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Abstract (English)

Homogenization-based topology optimization produces multi-scale designs with
optimal stiffness at a significantly reduced computational cost compared to
well-established topology optimization methods. However, the homogenization
approach does not directly create a mechanical structure but instead outputs
parameters describing the behavior of microstructures at infinitesimally small
scales. For compliance minimization, these optimal multi-scale descriptions of
the optimized designs consist of lamination thicknesses and lamination orienta-
tions.

The process of synthesizing high-resolution, near-optimal geometric structures
from these optimal multi-scale designs is called de-homogenization. This thesis
presents research on the de-homogenization of multi-scale designs obtained with
homogenization-based topology optimization for compliance minimization. The
thesis consists of an introductory background chapter followed by two parts
about de-homogenization methods. The first part focuses on integration-based
methods, while the second part proposes novel approaches that do not rely on
integration.

The first part further contains an investigation of microstructure orientations
fields and singularities arising for single loading case (single-load) problems in
two dimensions. It follows a description of a de-homogenization method for
two-dimensional, singularity-containing multi-scale designs. Further, the first
part contains an expansion to three dimensions of existing work for singular-
ity-free single-load problems, achieving a reduction of computational effort of
three orders of magnitude compared to density-based topology optimization.
The first part concludes with a discussion of research on microstructure orien-
tation initialization and regularization during the homogenization approach to
obtain optimal multi-scale designs that are easier to de-homogenize with cur-
rently available methods.



The second part contains an investigation of microstructure orientations fields
and singularities arising for single-load problems in three dimensions. Then a
novel approach for two- and three-dimensional de-homogenization, called the
subselection method, is presented that does not rely on integration. The sub-
selection method is the first de-homogenization method that applies to singu-
larity-containing three-dimensional single-load case problems with no modifi-
cations of the underlying orientation fields. The new approach precomputes a
set of structural members that are locally well-aligned with the microstructure
orientations. Then an optimization chooses an evenly spaced subset resulting in
a near-optimal single-scale structure. Finally, the subselection method is used
to de-homogenize two-dimensional problems with multiple loading cases.
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Resumé (Dansk)

Homogeniseringsbaseret topologioptimering producerer multiskaladesigns med
optimal stivhed betydeligt hurtigere end de mest anvendte metoder til topo-
logioptimering. Homogeniseringsmetoden skaber dog ikke direkte en mekanisk
struktur. I stedet producerer den parametre, der beskriver mikrostrukturernes
egenskaber på uendeligt fin skala i form af lamineringstykkelser og laminerings-
retninger.

Processen at syntetisere højopløste, optimerede geometriske strukturer ud fra
disse multiskala designs kaldes de-homogenisering. Denne afhandling omhandler
forskning i de-homogenisering af multiskala designs, der er opnået ved hjælp af
homogeniseringbaseret topologioptimering med henblik på minimering af efter-
givelighed. Afhandlingen indeholder et indledende baggrundskapitel, og dette er
efterfulgt af en beskrivelse af de-homogeniseringsmetoder. Denne beskrivelse er
igen opdelt i to dele, der hverst rækker sig over flere kapitler. I den første del
behandles metoder, der anvender integration, og i den anden del foreslås nye
metoder, som ikke er afhængige af integration.

Den første del indeholder en undersøgelse af mikrostrukturers orienteringsfelter
og singulariteter, der opstår for enkelt-belastningsproblemer i to dimensioner.
Derefter følger en beskrivelse af en de-homogeniseringsmetode for todimensiona-
le, singularitetsholdige flerskala konstruktioner. Endvidere indeholder den første
del en udvidelse til tre dimensioner af eksisterende arbejde for singularitetsfrie
enkelt-belastningsproblemer, hvorved der opnås en reduktion af den beregnings-
mæssige indsats på tre størrelsesordener i forhold til densitets-baseret topolo-
gioptimering. Første del afsluttes med en diskussion af forskning i mikrostruk-
turers retningsinitialisering og regularisering under homogeniseringsmetoden for
at opnå optimale design i flere skalaer, som er lettere at de-homogenisere med
de tilgængelige metoder.

Den anden del indeholder en undersøgelse af mikrostrukturers retningsfelter



og singulariteter, der opstår ved enkelt-belastningsproblemer i tre dimensioner.
Derefter præsenteres en ny metode til to- og tredimensionel de-homogenisering,
kaldet subselektionsmetoden, som ikke er afhængig af integration. Subselektions-
metoden er den første de-homogeniseringsmetode, der kan anvendes på tredi-
mensionale enkelt-belastningsproblemer med singulariteter uden ændringer af
de underliggende retningsfelter. Den nye metode beregner på forhånd et sæt
strukturelle elementer, der lokalt er godt orienteret i forhold til mikrostruktu-
rens retninger, hvorefter en optimering vælger en undermængde med lige store
afstande, hvilket resulterer i en næsten optimal enkeltskalastruktur. Endelig
anvendes subselektionsmetoden i denne afhandling til at de-homogenisere todi-
mensionelle problemer med flere belastningstilfælde.
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Chapter 1

Introduction

1.1 Motivation

Topology optimization is a computational method to obtain optimal material
layouts for various sets of mechanical problems. An important sub-problem
is structural compliance minimization. Given a design space, loads, boundary
conditions, and material properties, one searches for a structure with maximal
stiffness. The most often used approach to topology optimization is the so-called
density-based topology optimization. On a finite element mesh, one varies the
material density in each finite element during the optimization to obtain a struc-
ture with maximal stiffness. Subsequently, one interprets these results as black
and white designs. To get high-resolution structures, a giga-scale amount of
elements is often necessary [Aage et al., 2017; Baandrup et al., 2020]. However,
the computational burden is vast and far from real-time, which limits engineers
in everyday life.

Researchers have revived the homogenization-based topology optimization in-
troduced in Bendsøe and Kikuchi [1988] to obtain high-resolution designs faster.
Homogenization-based topology optimization yields not only local densities.
Instead, it outputs information about the microstructure of the material, for
example, the local orientations of the microstructure and the amount of ma-
terial aligned with these orientations. Using the additional knowledge about
microstructure allows obtaining optimal designs at a fraction of the computa-
tional cost of density-based topology optimization. Further, the homogenization
approach shows no grid dependency, which means that the topology of a result
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obtained on a coarse finite element mesh does not change when solving the same
problem on a finer mesh.

While the possible gains from using homogenization-based topology optimiza-
tion are enormous, it is essential to know that it is surprisingly hard to interpret
its results. The extraction of globally consistent structures with a finite length
scale is challenging since we only obtain local orientations and material dis-
tributions. Trade-offs between local alignment, global connectivity, spacing of
structural members, and globally smooth members are hard to achieve pre-
dictably. The extraction of global structures is called de-homogenization and
has been increasingly in the focus of researchers since its introduction in Pantz
et al. [2008].

1.2 Goals of this Ph.D. thesis

The purpose of this Ph.D. project has been to investigate de-homogenization and
further develop existing methods, and possibly create new approaches to extract
structures from topology optimization results. At the beginning of this Ph.D.
project, there was one clear vision. We knew that we wanted to extract mechan-
ically well-performing structures from various homogenization-based topology
optimization designs. Thus, in the beginning, we asked ourselves why we are
not yet able to extract these structures and what the hurdles were to advance
de-homogenization. We developed the following set of questions, which turned
out to cover a large group of research topics considered in de-homogenization.

1. What kind of singularities arises in homogenization-based topology opti-
mization results, and where are they located?

2. How can we de-homogenize three-dimensional, singularity-free results ob-
tained by the homogenization approach?

3. How can we expand de-homogenization to allow the usage of more chal-
lenging, singularity-containing problems in two and three dimensions?

4. Is there a way to expand possible findings to the previous questions to
examples with multiple loading cases (multi-load examples)?
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1.3 Contributions and thesis overview

This thesis aims to discuss the above four topics while leaning on the following
contributions contained in this thesis.

• [Groen, Stutz, et al., 2020] [Paper-I]: De-homogenization of Optimal Multi-
Scale 3D Topologies

• [Stutz, Groen, et al., 2020] [Paper-II]: Singularity Aware De-Homogeniza-
tion for High-Resolution Topology Optimized Structures

• [Stutz, Olsen, et al., 2021] [Paper-III]: Synthesis of Frame Field-Aligned
Multi-Laminar Structures

The sections relevant to my work and contributions have been re-used and
adapted to this thesis, and hence, it is sufficient for the reader only to read
this thesis. However, all papers, but especially Paper-I, contain additional in-
formation and work from co-authors that might interest the reader. Therefore,
all the papers are attached in the appendix.

I will first discuss the two-dimensional (2D) integrative methods [Paper-II] due
to the formulations being simpler and the topic of singularities being easier to
address in two dimensions. Only thereafter will I describe the three-dimensional
(3D) work on integrative methods [Paper-I]. I will then propose a novel, non-
integrative method [Paper-III] and lastly discuss the application of this method
to the de-homogenization of multi-load designs.

This thesis aims to give the reader a basic understanding of the relevant top-
ics and covers several different research fields. Chapter 2 will cover the basics
of density-based topology optimization, homogenization-based topology opti-
mization, and microstructures. Chapter 3 discusses directional fields, singular-
ities, and the relation to homogenization-based results as originally published
in Paper-II. Integration-based de-homogenization is considered in Chapter 4.
There, I first present previous work on de-homogenization and then present
an approach for singularity-containing 2D examples. I conclude the chapter
by outlining our expansion of de-homogenization to 3D singularity-free cases.
In Chapter 5, I propose a newly developed non-integrative approach to de-
homogenization that allows for three-dimensional examples containing singular-
ities and two-dimensional multi-load problems.

A recurring topic throughout this thesis is the strive for clean structures that
perform well from a mechanical point of view. Challenges like noise, non-
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uniqueness, and the lack of global connectivity are the main obstacles in achiev-
ing this. It is worth noting that the proposed methods have applications reach-
ing beyond de-homogenization since vector and tensor fields are recurring topics
throughout physics and mechanics.



Chapter 2

Topology optimization

This chapter aims to give relevant background information on topology opti-
mization needed to follow the contributions of this Ph.D. thesis. I will start
with a short introduction to topology optimization. Then I will visit density-
based and homogenization-based methods for topology optimization. Finally,
I will look at materials and microstructures used for homogenization-based
topology optimization. The contributions of this thesis lie in the field of de-
homogenization, i.e., extracting structures from results obtained through ho-
mogenization-based topology optimization. Therefore, this background chapter
aims at giving the necessary overview of the homogenization approach and its
underlying microstructures. As a prerequisite, a general understanding of the
finite element method [Szabó et al., 2011; Zienkiewicz et al., 2013] is required
to follow this thesis. Further, a basic knowledge of optimization algorithms is
helpful [Jorge Nocedal, 2006]. For more information on topology optimization
in general, the reader is referred to the following review papers [Deaton et al.,
2014; Sigmund and Maute, 2013].

2.1 Introduction to topology optimization

Let us consider a finite element mesh and linear elastic structure, where we have
a static equilibrium equation

Ku = f . (2.1)
Here, K denotes the stiffness matrix describing the structure, u is the global
displacement vector at the nodes of our finite element mesh, and f is the global



6 Topology optimization

load or global force vector. We can write the global stiffness matrix K as

K =

N∑
e=1

Ke (Ee) ,

where we define K as the sum over local stiffness matrices Ke of the elements
e = 1, . . . , N . Note that the local stiffness matrixKe in element e depends on the
elasticity tensor Ee, holding the information describing the material properties
in this element. Further, we should note that the sum is understood to contain
a mapping from elementwise degrees of freedom to global degrees of freedom.

The element strain energy density se is defined as

se = uT
eKeue,

which lets us define the compliance, J , as

J =

N∑
e=1

se =

N∑
e=1

uT
eKeue = uTKu = fTu.

In engineering, a fundamental task is to find the stiffest possible structure under
given volume limits. Maximizing stiffness corresponds to minimizing compliance
and is the most used of all topology optimization examples. There are different
ways to tackle this problem. If one creates an initial design and optimizes the
compliance by moving the structures’ boundary, it is called shape optimization.
Note that the topology of the structure does not change in shape optimization.
Alternatively, one can also change the structure itself by changing the material
properties (e.g., solid or void) or the size and existence of the structural members
(e.g., the diameters of bars in a truss structure). This second approach is called
topology optimization and was first introduced in Bendsøe and Kikuchi [1988].
There also exist combinations of topology and shape optimization using adaptive
meshes [Christiansen, 2015; Misztal et al., 2012].

We can build a simple topology optimization example as follows. We want to
find a final design that lies in a design domain Ω and minimize the compliance
J . We discretize Ω with N finite elements with volumes Ve. Furthermore, we
describe our structure by a density variable ρ(x), where x ∈ Ω is a point in our
design domain Ω. For the discretization, we assume that the density is constant
in an element e and denote it with ρe. Further, we have a limit V 0 to the amount
of material that we can use for creating our structure, i.e.,

∫
Ω
ρ(x)dV ≤ V 0 .

