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Abstract (English)

Homogenization-based topology optimization produces multi-scale designs with
optimal stiffness at a significantly reduced computational cost compared to
well-established topology optimization methods. However, the homogenization
approach does not directly create a mechanical structure but instead outputs
parameters describing the behavior of microstructures at infinitesimally small
scales. For compliance minimization, these optimal multi-scale descriptions of
the optimized designs consist of lamination thicknesses and lamination orienta-
tions.

The process of synthesizing high-resolution, near-optimal geometric structures
from these optimal multi-scale designs is called de-homogenization. This thesis
presents research on the de-homogenization of multi-scale designs obtained with
homogenization-based topology optimization for compliance minimization. The
thesis consists of an introductory background chapter followed by two parts
about de-homogenization methods. The first part focuses on integration-based
methods, while the second part proposes novel approaches that do not rely on
integration.

The first part further contains an investigation of microstructure orientations
fields and singularities arising for single loading case (single-load) problems in
two dimensions. It follows a description of a de-homogenization method for
two-dimensional, singularity-containing multi-scale designs. Further, the first
part contains an expansion to three dimensions of existing work for singular-
ity-free single-load problems, achieving a reduction of computational effort of
three orders of magnitude compared to density-based topology optimization.
The first part concludes with a discussion of research on microstructure orien-
tation initialization and regularization during the homogenization approach to
obtain optimal multi-scale designs that are easier to de-homogenize with cur-
rently available methods.



The second part contains an investigation of microstructure orientations fields
and singularities arising for single-load problems in three dimensions. Then a
novel approach for two- and three-dimensional de-homogenization, called the
subselection method, is presented that does not rely on integration. The sub-
selection method is the first de-homogenization method that applies to singu-
larity-containing three-dimensional single-load case problems with no modifi-
cations of the underlying orientation fields. The new approach precomputes a
set of structural members that are locally well-aligned with the microstructure
orientations. Then an optimization chooses an evenly spaced subset resulting in
a near-optimal single-scale structure. Finally, the subselection method is used
to de-homogenize two-dimensional problems with multiple loading cases.
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Resumé (Dansk)

Homogeniseringsbaseret topologioptimering producerer multiskaladesigns med
optimal stivhed betydeligt hurtigere end de mest anvendte metoder til topo-
logioptimering. Homogeniseringsmetoden skaber dog ikke direkte en mekanisk
struktur. I stedet producerer den parametre, der beskriver mikrostrukturernes
egenskaber pa uendeligt fin skala i form af lamineringstykkelser og laminerings-
retninger.

Processen at syntetisere hgjoplgste, optimerede geometriske strukturer ud fra
disse multiskala designs kaldes de-homogenisering. Denne afhandling omhandler
forskning i de-homogenisering af multiskala designs, der er opnaet ved hjelp af
homogeniseringbaseret topologioptimering med henblik pd minimering af efter-
givelighed. Afhandlingen indeholder et indledende baggrundskapitel, og dette er
efterfulgt af en beskrivelse af de-homogeniseringsmetoder. Denne beskrivelse er
igen opdelt i to dele, der hverst raekker sig over flere kapitler. I den forste del
behandles metoder, der anvender integration, og i den anden del foreslas nye
metoder, som ikke er aftheengige af integration.

Den fgrste del indeholder en undersggelse af mikrostrukturers orienteringsfelter
og singulariteter, der opstar for enkelt-belastningsproblemer i to dimensioner.
Derefter folger en beskrivelse af en de-homogeniseringsmetode for todimensiona-
le, singularitetsholdige flerskala konstruktioner. Endvidere indeholder den forste
del en udvidelse til tre dimensioner af eksisterende arbejde for singularitetsfrie
enkelt-belastningsproblemer, hvorved der opnas en reduktion af den beregnings-
meessige indsats pa tre stgrrelsesordener i forhold til densitets-baseret topolo-
gioptimering. Fgrste del afsluttes med en diskussion af forskning i mikrostruk-
turers retningsinitialisering og regularisering under homogeniseringsmetoden for
at opné optimale design i flere skalaer, som er lettere at de-homogenisere med
de tilgeengelige metoder.

Den anden del indeholder en undersggelse af mikrostrukturers retningsfelter



og singulariteter, der opstar ved enkelt-belastningsproblemer i tre dimensioner.
Derefter praesenteres en ny metode til to- og tredimensionel de-homogenisering,
kaldet subselektionsmetoden, som ikke er aftheengig af integration. Subselektions-
metoden er den fgrste de-homogeniseringsmetode, der kan anvendes pé tredi-
mensionale enkelt-belastningsproblemer med singulariteter uden sendringer af
de underliggende retningsfelter. Den nye metode beregner péa forhand et saet
strukturelle elementer, der lokalt er godt orienteret i forhold til mikrostruktu-
rens retninger, hvorefter en optimering veelger en undermeaengde med lige store
afstande, hvilket resulterer i en neesten optimal enkeltskalastruktur. Endelig
anvendes subselektionsmetoden i denne afhandling til at de-homogenisere todi-
mensionelle problemer med flere belastningstilfeelde.
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Chapter 1

Introduction

1.1 Motivation

Topology optimization is a computational method to obtain optimal material
layouts for various sets of mechanical problems. An important sub-problem
is structural compliance minimization. Given a design space, loads, boundary
conditions, and material properties, one searches for a structure with maximal
stiffness. The most often used approach to topology optimization is the so-called
density-based topology optimization. On a finite element mesh, one varies the
material density in each finite element during the optimization to obtain a struc-
ture with maximal stiffness. Subsequently, one interprets these results as black
and white designs. To get high-resolution structures, a giga-scale amount of
elements is often necessary [Aage et al., 2017; Baandrup et al., 2020|. However,
the computational burden is vast and far from real-time, which limits engineers
in everyday life.

Researchers have revived the homogenization-based topology optimization in-
troduced in Bendsge and Kikuchi [1988] to obtain high-resolution designs faster.
Homogenization-based topology optimization yields not only local densities.
Instead, it outputs information about the microstructure of the material, for
example, the local orientations of the microstructure and the amount of ma-
terial aligned with these orientations. Using the additional knowledge about
microstructure allows obtaining optimal designs at a fraction of the computa-
tional cost of density-based topology optimization. Further, the homogenization
approach shows no grid dependency, which means that the topology of a result
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obtained on a coarse finite element mesh does not change when solving the same
problem on a finer mesh.

While the possible gains from using homogenization-based topology optimiza-
tion are enormous, it is essential to know that it is surprisingly hard to interpret
its results. The extraction of globally consistent structures with a finite length
scale is challenging since we only obtain local orientations and material dis-
tributions. Trade-offs between local alignment, global connectivity, spacing of
structural members, and globally smooth members are hard to achieve pre-
dictably. The extraction of global structures is called de-homogenization and
has been increasingly in the focus of researchers since its introduction in Pantz
et al. [2008].

1.2 Goals of this Ph.D. thesis

The purpose of this Ph.D. project has been to investigate de-homogenization and
further develop existing methods, and possibly create new approaches to extract
structures from topology optimization results. At the beginning of this Ph.D.
project, there was one clear vision. We knew that we wanted to extract mechan-
ically well-performing structures from various homogenization-based topology
optimization designs. Thus, in the beginning, we asked ourselves why we are
not yet able to extract these structures and what the hurdles were to advance
de-homogenization. We developed the following set of questions, which turned
out to cover a large group of research topics considered in de-homogenization.

1. What kind of singularities arises in homogenization-based topology opti-
mization results, and where are they located?

2. How can we de-homogenize three-dimensional, singularity-free results ob-
tained by the homogenization approach?

3. How can we expand de-homogenization to allow the usage of more chal-
lenging, singularity-containing problems in two and three dimensions?

4. Is there a way to expand possible findings to the previous questions to
examples with multiple loading cases (multi-load examples)?
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1.3 Contributions and thesis overview

This thesis aims to discuss the above four topics while leaning on the following
contributions contained in this thesis.

e |Groen, Stutz, et al., 2020| [Paper-I|: De-homogenization of Optimal Multi-
Scale 3D Topologies

e [Stutz, Groen, et al., 2020] [Paper-II]: Singularity Aware De-Homogeniza-~
tion for High-Resolution Topology Optimized Structures

e [Stutz, Olsen, et al., 2021] [Paper-III|: Synthesis of Frame Field-Aligned
Multi-Laminar Structures

The sections relevant to my work and contributions have been re-used and
adapted to this thesis, and hence, it is sufficient for the reader only to read
this thesis. However, all papers, but especially Paper-1, contain additional in-
formation and work from co-authors that might interest the reader. Therefore,
all the papers are attached in the appendix.

I will first discuss the two-dimensional (2D) integrative methods [Paper-II] due
to the formulations being simpler and the topic of singularities being easier to
address in two dimensions. Only thereafter will I describe the three-dimensional
(3D) work on integrative methods [Paper-I]. I will then propose a novel, non-
integrative method [Paper-III| and lastly discuss the application of this method
to the de-homogenization of multi-load designs.

This thesis aims to give the reader a basic understanding of the relevant top-
ics and covers several different research fields. Chapter 2 will cover the basics
of density-based topology optimization, homogenization-based topology opti-
mization, and microstructures. Chapter 3 discusses directional fields, singular-
ities, and the relation to homogenization-based results as originally published
in Paper-II. Integration-based de-homogenization is considered in Chapter 4.
There, I first present previous work on de-homogenization and then present
an approach for singularity-containing 2D examples. I conclude the chapter
by outlining our expansion of de-homogenization to 3D singularity-free cases.
In Chapter 5, I propose a newly developed non-integrative approach to de-
homogenization that allows for three-dimensional examples containing singular-
ities and two-dimensional multi-load problems.

A recurring topic throughout this thesis is the strive for clean structures that
perform well from a mechanical point of view. Challenges like noise, non-
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uniqueness, and the lack of global connectivity are the main obstacles in achiev-
ing this. It is worth noting that the proposed methods have applications reach-
ing beyond de-homogenization since vector and tensor fields are recurring topics
throughout physics and mechanics.



Chapter 2

Topology optimization

This chapter aims to give relevant background information on topology opti-
mization needed to follow the contributions of this Ph.D. thesis. I will start
with a short introduction to topology optimization. Then I will visit density-
based and homogenization-based methods for topology optimization. Finally,
I will look at materials and microstructures used for homogenization-based
topology optimization. The contributions of this thesis lie in the field of de-
homogenization, i.e., extracting structures from results obtained through ho-
mogenization-based topology optimization. Therefore, this background chapter
aims at giving the necessary overview of the homogenization approach and its
underlying microstructures. As a prerequisite, a general understanding of the
finite element method [Szabo et al., 2011; Zienkiewicz et al., 2013| is required
to follow this thesis. Further, a basic knowledge of optimization algorithms is
helpful [Jorge Nocedal, 2006]. For more information on topology optimization
in general, the reader is referred to the following review papers [Deaton et al.,
2014; Sigmund and Maute, 2013].

2.1 Introduction to topology optimization

Let us consider a finite element mesh and linear elastic structure, where we have
a static equilibrium equation

Ku="f. (2.1)
Here, K denotes the stiffness matrix describing the structure, u is the global
displacement vector at the nodes of our finite element mesh, and f is the global
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load or global force vector. We can write the global stiffness matrix K as

where we define K as the sum over local stiffness matrices K¢ of the elements
e=1,...,N. Note that the local stiffness matrix K. in element e depends on the
elasticity tensor E., holding the information describing the material properties
in this element. Further, we should note that the sum is understood to contain
a mapping from elementwise degrees of freedom to global degrees of freedom.

The element strain energy density s, is defined as
Se = uZKeuev

which lets us define the compliance, 7, as

N N
J = E Se = E ugKeue =u'Ku = fTu.
e=1 e=1

In engineering, a fundamental task is to find the stiffest possible structure under
given volume limits. Maximizing stiffness corresponds to minimizing compliance
and is the most used of all topology optimization examples. There are different
ways to tackle this problem. If one creates an initial design and optimizes the
compliance by moving the structures’ boundary, it is called shape optimization.
Note that the topology of the structure does not change in shape optimization.
Alternatively, one can also change the structure itself by changing the material
properties (e.g., solid or void) or the size and existence of the structural members
(e.g., the diameters of bars in a truss structure). This second approach is called
topology optimization and was first introduced in Bendsge and Kikuchi [1988].
There also exist combinations of topology and shape optimization using adaptive
meshes [Christiansen, 2015; Misztal et al., 2012].

We can build a simple topology optimization example as follows. We want to
find a final design that lies in a design domain € and minimize the compliance
J. We discretize ) with N finite elements with volumes V,. Furthermore, we
describe our structure by a density variable p(x), where x € Q is a point in our
design domain 2. For the discretization, we assume that the density is constant
in an element e and denote it with p.. Further, we have a limit V° to the amount
of material that we can use for creating our structure, ie., [, p(x)dV < Vo
Lastly, we demand that u fulfills the state equation Ku = f at any point of the
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optimization. We receive the following optimization problem:
min: u’(p)K(p)u(p)

st.: K(pu=f,

f: . (2.2)
pVe <V
e=1

pe €4{0,1} Ve=1,...,N.

When we optimize over the relative density variable p(x), the stiffness matrix
K changes with every iteration since the element stiffness matrices K. depend
on p, through E.(p.). Therefore, the stiffness matrix changes at every design
update (also called iteration), and we need to re-solve the state equation at
every iteration. This is a very costly operation for complex problems with a
large number of finite elements.

The challenge of Problem 2.2 lies in the binary form of the density variables. In
fact the computational burden of such a problem limits us from solving examples
with thousands or millions of elements, even for heuristic approaches [Sigmund,
2011]. To circumvent the binary optimization, we would like to relax the problem
allowing p € [0,1]:

min: u'(p)K(p)u(p)

P

st.: K(pu=f,
N (2.3)
> peVe < VO
e=1

pe €[0,1] Ve=1,...,N.

The challenge with the above optimization problem is the definition of material
properties for p. € (0,1). It is not intuitively clear what an intermediate den-
sity material is or if one can exctract a mechanically well-performing solid-void
design from the solution of the above optimization problem. In the next section,
I will describe a method to model the mechanical properties of an element with
intermediate density.

2.2 Simplified isotropic material with
penalization (SIMP)

To address the challenges of intermediate densities Bendsge [1989] proposed
the simplified isotropic material with penalization approach (SIMP). The local
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stiffness matrix in an element e depends on the Youngs’ modulus E of that
element. For solid material (p = 1) we write E(1) = Ey. For 0 < p <1 we then
define the SIMP interpolation

E(pe) = Emin + PE(EO - Emin>7

where the power p is called the penalization parameter and for implementation
reasons, void elements are assigned a minimal stiffness F,,;,. This allows to
mimick void-like behavior by a very soft material, that does not influence the
structure’s stiffness but keeps us from re-meshing the structure after each iter-
ation. Note, however, that it is also possible to exclude major regions of void
by on-the-go re-meshing [Bruns et al., 2003; Liu, Hu, et al., 2018].

If we choose a power p = 1 for our compliance optimization, we receive the
so-called variable-thickness-sheet problem introduced in Rossow et al. [1973].
This problem can be interpreted as a sizing problem in two dimensions, where p
corresponds to the elementwise thicknesses of plates. This is a simple problem
that has been proven to be convex and thus has a unique solution [Petersson,
1999].

However, for everyday topology optimization one should choose p > 1 to con-
verge to a black and white structure. As an initial guess, we usually use
p = V’/N,VYe = 1,...,N. Choosing p too big will lead the optimization to a
local minimum near the initial guess. Choosing p too close to one will lead to a
lot of elements with intermediate densities, thus resulting in a "grayscale" result
instead of a black and white design. Sigmund and Maute [2013] name p = 3 as
optimal value. A detailed explanation of why SIMP is mechanically sound and
sensible to use is given in Bendsge et al. [1999].

There exist other interpolation schemes than SIMP, like, e.g., the rational ap-
proximation of material properties (RAND) introduced in Stolpe et al. [2001]
using an interpolation function with a non-zero gradient for p. = 0, which can
yield convergence benefits for the design update.

2.2.1 Checkerboard problems

For topology optimization, bi-linear rectangular elements are often used. These
elements are known to not fulfill the discrete Ladyzhenskaya-Babuska—Brezzi
(LBB) condition [Diaz and Sigmund, 1995]. This leads to the so-called checker-
board instability problem [Sigmund and Petersson, 1998]. An example of the
checkerboard problem occurring is given in Figure 2.1. To prevent checkerboard
results, one applies a regularization operator (also called filter) on the density
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variables [Bourdin, 2001; Bruns et al., 2001]. A filter smooths the intermediate
and final results of the topology optimization as follows. An element’s density is
averaged with its neighbors, effectively removing checkerboard patterns from the
admissible design space. Another solution to the checkerboard problem would
be to increase the degree of the ansatz functions of the finite elements, although,
this would make the topology optimization more costly.

(a) Checkerboard pattern arise in this example without regularization.

(b) A filter radius of 1.5 is applied on the densities, which resolves the problem of
checkerboard elements. Note how the border between solid and void regions becomes
grayscale due to the regularization.

