-tank is a
non-invasive method for curtailing the refrigeration system during
periods with high power prices and thereby reducing the operational
costs of operating the joint ice-tank and refrigeration system.

5.3 Optimal energy arbitraging using a Vanadium
redox-flow battery

Paper E presents a method for optimal energy arbitraging across
multiple power markets using a Vanadium redox-flow battery. This
paper tests different configurations of the nominal power to physi-
cal storage ratio and investigates the importance of high-quality
forecasts of the regulating power market. The paper also investi-
gates the influence of CO2-taxes in energy arbitraging.

Fig. 5.5 and Fig. 5.6 present two interesting dependencies. Fig. 5.5
shows the relation of the quality of forecasts and the possible
revenues generated by multi-market energy arbitraging. Testing
different assumptions on the accuracy of forecasts on the regulat-
ing power market; it is shown that small forecasating deficiencies
aren’t too critical. This deficiency parameter models the hourly
decay rate of the forecasted regulating power prices to the day-
ahead prices. Paper E uses these simulated forecasts to evaluate
the importance of the forecasting capabilities on the regulating
power market. Fig. 5.6 shows a relation between increasing CO2-
taxes and revenues generated by arbitraging power markets. This
figure shows that it is possible to heavily increase CO2 reduc-

42 Stochastic Control Theory



tions without affecting revenues too much. These figures show a
Pareto-like structure [48] as e.g. used in portfolio theory in
finance where risk-adjusted metrics are used to quantify portfolio
performance (e.g. the efficient frontier generated by the Sharpe
ratio [49, 50]).
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Figure 5.5: This figure is taken from Paper E. This figure shows
the relation between the quality of the forecasts (shown along
the first-axis) and the revenues generated by arbitraging multiple
power markets.
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Figure 5.6: This figure is taken from Paper E. This figure shows the
dependency between CO2-taxes (shown along the first-axis) and the
revenues generated by arbitraging multiple power markets. Each
point in the figure represents a unique CO2-tax parameter (with
units EUR/t).
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6 Summary and future perspectives
The main focus of this dissertation has been centered around for-
mulating nonlinear model predictive control problems for cost-
efficient operation of energy systems. The main conclusion is
that nonlinear model predictive control algorithms present a huge
opportunity to optimize and coordinate the operation of energy
systems.

In Paper B and Paper C, it is demonstrated how the operation of aer-
ation equipment at wastewater treatment plants can be optimized and
coordinated according to time-varying power prices, thereby reduc-
ing the operational costs of removing nutrient from the continuous-
flow of incoming wastewater.

Paper D demonstrates how a joint refrigeration system consisting
of an ice-tank and a small retail refrigeration system can be co-
ordinated and optimized according to time-varying power prices to
reduce the aggregated electricity costs of this combined refrig-
eration system.

Paper E presents a method for optimal arbitraging in multiple power
markets and across different operating hours. It is shown how a
multi-objective criteria can be used to consider the simultaneous
optimization of maximizing revenues and minimizing CO2 emissions;
this approach will become increasingly relevant as governments
implement taxation of greenhouse gas emissions.

Paper A shows a complete tutorial on how to formulate the entire
algorithm-stack from nonlinear model predictive control methods
based on continuous discrete models driven by stochastic differ-
ential equations (2.1) with discrete observations (2.3). Paper F
condenses the work shown in Section 2.2.3 and describes a new fil-
tering technique for state estimation for stochastic differential
equation models with discrete-time observational models.

The following sections discuss future perspectives of the methods
and applications considered in this dissertation.

6.1 Advances in state and parameter estimation
Section 2.2.3 introduces an optimization-based formulation of the
continuous-discrete extended Kalman filter based on maximum a pos-
teriori estimation. Using this alternative formulation, it is
possible to implement state estimation on more general observation
models given by conditional density (or likelihood) functions; an
example of this is shown in Section 3.4.2. In Section 2.2.4,
a comparison between the optimization-based filter method and the
continuous-discrete extended Kalman filter method is shown. The
main conclusion is that the optimization-based filter method signif-
icantly outperforms the continuous-discrete extended Kalman filter
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in the ability to efficiently reconstruct the hidden state modelled
by the stochastic differential equation. This work is currently
being condensed in Paper F and will be submitted in the beginning
of 2021.

[29] describes a method for parameter estimation of parameters
embedded in stochastic differential equation models of the form
(2.1) with (possibly nonlinear) additive Gaussian observational
models as given according to (2.3). This method is also briefly
described in Section 2.3 with an example given in Section 2.3.1.
Given the simulation study from Section 2.2.4, it would be very
interesting to develop a parameter estimation framework using the
optimization-based filtering technique from Section 2.2.3 and con-
sider state and parameter estimation simultaneously in a joint
optimization problem. [51] defines a similar framework, but for
more general statistical models (nonlinear random effect models),
using the Laplace approximation.

6.2 Forecasting the regulating power market
In Paper B, Paper C, Paper D and Paper E, one of the key assumptions
is very good forecasting capabilities of the regulating power
market. This market is described in Section 4.3. However, looking
at the current state-of-the-art in the scientific literature, little
work exists concerning accurate forecasting of the regulating power
market in Northern Europe. The work that has been conducted is
given in [52], [53] and [54], where black-box models (e.g. auto-
regressive and moving-average models with exogenous regressors) are
used to forecast the regulating power prices. However, one critical
draw-back of these methods is the inability to accurately model the
effect of congestion and speculation without introducing too many
model parameters. Thus, to efficiently model the prices cleared in
the regulating power market, a more physical representation of the
market is needed.

6.3 Portfolio optimization of energy units
The applications considered in this dissertation have been fo-
cused on optimizing the operation of individual energy units (e.g.
one wastewater treatment plant, or one refrigeration system). How-
ever, in an efficient implementation of energy systems in the future
low-carbon society, coordination of multiple energy consuming (or
producing) units is necessary to fully unlock the flexibility of
the joint portfolio of these units. The concept of portfolio opti-
mization of energy units have been investigated in the literature.
[55] considers the problem of coordinating the power consumption of
multiple data-centers according to time-varying power prices. [56]
describes how a distributed collection of model predictive control
algorithms can be used to optimize the joint power consumption of a
portfolio of flexible consumers. [57] defines an efficient numerical
algorithm for solving optimization problems arising from the joint
coordination of model predictive control algorithms. The proposed
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framework in [58] and [59] demonstrates control-based methods that
adopt price signals as the economic driver to stimulate consumers’
response and to unlock the flexibility needed to balance large-
scale integration of fluctuating renewable power production. In
this framework, various system operators broadcast price signals
independently to fulfil their requirements for ancillary services.

However, little work exists within the intersection of distributed
systems governed by stochastic differential equation systems and
optimal decision-making hereof. This dissertation has only focused
on the application of nonlinear model predictive control for solv-
ing the more general stochastic control problem defined initially
in (1.2). A different approach would be to consider a scenario-
based method and apply concepts from stochastic programming [60].
Stochastic differential equations provide a simple method for gen-
erating a batch of scenarios; these scenarios can then be used
to implement principles from stochastic programming. This would
also involve formulating the objective function using statisti-
cal criteria; e.g. the conditional-value-at-risk [61] measure -
or the Sharpe ratio [62] - to optimize a risk-adjusted criteria.
This opens the discussion of formulating efficient algorithms to
iteratively find the optimal input to the stochastic system. One
interesting method to consider is the application of stochastic
gradient methods [63] where the scenario-batch is altered in very
iteration of the optimization-process. Stochastic optimization
algorithms are implemented in e.g. PyTorch [64], which is frame-
work for machine-learning (e.g. deep-learning, natural language
processing and reinforcement learning) in python.
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Keywords: Nonlinear Model Predictive Control, Continuous-Discrete Extended Kalman Filter,
Maximum Likelihood Estimation, Stochastic Differential Equations, Van der Pol Oscillator

1. INTRODUCTION

This paper provides a tutorial of how to use the nonlinear
model predictive control (NMPC) principle to regulate
a stochastic system governed by stochastic differential
equations (SDEs). The systems considered in this paper
are continuous-discrete systems of the form (Jazwinski,
1970)

dx(t) = f(x(t), u(t); p) dt+ g(x(t), u(t); p) dω(t), (1a)

y(tk) = h(x(tk)) + vk, (1b)

where x, u and p are the states, inputs and time-invariant
parameters. vk ∼ Niid(0, Rk) is the measurement noise
and ω(t) is a standard Brownian motion. Brownian mo-
tion is defined by its independent increments which sat-
isfies that for each s, t ∈ R, ω(t) − ω(s) is normally
distributed with zero mean and covariance I(t − s); i.e.
dω(t) ∼ Niid(0, I dt). The SDE model representation (1a)
provides a natural way to represent physical systems as
they evolve in continuous-time. In contrast to discrete-
time models, a priori knowledge about the system can
be included and the estimated parameters do not depend
on the sampling time. The representation of noise in con-
tinuous time also allow for a parsimonious representation
that is independent of the sampling time. While these
advantages of the continuous-discrete model (1) are well-
known in the systems identification community (Garnier
and Young, 2012; Kristensen et al., 2004; Rao and Un-
behauen, 2006), most NMPC methods rely on either 1) a
deterministic discrete-time model, 2) a stochastic discrete-
time model, or 3) a deterministic continuous-time model
for which the noise terms in the estimators are added in
an ad hoc manner. The key insight is that the continuous-
discrete model (1) provides a systematic way to obtain
an estimation (filtering and prediction) algorithm that is

� Innovation Fund Denmark is acknowledged for partly funding the
work as a part of Center for IT-Intelligent Energy Systems (CITIES
- IFD 1035-00027B).

used in the offline system identification, the online state-
and parameter-estimation, and the prediction of the dy-
namic optimization. The diffusion model, g(x(t), u(t); p),
represents a convenient and powerful way of representing
complex stochastic processes and model-plant mismatch
as needed for the filtering and prediction algorithm in
NMPC. Boiroux et al. (2016a,b,c, 2010) and Mahmoudi
et al. (2016a, 2017, 2016b) demonstrate systematic use of
the continuous-discrete model (1) for system identification,
nonlinear filtering and prediction, fault detection, and
NMPC in an artificial pancreas for people with type 1 di-
abetes. Mahmood and Mhaskar (2012) uses a continuous-
discrete model (1) and a Lyapunov-based NMPC to sta-
bilize a reaction model around an unstable equilibrium.
Buehler et al. (2016) uses a similar setup where a biore-
actor model is controlled according to a desired set-point
probability density. Jørgensen and Jørgensen (2007a,b) ap-
ply the continuous-discrete stochastic model (1) for linear
MPC using transfer function representations of the model.

1.1 Components and software of the NMPC

Allgöwer et al. (1999), Johansen (2011), Grüne and Pan-
nek (2011), and Rawlings et al. (2017) describe state-of-
the-art NMPC technology. A system for NMPC consists
of an offline method for identification of the model as
well as an online part - where the online part consists
of a state- and parameter estimation algorithm and an
algorithm for dynamic optimization. Fig. 1 schematically
illustrates this structure. This tutorial fills a missing gap in
existing NMPC literature, by systematically formulating
all components in the NMPC software system based on
the continuous-discrete model (1). All components in the
NMPC, presented in this paper, use the same continuous-
discrete extended Kalman filter (CDEKF) for (1) in the
one-step prediction of the offline system identification, in
the online state- and parameter-estimation algorithm, and
in the prediction of the dynamic optimization algorithm.
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continuous-discrete systems and provides a natural representation of systems evolving in
continuous-time. Furthermore, this representation directly facilities construction of the state
estimator in the NMPC. We provide numerical details related to systematic model identification,
state estimation, and optimization of dynamical systems that are relevant to the NMPC.
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1. INTRODUCTION

This paper provides a tutorial of how to use the nonlinear
model predictive control (NMPC) principle to regulate
a stochastic system governed by stochastic differential
equations (SDEs). The systems considered in this paper
are continuous-discrete systems of the form (Jazwinski,
1970)

dx(t) = f(x(t), u(t); p) dt+ g(x(t), u(t); p) dω(t), (1a)

y(tk) = h(x(tk)) + vk, (1b)

where x, u and p are the states, inputs and time-invariant
parameters. vk ∼ Niid(0, Rk) is the measurement noise
and ω(t) is a standard Brownian motion. Brownian mo-
tion is defined by its independent increments which sat-
isfies that for each s, t ∈ R, ω(t) − ω(s) is normally
distributed with zero mean and covariance I(t − s); i.e.
dω(t) ∼ Niid(0, I dt). The SDE model representation (1a)
provides a natural way to represent physical systems as
they evolve in continuous-time. In contrast to discrete-
time models, a priori knowledge about the system can
be included and the estimated parameters do not depend
on the sampling time. The representation of noise in con-
tinuous time also allow for a parsimonious representation
that is independent of the sampling time. While these
advantages of the continuous-discrete model (1) are well-
known in the systems identification community (Garnier
and Young, 2012; Kristensen et al., 2004; Rao and Un-
behauen, 2006), most NMPC methods rely on either 1) a
deterministic discrete-time model, 2) a stochastic discrete-
time model, or 3) a deterministic continuous-time model
for which the noise terms in the estimators are added in
an ad hoc manner. The key insight is that the continuous-
discrete model (1) provides a systematic way to obtain
an estimation (filtering and prediction) algorithm that is

� Innovation Fund Denmark is acknowledged for partly funding the
work as a part of Center for IT-Intelligent Energy Systems (CITIES
- IFD 1035-00027B).

used in the offline system identification, the online state-
and parameter-estimation, and the prediction of the dy-
namic optimization. The diffusion model, g(x(t), u(t); p),
represents a convenient and powerful way of representing
complex stochastic processes and model-plant mismatch
as needed for the filtering and prediction algorithm in
NMPC. Boiroux et al. (2016a,b,c, 2010) and Mahmoudi
et al. (2016a, 2017, 2016b) demonstrate systematic use of
the continuous-discrete model (1) for system identification,
nonlinear filtering and prediction, fault detection, and
NMPC in an artificial pancreas for people with type 1 di-
abetes. Mahmood and Mhaskar (2012) uses a continuous-
discrete model (1) and a Lyapunov-based NMPC to sta-
bilize a reaction model around an unstable equilibrium.
Buehler et al. (2016) uses a similar setup where a biore-
actor model is controlled according to a desired set-point
probability density. Jørgensen and Jørgensen (2007a,b) ap-
ply the continuous-discrete stochastic model (1) for linear
MPC using transfer function representations of the model.

1.1 Components and software of the NMPC

Allgöwer et al. (1999), Johansen (2011), Grüne and Pan-
nek (2011), and Rawlings et al. (2017) describe state-of-
the-art NMPC technology. A system for NMPC consists
of an offline method for identification of the model as
well as an online part - where the online part consists
of a state- and parameter estimation algorithm and an
algorithm for dynamic optimization. Fig. 1 schematically
illustrates this structure. This tutorial fills a missing gap in
existing NMPC literature, by systematically formulating
all components in the NMPC software system based on
the continuous-discrete model (1). All components in the
NMPC, presented in this paper, use the same continuous-
discrete extended Kalman filter (CDEKF) for (1) in the
one-step prediction of the offline system identification, in
the online state- and parameter-estimation algorithm, and
in the prediction of the dynamic optimization algorithm.
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Fig. 1. Overview of the closed-loop control structure.

The rigorous solution to the filtering and prediction prob-
lem is obtained by solving the Fokker-Planck equations
(Jazwinski, 1970). However, for systems with more than
a couple of states, this solution is computationally in-
tractable. The CDEKF is a computationally tractable
alternative for filtering and prediction in (1). While other
filters such as the unscented Kalman filter (UKF), the
ensemble Kalman filter (EnKF), the particle filter (PF),
and the moving horizon estimator (MHE) can also be
used instead of the (CDEKF), the CDEKF represents
the best balance between performance and computational
tractability for many processes (Simon, 2006). This is
particularly true, when the maximum-likelihood method
is used for estimation of the parameters in the filter and
predictor. For good performance of the CDEKF, it is also
important to notice that we implement it using a differ-
ential equation solver with adaptive time step and using
the Joseph stabilization scheme (Schneider and Georgakis,
2013). By including a disturbance model as part of the
model, the CDEKF is used for online estimation of the
states as well as selected rapidly varying parameters.

The offline system identification is based on a maximum
likelihood (ML) formulation, where the conditional densi-
ties of the state equations are approximated by Gaussian
densities. Using this assumption, it is possible to derive an
optimization problem which uses the CDEKF to compute
the likelihood of the parameters, p, given a set of observa-
tions (Kristensen et al., 2004).

The dynamic optimization component of the NMPC con-
sists of the solution of a deterministic open-loop optimal
control problem. The optimal control problem considered
is a Bolza problem with input constraints, i.e.

min
x,u

∫ tk+T

tk

l(x(t), u(t)) dt + lf (x(tk + T )), (2a)

s.t. x(tk)= x̂k|k, (2b)

ẋ(t) = f(x(t), u(t); p), t ∈ [tk, tk + T ] , (2c)

u(t) ∈ U(t), t ∈ [tk, tk + T ] , (2d)

where x̂k|k denotes the filtered state estimates (from the
filter) and p is the parameter estimates (from the online- or
offline estimation method). T = Tc = Tp is the control and
prediction horizon. Several indirect and direct methods
exists for the numerical solution of this optimal control
problem (Binder et al., 2001). In this paper we use a direct
local collocation method (von Stryk, 1993).

We use a stochastic extension of the van der Pol oscillator
model to illustrate the components of the NMPC system.

The numerical methods for the simulation study are im-
plemented in python and the source code is available via
GitHub 1 .

1.2 Paper organization

The paper is organised as follows. Section 2 presents the
CDEKF, while Section 3 derives the use of the CDEKF for
online and offline parameter estimation. Section 4 presents
the local collocation method for numerical optimal control.
Section 5 illustrates these components of the NMPC using
the stochastic van der Pol oscillator model. Finally, Section
6 contains a short summary.

2. THE EXTENDED KALMAN FILTER

We present the CDEKF used in the NMPC as well as
for the offline system identification. x̂k|k and P̂k|k denote
the filtered state- and covariance estimates. x̂k|k−1 and

P̂k|k−1 denote the predicted (one-step predictions) state-
and covariance values.

2.1 The prediction scheme

Given the initial conditions

x̂k−1(tk−1) = x̂k−1|k−1, P̂k−1(tk−1) = P̂k−1|k−1, (3)

the state- and covariance are predicted by solving the
system of ordinary differential equations (ODEs) given by

˙̂xk−1(t) = f(x̂k−1(t), u(t); p), (4a)

˙̂
Pk−1(t) = A(t)P̂k−1(t) + P̂k−1(t)A(t)

′ +G(t)G(t)′, (4b)

where

A(t) =
∂f

∂x
(x̂k−1(t), u(t); p), G(t) = g(x̂k−1(t), u(t); p).

The one-step predictions of the mean and covariance of
the states are obtained as the solution of (3)-(4) at the
new sample point, tk. Consequently, the predictions of the
state- and covariance are

x̂k|k−1 = x̂k−1(tk), P̂k|k−1 = P̂k−1(tk). (5)

2.2 The updating scheme

The literature contains many methods for the updating
scheme of extended Kalman filter algorithms. They all
compute the innovation by

ek = yk − h(x̂k|k−1), (6)

the Kalman filter gain, Kk, by

Ck =
∂h

∂x
(x̂k|k−1), (7a)

Rk|k−1 = CkP̂k|k−1C
′
k +Rk, (7b)

Kk = P̂k|k−1C
′
kR

−1
k|k−1, (7c)

and the filtered state estimate, x̂k|k, by

x̂k|k = x̂k|k−1 +Kkek. (8)

The key difference is how they compute the filtered co-
variance, Pk|k. Two standard updating schemes for the
covariance are

P̂k|k = (I −KkCk) P̂k|k−1 (9a)

= P̂k|k−1 −KkRk|k−1K
′
k. (9b)

1 https://github.com/niclasbrok/nmpc vdp.git
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The rigorous solution to the filtering and prediction prob-
lem is obtained by solving the Fokker-Planck equations
(Jazwinski, 1970). However, for systems with more than
a couple of states, this solution is computationally in-
tractable. The CDEKF is a computationally tractable
alternative for filtering and prediction in (1). While other
filters such as the unscented Kalman filter (UKF), the
ensemble Kalman filter (EnKF), the particle filter (PF),
and the moving horizon estimator (MHE) can also be
used instead of the (CDEKF), the CDEKF represents
the best balance between performance and computational
tractability for many processes (Simon, 2006). This is
particularly true, when the maximum-likelihood method
is used for estimation of the parameters in the filter and
predictor. For good performance of the CDEKF, it is also
important to notice that we implement it using a differ-
ential equation solver with adaptive time step and using
the Joseph stabilization scheme (Schneider and Georgakis,
2013). By including a disturbance model as part of the
model, the CDEKF is used for online estimation of the
states as well as selected rapidly varying parameters.

The offline system identification is based on a maximum
likelihood (ML) formulation, where the conditional densi-
ties of the state equations are approximated by Gaussian
densities. Using this assumption, it is possible to derive an
optimization problem which uses the CDEKF to compute
the likelihood of the parameters, p, given a set of observa-
tions (Kristensen et al., 2004).

The dynamic optimization component of the NMPC con-
sists of the solution of a deterministic open-loop optimal
control problem. The optimal control problem considered
is a Bolza problem with input constraints, i.e.

min
x,u

∫ tk+T

tk

l(x(t), u(t)) dt + lf (x(tk + T )), (2a)

s.t. x(tk)= x̂k|k, (2b)

ẋ(t) = f(x(t), u(t); p), t ∈ [tk, tk + T ] , (2c)

u(t) ∈ U(t), t ∈ [tk, tk + T ] , (2d)

where x̂k|k denotes the filtered state estimates (from the
filter) and p is the parameter estimates (from the online- or
offline estimation method). T = Tc = Tp is the control and
prediction horizon. Several indirect and direct methods
exists for the numerical solution of this optimal control
problem (Binder et al., 2001). In this paper we use a direct
local collocation method (von Stryk, 1993).

We use a stochastic extension of the van der Pol oscillator
model to illustrate the components of the NMPC system.

The numerical methods for the simulation study are im-
plemented in python and the source code is available via
GitHub 1 .

1.2 Paper organization

The paper is organised as follows. Section 2 presents the
CDEKF, while Section 3 derives the use of the CDEKF for
online and offline parameter estimation. Section 4 presents
the local collocation method for numerical optimal control.
Section 5 illustrates these components of the NMPC using
the stochastic van der Pol oscillator model. Finally, Section
6 contains a short summary.

2. THE EXTENDED KALMAN FILTER

We present the CDEKF used in the NMPC as well as
for the offline system identification. x̂k|k and P̂k|k denote
the filtered state- and covariance estimates. x̂k|k−1 and

P̂k|k−1 denote the predicted (one-step predictions) state-
and covariance values.