Lastly, we demand that u fulfills the state equation Ku = f at any point of the
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optimization. We receive the following optimization problem:

min
ρ

: uT(ρ)K(ρ)u(ρ)

s.t. : K(ρ)u = f ,

N∑
e=1

ρeVe ≤ V 0

ρe ∈ {0, 1} ∀e = 1, . . . , N.

(2.2)

When we optimize over the relative density variable ρ(x), the stiffness matrix
K changes with every iteration since the element stiffness matrices Ke depend
on ρe through Ee(ρe). Therefore, the stiffness matrix changes at every design
update (also called iteration), and we need to re-solve the state equation at
every iteration. This is a very costly operation for complex problems with a
large number of finite elements.

The challenge of Problem 2.2 lies in the binary form of the density variables. In
fact the computational burden of such a problem limits us from solving examples
with thousands or millions of elements, even for heuristic approaches [Sigmund,
2011]. To circumvent the binary optimization, we would like to relax the problem
allowing ρ ∈ [0, 1]:

min
ρ

: uT(ρ)K(ρ)u(ρ)

s.t. : K(ρ)u = f ,

N∑
e=1

ρeVe ≤ V 0

ρe ∈ [0, 1] ∀e = 1, . . . , N.

(2.3)

The challenge with the above optimization problem is the definition of material
properties for ρe ∈ (0, 1). It is not intuitively clear what an intermediate den-
sity material is or if one can exctract a mechanically well-performing solid-void
design from the solution of the above optimization problem. In the next section,
I will describe a method to model the mechanical properties of an element with
intermediate density.

2.2 Simplified isotropic material with
penalization (SIMP)

To address the challenges of intermediate densities Bendsøe [1989] proposed
the simplified isotropic material with penalization approach (SIMP). The local



8 Topology optimization

stiffness matrix in an element e depends on the Youngs’ modulus E of that
element. For solid material (ρ = 1) we write E(1) = E0. For 0 ≤ ρ ≤ 1 we then
define the SIMP interpolation

E(ρe) = Emin + ρpe(E0 − Emin),

where the power p is called the penalization parameter and for implementation
reasons, void elements are assigned a minimal stiffness Emin. This allows to
mimick void-like behavior by a very soft material, that does not influence the
structure’s stiffness but keeps us from re-meshing the structure after each iter-
ation. Note, however, that it is also possible to exclude major regions of void
by on-the-go re-meshing [Bruns et al., 2003; Liu, Hu, et al., 2018].

If we choose a power p = 1 for our compliance optimization, we receive the
so-called variable-thickness-sheet problem introduced in Rossow et al. [1973].
This problem can be interpreted as a sizing problem in two dimensions, where ρ
corresponds to the elementwise thicknesses of plates. This is a simple problem
that has been proven to be convex and thus has a unique solution [Petersson,
1999].

However, for everyday topology optimization one should choose p > 1 to con-
verge to a black and white structure. As an initial guess, we usually use
ρ = V 0

/N,∀e = 1, . . . , N. Choosing p too big will lead the optimization to a
local minimum near the initial guess. Choosing p too close to one will lead to a
lot of elements with intermediate densities, thus resulting in a "grayscale" result
instead of a black and white design. Sigmund and Maute [2013] name p = 3 as
optimal value. A detailed explanation of why SIMP is mechanically sound and
sensible to use is given in Bendsøe et al. [1999].

There exist other interpolation schemes than SIMP, like, e.g., the rational ap-
proximation of material properties (RAND) introduced in Stolpe et al. [2001]
using an interpolation function with a non-zero gradient for ρe = 0, which can
yield convergence benefits for the design update.

2.2.1 Checkerboard problems

For topology optimization, bi-linear rectangular elements are often used. These
elements are known to not fulfill the discrete Ladyzhenskaya–Babuška–Brezzi
(LBB) condition [Díaz and Sigmund, 1995]. This leads to the so-called checker-
board instability problem [Sigmund and Petersson, 1998]. An example of the
checkerboard problem occurring is given in Figure 2.1. To prevent checkerboard
results, one applies a regularization operator (also called filter) on the density
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variables [Bourdin, 2001; Bruns et al., 2001]. A filter smooths the intermediate
and final results of the topology optimization as follows. An element’s density is
averaged with its neighbors, effectively removing checkerboard patterns from the
admissible design space. Another solution to the checkerboard problem would
be to increase the degree of the ansatz functions of the finite elements, although,
this would make the topology optimization more costly.

(a) Checkerboard pattern arise in this example without regularization.

(b) A filter radius of 1.5 is applied on the densities, which resolves the problem of
checkerboard elements. Note how the border between solid and void regions becomes
grayscale due to the regularization.

Figure 2.1: Cantilever problem solved on a 160 × 80 mesh. In Figure a, no reg-
ularization has been applied, and hence checkerboard patterns arise. In Figure b,
regularization has been applied, which effectively gets rid of the checkerboard pat-
terns.
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2.3 Homogenization-based topology
optimization

Before the proposition of SIMP, earlier work considered composite materials to
ensure the existence of a solution [Bendsøe and Kikuchi, 1988]. The usage of such
composite materials relaxes the design space of black and white designs allowing
for a much higher number of possible designs. However, a composite material
is an inhomogeneous material. It could, for example, consist of infinitesimally
small, periodically tessellated microstructures that alternate between solid and
void at a micro-scale. One refers to topology optimization using such composite
materials as either homogenization-based topology optimization or shorter the
homogenization approach.

The name homogenization approach comes from the following general idea. A
composite material has oscillatory properties at a micro-scale due to its pe-
riodically tessellated microstructure. Forces acting on a composite material,
however, vary at a much larger scale called macro-scale. And on the macro-
scale, our composite material acts as a homogeneous material. The method to
obtain a smoothly varying material description at the macro-scale based on the
alternating micro-scale description is called homogenization. Such a macro-scale
material description is called the effective or homogenized stiffness tensor. Once
the homogenized material description has been found, we can find a displace-
ment field of a structure consisting of such a material. It can then be shown
that one can decompose the displacement field to obtain a dominating term
that depends only on the macro-scale description and not on the micro-scale
behavior. Note that I will only give a short description of this approach un-
derneath, but for more details, the reader is referred to Bendsøe and Sigmund
[2004]. Lastly, it should be mentioned that the topic of homogenizing material
properties is related to the term homogenization as used in mathematics when
studying partial differential equations with fast-changing coefficients.

It is important to note that a composite material can incorporate multiple
length scales. On each microscopic level, the composite material consists of
a microstructure, but on the macroscopic level, the effective properties of the
composite material vary smoothly. In the following, we assume one micro-scale
and that the microstructure is periodic in a neighborhood of a point x in a given
linear elastic structure.

Let δ denote the length of the microstructures’ period. We then write the
elasticity tensor Eδ as

Eδ = E(x,
x

δ
).
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There exist many periodic unit cells of the microstructure at the point x for δ →
0, which implies that the properties can be considered periodically dependent
on y and the function

y→ E(x,y)

is called Y-periodic. Here x denotes the variation of the material parameters on
a macroscopic level, and y describes the periodic variation at the micro-scale.

If a macroscopic force is applied on a structure, the resulting displacement field
u can be expressed as an asymptotic expansion:

u(x,y) =

∞∑
i=0

δiui(x,y). (2.4)

Here, the leading term u0(x,y) is a macroscopic displacement field that can
be shown to be independent of the micro-scale, i.e., u0(x,y) = u0(x) [Bendsøe
and Sigmund, 2004]. The effective properties (or homogenized properties) of the
composite material, i.e., the elasticity tensor EH , can be found by solving so-
called cell problems for the microscopic displacement field u1(x,y). It can then
be shown that u0(x) is the resulting macroscopic deformation field that arises
under the applied forces when the elastic properties of the structure are assumed
to be given by EH . Note that EH is normally precomputed for various param-
eters describing the microstructures (e.g., rotations, layer-thicknesses) [Groen
and Sigmund, 2018].

The separation of scales that the homogenization approach uses allows us to
solve the topology optimization problem at the macro-scale while using mate-
rial that incorporates material changes at the micro-scale. Combined with the
right microstructure, we can obtain optimal designs from the homogenization-
based approach. The following section describes the most important composite
materials considered for the topology optimization results used in this thesis.

2.4 Optimal and single-scale microstructures for
homogenization-based topology optimization

Homogenization allows the computation of the effective properties of multi-
phase composites. The most relevant composite is the two-phase material, where
one phase is a solid material, and the other phase is void, as illustrated in Figure
2.2.

Theoretical bounds limit achievable effective properties. The first bounds pro-
vided in the context of elasticity were introduced by Reuss [1929] and Voigt
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Figure 2.2: Two-phase composite with solid and void phase. This composite is also
called rank-1 material.

[1966]. Later Hashin et al. [1963] improved the bounds, i.e., the possible prop-
erties that composite materials can attain were restricted further. The reader
is referred to Allaire [2002], Cherkaev [2000], Milton [2002], and Bendsøe and
Sigmund [2004] for more details on material bounds.

2.4.1 Rank-n materials

A composite structure with a solid-void alternating laminate structure is called
rank-1 laminate.

If we replace the void in a rank-1 material with another rank-1 laminate at
an infinitely smaller scale, we obtain a rank-2 composite as depicted in Figure
2.3a. We can repeat this replacement N times and subsequently obtain a rank-N
microstructure that contains N layers at N different length scales.

These two-phase materials with a finite number of sequential laminates can
achieve the theoretical upper bounds for maximum strain energy [Francfort and
Murat, 1986; Lurie et al., 1984; Milton, 1986; Norris, 1985]. One can show the
lower limit of layers needed to obtain an optimal solution for different types of
problems - this was shown for 2D cases by Avellaneda [1987] and for 3D cases
by Francfort, Murat, and Tartar [1995].

The optimal number of layers depends not only on the dimension but also on
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(a) Rank-2 material with two layers at two
length scales.

(b) Rank-3 materials with layers at three
length scales.

Figure 2.3: Ranked materials with layers at multiple lengths scales.

the number of loading cases:

• For two-dimensional problems with a single strain (2D single-load prob-
lems) a rank-2 material with orthogonal layers is optimal. Such a material
is depicted in Figure 2.4a.

• Problems with a single strain in three dimensions (3D single-load prob-
lems) can be solved optimally by a rank-3 material with orthogonal layers.
Such a material is depicted in Figure 2.4b.

• For two-dimensional problems with multiple strains (2D multi-load prob-
lems) a rank-3 laminate as depicted in Figure 2.3b is optimal.

• Three-dimensional problems with multiple strains (3D multi-load prob-
lems) require rank-6 laminates for optimal results. Recently Wang et al.
[2021] showed that rank-4 material can reach up to 92% of the theoreti-
cally obtainable stiffness of rank-6 laminates. This is an important finding
since de-homogenizing rank-4 materials promises to be more manageable
than de-homogenizing rank-6 materials.
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(a) Sketch of a rank-2 material with two or-
thogonal layers.

(b) Sketch of a rank-3 material with three
orthogonal layers in dark grey, light grey and
white.

Figure 2.4: Ranked materials with orthogonal layers in two and three dimensions.
Note that all layers are at different length scales.

2.4.2 Optimal microstructures

Density-based topology optimization approaches depend on the number of used
finite elements. Here, mesh-dependent refers to obtaining a different topology for
design solved on more finite elements. Ideally, a higher resolution would result
in better modeling and sharper boundaries and not in a completely different
structure [Sigmund and Petersson, 1998]. An example of mesh-dependency is
shown in Figure 2.5 for a cantilever example. Note how the topology differs
between the resolutions, since the results contain more structural members the
higher the number of element is.

On the other hand, multi-scale topology optimization does not depend on the
resolution of the finite element mesh. This is due to the microstructure holding
much more information per point than the solid-void description of density-
based topology optimization (e.g., two layer orientations and two layer-thick-
nesses for a rank-2 material). Therefore, only a coarse finite element mesh is
needed to sufficiently represent the proposed structures. This implies a largely
reduced computational effort over the usage of mesh-dependent density-based
approaches. Figure 2.6 shows the same cantilever problem as used in Figure 2.5
but solved using homogenization and de-homogenized by the approach proposed
in Groen and Sigmund [2018]. We see how already for a very coarse mesh the
homogenization-based optimization method can capture the topology towards
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(a) Cantilever problem solved on a finite el-
ement mesh with 80 × 40 elements.

(b) Cantilever problem solved on a finite el-
ement mesh with 160 × 80 elements.

(c) Cantilever problem solved on a finite el-
ement mesh with 320 × 160 elements.

(d) Cantilever problem solved on a finite el-
ement mesh with 640 × 320 elements.

Figure 2.5: Visualization of the mesh dependency of density-based topology opti-
mization. Note how the topology of the structure changes, when the mesh resolution
is changed.

which the density-based approach seems to converge.