Figure 2.1: Cantilever problem solved on a 160 x 80 mesh. In Figure a, no reg-
ularization has been applied, and hence checkerboard patterns arise. In Figure b,
regularization has been applied, which effectively gets rid of the checkerboard pat-
terns.
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2.3 Homogenization-based topology
optimization

Before the proposition of SIMP, earlier work considered composite materials to
ensure the existence of a solution [Bendsge and Kikuchi, 1988|. The usage of such
composite materials relaxes the design space of black and white designs allowing
for a much higher number of possible designs. However, a composite material
is an inhomogeneous material. It could, for example, consist of infinitesimally
small, periodically tessellated microstructures that alternate between solid and
void at a micro-scale. One refers to topology optimization using such composite
materials as either homogenization-based topology optimization or shorter the
homogenization approach.

The name homogenization approach comes from the following general idea. A
composite material has oscillatory properties at a micro-scale due to its pe-
riodically tessellated microstructure. Forces acting on a composite material,
however, vary at a much larger scale called macro-scale. And on the macro-
scale, our composite material acts as a homogeneous material. The method to
obtain a smoothly varying material description at the macro-scale based on the
alternating micro-scale description is called homogenization. Such a macro-scale
material description is called the effective or homogenized stiffness tensor. Once
the homogenized material description has been found, we can find a displace-
ment field of a structure consisting of such a material. It can then be shown
that one can decompose the displacement field to obtain a dominating term
that depends only on the macro-scale description and not on the micro-scale
behavior. Note that I will only give a short description of this approach un-
derneath, but for more details, the reader is referred to Bendsge and Sigmund
[2004]. Lastly, it should be mentioned that the topic of homogenizing material
properties is related to the term homogenization as used in mathematics when
studying partial differential equations with fast-changing coefficients.

It is important to note that a composite material can incorporate multiple
length scales. On each microscopic level, the composite material consists of
a microstructure, but on the macroscopic level, the effective properties of the
composite material vary smoothly. In the following, we assume one micro-scale
and that the microstructure is periodic in a neighborhood of a point x in a given
linear elastic structure.

Let 6 denote the length of the microstructures’ period. We then write the
elasticity tensor E? as

E® = E(x, ).
(X’é)



2.4 Optimal and single-scale microstructures for homogenization-based
topology optimization 11

There exist many periodic unit cells of the microstructure at the point x for § —
0, which implies that the properties can be considered periodically dependent
on y and the function

y = Exy)
is called Y-periodic. Here x denotes the variation of the material parameters on
a macroscopic level, and y describes the periodic variation at the micro-scale.

If a macroscopic force is applied on a structure, the resulting displacement field
u can be expressed as an asymptotic expansion:

u(XaY) = Zaiui(XaY)' (24)
1=0

Here, the leading term ug(x,y) is a macroscopic displacement field that can
be shown to be independent of the micro-scale, i.e., ug(x,y) = ug(x) [Bendsge
and Sigmund, 2004]. The effective properties (or homogenized properties) of the
composite material, i.e., the elasticity tensor £, can be found by solving so-
called cell problems for the microscopic displacement field uy(x,y). It can then
be shown that ug(x) is the resulting macroscopic deformation field that arises
under the applied forces when the elastic properties of the structure are assumed
to be given by E¥. Note that E¥ is normally precomputed for various param-
eters describing the microstructures (e.g., rotations, layer-thicknesses) [Groen
and Sigmund, 2018].

The separation of scales that the homogenization approach uses allows us to
solve the topology optimization problem at the macro-scale while using mate-
rial that incorporates material changes at the micro-scale. Combined with the
right microstructure, we can obtain optimal designs from the homogenization-
based approach. The following section describes the most important composite
materials considered for the topology optimization results used in this thesis.

2.4 Optimal and single-scale microstructures for
homogenization-based topology optimization

Homogenization allows the computation of the effective properties of multi-
phase composites. The most relevant composite is the two-phase material, where
one phase is a solid material, and the other phase is void, as illustrated in Figure
2.2.

Theoretical bounds limit achievable effective properties. The first bounds pro-
vided in the context of elasticity were introduced by Reuss [1929] and Voigt
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Figure 2.2: Two-phase composite with solid and void phase. This composite is also
called rank-1 material.

[1966]. Later Hashin et al. [1963] improved the bounds, i.e., the possible prop-
erties that composite materials can attain were restricted further. The reader
is referred to Allaire [2002]|, Cherkaev [2000], Milton [2002], and Bendsge and
Sigmund [2004] for more details on material bounds.

2.4.1 Rank-n materials

A composite structure with a solid-void alternating laminate structure is called
rank-1 laminate.

If we replace the void in a rank-1 material with another rank-1 laminate at
an infinitely smaller scale, we obtain a rank-2 composite as depicted in Figure
2.3a. We can repeat this replacement N times and subsequently obtain a rank-N
microstructure that contains N layers at NV different length scales.

These two-phase materials with a finite number of sequential laminates can
achieve the theoretical upper bounds for maximum strain energy [Francfort and
Murat, 1986; Lurie et al., 1984; Milton, 1986; Norris, 1985]. One can show the
lower limit of layers needed to obtain an optimal solution for different types of
problems - this was shown for 2D cases by Avellaneda [1987] and for 3D cases
by Francfort, Murat, and Tartar [1995].

The optimal number of layers depends not only on the dimension but also on
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(a) Rank-2 material with two layers at two (b) Rank-3 materials with layers at three

length scales.

length scales.

Figure 2.3: Ranked materials with layers at multiple lengths scales.

the number of loading cases:

e For two-dimensional problems with a single strain (2D single-load prob-
lems) a rank-2 material with orthogonal layers is optimal. Such a material

is depicted in Figure 2.4a.

e Problems with a single strain in three dimensions (3D single-load prob-
lems) can be solved optimally by a rank-3 material with orthogonal layers.
Such a material is depicted in Figure 2.4b.

e For two-dimensional problems with multiple strains (2D multi-load prob-
lems) a rank-3 laminate as depicted in Figure 2.3b is optimal.

e Three-dimensional problems with multiple strains (3D multi-load prob-
lems) require rank-6 laminates for optimal results. Recently Wang et al.
[2021] showed that rank-4 material can reach up to 92% of the theoreti-
cally obtainable stiffness of rank-6 laminates. This is an important finding
since de-homogenizing rank-4 materials promises to be more manageable
than de-homogenizing rank-6 materials.
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.7,

(a) Sketch of a rank-2 material with two or- (b) Sketch of a rank-3 material with three
thogonal layers. orthogonal layers in dark grey, light grey and
white.

Figure 2.4: Ranked materials with orthogonal layers in two and three dimensions.
Note that all layers are at different length scales.

2.4.2 Optimal microstructures

Density-based topology optimization approaches depend on the number of used
finite elements. Here, mesh-dependent refers to obtaining a different topology for
design solved on more finite elements. Ideally, a higher resolution would result
in better modeling and sharper boundaries and not in a completely different
structure [Sigmund and Petersson, 1998]. An example of mesh-dependency is
shown in Figure 2.5 for a cantilever example. Note how the topology differs
between the resolutions, since the results contain more structural members the
higher the number of element is.

On the other hand, multi-scale topology optimization does not depend on the
resolution of the finite element mesh. This is due to the microstructure holding
much more information per point than the solid-void description of density-
based topology optimization (e.g., two layer orientations and two layer-thick-
nesses for a rank-2 material). Therefore, only a coarse finite element mesh is
needed to sufficiently represent the proposed structures. This implies a largely
reduced computational effort over the usage of mesh-dependent density-based
approaches. Figure 2.6 shows the same cantilever problem as used in Figure 2.5
but solved using homogenization and de-homogenized by the approach proposed
in Groen and Sigmund [2018]. We see how already for a very coarse mesh the
homogenization-based optimization method can capture the topology towards
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(a) Cantilever problem solved on a finite el- (b) Cantilever problem solved on a finite el-
ement mesh with 80 x 40 elements. ement mesh with 160 x 80 elements.

D2

(c) Cantilever problem solved on a finite el- (d) Cantilever problem solved on a finite el-
ement mesh with 320 x 160 elements. ement mesh with 640 x 320 elements.

Figure 2.5: Visualization of the mesh dependency of density-based topology opti-
mization. Note how the topology of the structure changes, when the mesh resolution
is changed.

which the density-based approach seems to converge.

The first researcher to consider optimal microstructures for homogenization-
based topology optimization was Bendsge [1989] using rank-2 material for a
single-load case problem in two dimensions. Allaire and Francfort [1993] and
Allaire and Kohn [1993] considered the same optimal rank-2 microstructure.

Allaire, Bonnetier, et al. [1997], Cherkaev and Palais [1996], Diaz and Lipton
[1997], Olhoff et al. [1998] use optimal rank-3 microstructures for a single-load
3D problem. Multi-load case problems for solving two-dimensional plane prob-
lems are considered in Allaire, Belhachmi, et al. [1996] and Cherkaev, Krog, et
al. [1998]. Multi-load case problems for solving two-dimensional plate problems
are considered by Diaz, Lipton, and Soto [1995], Hammer et al. [1997], Krog et
al. [1997]. Finally, Diaz and Lipton [2000] use optimal rank-6 microstructures
for solving problems in 3D with multiple load-cases.

It should be noted that in practice the compliance values obtained by homoge-
nization-based topology optimization using optimal microstructures can not be
outperformed by single-scale design approaches like SIMP [Bendsge and Sig-
mund, 2004].
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T —

Figure 2.6: The same cantilever problem as in Figure 2.5. This example is solved
on a 80 x 40 elements using homogenization-based topology optimization and de-
homogenized using the approach proposed in Groen and Sigmund [2018].

2.4.3 Single-scale microstructure

Single-scale microstructures are microstructures that consist of only one length
scale as opposed to, e.g., rank-N materials. Single-scale microstructures are of
interest since the fields produced by the homogenization approach using single-
scale microstructures are, in general, cleaner for multi-load problems [Traff et
al., 2019]. This, in turn, makes the field easier to de-homogenize.

The best known single-scale microstructure is the unit-cell description intro-
duced in Bendsge and Kikuchi [1988]. They were the first to consider multi-
scale topology optimization with a microstructure defined at a single scale. The
unit-cell microstructure consists of a square cell with a hole in the center, pa-
rameterized by the widths @i, ads, and the rotation of the unit cell, as seen in
Figure 2.7. Bendsge et al. [1999] show that the unit-cell microstructure per-
forms closely to the optimal rank-2 microstructure with orthogonal layers for
2D single-load case problems.

Recently single-scale microstructures based on optimal rank-3 laminates for
multi-load case problems in 2D were analyzed in Traff et al. [2019]. Traff et al.
[2019] note that, in general, simplification of optimal microstructures to single-
scale microstructures results in a loss of up to eight percent performance of the
compliance minimization.
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Y2

Figure 2.7: The unit-cell microstructure with a rectangular hole parameterized by
a1, az in the local frame (y1, y2) on the left and on the right rotated in the global frame
(1’1 N 1'2).

2.5 Homogenization-based topology
optimization in the contributions

In this section, I will give an example of how homogenization-based topology
optimization was performed for the work discussed in this thesis. This section
was originally published in Stutz, Groen, et al. [2020] [Paper-II] and has been
adapted for this background chapter. For more details, the reader is referred to
Groen and Sigmund [2018], Groen, Stutz, et al. [2020], and Stutz, Groen, et al.
[2020].

2.5.1 Microstructure parameterization

In Paper-II we used the square unit-cell with a rectangular hole as shown in Fig-
ure 2.7 as a microstructure parameterization for the homogenization approach.
The effective properties were obtained using numerical homogenization using
the young’s modulus £ = 1 and poisson’s ratio v = 0.3 as described in Groen
and Sigmund [2018|. We created a database of the effective properties for vari-
ous hole-sizes, i.e., for different physical heights @; and widths @». This allows
interpolating the effective properties Ef and corresponding sensitivities for ar-
bitrary hole sizes. The elasticity tensor in the global frame of reference E can
then be computed as

E(0,a1,as) = R(0)E" (a1, a2) R(0)", (2.5)
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where R is the two-dimensional rotation matrix. To adhere to the volume limit,
we need to compute the density of the microstructure p by

p = 1-— dldg. (26)
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Figure 2.8: This Figure shows the result of a cantilever problem solved using the
homogenization approach and a 40 x 20 finite element mesh. For each element one cell
of the local microstructure has been enlarged to 0.8 times the size of a finite element.
Layers with less than 1% thickness are not shown. Note that there is no notion of
connectivity or spacing of the global structural members that we desire to find in the
homogenization results.

2.5.2 Optimization and regularization of the
microstructure orientation

In earlier work, the microstructure was updated based on the principal stress
direction. In our work, the angles are solely obtained based on their gradients.
This change allowed the introduction of a regularization energy to receive a less
noisy 4-direction field. The regularization objective is defined as follows. For
two adjacent elements f1 and f; connected by edge e we compare the angles of
the microstructure 6y, and 6y,. The penalization value P, € [0, 1] is calculated
by
1 1

P = 3~ 5(:05(4:(%1 —46y,). (2.7)
Note that P, is zero for angle differences of kmr/2 with k € Z. We then take
the sum of the penalization values of all n. edges and obtain the regularization
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objective Fy,
Fo=Y Pe (2.8)

The regularization objective is divided by the objectives value for the starting
guess of the layer-normals at every iteration.

2.5.3 Problem formulation

For the topology optimization, we minimize an objective function F combining
compliance J and regularization objective Fy. We use bi-linear finite elements
and assume that the material properties are constant for every element. To
avoid checkerboard patterns, we use a density filter on the design vectors a;
and ag, which results in the filtered hole heights a; and widths as [Bourdin,
2001; Bruns et al., 2001].

We use the interpolation scheme introduced in Groen and Sigmund [2018] to
limit the microstructure widths to be either void, completely solid, or in the
interval [n,1 — ] with = 0.05. The scheme modifies @; and as into the
physical hole height a; and width a.

The optimization problem is solved in so-called nested form. For each iteration,
first, the state equation is solved, and afterward, the design vectors are updated.
We can write the optimization problem as follows,

min : F(aj,az2,0,u) =

01,02,9
J(ay,az,0,u) Fo(0)
+ Yo
(1) (1) 7
J Fy
s.t.: K(a1,as,0)u="f, (2.9)

:vip(a,ay) — VYA <0,
:0 S ai,as S ]_,
c-4m < 0 < A4,

where A is the area of 2. Here v holds the element areas V., and VY is the
maximum allowed material fraction. The compliance of the first analysis step
J® is used to normalize the compliance values as done for the regularization
objective. We use the MATLAB implementation of the Method of Moving
Asymptotes (MMA) [Svanberg, 1987] to update the design vectors.

The starting guess of the hole size for microstructure is a; = as such that we
exactly reach the volume constraint. The initial orientation of the microstruc-
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ture can be based on the principal stress directions obtained by a pre-analysis
step using isotropic microstructures. However, we also use initial orientations
6 = 0, which we call a grid-aligned start guess.

Finally, we use g to steer the influence of the regularization onto the optimiza-
tion. Note that this can be a fixed value, but it is also possible to choose a
variable amount of regularization and decrease regularization during the opti-
mization.

Note that the result from the above topology optimization consists of local
layer orientations and local hole sizes. An example of a design resulting from
the homogenization approach is shown in Figure 2.8. The goal of this thesis was
to develop de-homogenization approaches to extract a structure from results like
in Figure 2.8 as done for Figure 2.6 with the method proposed in Groen and
Sigmund [2018].



Chapter 3

Vector fields and singularities
(related to Paper-II)

In this chapter, I present an analysis of two-dimensional vector fields and singu-
larities important for de-homogenization. The analysis investigates singularities
in the layer-normal fields arising from the homogenization approach and the fol-
lowing sections have been adapted for this thesis from Stutz, Groen, et al. [2020]
[Paper-II]. Further, I will relate the singularity locations to the obtained layer-
thicknesses and the underlying stress fields. Observations about layer-normal
fields and singularities in three dimensions are discussed later in Chapter 5.

In Paper-II, I found that singularities in layer-normal fields are highly related to
the underlying stress tensor fields. A major finding was the relationship between
the location of singularities and the material distributed by the optimizer. In
general, in two dimensions, singularities are either in void or in fully solid regions
such that the structure becomes isotropic at singular points.

3.1 Vector fields and direction fields

To study the vector fields generated by the homogenization approach, it is es-
sential to understand vector fields, direction fields, eigenvectors and eigenvalues
of the stress tensors. This allows us to precisely define singularities and their
indices and use this knowledge to study stress tensor and layer-normal fields.
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Vaxman et al. [2016] introduced a notation that is tailored for this purpose.
An alternative source of information about vector fields and singularity is the
paper by Goes et al. [2015]. In the following section, I will describe relevant
definitions from Vaxman et al. [2016] related to the homogenization approach
and introduce their notation. We start with the definition of a directional field
and N-directional fields.