2.1 The prediction scheme

Given the initial conditions

x̂k−1(tk−1) = x̂k−1|k−1, P̂k−1(tk−1) = P̂k−1|k−1, (3)

the state- and covariance are predicted by solving the
system of ordinary differential equations (ODEs) given by

˙̂xk−1(t) = f(x̂k−1(t), u(t); p), (4a)

˙̂
Pk−1(t) = A(t)P̂k−1(t) + P̂k−1(t)A(t)′ +G(t)G(t)′, (4b)

where

A(t) =
∂f

∂x
(x̂k−1(t), u(t); p), G(t) = g(x̂k−1(t), u(t); p).

The one-step predictions of the mean and covariance of
the states are obtained as the solution of (3)-(4) at the
new sample point, tk. Consequently, the predictions of the
state- and covariance are

x̂k|k−1 = x̂k−1(tk), P̂k|k−1 = P̂k−1(tk). (5)

2.2 The updating scheme

The literature contains many methods for the updating
scheme of extended Kalman filter algorithms. They all
compute the innovation by

ek = yk − h(x̂k|k−1), (6)

the Kalman filter gain, Kk, by

Ck =
∂h

∂x
(x̂k|k−1), (7a)

Rk|k−1 = CkP̂k|k−1C
′
k +Rk, (7b)

Kk = P̂k|k−1C
′
kR

−1
k|k−1, (7c)

and the filtered state estimate, x̂k|k, by

x̂k|k = x̂k|k−1 +Kkek. (8)

The key difference is how they compute the filtered co-
variance, Pk|k. Two standard updating schemes for the
covariance are

P̂k|k = (I −KkCk) P̂k|k−1 (9a)

= P̂k|k−1 −KkRk|k−1K
′
k. (9b)

1 https://github.com/niclasbrok/nmpc vdp.git
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Numerical implementations based on either (9a) or (9b)
may give rise to bad performance and even divergence, as
the numerically computed values are not guaranteed to be
both positive (semi-)definite and symmetric. The Joseph
stabilization form

P̂k|k =(I −KkCk) P̂k|k−1 (I −KkCk)
′
+KkRkK

′
k. (10)

for updating the filtered covariance estimate guarantees
that the numerical value of Pk|k is symmetric posi-
tive (semi-)definite. The CDEKF is implemented using
(10) rather than (9) for reasons of numerical stability
and robustness (Schneider and Georgakis, 2013). Numer-
ically stable alternatives based on array- and squareroot-
algorithms also exist (Boiroux et al., 2016c), but are less
straightforward to implemenet compared to (10).

3. PARAMETER ESTIMATION

In this section, we outline the application of the CDEKF
for online and offline parameter estimation.

3.1 Online identification using the CDEKF

Using a disturbance model, the CDEKF can be used for
parameter estimation in addition to state estimation. One
way to do this is by augmenting the SDE by as many states
as parameters undergoing the estimation

dp = Σdωp, (11)

where p = (p1, ...,pNp
)� are the parameters to be esti-

mated and Σ = diag(σ1, ..., σNp
). Success of this approach

depends on detectability of the augmented system. Defin-
ing z = (x,p), the augmented SDE has the form

dz(t) = fz(z(t), u(t); p̃) dt+ gz(x(t), u(t); p̃) dω, (12)

where

fz(z, u; p̃) =

(
f(x, u; p, p̃)

0

)
, gz(x, u; p̃) =

(
g(x, u; p̃) 0

0 Σ

)
.

p̃ denotes the remaining parameters that are not esti-
mated. Using this approach, the parameters are repre-
sented as disturbance states of the system since the ob-
servation equation is still given by

y(tk) = hz(z(tk)) + vk = h(x(tk)) + vk. (14)

The online parameter estimates are given by the fil-
tered values from the augmented state vector, i.e. ẑk|k =
(x̂k|k; p̂k|k). This augmentation method may be used for
parameter estimation as well as disturbance estimation in
offset free control (Morari and Maeder, 2012).

3.2 Offline identification using an ML formulation

Another use of the CDEKF is to estimate the parameters
for a batch of data (Kristensen et al., 2004) in an offline
optimization. The parameter estimates are the parameter
set that maximizes the likelihood of the one-step predic-
tion errors.

Let {yj}Nj=1 denote N observations relating to the sample

points {tj}Nj=1 in (1b). Define the information accumulated

up until the k-th sample point as Yk = {yj}kj=1. Then the
likelihood function, L, can be defined as

L (p | YN ) ∝ φ (YN | p) , (15)

where φ is the joint density function of the observations,
YN . Using the definition of conditional probabilities, the
right hand side can be rewritten into

φ (YN | p) =
N∏

k=1

φ (yk | Yk−1, p) , (16)

such that the log-likelihood function can be expressed by

log (L (p | YN )) =

N∑
k=1

log (φ (yk | Yk−1, p)) . (17)

Consequently, the ML parameter estimates, pML, is given
by

pML = argmax
p∈RNp

log (L(p | YN )) (18a)

= argmax
p∈RNp

N∑
k=1

log(φ(yk | Yk−1, p)). (18b)

Since the SDE in (1a) is driven by a Brownian motion and
since the increments of a Brownian motion are Gaussian
it is reasonable to assume, under some regularity condi-
tions, that the conditional densities in (16) can be well
approximated by Gaussian densities

φ(yk | Yk−1, p) =

exp

(
−1

2
e′kR

−1
k|k−1ek

)

√
det(Rk|k−1)(2π)ny

, (19)

where ny is the number of output variables.

4. NUMERICAL OPTIMAL CONTROL

In this section, we briefly present the algorithm for op-
timization of (2) used by the NMPC considered in this
tutorial paper. The algorithm is based on a direct local
collocation method presented by von Stryk (1993).

For simplicity, we let the Mayer term of (2) be zero,
i.e. lf (x(tk + T )) = 0, and only consider optimal control
problems with a Lagrange term. We consider only bounds
on the inputs. This implies that U(t) denotes these bound
constraints, i.e.

U(t) = [umin, umax] . (20)

4.1 A local collocation method

When formulating a direct solution method, the first step
is to introduce a parametrization of the manipulated vari-
able, u(t). The simplest parametrization is to approximate
u(t) as a piecewise constant function. For reasons of simlic-
ity, we adopt this parametrization method in the following.
Hence, u(t) is parametrized via the values {qk}Nk=1 and
time points {τk}Nk=0 such that

u =

N∑
k=1

qkχ[τk−1,τk[, (21)

where χI denotes the characteristic function associated
with the set I. The time points that define the sub-
intervals of u(t) also constitute the global collocation
points (GCPs) of the collocation method. Fig. 2 provides
a schematic overview of the GCPs in relation to the local
collocation points (LCPs), {γj}Mj=0. The collocation points
satisfy the relations

tk = τ0 < τ1 < · · · < τN = tk + T, (22a)

0 = γ0 < γ1 < · · · < γM = 1. (22b)
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A local collocation method approximates the ODEs on
the smaller subintervals and apply a quadrature rule to
impose a finite dimensional approximation. The ODEs on
the interval [τk−1, τk] can be formulated as an integral
equation of the form

x(τk)− x(τk−1) =

∫ τk

τk−1

f(x(t), qk; p) dt. (23)

Using the forward Euler scheme, the right hand side can
be approximated via the LCPs by∫ τk

τk−1

f(x(t), qk; p) dt (24a)

=
M∑
j=1

∫ τk−1+γj∆τk

τk−1+γj−1∆τk

f(x(t), qk; p) dt (24b)

≈ ∆τk

M∑
j=1

∆γjf(x(τk−1 + γj−1∆τk), qk; p), (24c)

where ∆τk = τk − τk−1 and ∆γj = γj − γj−1. Next,
introduce the discrete state vector as

sk,j = x(τk−1 + γj∆τk). (25)

Using this notation, the local collocation scheme can be
formulated as

sk−1,M − sk−1,0 =
M∑
j=1

∆tk,jf(sk−1,j−1, qk; p), (26)

where ∆tk,j = ∆τk∆γj . (26) solves the ODEs on the
local intervals - to obtain a meaningful ODE solution, a
continuity condition must be imposed, together with an
initial value constraint

s0,0 = x0 and sk−1,M = sk,0. (27)

Finally, the objective function is also approximated using
the forward Euler method with the collocation points
defined in (22)

∫ tk+T

tk

l(x(t), u(t)) dt ≈
N∑

k=1

M∑
j=1

∆tk,j l(sk−1,j−1, qk).

(28)

Thus, the finite dimensional NLP for numerical solution
of the optimal control problem (2) can be defined as

min
s,q

N∑
k=1

M∑
j=1

∆tk,j l(sk−1,j−1, qk) (29a)

s.t. s0,0 = x0 (29b)

sk−1,M = sk,0 (29c)

sk−1,M − sk−1,0=
M∑
j=1

∆tk,jf(sk−1,j−1, qk) (29d)

qk∈ U(τk). (29e)

We solve (29) using ipopt and python. The numerical
implementation in python uses the pyipopt package to

interface to ipopt (Wächter and Biegler, 2006). Using
ipopt it is possible to exploit the sparse structure that
appears in the Jacobian of the constraint function of (29).

5. NUMERICAL CASE STUDY

To illustrate the methodology presented in this paper, we
use the stochastic van der Pol oscillator model that is
defined as

dx(t) = f(x(t), u(t);λ) dt+ g(x(t), u(t);σ) dω(t), (30a)

where

f(x, u;λ) =

(
x2

−x1 + λ(1− x2
1)x2 + u

)
, (30b)

g(x, u;σ) =

(
0 0
0 σ

)
. (30c)

λ > 0 is a parameter governing the stiffness of the system
and σ > 0 is a parameter related to model deficiency.The
SDE model (30) is used as a model for simulating the plant
as well as in the CDEKF of the NMPC. Fig. 3 provides
a comparison between three realizations of the SDE (30)
and the corresponding ODE. The effect of the added noise
to x2 is clearly visible.

5.1 Set-point tracking using online parameter estimation

The set-point trajectory, x1(t), for x1(t) is defined as the
step function

x1(t) =



0, t ≤ 15

1, 15 ≤ t ≤ 30

0, 30 ≤ t

, (31)

and the corresponding integrand of the control objective,
l, is defined as

l(x(t), u(t)) = (1− α)(x1(t)− x1(t))
2 + αu(t)2, (32)

where α = 1/1000 is regularization parameter. The noise
parameters are defined as

Rk = σ2
εI, σε = 1/100, σ = 1/5. (33)

It is assumed that both states are directly observable, i.e.
h(x(t)) = x(t). The NLP has been constructed with an
equidistant mesh such that

∆τk = 1/(N − 1), ∆γk = 1/(M − 1), (34)

where N = 51 and M = 21. The control and prediction
horizon of the optimal control problem (2) is T = Tc =
Tp = 20. It is assumed that observations occur equidis-
tantly with Ts = tk − tk−1 = 0.4. The control signals are
constrained by the sets, U(τk) = [−1, 1].

Fig. 4 shows a closed-loop simulation. For this simulation,
the controller has to estimate λ. Fig. 5 shows the true
value of λ as well as the online parameter estimate,

λ̂k|k. Fig. 5 also shows how the online estimation method
performs when an unmodelled disturbance is introduced.
The unmodelled disturbance is introduced at t = 45 where
the true value of λ is changed from λ = 1 to λ = 3.

Fig. 6 shows the offline parameter estimates and the cor-
responding log-likelihood functions based on 100 observa-
tions of the plant. The offline estimation is tested in two
cases; a case where λ = 1 and a case where λ = 10. The

parameters are estimated to be λ̂ = 1.017 and λ̂ = 9.953,
respectively.
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A local collocation method approximates the ODEs on
the smaller subintervals and apply a quadrature rule to
impose a finite dimensional approximation. The ODEs on
the interval [τk−1, τk] can be formulated as an integral
equation of the form

x(τk)− x(τk−1) =

∫ τk

τk−1

f(x(t), qk; p) dt. (23)

Using the forward Euler scheme, the right hand side can
be approximated via the LCPs by∫ τk

τk−1

f(x(t), qk; p) dt (24a)

=
M∑
j=1

∫ τk−1+γj∆τk

τk−1+γj−1∆τk

f(x(t), qk; p) dt (24b)

≈ ∆τk

M∑
j=1

∆γjf(x(τk−1 + γj−1∆τk), qk; p), (24c)

where ∆τk = τk − τk−1 and ∆γj = γj − γj−1. Next,
introduce the discrete state vector as

sk,j = x(τk−1 + γj∆τk). (25)

Using this notation, the local collocation scheme can be
formulated as

sk−1,M − sk−1,0 =
M∑
j=1

∆tk,jf(sk−1,j−1, qk; p), (26)

where ∆tk,j = ∆τk∆γj . (26) solves the ODEs on the
local intervals - to obtain a meaningful ODE solution, a
continuity condition must be imposed, together with an
initial value constraint

s0,0 = x0 and sk−1,M = sk,0. (27)

Finally, the objective function is also approximated using
the forward Euler method with the collocation points
defined in (22)

∫ tk+T

tk

l(x(t), u(t)) dt ≈
N∑

k=1

M∑
j=1

∆tk,j l(sk−1,j−1, qk).

(28)

Thus, the finite dimensional NLP for numerical solution
of the optimal control problem (2) can be defined as

min
s,q

N∑
k=1

M∑
j=1

∆tk,j l(sk−1,j−1, qk) (29a)

s.t. s0,0 = x0 (29b)

sk−1,M = sk,0 (29c)

sk−1,M − sk−1,0=
M∑
j=1

∆tk,jf(sk−1,j−1, qk) (29d)

qk∈ U(τk). (29e)

We solve (29) using ipopt and python. The numerical
implementation in python uses the pyipopt package to

interface to ipopt (Wächter and Biegler, 2006). Using
ipopt it is possible to exploit the sparse structure that
appears in the Jacobian of the constraint function of (29).

5. NUMERICAL CASE STUDY

To illustrate the methodology presented in this paper, we
use the stochastic van der Pol oscillator model that is
defined as

dx(t) = f(x(t), u(t);λ) dt+ g(x(t), u(t);σ) dω(t), (30a)

where

f(x, u;λ) =

(
x2

−x1 + λ(1− x2
1)x2 + u

)
, (30b)

g(x, u;σ) =

(
0 0
0 σ

)
. (30c)

λ > 0 is a parameter governing the stiffness of the system
and σ > 0 is a parameter related to model deficiency.The
SDE model (30) is used as a model for simulating the plant
as well as in the CDEKF of the NMPC. Fig. 3 provides
a comparison between three realizations of the SDE (30)
and the corresponding ODE. The effect of the added noise
to x2 is clearly visible.

5.1 Set-point tracking using online parameter estimation

The set-point trajectory, x1(t), for x1(t) is defined as the
step function

x1(t) =



0, t ≤ 15

1, 15 ≤ t ≤ 30

0, 30 ≤ t

, (31)

and the corresponding integrand of the control objective,
l, is defined as

l(x(t), u(t)) = (1− α)(x1(t)− x1(t))
2 + αu(t)2, (32)

where α = 1/1000 is regularization parameter. The noise
parameters are defined as

Rk = σ2
εI, σε = 1/100, σ = 1/5. (33)

It is assumed that both states are directly observable, i.e.
h(x(t)) = x(t). The NLP has been constructed with an
equidistant mesh such that

∆τk = 1/(N − 1), ∆γk = 1/(M − 1), (34)

where N = 51 and M = 21. The control and prediction
horizon of the optimal control problem (2) is T = Tc =
Tp = 20. It is assumed that observations occur equidis-
tantly with Ts = tk − tk−1 = 0.4. The control signals are
constrained by the sets, U(τk) = [−1, 1].

Fig. 4 shows a closed-loop simulation. For this simulation,
the controller has to estimate λ. Fig. 5 shows the true
value of λ as well as the online parameter estimate,

λ̂k|k. Fig. 5 also shows how the online estimation method
performs when an unmodelled disturbance is introduced.
The unmodelled disturbance is introduced at t = 45 where
the true value of λ is changed from λ = 1 to λ = 3.

Fig. 6 shows the offline parameter estimates and the cor-
responding log-likelihood functions based on 100 observa-
tions of the plant. The offline estimation is tested in two
cases; a case where λ = 1 and a case where λ = 10. The

parameters are estimated to be λ̂ = 1.017 and λ̂ = 9.953,
respectively.
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Fig. 4. A closed-loop simulation where x1 has to track the set-point trajetory given in (31). The top-left plot shows
the true state values of x1 together with the set-point trajectory. The bottom-left plot shows the manipulated
variables, u(t), computed by the NMPC. The phase plot to the right illustrates the path the NMPC chooses when
a set-point change is imposed.

The results presented in Fig. 4 and Fig. 5 show that the
NMPC is able to simultaneously control the system to the
desired set-point trajectory (31) and accurately estimate
the unknown parameter, λ. However, from Fig. 5 it is seen
that the parameter estimate is sensitive to the set-point
change. For the estimates around t ∈ {15, 30} in Fig. 5,
the EKF estimates significant parameter changes despite
of the fact that the true value is kept constant at λ = 1.
The results from Fig. 4 also show that the resulting control
signal, u(t), is active around (and on) the upper bound
when x1(t) = 1. This is a result of the fact that (1, 0) is
not an equilibrium for (30). Hence, the controller has to
actively change x2 to keep x1 close to x1.

6. SUMMARY

We provide a tutorial overview of how to construct an
NMPC to regulate a stochastic system governed by SDEs.
Based on the CDEKF, an online and an offline method
for parameter estimation are presented. The dynamic op-
timization module is based on a local collocation scheme,
where the forward Euler method has been used as dis-

0 10 20 30 40 50 60 70 80
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

λ

λ λ̂k|k

Online Parameter Estimation - Observation Updates

Fig. 5. The online parameter estimates of λ, where at
t = 45 an un-modelled disturbance is introduced (λ
shifts from 1 to 3).

cretization method for the dynamical equations. The per-
formance of the closed-loop controller is investigated for a
stochastic extension to the van der Pol oscillator model.
The source code for the tutorial is available via GitHub.
The key contribution and insight is to use the continuous-
discrete model (1) and the same associated CDEKF in all
components of the NMPC.
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Fig. 6. Examples of offline parameter estimation of λ.
Two cases are shown; the top plot shows an offline
estimation problem where the true value is λ = 1 and
the bottom plot shows an offline estimation problem
where the true value is λ = 10. Both problems are
based on 100 observations with the noise parameters
given in (33).
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Abstract: With increasing fluctuations in electricity production due to prioritization of
renewable energy sources, new applications that can adjust quickly to changes in demand/supply
will be needed. Wastewater treatment use a significant amount of electricity to reduce nutrients
in wastewater before discharge. The treatment process demands electricity in some selected
periods which can be controlled, and hence the time of consumption is changeable. Here we
suggest a novel predictive control strategy which enhances the flexibility in electricity demand
by accounting for electricity price and probability of up or down regulation. The strategy is
demonstrated in simulation experiments, where the concept is illustrated and the potential
savings are estimated. Furthermore flexibility is investigated as a function of regulating prices,
and it is shown that when difference between electricity price and regulating price increases, so
does flexibility of the system.
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INTRODUCTION

Advancements in wind turbines and solar panels coupled
with societal requests, declines in cost and favourable reg-
ulation have all contributed to a rapid increase in renew-
ables in electricity grids (Ueckerdt et al., 2015). While this
is an obligatory development to reach the desired fossil-free
energy system (Jacobson and Delucchi, 2011), fluctuating
renewable energy sources impose a challenge in securing
sufficient supply to cover demand at all times. According
to the EU, adaptation to the increasing amount of renew-
ables requires massive development in smart energy sys-
tems. Hence, building heat, vehicle charging and industrial
cooling (e.g. (Zemtsov et al., 2018)) have received attention
in their ability to smartly prioritize electricity consump-
tion in selected periods without significant loss of utility
for the users. However, as more renewables penetrate the
electricity grids, more smart applications will be needed
to maintain a stable system (Morales et al., 2014).

Wastewater treatment plants (WWTP) use approximately
1% of a country’s total electricity consumption (Shi, 2011)
meaning that e.g. Germany and USA spend 4.4 and 30.2
TWh/yr on wastewater treatment respectively (Haberkern
et al., 2008; Pabi et al., 2013). From this follows (i) that
electricity is a major economic issue for plant operation
corresponding to 25-50% of operational costs (e.g. (Huang
et al., 2013)) and (ii) that the greenhouse gas emissions
(GHG) related to electricity consumption of wastewater
treatment are noteworthy (Mizuta and Shimada, 2010).

The most electricity consuming process on a WWTP is
aeration which accounts for 40-75% of total electricity
demand of a WWTP (Rosso et al., 2008). Aeration is
typically carried out in large, engineered tanks where spe-
cialized bacteria need aerobic conditions (oxygen present)
to convert ammonium from e.g. urine to nitrate. Then
other bacteria convert nitrate to nitrogen gas under anoxic
conditions (oxygen not present) and hence nitrogen is re-
moved from the water. This implies, that the ideal process
requires both aerobic and anoxic periods or areas in the
tank. Hence advanced control of wastewater treatment
aims at turning aeration on and off in feedback loops to
secure good treatment (Zhao et al., 2004).

In this paper we suggest a novel optimization strategy
which controls aeration with respect to both the nonlinear
biochemical processes and the electricity market. We use
Nonlinear Model Predictive Control (NMPC) methods to
solve the control problem. In other words we satisfy the
wastewater treatment requirements regarding treatment
and equipment constraints while we control electricity
demand in a flexible way that allows for trading electricity.
Last, we show through an example study that the control
leaves satisfactory effluent concentrations of the investi-
gated nutrients, and that flexibility in power usage can be
envoked. Finally we show how different regulating prices
influence the flexibility and costs.

THEORY AND METHODS

We briefly describe how wastewater treatment can be
modelled using Stochastic Differential Equations (SDE).

2019 IFAC Workshop on
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sufficient supply to cover demand at all times. According
to the EU, adaptation to the increasing amount of renew-
ables requires massive development in smart energy sys-
tems. Hence, building heat, vehicle charging and industrial
cooling (e.g. (Zemtsov et al., 2018)) have received attention
in their ability to smartly prioritize electricity consump-
tion in selected periods without significant loss of utility
for the users. However, as more renewables penetrate the
electricity grids, more smart applications will be needed
to maintain a stable system (Morales et al., 2014).

Wastewater treatment plants (WWTP) use approximately
1% of a country’s total electricity consumption (Shi, 2011)
meaning that e.g. Germany and USA spend 4.4 and 30.2
TWh/yr on wastewater treatment respectively (Haberkern
et al., 2008; Pabi et al., 2013). From this follows (i) that
electricity is a major economic issue for plant operation
corresponding to 25-50% of operational costs (e.g. (Huang
et al., 2013)) and (ii) that the greenhouse gas emissions
(GHG) related to electricity consumption of wastewater
treatment are noteworthy (Mizuta and Shimada, 2010).