The first researcher to consider optimal microstructures for homogenization-
based topology optimization was Bendsøe [1989] using rank-2 material for a
single-load case problem in two dimensions. Allaire and Francfort [1993] and
Allaire and Kohn [1993] considered the same optimal rank-2 microstructure.

Allaire, Bonnetier, et al. [1997], Cherkaev and Palais [1996], Díaz and Lipton
[1997], Olhoff et al. [1998] use optimal rank-3 microstructures for a single-load
3D problem. Multi-load case problems for solving two-dimensional plane prob-
lems are considered in Allaire, Belhachmi, et al. [1996] and Cherkaev, Krog, et
al. [1998]. Multi-load case problems for solving two-dimensional plate problems
are considered by Díaz, Lipton, and Soto [1995], Hammer et al. [1997], Krog et
al. [1997]. Finally, Díaz and Lipton [2000] use optimal rank-6 microstructures
for solving problems in 3D with multiple load-cases.

It should be noted that in practice the compliance values obtained by homoge-
nization-based topology optimization using optimal microstructures can not be
outperformed by single-scale design approaches like SIMP [Bendsøe and Sig-
mund, 2004].
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Figure 2.6: The same cantilever problem as in Figure 2.5. This example is solved
on a 80 × 40 elements using homogenization-based topology optimization and de-
homogenized using the approach proposed in Groen and Sigmund [2018].

2.4.3 Single-scale microstructure

Single-scale microstructures are microstructures that consist of only one length
scale as opposed to, e.g., rank-N materials. Single-scale microstructures are of
interest since the fields produced by the homogenization approach using single-
scale microstructures are, in general, cleaner for multi-load problems [Träff et
al., 2019]. This, in turn, makes the field easier to de-homogenize.

The best known single-scale microstructure is the unit-cell description intro-
duced in Bendsøe and Kikuchi [1988]. They were the first to consider multi-
scale topology optimization with a microstructure defined at a single scale. The
unit-cell microstructure consists of a square cell with a hole in the center, pa-
rameterized by the widths ¯̃a1, ¯̃a2, and the rotation of the unit cell, as seen in
Figure 2.7. Bendsøe et al. [1999] show that the unit-cell microstructure per-
forms closely to the optimal rank-2 microstructure with orthogonal layers for
2D single-load case problems.

Recently single-scale microstructures based on optimal rank-3 laminates for
multi-load case problems in 2D were analyzed in Träff et al. [2019]. Träff et al.
[2019] note that, in general, simplification of optimal microstructures to single-
scale microstructures results in a loss of up to eight percent performance of the
compliance minimization.
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Figure 2.7: The unit-cell microstructure with a rectangular hole parameterized by
a1, a2 in the local frame (y1, y2) on the left and on the right rotated in the global frame
(x1, x2).

2.5 Homogenization-based topology
optimization in the contributions

In this section, I will give an example of how homogenization-based topology
optimization was performed for the work discussed in this thesis. This section
was originally published in Stutz, Groen, et al. [2020] [Paper-II] and has been
adapted for this background chapter. For more details, the reader is referred to
Groen and Sigmund [2018], Groen, Stutz, et al. [2020], and Stutz, Groen, et al.
[2020].

2.5.1 Microstructure parameterization

In Paper-II we used the square unit-cell with a rectangular hole as shown in Fig-
ure 2.7 as a microstructure parameterization for the homogenization approach.
The effective properties were obtained using numerical homogenization using
the young’s modulus E = 1 and poisson’s ratio ν = 0.3 as described in Groen
and Sigmund [2018]. We created a database of the effective properties for vari-
ous hole-sizes, i.e., for different physical heights ¯̃a1 and widths ¯̃a2. This allows
interpolating the effective properties EH and corresponding sensitivities for ar-
bitrary hole sizes. The elasticity tensor in the global frame of reference E can
then be computed as

E(θ, ¯̃a1, ¯̃a2) = R(θ)EH(¯̃a1, ¯̃a2)R(θ)T, (2.5)
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where R is the two-dimensional rotation matrix. To adhere to the volume limit,
we need to compute the density of the microstructure ρ by

ρ = 1− ¯̃a1
¯̃a2. (2.6)

Figure 2.8: This Figure shows the result of a cantilever problem solved using the
homogenization approach and a 40×20 finite element mesh. For each element one cell
of the local microstructure has been enlarged to 0.8 times the size of a finite element.
Layers with less than 1% thickness are not shown. Note that there is no notion of
connectivity or spacing of the global structural members that we desire to find in the
homogenization results.

2.5.2 Optimization and regularization of the
microstructure orientation

In earlier work, the microstructure was updated based on the principal stress
direction. In our work, the angles are solely obtained based on their gradients.
This change allowed the introduction of a regularization energy to receive a less
noisy 4-direction field. The regularization objective is defined as follows. For
two adjacent elements f1 and f2 connected by edge e we compare the angles of
the microstructure θf1 and θf2 . The penalization value Pe ∈ [0, 1] is calculated
by

Pe =
1

2
− 1

2
cos(4θf1 − 4θf2). (2.7)

Note that Pe is zero for angle differences of kπ/2 with k ∈ Z. We then take
the sum of the penalization values of all ne edges and obtain the regularization
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objective Fθ,

Fθ =

ne∑
f=1

Pe. (2.8)

The regularization objective is divided by the objectives value for the starting
guess of the layer-normals at every iteration.

2.5.3 Problem formulation

For the topology optimization, we minimize an objective function F combining
compliance J and regularization objective Fθ. We use bi-linear finite elements
and assume that the material properties are constant for every element. To
avoid checkerboard patterns, we use a density filter on the design vectors a1

and a2, which results in the filtered hole heights ã1 and widths ã2 [Bourdin,
2001; Bruns et al., 2001].

We use the interpolation scheme introduced in Groen and Sigmund [2018] to
limit the microstructure widths to be either void, completely solid, or in the
interval [η, 1 − η] with η = 0.05. The scheme modifies ã1 and ã2 into the
physical hole height ¯̃a1 and width ¯̃a2.

The optimization problem is solved in so-called nested form. For each iteration,
first, the state equation is solved, and afterward, the design vectors are updated.
We can write the optimization problem as follows,

min
a1,a2,θ

: F(a1,a2,θ,u) =

J (a1,a2,θ,u)

J (1)
+ γθ

Fθ(θ)

F (1)
θ

,

s.t. : K(a1,a2,θ)u = f,

: vTρ(a1,a2)− V 0A ≤ 0,

: 0 ≤ a1,a2 ≤ 1,
: -4π ≤ θ ≤ 4π,

(2.9)

where A is the area of Ω. Here v holds the element areas Ve, and V 0 is the
maximum allowed material fraction. The compliance of the first analysis step
J (1) is used to normalize the compliance values as done for the regularization
objective. We use the MATLAB implementation of the Method of Moving
Asymptotes (MMA) [Svanberg, 1987] to update the design vectors.

The starting guess of the hole size for microstructure is a1 = a2 such that we
exactly reach the volume constraint. The initial orientation of the microstruc-
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ture can be based on the principal stress directions obtained by a pre-analysis
step using isotropic microstructures. However, we also use initial orientations
θ = 0, which we call a grid-aligned start guess.

Finally, we use γθ to steer the influence of the regularization onto the optimiza-
tion. Note that this can be a fixed value, but it is also possible to choose a
variable amount of regularization and decrease regularization during the opti-
mization.

Note that the result from the above topology optimization consists of local
layer orientations and local hole sizes. An example of a design resulting from
the homogenization approach is shown in Figure 2.8. The goal of this thesis was
to develop de-homogenization approaches to extract a structure from results like
in Figure 2.8 as done for Figure 2.6 with the method proposed in Groen and
Sigmund [2018].



Chapter 3

Vector fields and singularities
(related to Paper-II)

In this chapter, I present an analysis of two-dimensional vector fields and singu-
larities important for de-homogenization. The analysis investigates singularities
in the layer-normal fields arising from the homogenization approach and the fol-
lowing sections have been adapted for this thesis from Stutz, Groen, et al. [2020]
[Paper-II]. Further, I will relate the singularity locations to the obtained layer-
thicknesses and the underlying stress fields. Observations about layer-normal
fields and singularities in three dimensions are discussed later in Chapter 5.

In Paper-II, I found that singularities in layer-normal fields are highly related to
the underlying stress tensor fields. A major finding was the relationship between
the location of singularities and the material distributed by the optimizer. In
general, in two dimensions, singularities are either in void or in fully solid regions
such that the structure becomes isotropic at singular points.

3.1 Vector fields and direction fields

To study the vector fields generated by the homogenization approach, it is es-
sential to understand vector fields, direction fields, eigenvectors and eigenvalues
of the stress tensors. This allows us to precisely define singularities and their
indices and use this knowledge to study stress tensor and layer-normal fields.
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Vaxman et al. [2016] introduced a notation that is tailored for this purpose.
An alternative source of information about vector fields and singularity is the
paper by Goes et al. [2015]. In the following section, I will describe relevant
definitions from Vaxman et al. [2016] related to the homogenization approach
and introduce their notation. We start with the definition of a directional field
and N -directional fields.

Definition 3.1 (Directional field, vector field and direction field) A
directional field denotes a function v that assigns directional information
to almost every point in a given domain. If a directional field v provides a
magnitude of importance for every point p, for which v is defined, then v is
called a vector field (see Figure 3.1a). If the directional field does not provide
any magnitude (e.g., all assigned vectors are normalized) it is called a direction
field (see Figure 3.1b).

(a) 1-vector field (b) 1-direction field

Figure 3.1: Comparison of a 1-vector and a 1-direction field.

Definition 3.2 (N-directional field) A directional field can assign multi-
ple directions to the same point in a domain Ω. Let us assign N vectors to
almost every point in Ω. Then the use-cases of N = 1, 2, 4 are of importance
to the application of the homogenization approach. We write N-vector or N-
direction field to indicate the number of directional information given at every
point.

Figure 3.2 shows direction fields and vector fields important to the homogeniza-
tion approach, where we indicate a given magnitude with arrows. The 1-vector
fields are what we usually refer to when talking about vector fields. If N = 2
the vector is invariant under a rotation of angle π and we call such a field a
2-vector field. For N = 4 follows the 4-vector field with a rotational symmetry
of π/2.
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Figure 3.2: Vector and direction fields for N ∈ {1, 2, 4}. A given magnitude is
indicated by arrows.

3.2 Singularities and their indices

Singularities often arise in the presence of internal loads, multiple loads or a
designated passive domain. The following definitions describe singularities and
their indices.

Definition 3.3 (Singular point, singularity) A point p in a 1-vector field
v for which v is not defined or zero is called a singular point or singularity
(see Figure 3.3).

Definition 3.4 (Index of a singularity) A singular point p can be as-
signed an index by the following procedure. We consider the vector field v on
a closed, simple curve c(t), t ∈ [0, 1], around p, which does not contain a second
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singular point. We obtain v limited to c(t), by

v(c(t)) = ‖v(c(t))‖
(

cos(α(t))

sin(α(t))

)
.

Here c : [0, 1]→ R2 denotes the counterclockwise parameterization of the curve
and α : [0, 1]→ R the enclosed angle between the x-axis and v(c(t)). The index
of p is then defined as idxp = 1

2π (α(1) − α(0)) measuring the rotation of the
vector field around the singular point.

In Figure 3.3 we consider a singularity in (0, 0) and depict the curve c with
c(0) = c(1) = (1, 0) as a red circle. Further, we see that the enclosed angles
α, depicted as black circle arcs, grow from α(0) = 0 to α(1) = 2π. Thus we
have a singularity (depicted in green) with index idxp = 1

2π (2π − 0) = 1. Note
that singularities exist for all types of N -directional fields, where the index
must always be a multiple of 1/N. To identify the index of a singularity in a
N -directional field, one proceeds similar to singularities in 1-directional fields.
Following a closed curve around the singular point, one measures the change of
the angle of the N -directional field. In a discrete example, as in Figure 3.6d
for example, we choose one of the directions and follow that direction along the
curve.

3.3 Singularities in smooth tensor fields

The singularities of smooth tensor fields have been studied exhaustively in order
to visualize tensor fields. Delmarcelle et al. [1994] show that singularities in
tensor fields can only have indices that are multiples of ±1/2. I try to present a
descriptive version in the following theorem.

Theorem 3.5 A smooth tensor field can only incorporate singularities of in-
dex ±1/2 or multiples thereof.