DErFINITION 3.1 (Directional field, vector field and direction field) A
directional field denotes a function v that assigns directional information
to almost every point in a given domain. If a directional field v provides a
magnitude of importance for every point p, for which v is defined, then v is
called a vector field (see Figure 3.1a). If the directional field does not provide
any magnitude (e.g., all assigned vectors are normalized) it is called a direction
field (see Figure 3.1Db).
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(a) 1-vector field (b) 1-direction field

Figure 3.1: Comparison of a 1-vector and a 1-direction field.

DEFINITION 3.2 (N-directional field) A directional field can assign multi-
ple directions to the same point in a domain 2. Let us assign N vectors to
almost every point in 2. Then the use-cases of N = 1,2,4 are of importance
to the application of the homogenization approach. We write N-vector or N-
direction field to indicate the number of directional information given at every
point.

Figure 3.2 shows direction fields and vector fields important to the homogeniza-
tion approach, where we indicate a given magnitude with arrows. The 1-vector
fields are what we usually refer to when talking about vector fields. If N = 2
the vector is invariant under a rotation of angle m and we call such a field a
2-vector field. For N = 4 follows the 4-vector field with a rotational symmetry
of m/2.
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Vector fields Direction fields
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S
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Figure 3.2: Vector and direction fields for N € {1,2,4}. A given magnitude is
indicated by arrows.

3.2 Singularities and their indices

Singularities often arise in the presence of internal loads, multiple loads or a
designated passive domain. The following definitions describe singularities and
their indices.

DEFINITION 3.3 (Singular point, singularity) A point p in a 1-vector field
v for which v is not defined or zero is called a singular point or singularity
(see Figure 3.3).

DEFINITION 3.4 (Index of a singularity) A singular point p can be as-
signed an index by the following procedure. We consider the vector field v on
a closed, simple curve c(t), t € [0, 1], around p, which does not contain a second
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singular point. We obtain v limited to c(t), by

cos(a(t)) ) .
sin(a(t))

Here c : [0,1] — R? denotes the counterclockwise parameterization of the curve
and « : [0,1] — R the enclosed angle between the x-axis and v(c(¢)). The index
of p is then defined as idx, = 3-(a(1) — a(0)) measuring the rotation of the
vector field around the singular point.

v(e(t)) = [lv(c(®))] (

In Figure 3.3 we consider a singularity in (0,0) and depict the curve ¢ with
¢(0) = ¢(1) = (1,0) as a red circle. Further, we see that the enclosed angles
a, depicted as black circle arcs, grow from a(0) = 0 to a(1) = 27x. Thus we
have a singularity (depicted in green) with index idx, = 5= (27 — 0) = 1. Note
that singularities exist for all types of IN-directional fields, where the index
must always be a multiple of 1/n. To identify the index of a singularity in a
N-directional field, one proceeds similar to singularities in 1-directional fields.
Following a closed curve around the singular point, one measures the change of
the angle of the N-directional field. In a discrete example, as in Figure 3.6d
for example, we choose one of the directions and follow that direction along the
curve.

3.3 Singularities in smooth tensor fields

The singularities of smooth tensor fields have been studied exhaustively in order
to visualize tensor fields. Delmarcelle et al. [1994] show that singularities in
tensor fields can only have indices that are multiples of +1/2. I try to present a
descriptive version in the following theorem.

THEOREM 3.5 A smooth tensor field can only incorporate singularities of in-
dex +1/2 or multiples thereof.

Proof (Sketch) If we follow a closed, simple curve around a singularity p, not
containing a second singularity, with index +1/4 as depicted in Figure 3.4, we
see that red and blue vectors trade places. That would not be a problem for a
4-direction field where all four directions are equivalent, but if we have a tensor,
we can distinguish the red and blue direction from each other by the magnitude
of the eigenvalue. So, say blue is the direction of maximum eigenvalue that we
follow, but coming back to the initial point it then must be red. The tensor
has changed smoothly along the black curve, so there must have been a point
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051

Figure 3.3: Vector field containing a singularity of index 1 (in green), showing the
tracked curve (in red) and the angle arcs (in black).

along the black curve at which the eigenvalues were the same. However, if
the eigenvalues are the same, any plane vector is an eigenvector, and we have
a singular point. This contradicts the way the black curve was chosen and
concludes the proof. |

In homogenization-based topology optimization the layer-normals are aligned
with the stress tensors either by demanding it through the implementation or
in a gradient descent algorithm since layers aligned to the load-path are optimal
[Pedersen, 1989]. Therefore, the following singularity types are found regularly
in the output fields of the homogenization approach.

An example for a singularity of index —1/2 is given in Figure 3.6a where all
corners of a triangle are pulled apart (see Figure 3.5a). Figure 3.6b shows a
singularity of index —1. This can be seen as two singularities of type —1/2
pushed together. This type of singularity occurs in a corner loaded square (see
Figure 3.5b). Figure 3.6¢c shows a singularity of index 1/2 as occurs for example
in a center loaded clamped beam (see Figure 3.5¢).
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Figure 3.4: Sketch of a singularity with index /4.
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(a) Corner-loaded triangle (b) Corner-loaded square (c) Center-loaded clamped
beam

Figure 3.5: Examples of load cases leading to singularities.
3.4 Singularities in 4-direction fields

It is essential to differentiate between the 4-vector field described by a stress
tensor field and the 4-direction field described by the layer-normals output by
the homogenization approach. The latter can also incorporate singularities of
index +1/4 due to numerical errors, regularization of the layer-normals or simply
due to the optimizer being stuck in a local minimum.
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Figure 3.6: Vector and direction fields for different singularities.
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Figures 3.6d and 3.6e show 4-direction fields incorporating each a singularity
of index +1/4. It is impossible to separate these 4-direction fields into two 1-
direction fields, which is shown in Figure 3.6f. Especially regularization seems
to result in singularities of index +1/4. Increasing the regularization value vy
limits the angular changes. Figures 3.7a - 3.7f depict how a singularity of index
+1/2 is spatially ripped apart more and more with increasing regularization. In
this example the singularity of index 41/2 is split into two singularities of index
+1/4, that are located in the center of the domain at the end of the red lines.
The red lines indicate where the direction fields jump by 90 or 180 degrees.
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(e) Vector fields for v = 0.5 (f) Density for 79 = 0.5

Figure 3.7: Vector fields and densities for different degrees of regularization.

3.5 Relation between the location of
singularities and the material distribution in
the homogenization results

For de-homogenization, it is of importance to understand where singularities
occur in the layer-fields output by the homogenization approach. I am not aware
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of a theoretical solution to this, but we observe that, in general, singularities
occur in regions with very high or very low density.

Let us assume that in the output of the homogenization approach, the layer-
normals are well-aligned with the stress directions everywhere, such that singu-
larities in the stress field correspond to singularities in the layer-normal fields.
We investigate a singularity p, where the stress field is non-zero. At such a
singular point the stress field rotates with an index idx, # 0. Thus, in the
immediate surrounding, we see all directions in the interval I = [0, 27idx,).
Suppose we measure the angular velocity on several curves around p. In that
case, we realize that the shorter the curve, i.e., the closer to p, the higher the
angular velocity becomes, as the field always needs to rotate by 27widx,. Or
in other words, at p, the stress field turns infinitely fast. The homogenization
approach outputs two layer-normals n'? and widths w; o and thus a density
p = wi + wy — wiws for the element containing p. Now, if 0 < p < 1, only
the directions n'? in I are well-aligned with the unit cell. Thus, for all other
directions in I, a shearing force will arise. The optimizer can improve the com-
pliance by making the element containing p isotropic, which means that we can
observe a density peak p — 1 in the vicinity of the singularity p. The same ef-
fect can be seen in Figure 3.7, where the material is distributed differently since
the layer directions differ from the stress direction due to regularization. It is
important to note that singularities also may occur in void regions. Following
the above thought of using material to create isotropic elements, it is intuitively
understandable that the optimizer mostly tries to stay clear of regions with fast
turning stress fields and hence creates singularities in elements with p = 0 as
well.

The above observation does not allow a prediction of where singularities occur in
the layer-normal fields. However, it does allow to reason, why regions containing
singularities can often be entirely filled with material in the post-processing
without an excessive amount of additional material needed as we already see
a density peak. In general, one needs to be careful regarding the occurrence
of singularities as the above observation assumes layer-normal fields that are
well-aligned to the principal stress directions.






Chapter 4

Integration based
de-homogenization

In this chapter, I will discuss approaches to de-homogenization that make use
of integration. First, I visit earlier work done on de-homogenization and related
work of other research fields, namely computer graphics. Second, I will discuss
an approach to de-homogenization of layer-normal fields that contain singulari-
ties and was published in Stutz, Groen, et al. [2020] [Paper-II]. The full paper is
provided in Appendix B. Lastly, in this chapter, I will discuss integration-based
de-homogenization of three-dimensional problems in a singularity-free context.
This work has been published, in parts, in Groen, Stutz, et al. [2020] [Paper-
I]. The full paper is provided in Appendix A. Before we visit the related work
in Section 4.1, I would like to give a short overview of the work I did on de-
homogenization in Paper-I and Paper-II.

In Paper-I, we found that microstructure orientations in three dimensions can
be noisy due to non-uniqueness of the optimal solution introducing singularities
that are not mechanically necessary. We investigated the influence of starting
orientations and regularization on the fields and were able to produce far less
noisy fields. In combination with a newly developed combing strategy, we were
able to de-homogenize the fields and create well-performing mechanical struc-
tures. The combing procedure has later been altered and used in Paper-II as
well.

In Paper-1I, we found that the starting orientations of the microstructure ori-
entation can influence the resulting structure without a loss in performance.
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We also found that starting orientations and regularization influence the loca-
tion and presence of singularities. Further, in Paper-II, we used a method from
computer graphics [Kélberer et al., 2007] to de-homogenize topology optimiza-
tion results containing singularities. We obtained well-performing mechanical
structures without restriction on the location where singularities needed to lie.

4.1 De-homogenization for smooth, continuous
and singularity-free 4-direction fields
(related to Paper-II)

In this section, we look at de-homogenization by discussing related work and an
example in Figure 4.1. This section has originally been published in Paper-II;
the full paper can be found in Appendix B.

Pantz et al. [2008] were first to propose a method to project the unit square
microstructure macroscopically using an integration-based method. Their de-
homogenization approach minimizes an alignment energy to find a parameteriza-
tion aligned with the orientations of the microstructure. The approach assumes
two separate vector fields, whose orientation is not of importance. Later, Groen
and Sigmund [2018] simplified the approach by Pantz and Trabelsi, still using
two separate vector fields, however, with the challenge of having consistently
aligned vector fields as the approach is not invariant to angle jumps of angle 7.
This was solved by using a connected component analysis on the vector fields.
Both approaches do not explicitly deal with angle jumps of angle 7/2.

Earlier work [Allaire, Geoffroy-Donders, et al., 2018; Groen and Sigmund, 2018;
Pantz et al., 2008] de-homogenize the square unit-cell with a rectangular hole
using two periodic layers superimposed onto each other. We follow the same
approach in Paper-II. Provided that vector fields are separable (i.e., no singular-
ities of index +1/4) we can use the procedure as presented in Groen, Wu, et al.
[2019] for de-homogenization. I want to use the rest of this section to present
that approach to de-homogenization. Note that Figure 4.1 shows the main steps
of this method for a standard cantilever example.

From a 4-direction field (Figure 4.1a) two 1-direction fields are extracted (Figure
4.1b). Based on the two smooth 1-direction fields n,i € {1,2} one creates two
mapping functions ¢, and ¢o that preserve the orientation of the microstruc-
tures. It should be noted that the map does not need to be strictly conformal.
The values of ¢; are allowed to be inaccurate when there is no material in the
layer (i.e., w; < 0.01) or when the domain is completely solid (i.e., p > 0.95).
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Hence, the problem only needs to be solved accurately in the intermediate mate-
rial part of the domain of the i-th layer €2;. This leads to the following spatially
weighted partial differential equations (PDE),

(4.1)

a1 (2)Vei(x) = aj(z)n'(z), =€
, e

s.t. ab(x)Vei(z) -t (z) =0

where t' denotes the orthogonal vector to n?. The domain is separated into
three parts, which dictate the weights on the objective aj and the weights on
the constraints as,

0.01 if  w;(x) <0.01,
o (z) =40.1 if  p(x) > 0.95,
1 it e
0 if  w;(x) <0.01,
ab(x) =<0 if p(x)>0.95,
1 if xeq.
Numerically, we solve the above-mentioned problem as a linear system using
the finite element approach, where the constraint is enforced in an augmented
setting using penalty parameter 4, called the alignment weight. Figure 4.1c
shows one of the two parameterization ¢; for the cantilever example. Contour

lines have been added for a better understanding. Figure 4.1d shows the cosine
of the parameterization indicating all isocontours and the periodic structure.

With both parameterizations known we can create an implicit geometry descrip-
tion p; for each of the layers:

1

pi(x) = H<(2 + %S {Pidi(z)}) — @i(w)) (4.3)

Here H is the Heaviside function and S € [—1,1] corresponds to a triangle
wave. Furthermore, P; is a periodicity scaling. Hence, the design can be de-
homogenized by an implicit geometry function p as,

p(x) = min {1, Z p](a:)} . (4.4)

Finally, we can impose an average layer spacing ¢, which can be interpreted as
the unit-cell size. To do so, we define the periodicity scaling parameter P; based
on the average lattice spacing in the domain of interest €;,

o Jo %
L[5 IVei(a)]]dQ;

(4.5)
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(a) 4-direction field (b) 1-direction field

%/
%

(¢) parameterization with some isocurves (d) Cosine wave

(e) Projection using w (f) Combining two layer projections

Figure 4.1: Projection pipeline for standard cantilever beam — from a 4-direction
field to de-homogenized mechanical structure.

where the average layer spacing ¢ allows to steer the average spacing between
the structural members. Figure 4.1e shows p; and ultimately p is depicted in
Figure 4.1f.

4.2 Singularity aware de-homogenization in two
dimensions (related to Paper-II)

With the knowledge accrued about singularities in the last chapter, we are able
to study examples that contain singularities. In this section, I shortly talk
about earlier work on singularity containing examples. I then present how we
propagate consistent labeling of the direction fields in the case of singularities
(see Section 4.2.1) and show the connection to quad-meshing (see Section 4.2.2).
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Pantz et al. [2010] investigated the challenge of singularities in fields arising from
the homogenization approach for the first time. The singularities with indices
1/2 are all located in void regions and are nucleated, i.e., the areas containing
singularities are excluded from the parameterization step and onward. Geoffrey-
Donders [2018] proposed a method of spotting singularities of index £1!/2 using
a technique explained in more detail in Hotz et al. [2010]. This only allows for
jumps of angle 7. In order to deal with the singularities, correction functions
are computed to prevent mismatches at seams.

For the following sections it is important to know about related work from com-
puter graphics. The landmark contribution of Kélberer et al. [2007] proposed the
"Quad-Cover" algorithm for field-guided quad meshing using multiple coverings.
Multiple coverings in the sense that the parameterization domain is duplicated
multiple times. This means, that the rotationally symmetric field simplifies to
a vector field on every single covering and thus becomes integrable. In practice
only a single parameterization domain is used and operators to account for the
different coverings are introduced. Bommes et al. [2009] proposed a refinement
of Quad-Cover, solving the resulting system in an iterative approach yielding
an improvement of the obtained parameterizations.

4.2.1 De-homogenization in the presence of singularities

In the presence of singularities the above described methods for de-homoge-
nization can fail for several reasons. Depending on the index of the singularity
different issues can arise:

e If only a singularity of index —1 is contained in the 4-direction layer-normal
field, the separation into two integrable 1-direction fields is still possible
(see Figure 3.6b). As locally neighboring vectors need to be pointing in
the same direction the extraction of vector-fields does not arise trivially.
This extraction is called combing. In practice, a breadth-first search has
shown to be challenged by this task as depicted in Figure 4.2b because the
singular point is hit. For topology optimization fields more robust results
can be reached by expanding the search through intermediate densities
first, before expanding into void and solid. This algorithm has been pro-
posed in 3D in Paper-I1 and a 2D version is explained in Section 4.2.1.1
and depicted in Figure 4.3. The result for the corner loaded square can
be seen in 4.2c.

e In the case of a singularity of index +1/2 the 4-direction field can still be
combed, such that two separate 1-direction fields arise (see Figure 3.6a,
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3.6c). However, the combing of these 1-direction fields cannot be done
consistently anymore. Any combing strategy will inevitably create mis-
matches, i.e., some neighboring elements will contain vectors that are ro-
tated by 7 (see further Section 4.2.1.2). A promising approach to extract
a high-resolution structure for such fields has been proposed in Geoffrey-
Donders [2018].

e In case of a singularity with index +1/4 the whole procedure gets even more
challenging. Recall that following a curve ¢ around a singularity of index
1/4 in a 4-direction field means that we return to the start of our curve
misaligned by 7/2 (see Figure 3.6d-3.6f). Therefore, we cannot find two
1-direction fields to which we can assign the directions of our 4-direction
field. Instead, one needs to cut open the field in such a way, that one can
integrate the 1-direction fields using multiple coverings as introduced in
Kalberer et al. [2007]. T will discuss this topic in Section 4.2.2.