The most electricity consuming process on a WWTP is
aeration which accounts for 40-75% of total electricity
demand of a WWTP (Rosso et al., 2008). Aeration is
typically carried out in large, engineered tanks where spe-
cialized bacteria need aerobic conditions (oxygen present)
to convert ammonium from e.g. urine to nitrate. Then
other bacteria convert nitrate to nitrogen gas under anoxic
conditions (oxygen not present) and hence nitrogen is re-
moved from the water. This implies, that the ideal process
requires both aerobic and anoxic periods or areas in the
tank. Hence advanced control of wastewater treatment
aims at turning aeration on and off in feedback loops to
secure good treatment (Zhao et al., 2004).

In this paper we suggest a novel optimization strategy
which controls aeration with respect to both the nonlinear
biochemical processes and the electricity market. We use
Nonlinear Model Predictive Control (NMPC) methods to
solve the control problem. In other words we satisfy the
wastewater treatment requirements regarding treatment
and equipment constraints while we control electricity
demand in a flexible way that allows for trading electricity.
Last, we show through an example study that the control
leaves satisfactory effluent concentrations of the investi-
gated nutrients, and that flexibility in power usage can be
envoked. Finally we show how different regulating prices
influence the flexibility and costs.

THEORY AND METHODS

We briefly describe how wastewater treatment can be
modelled using Stochastic Differential Equations (SDE).
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∗∗ Krüger A/S, Veolia Water Technologies, Søborg, Denmark (e-mail:

pas@kruger.dk)

Abstract: With increasing fluctuations in electricity production due to prioritization of
renewable energy sources, new applications that can adjust quickly to changes in demand/supply
will be needed. Wastewater treatment use a significant amount of electricity to reduce nutrients
in wastewater before discharge. The treatment process demands electricity in some selected
periods which can be controlled, and hence the time of consumption is changeable. Here we
suggest a novel predictive control strategy which enhances the flexibility in electricity demand
by accounting for electricity price and probability of up or down regulation. The strategy is
demonstrated in simulation experiments, where the concept is illustrated and the potential
savings are estimated. Furthermore flexibility is investigated as a function of regulating prices,
and it is shown that when difference between electricity price and regulating price increases, so
does flexibility of the system.

Keywords: Wastewater Treatment, Stochastic Model Predictive Control, Smart Energy
Application, Balancing Market, Day-ahead market, Optimization, Price-based control

INTRODUCTION

Advancements in wind turbines and solar panels coupled
with societal requests, declines in cost and favourable reg-
ulation have all contributed to a rapid increase in renew-
ables in electricity grids (Ueckerdt et al., 2015). While this
is an obligatory development to reach the desired fossil-free
energy system (Jacobson and Delucchi, 2011), fluctuating
renewable energy sources impose a challenge in securing
sufficient supply to cover demand at all times. According
to the EU, adaptation to the increasing amount of renew-
ables requires massive development in smart energy sys-
tems. Hence, building heat, vehicle charging and industrial
cooling (e.g. (Zemtsov et al., 2018)) have received attention
in their ability to smartly prioritize electricity consump-
tion in selected periods without significant loss of utility
for the users. However, as more renewables penetrate the
electricity grids, more smart applications will be needed
to maintain a stable system (Morales et al., 2014).

Wastewater treatment plants (WWTP) use approximately
1% of a country’s total electricity consumption (Shi, 2011)
meaning that e.g. Germany and USA spend 4.4 and 30.2
TWh/yr on wastewater treatment respectively (Haberkern
et al., 2008; Pabi et al., 2013). From this follows (i) that
electricity is a major economic issue for plant operation
corresponding to 25-50% of operational costs (e.g. (Huang
et al., 2013)) and (ii) that the greenhouse gas emissions
(GHG) related to electricity consumption of wastewater
treatment are noteworthy (Mizuta and Shimada, 2010).

The most electricity consuming process on a WWTP is
aeration which accounts for 40-75% of total electricity
demand of a WWTP (Rosso et al., 2008). Aeration is
typically carried out in large, engineered tanks where spe-
cialized bacteria need aerobic conditions (oxygen present)
to convert ammonium from e.g. urine to nitrate. Then
other bacteria convert nitrate to nitrogen gas under anoxic
conditions (oxygen not present) and hence nitrogen is re-
moved from the water. This implies, that the ideal process
requires both aerobic and anoxic periods or areas in the
tank. Hence advanced control of wastewater treatment
aims at turning aeration on and off in feedback loops to
secure good treatment (Zhao et al., 2004).

In this paper we suggest a novel optimization strategy
which controls aeration with respect to both the nonlinear
biochemical processes and the electricity market. We use
Nonlinear Model Predictive Control (NMPC) methods to
solve the control problem. In other words we satisfy the
wastewater treatment requirements regarding treatment
and equipment constraints while we control electricity
demand in a flexible way that allows for trading electricity.
Last, we show through an example study that the control
leaves satisfactory effluent concentrations of the investi-
gated nutrients, and that flexibility in power usage can be
envoked. Finally we show how different regulating prices
influence the flexibility and costs.

THEORY AND METHODS

We briefly describe how wastewater treatment can be
modelled using Stochastic Differential Equations (SDE).

2019 IFAC Workshop on
Control of Smart Grid and Renewable Energy Systems
Jeju, Korea, June 10-12, 2019

Copyright © 2019 IFAC 541

Furthermore we resume the Nordpool electricity market
as an example case. Then, with respect to the market
design, the optimal control problem is defined, and finally
the numerical implementation is briefly mentioned.

Wasterwater Treatment: Applied SDE Modelling

SDEs are used in a wide range of applications. A general
form of an SDE is

x(t) = x0 +

∫ t

0

f(x(τ), u(τ)) dτ +

∫ t

0

g(x(τ), u(τ)) dω(τ),

or in short

dx(t) = f(x(t), u(t)) dt+ g(x(t), u(t)) dω(t), (1)

where x : R→Rnx denotes the states, x0 is the initial
distribution of the states, u : R→Rnu is the input variables
and ω : R→Rnω denotes a standard (possibly multivariate)
Brownian motion. Brownian motion is defined by its
independent increments which satisfy that for each s, t ∈
R, ω(t)−ω(s) is normally distributed with zero mean and
covariance I(t − s). f : Rnx×Rnu→Rnx is often referred
to as the drift function while g : Rnx×Rnu→Rnx×Rnω is
called the diffusion function.

SDEs provide a powerful stochastic continuous-time mod-
elling framework which can be used for both parame-
ter and state estimation (Kristensen et al., 2004). This
framework has been applied to wastewater treatment in
Halvgaard et al. (2017); Stentoft et al. (2018) where the
activated sludge model in Henze et al. (2000) is reduced
to a lower-order SDE model. Here, we use the model

dx1(t) = a1(a2 − x1(t)) dt

− u(t)a3
x1(t)

a4 + x1(t)
dt+ σ1 dω1(t),

dx2(t) = a1(a5 − x1(t)) dt+ a3u(t)
x1(t)

a4 + x1(t)
dt

− (1− u(t))a6
x2(t)

a7 + x2(t)
dt+ σ2 dω2(t),

(2)

Table 1. Example parameters of (2).

Shorthand Description Value

x1(0) Initial ammoinum conc. 1.12
x2(0) Initial nitrate conc. 0.87
a1 Incoming wastewater rate 0.00067
a2 Mean incoming ammonium 36.9
a3 Nitrification rate 0.073
a4 Monod kinetic constant 0.1
a5 Mean incoming nitrate 2.00
a6 Denitrification rate 0.300
a7 Monod Kinetic constant 7.84
σ1 Ammonium noise parameter 0.0085
σ2 Nitrate noise parameter 0.026

where the parameters are estimated from online measure-
ments from a WWTP using the estimation method given
in Kristensen et al. (2004) and applied to wastewater treat-
ment in Stentoft et al. (2018). The parameter estimates
and a short description are presented in Table 1.

The input function, u, in (2) is a binary-valued function,
which is 1 if the aeration system is activated and 0 oth-
erwise. This means that the system may be characterized
as a switched dynamical system where the optimal control

is related to control of switching times between the two
systems (Egerstedt et al., 2003).

The initial values, x(0) = (x1(0), x2(0))
�, will in an online

implementation be estimated when new measurements
become available. However, in the simulations carried out
in the later case-study, these values will constitute the
initial values in the open-loop control problem.

The Nordic Electricity Market

In Northern Europe, electricity is traded in a common mar-
ket called Nord Pool which consists of 15 interconnected
price areas. The market which trades with the largest
volume is called the day-ahead market. Here, electricity is
purchased and sold for the upcoming day. When the day-
ahead market closes, the intra-day market opens. In this
market, electricity can be traded until 45 minutes prior to
the operating hour.

One of the primary challenges when operating transmis-
sion systems is to guarantee grid stability. The Nordic
Transmission System Operators (TSOs) have many meth-
ods for dealing with this challenge - one of them being
a common balancing market (EnergiNet, 2016). In the
balancing market, market participants have the option to
make a bid that defines how much a participant is willing
to change their production- or consumption schedule in a
given operating hour. The balancing market also closes
45 minutes prior to the operating hour. Hence, when
approaching the operating hour, the TSO has the pos-
sibility to activate balancing bids ahead of time and avoid
possible imbalances. Three scenarios can take place in the
balancing market:

(↑) If the imbalance is negative, there is a deficit of
electricity in the price area and hence an increase in
the production or a decrease in the consumption is
needed. This is called up regulation.

(↓) If the imbalance is positive, there is a surplus of
electricity in the price and hence a decrease in the
production or an in the consumption is needed. This
is called down regulation.

(−) If the imbalance is too small or the duration is too
short, the imbalance is not offered in the balancing
market.

In a situation with up regulation, electricity is sold while
in the situation with down regulation, electricity is pur-
chased. The structure of the balancing market requires
that the up regulation price is greater than the day-ahead
price while the down regulation price is lower than the day-
ahead price. Let p(t) denote the day-ahead price, p(↑)(t)
the up regulation price and p(↓)(t) the down regulation
price. We then have that

p(↓)(t) ≤ p(t) ≤ p(↑)(t). (3)

In Fig. 1 a Nord Pool price example of these prices is
shown. In the price area DK1, a large share of the total
production comes from wind turbines - this is a source of
energy which is very difficult to predict and hence one of
the primary reasons to imbalances - in Parbo (2014) it is
suggested that approximately 65% of the total imbalances
are due to forecast errors of the wind power production.
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45 minutes prior to the operating hour. Hence, when
approaching the operating hour, the TSO has the pos-
sibility to activate balancing bids ahead of time and avoid
possible imbalances. Three scenarios can take place in the
balancing market:

(↑) If the imbalance is negative, there is a deficit of
electricity in the price area and hence an increase in
the production or a decrease in the consumption is
needed. This is called up regulation.

(↓) If the imbalance is positive, there is a surplus of
electricity in the price and hence a decrease in the
production or an in the consumption is needed. This
is called down regulation.

(−) If the imbalance is too small or the duration is too
short, the imbalance is not offered in the balancing
market.

In a situation with up regulation, electricity is sold while
in the situation with down regulation, electricity is pur-
chased. The structure of the balancing market requires
that the up regulation price is greater than the day-ahead
price while the down regulation price is lower than the day-
ahead price. Let p(t) denote the day-ahead price, p(↑)(t)
the up regulation price and p(↓)(t) the down regulation
price. We then have that

p(↓)(t) ≤ p(t) ≤ p(↑)(t). (3)

In Fig. 1 a Nord Pool price example of these prices is
shown. In the price area DK1, a large share of the total
production comes from wind turbines - this is a source of
energy which is very difficult to predict and hence one of
the primary reasons to imbalances - in Parbo (2014) it is
suggested that approximately 65% of the total imbalances
are due to forecast errors of the wind power production.

2019 IFAC CSGRES
Jeju, Korea, June 10-12, 2019

542
63



496 Niclas Brabrand Brok  et al. / IFAC PapersOnLine 52-4 (2019) 494–499

Fig. 1. Nord Pool price example for DK1 for the first five
days of April 2018.

The Optimal Control Problem

In this section we define an optimization problem, which
can compute the optimal input signal, u. We will assume
that u can be parameterized by

τ = {(τoff,k, τon,k)}Nk=0 , (4)

such that

u(t; τ) =

{
1, t ∈ [τon,k−1, τoff,k[, k = 1, ..., N
0, t ∈ [τoff,k, τon,k+1[, k = 0, ..., N − 1

, (5)

where we impose the cycle structure that we start with
the aeration being deactivated (i.e. that τoff,0 = 0). The
cycle parameters are ordered such that

τon,k ≤ τoff,k, k = 0, ..., N, (6a)

τon,k+1 ≥ τoff,k, k = 0, ..., N − 1. (6b)

The main objective of a WWTP is to remove nutrients
from incoming wastewater before discharging it back to
environment at a sustainable level at minimum operational
cost. A sustainable level is arguably depending on the
vulnerability of the environment where the wastewater
is discharged, and hence it is typical for a WWTP to
implement hard constraints on ammonium- and total-
N concentrations (here x1 and x1 + x2) in the effluent.
In this study hard constraints on concentrations are not
imposed, but rather, we define a cost on the discharge of
total-nitrogen to the environment which means that large
concentrations are preferably avoided. This is similar to
the current Danish legislation where discharge of total-N
is taxed by 30 DKK/kg-N. In addition to the cost related
to total-N, the cost of electricity related to the aeration
process is considered in the minimization of total cost
where we assume that the WWTP has the possibility to
bid (and be activated) in the balancing market.

To contain all of this into a univariate function, we propose
a scenario-based structure, consisting of:

• an up regulation scenario,
• a down regulation scenario,
• a neutral scenario, where no regulation is activated,

where each of the scenarios contain a set of cycle parame-
ters: τ (↑), τ (↓) and τ , respictively. In Fig. 2 we have made
a schematic overview of these cycle parameters.

Invariant of which scenario is active, the WWTP has to
trade electricity such that a nominal operation strategy
can be deployed. We define this nominal strategy as
the decision relating to the neutral scenario. Hence, the
electricity cost for each of the scenarios may be defined as

Fig. 2. Schematic overview of the cycle parameters, τ , τ (↑)

and τ (↓).

c
(0)
p (τ) =
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∫ τoff,k

τon,k−1

p(t) dt, (7a)

c
(↑)
p

(
τ, τ (↑)

)
=

N∑
k=0

[∫ τ
(↑)
on,k

τon,k

p(↑)(t) dt+

∫ τoff,k

τ
(↑)
off,k

p(↑)(t) dt

]
, (7b)

c
(↓)
p

(
τ, τ (↓)

)
=

N∑
k=0

[∫ τon,k

τ
(↓)
on,k

p(↓)(t) dt+

∫ τ
(↓)
off,k

τoff,k

p(↓)(t) dt

]
, (7c)

where c
(0)
p (τ) denotes the electricity cost for the nominal

strategy, c
(↑)
p

(
τ, τ (↑)

)
denotes the electricity cost in the up

regulation scenario and c
(↓)
p

(
τ, τ (↓)

)
denotes the electricity

cost in the down regulation scenario. Hence, the expected
cost, cp, when participating in the balancing market is

cp

(
τ, τ (↑), τ (↓)

)
= c(0)p (τ)− θ(↑)c(↑)p

(
τ, τ (↑)

)

+ θ(↓)c(↓)p

(
τ, τ (↓)

)
,

(8)

where θ(↑) and θ(↓) denote the probability of the up-
and down regulation scenarios, respectively. Note that we

have, with probability one, to pay the cost c
(0)
p (τ) for

the nominal strategy, since this defines the consumption
schedule from which we can participate in the balancing
market. Similarly, we define the taxation cost (cost of
effluent load) for the scenarios as

c
(0)
t (τ) =

∫ τon,N

τoff,1

(
x
(0)
1 (t) + x

(0)
2 (t)

)
dt (9a)

c
(↑)
t

(
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)
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∫ τ
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τ
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off,1

(
x
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1 (t) + x
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dt (9b)

c
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τ
(↓)
off,1

(
x
(↓)
1 (t) + x

(↓)
2 (t)

)
dt, (9c)

where c
(0)
t (τ) denotes the taxation cost for the nominal

strategy, c
(↑)
p

(
τ, τ (↑)

)
denotes the taxation cost in the up

regulation scenario and c
(↓)
p

(
τ, τ (↓)

)
denotes the taxation

cost in the down regulation scenario. Note that this
formulation of the taxation amount assumes that the flow
of the incoming/outgoing water is constant over time. The
expected taxation cost is then given by

ct

(
τ, τ (↑), τ (↓)

)
=
(
1− θ(↑) − θ(↓)

)
c
(0)
t (τ)

+ θ(↑)c
(↑)
t

(
τ, τ (↑)

)

+ θ(↓)c
(↓)
t

(
τ, τ (↓)

)
.

(10)

Note that the taxation cost of the nominal strategy is
multiplied by 1−θ(↑)−θ(↓), since we might be activated for
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up or down regulation. Thus, the total cost of operating
the WWTP can be modelled as

c
(
τ, τ (↑), τ (↓)

)
= ct

(
τ, τ (↑), τ (↓)

)
+ cp

(
τ, τ (↑), τ (↓)

)
.

(11)

However, from an optimization perspective, c, is not a
suitable choice for objective function; c will prefer cycle
parameters which are as small as possible to minimize the
optimization horizon. To eliminate this preference, we con-
sider the time-averaged analogues of (7a)-(7c) and (9a)-
(9c). We define these time-averaged versions according to

ĉ(0)p (τ) =
c
(0)
t (τ)

τon,N
, (12a)

ĉ(↑)p

(
τ, τ (↑)

)
=

c
(↑)
p

(
τ, τ (↑)

)

τ
(↑)
on,N

, (12b)

ĉ(↓)p

(
τ, τ (↓)

)
=

c
(↓)
p

(
τ, τ (↓)

)

τ
(↓)
on,N

, (12c)

and

ĉ
(0)
t (τ) =

c
(0)
t (τ)

τon,N
, (13a)

ĉ
(↑)
t

(
τ, τ (↑)

)
=

c
(↑)
t

(
τ, τ (↑)

)

τ
(↑)
on,N

, (13b)

ĉ
(↓)
t

(
τ, τ (↓)

)
=

c
(↓)
t

(
τ, τ (↓)

)

τ
(↓)
on,N

. (13c)

Thus, we can define the optimal control problem as

min
τ,τ (↑),τ (↓)

ĉ
(
τ, τ (↑), τ (↓)

)
, (14a)

subject to(
τ, τ (↑), τ (↓)

)
∈ T , (14b)

ẋ(0)(t) = f
(
x(0)(t), u (t; τ)

)
, t ∈ [0, τon,N ], (14c)

ẋ(↑)(t) = f
(
x(0)(t), u

(
t; τ (↑)

))
, t ∈

[
0, τ

(↑)
on,N

]
, (14d)

ẋ(↓)(t) = f
(
x(0)(t), u

(
t; τ (↓)

))
, t ∈

[
0, τ

(↓)
on,N

]
, (14e)

where T defines the set of permissible cycle structures,
which might be constraints such as minimum- and max-
imum cycle length and minimum- and maximum levels
of flexibility bid to the balancing market via τ (↑) and
τ (↓). f is the system model which is given from (2). In
an actual application of the framework presented above
we would need to apply the principle of Nonlinear Model
Predictive Control as described in Brok et al. (2018) to
obtain a closed-loop control system, where we would solve
an optimization problem of the form (14a)-(14e) each time
we receive new measurements from the WWTP.

Numerical Implementation

The optimization problem (14a)-(14e) has been solved
in julia using ipopt (Bezanson et al., 2017; Wächter
and Biegler, 2006). ipopt is a gradient-based optimiza-
tion method - hence, the derivatives of the optimization
problem (14a)-(14e) have to be provided. The dynamical
systems (14c)-(14e) are switched dynamical systems which
implies that the gradient of the objective function can

be computed using the adjoint equations of the optimal
control problem (14a)-(14e) (Egerstedt et al., 2003). The
numerical method we have implemented is in the literature
often referred to as a single shooting method (Bock and
Plitt, 1984).

EXAMPLES AND DISCUSSION

The control strategy is tested with respect to the model
presented in (2) and parameters in Table 1. We assume
that T in (14b) is defined as the set containing the cycle
parameters satisfying the constraints defined in Table 2.
Note that these constraints are also implemented across
scenarios. We also assume that the following data is given:

(1) the day-ahead electricity price, p(t),
(2) up regulation price and probability, p(↑) and θ(↑),
(3) down regulation price and probability, p(↓) and θ(↓).

Table 2. Cycle parameter constraints.

Constraint Description Value

Minimum aeration length 6.0
Minimum no-aeration length 20.0
Maximum aeration length 60.0
Maximum no-aeration length 120.0

We will in the following simulation study assume that p is a
constant function of time with value 10 price units. Hence
we optimize costs with known prices and probabilities of
up- or down regulation. We also assume that it is only
the first cycle shift from on to off and the second cycle
shift from off to on that can be bid to the balancing
market. This means that T also imposes the constraints

τon,k = τ
(↑)
on,k = τ

(↓)
on,k for k ∈ {0, 1, 3, ..., N} and

τoff,k = τ
(↑)
off,k = τ

(↓)
off,k for k ∈ {0, 2, 3, ..., N}.

Nominal Control Strategy

In this, first, simulation, we assume that θ(↑) = θ(↓) = 0.
The resulting simulation is shown in Fig. 3. We observe
that when the aeration is on, the ammonium concentra-
tion, x1, decreases while the nitrate concentration, x2,
increases and vice versa when the aeration is off. From
3 we also observe that the accumulated cost is increasing
steadily over time with approximately 70% of the total cost
associated with the price of electricity. Finally, we note
that after the first cycle, the aeration cycles are repeated
with almost the same period. This is expected since the
price of electricity and the flow-rate are constant.

Fig. 3. Baseline simulation showing the optimal control
given constant electricity price and no regulation.
Note that regime refers to the aeration state (on/off).
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up or down regulation. Thus, the total cost of operating
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However, from an optimization perspective, c, is not a
suitable choice for objective function; c will prefer cycle
parameters which are as small as possible to minimize the
optimization horizon. To eliminate this preference, we con-
sider the time-averaged analogues of (7a)-(7c) and (9a)-
(9c). We define these time-averaged versions according to

ĉ(0)p (τ) =
c
(0)
t (τ)

τon,N
, (12a)
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where T defines the set of permissible cycle structures,
which might be constraints such as minimum- and max-
imum cycle length and minimum- and maximum levels
of flexibility bid to the balancing market via τ (↑) and
τ (↓). f is the system model which is given from (2). In
an actual application of the framework presented above
we would need to apply the principle of Nonlinear Model
Predictive Control as described in Brok et al. (2018) to
obtain a closed-loop control system, where we would solve
an optimization problem of the form (14a)-(14e) each time
we receive new measurements from the WWTP.