Proof (Sketch) If we follow a closed, simple curve around a singularity p, not
containing a second singularity, with index ±1/4 as depicted in Figure 3.4, we
see that red and blue vectors trade places. That would not be a problem for a
4-direction field where all four directions are equivalent, but if we have a tensor,
we can distinguish the red and blue direction from each other by the magnitude
of the eigenvalue. So, say blue is the direction of maximum eigenvalue that we
follow, but coming back to the initial point it then must be red. The tensor
has changed smoothly along the black curve, so there must have been a point
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Figure 3.3: Vector field containing a singularity of index 1 (in green), showing the
tracked curve (in red) and the angle arcs (in black).

along the black curve at which the eigenvalues were the same. However, if
the eigenvalues are the same, any plane vector is an eigenvector, and we have
a singular point. This contradicts the way the black curve was chosen and
concludes the proof. �

In homogenization-based topology optimization the layer-normals are aligned
with the stress tensors either by demanding it through the implementation or
in a gradient descent algorithm since layers aligned to the load-path are optimal
[Pedersen, 1989]. Therefore, the following singularity types are found regularly
in the output fields of the homogenization approach.

An example for a singularity of index −1/2 is given in Figure 3.6a where all
corners of a triangle are pulled apart (see Figure 3.5a). Figure 3.6b shows a
singularity of index −1. This can be seen as two singularities of type −1/2
pushed together. This type of singularity occurs in a corner loaded square (see
Figure 3.5b). Figure 3.6c shows a singularity of index 1/2 as occurs for example
in a center loaded clamped beam (see Figure 3.5c).
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Figure 3.4: Sketch of a singularity with index 1/4.
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Figure 3.5: Examples of load cases leading to singularities.

3.4 Singularities in 4-direction fields

It is essential to differentiate between the 4-vector field described by a stress
tensor field and the 4-direction field described by the layer-normals output by
the homogenization approach. The latter can also incorporate singularities of
index ±1/4 due to numerical errors, regularization of the layer-normals or simply
due to the optimizer being stuck in a local minimum.
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(a) 1-vector field index −1/2 (b) 1-vector field index -1

(c) 1-vector field index 1/2 (d) 4-direction field index 1/4

(e) 4-direction field index −1/4 (f) 1-direction field index −1/4

Figure 3.6: Vector and direction fields for different singularities.



28 Vector fields and singularities (related to Paper-II)

Figures 3.6d and 3.6e show 4-direction fields incorporating each a singularity
of index ±1/4. It is impossible to separate these 4-direction fields into two 1-
direction fields, which is shown in Figure 3.6f. Especially regularization seems
to result in singularities of index ±1/4. Increasing the regularization value γθ
limits the angular changes. Figures 3.7a - 3.7f depict how a singularity of index
±1/2 is spatially ripped apart more and more with increasing regularization. In
this example the singularity of index ±1/2 is split into two singularities of index
±1/4, that are located in the center of the domain at the end of the red lines.
The red lines indicate where the direction fields jump by 90 or 180 degrees.

(a) Vector fields for γθ = 0.0 (b) Density for γθ = 0.0

(c) Vector fields for γθ = 0.1 (d) Density for γθ = 0.1

(e) Vector fields for γθ = 0.5 (f) Density for γθ = 0.5

Figure 3.7: Vector fields and densities for different degrees of regularization.

3.5 Relation between the location of
singularities and the material distribution in
the homogenization results

For de-homogenization, it is of importance to understand where singularities
occur in the layer-fields output by the homogenization approach. I am not aware
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of a theoretical solution to this, but we observe that, in general, singularities
occur in regions with very high or very low density.

Let us assume that in the output of the homogenization approach, the layer-
normals are well-aligned with the stress directions everywhere, such that singu-
larities in the stress field correspond to singularities in the layer-normal fields.
We investigate a singularity p, where the stress field is non-zero. At such a
singular point the stress field rotates with an index idxp 6= 0. Thus, in the
immediate surrounding, we see all directions in the interval I = [0, 2πidxp].
Suppose we measure the angular velocity on several curves around p. In that
case, we realize that the shorter the curve, i.e., the closer to p, the higher the
angular velocity becomes, as the field always needs to rotate by 2πidxp. Or
in other words, at p, the stress field turns infinitely fast. The homogenization
approach outputs two layer-normals n1,2 and widths w1,2 and thus a density
ρ = w1 + w2 − w1w2 for the element containing p. Now, if 0 ≤ ρ < 1, only
the directions n1,2 in I are well-aligned with the unit cell. Thus, for all other
directions in I, a shearing force will arise. The optimizer can improve the com-
pliance by making the element containing p isotropic, which means that we can
observe a density peak ρ→ 1 in the vicinity of the singularity p. The same ef-
fect can be seen in Figure 3.7, where the material is distributed differently since
the layer directions differ from the stress direction due to regularization. It is
important to note that singularities also may occur in void regions. Following
the above thought of using material to create isotropic elements, it is intuitively
understandable that the optimizer mostly tries to stay clear of regions with fast
turning stress fields and hence creates singularities in elements with ρ = 0 as
well.

The above observation does not allow a prediction of where singularities occur in
the layer-normal fields. However, it does allow to reason, why regions containing
singularities can often be entirely filled with material in the post-processing
without an excessive amount of additional material needed as we already see
a density peak. In general, one needs to be careful regarding the occurrence
of singularities as the above observation assumes layer-normal fields that are
well-aligned to the principal stress directions.





Chapter 4

Integration based
de-homogenization

In this chapter, I will discuss approaches to de-homogenization that make use
of integration. First, I visit earlier work done on de-homogenization and related
work of other research fields, namely computer graphics. Second, I will discuss
an approach to de-homogenization of layer-normal fields that contain singulari-
ties and was published in Stutz, Groen, et al. [2020] [Paper-II]. The full paper is
provided in Appendix B. Lastly, in this chapter, I will discuss integration-based
de-homogenization of three-dimensional problems in a singularity-free context.
This work has been published, in parts, in Groen, Stutz, et al. [2020] [Paper-
I]. The full paper is provided in Appendix A. Before we visit the related work
in Section 4.1, I would like to give a short overview of the work I did on de-
homogenization in Paper-I and Paper-II.

In Paper-I, we found that microstructure orientations in three dimensions can
be noisy due to non-uniqueness of the optimal solution introducing singularities
that are not mechanically necessary. We investigated the influence of starting
orientations and regularization on the fields and were able to produce far less
noisy fields. In combination with a newly developed combing strategy, we were
able to de-homogenize the fields and create well-performing mechanical struc-
tures. The combing procedure has later been altered and used in Paper-II as
well.

In Paper-II, we found that the starting orientations of the microstructure ori-
entation can influence the resulting structure without a loss in performance.
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We also found that starting orientations and regularization influence the loca-
tion and presence of singularities. Further, in Paper-II, we used a method from
computer graphics [Kälberer et al., 2007] to de-homogenize topology optimiza-
tion results containing singularities. We obtained well-performing mechanical
structures without restriction on the location where singularities needed to lie.

4.1 De-homogenization for smooth, continuous
and singularity-free 4-direction fields
(related to Paper-II)

In this section, we look at de-homogenization by discussing related work and an
example in Figure 4.1. This section has originally been published in Paper-II;
the full paper can be found in Appendix B.

Pantz et al. [2008] were first to propose a method to project the unit square
microstructure macroscopically using an integration-based method. Their de-
homogenization approach minimizes an alignment energy to find a parameteriza-
tion aligned with the orientations of the microstructure. The approach assumes
two separate vector fields, whose orientation is not of importance. Later, Groen
and Sigmund [2018] simplified the approach by Pantz and Trabelsi, still using
two separate vector fields, however, with the challenge of having consistently
aligned vector fields as the approach is not invariant to angle jumps of angle π.
This was solved by using a connected component analysis on the vector fields.
Both approaches do not explicitly deal with angle jumps of angle π/2.

Earlier work [Allaire, Geoffroy-Donders, et al., 2018; Groen and Sigmund, 2018;
Pantz et al., 2008] de-homogenize the square unit-cell with a rectangular hole
using two periodic layers superimposed onto each other. We follow the same
approach in Paper-II. Provided that vector fields are separable (i.e., no singular-
ities of index ±1/4) we can use the procedure as presented in Groen, Wu, et al.
[2019] for de-homogenization. I want to use the rest of this section to present
that approach to de-homogenization. Note that Figure 4.1 shows the main steps
of this method for a standard cantilever example.

From a 4-direction field (Figure 4.1a) two 1-direction fields are extracted (Figure
4.1b). Based on the two smooth 1-direction fields ni, i ∈ {1, 2} one creates two
mapping functions φ1 and φ2 that preserve the orientation of the microstruc-
tures. It should be noted that the map does not need to be strictly conformal.
The values of φi are allowed to be inaccurate when there is no material in the
layer (i.e., wi < 0.01) or when the domain is completely solid (i.e., ρ > 0.95).
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Hence, the problem only needs to be solved accurately in the intermediate mate-
rial part of the domain of the i-th layer Ω̃i. This leads to the following spatially
weighted partial differential equations (PDE),

αi1(x)∇φi(x) = αi1(x)ni(x), x ∈ Ω

s.t. αi2(x)∇φi(x) · ti(x) = 0, x ∈ Ω
(4.1)

where ti denotes the orthogonal vector to ni. The domain is separated into
three parts, which dictate the weights on the objective αi1 and the weights on
the constraints αi2,

αi1(x) =


0.01 if wi(x) < 0.01,

0.1 if ρ(x) > 0.95,

1 if x ∈ Ω̃i.

αi2(x) =


0 if wi(x) < 0.01,

0 if ρ(x) > 0.95,

1 if x ∈ Ω̃i.

(4.2)

Numerically, we solve the above-mentioned problem as a linear system using
the finite element approach, where the constraint is enforced in an augmented
setting using penalty parameter γφ, called the alignment weight. Figure 4.1c
shows one of the two parameterization φi for the cantilever example. Contour
lines have been added for a better understanding. Figure 4.1d shows the cosine
of the parameterization indicating all isocontours and the periodic structure.

With both parameterizations known we can create an implicit geometry descrip-
tion ρ̃i for each of the layers:

ρ̃i(x) = H

((1

2
+

1

2
S {Piφi(x)}

)
− w̃i(x)

)
. (4.3)

Here H is the Heaviside function and S ∈ [−1, 1] corresponds to a triangle
wave. Furthermore, Pi is a periodicity scaling. Hence, the design can be de-
homogenized by an implicit geometry function ρ̃ as,

ρ̃(x) = min

{
1,

2∑
i=1

ρ̃i(x)

}
. (4.4)

Finally, we can impose an average layer spacing ε, which can be interpreted as
the unit-cell size. To do so, we define the periodicity scaling parameter Pi based
on the average lattice spacing in the domain of interest Ω̃i,

Pi =
2π

ε

∫
Ω̃i

dΩ̃i∫
Ω̃i
||∇φi(x)||dΩ̃i

, (4.5)
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(a) 4-direction field (b) 1-direction field

(c) parameterization with some isocurves (d) Cosine wave

(e) Projection using ω (f) Combining two layer projections

Figure 4.1: Projection pipeline for standard cantilever beam – from a 4-direction
field to de-homogenized mechanical structure.

where the average layer spacing ε allows to steer the average spacing between
the structural members. Figure 4.1e shows ρ̃i and ultimately ρ̃ is depicted in
Figure 4.1f.

4.2 Singularity aware de-homogenization in two
dimensions (related to Paper-II)

With the knowledge accrued about singularities in the last chapter, we are able
to study examples that contain singularities. In this section, I shortly talk
about earlier work on singularity containing examples. I then present how we
propagate consistent labeling of the direction fields in the case of singularities
(see Section 4.2.1) and show the connection to quad-meshing (see Section 4.2.2).
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Pantz et al. [2010] investigated the challenge of singularities in fields arising from
the homogenization approach for the first time. The singularities with indices
1/2 are all located in void regions and are nucleated, i.e., the areas containing
singularities are excluded from the parameterization step and onward. Geoffrey-
Donders [2018] proposed a method of spotting singularities of index ±1/2 using
a technique explained in more detail in Hotz et al. [2010]. This only allows for
jumps of angle π. In order to deal with the singularities, correction functions
are computed to prevent mismatches at seams.

For the following sections it is important to know about related work from com-
puter graphics. The landmark contribution of Kälberer et al. [2007] proposed the
"Quad-Cover" algorithm for field-guided quad meshing using multiple coverings.
Multiple coverings in the sense that the parameterization domain is duplicated
multiple times. This means, that the rotationally symmetric field simplifies to
a vector field on every single covering and thus becomes integrable. In practice
only a single parameterization domain is used and operators to account for the
different coverings are introduced. Bommes et al. [2009] proposed a refinement
of Quad-Cover, solving the resulting system in an iterative approach yielding
an improvement of the obtained parameterizations.

4.2.1 De-homogenization in the presence of singularities

In the presence of singularities the above described methods for de-homoge-
nization can fail for several reasons. Depending on the index of the singularity
different issues can arise:

• If only a singularity of index−1 is contained in the 4-direction layer-normal
field, the separation into two integrable 1-direction fields is still possible
(see Figure 3.6b). As locally neighboring vectors need to be pointing in
the same direction the extraction of vector-fields does not arise trivially.
This extraction is called combing. In practice, a breadth-first search has
shown to be challenged by this task as depicted in Figure 4.2b because the
singular point is hit. For topology optimization fields more robust results
can be reached by expanding the search through intermediate densities
first, before expanding into void and solid. This algorithm has been pro-
posed in 3D in Paper-I and a 2D version is explained in Section 4.2.1.1
and depicted in Figure 4.3. The result for the corner loaded square can
be seen in 4.2c.