4.2.1.1 Combing the 4-direction field

As a first step, we have to comb our 4-direction field. This means we want to
choose two orthogonal 1-directions for every element. In quad meshing, this is
normally done with a breadth-first search as shown in Kélberer et al. [2007]. As
the homogenization approach results are noisy and unreliable in elements with
very low or very high density, it makes sense to prioritize combing in medium-
density regions. In Figure 4.3 we see such a density-based approach, where
the chosen directions are given as black arrows and seam edges are depicted
in bright red. We color the elements according to the time where they are
visited by the combing algorithm. For readability, we bundle 50 elements to
one step and color them with the same color. Unlike in Paper-I we only use the
direction of a single neighboring element to compute the direction to be fixed
in element f. This allows for a much faster algorithm and is possible due to the
angular information being more robust in 2D. The density priority is obtained
by ppriority = |Pstart — Pf|, where normally psiare = 0.5 is chosen. We therefore
comb the field first in areas with a density close to 0.5 and then spread out
into the remaining domain. The numerical implementation of the combing only
selects one direction per element. The second direction is implicitly given as the
rotation of the extracted 1-direction field by =/2.

4.2.1.2 Finding the seams

For every 4-direction field containing a singularity with index /4 or 1/2, we
receive a combed 1-direction field that has jumps of angle 7/2 and/or 7. Such
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fields are not integrable and to be able to parameterize our domain, we need to
cut open our mesh as proposed in Kélberer et al. [2007].

DEFINITION 4.1 (Seams, mismatch, seam edge) Two directions whose

enclosed angle exceeds 7/4 are said to mismatch by /2.

Accordingly, two

directions whose enclosed angle exceeds 37/4 are said to mismatch by 7. An
edge e is called seam edge if the directions in the two adjacent elements f1, fo
mismatch. A seam is any series of connected seam edges.

XAAA A+ e x
XX XK S A A XXk
3X XK KA Aot e X%
300X X KA A oAttt FE X F X XXX XA
A XXX XK A A Attt LA X r XX XXX X XA
XXX K KAAAA Aot e X X XXX KLt
A XX KR KR A AR A4 XX XX XX XK
XXX XX R KK AR A A A XXX XX XX KR A S A+
X XXX KX K KA AA A A XXX XX K KA A+
FA X000 XK AR AR LA AT XX XXX XXX KA KA+
30303 X00X0KK K KK e A X XX XXX X K KA A A
FA A 420000 R KRR A A F A A XX XX XX XK AR A A
A A0 XX XXX AL AR F 4 X XXX XXX AR KA+
F 0 0000 XK X KA A A X XK KRR A AL A
FA A X 000X KR Ao X XXX X KR A AR A+
F 000X XK A XXX R R AR A A A A
b X000 XX KA A X XK KA A At
Frt A e O R X X KA A A
X XA X RS A
LB s & I S AVAAR SLAN WA LA A AR S
bt A XX b
oot oA A K S X0 b
Fob ot A AR KX XXX e de e
A A A A AR KX X KA A AKX XK X b+
A AR XXX X X XA K XX XXX A -
Fob A A A AR K XXX KA A LR XXX X e+
Frb o A AR AR KK XXX A AR R KK X X XX XK A+
F AR ARK KX XXX KA A A A KKK K XX XX KA+
Fo A A AR KK XXX XK ALK KX X XXX X X+
FhF A AR AKX XXX XXk AR LA KKK KK XXX X A
A AALRXX XX XX X X X+ FAFAFEARARARXXX XX X X X4+
A RK K XXX XXX XA Ak ALK KR XK X XX X ek
FAFA AKX XX XX XXX XA A A FFF ALK X RXXX XXX XA+
FAFFEAK XXX XXX KA A A ALK K XX X X

¥
FFARK KX XXX XX A A A A A A AR A AR XXX X A+
FAXXXXXX XX+ oA A A A RAX XXX
FARXXX XXX XAttt A f kAR XXX X
KXXX XXX XA XA A A R F R R AR XXX X
FXX XXX A A A R R AR A XXX
XX+ FAAREX

vivevLLLLLLLLLLLLLL

PV I SV I B S R R B R R

P VA R R R N B S R R R

M

rrrrrrrrererrer e

Frec
P o P RY

2737717777137 3377333F|fh1797979777 79990 A0 A
23599333793 33173333 3177 A A A A
3335333337333377711P[rh1999997722 2 aaaanrs
235555533333 3333333 777 Anaanan
235555553333 337737F (9 A aaaaaa~~nnr
43335555333 93337 771 thaaaanaaaaanannnsrr
3333555555533 333 3P [hanaaananaaana~~rrr
9233555555533 3333([rhananananannnarrrrr
3335555555333 [fhananaananannarrrer
0855555555533 33 P [thaaaaanannann~rrrrer
4330055555555 33 P ([haraaannananrrrrrrE
R i A A N N St
JAO0333335555553 33 P ([fhananaannansrrrrrrEr
e I I o e A A S e
JA0000333335555 3y P [fhanAanannrrr AR EFE
e I ol s A N N e o
JAII08000303333 5l hannnr~rrrrr R
B R S M A L A
e g o K A
I RN b D
R A L A R R R
B B B B B B I R R L L L L i
E I N N S R R L L L L L i
N R R R A I N N A A D I A
R I B N N N 2 2 S PR PRI
F R N N S 22 PP PP P DRI
B R A N N S A S I I IR
I N A 2R PP PP PR PR RPN
R N A S SR PP DR PPDR DD PP
R R R R R R R R e T
P N R PIPDIDD DI
R A 2 S NP DR
R N R PRI PRRR D DD
JUNYVVVVVV UL L L L LU L LLLLL L Lkt rrr
T R SRR PP D DR
T R SR S NP DD DRI
YNV VAMVLLLLLLLLLLLLLLLLL L L CClllllldddccr
B W P DD
YVVLLLLLLLLLLLLLLLLLLLLLLLLLLLL ULy
ViLLLLLLLLL UL LLL L b bt tteeeiieeecddddy

(b) Breadth-first combing

N
N
N
-
C
<
<
<
<
<
<
<
<
<
<
<
<
<
C
C
C
C
C

(¢) Density-based combing

Figure 4.2: Example of two different combing strategies for a given 4-direction field
resulting in different seams. The breadth-first combing only uses information about
the neighborhood of elements, whereas the density-based combing uses density values

to prioritize the combing of elements.
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Figure 4.3: Extraction of a 1-direction field using a density-based combing strategy.
The combing is started at a root element and follows intermediate densities first. The
colors show steps of 50 elements at a time, whose 1-direction has been fixed. The
colors show steps of 50 elements at a time, whose 1-direction has been fixed.
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Figure 4.4: Sketch of cutting a grid open between two neighboring elements at a
seam edge.

4.2.2 Constrained mixed integer solver

In Quad-meshing, multiple coverings and a method to address seams were intro-
duced in Kélberer et al. [2007]. An expansion introducing an iterative scheme
to solving for the parameterization is given in Bommes et al. [2009]. We want to
exploit the underlying mechanisms to create a topology on which we can inte-
grate the combed fields, combining them with the integration scheme introduced
in Groen and Sigmund [2018]. Therefore, we give a short simplified introduction
to Kélberer et al. [2007] and Bommes et al. [2009] in Sections 4.2.2.1-4.2.2.3.

4.2.2.1 Cutting the mesh open

As a first step, one cuts open the mesh along the seams created in Section
4.2.1.2. Let e = (v1,v2) be a seam edge, connecting the vertices v; and v as in
Figure 4.4. The edge e separates the two elements f; and fo. Auxiliary vertices
01 and ¥y are introduced and the connectivity of f5 is changed from [vy, ve, vy, vs]
to [01, D2, v, vs].
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4.2.2.2 Gluing the mesh together

If one would solve the resulting linear system in Equation 4.1 on this cut open
mesh, disconnected structural members would arise at the seam locations, since
the integer isolines on the left and the right side of the seam would not meet
up. Therefore, one needs to make sure that the parameterizations ¢; and ¢o
in vertex v differ by integers i, j from the parameterizations in ©. This ensures
connected bars and also the same spacing between bars on both sides of the
seam. In case of a singularity of 1/4 the parameterization ¢; can corresponds
to the parameterization ¢, on the other side. These rotations Rotg, are given
implicitly by the combed field. Kélberer et al. [2007] formulate the rotational
and integer condition with the following equations

(¢1(11), d2(1v1)) = Rotgy((¢1(v1), g2(v1))) + (i, 5),
(¢1(v2), P2(v2)) = Rotgy ((¢1(v2), P2(v2))) + (4, 7),

where i,j € Z enforces that the integer isolines meet up. The operator Rotg,
accounts for the mismatch of the rotations on both sides of the seam. It can
be seen as a multiplication with the imaginary number i in the complex plane,
where we regard the parameterizations (¢1(v1), ¢2(v1)) as a complex number.
Maybe most intuitively is the rotation with angle 7. When we look at Figure 4.4
and think of the vectors as gradients of the parameterizations ¢; and ¢2, we see,
that if the value of a parameterizations ¢ increases on one element, then it must
be decreasing on the other element. Thus the signs of the parameterizations need
to change, which corresponds to a multiplication with 2. For rotations of angle
7/2 or 37/2 the two parameterizations ¢; and ¢, need to switch position, since
the "blue" field becomes the "red" field. This corresponds to a multiplication
with 4 or ¢* in the complex plane. If we define the angle as the rotation in
counterclockwise direction, we get:

Rotgo((¢1(v1), d2(v1))) = i (d1(v1), $2(v1)),
where [(e) € {1,2,3} is given by the mismatch of the angles at edge e.

(4.6)

Further details about the operator Rotg, and this procedure can be found
in Bommes et al. [2009] and Kélberer et al. [2007]. We make use of the con-
straint mixed integer solver provided in Bommes et al. [2012] to solve for the
parameterizations.

4.2.2.3 Solving for the parameterization

Once the system is assembled, it is solved in the continuous case, i.e., no integer
restrictions are applied at first. This yields an approximation to the desired so-
lution solving the problem up to disconnected bars at the seams. The mismatch



40 Integration based de-homogenization

variables (4,7) can now be seen as slack variables j € J, where J is the set of
all slack variables. For every iteration the slack variable closest to an integer

k = argmin | j — round(j) |,
jed

is enforced to round(k) and the new system is solved. In an iterative fashion,
this procedure is continued until no more slack variables are left.

4.2.3 Parameter choice for homogenization and
de-homogenization

The homogenization and the de-homogenization are both influenced by some key
parameters. The pipeline discussed above allows us to study different examples
of start orientations for the layer-normals and regularization values (see Section
4.2.3.1). Further we also outline the important de-homogenization parameters
(see Section 4.2.3.2).

4.2.3.1 Influence of the start point choice and the regularization of
the homogenization approach

(a) Structure (b) Enlargement of the centre of the
combed vector fields

Figure 4.5: Example of a corner loaded square using principal stresses as a start
guess for the layer-orientation, no regularization applied.

It is known for the corner loaded square (see Figures 3.5b, 4.5 - 4.8) that there
does not exist a unique optimal solution. The shown examples were all achieved
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(a) Structure (b) Enlargement of the centre of the
combed vector fields

Figure 4.6: Example of a corner loaded square using principal stresses as a start

guess for the layer-orientation, regularization vy = % applied.

using a resolution of 120 x 120 elements for the topology optimization as well as
for the parameterization step. To visualize the resulting structures, we choose
for the de-homogenization an average layer spacing € = 5hy, where hy = 15 is
the number of fine scale elements used, and an alignment weight v, = 50. For
the examples in Figures 4.6 and 4.8 the value vy = % is applied. In this example
we see that the start guess dictates the resulting structure. If the start point
for the homogenization approach consists of a grid-aligned 4-direction field we
receive the structures depicted in Figures 4.7 and 4.8 that are fairly grid-aligned.
However, if we solve one finite element step, assuming that in all elements we
have a density p = 1, we receive a stress tensor field, whose eigenvectors can be
used as a start guess for the homogenization approach, as shown in [Paper-I].
The results differ from the grid-aligned start guess and are shown in Figures 4.5
and 4.6. Note that even if we impose regularization, the start guess still dictates
the outcoming structure as shown in the Figures 4.6 and 4.8. With the principal
stress directions as starting guess we receive spatially ripped apart singularities,
when imposing regularization. With the uniform grid as starting guess we stay
completely clear of getting a singularity in the center of the domain. Instead
we receive singularites of index —1/4 near the corners for the example shown in
Figure 4.7 and no singularities at all for the example shown in Figure 4.8. Note
that despite the large geometric variations in these solutions, compliance values
C}, for obtained homogenization results are extremely close demonstrating the
non-uniqueness of this problem.
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(a) Structure (b) Enlargement of the centre of the
combed vector fields

Figure 4.7: Example of a corner loaded square using grid-aligned directions as a start
guess for the layer-orientation, no regularization applied.

4.2.3.2 Alignment weight v, and structural member thickness ¢

There are two main parameter choices influencing the result during the de-
homogenization: The alignment weight v, and the average layer spacing . We
refer to Groen and Sigmund [2018] for the choice of the layer spacing . For com-
parison reasons, we use in this subsection an ¢ = 10/r, where L is the resolution
in vertical direction. Further, topology optimization and de-homogenization are
done on the same resolution. If no singularity is present, then the alignment
weight 74 should be chosen in a range of 100-1000 as shown in Groen, Wu, et al.
[2019]. Tt holds, that the lower the maximal absolute divergence of a vector
field, the bigger € can be chosen, as it simply enforces a very strict alignment to
the second vector field. However, in case of a singular point, the field spins with
a certain index around that point. If we now enforce a big alignment weight
on a low-resolution (80 x 20 elements) example we receive stretched isocontours
as shown in Figure 4.9a. The gradient of the parameterization becomes almost
zero in a large region. The constraint of Equation 4.1 is implemented as a pe-
nalization term multiplied with the alignment weight v4. Note that this term
can be minimized by the gradient becoming zero due to the usage of the dot
product. However, this leads to an increase in the first term of Equation 4.1
and an unwanted stretching of the isocontours. For a low-resolution example,
the space of bi-linear basis-functions is limited and thus the parameterization is
limited in adapting to the rotation around a singularity. This leads to smearing
out of the rotational influence from the singularity to neighboring elements. If
the element size is large, this influences a higher relative area of the optimization
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(a) Structure (b) Enlargement of the centre of the
combed vector fields

Figure 4.8: Example of a corner loaded square using grid-aligned directions as a start

guess for the layer-orientation, regularization vy = % applied.

domain. Thus if the alignment weight is chosen very high the gradient becomes
zero in these elements due to the first term of Equation 4.1 being suboptimal
already. This often results in a violation of the volume constraint as can be
extracted from Table 4.1. In order to allow for a better comparison we provide
the value V;Cs, which should however not be considered as a sole objective,
since the compliance does not depend linearly on the volume. By using a higher
resolution (160 x 40, 320 x 80, 640 x 160) (see Figures 4.9b, 4.9¢ and Table 4.1)
most of this problem is resolved. We can see that a trade off in the alignment
weight is still desirable for these high-resolutions. On the one hand, a low align-
ment weight can lead to non-load bearing bars, as isocurves might lead into an
area with zero layer width due to bad alignment. On the other hand, a too
large alignment weight can lead to an overvaluing of the constraint and thus
to stretched isocontours. For the examples in Table 4.1, we observe that the
optimal alignment weight can depend on the resolution ~4 between 50 and 5000
dependent on the de-homogenization grid.

4.2.3.3 Island removal via connected component

To get rid of elements that are neither connected to the boundary condition
nor to the load, we do a simple connected component analysis, where we only
retain the largest component. This immediately leads to the desired removal of
islands. However this still leaves some unloaded bars, these can be removed by
a couple of FE analysis and removal of unloaded elements as proposed in Groen
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(c) Structure with resolution 640 x 160 and alignment weight 4 = 5000

Figure 4.9: Examples of center loaded clamped beam for different resolutions and
alignment weights.

and Sigmund [2018].