Numerical Implementation

The optimization problem (14a)-(14e) has been solved
in julia using ipopt (Bezanson et al., 2017; Wächter
and Biegler, 2006). ipopt is a gradient-based optimiza-
tion method - hence, the derivatives of the optimization
problem (14a)-(14e) have to be provided. The dynamical
systems (14c)-(14e) are switched dynamical systems which
implies that the gradient of the objective function can

be computed using the adjoint equations of the optimal
control problem (14a)-(14e) (Egerstedt et al., 2003). The
numerical method we have implemented is in the literature
often referred to as a single shooting method (Bock and
Plitt, 1984).

EXAMPLES AND DISCUSSION

The control strategy is tested with respect to the model
presented in (2) and parameters in Table 1. We assume
that T in (14b) is defined as the set containing the cycle
parameters satisfying the constraints defined in Table 2.
Note that these constraints are also implemented across
scenarios. We also assume that the following data is given:

(1) the day-ahead electricity price, p(t),
(2) up regulation price and probability, p(↑) and θ(↑),
(3) down regulation price and probability, p(↓) and θ(↓).

Table 2. Cycle parameter constraints.

Constraint Description Value

Minimum aeration length 6.0
Minimum no-aeration length 20.0
Maximum aeration length 60.0
Maximum no-aeration length 120.0

We will in the following simulation study assume that p is a
constant function of time with value 10 price units. Hence
we optimize costs with known prices and probabilities of
up- or down regulation. We also assume that it is only
the first cycle shift from on to off and the second cycle
shift from off to on that can be bid to the balancing
market. This means that T also imposes the constraints

τon,k = τ
(↑)
on,k = τ

(↓)
on,k for k ∈ {0, 1, 3, ..., N} and

τoff,k = τ
(↑)
off,k = τ

(↓)
off,k for k ∈ {0, 2, 3, ..., N}.

Nominal Control Strategy

In this, first, simulation, we assume that θ(↑) = θ(↓) = 0.
The resulting simulation is shown in Fig. 3. We observe
that when the aeration is on, the ammonium concentra-
tion, x1, decreases while the nitrate concentration, x2,
increases and vice versa when the aeration is off. From
3 we also observe that the accumulated cost is increasing
steadily over time with approximately 70% of the total cost
associated with the price of electricity. Finally, we note
that after the first cycle, the aeration cycles are repeated
with almost the same period. This is expected since the
price of electricity and the flow-rate are constant.

Fig. 3. Baseline simulation showing the optimal control
given constant electricity price and no regulation.
Note that regime refers to the aeration state (on/off).
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Fig. 4. Scenarios where regulation is expected and acti-
vated vs the nominal strategy as shown before.

Up and Down Regulation Scenarios

In the following simulations, we have two different scenar-
ios:

(↑) A scenario where the probability of being activated
for up regulation is θ(↑) = 1/10 at an up regulation
price of p(↑)(t) = 20.

(↓) A scenario where the probability of being activated
for down regulation is θ(↓) = 1/10 at an down
regulation price of p(↓)(t) = 0.

Note that for the (↓)-scenario, there is a small probability
that the WWTP can consume electricity for free.

From Fig. 4 we see that for both scenarios it is a long
term beneficial strategy to participate in the balancing
market. We observe that the total cost, relative to the
nominal strategy shown in Fig. 3, is ≈ 50 price units less
than the nominal cost for the nominal strategy without
probability of activation. From Fig. 4 we can also note
that after the initial activation, the strategies re-prioritize
reducing the total concentration of the nutrients and
that the concentrations converge towards the result of
the nominal strategy. In Fig. 5 we see that the nominal
strategies with balancing market participation have a total
cost which is very close to the cost of the nominal strategy
with no participation. This is a desired property, since
we don’t want to impose a risk of huge total cost of the
nominal strategies which primarily will define the state of
operation.

Flexibility Diagram

To illustrate how flexibility can be invoked in the control,
the effect of different up- and down regulation prices is
investigated. In Fig. 6 we have shown a flexibility diagram.
This diagram shows how much flexibility the method
builds into the system for different up- and down regu-
lation prices and how these additional strategies affect the
nominal cost, expected cost and regulating cost. The total
flexibility is defined as the amount the system is willing
to change the nominal schedule given the up or down
regulation price. Hence, it defines the available flexibility
in the system. The flexibility diagram is generated based
on:

(↑) In the up regulation region, the probability of being
activated for up regulation is θ(↑) = 1/10.

(↓) In the down regulation region, the probability of being
activated for down regulation is θ(↓) = 1/10.

Fig. 5. Scenarios where regulation is expected but not
activated vs the nominal strategy as shown before.

We observe in fig. 6 that larger savings are expected as the
regulation prices becomes more favorable (relative to the
fixed day-ahead price) and that the nominal cost is flat
with increased sensitivity towards down regulation.

The flexibility diagram depends on the parameters used
in the prediction model in (2) and the probabilities and
prices used. Thus in an online application, parameters are
expected to be frequently updated and hence the flexibility
diagram will also change. Also, the framework presented
in this paper assumes that the scenario probabilities are
invariant over time, this is however by no means a neces-
sary assumption. Hence, we imagine that these could be
generated from forecasts of the balancing market (even
though this is a very difficult market to predict). For
closed-loop strategies, where we rely on feedback to get
efficient operation, we imagine that flexibility diagrams
might be key tool in aggregation of multiple WWTPs
where the total consumption and flexibility is traded in
the day-ahead, intra-day and balancing markets. In appli-
cations of the optimization method, we would also need to
consider how to realistically mimic the market structure
of the Nordic electricity markets.

Lastly, we remark that the presented optimization method
only considers biological nitrogen removal. An extension to
include biological phosphorous removal would be useful for
manyWWTPs. Furthermore, legislation in many countries
requires that ammonium and total-nitrogen are kept below
a certain limit (i.e. hard constraints on x1 and x1 + x2).
For improved applicability this should also be included in
future implementations.

Fig. 6. Flexibility diagram showing the effect of changing
the up- and down regulation price. Price level 10.0
corresponds to no regulation (or regulation price equal
zero).
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CONCLUSION

In this paper we presented a novel stochastic model
predictive control strategy of wastewater aeration for
cost-efficient and sustainable treatment. The optimization
model trade-off taxation cost of nutrients discharged into
the environment with the cost of operating the WWTP.

The output from the optimization model is a nominal
strategy and strategies for up- and down regulation, re-
spectively. We show via a simulation study, that by allow-
ing the optimization model to utilize the balancing market,
the operational costs can be decreased compared to only
considering a nominal strategy with no participation in the
balancing market. The simulation study also shows that
after the activation period, the regulation-based strategies
converges (over time) to the nominal strategy. We fur-
thermore suggest a flexibility diagram which shows how
different up and down regulation price levels influence the
operational costs and flexibility. Furthermore it is sug-
gested that this can be a tool for aggregation of multiple
WWTPs.

Finally we consider this paper as a step towards in-
tegrating wastewater treatment in the balancing mar-
ket(s). Ultimately, our approach can help wastewater
treatment operation adjust to rapid changes in electricity
supply/prices and thereby make them more resilient to
increasing amounts of renewables in the transmission grid.
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CONCLUSION

In this paper we presented a novel stochastic model
predictive control strategy of wastewater aeration for
cost-efficient and sustainable treatment. The optimization
model trade-off taxation cost of nutrients discharged into
the environment with the cost of operating the WWTP.

The output from the optimization model is a nominal
strategy and strategies for up- and down regulation, re-
spectively. We show via a simulation study, that by allow-
ing the optimization model to utilize the balancing market,
the operational costs can be decreased compared to only
considering a nominal strategy with no participation in the
balancing market. The simulation study also shows that
after the activation period, the regulation-based strategies
converges (over time) to the nominal strategy. We fur-
thermore suggest a flexibility diagram which shows how
different up and down regulation price levels influence the
operational costs and flexibility. Furthermore it is sug-
gested that this can be a tool for aggregation of multiple
WWTPs.

Finally we consider this paper as a step towards in-
tegrating wastewater treatment in the balancing mar-
ket(s). Ultimately, our approach can help wastewater
treatment operation adjust to rapid changes in electricity
supply/prices and thereby make them more resilient to
increasing amounts of renewables in the transmission grid.
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A B S T R A C T

To accommodate the increasing amount of renewable energy sources in electricity grids it is crucial to utilize
the flexibility of all electricity consumers. Municipal wastewater treatment plants consume approximately 1 %
of the electricity consumption of a country’s total electricity consumption, to reduce nutrient concentrations
from the incoming wastewater before discharging the water back into the environment. In this paper, a novel
economic optimal control strategy is proposed for unlocking the available energy flexibility in wastewater
treatment. The strategy suggests that the power consumption in wastewater treatment can be flexible since
the water is treated in large tanks with long retention times where specialized aeration equipment is repeatedly
switched on and off. By controlling these switching times with respect to nutrient concentrations, electricity
consumption can be predicted and shifted in time and hence provide short-term demand side flexibility. The
proposed principle is used to reduce the operating costs of a wastewater treatment plant by enabling the
flexibility to distribute the aeration load to periods with less expensive power prices. The performance of the
proposed method is demonstrated for the operation of a single wastewater treatment plant and the strategy
is backtested on Nord Pool market data from 2019. This shows modest savings of 1.15% if only the day-
ahead market is considered. However, if the regulating and special regulating power prices are included in
the optimization the realized savings are in the magnitude of 7.23% and 27.32%, respectively. Thus this study
is considered as a step towards exploiting flexibility for the benefit of reducing the combined taxation and
aeration cost of wastewarer treatment.

1. Introduction

Advancements in wind turbines and solar panels, coupled with
societal demand for low carbon energy, declines in cost and favorable
regulation, have all contributed to an increase in power production
based on fluctuating renewable energy resources in power grids [1].
While this is a natural development to reach the desired fossil-free
energy system, sustainable integration of these power sources requires
a paradigm shift in electricity demand [2]. This means a transition
from electricity demand independent of production towards a demand
side which adapts to the weather driven power production, without
significant loss of utility for the users. Such adaptation is suggested
and quantified for several applications, including buildings that can
maintain a constrained temperature by optimally exploiting electricity
prices [3] or by exploiting local photovoltaics [4], and electric vehicles
that optimize their charging schedules using photovoltaic power [5].
However, as more fluctuating and intermittent energy sources are
introduced, more flexible applications will be needed to efficiently
utilize these renewable energy sources [6].

∗ Corresponding author.
E-mail addresses: nlbr@dtu.dk (N.B. Brok), pas@kruger.dk (P.A. Stentoft).

Municipal Wastewater Treatment Plants (WWTPs) use electricity in
various processes including pumping, aeration, mixing, and desanding.
In total, WWTPs are responsible for approximately 1% of a country’s
total electricity consumption [7], meaning that Germany and the USA
spend 4.4 and 30.2 TWh each year on wastewater treatment, respec-
tively [8,9]. Furthermore it has been found that electricity is costly for
plant operation, with cases of electricity costs corresponding to 25–
50% of operating costs [10]. Different studies have investigated the
electricity consumption of WWTPs and concluded that the process with
the highest power demand is the aeration process, constituting 40–75%
of the total power consumption [11,12]. Aeration of the wastewater
is carried out in large, engineered tanks in which specialized bacteria
need aerobic conditions (oxygen present) to convert ammonium from
e.g. urine to nitrate. Other bacteria then convert nitrate to nitrogen
gas under anoxic conditions (oxygen not present) and hence nitrogen
is removed from the water. These processes can be modeled using
activated sludge models [13] and predicted using real-time data and
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process knowledge [14]. The biochemical process requires both aerobic
and anoxic periods or areas in the tank in order to reduce nutrient
concentrations. To secure this, some advanced aeration controls aim
at turning aeration on and off in feedback loops to achieve the desired
effluent concentrations [15].

Model Predictive Control (MPC) is an advanced control method
that aims to find the optimal control strategy by predicting the effect
of different control sequences and then choosing the sequence that
minimizes some objective/cost function. Using the MPC principle, it is
possible to incorporate time-varying signals (e.g. time-varying power
prices) into the optimal control problem and use these signals directly
in decision making. Hence, this can be seen as an alternative to using
a battery and then have ‘‘constant’’, averaged prices. To the authors’
knowledge, the idea of including electricity prices in control and oper-
ation of WWTPs was first mentioned three decades ago in [16]. Since
then, several studies have concluded that wastewater transport and
treatment can provide flexibility in their power demand [17–19]. [20]
minimized aeration costs with respect to varying energy tariffs using
a benchmark model of a WWTP [21]. [22] used an MPC approach to
minimize total costs in terms of tax payment on effluent nitrogen and
time-varying power prices for a small Danish WWTP. In [23] the pumps
that direct wastewater to the WWTP from upstream sewage storage
were controlled using MPC with respect to time-varying power prices.

1.1. Paper contribution

The existing literature contains (to the knowledge of the authors)
very limited work on predictive optimization of the power consumption
at municipal WWTPs with simultaneous consideration of a spot market
and balancing power market. This paper presents an optimal control
strategy for optimal control of the aeration equipment at WWTPs.
In [24], this control strategy is defined in more details, however, in
this paper the performance of the strategy is tested extensive on a full
year of market data.

Due to time-varying power prices, WWTPs can shift the aeration
process schedule such that it favors less expensive power prices and
thereby unlocking the energy flexibility available within the biochem-
ical process in the wastewater aeration tanks. Such strategies yield
potential within energy balancing [25] as well as solving ancillary
service problems in future smart grids [26]. The optimal control strat-
egy proposed in this paper optimally balances costs associated with
the nonlinear biochemical process (tax on the effluent total nitro-
gen concentration) and the power consumption. The cost associated
with the power consumption will be subject to four different pricing
assumptions. The main contribution of this paper is to demonstrate
how WWTPs can optimize their operational costs by shifting their
power consumption to operating hours with favorable power prices and
discuss the potential of using this flexibility in power consumption in
multiple electricity markets. The performance of the optimal control
strategy is backtested on Nord Pool market data from 2019 and the
benefit of utilizing time-varying power prices is shown. To make the
backtest computational tractable the MPC principle has been applied
such that the optimal control strategy is solved repeatedly two days
ahead with only the first 24 h being implemented.

2. The Northern European electricity market

In Northern Europe, electricity is traded in a common market which
consist of 15 interconnected price areas where electricity can be pur-
chased and sold in a range of markets. On the NASDAQ Commodities
Exchange financial derivatives are traded and market participants can
hedge against e.g. grid congestion and general price volatility. These
financial derivatives are in general traded with a long horizon — prices
can be hedged for the coming week, month or year. The Nord Pool
Exchange is responsible for operating two power markets in Northern

Europe: the day-ahead market and the intra-day market. The day-
ahead market has the largest trading volume and electricity can be
purchased and sold for the up-coming day. Bidding to the day-ahead
market closes at 12 pm on the day prior to the day of operation,
and hence the planning horizon is 12–36 h. The day-ahead price is
settled as the intersection between the ordered bids of power purchases
and sales constrained by the physical limitations of the power grid.
The intra-day market is open for trading when the day-ahead market
closes. This market has traditionally been used to eliminate imbalances
between the expected power production/consumption and the power
production/consumption plans traded in the day-ahead market. The
trading volume in the intra-day market is significantly smaller than the
trading volume in the day-ahead market. The intra-day market closes
45 min prior to the hour of operation but is open for trading up until
then. Simultaneously with the closure of the intra-day market, bidding
to the regulating power market also closes. The regulating power
market is a market operated and settled by the Transmission System
Operators (TSOs) in the Nordic countries and all regulating power
bids are aggregated within the Nordic Operational Information System
(NOIS). The regulating power market is one (of many) mechanism
the TSOs use to maintain grid stability. The regulating power market
comes into play if the grid imbalance is expected to be of significant
volume and duration. Given that the system imbalance is expected to
be significant, the sign of the imbalance define:

(↑) If the imbalance is negative, there is a deficit of electricity — an
increase of the production or a decrease in the consumption is
needed. This is called up regulation.

(↓) If the imbalance is positive, there is a surplus of electricity — a
decrease of the production or an increase in the consumption is
needed. This is called down regulation.

The TSO works as an intermediary in the regulating power market.
The TSO sell electricity when there is up regulation and buy electricity
when there is down regulation. The counter parties responsible for
the these imbalances are settled in the balancing power market. In
this market the TSO also functions as an intermediary. The balancing
power market is settled after the operating hour when the actual
meter measurements have been made. Thus, the regulating power
market works as a neutralization mechanism to alleviate imbalances
and the balancing power market is a physical market which holds the
responsible parties accountable for their grid imbalances.

The regulating power market functions similarly to the day-ahead
market across the 15 interconnected price areas. The regulating power
price might differ between price areas but is always settled as the
intersection between the ordered bids of down- and up regulation and
the activated regulating power volume. Hence, all activated bids are
activated at the same price. The day-ahead price is used as the basis
for the regulating- and balancing power pricing procedures:

• The down regulation price is less than or equal to the day-ahead
price.

• The up regulation price is greater than or equal to the day-ahead
price.

• Consumption imbalances with an opposite sign of the system
imbalance is settled at the regulation power price in the balancing
power market. Production imbalances with an opposite sign of the
system imbalance is settled at the day-ahead price.

• Imbalances with the same sign as the system imbalance is settled
at the regulating power price in the balancing power market.

This structure implies that consumption imbalances are settled at the
regulating power prices in the balancing power market while produc-
tion imbalances always are settled at the highest price of the regulating
power price and the day-ahead price. This settlement structure for
production imbalances imply a net profit for the TSO, which is used to
partially finance the reserve capacity and thereby implicitly lowering
the system tariff.
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Table 1
GWh of Special down regulation received from the German TSO, TenneT, for 2017–
2019. The activated volumes are activated volumes for Danish participants and the
average price is in EUR/MWh.

2019 2018 2017

Special down regulation 1,312 1,114 781
Thermal power plants 46 % 53 % 64 %
Electric boilers 22 % 21 % 22 %
Wind turbines 32 % 26 % 14 %

Average price (EUR/MWh) −12.3 −9.3 −7.7

In recent years there has been a rapid development of the activated
volumes of a market feature called special regulation in the Western
Danish price area, DK1. Special regulation can occur as both down-
and up regulation. Special regulation is in effect when the TSO skips
the normal pricing procedure and in the event of special regulation,
the activated bids are paid as bid. During the last three years, one of
the main sources of special down regulation in DK1 has been excessive
wind power production in Northern Germany. In Table 1 the total
special down regulation volumes activated in Denmark due to special
regulation from the German TSO, TenneT, is shown. This table shows
that in 2019 a total of 1312 GWh was activated for special down
regulation in Denmark due to unforeseen large (positive) imbalances
in Northern Germany. This table also shows that in 2019, 32% of
the special regulation was handled by curtailment of wind turbines
in Denmark. Energinet (Danish TSO) is only allowed to publish yearly
average prices — in 2019 the average special down regulation price was
−12.3 EUR/MWh. In general Table 1 shows that the need for special
down regulation in DK1 is increasing with corresponding power prices
being vary attractive for consumers. Thus, there is a great potential for
flexible consumers to participate in this market and ideally eliminate
the need of curtailing Danish wind turbines.

In Fig. 1 a comparison between the market volumes in the day-
ahead market, intra-day market and the regulating power market are
shown. The left 𝑦-axis shows the weekly volumes in the day-ahead
market and intra-day market and the right 𝑦-axis shows the weekly
volumes in the regulating power market. This figure clearly shows that
the day-ahead market has the largest trading volume and that demand
for special down regulation is significantly larger than the demand for
regular down regulation. In Fig. 2 a monthly comparison between the
day-ahead prices and the regulating power prices are shown (measured
on the left y-axis). The solid black line (measured on the right y-
axis) represents the monthly average price difference (the monthly
average day-ahead price minus the monthly average regulating power
price). This figure shows a tendency towards cheaper average regulat-
ing power prices. This figure also shows that the power prices were
the most expensive in the first quarter of 2019. Similarly to Fig. 2,
Fig. 3 shows the hourly price differences between the day-ahead prices
and the regulating power prices. As expected, during the morning peak
hours (07–10) and the evening peak hours (17–21) the power prices
tends to be more expensive compared to the nightly power prices. This
figure also shows that the regulating power prices on average are 1–3
EUR/MWh less expensive than the day-ahead prices leading up to these
peak hours. In general the power prices (both the day-ahead prices
and the regulating power prices) exhibit large, systematic variations
implying a great potential for optimizing according to time-varying
power prices.

The aeration equipment at municipal WWTPs use a significant
amount of electricity when it is switched on. However, operators of
such plants are able to schedule this aeration process such that it favors
less expensive power prices. This paper will focus on four different
power price assumptions where the WWTP is price-taker of:

• a constant power price,
• a time-varying power price equal to the day-ahead price,
• a time-varying power price equal to the regulating power price,

• and a time-varying power price equal to the regulating power
price, but where the WWTP also can bid for the attractive special
down regulation prices.

It will be assumed that these prices are fully known to the WWTP
when scheduling the aeration equipment. This also means that the
WWTP is assumed to be a price-taker of all the prices available. This is
usually what happens in real-life application; consumers deal with an
intermediary (e.g. an aggregator) which manages the power trading.
In this paper it is assumed that this intermediary has perfect market
information and makes the actual prices available to the WWTP. In
reality the prices will be subject to uncertainty and the intermediary
will typically charge a fee and take a margin to manage the power
trading.

3. Wastewater treatment modeling and optimization

For real-time applications, models that are suitable for learning from
all available/relevant data and sensors are needed. This section briefly
describes how concentrations of selected nutrients in wastewater can
be modeled using Stochastic Differential Equations (SDEs). This section
also describes an optimal control strategy for optimally balancing the
tax of nutrient concentrations in the effluent wastewater and the power
cost associated with the wastewater aeration process. A similar model
and optimization strategy is introduced and implemented in [24].