• In the case of a singularity of index ±1/2 the 4-direction field can still be
combed, such that two separate 1-direction fields arise (see Figure 3.6a,
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3.6c). However, the combing of these 1-direction fields cannot be done
consistently anymore. Any combing strategy will inevitably create mis-
matches, i.e., some neighboring elements will contain vectors that are ro-
tated by π (see further Section 4.2.1.2). A promising approach to extract
a high-resolution structure for such fields has been proposed in Geoffrey-
Donders [2018].

• In case of a singularity with index ±1/4 the whole procedure gets even more
challenging. Recall that following a curve c around a singularity of index
1/4 in a 4-direction field means that we return to the start of our curve
misaligned by π/2 (see Figure 3.6d-3.6f). Therefore, we cannot find two
1-direction fields to which we can assign the directions of our 4-direction
field. Instead, one needs to cut open the field in such a way, that one can
integrate the 1-direction fields using multiple coverings as introduced in
Kälberer et al. [2007]. I will discuss this topic in Section 4.2.2.

4.2.1.1 Combing the 4-direction field

As a first step, we have to comb our 4-direction field. This means we want to
choose two orthogonal 1-directions for every element. In quad meshing, this is
normally done with a breadth-first search as shown in Kälberer et al. [2007]. As
the homogenization approach results are noisy and unreliable in elements with
very low or very high density, it makes sense to prioritize combing in medium-
density regions. In Figure 4.3 we see such a density-based approach, where
the chosen directions are given as black arrows and seam edges are depicted
in bright red. We color the elements according to the time where they are
visited by the combing algorithm. For readability, we bundle 50 elements to
one step and color them with the same color. Unlike in Paper-I we only use the
direction of a single neighboring element to compute the direction to be fixed
in element f . This allows for a much faster algorithm and is possible due to the
angular information being more robust in 2D. The density priority is obtained
by ρpriority = |ρstart − ρf |, where normally ρstart = 0.5 is chosen. We therefore
comb the field first in areas with a density close to 0.5 and then spread out
into the remaining domain. The numerical implementation of the combing only
selects one direction per element. The second direction is implicitly given as the
rotation of the extracted 1-direction field by π/2.

4.2.1.2 Finding the seams

For every 4-direction field containing a singularity with index 1/4 or 1/2, we
receive a combed 1-direction field that has jumps of angle π/2 and/or π. Such
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fields are not integrable and to be able to parameterize our domain, we need to
cut open our mesh as proposed in Kälberer et al. [2007].

Definition 4.1 (Seams, mismatch, seam edge) Two directions whose
enclosed angle exceeds π/4 are said to mismatch by π/2. Accordingly, two
directions whose enclosed angle exceeds 3π/4 are said to mismatch by π. An
edge e is called seam edge if the directions in the two adjacent elements f1, f2

mismatch. A seam is any series of connected seam edges.

(a) 4-direction field before combing (b) Breadth-first combing

(c) Density-based combing

Figure 4.2: Example of two different combing strategies for a given 4-direction field
resulting in different seams. The breadth-first combing only uses information about
the neighborhood of elements, whereas the density-based combing uses density values
to prioritize the combing of elements.
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Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8

Figure 4.3: Extraction of a 1-direction field using a density-based combing strategy.
The combing is started at a root element and follows intermediate densities first. The
colors show steps of 50 elements at a time, whose 1-direction has been fixed. The
colors show steps of 50 elements at a time, whose 1-direction has been fixed.

Figure 4.4: Sketch of cutting a grid open between two neighboring elements at a
seam edge.

4.2.2 Constrained mixed integer solver

In Quad-meshing, multiple coverings and a method to address seams were intro-
duced in Kälberer et al. [2007]. An expansion introducing an iterative scheme
to solving for the parameterization is given in Bommes et al. [2009]. We want to
exploit the underlying mechanisms to create a topology on which we can inte-
grate the combed fields, combining them with the integration scheme introduced
in Groen and Sigmund [2018]. Therefore, we give a short simplified introduction
to Kälberer et al. [2007] and Bommes et al. [2009] in Sections 4.2.2.1-4.2.2.3.

4.2.2.1 Cutting the mesh open

As a first step, one cuts open the mesh along the seams created in Section
4.2.1.2. Let e = (v1, v2) be a seam edge, connecting the vertices v1 and v2 as in
Figure 4.4. The edge e separates the two elements f1 and f2. Auxiliary vertices
ṽ1 and ṽ2 are introduced and the connectivity of f2 is changed from [v1, v2, vt, vs]
to [ṽ1, ṽ2, vt, vs].
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4.2.2.2 Gluing the mesh together

If one would solve the resulting linear system in Equation 4.1 on this cut open
mesh, disconnected structural members would arise at the seam locations, since
the integer isolines on the left and the right side of the seam would not meet
up. Therefore, one needs to make sure that the parameterizations φ1 and φ2

in vertex v differ by integers i, j from the parameterizations in ṽ. This ensures
connected bars and also the same spacing between bars on both sides of the
seam. In case of a singularity of 1/4 the parameterization φ1 can corresponds
to the parameterization φ2 on the other side. These rotations Rote90 are given
implicitly by the combed field. Kälberer et al. [2007] formulate the rotational
and integer condition with the following equations

(φ1(ṽ1), φ2(ṽ1)) = Rote90((φ1(v1), φ2(v1))) + (i, j),

(φ1(ṽ2), φ2(ṽ2)) = Rote90((φ1(v2), φ2(v2))) + (i, j),
(4.6)

where i, j ∈ Z enforces that the integer isolines meet up. The operator Rote90

accounts for the mismatch of the rotations on both sides of the seam. It can
be seen as a multiplication with the imaginary number i in the complex plane,
where we regard the parameterizations (φ1(v1), φ2(v1)) as a complex number.
Maybe most intuitively is the rotation with angle π. When we look at Figure 4.4
and think of the vectors as gradients of the parameterizations φ1 and φ2, we see,
that if the value of a parameterizations φ increases on one element, then it must
be decreasing on the other element. Thus the signs of the parameterizations need
to change, which corresponds to a multiplication with i2. For rotations of angle
π/2 or 3π/2 the two parameterizations φ1 and φ2 need to switch position, since
the "blue" field becomes the "red" field. This corresponds to a multiplication
with i or i3 in the complex plane. If we define the angle as the rotation in
counterclockwise direction, we get:

Rote90((φ1(v1), φ2(v1))) = il(e)(φ1(v1), φ2(v1)),

where l(e) ∈ {1, 2, 3} is given by the mismatch of the angles at edge e.

Further details about the operator Rote90 and this procedure can be found
in Bommes et al. [2009] and Kälberer et al. [2007]. We make use of the con-
straint mixed integer solver provided in Bommes et al. [2012] to solve for the
parameterizations.

4.2.2.3 Solving for the parameterization

Once the system is assembled, it is solved in the continuous case, i.e., no integer
restrictions are applied at first. This yields an approximation to the desired so-
lution solving the problem up to disconnected bars at the seams. The mismatch
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variables (i, j) can now be seen as slack variables j ∈ J , where J is the set of
all slack variables. For every iteration the slack variable closest to an integer

k = arg min
j∈J

| j − round(j) |,

is enforced to round(k) and the new system is solved. In an iterative fashion,
this procedure is continued until no more slack variables are left.

4.2.3 Parameter choice for homogenization and
de-homogenization

The homogenization and the de-homogenization are both influenced by some key
parameters. The pipeline discussed above allows us to study different examples
of start orientations for the layer-normals and regularization values (see Section
4.2.3.1). Further we also outline the important de-homogenization parameters
(see Section 4.2.3.2).

4.2.3.1 Influence of the start point choice and the regularization of
the homogenization approach

(a) Structure (b) Enlargement of the centre of the
combed vector fields

Figure 4.5: Example of a corner loaded square using principal stresses as a start
guess for the layer-orientation, no regularization applied.

It is known for the corner loaded square (see Figures 3.5b, 4.5 - 4.8) that there
does not exist a unique optimal solution. The shown examples were all achieved
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(a) Structure (b) Enlargement of the centre of the
combed vector fields

Figure 4.6: Example of a corner loaded square using principal stresses as a start
guess for the layer-orientation, regularization γθ = 1

5
applied.

using a resolution of 120 x 120 elements for the topology optimization as well as
for the parameterization step. To visualize the resulting structures, we choose
for the de-homogenization an average layer spacing ε = 5hf , where hf = 15 is
the number of fine scale elements used, and an alignment weight γφ = 50. For
the examples in Figures 4.6 and 4.8 the value γθ = 1

5 is applied. In this example
we see that the start guess dictates the resulting structure. If the start point
for the homogenization approach consists of a grid-aligned 4-direction field we
receive the structures depicted in Figures 4.7 and 4.8 that are fairly grid-aligned.
However, if we solve one finite element step, assuming that in all elements we
have a density ρ = 1, we receive a stress tensor field, whose eigenvectors can be
used as a start guess for the homogenization approach, as shown in [Paper-I].
The results differ from the grid-aligned start guess and are shown in Figures 4.5
and 4.6. Note that even if we impose regularization, the start guess still dictates
the outcoming structure as shown in the Figures 4.6 and 4.8. With the principal
stress directions as starting guess we receive spatially ripped apart singularities,
when imposing regularization. With the uniform grid as starting guess we stay
completely clear of getting a singularity in the center of the domain. Instead
we receive singularites of index −1/4 near the corners for the example shown in
Figure 4.7 and no singularities at all for the example shown in Figure 4.8. Note
that despite the large geometric variations in these solutions, compliance values
Ch for obtained homogenization results are extremely close demonstrating the
non-uniqueness of this problem.



42 Integration based de-homogenization

(a) Structure (b) Enlargement of the centre of the
combed vector fields

Figure 4.7: Example of a corner loaded square using grid-aligned directions as a start
guess for the layer-orientation, no regularization applied.

4.2.3.2 Alignment weight γφ and structural member thickness ε

There are two main parameter choices influencing the result during the de-
homogenization: The alignment weight γφ and the average layer spacing ε. We
refer to Groen and Sigmund [2018] for the choice of the layer spacing ε. For com-
parison reasons, we use in this subsection an ε = 10/L, where L is the resolution
in vertical direction. Further, topology optimization and de-homogenization are
done on the same resolution. If no singularity is present, then the alignment
weight γφ should be chosen in a range of 100-1000 as shown in Groen, Wu, et al.
[2019]. It holds, that the lower the maximal absolute divergence of a vector
field, the bigger ε can be chosen, as it simply enforces a very strict alignment to
the second vector field. However, in case of a singular point, the field spins with
a certain index around that point. If we now enforce a big alignment weight
on a low-resolution (80 x 20 elements) example we receive stretched isocontours
as shown in Figure 4.9a. The gradient of the parameterization becomes almost
zero in a large region. The constraint of Equation 4.1 is implemented as a pe-
nalization term multiplied with the alignment weight γφ. Note that this term
can be minimized by the gradient becoming zero due to the usage of the dot
product. However, this leads to an increase in the first term of Equation 4.1
and an unwanted stretching of the isocontours. For a low-resolution example,
the space of bi-linear basis-functions is limited and thus the parameterization is
limited in adapting to the rotation around a singularity. This leads to smearing
out of the rotational influence from the singularity to neighboring elements. If
the element size is large, this influences a higher relative area of the optimization
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(a) Structure (b) Enlargement of the centre of the
combed vector fields

Figure 4.8: Example of a corner loaded square using grid-aligned directions as a start
guess for the layer-orientation, regularization γθ = 1

5
applied.

domain. Thus if the alignment weight is chosen very high the gradient becomes
zero in these elements due to the first term of Equation 4.1 being suboptimal
already. This often results in a violation of the volume constraint as can be
extracted from Table 4.1. In order to allow for a better comparison we provide
the value VsCs, which should however not be considered as a sole objective,
since the compliance does not depend linearly on the volume. By using a higher
resolution (160 x 40, 320 x 80, 640 x 160) (see Figures 4.9b, 4.9c and Table 4.1)
most of this problem is resolved. We can see that a trade off in the alignment
weight is still desirable for these high-resolutions. On the one hand, a low align-
ment weight can lead to non-load bearing bars, as isocurves might lead into an
area with zero layer width due to bad alignment. On the other hand, a too
large alignment weight can lead to an overvaluing of the constraint and thus
to stretched isocontours. For the examples in Table 4.1, we observe that the
optimal alignment weight can depend on the resolution γφ between 50 and 5000
dependent on the de-homogenization grid.