4.2.4 Conclusion of Paper-II and future work

In Paper-1II, we identified the singularities occurring most often in 4-direction
fields arising from homogenization-based topology optimization. Further, we
investigated the location and reasons for singularities to occur. We also showed
the influence of the start guesses of layer-orientations on the outcome of the
optimization. The proposed parameterization approach using an approach very
similar to Quad-Cover allows parameterizing fields containing singularities of
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Table 4.1: Performance for different alignment weights v4 and resolutions res. We use the
following abbreviations: C} = compliance of homogenization approach, Vs, Cs = volume and
compliance of de-homogenized structure, tj,ts,t = time for homogenization-based topology
optimization, the de-homogenization and the overall time in seconds. Since the compliance
does not depend linearly on the volume VsCs should not be considered as the sole objective.

res | e Ch Vs Cy VsCs th ts t
0] 21.89 | 0298 | 61.79 | 18.42 44.8 5.4 50.2
§ 50 | 21.89 | 0.316 | 32.60 | 10.30 44.8 6.2 51.0
2 500 | 21.89 | 0.349 | 24.26 | 8.45 44.8 5.2 50.0
5000 | 21.89 | 0.351 | 24.50 | 8.60 44.8 4.0 48.7
- 0] 21.82|0.295 | 337.74 | 99.52 | 1354 | 11.2 | 146.6
j 50 | 21.82 | 0.334 | 24.69 | 825 | 1354 | 10.2 | 145.6
3 500 | 21.82 | 0.343 | 22.76 | 7.81 135.4 | 10.2 | 145.7
- 5000 | 21.82 | 0.338 | 23.46 | 7.93 | 1354 | 10.8 | 146.2
- 0]21.84 | 0297 | 71.95 | 21.39 | 4029 | 34.3 | 437.2
‘2 50 | 21.84 | 0.313 | 22.52 | 7.05 | 4029 | 30.8 | 43338
< 500 | 21.84 | 0.300 | 24.89 | 7.48 | 402.9 | 30.7 | 433.7
v 5000 | 21.84 | 0.285 | 26.75 | 7.63 | 402.9 | 30.8 | 433.7
- 0| 22.02 | 0.298 | 73.51 | 21.90 | 1824.5 | 112.8 | 1937.3
:; 50 | 22.02 | 0.293 | 25.57 | 7.48 | 1824.5 | 109.9 | 1934.3
= 500 | 22.02 | 0.288 | 25.91 | 7.46 | 1824.5 | 147.1 | 1971.6
© 15000 | 22.02 [ 0.313 | 22.07 | 6.91 | 1824.5 | 111.5 | 1936.0

index +1/4. The proposed parametrization approach also allows us to cut out
areas completely filled with void or solid material from the parametrization
step. These contributions increase the number of designs for which the de-
homogenization method can generate high-resolution near-optimal structures
at a low computational cost.

We also identified several areas for future research. Most importantly we think
that adapting the parameterization to a layer-based mesh would be desirable.
With the proposed method one can exclude elements that have a very low density
for example, but we think it would beneficial to be able to exclude only one of
the two layers when computing the parameterization. Finally, we also identified
the expansion of the presented approach to 3D as future research. However, as I
will get back to in Chapter 5 we decided to go down a completely different route
using no integration to de-homogenize three-dimensional singularity-containing
examples.
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4.3 De-homogenization of singularity-free
structures in three dimensions (related to
Paper-I)

In this section, I will discuss the work I did on the de-homogenization of
singularity-free layer-normal fields in three dimensions. This work has been
published as a part of Groen, Stutz, et al. [2020] [Paper-I]; the paper can be
found in Appendix A. Here, I want to shortly discuss the overall contributions
of the paper and then go a bit more into detail on the challenges arising in three
dimensions compared to two-dimensional problems. I will then explain how we
tried to tackle these challenges with a combing algorithm that takes into account
either the layer-thickness or the densities obtained from the homogenization-
based topology optimization.

4.3.1 Introduction and discussion of paper

Groen, Stutz, et al. [2020] [Paper-I] is an expansion of previous work proposed in
Groen and Sigmund [2018] to three dimensions. We use rank-3 microstructures
with orthogonal layers, which are optimal for the considered single-loading case
problems. As with the work in two dimensions [Groen and Sigmund, 2018;
Stutz, Groen, et al., 2020], the proposed method consists of a homogenization-
based topology optimization step and a subsequent de-homogenization step that
uses integration to find a parameterization and ultimately extracts a mechanical
structure.

Going from two to three dimensions introduces a difficult challenge of non-
uniquely orientated but still optimally orientated layer-normals. This means
that the layer-normals obtained from the homogenization approach may look
incredibly noisy but indeed be orientated optimally. This problem arises due to
planar structures like sheets or walls being able to carry loads in many directions.
I will refer to this problem as the wall problem and describe it in more detail in
Section 4.3.2.

One of my contributions to Paper-I is a combing strategy that considers the
underlying layer-thicknesses to circumvent the arising wall problem. Further,
I investigated the fields arising from three-dimensional homogenization-based
topology optimization. I discovered the influence of the wall problem on de-
homogenization and looked into the occurrence of it. Further, I investigated
the effect of different start guesses on the microstructure orientation. I con-
cluded that orientations based on the stress tensors obtained from an initial
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finite element step yield the best layer-normal fields for our de-homogenization
pipeline. Further, such an initial step also yielded the best performing layer-
normal fields in terms of compliance (see Paper-I) and was able to improve the
solving time. Note, however, that this does not necessarily mean that grid-
aligned start guesses cannot yield well-performing results as shown in Section
4.2.3.1 for the two-dimensional square problem.

In Paper-I, we de-homogenized the multi-scale designs received from the ho-
mogenization-based topology optimization on a fine mesh containing more than
200 million voxels. However, in this section, I will also show that one can eas-
ily use marching cubes [Lorensen et al., 1987] to obtain a smoother surface.
In the paper, we show that the de-homogenized fine-scale structures achieve
outstanding compliance values and reduce the computational cost by order of
three magnitudes compared to density-based topology optimization. Therefore,
our approach is applicable to efficiently obtain ultra-high-resolution large-scale
designs without a high-performance computing system allowing topology opti-
mization to become more valuable to engineers in everyday life.

Of course, we also identified challenges for future research in the paper. Mainly
the expansion of de-homogenization to examples containing singularities, which
we addressed for 2D in Paper-II and 3D in Paper-II1. Further, we identified more
robustness for the de-homogenization as desirable. To do so, an understanding
of where and why singularities arise in layer-normal fields must be established.
The last big research area identified is the expansion of de-homogenization to
multi-loading problems with rank-3 structures in two dimensions and rank-6
structures in three dimensions. All of these problems lead to the development
of a new approach presented in Chapter 5 where I investigate singularities in
3D and propose a method that works without all layers needing to be well-
defined everywhere (i.e., circumventing the wall problem). There is an increase
in robustness since one does not depend on a single combing sweep anymore.
Further, the approach in Chapter 5 is usable for multi-load structures and can
treat singularities explicitly.

4.3.2 A new challenge in three dimensions: the wall
problem

Going from the two-dimensional problems discussed in Section 4.2 to three di-
mensions yields a problem with the layer-normal fields. In two dimensions, the
topology optimization results can produce three cases for an element:

1. Both layer-thicknesses w; and wsy are zero. The element lies in the void.
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Figure 4.10: Visualization of the wall problem. The normal of the wall is constant.
However, the two other layer-normals (in red and blue) can be orientated randomly
since a wall can bear loading in any in-plane direction.

2. One or both layer-thicknesses are above 95%. The element is interpreted
as fully solid.

3. One of the layer-thicknesses is zero, e.g., wi, the other layer-thickness,
e.g., wa, is between 1% and 95%.

In case 1, the optimizer does not know how to align the microstructure since
there is no material. We can not extract meaningful microstructure orientations.
In case 2, the microstructure orientation can be very noisy. Due to the high
amount of materials, the microstructure becomes isotropic, and all layer-normal
orientations are optimal. Therefore the optimizer cannot differ between smooth
fields and noise. Regularization could help to smooth the fields. However,
this is not necessary since in case one and case two, de-homogenization is very
easy. An element whose layer-thicknesses are zero can be omitted from de-
homogenization, and we can completely fill an element with material when one
of the layer-thicknesses is above 95%.

The important case in two dimensions is case 3. In this case, one of the layers is
non-zero and not fully solid. This layer will be well-aligned to the load path by
the optimizer. The fields obtained from the topology optimization are smooth
in case 3 since the load paths do not randomly change in a not fully solid
structure, i.e., singularities should not occur outside of solid and void in two
dimensions, see Section 3.5. The well-aligned layer-normal will now lead to the
corresponding field to be continuous. Note that the second field will also be
continuous as the second layer-normal is orthogonal to the first layer-normal.



4.3 De-homogenization of singularity-free structures in three dimensions
(related to Paper-I) 49

Going to three dimensions, we receive the following possible cases for the layer-
thicknesses.

1. All three layer-thicknesses wy, wo and w3 are zero. The element lies in the
void.

2. One, two or all layer-thicknesses are above 95%. The element is fully
solid.

3. Two layer-thicknesses are between 1% and 95% (e.g., w2 and ws) and
one layer-thickness (e.g., wy) is zero.

4. Two of the layer-thicknesses are zero (e.g., wo and w3) and the third layer-
thickness (e.g., wy) is between 1% and 95%.

Here, cases 1 and 2 follow the same logic as above in the two-dimensional case.
In case 3, we have a similar situation as in case 3 of the two-dimensional problem.
Since two layers are well-aligned with the load path, the third, orthogonal layer-
normal will also be continuous. Note here that elasticity has no randomness,
which implies a very low noise level in intermediate-density regions.

However, case number 4 is problematic and needs special attention. The ori-
entation of the microstructure becomes non-unique in this case since two layer-
thicknesses are zero. This is what I call the wall problem and is depicted in
Figure 4.10. Let us assume the layer with intermediate density has a con-
stant normal field; we receive a wall. A wall can bear loading in any direction
orthogonal to the wall’s surface normal. When doing homogenization-based
topology optimization, the microstructure is, in general, aligning with the prin-
cipal stresses. However, the optimizer cannot differentiate between all in-plane
orientations for the wall problem if only gradients are used to determine the
microstructure orientations. We, therefore, receive fields from the topology op-
timization that seem noisy but indeed are optimally aligned. For example, in
Figure 4.10, the red and blue layer-normal can be orientated entirely indepen-
dently of the stress tensors while not affecting the mechanical performance of
the structure.

However, these random orientations due to the wall problem are highly prob-
lematic for de-homogenization since they influence the combing of the fields and
subsequently the parameterization. The two-dimensional approach proposed
in Groen and Sigmund [2018] relaxes integration for the parameterization in
solid and void regions and for layers with zero layer-thickness. Further, heavy
regularization is used on these layer-normals. Those two steps circumvent the
integration problem partially for singularity-free problems. Another approach
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would be to re-mesh the finite elements used for integration. However, one chal-
lenge is that the cut from zero layer width to non-zero layer width is not a hard
cut. In fact, we can see that a layer jumps back and forth from existence to
non-existence. Another challenge is, as we found out, that these regions where
a layer changes from solid to void can influence a mere breadth-first combing
negatively due to noise. Noisy orientations that influence the combing are called
spurious singularities.

4.3.3 Examples used in Paper-I

In this section, I will introduce the examples that we worked with for Paper-
I. We will revisit these examples in Chapter 5. Note that Figure 4.11 shows
sketches of the boundary conditions of all examples.

The most common and best understood example is the Michell cantilever. Fig-
ure 4.12 shows a de-homogenized cantilever design. As shown in Figure 4.11 the
load is distributed over an area of size L/6 x L/6 and not just applied at a sin-
gle node. Here L corresponds to the shortest edge length of the design domain.
Further, the elements containing the load area are set to be filled with material.
We do the same for the first L/24 elements from the load area inwards. These

L-shaped beam. Electrical mast.

3L

2/3L
Michell's torsion sphere.

Michell cantilever.
L
L
L
—/
T ‘ 1N !

Figure 4.11: Dimensions and boundary conditions for the four examples used in
Paper-I.
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(a) De-homogenized design using our ap- (b) De-homogenized design after ex-
proach. cess material has been removed in post-
processing.

N

(¢) Cut open cantilever after post-
processing.

Figure 4.12: A Michell cantilever optimized on 96 x 48 x 48 elements and de-
homogenized on a fine mesh of 960 x 480 x 480 voxels.

fully solid elements are added similarly for all other examples as well.

The next example is called the electrical mast and has been proposed in Geoffroy-
Donders et al. [2020]. Here, we only model a fourth of the domain with some
symmetry conditions depicted in red in Figure 4.11. De-homogenized structures
can be seen in Figure 4.13. Figure 4.14 also shows the electrical mast example,
once obtained using de-homogenization and once obtained using density-based
topology optimization. Note that there will arise a singularity at the center of
the electrical mast (in the complete domain) for most results from the homog-
enization approach. This would correspond to a singularity at the edge of the
domain space where the two symmetry planes meet in our modeling. A hori-
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(a) De-homogenized struc-
ture obtained from the ho-
mogenization approach using
24 x 24 x 72 finite elements.

(b) De-homogenized struc-
ture obtained from the ho-
mogenization approach using
48 x 48 x 144 finite elements.
Here the structure is shown
before post-processing.

(c) The same structure as
in Figure b but here post-
processing has been applied
to removed voxels which did
not contribute to the stiffness
of the stucture significantly.

Figure 4.13: Electrical mast examples cut open to reveal the interior. A voxel mesh
of 1152 x 384 x 384 is used to depict the examples.

zontal cut through the problem will often show a singularity with index —1 at
this location and will have strong similarities with the two-dimensional problem
depicted in Figure 4.5. Note that strong regularization can split up that sin-
gularity and move it into the modeled quarter of the domain for certain start
guesses for the microstructure orientations.

The third example is called the Michell torsion sphere and shown in Figure 4.15.
The load is applied as a line load around a square with dimensions L/12 x L/12.
Figuratively speaking, it has similarities to a towel being wrung out, where one
end is held still while the other end is turned. This also led to the name torsion
sphere. In this example, solid elements are used at both boundary conditions
to obtain symmetry. Note that the holes seen in the outermost shell in Figure
4.15 are due to the structure reaching the boundary of the design domain. With
integrative methods, there is no straightforward way to control that the integer
levels of the parameterization, which produces the structure, do not reach the
domain’s boundary. More control over the structure can be achieved by the
approach I will discuss a bit later in Chapter 5.
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The last example is called L-shaped beam. Passive elements are used to create
the design shown in Figure 4.11. The distributed load is applied to a square
patch of solid materials of size L/6 x L/6. The L-shaped beam example, as
depicted in Figure 4.16, shows some torsion bending coupling, where the cylin-
drical part connects to the cantilever-like structural part closer to the load.

For all examples, a maximal volume limit of 10% has been set for the optimizer.
For more details, please refer to Paper-1. Note that the above results are com-
puted using a heavy-side function to decide if a voxel should be filled or not with
material. Of course, we can also easily employ the marching cubes algorithm
[Lorensen et al., 1987] to obtain a smoother visualization, as depicted in Figure
4.17. However, the structure received from the marching cubes algorithm needs
to be converted to a tetrahedral mesh to do post-processing. This, in turn,
allows though to do additional shape optimization steps to possibly increase the
performance of the de-homogenized design.

(a) View from the (b) Side view of the (¢) Back view (d) Side view onto the
back onto the de- structure shown in Fig- onto an electrical electrical mast shown in

homogenized and ure a mast obtained Figure c.
post-processed from density-

electrical mast based topology

from Figure 4.13c. optimization.

Figure 4.14: In Figures a and b we see a de-homogenized design of the electrical
mast after post-processing as also depicted in Figure 4.13c. In Figures ¢ and d we see
a reference design obtained from density-based topology optimization.
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(a) Full view. (b) Sectional view on the level of the loads
to reveal the boundary conditions and the
shell structure.

Figure 4.15: Michell’s torsion sphere optimized on 48 x 48 x 48 elements and de-
homogenized on a fine mesh of 576 x 576 x 576 voxels.

(a) Angled view of the L-shaped beam. (b) Sectional view on the level
of load. Note the clearly visible
elements that were set to solid
near the load.

Figure 4.16: The L-shaped beam example optimized on 96 x 96 x 48 finite elements
and de-homogenized on a fine mesh of 768 x 768 x 384 voxels.

4.3.4 Initialization of the microstructure orientation

To obtain better layer-normal fields for de-homogenization, I compared different
orientations used to initialize the microstructure. I found that using an initial fi-
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(a) Cantilever example with surface ex- (b) Sectional view on the level of load.
ctracted using the marching cubes algo- Note the clearly visible elements that were
rithm. set to solid near the load.

Figure 4.17: Using marching cubes on the results from the de-homogenization yields
smoother surfaces. However, compared to using a voxel-based mesh, post-processing
the above structure would need a conversion to a tetrahedral-mesh first.

nite element analysis to determine the principal stress-directions and using them
as a start guess for our optimization yielded the best results. In Figure 4.18, we
see a comparison of different start guesses used for initializing the microstruc-
tures’ orientation. Note that the start guess can influence the obtained solution,
i.e., the resulting solution to the homogenization-based topology optimization
problem depends on the start guess. This finding has already been discussed a
bit earlier in Section 4.2.3.1. The fields in Figure 4.18 show the layer-normal of
the diagonal elements, where the load is on the left side, and the edge border-
ing the other three-quarters of the electrical mast is on the right side. In the
diagonal cross-sections through the fields in Figure 4.18, we see how a stress
tensor-based starting orientation of the microstructures (Figure 4.18¢) yields
smoother fields compared to random (Figure 4.18a) or grid-aligned starting ori-
entations (Figure 4.18b). We found in the paper that using starting guesses
based on stress tensors also led to better compliance values than grid-aligned
starting guesses. In Figure 4.18d, we see that when we increase the lower cut-off
of the density values, we start to cut out elements with noisier orientations. This
finding motivated the investigation of new, density-based combing strategies.