3.1. Wastewater treatment: Applied SDE modeling

Physical systems can be represented using SDEs which provide a
natural method to represent how mean and variance of a phenomenon
evolves in continuous time. As opposed to discrete time models, prior
knowledge about the differential equations governing the system dy-
namics can be included, and the estimated parameters do not depend
on the sampling time. Using the same notation as [24], a general form
of an SDE written in integral form is

𝑥(𝑡) = 𝑥0 + ∫

𝑡

0
𝑓 (𝑥(𝜏), 𝑢(𝜏)) d𝜏 + ∫

𝑡

0
𝑔(𝑥(𝜏), 𝑢(𝜏)) d𝜔(𝜏),

or in short

d𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)) d𝑡 + 𝑔(𝑥(𝑡), 𝑢(𝑡)) d𝜔(𝑡), (1)

where 𝑥∶ R→R𝑛𝑥 denotes the states, 𝑥0 is the initial value of the
states, 𝑢∶ R→R𝑛𝑢 is the input variables and 𝜔∶ R→R𝑛𝜔 denotes a
standard (possibly multivariate) Brownian motion. Brownian motion
is defined by its independent increments which satisfy that for each
𝑠, 𝑡 ∈ R, 𝜔(𝑡) − 𝜔(𝑠) is normally distributed with zero mean and
covariance 𝐼|𝑡 − 𝑠|. 𝑓 ∶ R𝑛𝑥×R𝑛𝑢→R𝑛𝑥 is often referred to as the drift
function, while 𝑔 ∶ R𝑛𝑥×R𝑛𝑢→R𝑛𝑥×R𝑛𝜔 is called the diffusion function.
For further reading the authors refer to [27,28] which represent the
foundation for this use. Thereby, SDEs can provide a continuous time
stochastic modeling framework which can be suitable for both param-
eter and state estimation [28,29]. This framework has previously been
applied to wastewater treatment in [14,24,30], where the activated
sludge model in [31] is reduced to a low-order (number of states are
reduced from 13 to 2) SDE model. This paper applies the reduced order
SDE model described in [24] and repeated here

d𝑥1(𝑡) = 𝑎1(𝑎2 − 𝑥1(𝑡)) d𝑡

− 𝑢(𝑡)𝑎3
𝑥1(𝑡)

𝑎4 + 𝑥1(𝑡)
d𝑡 + 𝜎1 d𝜔1(𝑡),

d𝑥2(𝑡) = 𝑎1(𝑎5 − 𝑥2(𝑡)) d𝑡 + 𝑎3𝑢(𝑡)
𝑥1(𝑡)

𝑎4 + 𝑥1(𝑡)
d𝑡

− (1 − 𝑢(𝑡))𝑎6
𝑥2(𝑡)

𝑎7 + 𝑥2(𝑡)
d𝑡 + 𝜎2 d𝜔2(𝑡),

(2)

in the optimal control problem (described later). In the model (2),
𝑥1 represents the ammonium concentration and 𝑥2 represents the ni-
trate concentration of the wastewater. The parameters are estimated
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Fig. 1. Weekly day-ahead, intra-day and regulating power volumes in 2019.

Fig. 2. Monthly prices differences between the day-ahead market and the regulating power market in 2019. The filled regions define the histograms and the dashed lines represent
the 25%, 50% and 75% percentiles, respectively.

Fig. 3. Hourly prices differences between the day-ahead market and the regulating power market in 2019. The filled regions define the histograms and the dashed lines represent
the 25%, 50% and 75% percentiles, respectively.

from online measurements from a WWTP using the estimation method
in [29] and applied in [14]. This methodology has previously been
used to model predict plant performance up to 24 h ahead with
good performance [14]. The same model has been used as basis for
comparing different control strategies in [22]. The parameter estimates
used in this paper are given in Table 2. The input function, 𝑢, in (2) is
a binary-valued function, which is 1 if the aeration system is activated
and 0 otherwise. This means that the system may be characterized
as a switched dynamical system, where the optimal control is related
to control of switching times between the two regimes [32]. In an
online implementation, the initial state values, 𝑥(0) = (𝑥1(0), 𝑥2(0))′,
will be estimated when new measurements become available. In the
backtest conducted later, these values will be assumed to be known
and it will be assumed that the model used in optimal control problem

is exact. Hence, no filtering techniques or re-estimation of parameters
are needed.

3.2. The optimal control problem

This section defines the optimal control problem that is used to
compute the optimal aeration cycles for the WWTP. The notation used
and the structure in the optimal control problem is inspired by [24].
The aeration function, 𝑢, will be parameterized by

𝜏 =
{(

𝜏𝚘𝚏𝚏,𝑘, 𝜏𝚘𝚗,𝑘
)}𝑁

𝑘=0 , (3)

such that

𝑢(𝑡; 𝜏) =
{

1, 𝑡 ∈ [𝜏𝚘𝚗,𝑘−1, 𝜏𝚘𝚏𝚏,𝑘[, 𝑘 = 1,… , 𝑁
0, 𝑡 ∈ [𝜏𝚘𝚏𝚏,𝑘, 𝜏𝚘𝚗,𝑘+1[, 𝑘 = 0,… , 𝑁 − 1.

(4)
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Fig. 4. This figure shows a schematic overview of the components in the optimal control problem and how the energy flexibility is unlocked by a coupling to electricity markets.
NOIS represents participation in the regulation power market.

Table 2
Values and description of the parameters for the model given in (2). The units are
in milligrams of nitrogen per liter (except for the rates which are unit-less). The
parameters are estimated from real data in [24].

Shorthand Description Value

𝑥1(0) Initial ammonium conc. 1.12
𝑥2(0) Initial nitrate conc. 0.87
𝑎1 Incoming wastewater rate 0.00067
𝑎2 Mean incoming ammonium 36.9
𝑎3 Nitrification rate 0.073
𝑎4 Monod kinetic constant 0.1
𝑎5 Mean incoming nitrate 2.00
𝑎6 Denitrification rate 0.300
𝑎7 Monod kinetic constant 7.84
𝜎1 Ammonium noise parameter 0.0085
𝜎2 Nitrate noise parameter 0.026

In (4), 𝑁 defines the number of aeration cycles, and this is an integer
value that defines the number of decision variables of the optimal
control problem. Hence, different values of 𝑁 will lead to different
optimal aeration cycles. A real-life WWTP often has policies restricting
the minimum and maximum length of the aeration cycles and the time
between these cycles. This is to reduce strain of the aeration equipment
and to avoid sludge settling. To accommodate cycle length constraints,
the aeration parameters in (3) are ordered according to

𝜏𝚘𝚗,𝑘 ≤ 𝜏𝚘𝚏𝚏,𝑘, 𝑘 = 1,… , 𝑁, (5a)

𝜏𝚘𝚗,𝑘+1 ≥ 𝜏𝚘𝚏𝚏,𝑘, 𝑘 = 0,… , 𝑁 − 1, (5b)

This will enable the definition of cycle policies by the WWTP. There
is no start-up cost for initiating/ending an aeration cycle. There is a
natural dynamical delay until the aeration equipment has distributed
the air in the entire tank, however, this is delay is captured by the SDE
model (2) [14].

The main objective of a WWTP is to reduce nutrients from the in-
coming wastewater to a sustainable level before discharging the water
back into the environment. A sustainable level arguably depends on
the vulnerability of the local environment into which the wastewater is
discharged, and hence it is typical for a WWTP to implement constraints
on ammonium and the total nitrogen concentrations in the effluent.
These concentrations can be computed according to 𝑥1 and 𝑥1 + 𝑥2,
respectively. In this study, hard constraints on concentrations are not
imposed, but rather a cost is imposed for the total discharged nitrogen
concentration. This means that large concentrations are penalized in
the objective function. This is similar to the current Danish legislation,
where the total discharged nitrogen concentration is taxed. In addition
to the cost related to the total discharged nitrogen concentration, the
cost of electricity related to the aeration process is considered. Fig. 4
shows a schematic overview of the components of the wastewater
treatment considered in the optimal control problem. It will be assumed

that the WWTP receives a single price signal, 𝑝 (from e.g. a retailer).
This input function will be subject to various price model assumptions
(as described earlier). The special regulating price will be subject to a
qualitative assumptions relating to the average prices listed in Table 1.

The objective function used in the optimal control problem will
consider a monetary cost of the total discharged nitrogen and a mone-
tary cost of the power consumption related to the aeration cycles. The
monetary cost related to power consumption will be based on a single
price signal, 𝑝, which the WWTP receives from e.g. a retailer. In the
backtest conducted later, this price signal will be subject to different
pricing assumptions. The optimal control problem can be defined as

min
𝜏

𝑘𝑝
𝑁−1
∑

𝑘=0
∫

𝜏𝚘𝚏𝚏,𝑘+1

𝜏𝚘𝚗,𝑘
𝑝(𝑡) d𝑡 − 𝑘𝑡 ∫

𝑇

0

(

𝑥1(𝑡) + 𝑥2(𝑡)
)

d𝑡.

subject to

𝜏∈  , (6a)

�̇�(𝑡) = 𝑓 (𝑥(𝑡), 𝑢 (𝑡; 𝜏)), 𝑡 ∈ [0, 𝑇 ], (6b)

𝑥(0) = 𝑥0. (6c)

In (6a),  defines the set of permissible cycle structures. This might
include constraints such as minimum and maximum cycle length. In
(6b) 𝑓 is the system model which is given from (2) with the parameters
given in Table 2. 𝑇 > 0 denotes the optimization horizon and bounds
all the decision variables, 𝜏. 𝑘𝑝 > 0 is the power used when the aeration
equipment is in operation and hence the first term of the objective
function defines the integration cost of the power consumption. 𝑘𝑡 > 0 is
the taxation factor which models the monetary cost of the accumulated
effluent flow. This construction implies that as the integrated flow
through the plant increases, the total tax paid increases similarly. This
works as a penalty that favors low nutrient concentrations. 𝑥0 is the
initial condition. The initial condition to initiate the backtest is given
in Table 2. Note that as ammonium concentrations (𝑥1) and nitrate
concentration (𝑥2) are typically observed as milligram nitrogen (N) per
liter (including in this study), no stoichiometric weights are required
to estimate the total N concentration.

3.3. Gradient calculations and numerical implementation

To enable efficient numerical solution of the optimal control prob-
lem (6), gradient information has to be made available to the op-
timization algorithm. The numerical method used in this paper is
a single-shooting method [33,34], where the optimization algorithm
solves the dynamical Eqs. (6b) internally. Hence, the only constraints
implemented in the optimization are the aeration cycle constraints (6a).
The constraints defined in (6a) are linear and hence the derivatives
are trivial. However, the derivatives of the objective function in (6)
are non-trivial to compute. As stated earlier in this paper, the system
considered is a switched dynamical system. In [32] it is derived how
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Fig. 5. Relative savings for the 2019 backtest. The constant pricing model is used as the benchmark for the relative savings.

the derivatives of the objective function with respect to the switching
times can be computed using the adjoint (or co-state) equations of the
optimal control problem (6). The optimal control problem (6) has been
solved in C++ using odeint [35] to integrate the dynamical equations
in (6b), CppAD [36] to compute the derivatives of the control problem,
and ipopt [37] is used as the nonlinear optimizer.

4. Results: 2019 backtest

This section presents the results from backtesting the optimal con-
trol strategy in (6) on Nord Pool market data from 2019. The method
is tested on the four price models described earlier. The constant price
model will assume that 𝑝 is equal to the average power price in 2019.
The average power price in DK1 in 2019 was approximately 38.5
EUR/MWh. Most municipal WWTPs in Denmark have a constant price
agreement. The solution to the optimal control problem with a constant
power price will therefore be used as benchmark for evaluating the
value of the WWTP flexibility. 𝑘𝑝 = 1 and 𝑘𝑡 = 1∕2 are split such that
the electricity cost corresponds to approximately 70% of the total cost
and the taxation to approximately 30% of the total cost for the constant
price model. In order to make the backtest computationally tractable
the MPC principle has been used:

• the optimal control problem is solved for 48 h ahead, and
• the first 24 h are implemented.

The structure is repeated for the entire 2019. It is assumed that the
dynamical model is exact and hence the dynamical model in (6b) is
also used to simulate the biochemical process 24 h ahead.

The constant price model is used as the benchmark for evaluating
the performance and value of the WWTP flexibility for the remaining
three price models. The three time-varying price models follow the
assumptions:

• For the day-ahead price model, it is assumed that the WWTP is
price-taker of the day-ahead price.
𝑝 is equal to the day-ahead price 0–48 h ahead.

• For the regulating power price model, it is assumed that the
WWTP is price-taker of the regulating power price. 𝑝 is equal to
the regulating power price 0–48 h ahead.

• For the regulating power price model with special regulating, it
is assumed that the WWTP is price-taker of the regulating power
price but is activated for special down regulation. 𝑝 is equal to
𝑝𝑠 ∈ R if there is demand for special regulation and everywhere
else equal to regulating power price.

For real-life applications, these assumptions are not valid and these
prices will to be subject to forecasting. In this paper, a 48h optimization

horizon (or prediction horizon) is used. However, this horizon param-
eter could probably be chosen to be shorter. But, further investigations
of this is outside the scope of this paper.

Fig. 5 shows the relative savings of the three price models. It is
assumed that 𝑝𝑠 = 0 EUR/MWh for the regulating power price model
with activation for special regulation shown in Fig. 5. In Table 3
the performance metrics for the entire 2019 is shown. The costs are
normalized by the total cost in 2019 for the constant price model. From
Fig. 5 and Table 3 the following is observed:

• The constant price model yields the lowest taxation cost, but the
highest electricity cost.

• The time-varying price models with no activation for special
down regulation underperform the constant price model in the
first quarter of 2019.

• The price model with activation for special down regulation
consistently outperforms the price models with no activation for
special down regulation. The most conservative of these price
models (𝑝𝑠 = 0 EUR/MWh) outperforms the constant price model
and reduces the total costs by 27.32% in 2019. However, this
model increases the taxation cost by 9.79%.

• The regulating power price models exhibit significantly larger
savings than day-ahead price model with a limited added taxation
cost of the effluent.

In Fig. 6 the operation on the 20th of March 2019 is shown as an
example. The optimal aeration cycles have been computed using the
regulation power price model with activation for special regulation
with 𝑝𝑠 = 0 EUR/MWh. It is clearly observed that the aeration cycles
condense around the demand for special regulation (when the WWTP
can use electricity for free) and the aeration equipment is in general
switched on when the regulating power price is low. The effluent total
nitrogen concentrations exhibit are clearly burst when the aeration
cycles condense — this happens at around 08:00 AM. Similarly, the
ammonium effluent concentrations peak when aeration is turned off
for longer periods of time. This is the case at around 7:00 AM. The
figure also shows the baseline scenario where the on/off switching is
controlled with respect to constant electricity prices. In this case it is
noted that the control signal follows the same cycle-pattern during the
24 h period. The average effluent concentrations during this period
are 1.19 and 1.37 mgN/L for ammonium and nitrate respectively in
the constant electricity price scenario. This is 7.6% and 2.1% lower
than the effluent concentrations in the other scenario. However, this
increase in effluent results in a decrease in total costs (savings) of
22.5% while helping the grid with regulating power. Whether this
is a feasible trade-off will require some holistic considerations of the
receiving environment, and possibly constraints on the effluent. This is
further discussed in the following section.
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Table 3
Relative savings for the 2019 backtest. The constant price model is used as the benchmark for the relative savings.

Strategy Taxation cost Electricity cost Total cost

Constant price model 0.31 0.69 1.00
Day-ahead price model 0.33 (4.67%) 0.66 (−3.79%) 0.99 (−1.15%)
Regulating power price model 0.34 (8.34%) 0.59 (−14.32%) 0.93 (−7.23%)
Regulating power price model w. 𝑝𝑠 = 0 EUR/MWh 0.34 (9.79%) 0.38 (−44.22%) 0.73 (−27.32%)
Regulating power price model w. 𝑝𝑠 = −5 EUR/MWh 0.35 (11.29%) 0.34 (−49.92%) 0.69 (−30.77%)
Regulating power price model w. 𝑝𝑠 = −10 EUR/MWh 0.36 (13.70%) 0.30 (−56.93%) 0.65 (−34.83%)
Regulating power price model w. 𝑝𝑠 = −15 EUR/MWh 0.36 (16.24%) 0.24 (−64.76%) 0.61 (−39.41%)

Fig. 6. Example day from the backtest: 20th March 2019. The regulating power price model with 𝑝𝑠 = 0 EUR/MWh is used to design the optimal aeration cycles. The top plot
shows the price input to the price models: the left 𝑦-axis measures the demand for special down regulation and the right 𝑦-axis measures the day-ahead and regulating power
prices. The middle plot shows the state realization using the aeration sequence shown in the same plot. This is illustrated for the regulating power and special regulating price
model and the baseline with constant electricity price (dashed lines). The bottom plot shows the savings relative to the constant price model.

5. Discussion and future work

The presented control strategy demonstrates that flexibility in power
consumption can be enabled for the aeration process at a WWTP.
This section discusses some of the important factors that influence
the operational costs of applying the control strategy, and ideas for
enabling more flexibility are suggested.

5.1. Flexibility in aeration equipment control

The results presented in the previous section are subject to multiple
key assumptions that may be too simplistic. The parameters used in the
model are in this paper kept constant. In an online application, param-
eters are expected to be frequently updated as suggested in [14]. This
means that the plant can be more flexible in some periods (e.g. periods

with low incoming nutrient loads which cause a decreased demand
for aeration) and less flexible in other periods (e.g. during rain events
that increase the demand for aeration by sending more wastewater
to the plant). This could be accommodated by forecasting incoming
ammonium loads and/or the weather.

The aeration control sequence is limited by hard constraints con-
cerning the time the equipment can be switched on and off. This
implies that the constraints govern how often changes can be made in
the aeration control and thereby in the electricity consumption. These
constraints will vary among different WWTPs, and hence some plants
may have different potential in unlocking their flexibility.

The control strategy only considers biological nitrogen removal,
meaning that the biological phosphorous removal is neglected. How-
ever, this would be useful to include for many WWTPs, as phosphate
is a nutrient often managed in the biological treatment (i.e. by con-
trolling the aeration equipment). This could be added by inclusion of
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phosphate in the prediction model and in the optimal control problem,
as suggested in [38]. This might reduce the flexibility potential, but
further investigations should be made to show this effect. It is noted
that phosphate can also be managed by using chemical precipitation if
aeration is insufficient.

The legislation in many places requires that ammonium and ni-
trogen concentrations are kept below a certain limit (i.e. hard state
constraints). For improved applicability, this should also be investi-
gated in a future implementation. This would likely add an upper
bound to the flexibility, as priority would be given to satisfy legislation
rather than costs of electricity consumption. This could be implemented
by penalizing high nutrient concentrations in the objective function,
as suggested in [22]. For increased flexibility in the urban water
system additional processes of the WWTP and drainage system could be
included and aggregated. This might increase the amount of flexibility
of the combined drainage system can deliver, but also enable the
combined drainage system to shift more power demand in time. E.g.
by integrating pumping stations and basins in the sewer system as
demonstrated in [39]. Alternatively, this could be obtained by using
biogas for producing electricity in some scenarios, thereby exploiting
that larger WWTPs are prosumers.

5.2. Market price forecasting

The control strategy defined in this study utilizes the multi-market
structure of the Nordic electricity market and assumes perfect infor-
mation about the market prices 48 h ahead. This means that the
results presented in this paper will work as an upper bound for the
cost reductions feasible in real-life applications. There is primarily two
limiting assumptions for the feasibility of the results presented in the
previous section:

• the perfect forecast assumption of the regulating power prices
48 h ahead, and

• the assumption about recurrent activation for special down regu-
lation at the predefined price, 𝑝𝑠.

The regulating power price is (almost by definition) very difficult to
forecast multiple hours ahead. In the Western Danish price area, DK1,
grid imbalances are often related prediction errors in power production
originating from wind turbines. One extension that would consider this
is to consider a stochastic optimization problem where the price input
consists of a set of realistic price scenarios of the regulating power
price. For the regulating power price models with activation for special
regulation, it is assumed that the WWTP can choose when it is favorable
to take the price 𝑝𝑠 and define how much and which part of the
corresponding hour that will be subject to aeration and hence subject
to a power consumption. This might be difficult to achieve for a single
WWTP as it is not given when demand for special regulation occurs,
and the TSO might be very precise concerning when the activation
must happen. However, an aggregator with multiple WWTPs might be
more adequate for participation with special regulation as it will be
less constraining to distribute activation for special regulation across
multiple plants. This aggregator approach might be solved using a sim-
ilar optimal control method as described in this study by augmenting
the dynamical equations with the individual plants in the aggregator
portfolio. A second approach could be to utilize the method described
in [40] where a penalty signal (e.g. a price input) is used to model the
dynamical response to the power load.

In this study it is assumed that the WWTP is price-taker of different
price models. An extension to this would be to also allow the WWTP to
bid in the day-ahead and the intra-day markets while also being a price-
taker of a given price model (e.g. the regulating power price model).
The day-ahead market could then be used to leverage the volume
that would be subject to activation in the regulating power market.
This would increase the cost reduction potential but also increasing
the risk associated with participating in the electricity market. This

approach will naturally be bound by the forecasting potential of e.g. the
regulating power market.

One practical issue with the implementation of efficient power
consumption strategies (e.g. in Denmark), is that the electricity price
only constitutes a small part (around 15% in Denmark) of the total
electricity bill — whereas time-invariant and constant tariffs and taxes
constitute the rest. However, the control strategy proposed in this
paper can easily be extended to also consider varying tariffs and taxes
(e.g. a time-varying price relating to the CO2-emissions of the power
consumption). Thereby the outlined method might lead to even larger
potential savings.

6. Conclusion

This paper presents an optimal control problem for optimal distri-
bution of aeration cycles across a day of operation. The potential of
the proposed method is tested under different price model assumptions
with an objective function that balance the taxation cost of nutrients
discharged into the environment with the cost associated with operat-
ing the aeration equipment of a Municipal Wastewater Treatment Plant
(WWTP). The summarized findings are:

• A constant price model is not a suitable price model for Municipal
WWTPs as these plants have the opportunity of shifting their con-
sumption in time to match less expensive power prices, and hence
unlocking their energy flexibility. Thus, the inherent dynamics of
WWTPs favors time-varying power prices.

• The operational costs related to wastewater treatment aeration
can be reduced significantly by participating in the regulating
power market. These costs can be reduced even further by also
bidding for special down regulating.

• In the backtest for 2019 it is observed that the regulating power
market exhibits greater potential than the day-ahead market for
reducing operational costs at Municipal WWTPs.

• Further development should be made to fully exploit the flexi-
bility in control of aeration equipment and to make the strategy
widely applicable at different wastewater treatment plants (and
potentially aggregate multiple WWTPs).
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Abstract

The increasing proportion of renewable energy sources in power grids leads to challenges concerning balancing production and
consumption. One solution to this grid challenge is to utilize demand-side flexibility. To use the full potential of demand-side
flexibility, dynamical models and optimal control methods must be used. This paper demonstrates how demand-side flexibility
can be enabled for a refrigeration system using an add-on ice-tank module to actively curtail the refrigeration system and
thereby leveraging time-varying power prices. The operation of the ice-tank is the solution to an optimal control problem
that minimize the integrated electricity costs. This optimal control problem is solved numerically and the performance of the
strategy is successfully tested in a real experiment where cost-savings of approximately 20 % are observed (compared to not
having an ice-tank available). The dynamical relation between the operation of the ice-tank and the power consumption (the
compressor capacity) is modeled using stochastic differential equations. This differential equation model is calibrated on 13
hours of training data using the continuous-discrete Kalman filter and the maximum likelihood framework.