4.2.3.3 Island removal via connected component

To get rid of elements that are neither connected to the boundary condition
nor to the load, we do a simple connected component analysis, where we only
retain the largest component. This immediately leads to the desired removal of
islands. However this still leaves some unloaded bars, these can be removed by
a couple of FE analysis and removal of unloaded elements as proposed in Groen
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(a) Isocontours with resolution 80 × 20 and alignment weight γφ = 500

(b) Structure with resolution 320 × 80 and alignment weight γφ = 5000

(c) Structure with resolution 640 × 160 and alignment weight γφ = 5000

Figure 4.9: Examples of center loaded clamped beam for different resolutions and
alignment weights.

and Sigmund [2018].

4.2.4 Conclusion of Paper-II and future work

In Paper-II, we identified the singularities occurring most often in 4-direction
fields arising from homogenization-based topology optimization. Further, we
investigated the location and reasons for singularities to occur. We also showed
the influence of the start guesses of layer-orientations on the outcome of the
optimization. The proposed parameterization approach using an approach very
similar to Quad-Cover allows parameterizing fields containing singularities of
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Table 4.1: Performance for different alignment weights γφ and resolutions res. We use the
following abbreviations: Ch = compliance of homogenization approach, Vs, Cs = volume and
compliance of de-homogenized structure, th, ts, t = time for homogenization-based topology
optimization, the de-homogenization and the overall time in seconds. Since the compliance
does not depend linearly on the volume VsCs should not be considered as the sole objective.

res γφ Ch Vs Cs VsCs th ts t

80
x
20

0 21.89 0.298 61.79 18.42 44.8 5.4 50.2
50 21.89 0.316 32.60 10.30 44.8 6.2 51.0
500 21.89 0.349 24.26 8.45 44.8 5.2 50.0
5000 21.89 0.351 24.50 8.60 44.8 4.0 48.7

16
0
x
40

0 21.82 0.295 337.74 99.52 135.4 11.2 146.6
50 21.82 0.334 24.69 8.25 135.4 10.2 145.6
500 21.82 0.343 22.76 7.81 135.4 10.2 145.7
5000 21.82 0.338 23.46 7.93 135.4 10.8 146.2

32
0
x
80

0 21.84 0.297 71.95 21.39 402.9 34.3 437.2
50 21.84 0.313 22.52 7.05 402.9 30.8 433.8
500 21.84 0.300 24.89 7.48 402.9 30.7 433.7
5000 21.84 0.285 26.75 7.63 402.9 30.8 433.7

64
0
x
16
0 0 22.02 0.298 73.51 21.90 1824.5 112.8 1937.3

50 22.02 0.293 25.57 7.48 1824.5 109.9 1934.3
500 22.02 0.288 25.91 7.46 1824.5 147.1 1971.6
5000 22.02 0.313 22.07 6.91 1824.5 111.5 1936.0

index ±1/4. The proposed parametrization approach also allows us to cut out
areas completely filled with void or solid material from the parametrization
step. These contributions increase the number of designs for which the de-
homogenization method can generate high-resolution near-optimal structures
at a low computational cost.

We also identified several areas for future research. Most importantly we think
that adapting the parameterization to a layer-based mesh would be desirable.
With the proposed method one can exclude elements that have a very low density
for example, but we think it would beneficial to be able to exclude only one of
the two layers when computing the parameterization. Finally, we also identified
the expansion of the presented approach to 3D as future research. However, as I
will get back to in Chapter 5 we decided to go down a completely different route
using no integration to de-homogenize three-dimensional singularity-containing
examples.
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4.3 De-homogenization of singularity-free
structures in three dimensions (related to
Paper-I)

In this section, I will discuss the work I did on the de-homogenization of
singularity-free layer-normal fields in three dimensions. This work has been
published as a part of Groen, Stutz, et al. [2020] [Paper-I]; the paper can be
found in Appendix A. Here, I want to shortly discuss the overall contributions
of the paper and then go a bit more into detail on the challenges arising in three
dimensions compared to two-dimensional problems. I will then explain how we
tried to tackle these challenges with a combing algorithm that takes into account
either the layer-thickness or the densities obtained from the homogenization-
based topology optimization.

4.3.1 Introduction and discussion of paper

Groen, Stutz, et al. [2020] [Paper-I] is an expansion of previous work proposed in
Groen and Sigmund [2018] to three dimensions. We use rank-3 microstructures
with orthogonal layers, which are optimal for the considered single-loading case
problems. As with the work in two dimensions [Groen and Sigmund, 2018;
Stutz, Groen, et al., 2020], the proposed method consists of a homogenization-
based topology optimization step and a subsequent de-homogenization step that
uses integration to find a parameterization and ultimately extracts a mechanical
structure.

Going from two to three dimensions introduces a difficult challenge of non-
uniquely orientated but still optimally orientated layer-normals. This means
that the layer-normals obtained from the homogenization approach may look
incredibly noisy but indeed be orientated optimally. This problem arises due to
planar structures like sheets or walls being able to carry loads in many directions.
I will refer to this problem as the wall problem and describe it in more detail in
Section 4.3.2.

One of my contributions to Paper-I is a combing strategy that considers the
underlying layer-thicknesses to circumvent the arising wall problem. Further,
I investigated the fields arising from three-dimensional homogenization-based
topology optimization. I discovered the influence of the wall problem on de-
homogenization and looked into the occurrence of it. Further, I investigated
the effect of different start guesses on the microstructure orientation. I con-
cluded that orientations based on the stress tensors obtained from an initial
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finite element step yield the best layer-normal fields for our de-homogenization
pipeline. Further, such an initial step also yielded the best performing layer-
normal fields in terms of compliance (see Paper-I) and was able to improve the
solving time. Note, however, that this does not necessarily mean that grid-
aligned start guesses cannot yield well-performing results as shown in Section
4.2.3.1 for the two-dimensional square problem.

In Paper-I, we de-homogenized the multi-scale designs received from the ho-
mogenization-based topology optimization on a fine mesh containing more than
200 million voxels. However, in this section, I will also show that one can eas-
ily use marching cubes [Lorensen et al., 1987] to obtain a smoother surface.
In the paper, we show that the de-homogenized fine-scale structures achieve
outstanding compliance values and reduce the computational cost by order of
three magnitudes compared to density-based topology optimization. Therefore,
our approach is applicable to efficiently obtain ultra-high-resolution large-scale
designs without a high-performance computing system allowing topology opti-
mization to become more valuable to engineers in everyday life.

Of course, we also identified challenges for future research in the paper. Mainly
the expansion of de-homogenization to examples containing singularities, which
we addressed for 2D in Paper-II and 3D in Paper-III. Further, we identified more
robustness for the de-homogenization as desirable. To do so, an understanding
of where and why singularities arise in layer-normal fields must be established.
The last big research area identified is the expansion of de-homogenization to
multi-loading problems with rank-3 structures in two dimensions and rank-6
structures in three dimensions. All of these problems lead to the development
of a new approach presented in Chapter 5 where I investigate singularities in
3D and propose a method that works without all layers needing to be well-
defined everywhere (i.e., circumventing the wall problem). There is an increase
in robustness since one does not depend on a single combing sweep anymore.
Further, the approach in Chapter 5 is usable for multi-load structures and can
treat singularities explicitly.

4.3.2 A new challenge in three dimensions: the wall
problem

Going from the two-dimensional problems discussed in Section 4.2 to three di-
mensions yields a problem with the layer-normal fields. In two dimensions, the
topology optimization results can produce three cases for an element:

1. Both layer-thicknesses w1 and w2 are zero. The element lies in the void.
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Figure 4.10: Visualization of the wall problem. The normal of the wall is constant.
However, the two other layer-normals (in red and blue) can be orientated randomly
since a wall can bear loading in any in-plane direction.

2. One or both layer-thicknesses are above 95%. The element is interpreted
as fully solid.

3. One of the layer-thicknesses is zero, e.g., w1, the other layer-thickness,
e.g., w2, is between 1% and 95%.

In case 1, the optimizer does not know how to align the microstructure since
there is no material. We can not extract meaningful microstructure orientations.
In case 2, the microstructure orientation can be very noisy. Due to the high
amount of materials, the microstructure becomes isotropic, and all layer-normal
orientations are optimal. Therefore the optimizer cannot differ between smooth
fields and noise. Regularization could help to smooth the fields. However,
this is not necessary since in case one and case two, de-homogenization is very
easy. An element whose layer-thicknesses are zero can be omitted from de-
homogenization, and we can completely fill an element with material when one
of the layer-thicknesses is above 95%.

The important case in two dimensions is case 3. In this case, one of the layers is
non-zero and not fully solid. This layer will be well-aligned to the load path by
the optimizer. The fields obtained from the topology optimization are smooth
in case 3 since the load paths do not randomly change in a not fully solid
structure, i.e., singularities should not occur outside of solid and void in two
dimensions, see Section 3.5. The well-aligned layer-normal will now lead to the
corresponding field to be continuous. Note that the second field will also be
continuous as the second layer-normal is orthogonal to the first layer-normal.
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Going to three dimensions, we receive the following possible cases for the layer-
thicknesses.

1. All three layer-thicknesses w1, w2 and w3 are zero. The element lies in the
void.

2. One, two or all layer-thicknesses are above 95%. The element is fully
solid.

3. Two layer-thicknesses are between 1% and 95% (e.g., w2 and w3) and
one layer-thickness (e.g., w1) is zero.

4. Two of the layer-thicknesses are zero (e.g., w2 and w3) and the third layer-
thickness (e.g., w1) is between 1% and 95%.

Here, cases 1 and 2 follow the same logic as above in the two-dimensional case.
In case 3, we have a similar situation as in case 3 of the two-dimensional problem.
Since two layers are well-aligned with the load path, the third, orthogonal layer-
normal will also be continuous. Note here that elasticity has no randomness,
which implies a very low noise level in intermediate-density regions.

However, case number 4 is problematic and needs special attention. The ori-
entation of the microstructure becomes non-unique in this case since two layer-
thicknesses are zero. This is what I call the wall problem and is depicted in
Figure 4.10. Let us assume the layer with intermediate density has a con-
stant normal field; we receive a wall. A wall can bear loading in any direction
orthogonal to the wall’s surface normal. When doing homogenization-based
topology optimization, the microstructure is, in general, aligning with the prin-
cipal stresses. However, the optimizer cannot differentiate between all in-plane
orientations for the wall problem if only gradients are used to determine the
microstructure orientations. We, therefore, receive fields from the topology op-
timization that seem noisy but indeed are optimally aligned. For example, in
Figure 4.10, the red and blue layer-normal can be orientated entirely indepen-
dently of the stress tensors while not affecting the mechanical performance of
the structure.

However, these random orientations due to the wall problem are highly prob-
lematic for de-homogenization since they influence the combing of the fields and
subsequently the parameterization. The two-dimensional approach proposed
in Groen and Sigmund [2018] relaxes integration for the parameterization in
solid and void regions and for layers with zero layer-thickness. Further, heavy
regularization is used on these layer-normals. Those two steps circumvent the
integration problem partially for singularity-free problems. Another approach
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would be to re-mesh the finite elements used for integration. However, one chal-
lenge is that the cut from zero layer width to non-zero layer width is not a hard
cut. In fact, we can see that a layer jumps back and forth from existence to
non-existence. Another challenge is, as we found out, that these regions where
a layer changes from solid to void can influence a mere breadth-first combing
negatively due to noise. Noisy orientations that influence the combing are called
spurious singularities.

4.3.3 Examples used in Paper-I

In this section, I will introduce the examples that we worked with for Paper-
I. We will revisit these examples in Chapter 5. Note that Figure 4.11 shows
sketches of the boundary conditions of all examples.

The most common and best understood example is the Michell cantilever. Fig-
ure 4.12 shows a de-homogenized cantilever design. As shown in Figure 4.11 the
load is distributed over an area of size L/6×L/6 and not just applied at a sin-
gle node. Here L corresponds to the shortest edge length of the design domain.
Further, the elements containing the load area are set to be filled with material.
We do the same for the first L/24 elements from the load area inwards. These
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Figure 4.11: Dimensions and boundary conditions for the four examples used in
Paper-I.



4.3 De-homogenization of singularity-free structures in three dimensions
(related to Paper-I) 51

(a) De-homogenized design using our ap-
proach.

(b) De-homogenized design after ex-
cess material has been removed in post-
processing.

(c) Cut open cantilever after post-
processing.

Figure 4.12: A Michell cantilever optimized on 96 × 48 × 48 elements and de-
homogenized on a fine mesh of 960× 480× 480 voxels.

fully solid elements are added similarly for all other examples as well.

The next example is called the electrical mast and has been proposed in Geoffroy-
Donders et al. [2020]. Here, we only model a fourth of the domain with some
symmetry conditions depicted in red in Figure 4.11. De-homogenized structures
can be seen in Figure 4.13. Figure 4.14 also shows the electrical mast example,
once obtained using de-homogenization and once obtained using density-based
topology optimization. Note that there will arise a singularity at the center of
the electrical mast (in the complete domain) for most results from the homog-
enization approach. This would correspond to a singularity at the edge of the
domain space where the two symmetry planes meet in our modeling. A hori-
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(a) De-homogenized struc-
ture obtained from the ho-
mogenization approach using
24 × 24 × 72 finite elements.