4.3.5 Influence of regularization

To obtain less noisy layer-normal fields, some regularization during the topology
optimization can be helpful. Here it is though important to note that regular-



56 Integration based de-homogenization

+ ++
f t 4

+ o+ A 4
T T
T T T
f ot Tt
f Tt

Bl Bl
+ T T
h T T
T T T

1 +

+ +
bt ++

T+ +

i i

+ 1

I L

L L
T 1 ¥
T + ¥
! 4
1 1 1 4
1 + 1 +
+ + + +
T T T T T T
+ + + +
T T T T T T
+ + + + +

(a) Random vectors as starting orientations. (b) Grid-aligned vectors as starting orienta-
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(c) Stress tensor-aligned vectors as starting (d) Grid-aligned vectors as starting orienta-

orientations. Fully solid (>95% density) and tions. Additionaly to the removed fully solid

void (<1% density) elements have been re- (>95% density) and void (<1% density) el-

moved. ements, low-density elements (1-8% density)
have been removed.

Figure 4.18: Diagonal cuts through different electrical mast fields obtained through
different initial microstructure orientations depicting the wall problem. No regular-
ization has been used. Note that the whole frames are printed, but since the de-
homogenized structure consists of diagonal walls we only really see the two fields that
do not contribute significantly to the de-homogenized structure.
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(a) Grid-aligned vectors have been used as a (b) Grid-aligned vectors have been used as a
start guess. An intermediate amount of reg- start guess. An intermediate amount of reg-
ularization has been used (v = 0.01). ularization has been used (vy = 0.10).
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(c) Stress vectors have been used as a start (d) Stress vectors have been used as a start
guess. An intermediate amount of regulariza- guess. An intermediate amount of regulariza-
tion has been used (yp = 0.01). tion has been used (yo = 0.10).

Figure 4.19: Diagonal cuts through different electrical mast fields depicting the wall
problem. Different amounts of regularization have been applied. In all Figures a-d
fully solid (>95% density) and void (<1% density) elements have been removed.
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ization is applied globally. This means that also layer-normals of active, i.e.,
non-zero layers, are affected. However, since non-active layers do not influence
the compliance, regularization leads to dramatically improved layer orientations
while only increasing compliance by around 2%. In Figure 4.19b, we see that
an intermediate amount of regularization can clean up the normals quite signif-
icantly. However, the orientation of the layer-normals now differs significantly
from the principal stress directions. This can inflict problems by introducing
singularities into the layer-normal fields that do not exist in the underlying stress
tensor fields. For example, in Figure 4.19a, we see that the small amount of reg-
ularization has introduced a singular curve with a negative index into the fields.
We can also see from Figures 4.19¢ and 4.19d that using a stress tensor-based
start guess leads to much cleaner fields that align better with the underlying
final stress tensors. In general, it might make sense to update the orientations
of the microstructure periodically after a certain amount of iterations to align
with the stress tensors of the homogenization-based structure. This would yield
a good balance between the capability to use regularization and obtaining clean
layer-normal fields.

4.3.6 Layer-thickness and density-based combing
strategies

We decided to use the knowledge that layer orientations are best aligned in
intermediate-density regions to our benefit and introduced a combing strategy
that prioritizes combing based on layer-thickness or element material density.
I will focus the discussion here on treating whole frames based on density as
used in Paper-I since we did not see any significant difference between density-
based and layer-thickness-based field label extraction for our examples. I suspect
that the introduction of regularization cleaned up the fields enough to make
the frame-based combing robust enough to not see a difference to vector-based
combing.

4.3.6.1 Combing for singularity-free problems

We can comb layer-normal fields that do not contain any singular curves such
that we can integrate the separated fields without the introduction of seams. Let
us consider a continuous frame field consisting of layer-normals +n', +n?, +n3,
and layer widths wq, wo, w3. We want to extract three smooth and continuous
1-direction fields i', 7%, 7, and their corresponding widths @y, W, and ws.

In Paper-I, we observe that singularities appear to occur in the void outside the
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mechanical structure or in fully solid regions. We later discovered that singular
curves can also exist in intermediate-density areas but that the singular curve
then aligns to one of the layer-normals. I will discuss this finding and those
so-called traversal singular curves in Chapter 5. Note that for our examples,
we were still able to compute the 1-direction fields in a manner that traversal
singular curves did not affect our results since traversal singular curves align with
a layer-normal and frame extraction is reasonably robust. However, I believe
the approach in Chapter 5 to be better suited at handling traversal singular
curves.

As mentioned, in the absence of singularities, we can propagate a consistent
choice of vectors to obtain 1-direction fields starting from an initial element. To
deal with spurious singularities (arising due to the wall problem, for example),
we propagate field labels through the domain by visiting elements critical to
the mechanical structure first (i.e., elements with intermediate densities). This
approach does not work when singularities occur inside the mechanical struc-
ture (regardless of density). However, these singularities occur only for specific
boundary conditions. In fact, we were aware that there is a singular curve
in the torsion sphere example. However, the singular curve passes from one
boundary condition to the other entirely contained within the void or fully solid
regions. Therefore, we were still able to achieve good compliance values with
our de-homogenized structures.

The observations above inspired the use of a priority queue for combing. Instead
of a mere first-in-first-out prioritization, we create a queue based on the densities
obtained from the homogenization approach. For each element, we can compute
the density as p = 1 — (1 — wy)(1 — w2)(1 — w3). As the initial point for the
combing, we can either set an explicit start point or chose the element whose
density is closest to a given starting density pstart- We can also demand that
for the starting element, all layers widths w; be in the interval [0.05,0.95], for
example. We set ' = n'.7? = n2, 7% = n3, and hence the widths follow
as w; = wi, Wy = ws, and w3 = ws. For the neighboring elements, we then
compute the density priority ppriority = |Pstart — p|. Here we prioritize smaller
values when sorting the neighbors into the queue Q. Subsequently, the element
in the queue with the lowest ppriority is taken out, and we fix its 1-direction
fields as discussed below. Lastly, we add its non-visited neighbors to Q. Finally,
we mark the element as visited in a vector V.

If we take an element e out of @, we want to find the right-handed frame F.
that describes the layer-normals n', 2%, n?,

Fo=|il(w) a(z,) 7). (4.7)

There are j = 24 possible frame orientations F? that have to be tested to
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find the best F.. Note that working with frames prevents us from choosing a
vector n twice for two different fields or simultaneously choosing n and —n for
one element. Further, working with right-handed frames ensures a consistent
orientation for all chosen frames. To select the best frame F',, we identify the
set of neighboring elements N, of element e that already have been visited. For
each neighbor element i € N,, we identify the rotation matrix Ré)i between the

possible orientations Ff3 and the frame F;,
R = Pl (4.8)
e, [ e* .

The corresponding orientation angle 1. ; ; that defines the frame orientation can
be calculated as,

(4.9)

2

trace(Ri D1
|¢e,i,j| = arccos| —— |,

Hence, 1. ;,; = 0 would mean that the frame in e coincides with the frame in 7
for a given possibility j. The best orientation follows as,

=k _ . o
F,=F, for k= argj:q}}.?242\¢e,l’j|. (4.10)

Once we found frame F., we store the widths w; according to the vectors
n',n? 7’ Subsequently, we remove element e from the queue and mark it
as visited, and add the non-visited neighbors of element e to the queue. We

repeat this process until we have extracted three smooth 1-direction fields.

4.3.6.2 Different choices of combing and further research

We chose to use right-handed frames since they provided us with robust results.
The above-described method leads to a traversal of all elements in order of den-
sity closest to pstart, but in a spatially contiguous fashion. Note that it might be
necessary to visit a void or fully solid element to connect two intermediate den-
sity regions. This could be bypassed by allowing only increasing ppriority values
when visiting elements and instead have multiple combing processes and com-
bining them after termination. For our single-load problems, we have not seen
any need to implement this. Still, it might be a worthwhile topic to investigate
for an expansion to multi-load problems. Multi-load fields have a non-constant
number of vectors and are a lot less consistently orientated in general. An ex-
pansion to multi-load fields would also mean that we would need to treat the
fields separately since we cannot extract frames. We have implemented such
an approach for our fields but found it not majorly advantageous. However, 1
would like to share it since it might prove helpful in the future.
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We can easily change the approach from above to extract fields instead of frames.
One extracts a first field prioritized by its layer-thicknesses and subsequently
extracts a second field from the remaining directions. This process is repeated
until all fields have been extracted. Note that this approach is less robust
since the layer-normals are treated separately and not at once, as we do with
frames. To improve the robustness, we can account for the layer-thickness by
weighing the vectors with the layer width. For an element e removed from Q, we
multiply the normal vectors £n* with their assigned widths wy, where k = 1,2, 3.
We then calculate the cross products (iwknk ,;n’) for all neighbor elements
i € N,. We then choose the direction in element e that maximizes the sum over
all its corresponding cross-products. This approach does not only account for
the rotations but also accounts for layer-widths, which might be particularly
useful for multi-load problems, where orientations can be much more similar,
but layer-widths might still differ more. We did not see any additional benefit
over the frame-based approach for our examples, which is most likely due to the
simplicity of our examples.

It could also be of interest to extract multiple combings to achieve a higher trust
in the resulting field labels. Note that using a density-based combing method is
also highly useful for singularity-containing fields. Of course, introducing seams
can deal with singularities, however as shown in Figure 4.2, a breadth-first
search will expand all seams throughout the domain. The combings can then
end up containing many seams due to spurious singularities or noisy fields in
high-density regions. One can profit from using layer-thickness-based combing
the most, if void elements, non-active layers, and fully solid layers are ignored
when creating the parameterization and not just recomputed by regularization
as in our case.

4.3.7 Singularities and areas with highly rotational frame
fields in our examples

After the submission of Paper-I, we became aware of how and where singularities
occur in three-dimensional fields. And we realized that our examples and fields
often were not completely singularity-free, especially not free of spurious singu-
larities, i.e., noisy frame orientations that prevent consistent combing results.
In Chapter 5, I will discuss the research into singularities in three-dimensional
homogenization-based frame fields I did subsequently to Paper-I. For now, I
would like to discuss the findings regarding spurious singularities and singular
curves in the examples mentioned above. It is important to know that all exam-
ples were obtained with a high regularization value (75 = 0.50). Further, Figures
4.20, 4.21, and 4.22 show outlier frames with a very high rotational energy in
red (around top 0.01%). Note that only non-void elements were considered for
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(a) Back view of the electical mast. (b) Close up view of the head of the electrical
mast example.

Figure 4.20: The electrical mast example. We see some highly rotational frames (in
red) at the foot, where the mast is fully solid. We also see a long singular curve in the
foot, which I would expect from the fields. Note that the upper end is cut short since
there is no material above (see also Figure 4.14). We see some highly rotational fields
where the head and the mast meet. This is not a singular curve, but due to fastly
changing principal stress directions paired with a mostly solid region. Lastly, we see
highly rotational frames near the top plate, either due to the singular curve or due to
the solid elements found in that area.

these figures.

In Figure 4.20, we see the electrical mast example. The expected singular curve
along the boundary of the electrical mast towards the other three non-modeled
quarters can only be seen in the foot of the mast since further up, the elements
lie in the void (see also Figure 4.14). Additionally, we see some areas with high
rotational energy at the bottom of the foot, where the mast is completely solid.
We also see high rotations, where the foot and the head meet. In these elements,
the principal stress directions change rapidly, and the elements become nearly
fully solid; in combination, we obtain these spurious singularities. Finally, we see
some marked elements at the top plate. It is unclear if this is part of the expected
singular curve (possibly moved due to the high amount of regularization) or
solely due to the elements being very high in density in that area. I would
expect a combination of both. Note that all of these highly rotational field
locations are in near fully solid areas, which is part of the reason why our de-
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homogenized examples still perform quite well.

(a) Side view showing the singular curves (b) View onto the boundary condition show-
within the solid structure. ing the four singular curves.

Figure 4.21: This figure shows the torsion ball example. We can see how regulariza-
tion splits up a higher index singular curve into four lower index singular curves that
are spatially very close and run from one boundary condition to the other.

In Figure 4.21 we see the torsion ball example. Four singular curves are going
from one boundary condition to the other. In a two-dimensional cross-section
through a torsion ball example obtained without regularization, we would see a
singularity of index 1. However, due to regularization, the singular curve was
split into four singular curves with a lower index. Note that this singularity
traverses from solid to void without passing through intermediate areas, which
is why our de-homogenization still performs so well.

The highly rotational frames of the L-shaped beam in Figure 4.22 are more
challenging to understand. We see highly rotational areas near the load (at the
border to the void) in Figure 4.22a. These are solely spurious angle changes.
In Figure 4.22b, we see highly rotational areas traverse through the domain,
most likely singular curves. We would assume a single singularity from the
stress field, very similar to the torsion ball. I think that the singular curve
has been split again due to regularization, although it is not straightforward
visible in this case. This singular curve is traversing through the active layer
(hence also called traversal singular curve) and does not necessarily need to lie
in a fully solid region. Note that the active layer changes smoothly, and we
can still integrate the field with almost constant layer-normal near the traversal
singular curves. Therefore, the de-homogenized structure still performs well.
However, combing strategies based on frames can be influenced negatively by
these traversal singularities.
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Finally, I would like to note that there exist no singular curves in the cantilever
examples. Sometimes spurious singularities close to the load at the solid-void
boundary can occur, which will look the same as for the cantilever part of the
L-shaped beam in Figure 4.22a.

(a) Angled view depicting highly rota- (b) View from the bottom onto traversal singu-
tional frames near the load at solid-void larities that were split up due to regularization.
boundary.

Figure 4.22: The L-shaped beam example. Figure 4.22a shows highly rotational
frames close to the load at the solid-void boundary. Figure 4.22b shows singular
curves passing through the solid domain.



Chapter 5

Non-integrative
de-homogenization

This chapter will introduce a novel, non-integrative method for de-homogeniza-
tion. The chapter consists of two parts. In the first part, I present the novel
approach and show its application to single-load examples [Paper-11I]. In the
second part, I will then expand the method to two-dimensional multi-load de-
signs.

5.1 Synthesis of frame field-aligned
multi-laminar structures (related to
Paper-I1I)

Previous work on de-homogenization and the work discussed in Chapter 4 is
using integrative methods for de-homogenization. We there construct a param-
eterization from the direction fields and then extract a structure from it. In
general, any de-homogenization method needs to address the following three
challenges:

1. We want to synthesize structures with globally connected structural mem-
bers.
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2. The global structural members need to align well locally with the layer-
normals.

3. The structural members should be evenly spaced.

We saw in Paper-II that we can extract globally connected structural mem-
bers (challenge 1) for singularity-containing fields using seems to enforce integer
jumps at seams. We can address challenge 2 by finding a large enough alignment
weight to obtain structural members well-aligned with the layer-normals. How-
ever, a large alignment weight also means that the global structural members
become less evenly spaced for integrative methods, leading to missing structural
members (i.e., spread out isocontours) (see Section 4.2.3.2). It is important to
note that for methods using integration, the second and the third challenge are
opponents and that we must tune the alignment weight for optimal solutions.

We realized that we need to address these opposing objectives, local alignment,
and globally evenly spaced structural members. We were also interested in
obtaining a better understanding of where singularities occur in three dimensions
and how we could handle them more explicitly. And finally, we saw that it would
be tricky to expand integrative methods to multi-load case problems where not
all directions are well-defined.

These reasons motivated the development of a novel approach to de-homoge-
nization that does not use integration. Instead, the new method is a two-stage
approach that separates the problem of finding globally connected structural
members from the problem of finding evenly spaced structural members. We
present this new approach in Stutz, Olsen, et al. [2021] [Paper-I11I], which can be
found in the Appendix C. Our work is focusing on orthogonal fields (also called
frame fields), where all three layer orientations are orthogonal. Note, however,
that there is no explicit need for the fields to be orthogonal for topology opti-
mization examples, as discussed a bit later in Section 5.2.

For the three-dimensional case, we can rephrase the three challenges above as fol-
lows. Given microstructure or lamination orientations, we seek a set of surfaces
such that each surface aligns everywhere with one of the lamination normals.
The surfaces should be evenly spaced with a prescribed average spacing. In de-
tail, we first seek a set of surfaces whose local surface normals are aligned with
the frame field. Such a superset of surfaces can be seen in Figures 5.1a and d.
We find these surfaces individually using a stream surface tracing approach. A
novel optimization energy then allows finding an evenly spaced subset of stream
surfaces given a large superset. A set of selected stream surfaces can be seen in
Figure 5.1b and e.

The main contribution in this chapter is a method that solves the selection prob-
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lem mentioned above fully automated only depending on the local orientations
and not on any global notion. In Paper-III, we further provided two methods for
the synthesis of output shapes. For fields arising from topology optimization, we
create a volumetric solid by compositing samples of each stream surface onto a
voxel grid. See Figure 5.1e for an example. This splatting procedure is described
in Section 5.1.4.2. The second method for synthesizing output shapes produces
an-isotropic hexahedral meshes. Paper-1 and Paper-1I suggest a strong relation-
ship of de-homogenization to quad-dominant meshing in 2D and hex-dominant
meshing in 3D. However, depending on the examples, a deterioration of the
hexahedra is desirable, as is the anisotropy resulting thereof. For specific frame
fields, we can compute a graph of the intersection points of the stream surfaces
and output a combinatorial structure from which we can obtain a hexahedral
mesh. This is discussed in Section 5.1.4.4 and depicted in Figure 5.1f.