Key words: Optimal Control, Refrigeration System, Ice Storage, Electricity Markets, Optimal Switching Times,
Optimization, Stochastic Differential Equations

Introduction

Recently, Denmark agreed on its first ever Climate Bill,
committing to reduce greenhouse gas emissions by more
than 70 % by 2030 compared to the Danish emission lev-
els in 1990 [1]. This will increase the need for renewable
energy sources and efficient integration will increase the
need for demand-side flexibility [25]. This paper demon-
strates a real example of short-term demand-side flexi-
bility by curtailment of the power consumption of a re-
frigeration system using an add-on ice-tank module. The

? This work is partially funded by the CITIES project (Dan-
ish Innovation found. Grant DSF 1305-00027B) and the
ELFORSK project ELIS (project number 345-028). The work
has partially been conducted during an external research
stay with CITRIS at the University of California at Berke-
ley where Niclas Brok visited Shmuel S. Oren for 5 months.
This external research stay has been partially funded by the
Danish Minstry of Higher Science and Education.

ice-tank operation (i.e when the ice-tank curtails the re-
frigeration system) is the solution to an optimal control
problem which minimize the integrated power costs. The
refrigeration system is located at the Danfoss test facil-
ity in Nordborg, Denmark. This refrigeration system re-
sembles a small retail or supermarket refrigeration sys-
tem.

Denmark has approximately 4,500 supermarkets dis-
tributed across the country. These supermarkets con-
sume more than 550,000 MWh per year, which con-
stitutes about 2 % of the annual Danish power con-
sumption [14]. The power consumption of supermarkets
comes from e.g. electric heating, lighting, and cooling.
The installed cooling capacity varies a lot between su-
permarkets but is typically in the range from 10 to
200 kW, depending on the size of the refrigeration sys-
tem. The refrigerated goods in the refrigeration units
can have a large thermal capacity, thereby enabling
flexibility in the refrigeration system.
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Fig. 1. This figure shows an overview of the total refrigeration system used to test the performance of optimally controlling
an ice-tank.

The literature contains a lot of work concerning online
control and forecasting of supermarket refrigeration sys-
tems and their power consumption. In [15], a contin-
uous time model based on ordinary differential equa-
tions is introduced. This model is used in an economic
model predictive control algorithm, where the total cost
of the electricity consumption associated with the re-
frigeration system is minimized. This economic model
predictive control algorithm is extended in [26] to also
consider a balancing market to further reduce the opera-
tional cost of the refrigeration system. Similarly, [20] ap-
plies a model predictive control scheme to optimize the
daily operation of a refrigeration system to reduce the
power consumption. [11] uses a control strategy to use
the demand-side flexibility in a refrigeration system to
reduce the peak power demand and thereby reduce the
electricity costs. [24] introduces a discrete time model
for load forecasting a supermarket refrigeration system.
This model distinguishes between supermarket opening
hours and closing hours to improve longer horizon fore-
casts. [2, 12] discusses the potential of demand-side flex-
ibility for refrigerated warehouses. In [13], a rule-based
control method is used (charging the ice-storage dur-
ing the night, and melting during daytime) to investi-
gate whether ice-storage is financially feasible for retail
CO2-based refrigeration systems. [4] presents a simula-
tion study based on electricity tariffs from New Zealand,
where a price-based control strategy is used to optimize
a thermal storage for a freezer. [21] compares different
control systems to optimize ice-storage for food refriger-
ation. In [9], a financial analysis of actively operating a
battery under Californian market conditions is investi-
gated. This paper demonstrates that, under perfect in-
formation conditions, optimally managing the battery
and bidding in multiple electricity markets can create
much larger revenues compared to participation only in
a traditional spot market.

Key contributions and paper organization

The existing literature presents few real experiments
which tests the proposed strategies. In the context of
the reviewed literature, this work answers the following
research questions:

• How can continuous-discrete stochastic systems be
used to model the joint refrigeration and ice-tank sys-
tem?

• What are the cost-savings potential of optimally op-
erating the joint refrigeration and ice-tank system?

To answer these research questions, an optimal con-
trol problem is formulated; this optimization problem is
based on a stochastic differential equation model which
is calibrated to a training data-set with discrete obser-
vations. Using this differential equation model, the op-
timal control problem yields a numerical algorithm that
optimally curtails a small retail refrigeration system us-
ing the add-on ice-tank module. This model formulation
has two main advantages: (1) the estimation process is
independent of the sampling rate and can easily man-
age irregular sampled observations, and (2) the estima-
tion process is based on a maximum likelihood frame-
work. The performance of the optimal control algorithm
is tested in a real physical experiment where cost-savings
of approximately 20 % are observed (compared to not
having an ice-tank available).

This paper is structured as follows: first, the joint re-
frigeration and ice-tank is introduced. This section also
contains an example of operation of this joint system.
The second section describes how a continuous-discrete
stochastic model (formulated using a stochastic differ-
ential equation with discrete observations) can be cali-
brated to a data-set. This section also presents a one-
state model of the compressor capacity of the joint re-
frigeration and ice-tank system. The third section in-
troduces the Nordic power market. The fourth section
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Fig. 2. This figure shows the results of a full-horizon simulation using the first-order model. The dashed grey line is the model
predictions, the grey dots are the sub-sampled observations, the solid grey line is the high-frequent observations and the solid
black line is the ice-tank input.

defines the optimal control algorithm. The fifth section
presents the results of operating the ice-tank in a real
experiment using the optimal control algorithm. The pa-
per concludes with a discussion of the results, a future
outlook for the proposed optimal control algorithm and
a brief summary.

The Refrigeration System

The test refrigeration system is located at a Danfoss test
facility in Nordborg, Denmark. The system compres-
sors have a rated power consumption of approximately
12.4 kW. The power consumption of the compressors is
the only source of power consumption considered in this
paper. At the Danfoss test facility it is possible to sim-
ulate an outdoor temperature. In this study, this tem-
perature is fixed at an average of approximately 35 ◦C.
This corresponds to a very warm Danish Summer day.
The ice-tank used is an Ice Bear 40, manufactured by
Ice Energy 1 . It is possible to alternate the mode of this
ice-tank using an API service. The ice-tank can be in
the following three modes:

• CHARGE, in this mode the ice-tank builds up the ice-
storage. The rated power consumption in this mode is
approximately 3 kW.
• IDLE, in this mode the ice-tank does nothing. This

mode has a small power consumption (approximately
9 W), and due to imperfect insulation there is also a
small thermal loss (i.e. a small reduction of the ice-
storage).
• MELT, in this mode the ice-tank melts the ice-storage

and starts curtailing the power consumption of the

1 Company website: http://ice-energy.com/

refrigeration system. In this mode the ice-tank has a
small power consumption (approximately 250 W).

The latency of the API service is in the order of mag-
nitude of 1-2 minutes due to communication via a third
party server from which the ice-tank pulls data and com-
mands.

Fig. 1 shows a schematic overview of the test setup.
The left part of this illustration is the ice-tank, which
is the controllable component of the total refrigeration
system. The middle part is the existing refrigeration sys-
tem, which will be considered as a non-controllable sys-
tem. The ice-tank is connected to the refrigeration sys-
tem via a sub-cooler. To artificially emulate an outdoor
temperature, a water heater is connected to the refriger-
ation system’s evaporator via a water pump. This water
heater can be used to emulate a fixed outdoor air tem-
perature and this has been done in this study.

Note: Tests with lower outdoor temperatures have also
been done. However, these results will not be presented,
although they will briefly be discussed later.

In the next section, a dynamical model of the dynam-
ical interplay between the refrigeration system and the
ice-tank is defined. To calibrate this model to the ac-
tual system under consideration, a test data-set has to
be generated. To generate this data-set, the ice-tank is
alternated through four melt-cycles:

• A cycle with 30 minutes of MELT followed by 30 min-
utes of IDLE (from 13:00 until 14:00).

• A cycle with 45 minutes of MELT followed by 45 min-
utes of IDLE (from 14:00 until 15:30).

• A cycle with 60 minutes of MELT followed by 60 min-
utes of IDLE (from 15:30 until 17:30).
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Fig. 3. This figure shows the results of the initial ice-tank test. This data is used to calibrate the dynamical model which will
be used in the optimal control problem defined later. The top plot shows the compressor capacity (measured in %) and the
bottom plot shows the ice-tank regime and the outdoor temperature (measured in ◦C). The refrigeration system is sampled
every six seconds.

• The final melt cycle is 90 minutes long and begins from
17:30. When this cycle ends, the ice-tank remains in
the IDLE mode.

These cycles - together with the compressor capacity
and the outdoor temperature - can be seen in Fig. 3.
The effect of the ice-tank switching to and from the MELT
regime is clearly observed. From Fig. 3 it is also seen
that the simulated outdoor temperature also exhibits
larger oscillations when a mode-change of the ice-tank is
implemented. This is due to the change in the work-load
of the refrigeration compressors.

In the next section, a method for calibrating a dynamical
model (in terms of an SDE) to the test data-set shown
in Fig. 3 will be presented.

Modelling using SDEs

Modelling physical systems using SDEs provides a natu-
ral method to represent the phenomenon as it evolves in
continuous time. In contrast to discrete time models, a
priori knowledge about the system can be included, and
the estimated parameters do not depend on the sam-
pling time. The representation of noise in continuous
time also allows for a parsimonious representation that
is independent of the sampling time.

This section describes how to use SDEs to model the
dynamical interaction between the refrigeration system
and the ice-tank. This joint system can be considered as
a continuous-discrete stochastic system [16]. The model
used in this paper is an SDE with discretely sampled

observations defined according to

dx(t) = f(x(t), u(t); p) dt+ g(x(t), u(t); p) dω(t), (1a)

yk = h(x(tk); p) + vk, (1b)

where x, u, y and p are the states, inputs, observa-
tions and time-invariant parameters. vk ∼ Niid(0, Rk)
is the measurement noise and ω is a standard Brownian
motion. Brownian motion is defined by its indepen-
dent increments which satisfy that for each s, t ∈ R,
ω(t) − ω(s) is normally distributed with zero mean
and covariance I(t − s); i.e. dω(t) ∼ Niid(0, I dt).
f : Rnx×Rnu→Rnx is often referred to as the drift func-
tion, while g : Rnx×Rnu→Rnx×Rnω is called the diffu-
sion function. In this notation, nx, nu and nω denote
the number of states, inputs and Brownian motions,
respectively. The stochastic model defined in (1) is also
referred to as a continuous-discrete stochastic state-
space model where the dynamics are defined according
to an SDE with discrete observations.

For the joint system consisting of the ice-tank and the
refrigeration system, the state of the system, x, will be
the compressor capacity and the input, u, will be the ice-
tank mode (i.e. a binary switch, modeling if the ice-tank
is in IDLE or MELT mode). The parameters, p, will pa-
rameterize the dynamical relations between the ice-tank
mode and the compressor capacity. The definitions of the
functionals, f , g and h, and the unknown parameters, p,
will be defined after the introduction of the continuous-
discrete extended Kalman filter (CDEKF) and the as-
sociated maximum likelihood (ML) method. For further
reading concerning the CDEKF and ML methods for
SDEs, the authors refer to [16, 22].
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Estimating parameters embedded in SDEs

The method presented next uses the CDEKF to evalu-
ate the likelihood for a batch of data [19]. The CDEKF
is based on two schemes: a prediction scheme and an up-
dating scheme. These schemes are briefly introduced in
the following. x̂k−1 and P̂k−1 will denote the mean and
covariance predictions of the state, x, while x̂k−1|k−1 and

P̂k−1|k−1 will denote the mean and covariance filtered
estimates of x (or reconstructions).

The prediction scheme

Given the initial conditions

x̂k−1(tk−1) = x̂k−1|k−1, P̂k−1(tk−1) = P̂k−1|k−1, (2)

the state and covariance are predicted by solving the
system of ordinary differential equations (ODEs) given
by

˙̂xk−1(t) = f(x̂k−1(t), u(t); p), (3a)

˙̂
Pk−1(t) = A(t)P̂k−1(t) + P̂k−1(t)A(t)′ +G(t)G(t)′,

(3b)

where

A(t) =
∂f

∂x
(x̂k−1(t), u(t); p), G(t) = g(x̂k−1(t), u(t); p).

The one-step predictions of the mean and covariance of
the states are obtained as the solution of (2)-(3) at the
new sample point, tk. Consequently, the predictions of
the mean and covariance are

x̂k|k−1 = x̂k−1(tk), P̂k|k−1 = P̂k−1(tk). (4)

The updating scheme

The literature contains many methods for the updating
scheme in extended Kalman filter algorithms. They all
compute the innovation by

ek = yk − h(x̂k|k−1), (5)

the Kalman filter gain, Kk, by

Ck =
∂h

∂x
(x̂k|k−1), (6a)

Rk|k−1 = CkP̂k|k−1C
′
k +Rk, (6b)

Kk = P̂k|k−1C
′
kR
−1
k|k−1, (6c)

and the filtered state estimate, x̂k|k, by

x̂k|k = x̂k|k−1 +Kkek. (7)

The key difference is how they compute the filtered co-
variance, Pk|k. Two standard updating schemes for the
covariance are

P̂k|k = (I −KkCk) P̂k|k−1 (8a)

= P̂k|k−1 −KkRk|k−1K
′
k. (8b)

Numerical implementations based on either (8a) or (8b)
may give rise to bad performance and even divergence,
as the numerically computed values are not guaranteed
to be both positive (semi-)definite and symmetric. The
Joseph stabilization form

P̂k|k = (I −KkCk) P̂k|k−1 (I −KkCk)
′
+KkRkK

′
k.
(9)

for updating the filtered covariance estimate guarantees
that the numerical value of Pk|k is symmetric positive
(semi-)definite.

Maximum Likelihood Estimation

Using the one-step prediction errors, from the prediction
and updating schemes, the likelihood of the model pa-
rameters given the discretely sampled observations can
be computed; the parameters that maximize this likeli-
hood computation will be used as the model parameters
for the model used in the optimal control problem. In
this section, this likelihood calculation is introduced.

Let {yj}Mj=1 denote M observations relating to the sam-

ple points {tj}Mj=1 in (1b). Define the information accu-

mulated up until the k-th sample point as Yk = {yj}kj=1.
Then the likelihood function, L, can be defined as

L (p | YM ) ∝ φ (YM | p) , (10)

where φ is the joint density function of the observations,
YM . Using the definition of conditional probabilities, the
right hand side can be decomposed into

φ (YM | p) =
M∏
k=1

φ (yk | Yk−1, p) , (11)

such that the log-likelihood function can be expressed by

log (L (p | YM )) =
M∑
k=1

log (φ (yk | Yk−1, p)) . (12)

Consequently, the ML parameter estimates, pML, are

5
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given by

pML ∈ arg max
p∈Rnp

log (L(p | YM ))

= arg max
p∈Rnp

M∑
k=1

log(φ(yk | Yk−1, p)),
(13)

where np denotes the number of parameters. The SDE
in (1a) is driven by a Brownian motion, and since the
increments of a Brownian motion are Gaussian, it is rea-
sonable to assume that, under some regularity condi-
tions, the conditional densities in (11) can be well ap-
proximated by Gaussian densities

φ(yk | Yk−1, p) =

exp

(
−1

2
e′kR

−1
k|k−1ek

)
√

det(Rk|k−1)(2π)ny
, (14)

where ny is the number of output variables.

Estimating the refrigeration system model

The drift function, f , will be parameterized according to

f(x(t), u(t); p) =

{
p1(p2 − x(t)), t ∈ MELT

p3(p4 − x(t)), t ∈ IDLE.
(15)

By defining the input function, u, as

u(t) = (1(t ∈ MELT),1(t ∈ IDLE))
′
. (16)

where

1(t ∈ I) =

{
1, t ∈ I
0, t /∈ I

, (17)

the drift function can be defined according to

f(x(t), u(t); p) = u1(t)p1(p2 − x(t))

+ u2(t)p3(p4 − x(t)).
(18)

It is assumed that the incremental covariances are con-
stant, and hence the diffusion function, g, is defined as
a positive parameter, p5. g is parameterized as

g(x(t), u(t); p) = p5. (19)

The compressor capacity is observed directly. The func-
tion h is therefore defined as

h(x(tk); p) = x(tk). (20)

The variance of the uncertainty of the observations is
also defined as a positive parameter

Rk = p6, (21)

which means that the variance is assumed to be time-
invariant. The parameters are estimated using CTSM-R
[17] and the parameter estimates are listed in Table 1.

Table 1
Estimated parameters of the SDE.

Parameter Description Value Unit

p1 MELT rate 0.00183 %/s

p2 MELT assymptotic level 66.92400 %

p3 IDLE rate 0.00085 %/s

p4 IDLE assymptotic level 94.89100 %

p5 Diffusion coefficient 0.28130 -

p6 Observation variance 1.96580 -

The data sampled from the Danfoss test system is sam-
pled at a very high frequency (around every six seconds)
compared to the time-constants of the dynamical sys-
tem. The observations have been sub-sampled such that
the observations of the data-set used within CTSM-R are
sampled every 15 minutes (one observation every 15 min-
utes). In Fig. 2, a full-horizon simulation using the esti-
mated first-order, two-regime model introduced above,
is shown. The solid black line represents the schedule of
the switching function, u, the filled grey dots are the sub-
sampled observations, the solid grey line represents the
observations of the full data-set and the dashed grey line
is the compressor capacity forecast given by the model
introduced above. The forecast is not updated for each
observation and is therefore a full horizon forecast (or
simulation); the dashed grey line is the solution to the
prediction scheme of the CDEKF.

The Nordic Electricity Market

In Northern Europe, electricity is traded in a common
market called Nord Pool, which consists of 15 intercon-
nected price areas. The market trading with the largest
volume is called the day-ahead market. Here, electricity
is bought and sold for the upcoming day and this market
sets the spot price. When the day-ahead market closes,
the intra-day market opens. In this market, electricity
can be traded until 45 minutes prior to the operating
hour.

One of the primary challenges when operating transmis-
sion systems is to guarantee grid stability. The Nordic
Transmission System Operators (TSOs) have many
methods for dealing with this challenge; one of them
being a common balancing market [10]. In the balancing
market, market participants have the option to make

6
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a bid that defines how much a participant is willing to
change their production or consumption schedule in a
given operating hour. The balancing market also closes
45 minutes prior to the operating hour. Hence, when
approaching the operating hour, the TSO has the pos-
sibility to activate balancing bids ahead of time and
thereby reduce the risk of imbalances. Three scenarios
can take place in the balancing market:

(↑) If the imbalance is negative, there is a deficit of elec-
tricity in the price area, and hence an increase in
power production or a decrease in power consumption
is needed. This is called up regulation.

(↓) If the imbalance is positive, there is a surplus of elec-
tricity in the price, and hence a decrease in power pro-
duction or an increase power consumption is needed.
This is called down regulation.

(−) If the imbalance is too small or the duration is too
short, the imbalance is not offered in the balancing
market.

In a situation with up regulation, electricity is sold,
while in the situation with down regulation, electricity
is bought. The structure of the balancing market re-
quires that the up regulation price is greater than the
day-ahead price, while the down regulation price is lower
than the day-ahead price. In the price area DK1, a large
share of the total power production is generated by wind
turbines. This is a source of energy that is very difficult
to predict, and hence it is one of the primary reasons to
imbalances. In fact, in [23] it is suggested that approxi-
mately 65 % of the total imbalances are due to forecast
errors of wind power production.

In the optimal control problem defined later, it is as-
sumed that the combined refrigeration and ice-tank sys-
tem is a price-taker of the spot price. The potential of
also participating in the balancing market is not consid-
ered. However, it should be emphasized that the savings
shown later in this paper should be regarded as a lower
bound of the savings one can expect from e.g. also par-
ticipating in a balancing market.

The Optimization Problem

In this section, the optimization problem for the optimal
switching times is defined. The system dynamics embed-
ded into the optimization problem formulation are ordi-
nary differential equations (ODEs) defined by the drift
function in (15) with the parameters, p, listed in Tab. 1.

Optimal control by optimal switching times

The drift function, f , in (15) is a regime-type function
defined by a set of switching times. Define the set of

switching times τ = {τi,MELT, τi,IDLE}Ni=0 for which the

structure

τi,MELT ≤ τi+1,IDLE, (22a)

τi,IDLE ≤ τi,MELT, (22b)

is imposed. The variables {τi,MELT}Ni=0 denote the tem-
poral switches for when the ice-tank curtails the refrig-
eration system, and hence de-loads the system, and the

variables {τi,IDLE}Ni=0 denote the temporal switches for
when the ice-tank stops curtailing the refrigeration sys-
tem and the system returns to normal operation. The
number of switching times, N , is a design parameter of
the optimal control problem; different values of N will
lead to different control strategies. In this paper N = 5
is chosen.

Using these temporal switches, f can be defined accord-
ing to the temporal decomposition given by

f(x(t), t; p) =

N−1∑
i=0

1 (t ∈ Ii,MELT) fMELT(x(t); p)

+
N∑
i=0

1 (t ∈ Ii,IDLE) fIDLE(x(t); p),

(23)

where the intervals Ii,MELT and Ii,IDLE are defined accord-
ing to

Ii,MELT = [τi,MELT, τi+1,IDLE[ (24a)

Ii,IDLE = [τi,IDLE, τi,MELT[, (24b)

and the functionals fMELT and fIDLE according to

fMELT(x; p) = p1(p2 − x) (25a)

fIDLE(x; p) = p3(p4 − x). (25b)

The convention τ0,IDLE = 0 and τN,MELT = T will be used,
for which the parameter T > 0 will denote the simulation
horizon for the optimal control problem defined later in
this section.

Let x represent the only state of the system. This state
models the compressor capacity. Besides the electricity
cost of running the compressors, there is also a cost as-
sociated with operating the ice-tank in the two regimes.
Let c(x(t), t) denote the total cost of operating the com-
bined system consisting of the refrigeration system and
the ice-tank at time t with a compressor capacity of the
refrigeration system of x(t). The total cost rate c is then
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Fig. 4. This figure shows the online results of actually implementing the optimal switching times. The top plot shows the
predicted compressor capacity (left axis) together with the emulated outdoor temperature (right axis). The bottom plot shows
the accumulated cost (left axis) and the used spot price (right axis).

given by

c(x(t), t; τ) = q(t)

×

(
kx(t) + kMELT

N−1∑
i=0

1 (t ∈ Ii,MELT)

+ kIDLE

N∑
i=0

1 (t ∈ Ii,IDLE)
)
,

(26)

where q(t) represents the electricity cost at time t, k is
the rated capacity of the compressor, kMELT is the electric-
ity consumption of the ice-tank cost when it is curtail-
ing the refrigeration system, and kIDLE is the electricity
consumption of the ice-tank when it is idle. Integrating
this instantaneous total cost rate, c(x(t), t), yields the
accumulated total cost

J(x, τ) =

∫ T

0

c(x(t), t; τ) dt. (27)

This functional will be the objective function of the op-
timal control problem defined next.