(b) De-homogenized struc-
ture obtained from the ho-
mogenization approach using
48× 48× 144 finite elements.
Here the structure is shown
before post-processing.

(c) The same structure as
in Figure b but here post-
processing has been applied
to removed voxels which did
not contribute to the stiffness
of the stucture significantly.

Figure 4.13: Electrical mast examples cut open to reveal the interior. A voxel mesh
of 1152× 384× 384 is used to depict the examples.

zontal cut through the problem will often show a singularity with index −1 at
this location and will have strong similarities with the two-dimensional problem
depicted in Figure 4.5. Note that strong regularization can split up that sin-
gularity and move it into the modeled quarter of the domain for certain start
guesses for the microstructure orientations.

The third example is called the Michell torsion sphere and shown in Figure 4.15.
The load is applied as a line load around a square with dimensions L/12×L/12.
Figuratively speaking, it has similarities to a towel being wrung out, where one
end is held still while the other end is turned. This also led to the name torsion
sphere. In this example, solid elements are used at both boundary conditions
to obtain symmetry. Note that the holes seen in the outermost shell in Figure
4.15 are due to the structure reaching the boundary of the design domain. With
integrative methods, there is no straightforward way to control that the integer
levels of the parameterization, which produces the structure, do not reach the
domain’s boundary. More control over the structure can be achieved by the
approach I will discuss a bit later in Chapter 5.
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The last example is called L-shaped beam. Passive elements are used to create
the design shown in Figure 4.11. The distributed load is applied to a square
patch of solid materials of size L/6 × L/6. The L-shaped beam example, as
depicted in Figure 4.16, shows some torsion bending coupling, where the cylin-
drical part connects to the cantilever-like structural part closer to the load.

For all examples, a maximal volume limit of 10% has been set for the optimizer.
For more details, please refer to Paper-I. Note that the above results are com-
puted using a heavy-side function to decide if a voxel should be filled or not with
material. Of course, we can also easily employ the marching cubes algorithm
[Lorensen et al., 1987] to obtain a smoother visualization, as depicted in Figure
4.17. However, the structure received from the marching cubes algorithm needs
to be converted to a tetrahedral mesh to do post-processing. This, in turn,
allows though to do additional shape optimization steps to possibly increase the
performance of the de-homogenized design.

(a) View from the
back onto the de-
homogenized and
post-processed
electrical mast
from Figure 4.13c.

(b) Side view of the
structure shown in Fig-
ure a

(c) Back view
onto an electrical
mast obtained
from density-
based topology
optimization.

(d) Side view onto the
electrical mast shown in
Figure c.

Figure 4.14: In Figures a and b we see a de-homogenized design of the electrical
mast after post-processing as also depicted in Figure 4.13c. In Figures c and d we see
a reference design obtained from density-based topology optimization.
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(a) Full view. (b) Sectional view on the level of the loads
to reveal the boundary conditions and the
shell structure.

Figure 4.15: Michell’s torsion sphere optimized on 48 × 48 × 48 elements and de-
homogenized on a fine mesh of 576× 576× 576 voxels.

(a) Angled view of the L-shaped beam. (b) Sectional view on the level
of load. Note the clearly visible
elements that were set to solid
near the load.

Figure 4.16: The L-shaped beam example optimized on 96× 96× 48 finite elements
and de-homogenized on a fine mesh of 768× 768× 384 voxels.

4.3.4 Initialization of the microstructure orientation

To obtain better layer-normal fields for de-homogenization, I compared different
orientations used to initialize the microstructure. I found that using an initial fi-
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(a) Cantilever example with surface ex-
ctracted using the marching cubes algo-
rithm.

(b) Sectional view on the level of load.
Note the clearly visible elements that were
set to solid near the load.

Figure 4.17: Using marching cubes on the results from the de-homogenization yields
smoother surfaces. However, compared to using a voxel-based mesh, post-processing
the above structure would need a conversion to a tetrahedral-mesh first.

nite element analysis to determine the principal stress-directions and using them
as a start guess for our optimization yielded the best results. In Figure 4.18, we
see a comparison of different start guesses used for initializing the microstruc-
tures’ orientation. Note that the start guess can influence the obtained solution,
i.e., the resulting solution to the homogenization-based topology optimization
problem depends on the start guess. This finding has already been discussed a
bit earlier in Section 4.2.3.1. The fields in Figure 4.18 show the layer-normal of
the diagonal elements, where the load is on the left side, and the edge border-
ing the other three-quarters of the electrical mast is on the right side. In the
diagonal cross-sections through the fields in Figure 4.18, we see how a stress
tensor-based starting orientation of the microstructures (Figure 4.18c) yields
smoother fields compared to random (Figure 4.18a) or grid-aligned starting ori-
entations (Figure 4.18b). We found in the paper that using starting guesses
based on stress tensors also led to better compliance values than grid-aligned
starting guesses. In Figure 4.18d, we see that when we increase the lower cut-off
of the density values, we start to cut out elements with noisier orientations. This
finding motivated the investigation of new, density-based combing strategies.

4.3.5 Influence of regularization

To obtain less noisy layer-normal fields, some regularization during the topology
optimization can be helpful. Here it is though important to note that regular-
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(a) Random vectors as starting orientations.
Fully solid (>95% density) and void (<1%
density) elements have been removed.

(b) Grid-aligned vectors as starting orienta-
tions. Fully solid (>95% density) and void
(<1% density) elements have been removed.

(c) Stress tensor-aligned vectors as starting
orientations. Fully solid (>95% density) and
void (<1% density) elements have been re-
moved.

(d) Grid-aligned vectors as starting orienta-
tions. Additionaly to the removed fully solid
(>95% density) and void (<1% density) el-
ements, low-density elements (1-8% density)
have been removed.

Figure 4.18: Diagonal cuts through different electrical mast fields obtained through
different initial microstructure orientations depicting the wall problem. No regular-
ization has been used. Note that the whole frames are printed, but since the de-
homogenized structure consists of diagonal walls we only really see the two fields that
do not contribute significantly to the de-homogenized structure.
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(a) Grid-aligned vectors have been used as a
start guess. An intermediate amount of reg-
ularization has been used (γθ = 0.01).

(b) Grid-aligned vectors have been used as a
start guess. An intermediate amount of reg-
ularization has been used (γθ = 0.10).

(c) Stress vectors have been used as a start
guess. An intermediate amount of regulariza-
tion has been used (γθ = 0.01).

(d) Stress vectors have been used as a start
guess. An intermediate amount of regulariza-
tion has been used (γθ = 0.10).

Figure 4.19: Diagonal cuts through different electrical mast fields depicting the wall
problem. Different amounts of regularization have been applied. In all Figures a-d
fully solid (>95% density) and void (<1% density) elements have been removed.
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ization is applied globally. This means that also layer-normals of active, i.e.,
non-zero layers, are affected. However, since non-active layers do not influence
the compliance, regularization leads to dramatically improved layer orientations
while only increasing compliance by around 2%. In Figure 4.19b, we see that
an intermediate amount of regularization can clean up the normals quite signif-
icantly. However, the orientation of the layer-normals now differs significantly
from the principal stress directions. This can inflict problems by introducing
singularities into the layer-normal fields that do not exist in the underlying stress
tensor fields. For example, in Figure 4.19a, we see that the small amount of reg-
ularization has introduced a singular curve with a negative index into the fields.
We can also see from Figures 4.19c and 4.19d that using a stress tensor-based
start guess leads to much cleaner fields that align better with the underlying
final stress tensors. In general, it might make sense to update the orientations
of the microstructure periodically after a certain amount of iterations to align
with the stress tensors of the homogenization-based structure. This would yield
a good balance between the capability to use regularization and obtaining clean
layer-normal fields.

4.3.6 Layer-thickness and density-based combing
strategies

We decided to use the knowledge that layer orientations are best aligned in
intermediate-density regions to our benefit and introduced a combing strategy
that prioritizes combing based on layer-thickness or element material density.
I will focus the discussion here on treating whole frames based on density as
used in Paper-I since we did not see any significant difference between density-
based and layer-thickness-based field label extraction for our examples. I suspect
that the introduction of regularization cleaned up the fields enough to make
the frame-based combing robust enough to not see a difference to vector-based
combing.

4.3.6.1 Combing for singularity-free problems

We can comb layer-normal fields that do not contain any singular curves such
that we can integrate the separated fields without the introduction of seams. Let
us consider a continuous frame field consisting of layer-normals ±n1,±n2,±n3,
and layer widths w1, w2, w3. We want to extract three smooth and continuous
1-direction fields ñ1, ñ2, ñ3, and their corresponding widths w̃1, w̃2, and w̃3.

In Paper-I, we observe that singularities appear to occur in the void outside the
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mechanical structure or in fully solid regions. We later discovered that singular
curves can also exist in intermediate-density areas but that the singular curve
then aligns to one of the layer-normals. I will discuss this finding and those
so-called traversal singular curves in Chapter 5. Note that for our examples,
we were still able to compute the 1-direction fields in a manner that traversal
singular curves did not affect our results since traversal singular curves align with
a layer-normal and frame extraction is reasonably robust. However, I believe
the approach in Chapter 5 to be better suited at handling traversal singular
curves.

As mentioned, in the absence of singularities, we can propagate a consistent
choice of vectors to obtain 1-direction fields starting from an initial element. To
deal with spurious singularities (arising due to the wall problem, for example),
we propagate field labels through the domain by visiting elements critical to
the mechanical structure first (i.e., elements with intermediate densities). This
approach does not work when singularities occur inside the mechanical struc-
ture (regardless of density). However, these singularities occur only for specific
boundary conditions. In fact, we were aware that there is a singular curve
in the torsion sphere example. However, the singular curve passes from one
boundary condition to the other entirely contained within the void or fully solid
regions. Therefore, we were still able to achieve good compliance values with
our de-homogenized structures.

The observations above inspired the use of a priority queue for combing. Instead
of a mere first-in-first-out prioritization, we create a queue based on the densities
obtained from the homogenization approach. For each element, we can compute
the density as ρ = 1 − (1 − w1)(1 − w2)(1 − w3). As the initial point for the
combing, we can either set an explicit start point or chose the element whose
density is closest to a given starting density ρstart. We can also demand that
for the starting element, all layers widths wi be in the interval [0.05, 0.95], for
example. We set ñ1 = n1, ñ2 = n2, ñ3 = n3, and hence the widths follow
as w̃1 = w1, w̃2 = w2, and w̃3 = w3. For the neighboring elements, we then
compute the density priority ρpriority = |ρstart − ρ|. Here we prioritize smaller
values when sorting the neighbors into the queue Q. Subsequently, the element
in the queue with the lowest ρpriority is taken out, and we fix its 1-direction
fields as discussed below. Lastly, we add its non-visited neighbors to Q. Finally,
we mark the element as visited in a vector V .

If we take an element e out of Q, we want to find the right-handed frame F̃ e
that describes the layer-normals ñ1, ñ2, ñ3,

F̃ e =
[
ñ1(xe) ñ2(xe) ñ3(xe)

]
. (4.7)

There are j = 24 possible frame orientations F je that have to be tested to
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find the best F̃ e. Note that working with frames prevents us from choosing a
vector n twice for two different fields or simultaneously choosing n and −n for
one element. Further, working with right-handed frames ensures a consistent
orientation for all chosen frames. To select the best frame F̃ e, we identify the
set of neighboring elements Ne of element e that already have been visited. For
each neighbor element i ∈ Ne, we identify the rotation matrix Rj

e,i between the
possible orientations F je and the frame F̃ i,

Rj
e,i = F̃

T

i F
j
e. (4.8)

The corresponding orientation angle ψe,i,j that defines the frame orientation can
be calculated as,

|ψe,i,j | = arccos

(
trace(Rj

e,i)− 1

2

)
, (4.9)

Hence, ψe,i,j = 0 would mean that the frame in e coincides with the frame in i
for a given possibility j. The best orientation follows as,

F̃ e = F ke , for k = arg min
j=1,...,24

∑
i

|ψe,i,j |. (4.10)

Once we found frame F̃ e, we store the widths w̃i according to the vectors
ñ1, ñ2, ñ3. Subsequently, we remove element e from the queue and mark it
as visited, and add the non-visited neighbors of element e to the queue. We
repeat this process until we have extracted three smooth 1-direction fields.