Here, in this thesis, I will focus on my contributions to Paper-III and therefore
only summarize the tracing of stream surfaces and the hex-mesh extraction.

d) e)

Figure 5.1: Given field directions as an input, we can generate a set of optimal
laminations aligning exactly with the field orientations (Figures a and d). Using a
novel optimization energy that only needs local orientation awareness, we can create a
well-spaced subset of these laminations (Figures b and e). We then proceed to create
near-optimal, highly stiff multi-laminar structures as a volumetric solid (Figure c) or,
in some cases, output a hexahedral mesh (Figure f).
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5.1.1 Related work

Frame fields arising from topology optimization impose particular requirements
on hexahedral mesh generation schemes. For example, the frame fields might
exhibit anisotropy to an extent where one edge length deteriorates. Moreover,
the rotation of the frame fields might be higher than usual in the case of fields
designed for hexahedral meshing, which could make the fields nonintegrable.
These challenges suggest that existing hex-meshing or hex-dominant meshing
algorithms are not suitable for such problems.

In recent years, density-based topology optimization has been used to find op-
timal mechanical structures in various fields. In the area of compliance mini-
mization, giga-scale finite element models have been applied [Aage et al., 2017;
Baandrup et al., 2020]. While such large-scale topology optimization makes
the benefits of topology optimized structures very apparent, it also relies on
supercomputing hardware and is not applicable in real time, which is one of the
key steps towards the goal of incorporating topology optimization in the every-
day engineering design process. It should be noted that approaches to address
the high number of finite element needed have been proposed [Liu, Hu, et al.,
2018; Wu, Dick, et al., 2016]. However, the mesh-dependency of density-based
methods sets a very high lower limit on the amount of finite elements needed.

Paper-I and Paper-II indicate a strong relationship of de-homogenization to
quad-dominant meshing in 2D and hex-dominant meshing in 3D. However, de-
pending on the examples, a deterioration of the hexahedra is desirable as is
the anisotropy resulting thereof. As shown in [Groen and Sigmund, 2018] and
Paper-II, spurious singularities can occur. In 3D, orientations of the microstruc-
tures are not unique, a problem for the de-homogenization that can to a certain
degree be circumvented by regularization [Paper-I|.

Approaches for truss-structures have been presented for singularity-free fields in
Arora et al. [2019] and Larsen et al. [2018] and in Wu, Wang, et al. [2019] for
fields containing singularities.

Field-based quad-meshing and hex-meshing is most often done by combing fields
and integrating to find scalar functions with integer-jump conditions, where the
combed field are differently labelled [Bommes et al., 2009; Kélberer et al., 2007;
Nieser et al., 2011]. A lot of research for field-based hex-meshing focuses on
achieving pure-hex meshes [Huang et al., 2011; Palmer et al., 2019; Ray et al.,
2016; Solomon et al., 2017]. These methods focus on the field design part of
the hex-meshing pipeline with the main goal to achieve as many hexahedral
elements as possible. Thus, these methods minimize a smoothness energy while
ensuring that at the surface one direction of the octahedral frame is well-aligned
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with the surface normal [Huang et al., 2011]. As a natural effect, hex-meshes
extracted from such a model tend to have minimized anisotropy and minimized
deterioration of the hexahedral elements.

For de-homogenization and hex-dominant meshing of homogenization-based
topology optimization results, it is of importance to note that the fields are
typically prescribed (rather than optimized during the meshing procedure) and
cannot be changed to obtain more smoothness without reducing the mechanical
performance of the obtained structure [Paper-11|. Approaches like Kélberer et al.
[2007] and Nieser et al. [2011] are promising for de-homogenization but contain a
pitfall since fields arising from the homogenization approach often have singular-
ities of higher indices (41/2 in 2D) or have significant divergence at mechanical
boundary conditions. Such higher indices imply a greater rotational speed and
typically integration based methods for de-homogenization must enforce align-
ment to the fields with a penalization approach [Groen and Sigmund [2018];
Paper-I; Paper-II]. This penalization weight trades off structural alignment with
spacing of the structural members and implicitly introduces anisotropy. If the
alignment weight is chosen too small, the resulting parameterization will not
align well with the underlying field as it tries to create unit-length gradients. If
the alignment weight is chosen too large, the gradient of the parameterization
will become zero and result in stretched out iso-contours and missing structural
members [Paper-II]. These problems might be mitigated by introduction of ad-
ditional optimization terms, which has so far not been deeply investigated. It is
important to note that anisotropy is desired and of the utmost importance for
the mechanical performance.

In field-based hex-dominant meshing as done by Gao et al. [2017], the isotropy
of the desired hexahedra is a key ingredient of the algorithm. This is due to
the optimization, which trades off the regularity of the hexahedra and their
alignment to the underlying field. An expansion to anisotropic hex-dominant
meshing might be achieved, if the desired hex-edge length was known beforehand
and not only given implicitly.

Ni et al. [2018] have a promising approach to solve for vertex position of a
tetrahedral mesh, which is similar to Gao et al. [2017]. The nature of the
approach is aimed at producing vertices of a hex-mesh with a prescribed isotropic
edge-length. Note that Gao et al. [2017] and Ni et al. [2018] create tetrahedra
where the hexahedra do not align with the field, which could cost dearly in
terms of mechanical performance, when used for de-homogenization, since the
resulting structure would not align with the load path at all in these regions.
Recently, polycube methods have advanced the hex-meshing field, but since
methods like Guo et al. [2020] and Livesu et al. [2020] do not rely on fields they
are not applicable to de-homogenization.
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The work of Takayama [2019] expanding the 2D work of Campen, Bommes,
et al. [2012] and Campen and Kobbelt [2014] relies on user-defined (as opposed
to frame field aligned) implicit surfaces as an input to guide the creation of
hex-meshes. Moreover, several authors, including us, draw inspiration from
the notion of the spatial twist continuum which is, essentially, the dual of a
hexahedralization and was introduced by Murdoch et al. [1997].

Campen, Silva, et al. [2016] create a foliation as a means of finding a bijective
parameterization of a 3D shape. While there is a clear similarity between the
notion of a stream surface and a transversal section of a leaf of a foliation of a
3-manifold [Milnor, 1970], their aim is to create a bijective map entailing strong
conditions on the direction field whereas we take the frame field as is.

It should be mentioned that stream surfaces are often used as a visualization
tool seen in fluid dynamics [Hultquist, 1992; Machado et al., 2014].

We strive for global surfaces or layers, which are locally well-aligned with the
results from the homogenization-based topology optimization, while incorpo-
rating implicitly the anisotropy dictated by these fields and circumventing the
issue of missing structural parts due to enforcing field alignment and resulting
zero-gradient regions.

5.1.2 Frame fields and singularities in three dimensions

We are mainly motivated by fields arising from topology optimization, but one
can also think of fields that would not permit generating laminations or even
hexahedral meshes obtained from an integration-based method. In the following,
we will shortly discuss these fields and their origins. In Section 5.1.2 we will
give a discussion of singularities in three dimensions. As we will demonstrate in
Section 5.1.5, our selection algorithm can take fields from any of these sources
as input; it is designed to extract field-aligned structures while being agnostic
to the source of the field.

5.1.2.1 Singularities in three-dimensional topology optimization
fields

A crucial part of the homogenization-based topology optimization is to find
the optimal rotations of the microstructures, since microstructures have a high
stiffness in their principal directions but low shear. Thus regularization of the
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orientations during the topology optimization will influence the resulting per-
formance of the mechanical structure since more material needs to be allocated
to strongly regularized regions [Paper-1I]|. If regularization of the orientation
fields is done after the topology optimization, either actively as discussed in
Arora et al. [2019] or by not enforcing high enough penalization weights for an
integrative method as discussed in Groen and Sigmund [2018] and Paper-II, the
resulting structure will not align well to the optimal microstructure orientation.
Such non-optimally aligned regions may cause a dramatic loss of performance of
the structure [Groen and Sigmund [2018], Paper-1I]. Therefore, the motivation
of this paper is to find structures that adhere to the local orientation of the
microstructure as closely as possible outside of void or fully solid regions. This
in turn introduces anisotropy between the global members of the structures.
Note, that this anisotropy is not negatively influencing the structure from a
mechanical point of view.

Singularities arise in two-dimensional homogenization-based topology optimiza-
tion for three reasons [Paper-IIJ;

e Singularities in the underlying stress field will lead to singularities in the
layer-normal fields since the microstructure aligns to the principal stress
directions.

e Regularization inflicted on the layer-normal fields during the topology op-
timization will break up singularities with a higher index in the stress
fields into multiple singularities of lower index in the layer-normal fields.

e In regions where the microstructure is completely solid or void, singu-
larities can be introduced by noise. In solid regions the microstructure
becomes isotropic and the optimal orientation of it becomes non-unique.
In void regions the microstructure is not present and an optimal orienta-
tion of the microstructure is therefore non-existing.

In Paper-1I, we showed that in two dimensions, singularities in topology opti-
mized layer-normal fields must occur in completely solid or void regions. Unfor-
tunately, this observation does not hold in three dimensions. Firstly, microstruc-
ture orientations in three dimensions are non-unique due to in-plane stress; this
can cause spurious singularities to appear, which can be tackled with a low
amount of regularization, as shown by Paper-1. Secondly, as seen in Figure 5.2,
singularities in stress fields can occur even when the microstructures are not
completely solid. If we consider Figure 5.2a we see a field describing a singular-
ity with index 1. In Paper-1I we observed that because the rotational velocity of
the field increases towards infinity at the singularity, the topology optimization
process fills the region around the singularity with material to account for the
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(a) two-dimensional example of a singu- (b) The same singularity as in Figure
larity with index 1. 5.2a but now embedded in an orthogo-
nal layer (in yellow) in three dimensions.

Figure 5.2: On the left we see an example of a singularity with index 1 in two
dimensions. It is clear that the rotational speed increases the closer we get to the
singular point. Paper-II have shown, that the optimizer has an incentive to put such
singularities in an either fully void or fully solid region, since there would always be
shear forces acting on any non-solid microstructure at the singular point. On the right
we see the same field and singularity embedded into an orthogonal layer (in yellow)
in three dimensions. Note how the optimizer now can choose to fill the yellow layer
with material and completely ignore the red and blue field, while still creating a stiff
structure. Moreover, this singularity does not have to be in a completely solid region
since the relative layer-thickness of the yellow layer can be lower than 100 percent.
In this case we refer to the microstructure as transversely isotropic since the the mi-
crostructure is isotropic in one plane (the yellow one) but anisotropic perpendicular
to this plane.

spinning stress-field at the singularity. On the other hand, when we embed the
fields from Figure 5.2a in three dimensions, as shown in Figure 5.2b, the opti-
mizer can choose to fill the newly introduced orthogonal layer with material and
not assign any material to the two existing layers. Furthermore, we observe that
this third layer does not have to be completely solid but can have any arbitrary
layer-thickness, e.g., 50%. In this case we refer to the microstructure as being
transversely isotropic since the the microstructure is isotropic in one plane (the
yellow one) but anisotropic perpendicular to this plane. The option to cut out
singularities and later on fill them with material, will inevitably lead to exces-
sive use of material in three dimensions. The example described in Figure 5.2 is,
to the best of the author’s knowledge, the only singularity in three dimensions
that occurs outside of fully solid or entirely void regions.

The following thoughts can explain this. First, if all layer-normals change direc-
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tion at a location outside the void, for example, around a source, then the region
would need to be filled with material by the optimizer to be made isotropic. Sec-
ond, non-zero stress directions will always be perpendicular to a layer-normal,
with non-zero layer-thickness, meaning that stresses must always be transferred
within a solid slab or plate. This will always align a stress field’s singular curve
with a layer-normal outside of fully solid or entirely void regions. This leaves
us only with fields as shown in Figure 5.2b, where of course, the indices of the
singularities can be different. Third, consider for a moment that in Figure 5.2b,
the red or blue layer would be non-zero. Then their layer-normal would rotate
infinitely fast at the singular curve, and thus the optimizer would fill the region
completely with material to make the microstructure isotropic at the singular
curve. Hence, we conclude that the only singular curve not embedded into
complete solid or the void can be seen in Figure 5.2b, where the red and blue
layer-thicknesses are zero.

Our stream surfaces generation method can differentiate the expansion of stream
surfaces near a singular curve. Note how in Figure 5.2b, the field with the yellow
normal is aligned with the singular curve while having a constant normal. We
could use this observation to identify which layer is traversing the singular region
orthogonal to the singular curve in a computationally cheap manner and expand
the corresponding stream surface through the singular region. However, we do
not need to do this for fields arising from the homogenization approach since we
stop the expansion of stream surfaces in zero-material layers (like the red and
blue labeled layers in Figure 5.2b). This means that only the stream surface
following the traversing layer will be created.

5.1.2.2 Boundary-aligned frame fields

Topology optimization yields frame fields as a by-product of a mechanical prob-
lem; the fields are not designed with meshability or integrability in mind. In
contrast, a number of techniques in geometry processing optimize for frame fields
with the specific goal of extracting a quadrilateral or hexahedral mesh. Since our
work focuses primarily on the volumetric case, we refer the reader to Vaxman
et al. [2016] for discussion of the many methods available for two-dimensional
field computation, and briefly highlight representative three-dimensional meth-
ods below.

The basic goal of volumetric frame field computation is to optimize for a field
of three orthogonal directions at each point in a region enclosed by a surface,
with the constraint that one of the three directions aligns to the surface normal
along the boundary. This field is then used as input to methods like Nieser et al.
[2011] and Lyon et al. [2016] to extract a mesh through parameterization.
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Huang et al. [2011] originally propose a representation of orthogonal frames—
later dubbed “octahedral” frames by Solomon et al. [2017]—that is agnostic to
their labeling. Their work extracts smooth fields by optimizing Euler angle
variables, with additional constraints at the boundary; their approach was re-
fined by Ray et al. [2016] with improved boundary constraints and optimization.
Solomon et al. [2017] propose a relaxation of [Ray et al., 2016], allowing for use
of the boundary element method (BEM). Palmer et al. [2019] provide a more
complete description of the space of octahedral frames, leveraging the struc-
ture they identify to propose manifold-based optimization schemes; they also
propose a related orthogonally decomposable (“odeco”) frame representation in
which the directions remain orthogonal but can scale independently.

Many open questions remain regarding the singular topology of octahedral /
odeco fields and its relationship to hexahedral meshing; see Liu, Zhang, et al.
[2018] for initial results and some relevant discussion. Corman et al. [2019] and
Liu, Zhang, et al. [2018] propose algorithms that compute frame fields with
prescribed singular structures.

5.1.2.3 Closed-form frame fields

A closed-form frame field is a field where the orientations of the frames can be
found using a closed-form mathematical expression instead of being found using
optimization or by solving a system of equations. In this paper, we consider a
field describing a cylinder, much like the field illustrated in Figure 5.2, where
there is a single singular curve in the center of the cylinder. Suppose one tries
to extract well-aligned hexahedra from such a field using integrative methods.
In that case, one will be challenged due to the high anisotropy of the hexa-
hedral elements, which can not be treated by methods, that were designed to
create isotropic hexahedra |[Paper-II|. Note that the edge length of hexahedra
will ultimately deteriorate towards the singular curve with such a cylinder field.
A stream surface based approach can be designed to expand through singu-
lar curves for the cylinder’s near-constant field (as discussed earlier in Section
5.1.2.1), while creating highly anisotropic hexahedra in the remaining domain.
Extending this example, we also run our algorithm on a non-integrable field de-
scribing a helicoid. Again, this produces highly anisotropic hexahedra matching
the spiral shape of the input field.
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5.1.3 Computing collections of stream surfaces

The overarching idea of our method is to compute a large set of surfaces, S,
which align with the frame field, and then find a well-spaced selection of these,
Sopt, representing the multi-laminar structure that we seek. In this section,
I discuss how we find and select these aligned surfaces using stream surface
tracing. Section 5.1.4 will discuss how the final output is computed from this
representation.

In engineering, a streamline is a curve that is everywhere tangential to a vector
field [Hultquist, 1992]. A stream surface is merely the generalization to 3D, i.e.,
a surface whose normal is everywhere aligned with one of the vectors of the
input fields.

We do not rely on the frame field being combed, and hence, we do not have
consistent labeling of the vectors in the frame. Instead, we find the frame vector
best aligned with the estimated normal of the next point that we compute when
expanding a stream surface. It is also worth noting that we generally wish to
stop stream surface tracing when the stream surface would otherwise exit a
given bounding shape. Thus, we assume a known mask or layer-thickness in the
following.