Using the definitions and variables defined above, the
optimal control problem is defined according to

min
x,τ

{
J(x, τ) =

∫ T

0

c(x(t), t; τ) dt

}
, (28a)

s.t.

τ ∈ T , (28b)

ẋ = f (x; p, τ), in [0, T ], (28c)

x(0) = x0, (28d)

where the set T defines the temporal structure given in
(22) together with the temporal budget constraint given

by

N∑
i=0

(τi+1,IDLE − τi,MELT) ≤ τ . (29)

This budget constraint is due to the fact that the ice-
tank only has a finite amount of ice available and the
constraint will also ensure that the trivial case, where
the ice-tank is only curtailing the refrigeration system,
becomes infeasible (assuming that τ is chosen properly).
The constraint in (29) models the maximum allowed
time of curtailment. In this paper, this budget parame-
ter is defined as τ = 8 hours. In a

Note: An extra argument to the functions c and f in
(28a) and (28c) has been included to indicate the depen-
dence of the switching times, τ .

Analytical gradient expression

To enable efficient numerical solution of the optimal con-
trol problem (28), gradient information has to be made
available to the optimization algorithm. The Jacobians
of the temporal constraints in (28b) are trivial, since
these constraints are all linear. Hence, the only deriva-
tives that are non-trivial, are the derivatives that relate
to the objective function (28a). The gradient of the ob-
jective function contains the elements

∂J

∂τj,MELT
(x, τ) and

∂J

∂τj,IDLE
(x, τ). (30)

Analytical expressions of these will be derived in the
following. These expressions are based on derivations
and results from [3].
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First, derivatives with respect to τk,MELT are considered.
Inserting the definition of J yields

∂J

∂τj,MELT
(x, τ) =

∂

∂τj,MELT

∫ T

0

c(x(t), t; τ) dt, (31)

Using the definition of the indicator function of the tem-
poral decomposition, the integral in (31) can be defined
as ∫ T

0

c(x(t), t; τ) dt =

∫ T

0

kq(t)x(t) dt

+ kMELT

N−1∑
i=0

∫ τi+1,IDLE

τi,MELT

q(t) dt

+ kIDLE

N∑
i=0

∫ τi,MELT

τi,IDLE

q(t) dt.

(32)

Using (32), the derivatives with respect to τk,MELT sim-
plify into

∂J

∂τj,MELT
(x, τ) =

∂

∂τj,MELT

∫ T

0

kq(t)x(t) dt+ (kIDLE − kMELT) q (τj,MELT) ,

(33)

where the first term can be computed using the adjoint
states (or co-states) for the optimal control problem [3].
The co-states (to be denoted by λ) satisfy the dynamical
equations

λ̇ = −∂f
∂x

(x; p, τ)′λ− ∂c

∂x
(x, · ; τ)′, in [0, T ]

λ(T ) = 0.
(34)

Using the results from [3], the derivatives with respect
to τk,MELT can be computed from

∂J

∂τj,MELT
(x, τ) =

λ(τj,MELT)
′ (fIDLE(x(τj,MELT); p)− fMELT(x(τj,MELT); p))

+ (kIDLE − kMELT) q (τj,MELT) .
(35)

The result in (35) is not valid for τN,MELT. However, this
variable is by convention fixed (τN,MELT = T ) and will not
be subject to the optimization.

Following the same steps as above, a similar result can
be derived for the derivatives of the objective function
(28a) with respect to τj,IDLE. The derivatives with respect

to these variables can be computed from

∂J

∂τj,IDLE
(x, τ) =

λ(τj,IDLE)
′ (fMELT(x(τj,IDLE); p)− fIDLE(x(τj,IDLE); p))

+ (kMELT − kIDLE) q (τj,IDLE) .
(36)

The result in (36) is not valid for τ0,IDLE. However, this
variable is by convention fixed (τ0,IDLE = 0) and will not
be subject to the optimization.

Note: The implementation of the numerical solution of
the optimal control problem (28) is done using a single-
shooting formulation [5, 7]. This means that the dy-
namical equations (28c)-(28d) are solved internally of
the implemented objective function. Thus, the only con-
straints needing to be implemented are the linear set of
constraints defined by the temporal set of constraints in
(28b).

Numerical implementation

The optimal control problem has been solved numeri-
cally in python. A single-shooting approach has been
applied where the solve ivp function from the scipy
package has been used to solve the dynamical equations
(the state and co-state equations). The Runge-Kutta
5(4) method with adaptive step size has been chosen as
the numerical method [8, 27]. The optimization algo-
rithm used is a constrained trust-region method, which
is available via the minimize function from the scipy
package [6].

Results

This section presents the results of implementing the
optimal control algorithm defined in (28) for the total
refrigeration system illustrated in Fig. 1. A single open-
loop iteration of the optimal control problem is used to
compute the optimal switching times. These switching
times are used to operate the ice-tank for a period of 24
hours (or one day). This implies that no feedback from
the refrigeration system nor the ice-tank is used. The
power prices are assumed to be known for the entire 24
hours; this is a reasonable assumption as many retail-
ers offer power prices which follows the spot price. The
spot price is always known 12 hours to 36 hours ahead
(depending on the time of day); hence, optimal control
problem is run when there is at least 24 hourly power
prices available (this is e.g. the case everyday at 4pm).

The spot prices from a random day at Nord Pool have
been used to generate a load input in terms of a price
signal. The outdoor temperature is emulated using the
water heater shown in Fig. 1, and this temperature is set
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Fig. 5. This figure visualizes the effect of having the ice-tank installed. The top plot shows the accumulated cost of actively
operating the ice-tank vs. not having the ice-tank. The bottom plot shows the relative savings of operating the ice-tank. The
bottom plot shows how the predicted savings compare to the realized savings. It is assumed that the ice-tank has been charged
with zero cost.

to average around 35 ◦C such that the compressors of
the existing refrigeration system would operate close to
100 % when the ice-tank is in the IDLE mode. The tem-
poral budget constraint parameter, τ , in (29) is defined
such that the ice-tank can only be in the MELT mode for
8 h. It is assumed (in the financial analysis in Fig. 5) that
the ice-tank has been charged with a zero cost. The val-
ues of the power consumption parameters k, kMELT and
kIDLE used in the objective function of the optimal con-
trol problem are given in Table 2.

Table 2
Power consumption parameter.

Parameter Description Value Unit

k Rated compressor capacity 12.4 kW

kMELT MELT power consumption 250.0 W

kIDLE IDLE power consumption 9.0 W

The optimal control algorithm optimally distributes five
MELT periods throughout the 24 h of operation (starting
at 4pm on the first day of testing). These cycles are
distributed according to (rounded to nearest second):

1. MELT starts at 16:00:08 until 16:40:06.
2. MELT starts at 19:57:34 until 21:29:45.
3. MELT starts at 23:32:58 until 01:44:14.
4. MELT starts at 02:45:01 until 05:58:25.
5. MELT starts at 14:28:35 until 14:51:43.

In Fig. 4, the results of operating the ice-tank using these
optimal switching times are shown. The top plot shows
the difference between the predicted compressor capac-
ity (predicted by the SDE model) and the observed val-
ues. The bottom plot shows the spot prices used in the

objective function together with predicted accumulated
cost. In Fig. 5, the performance of operating the ice-tank
is presented. The top plot shows the difference between
actively operating the ice-tank and not having an ice-
tank at all. The bottom plot shows the predicted savings
and the realized savings. The realized savings are com-
puted based on the observed compressor capacity values
shown in the top plot of Fig. 4. From Fig. 4 and Fig. 5
the following observations are made:

• Fig. 4 shows that when the ice-tank is in MELT, the
compressor capacity drops to approximately 67 %.
This corresponds to the parameter value of p2 given
in Table 1. From Fig. 4 it is also seen that the SDE
model predicts too low compressor capacities when
the ice-tank switches from MELT to IDLE. This is ob-
served after the first three MELT cycles.
• From Fig. 4 it is observed that the emulated outdoor

temperature exhibits a higher degree of variability
when the ice-tank implements a mode change.

• Fig. 5 shows that there is some discrepancy between
the predicted savings of operating the ice-tank and the
realized savings. However, the predicted and realized
savings are both in the order of approximately 20 %.
This discrepancy is expected, as the predicted savings
are based on forecasts with a horizon of up to 24 hours.

Discussion & Future Outlook

This section discusses some of the observed deficiencies
observed for the SDE model used in the optimal control
problem. A possible method for economical and efficient
charging of the ice-tank is also discussed. In connection
with this, it is also discussed how the optimal control
problem can be extended to include other load inputs
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than the spot price (e.g. CO2 emissions). Finally, the ap-
plicability of the ice-tank to other regions (than Scandi-
navia) and hence other electricity markets is discussed.

Extensions to the dynamical model

The dynamical model used in the optimal control prob-
lem in (28) has difficulties in explaining the transient
dynamics observed in Fig. 3-4 when the ice-tank imple-
ments a mode change. One extension to the regime-based
first-order model used to model the drift function (15)
could be to include the outdoor temperature as a state
in the SDE model such that the higher variability of the
outdoor temperature might be explained by the model.
A second extension could be to consider higher order
models that better describe the dynamics observed after
a mode change. The data presented in Fig. 3-4 suggest
that a suitable model might be nonlinear, since the com-
pressor capacity tends to drop both when the ice-tank
switches from IDLE to MELT and from MELT to IDLE.

The SDE model used in this paper is estimated from data
where the refrigeration system is measured under simi-
lar conditions. Hence, this model is indifferent to chang-
ing conditions such as e.g. opening and closing hours. In
[24] it is shown that there is a clear difference in a super-
market’s power consumption during opening and clos-
ing hours. Thus, in a real-life application the model has
to be extended to accommodate such conditions. One
solution to this might be to consider two different mod-
els for opening and closing hours respectively. Neither is
the SDE model suitable under conditions where the out-
door temperature exhibits time-varying dynamics. Un-
der such conditions, the model parameters, p, might all
depend on the value of the outdoor temperature. A suit-
able extension to accommodate this might be (again) to
include the outdoor temperature as a state in the SDE
model.

Both of these extensions also address the importance
of robustness of the controller. The method proposed
in this paper has no state or parameter update step;
however, to accommodate changing external conditions
such as opening hours and outdoor temperatures, re-
calibration of the dynamical model becomes very impor-
tant. Using continuous-discrete stochastic systems, as
the system introduced in (1), the re-calibration process
can easily be included.

Optimal and sustainable charging of the ice-tank

In the calculations of the realized and predicted savings
presented in Fig. 5, it is assumed that the ice-tank has
been charged with zero cost. Naturally, under varying
market conditions this will not always be feasible. How-
ever, one of the main advantages of using the ice-tank
as the flexible component in the refrigeration system is

that the only two constraints are the minimum and max-
imum capacities of the amount of ice that can be stored.
If the refrigeration system itself had been subject to a
control strategy as done in e.g. [11, 15, 20, 26], then
the system would also be subject to hard constraints
on e.g. the temperature of the display units. Hence, the
ice-tank can be used to provide flexibility in a balanc-
ing market and thereby reduce the price of generating
the stored ice. Furthermore, the optimal control problem
can even be extended such that the ice-tank can be used
to optimally distribute in which electricity market the
power consumption is traded (day-ahead market, intra-
day market, balancing market, etc.). It is expected that
such formulations would heavily increase the observed
savings, as the price differences become much larger.
However, to take full advantage of this, a better model
of the short-term dynamics is needed, together with a
model that generalizes to varying exogenous conditions
(e.g. the outdoor air temperature).

In the objective function used in the formulation of the
optimal control problem in (28), only the cost associ-
ated with power consumption is considered. However,
this objective function can easily be extended to also
accommodate a cost associated with e.g. the CO2 emis-
sions of power consumption. This type of combination
of objectives for an electricity consumer is investigated
in e.g. [18].

Other electricity markets

The results presented in this paper rely heavily on the
assumption of high outdoor temperatures such that the
compressors yield a high power consumption. This is a
constraining assumption for the applicability in North-
ern Europe, as the savings presented in Fig. 5 will only be
feasible during the summer months. Experiments with
lower temperatures have also been conducted. For these
experiments, savings in the range from 5 % to 10 % are
observed. Thus, lower outdoor temperatures will extend
the payback period of the investments associated with
the installation and maintenance of the ice-tank.

One region with higher average temperatures than
Denmark and Scandinavia in general, is California.
The Californian electricity market offers a variety of
markets which might be economically beneficial to con-
sumers who can deliver demand-side flexibility. In [9]
it is shown that participation in the Californian en-
ergy markets (day-ahead market, 15-minute market
and real-time market) and bidding for ancillary services
(non-spinning reserves, spinning reserves and regula-
tion) hugely increases the revenue potential of actively
operating a battery. The paper shows that under per-
fect information conditions, the revenue generated from
participation in the full-stack of electricity markets
might be up to 600 % larger than the revenue gener-
ated by only bidding in the day-ahead market. The
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ice-tank presented in this paper has many similarities to
a battery. Thus, it is expected that larger savings (than
shown in Fig. 5) are obtainable by actively bidding the
flexibility generated by the ice-tank in multiple markets
on different time-scales. However, this will require more
accurate dynamical models of the interaction between
the ice-tank and the refrigeration system.

Conclusion

The goal of this paper was to investigate the economic
potential of actively operating an ice-tank connected to a
refrigeration system using an optimal control algorithm.
Based on the experiments presented in this paper, it is
demonstrated that it is possible to lower the total elec-
tricity costs by approximately 20 % with a temporal bud-
get constraint for the ice-tank of 8 h. It is expected that
larger savings are obtainable by actively bidding the flex-
ibility generated by the ice-tank in multiple electricity
markets. However, this will require more accurate dy-
namical models of the interaction between the ice-tank
and the refrigeration system.
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Abstract

Power grids coordinate a diverse set of markets and energy systems to ensure that supply and demand are matched
on different time-scales. This coordination is made increasingly difficult by a large and expanding share of renewable
energy sources in power systems. To accommodate this balancing of supply and demand, grid operators facilitate
balancing markets where market participants can bid for attractive power prices and help balance the power grid. This
paper presents an optimal control algorithm for operating a vanadium redox-flow battery that leverage the multi market
structure that constitute a key element in the power grid coordination. This work considers two markets within the
Northern European power system: the day-ahead and the regulating power market. These markets can be leveraged
by battery operators to create different sources of energy arbitraging: an instantaneous arbitrage where electricity in
the same operating hour is different in the different markets considered and a time-shifted arbitrage where the battery
utilize that the power prices are time varying. Doing so requires price forecasts, and so the effect of varying the quality
of these forecasts has been taken into account. Furthermore, given an increasing focus on CO2 emissions, the effect
of CO2-taxes is also considered. This energy arbitraging is formulated as an optimal control problem, where the state
equation models the state of charge of the battery. The optimal control method is backtested on market data from the
Northern European power system for a full year, consisting of 1 month of 2019 and 11 months of 2020. The redox-flow
battery is found to be economically viable, both in the power systems of today, and for the expected future power grids,
irrespective of the size of CO2-taxes. Forecasting precision is found to dominate the pay-back period, making it range
from 7 to 9 years (using current battery prices) and ranging from 4-6 years (using expected future battery prices).

Keywords: Optimal Control, Vanadium Redox-Flow Battery, Electricity Markets, Optimization, Arbitraging

1. Introduction

During the final months of 2019, Denmark agreed on its
first ever Climate Bill, committing to reduce greenhouse
gas emissions by more than 70 % by 2030 compared to the
Danish emission levels in 1990 [1]. This will increase the
need for introducing renewable energy sources and efficient
integrations of these energy sources. The Nordic trans-
mission system operators (TSOs) coordinate a diverse set
of energy systems to ensure that supply and demand are
matched on multiple time-scales.

In this paper, the primary focus will be given to the
day-ahead and the regulating power markets. These mar-
kets will define an optimal control problem for operating
a battery in multiple markets simultaneously to create en-
ergy arbitrage and thereby creating an attractive revenue
profile for battery operators. The battery subject to the
optimization problem will be a simulation model of a vana-
dium redox-flow battery, with parameters and cost struc-
ture provided by [2].

The literature contains a broad range of applications
that study methods which can help penetrate more renew-
able energy sources. A big area of research is the applica-
bility of demand-side flexibility to help balance the seem-
ingly stochastic nature of e.g. wind power production. [3]

presents a method to offer flexibility of HVAC systems in
a contractual framework which minimizes the cost of oper-
ating the HVAC system. [4] discusses the flexibility poten-
tial of office buildings and the potential impact on building
performance; e.g. the indoor climate. [5, 6] describe how
wastewater treatment plants can utilize the flexibility of
the biochemical process in the wastewater tanks by opti-
mal scheduling of the aeration equipment. These methods
all impose technical challenges of the systems involved, as
these systems often have physical constraints that need
to be satisfied; wastewater treatment plants in Denmark
e.g. has to ensure that the daily average nutrient concen-
trations of the effluent is kept below a politically defined
threshold.

Batteries, on the other hand, have few physical con-
straints and can implicitly be used to penetrate more re-
newable energy sources by participating in e.g. balancing
markets. [7, 8] present methods to optimally operate bat-
teries in multiple Californian energy markets. [7] shows
that it is possible to create very attractive revenues by
also operating batteries in balancing markets. [9] shows
similar results, but under Danish market conditions; en-
ergy arbitraging is more lucrative when also participating
in balancing markets.
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With regulations and rules, relating to climate-change,
evolving rapidly, the business-case of investing in batter-
ies is tested against (potential) future CO2-taxes. This
CO2-tax parameter will define how the optimal control
problem weighs time-varying power prices against time-
varying CO2 emissions.

1.1. Key assumptions

This paper implements two critical assumptions:

1. The strategy used to operate the battery is price-
taker of the regulating power prices.

2. This strategy has the ability to perfectly bid for spe-
cial down-regulation using a given price parameter.

The first assumption is reasonable under the condition
that the volume subject to activation is in-significant com-
pared to the general volume activated in the regulating
power market. A simple bidding strategy to always be ac-
tivated for regulating power is to bid the day-ahead price
(this is used as reference price in the regulating power mar-
ket). This bidding strategy is similar to what is known as
front-running in the high-frequency trading literature [10].
The second assumption is justified based on the fact that
the average special down-regulation volume (during hours
with activation) was approximately 800 MWh during the
first 11 months of 2020. This is a very significant volume,
with the point being that this volume will not go unno-
ticed in the power market. The special down-regulation
price parameter can be interpreted as an average activa-
tion price of the proposed optimization-based strategy.

1.2. Key contributions and paper organization

This paper investigates the economical feasibility of op-
erating and investing in grid scale Vanadium redox-flow
batteries by arbitraging two Northern European power
markets: the day-ahead market and the regulating power
market. The operation of the battery is scheduled as the
output from an optimal control problem, where the model
predictive control principle is applied to recursively find
optimal schedules of battery operation. The impact of ac-
tivation for special down-regulation is investigated under
various price assumptions. This market is treated as a
special-case of the regulating power market. The impact
of future CO2-taxes is also considered.

The paper is structured as follows: The next section de-
scribes the Northern European power market, the section
thereafter defines the optimal control problem which is
used to operate the battery, then follows a backtest of the
proposed method (tested on market data from the Decem-
ber 2019 until December 2020). The paper finishes with a
discussion about extensions to the proposed method and
a section with concluding remarks.

2. The Northern European Power Markets

In Northern Europe, electricity can be traded on var-
ious markets with different time horizons and market de-
signs. The Nordic and Baltic countries constitute a com-
mon market of 15 interconnected price zones (2 Danish, 5
Norwegian, 4 Swedish, 1 Finish and 3 Baltic).

2.1. The day-ahead market

The Nord Pool Power Exchange is responsible for the
day-ahead and intra-day markets. The day-ahead market
contains the largest trading volume and market partici-
pants can purchase and sell electricity for the individual
hours for the up-coming day. Bidding in the day-ahead
market closes at 12pm on the day prior to the day of op-
eration. This means that the planning horizon is 12-36
hours ahead. The day-ahead price (or spot price) is set-
tled as the intersection between the ordered bids of power
purchases and sales with constraints enforcing the physical
flow limitations of the power grid.

2.2. The intra-day market

The intra-day market is open for continuous trading
and is settled using traditional order matching. This mar-
ket has traditionally been used to eliminate imbalances
between the day-ahead planned production/consumption
and the current expected power production/consumption
plan. Trading on the intra-day market stops 45 minutes
prior to the given hour of operation with the trading vol-
ume on the intra-day market in general being far less than
the trading volume observed for the day-ahead market.
After end-of trading on the intra-day market the market
participants cannot modify their production/consumption
schedule and potential system imbalances are cleared on
the regulating power market.

2.3. The regulating power market

The regulating power market is operated and cleared
by the Nordic TSOs. Before the system imbalance is cleared
in this balancing market, the Nordic TSOs coordinate if
there is opposite imbalances in the neighbouring price zones
and adjust the flow of the inter-connectors to eliminate
(potentially only some of) these opposing imbalances. This
balancing operation is called netting. The current stan-
dard in Northern Europe for this netting process between
inter-connected Nordic price zones is not using an efficient
market mechanism, but is done by ad-hoc coordination be-
tween the Nordic TSOs. Given that the imbalance persist
through this netting process it is cleared on the regulat-
ing power market. The sign of the imbalance defines the
type of regulation activated; if the imbalance is negative,
up-regulation bids are activated, and if the imbalance is
positive, down-regulation bids are activated. Imbalances
are only offered to the regulating power market if it is of
significant magnitude and duration. If the system imbal-
ance is insignificant all participants with imbalances are
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Figure 1: This figure shows the price distribution of the regulating power prices relative to the day-ahead prices. The price distribution is
generated based on the observed prices during the first 11 months of 2020 in DK1. The left second-axis shows the frequency of the observed
power price difference and the right second-axis shows the cable congestion between DK1 and NO2.

settled at the day-ahead price. All activated regulating
power bids are activated at the most favorable price, this
means that for up-regulation the bid with the highest price
defines the up-regulation price and for down-regulation the
bid with the lowest price defines the down-regulation price.

Fig. 1 shows the price distribution of the regulating
power prices relative to the spot prices. The left second-
axis shows the frequency of the given power price differ-
ence and the right second-axis shows the cable congestion
from DK1 to NO2. The down-regulation occurs more fre-
quently than up-regulation in DK1, but the up-regulation
prices more frequently attain extreme prices. The conges-
tion towards NO2 is a very significant explanatory variable
to explain extreme power price difference observed in the
regulating power market in DK1. NO2 (and Norway in
general) contains a large capacity of hydro-power. This
means that if NO2 can provide down or up-regulation to
e.g. DK1, the regulating power prices become very com-
petitive. However, if this connection is congested, the reg-
ulating power prices are more volatile and more frequently
attain more extreme values.

Remark: Other balancing mechanisms come into play
if the expected imbalance is of too small magnitude or too
short duration, however the potential of further partici-
pation in these markets are not considered in this paper.
Hence, these balancing mechanisms are not elaborated fur-
ther in this paper.