5.1.3.1 Tracing stream surfaces

I will here only give a summarized description of how we trace stream surfaces
and treat singularities. A more detailed description can be found in Paper-III.
We start by independently creating stream surfaces to obtain the set S. Instead
of computing a surface with connectivity, only a point cloud is computed for
each stream surface. We initialize each surface at a single randomly generated
seed point pg. The surface’s normal direction is chosen randomly from the
frame field directions. The surface is then grown from the seed point by adding
points in the vicinity and computing their location based on the normal-field.
A candidate for a new surface point is obtained by a method similar to Poisson
Disk Sampling (PDS) sampling introduced by Bridson [2007]. The candidate’s
location is then updated using a fourth-order Runge-Kutta method [Chapra,
2012] to mitigate drift in the surface expansion.

Once obtained, we add the newly generated point to a first-in-first-out queue.
Here it might be worthwhile in the future to investigate if layer-thickness priority
yields a benefit to the expansion of stream surfaces. We do not add the newly
generated point to the queue if it is too close to any previously generated point
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of the stream surface, lays outside the design domain. We also do not add points
to the queue that lie in fully solid regions or if the corresponding layer-thickness
is zero at the new point. Note that the last two cases are why our approach does
not need to handle singular curves actively for topology optimization examples.
Only traversal singular curves could be problematic but, since we only trace
stream surfaces in active layers we can expect the layer-normal to be nearly
constant.

There can arise a problem with drift when computing the stream surfaces. This
can be problematic if a stream surface meets itself, having traced around a
sphere, for example, since we obtain a sort of crack. This can be seen in Fig-
ure 5.3 for the torsion ball. To mitigate the problem, we recompute all point
locations based on the neighboring points of the surfaces in a post-processing
step.

We now have a method that allows us to trace stream surfaces in our input
fields.

Figure 5.3: On the left, we see the effect of drifting. Minor deviations in point posi-
tion and interpolation of the field over long distances lead to a crack in the surface. On
the right, we show the resulting surface after the surface points have been recomputed.

5.1.3.2 Singularities

In three dimensions, singularities are curves along which the frame field is not
defined. When creating stream surfaces in octahedral fields that do not arise
from the homogenization approach, we often need to deal with the singular
curves explicitly. If we do not actively prevent stream surfaces from getting close
to a singular curve, we risk that the stream surfaces split into two or more parts
(referred to as “forking”). The reason for forking surfaces is that the rotation
of the frame fields is very high near singular curves. These high rotations lead
to a considerable amount of local variations between the orientations computed
during the surface tracing and finally to forking surfaces. Figure 5.4 depicts an
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example of a forking stream surface. For an in-depth discussion of singularities
in octahedral fields can be found in [Liu, Zhang, et al., 2018].

The subselection approach does not choose forking stream surfaces if they only
represent a tiny portion in §. The reason is that a forking stream surface always
creates a worse energy response than two separate stream surfaces covering the
same region. However, multiple forking surfaces can be detrimental to the results
of our selection approach presented in Section 5.1.3.6. Therefore, we choose
to exclude singular regions from the design domain during the stream surface
creation for other examples than the topology optimization structures. This will
introduce holes in our model (see, for example, Figure 5.16) but will preserve
the overall quality of the output. We mark regions as singular by computing
a rotational energy based on the approach of Paper-I and then excluding the
outliers of that energy. A more detailed description of how we treat singular
regions can be found in Paper-II1. With this method to prevent forking surfaces
in place, we now have everything to create the set of stream surfaces S.

Figure 5.4: A stream surface that has expanded to close to a singular curve and, as
a result, has forked into multiple sheets. Such surfaces are undesirable and are caused
by rapid changes in the normal fields.

5.1.3.3 Energy for an optimization-based subselection approach

We will now take the set of surfaces S that we have created in the previous
sections and continue with finding a well-spaced subset S,,;. We will compute
Sopt by optimizing over binary variables w that will be assigned to the stream
surfaces. However, before we can define our optimization problem, we need to
define the contribution of each stream surfaces to the optimization energy. For
simplicity and consistency with the figures, we will describe this procedure in
two dimensions. The algorithm works the same in three dimensions, and we will
explain essential details for the implementation inline on an ongoing basis.
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(a) Two streamlines following two different (b) Sum of energies Eg for the streamlines

orthogonal fields. in Figure 5.5a. Green and blue elements
have an energy value of one, orange ele-
ments have a value of two.

Figure 5.5: On the left, we see two streamlines following orthogonal field directions.
On the right, we see the sum of the energies Eg from Equation 5.1 for the two stream-
lines. Here the contributions of the streamlines are colored in blue and green in regions
with value one. The orange highlighted regions are elements where both streamlines
create an energy response and subsequently the summed value equals two. An op-
timizer would try to minimize the amount of these orange elements since it tries to
minimize overlapping streamline-energies. This version of the energy is blind for the
fact that the two streamlines follow different fields. In order to be able to space out
both family of streamlines correctly, we need to split the energy as shown in Equations
5.2 and Figures 5.6 and 5.7.

First let v denote the desired average spacing in the set Syp:. As an aid, we
define the projection of a point x € R? onto a streamline S € R? as x, =
argmin, cg |[X — Xs[|. We can then define an energy for the streamline S by

Es:R* - {0,1} ,

- 1, if [x = xpl < 7, (5.1)
Es(x) = {O else ’

This energy is shown in Figure 5.5b for the two streamlines following orthogonal
field directions in Figure 5.5a. For our application to 4-direction fields, we need
to distinguish between the two orthogonal field directions locally. Therefore, we
choose for every x € (, two orthogonal directions from the 4-direction field at
random and assign them to 2-direction fields f; and fo. This assignment of the
orthogonal directions to f1 and f2 allows us to define a function Sy, (xs) = {1,2}
that indicates for every point x, € S if the streamline follows the local label of
field f; or field f5. In three dimensions, we use the normal of the stream surface
as a field identifier. We now split the energy for every streamline into two parts:

Es:R? — {0,1} x {0,1} ,

(5.2)
Es = (Es,,Es,) ,

where the split energies Es, and Eg, are defined as,
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Figure 5.6: Example of the energies created from a streamline traced in the same
field but differently labeled. On the left, we see a streamline traced in a combed
(above) and uncombed (below) version of a 4-direction field. On the right, we see the
corresponding energies for label "red" and label "blue", which are local labels. Note
how the streamline activates only one of the two energies for each element, as indicated
by the gray coloring.

ESl (X)

L if Sair(xp) = LA[[x = x|l <,
0, else,

1, if Sgir(xp) = 2N [Jx —x,|| <7,
B, (x) = {0 else o ’
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Vol L
(a) Sum of energies Eg, for a combed field. (b) Sum of energies Eg, for an uncombed
field.
“- ’h‘.l‘
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(c) Sum of energies Eg, for a combed field. (d) Sum of energies Eg, for an uncombed
field.

Figure 5.7: Sum of split energies from Equation 5.2 for the streamlines depicted in
Figure 5.5a. The sums of the energies are shown once when a combed version of the
underlying field is used and once when an uncombed version is used. Note how in a
combed field the streamlines are separated into the energy that follows the same field
label as the streamlines. In an uncombed field, the contributions of the streamlines
split to both energies. However, it is clear that the contributions of a streamline to
the two energies form a disjoint union. Regions with value two (highlighted in orange
in Figure 5.5) do no longer exist.

Note that there is no need for consistency of the field labels f; or fy in a
neighborhood, i.e., no combing is needed, as shown in Figure 5.6. This makes
the energies very simple to implement and the approach very robust. The split
energies from Equation 5.3 can be seen in Figure 5.7. Having defined the energy
we can now formulate a binary optimization problem,

ns
S Z NE — (1,1 dQ, 5.4
316”{13?}155/9 2 OBk = (LD o

where we refer to the optimization variables w; as weights and ng = |S|. If we
use the energies from Equation 5.1 the selected streamlines would all follow the
same lamination direction since the optimizer would penalize crossing stream-
lines. Figure 5.8 shows an example of such an optimization. If we instead use
the same set of streamlines but use the energies defined in Equation 5.2 for the
optimization, we obtain both laminations, as can be seen in Figure 5.9.

Note that defining the problem in Equation 5.4 as a least-squares problem in-
stead of a least absolute deviations problem would overly punish multiple cov-
ered regions of the energy and lead to missing streamlines. The L' norm in
Equation 5.4, on the other hand, penalizes double-covered probe points equally
as hard as non-covered probe points. The difference between using an L1-norm
or an L2-norm can be seen in Figures 5.10. Details on the solution of the min-
imization problem in Equation 5.4 are discussed in Section 5.1.3.6. We now
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continue to find the variable ns.

(a) This Figure shows the sum of the ener-
gies Eg of all streamlines provided to the
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(b) This Figure shows the sum of the ener-
gies Eg of the streamlines selected by the

optimizer. optimizer.

(c) This Figure shows the curves selected by the optimizer.

Figure 5.8: This Figure shows the selection result using the energies defined in
Equation 5.1.

5.1.3.4 Number of streamlines ngs in the covering set of streamlines
S

To solve the minimization problem in Equation 5.4 we need to know how large
the number of streamlines ng = |S| provided to the optimizer needs to be.

First, we need to define the desired average spacing «y of the streamlines in Syp¢.
Then the cardinality of S+ can be approximated by,
Ng Ny

|Sopt| = P (5:5)

where n, and n, are the dimensions of the design space in x, respectively y
direction. Note that the cardinality of S,p: grows in linear dependence to the
dimensions of the design space, since streamlines are one dimensional objects.
This means that doubling all dimensions of the design space will only lead to
a doubling of the cardinality of S,p:. This also holds true in three dimensions,
here due to the two-dimensionality of stream surfaces. We further need to define
the error € by which a streamline should deviate on average from its optimal
position. We denote this in fraction of the optimal average spacing 7, e.g.
€ = 0.1 would allow a streamline to be placed in a band of 0.2y width around
its optimal location. We can then derive the cardinality of S by:

1 1 /n, n
n$:|8|:g|sopt|:g<7+7y> . (56)
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(¢) This Figure shows the curves selected by the optimizer.

Figure 5.9: This Figure shows the selection result using the energies defined in
Equation 5.2.

As with S,pt, we note that the cardinality of S grows linear with the dimensions
of the design space. We also note that the cardinality of S grows linear in
dependence to the desired error £, meaning that reducing ¢ by a factor k will
increase the cardinality of S only by a factor k. Both these observations are
again valid in two dimensions as well as in three dimensions.

We have now computed how many stream surfaces we need to provide to the
minimization problem in Equation 5.4 to obtain good results.

5.1.3.5 Resolution of the energy

To solve the minimization problem in Equation 5.4 the only thing that remains
is to discretize the energy Eg on a pixel grid, where we refer to a single pixel
as a probe point. To efficiently subselect streamlines, we need to know the
resolutions of the discretized energies, i.e., the number of probe points needed
to differentiate streamlines in the set S. This number depends on the desired
error € and the desired average spacing . Each streamline should activate the
probe points lying in a band of width ~ around the streamline. Two streamlines
that are more than ¢ - v apart should activate a different set of probe points.
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(c) This figure shows the curves selected
by the optimizer when using an L1 norm.

(b) This figure shows the sum of the en-
ergies Es, and Eg, of the streamlines se-
lected by the optimizer when using an L2

(d) This figure shows the curves selected
by the optimizer when using an L2 norm.

Figure 5.10: This Figure shows the streamline selection results obtained when using
an L1 norm or an L2 norm during the optimization. Note the missing streamlines in
the L2 norm result due to multiply covered regions being penalized too harshly.

This implies that the number of probe points needed can be computed by,

np:n_x.&:iz(@.@>_ (57)
ey € € Yo

Here we note that the number of probe points grows quadratically in two di-
mensions, meaning doubling both dimensions of the design space will increase
the number of probe points needed by a factor of four. Respectively, the number
of probe points grows cubically in three dimensions. Note, however, that the
subselection is only a fraction of the time spent on the whole approach as can
be extracted from Table 5.1.

We have now discretized the energy Eg in the minimization problem in Equation

5.4 and are now ready to solve it.

5.1.3.6 Subselection using a relaxed approach to binary
programming

Solving the minimization problem in Equation 5.4 can be done by using integer
linear programming. However, the underlying problem is likely NP-hard due to
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the binary constraints. This makes a direct solve of the problem formulated in
Equation 5.4 infeasible. To solve the least absolute deviations problem, we relax
the optimization variables w; to be in the interval [0,1] instead of {0,1}. This
leads to the following convex linear program, which can be solved in polynomial

time:
ng

rvrvuer[%,rﬁ}“rzse/ﬂ ;w(z)ES(x) (1,1)| dQ. (5.8)
We solve the relaxed problem in Equation 5.8 with an interior point method
and then fix weights that have been set to either 0 or 1. Subsequently, we solve
a binary program with the remaining weights (typically < 5% of the original
weights) using a branch and cut algorithm. A branch and cut algorithm splits
the original problem into sub-problems and uses cutting planes to cut away
parts of the possible solution space until an optimal integer solution is found
for a sub-problem. If that solution is better than a relaxed solution of a second
sub-problem, the second sub-problem does not need to be solved. This is done
iteratively until the algorithm converges. For details, we refer to Padberg et al.
[1991]. We use the implementation provided in CVX [Grant et al., 2014].

Note that the high number of binary weights chosen in the relaxed problem
is due to the energy having binary values. If we were to base the energy on a
signed distance function instead, we would almost exclusively receive non-binary
weights as a result from the relaxed problem in Equation 5.8 since the optimizer
would try to trade off contributions of different streamlines.

The observation in Section 5.1.3.4 that the computational burden of the problem
in Equation 5.4 grows linear in the amount of stream surfaces has an important
practical use. Forking stream surfaces, which can occur due to heavy noise in
the topology optimized fields and are described in Section 5.1.3.2, will cover
more space than non-splitting surfaces. They are therefore chosen less by the
optimizer when the number of surfaces in S increases.

We have now found a well-spaced set of laminar surfaces S,,+ and can now
continue with the generation of output structures.

5.1.4 Output generation

The stream surface tracing and selection procedure described above produces a
set of stream surfaces, S,,¢, where each surface is represented as a point cloud.
In itself, this representation is helpful for visualization. However, our end goal
is to provide methods for synthesizing output structures. In this thesis, I will
shortly present two methods that can be used for a stream surfaces set Syp:.
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Detailed descriptions of these methods can be found in Paper-III. The first
method produces a volumetric structure using the layer-thicknesses obtained
from topology optimization. The second method generates hexahedral meshes
from the selected stream surfaces.

5.1.4.1 Post-processing the surfaces

Before we extract a volumetric solid or a hexahedral mesh, we employ a post-
processing step on the stream surfaces in S,p:. We do not need high-resolution
stream surfaces to create the energies for the selection algorithm. However,
higher resolved surfaces generate smoother and more precise structural members
of the volumetric structure. To obtain a high-resolution surface from a stream
surfaces in S,,+ we proceed as follows. First, we add all surface points of a
selected stream surface, to a first-in-first-out queue. We then use the same
algorithm as for the original surface creation but with a lower minimal distance
requirement between surface points. This will generate new points between the
locations of the original surface points and thus we obtain a higher resolution.

5.1.4.2 Volumetric solids

For topology optimization results, we want to obtain a geometric structure from
our stream surfaces. To do so, we synthesize a structure from the selected sur-
faces and the layer-thicknesses obtained from the topology optimization. Ex-
tracting a volumetric solid from a point cloud in three dimensions is very similar
to the volumetric reconstruction of surfaces from point clouds [Fuhrmann et al.,
2014]. We create a distance field for each stream surface that attains value one
for stream surface points and value zero for points that are one layer-thickness
or more away from the stream surface. We then compute a voxel-based maxi-
mum of the distance fields of all stream surfaces and compute the boundary of
the volumetric solid as a triangle mesh using dual contouring with the iso-value
0.5 [Ju et al., 2002]. Note that the iso-value 0.5 is chosen since the resulting
structural lamination should be centered at the stream surface. A more detailed
description can be found in Paper-II1

5.1.4.3 Tapering structural members

Computing the distance field in the above-stated manner yields one problem.
We will see tapering structural members of the volumetric solid depending on
the divergence of the layer-normal field.Figure 5.11 depicts this problem. The
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tapering structural members occur since the homogenization approach only de-
scribes local layer-thicknesses. Integration-based de-homogenization approaches
account for this by the use of parameterizations. If a voxel is inside the final
structure or not depends on the parameterization value and not on the distance
to the closest iso-contour. Since the parameterization will always change by one
integer from one iso-contour to the neighboring one, integration-based meth-
ods do not create tapering structural members. Our approach creates tapering
structural members since we do not account for the variation of spacing between
stream surfaces and only assign the local widths.

To obtain non-tapering structural members, we compute, in two dimensions, the
distance to the neighboring streamlines for each line segment. First, we mark all
points of a given streamline close to crossing streamlines and combine them into
clusters. Figure 5.11b depicts these clusters. We then use the distance between
the clusters on a streamline to measure the spacing between crossing streamlines.
Now we can compute a correction factor to account for the deviation of the actual
spacing from the desired spacing .<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>