2.4. Special down-regulation

In recent years there has been a rapid development of
a market feature called special regulation in DK1. Spe-
cial regulation can occur as both down and up-regulation
and comes in effect when a Nordic TSO skips the usual
pricing procedure. In the event of special regulation, the
activated bids are paid-as-bid. In Table 1 aggregated val-
ues for special down-regulation in DK1 is shown for 2017-
2019. During these three years, one of the main sources of
special down-regulation in DK1 has been excessive wind
power production in Northern Germany and during these
years operators of wind turbines in DK1 have shown an
increasing willingness to curtail their wind turbines in the
event of special down-regulation. A market report [11] by
the Danish TSO, Energinet, and the Northern German
TSO, TenneT, describes the countertrade agreement be-
tween the two TSOs explaining the economical incentives
behind why e.g. Danish wind turbines are curtailed to
accommodate excess German power production. In the
market report it is stated that the agreement is economi-
cally very beneficial and that in many operating hours, ex-
cess German power production is used as an up-regulation
mechanism to eliminate negative imbalances in the Dan-
ish power system; this happens to approximately 30%̃ of
the countertrading volume originating from Northern Ger-
many. This is claimed to be economically efficient.

Table 1 shows that in 2019 a total of 1,312 GWh was
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Figure 2: Monthly day-ahead, intra-day and regulating power volumes from the first 11 months of 2020.

activated for special down-regulation in Denmark due to
the balancing agreement with the German TSO, TenneT.
This table also shows that in 2019, 32 % of this special
down-regulation was handled by curtailment of wind tur-
bines in Denmark. Energinet (the Danish TSO) is only
allowed to publish yearly average prices; in 2019 the aver-
age special down-regulation price was -12.3 EUR/MWh.
In general Table 1 shows that the demand for special down-
regulation in DK1 is increasing with corresponding power
prices becoming very attractive. Thus, there is a great po-
tential for flexible producers and consumers to participate
in this market and ideally eliminate the need for curtailing
Danish wind turbines.

2.5. Trading volumes

In Fig. 2, the trading volumes on the day-ahead, intra-
day and regulating power markets are shown. As stated
initially, the day-ahead market has (by far) the largest
trading volume. However, during the first 11 months of
2020 there has also been a massive demand for special
down-regulation in the Danish price zone, DK1. This is
especially observed during the Winter months, which typ-
ically contain a large amount of wind power production.

3. Battery Modelling and Energy Arbitraging

This section defines a continuous-time optimal control
problem based on a simple integrator model of a battery.
This dynamical model of the battery is inspired by the
storage model discussed in e.g. [12], but includes a power
dependent efficiency coefficient for both charging and dis-
charging of the battery.

3.1. Dynamical battery model

The dynamical model of the vanadium redox-flow bat-
tery considered in this paper is given by

qẋ = ηl(u) max(u, 0) + ηg(u) min(u, 0). (1)

In this model, q denotes the storage capacity (in MWh) of
the battery. x denotes the state of charge and this vari-
able will be constrained such that x(t) ∈ [x, x] for any t;
these bounds 0 ≤ x < x ≤ 1 denote the physical bounds of
the battery’s depth of charge and discharge. u denotes the
power at which the battery is operated at and this vari-
able is constrained such that u(t) ∈ [u, u]; these bounds
u < 0, u > 0 denote the maximum power for which the
battery can be charged and discharged. The functionals
ηl and ηg denote the charging and discharging efficiencies,
respectively. These functionals will be assumed to be lin-
ear and is defined such that when the battery is idle (i.e.
u(t) = 0), the efficiency is 100 % and when the battery is
operating near the power limits (i.e. u(t) = u or u(t) = u),
the efficiency is 85 %. Hence, these functionals are defined
according to

ηl(u) = 1− 0.85
u

u
, and ηg(u) = 1− 0.85

u

u
. (2)

These definitions of the efficiency functionals imply that
the round-trip efficiency varies from approximately 72 %
to 100 % depending on the implemented levels of charging
and discharging.

3.2. The optimal control problem

In the previous section, the multi-market structure of
the Northern European electricity market was described.
From this section it is clear that the implemented power,
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Figure 3: This figure shows an example of a solution to the optimal control problem defined in (5). The top plot shows the input spot price
function (in blue), pda, the regulating power prices (in dark red), the regulating power price function (in transparent dark red), preg, and the
co2-emissions. The bottom plot shows the state of charge and the implemented power, u.

u, can be purchased and sold on multiple markets. In order
to accommodate this in the optimal control problem, the
power variable, u, is decomposed in terms of the volume
purchased or sold on the day-ahead market and the volume
subject to down or up-regulation in the regulating power
market

u = uda + ureg. (3)

In (3), uda denotes the day-ahead position acquired and
ureg denote the regulating power position (or activation).

In the optimal control problem defined next, it is as-
sumed that two price functions, pda and preg, of the future
spot and regulating power prices are given. The backtest
conducted in the next section, will consider different as-
sumptions concerning the accuracy of the regulating power
price function, preg. Due to the structure of the day-ahead
market, the day-ahead prices are always known at least
12 hours ahead. It is also assumed that the CO2-emission
function, c, of the future CO2-emissions are given. These
CO2-emissions will be related to an economic penalty via
a taxation parameter, ktax. The objective subject to min-
imization is the integrated cost of operating the battery
in the day-ahead and regulating power markets together
with the CO2 emission costs during the optimization in-

terval [0, T ]

J (uda, ureg) =

∫ T

0

[
pda(t)uda(t)

+ preg(t)ureg(t) + ktaxc(t)u(t)
]

dt.

(4)

Using the definitions and bounds defined above the opti-
mal control problem used to operate the battery is defined
according to

min
x,uda,ureg

J (uda, ureg) , (5a)

s.t.

u = uda + ureg, (5b)

qẋ = ηl(u) max(u, 0) + ηg(u) min(u, 0), (5c)

x0 = x(0) (5d)

x ≤ x, x ≥ x, (5e)

u ≤ u, u ≥ u, (5f)

uda= uspec. (5g)

where x0 denotes the initial state of charge of the bat-
tery. uspec is an input function which the acquired day-
ahead position. The optimal control problem (5) will be
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used to backtest the revenue potential of operating a Vana-
dium redox-flow battery by optimally leveraging price dif-
ferences between the day-ahead and regulating power mar-
kets.

3.3. Example solution to the optimization problem

In Fig. 3, an example of the output from the optimiza-
tion problem (5) is shown. The optimization horizon spans
48 hours starting at 6pm on the 19th of January 2020. The
top plot shows on the left second-axis the power prices
used as input to the optimization problem. The forecast-
ing ability will be subject to varying efficiencies; in Fig. 3,
the efficiency of these forecasts decay by 25 % per hour
from the true regulating power prices to the spot prices
and preg attains a constant value after the initial 12 hours.
Similarly, the CO2-emissions are assumed to be known for
the first 12 hours, but c attains a constant value after the
initial 12 hours. These 12 hours are critical since the spot
prices are always well-defined at least 12 hours ahead. The
battery used in Fig. 3 has a nominal charging and discharg-
ing power of 1/3 MW with a storage capacity q =1 MWh
and uspec = -1 MW. Thus, the solution shown in Fig. 3
always sell 1 MWh in the day-ahead market. The opti-
mal control problem is solved using CasADi [13] with an
hourly zero-order-hold discretization of the optimization
variables.

3.4. Vanadium Redox-Flow Price Structure

Large batteries for stationary storage for arbitraging
on multiple energy markets is a relatively large invest-
ment. In this paper a flow-battery cost-model based on
the nominal power, the capacity of the battery and a
fixed initial start-up cost is used. The cost model cap-
tures the fundamental features of a flow battery where the
charge/discharge power is determined by the flow battery
stack, while the capacity is determined by the amount of
redox-active Vanadium stored in the tanks. Additional
cost related to the balance-of-plant (pumps, tanks, sen-
sors, etc.) scales either with the power or capacity.

In this paper, the used values are initial start-up costs
of 2,545 EUR, cost of 1,523 EUR per kW and a cost
of 318 EUR per kWh. These values are obtained from a

Table 1: Activated special down-regulation (in GWh) in DK1 re-
ceived from the German TSO, TenneT, in 2017-2019. The activated
volumes are activated volumes for Danish participants and the aver-
age price is in EUR/MWh.

2019 2018 2017
up-regulation (MWh) 602 484 429

% of total 31 % 30 % 35 %
Special down-regulation 1,312 1,114 781

Thermal power plants 46 % 53 % 64 %
Electric boilers 22 % 21 % 22 %
Wind turbines 32 % 26 % 14 %
Avg. price (EUR/MWh) -12.3 -9.3 -7.7

two dimensional linear parameterization of present vana-
dium flow battery sales costs provided by the battery com-
pany VisBlue [2]. Commercial Vanadium flow-batteries
are a relatively new technology and have a large cost-
reduction potential. Vanadium raw materials, which are
relatively easily processed into a ready-to-use solution, are
only about 70 EUR per kWh [14], while material costs re-
lated to power-hardware stacks are many times lower than
actual costs per kW because of small production numbers
[2]. For this reason significant cost-reductions in the com-
ing years are expected. In this work, it is assumed that
the future (in five years) cost-model with start-up cost,
cost per kW and cost per kWh will drop to 1,697 EUR,
761 EUR per kW and 177 EUR per kWh, respectively.
Both the current and five year costs are fully in line with
the numbers published by the International Renewable En-
ergy Agency [15].

Costs include power electronics, but not installation
and building costs. The dimensioning of the storage will
be fixed at 1 MWh such that the nominal power to physical
storage ratio is the only design parameter of the battery.
Based on the backtest performed in the next section it is
possible to discuss the optimal configuration of the battery.

Remark: Given a nominal power of e.g. 1 kW, the
battery has the physical capacity of actually charging and
discharging at +1.5 kW and -1.5 kW, respectively. Thus,
the physical bounds on the power limits of the battery are
1.5 times higher than the nominal power which is used to
price the battery.

3.5. Backtest

The regulating power price function, preg, is assumed
to be time-varying for the initial 12 hours, but constant
(the average value of the day-ahead prices in the data-set
used in the backtest) in the following 36 hours. preg is
assumed to be a weighted average of the spot prices and
actual observed regulating power prices. This weighting
will decay with varying deficiency parameter to quantify
the importance of regulating power forecasts. Similarly,
the CO2-emissions, c, is assumed to follow the exact CO2-
emissions during the initial 12 hours, but equals a constant
(the average value of the CO2-emissions in the data-set
used in the backtest) during the remaining 36 hours. This
is inline with the example shown in Fig. 3.

The parameter q equals 1 MWh. Hence, the battery
has a storage capacity of 1 MWh. The depth of charge and
discharge parameters, x and x, equal 5 % and 95 %, re-
spectively. The power bounds, u and u, are subject to vari-
ations as different battery configurations are investigated
in the backtest; however, these will be 1.5 times larger in
magnitude compared to the the nominal power, which is
the primary battery-design parameter investigated in this
study. The optimization horizon equals 48 hours. This
paper will consider a fixed day-ahead strategy which al-
ways sells 2 times the rated discharge power, u, of the
battery. The model predictive control principle will be
used to implement the optimization strategy: the optimal
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Table 2: This table shows the aggregated results of the backtests conducted in this paper. The first four columns shows: the special
down-regulation price assumption, the power configuration of the battery, the forecast deficiency decay-rate and the CO2-tax parameter.
The remaining six columns shows the performance metrics used in this paper: the total revenue from arbitraging the power markets, the
accumulated CO2 reductions, the costs of investing in the given battery, the payback horizon of this investment, the costs of investing in the
given battery using the future battery prices and the payback horizon of this investment.

Price
assumption
(EUR/MWh)

Power
(MW)

Loss
(%)

CO2 tax
(EUR/t)

Revenue
(tEUR)

Reduc.
CO2 (t)

Cur. inv.
(tEUR)

Payback
(years)

Fut. inv.
(tEUR)

Payback
(years)

0 1/5 0 0 52 14 625 12.01 331 6.36
-10 - - 0 75 11 - 8.35 - 4.42
-20 - - 0 98 11 - 6.40 - 3.39

0 1/3 - 0 77 17 828 10.69 433 5.58
-10 - - 0 114 12 - 7.24 - 3.78
-20 - - 0 151 12 - 5.47 - 2.85

0 1/2 - 0 104 19 1,082 10.42 559 5.38
-10 - - 0 158 12 - 6.84 - 3.53
-20 - - 0 213 13 - 5.09 - 2.63

-10 1/3 10 0 114 15 828 7.26 432 3.79
- - 25 - 113 15 - 7.33 - 3.82
- - 50 - 109 16 - 7.57 - 3.95
- - 10 25 114 19 - 7.26 - 3.79
- - 25 - 113 18 - 7.33 - 3.83
- - 50 - 109 20 - 7.56 - 3.95
- - 10 50 114 23 - 7.27 - 3.79
- - 25 - 113 21 - 7.34 - 3.83
- - 50 - 109 22 - 7.58 - 3.96
- - 10 75 114 26 - 7.27 - 3.80
- - 25 - 113 24 - 7.35 - 3.84
- - 50 - 109 25 - 7.59 - 3.96
- - 10 100 114 29 - 7.28 - 3.80
- - 25 - 113 26 - 7.36 - 3.84
- - 50 - 109 27 - 7.61 - 3.97
- - 25 250 111 37 - 7.45 - 3.89
- - - 500 109 46 - 7.61 - 3.97
- - - 1000 105 52 - 7.86 - 4.10
- - - 5000 97 55 - 8.54 - 4.46

-10 1/3 5 0 114 14 828 7.25 432 3.78
- - 20 - 113 14 - 7.30 - 3.81
- - 33 - 112 15 - 7.39 - 3.86
- - 75 - 104 18 - 7.95 - 4.15
- - 100 - 90 24 - 9.15 - 4.77
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control problem is solved after each operating hour to de-
sign the optimal charge and discharging signal, but it is
only the first hour of the optimal solution which will be
implemented.

The economical impact of activation for special down-
regulation is also investigated in the backtest. Activation
for special down-regulation is defined when:

1. there has been demand for special down-regulation,

2. and the battery is not activated for regulating power;
i.e. not activated at a more attractive power price in
the regulating power market.

Different activation prices (inspired by Table 1) will be
subject to investigation.

4. Results

This section presents the results of backtesting three
different nominal power configurations of a Vanadium redox-
flow battery (1/5 MW, 1/3 MW, 1/2 MW) together with
three different special down-regulation activation prices
(0 EUR/MWh, -10 EUR/MWh, -20 EUR/MWh). The
forecast deficiency parameter (the decay from the true reg-
ulating power prices to the spot prices) are tested in the
range from 0 % decay (i.e. perfect forecasts) to 100 %
decay (i.e. that preg equals the spot prices during the ini-
tial 12 hours). Multiple values of ktax is considered in the
range from 0 EUR/t (no CO2-tax) to 5000 EUR/t (an
extremely high CO2-tax).

Tab. 2 shows the aggregated results from the backtests.
From this table the following general comments are rele-
vant:

1. The revenue increases with more extreme special down-
regulation activation prices.

2. Large CO2 reductions are only observed for very high
CO2-tax parameters, ktax.

3. The revenues are highest for batteries with a high
nominal power to physical storage ratio.

Comparing the revenue under different forecasting defi-
ciencies (the bottom block in Tab. 2), the proposed strat-
egy shows some dependency of the forecasting deficiency
parameter (denoted loss in Tab. 2); when the quality of
the forecasts decays, the revenue decreases as well. This
relation is also shown in Fig. 4. Similarly, when the CO2-
tax increases - and the optimization problem weighs CO2
reductions higher - the power price arbitrage revenues de-
crease as well. This relation is shown in Fig. 5.

Fig. 6 shows one week of operation using the optimiza-
tion strategy defined previously. From the top plot, it
is clearly seen that this is a period with large amount of
demand for special down-regulation. This has the impli-
cation that the day-ahead strategy yields high-rewards as
the battery can be used to provide down-regulation at very

attractive power prices (-10 EUR/MWh in this example).
It is also observed that the battery discharges during pe-
riods with the highest power prices. During this week of
operation, the strategy reduces the CO2 emissions by ap-
proximately 350 kg and creates a revenue of approximately
4,000 EUR.

5. Discussion

The previous section presented the results from back-
testing the optimal control algorithm (5) during one year of
operation (from December 2019 to December 2020). Two
key assumptions in this study are: (1) the strategy is price-
taker of the regulating power prices, and (2) the strategy
perfectly bids on activation for special down-regulation.
Another implicit assumption is perfect state information
about the state of charge of the battery.

5.1. Imperfect market information

The backtests conducted in this paper assumes a per-
fect ability to bid in the day-ahead and regulating power
markets. However - as stated initially - these assumptions
can be justified as one viable strategy to achieve this is to
front-run both of these markets. The day-ahead bidding-
strategy would be to bid very low prices to the day-ahead
market (thereby ensuring the acquisition of the necessary
day-ahead position). The regulating power bidding-strategy
would be to bid the day-ahead price on the regulating
power market (thereby ensuring the activation of the nec-
essary regulating power volume). However, these strate-
gies are only viable for insignificant volumes; applying this
strategy to a high-volume battery portfolio will imply in-
ferior pricing in both markets. Thus, this bidding strategy
has to be extended in order to accommodate energy port-
folio with higher volumes.

The regulating power price function, ureg, assumes cor-
rect bias of the future regulating power price, as this func-
tion is a weighted average of the spot prices and actual ob-
served regulating power prices. From Tab. 2 it is observed
that - for a 1/3 MW nominal power battery with stor-
age capacity 1 MWh and with a special down-regulation
price assumption on -10 EUR/MWh - the difference be-
tween perfect forecasts (payback time of 3.8 years using
future battery prices) and 100 % imperfect forecasts (pay-
back time of 4.8 years using future battery prices) is an
extension to the payback horizon of approximately 1.0

year (or 26 %). Thus, high-quality forecasts will dramat-
ically improve the performance of the strategy. However,
the regulating power market contains very large volumes
of down-regulation (in particular special down-regulation)
and is the primary explanation to the very attractive pay-
back horizons shown in Tab. 2.

5.2. Supervised day-ahead trading

The day-ahead strategy proposed in this paper is very
simple: sell three times the nominal discharging power
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Figure 4: This figure shows the empirical dependency between the realized revenues from power price arbitraging as a function of the forecast
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Figure 6: This figure shows the 1 week of operation in January 2020. The top plot shows the actual spot prices, regulating power prices and
the CO2 emissions. The middle plot shows the state of charge and the implemented power. The bottom plot shows the accumulated revenue
and the accumulated CO2 reductions realized by implementing the optimization strategy. The forecast deficiency is 25 %, the CO2 tax is 100
EUR/t and the special down-regulation price is assumed to be -10 EUR/MWh.

of the battery. An interesting case-study would be to
consider extensions of this; relevant power system data
might be the expected wind power production or the ex-
pected congestion on the Skagerak-cable to the Norwegian
price zones, which contain high capacities of hydro-power.
Wind power production volumes are relevant as the spe-
cial down-regulation demand in DK1 often is due to ex-
cessive wind power production in Northern Germany [16].
The importance of congestion on the Skagerak-cable is per-
fectly illustrated in Fig. 1; the regulating power prices at-
tain more extreme values under conditions with congestion
on the Skagerag-cable. Combining these market features,
it should be possible to formulate a supervised day-ahead
(and possible also intra-day) strategy that trades relevant
positions in the day-ahead and intra-day markets to ac-
commodate attractive activation prices in the regulating
power market.

5.3. Imperfect battery model

The optimal control problem (5) contains a one di-
mensional state equation, (1), that models the dynami-
cal response of the state of charge, x, of the battery to
the charged and discharged power, u. The model contains
power dependent efficiencies of the charge and discharge

efficiencies, ηl and ηg, respectively. The parameters used
in this paper are based on charge and discharge efficiencies
provided by the Danish company VisBlue [2]. In actual
implementations of the framework presented in this paper,
the model would be calibrated (and re-calibrated repeat-
edly over time) to actual data of the battery subject to
the optimal control algorithm. This can be done using
methods presented [17] and [18]. Doing this, it might also
be interesting to consider more elaborate and detailed dy-
namical battery models; e.g. equivalent circuit models [19]
or more complicated electrochemical models [20? ] of flow
batteries.

6. Conclusion

This paper investigates the economic potential of op-
erating Vanadium redox-flow batteries on two power mar-
kets in Northern Europe: the day-ahead and regulating
power markets. From a large batch of backtests under
multiple battery configurations and markets assumptions,
payback horizons (using current battery prices) of 5.1 to
12.0 years are observed; the longest payback horizon of
12.0 years is observed using conservative price estimates
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of special down-regulation activation prices and the short-
est payback horizon of 5.1 years is observed using more
optimistic price estimates of these prices. These payback
horizons reduce to 2.6 and 6.4 years, respectively, using
expected battery prices in five years.

The importance of high-quality forecasts of the regu-
lating power market is also investigated together with the
potential impact of future CO2-taxes. The conclusion is:
perfect forecasts improve the revenues by 26 % compared
to having no forecasts available and - similarly - intro-
ducing high CO2-taxes reduces revenues by approximately
14 % but, increases the CO2 reductions by 340 %.
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Optimization-based state estimation for stochastic

differential equation systems

Niclas Brok, Uffe Høgsbro Thygesen, Jan Kloppenborg Møller, Henrik Madsen

Department of Applied Mathematics and Computer Science at the Technical University of Denmark.

Abstract

Stochastic differential equation models provide a natural way to represent physical systems as they evolve in continuous-time.
In contrast to discrete-time models, a priori information about the system can be built into the model and the estimated model
parameters will be independent of the sampling time. This paper presents an optimization-based filtering method for state
estimation of general nonlinear stochastic differential equations with general discrete-time likelihood models. The performance
of the optimization-based filtering method is compared to the performance of the continuous-discrete extended Kalman filter
and the methods are tested in a simulation study using a stochastic extension to the van der Pol oscillator model. The
optimization-based filtering method significantly outperforms the continuous-discrete extended Kalman filter in the ability to
efficiently reconstruct the hidden state modelled by the stochastic differential equation.

Key words: Stochastic Differential Equations, Optimization, Maximum a Posteriori, Filtering, State Estimation
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”Future low-carbon societies will be driven by 
renewable energy sources (e.g. wind and solar 
power). This will �ip the characteristics of our 
power system from a production-tracking-consumption 
paradigm, to a consumption-tracking-production 
paradigm. This will increase the need of complex 
coordination of our power consumption as power 
grids require a strict balancing between power 
production and consumption. This dissertation 
investigates the potential of applying nonlinear 
model predictive control algorithms to solve 
complex power market coordination problems, where 
�exible consumers leverage the more volatile 
balancing power prices and thereby in-directly help 
neutralizing production and consumption 
imbalances.”
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