4.3.6.2 Different choices of combing and further research

We chose to use right-handed frames since they provided us with robust results.
The above-described method leads to a traversal of all elements in order of den-
sity closest to ρstart, but in a spatially contiguous fashion. Note that it might be
necessary to visit a void or fully solid element to connect two intermediate den-
sity regions. This could be bypassed by allowing only increasing ρpriority values
when visiting elements and instead have multiple combing processes and com-
bining them after termination. For our single-load problems, we have not seen
any need to implement this. Still, it might be a worthwhile topic to investigate
for an expansion to multi-load problems. Multi-load fields have a non-constant
number of vectors and are a lot less consistently orientated in general. An ex-
pansion to multi-load fields would also mean that we would need to treat the
fields separately since we cannot extract frames. We have implemented such
an approach for our fields but found it not majorly advantageous. However, I
would like to share it since it might prove helpful in the future.
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We can easily change the approach from above to extract fields instead of frames.
One extracts a first field prioritized by its layer-thicknesses and subsequently
extracts a second field from the remaining directions. This process is repeated
until all fields have been extracted. Note that this approach is less robust
since the layer-normals are treated separately and not at once, as we do with
frames. To improve the robustness, we can account for the layer-thickness by
weighing the vectors with the layer width. For an element e removed fromQ, we
multiply the normal vectors ±nk with their assigned widths wk where k = 1, 2, 3.
We then calculate the cross products 〈±wknk, w̃iñi〉 for all neighbor elements
i ∈ Ne. We then choose the direction in element e that maximizes the sum over
all its corresponding cross-products. This approach does not only account for
the rotations but also accounts for layer-widths, which might be particularly
useful for multi-load problems, where orientations can be much more similar,
but layer-widths might still differ more. We did not see any additional benefit
over the frame-based approach for our examples, which is most likely due to the
simplicity of our examples.

It could also be of interest to extract multiple combings to achieve a higher trust
in the resulting field labels. Note that using a density-based combing method is
also highly useful for singularity-containing fields. Of course, introducing seams
can deal with singularities, however as shown in Figure 4.2, a breadth-first
search will expand all seams throughout the domain. The combings can then
end up containing many seams due to spurious singularities or noisy fields in
high-density regions. One can profit from using layer-thickness-based combing
the most, if void elements, non-active layers, and fully solid layers are ignored
when creating the parameterization and not just recomputed by regularization
as in our case.

4.3.7 Singularities and areas with highly rotational frame
fields in our examples

After the submission of Paper-I, we became aware of how and where singularities
occur in three-dimensional fields. And we realized that our examples and fields
often were not completely singularity-free, especially not free of spurious singu-
larities, i.e., noisy frame orientations that prevent consistent combing results.
In Chapter 5, I will discuss the research into singularities in three-dimensional
homogenization-based frame fields I did subsequently to Paper-I. For now, I
would like to discuss the findings regarding spurious singularities and singular
curves in the examples mentioned above. It is important to know that all exam-
ples were obtained with a high regularization value (γθ = 0.50). Further, Figures
4.20, 4.21, and 4.22 show outlier frames with a very high rotational energy in
red (around top 0.01%). Note that only non-void elements were considered for
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(a) Back view of the electical mast. (b) Close up view of the head of the electrical
mast example.

Figure 4.20: The electrical mast example. We see some highly rotational frames (in
red) at the foot, where the mast is fully solid. We also see a long singular curve in the
foot, which I would expect from the fields. Note that the upper end is cut short since
there is no material above (see also Figure 4.14). We see some highly rotational fields
where the head and the mast meet. This is not a singular curve, but due to fastly
changing principal stress directions paired with a mostly solid region. Lastly, we see
highly rotational frames near the top plate, either due to the singular curve or due to
the solid elements found in that area.

these figures.

In Figure 4.20, we see the electrical mast example. The expected singular curve
along the boundary of the electrical mast towards the other three non-modeled
quarters can only be seen in the foot of the mast since further up, the elements
lie in the void (see also Figure 4.14). Additionally, we see some areas with high
rotational energy at the bottom of the foot, where the mast is completely solid.
We also see high rotations, where the foot and the head meet. In these elements,
the principal stress directions change rapidly, and the elements become nearly
fully solid; in combination, we obtain these spurious singularities. Finally, we see
some marked elements at the top plate. It is unclear if this is part of the expected
singular curve (possibly moved due to the high amount of regularization) or
solely due to the elements being very high in density in that area. I would
expect a combination of both. Note that all of these highly rotational field
locations are in near fully solid areas, which is part of the reason why our de-
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homogenized examples still perform quite well.

(a) Side view showing the singular curves
within the solid structure.

(b) View onto the boundary condition show-
ing the four singular curves.

Figure 4.21: This figure shows the torsion ball example. We can see how regulariza-
tion splits up a higher index singular curve into four lower index singular curves that
are spatially very close and run from one boundary condition to the other.

In Figure 4.21 we see the torsion ball example. Four singular curves are going
from one boundary condition to the other. In a two-dimensional cross-section
through a torsion ball example obtained without regularization, we would see a
singularity of index 1. However, due to regularization, the singular curve was
split into four singular curves with a lower index. Note that this singularity
traverses from solid to void without passing through intermediate areas, which
is why our de-homogenization still performs so well.

The highly rotational frames of the L-shaped beam in Figure 4.22 are more
challenging to understand. We see highly rotational areas near the load (at the
border to the void) in Figure 4.22a. These are solely spurious angle changes.
In Figure 4.22b, we see highly rotational areas traverse through the domain,
most likely singular curves. We would assume a single singularity from the
stress field, very similar to the torsion ball. I think that the singular curve
has been split again due to regularization, although it is not straightforward
visible in this case. This singular curve is traversing through the active layer
(hence also called traversal singular curve) and does not necessarily need to lie
in a fully solid region. Note that the active layer changes smoothly, and we
can still integrate the field with almost constant layer-normal near the traversal
singular curves. Therefore, the de-homogenized structure still performs well.
However, combing strategies based on frames can be influenced negatively by
these traversal singularities.
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Finally, I would like to note that there exist no singular curves in the cantilever
examples. Sometimes spurious singularities close to the load at the solid-void
boundary can occur, which will look the same as for the cantilever part of the
L-shaped beam in Figure 4.22a.

(a) Angled view depicting highly rota-
tional frames near the load at solid-void
boundary.

(b) View from the bottom onto traversal singu-
larities that were split up due to regularization.

Figure 4.22: The L-shaped beam example. Figure 4.22a shows highly rotational
frames close to the load at the solid-void boundary. Figure 4.22b shows singular
curves passing through the solid domain.



Chapter 5

Non-integrative
de-homogenization

This chapter will introduce a novel, non-integrative method for de-homogeniza-
tion. The chapter consists of two parts. In the first part, I present the novel
approach and show its application to single-load examples [Paper-III]. In the
second part, I will then expand the method to two-dimensional multi-load de-
signs.

5.1 Synthesis of frame field-aligned
multi-laminar structures (related to
Paper-III)

Previous work on de-homogenization and the work discussed in Chapter 4 is
using integrative methods for de-homogenization. We there construct a param-
eterization from the direction fields and then extract a structure from it. In
general, any de-homogenization method needs to address the following three
challenges:

1. We want to synthesize structures with globally connected structural mem-
bers.
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2. The global structural members need to align well locally with the layer-
normals.

3. The structural members should be evenly spaced.

We saw in Paper-II that we can extract globally connected structural mem-
bers (challenge 1) for singularity-containing fields using seems to enforce integer
jumps at seams. We can address challenge 2 by finding a large enough alignment
weight to obtain structural members well-aligned with the layer-normals. How-
ever, a large alignment weight also means that the global structural members
become less evenly spaced for integrative methods, leading to missing structural
members (i.e., spread out isocontours) (see Section 4.2.3.2). It is important to
note that for methods using integration, the second and the third challenge are
opponents and that we must tune the alignment weight for optimal solutions.

We realized that we need to address these opposing objectives, local alignment,
and globally evenly spaced structural members. We were also interested in
obtaining a better understanding of where singularities occur in three dimensions
and how we could handle them more explicitly. And finally, we saw that it would
be tricky to expand integrative methods to multi-load case problems where not
all directions are well-defined.

These reasons motivated the development of a novel approach to de-homoge-
nization that does not use integration. Instead, the new method is a two-stage
approach that separates the problem of finding globally connected structural
members from the problem of finding evenly spaced structural members. We
present this new approach in Stutz, Olsen, et al. [2021] [Paper-III], which can be
found in the Appendix C. Our work is focusing on orthogonal fields (also called
frame fields), where all three layer orientations are orthogonal. Note, however,
that there is no explicit need for the fields to be orthogonal for topology opti-
mization examples, as discussed a bit later in Section 5.2.

For the three-dimensional case, we can rephrase the three challenges above as fol-
lows. Given microstructure or lamination orientations, we seek a set of surfaces
such that each surface aligns everywhere with one of the lamination normals.
The surfaces should be evenly spaced with a prescribed average spacing. In de-
tail, we first seek a set of surfaces whose local surface normals are aligned with
the frame field. Such a superset of surfaces can be seen in Figures 5.1a and d.
We find these surfaces individually using a stream surface tracing approach. A
novel optimization energy then allows finding an evenly spaced subset of stream
surfaces given a large superset. A set of selected stream surfaces can be seen in
Figure 5.1b and e.

The main contribution in this chapter is a method that solves the selection prob-
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lem mentioned above fully automated only depending on the local orientations
and not on any global notion. In Paper-III, we further provided two methods for
the synthesis of output shapes. For fields arising from topology optimization, we
create a volumetric solid by compositing samples of each stream surface onto a
voxel grid. See Figure 5.1e for an example. This splatting procedure is described
in Section 5.1.4.2. The second method for synthesizing output shapes produces
an-isotropic hexahedral meshes. Paper-I and Paper-II suggest a strong relation-
ship of de-homogenization to quad-dominant meshing in 2D and hex-dominant
meshing in 3D. However, depending on the examples, a deterioration of the
hexahedra is desirable, as is the anisotropy resulting thereof. For specific frame
fields, we can compute a graph of the intersection points of the stream surfaces
and output a combinatorial structure from which we can obtain a hexahedral
mesh. This is discussed in Section 5.1.4.4 and depicted in Figure 5.1f.

Here, in this thesis, I will focus on my contributions to Paper-III and therefore
only summarize the tracing of stream surfaces and the hex-mesh extraction.

Figure 5.1: Given field directions as an input, we can generate a set of optimal
laminations aligning exactly with the field orientations (Figures a and d). Using a
novel optimization energy that only needs local orientation awareness, we can create a
well-spaced subset of these laminations (Figures b and e). We then proceed to create
near-optimal, highly stiff multi-laminar structures as a volumetric solid (Figure c) or,
in some cases, output a hexahedral mesh (Figure f).



68 Non-integrative de-homogenization

5.1.1 Related work

Frame fields arising from topology optimization impose particular requirements
on hexahedral mesh generation schemes. For example, the frame fields might
exhibit anisotropy to an extent where one edge length deteriorates. Moreover,
the rotation of the frame fields might be higher than usual in the case of fields
designed for hexahedral meshing, which could make the fields nonintegrable.
These challenges suggest that existing hex-meshing or hex-dominant meshing
algorithms are not suitable for such problems.

In recent years, density-based topology optimization has been used to find op-
timal mechanical structures in various fields. In the area of compliance mini-
mization, giga-scale finite element models have been applied [Aage et al., 2017;
Baandrup et al., 2020]. While such large-scale topology optimization makes
the benefits of topology optimized structures very apparent, it also relies on
supercomputing hardware and is not applicable in real time, which is one of the
key steps towards the goal of incorporating topology optimization in the every-
day engineering design process. It should be noted that approaches to address
the high number of finite element needed have been proposed [Liu, Hu, et al.,
2018; Wu, Dick, et al., 2016]. However, the mesh-dependency of density-based
methods sets a very high lower limit on the amount of finite elements needed.

Paper-I and Paper-II indicate a strong relationship of de-homogenization to
quad-dominant meshing in 2D and hex-dominant meshing in 3D. However, de-
pending on the examples, a deterioration of the hexahedra is desirable as is
the anisotropy resulting thereof. As shown in [Groen and Sigmund, 2018] and
Paper-II, spurious singularities can occur. In 3D, orientations of the microstruc-
tures are not unique, a problem for the de-homogenization that can to a certain
degree be circumvented by regularization [Paper-I].

Approaches for truss-structures have been presented for singularity-free fields in
Arora et al. [2019] and Larsen et al. [2018] and in Wu, Wang, et al. [2019] for
fields containing singularities.

Field-based quad-meshing and hex-meshing is most often done by combing fields
and integrating to find scalar functions with integer-jump conditions, where the
combed field are differently labelled [Bommes et al., 2009; Kälberer et al., 2007;
Nieser et al., 2011]. A lot of research for field-based hex-meshing focuses on
achieving pure-hex meshes [Huang et al., 2011; Palmer et al., 2019; Ray et al.,
2016; Solomon et al., 2017]. These methods focus on the field design part of
the hex-meshing pipeline with the main goal to achieve as many hexahedral
elements as possible. Thus, these methods minimize a smoothness energy while
ensuring that at the surface one direction of the octahedral frame is well-aligned
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with the surface normal [Huang et al., 2011]. As a natural effect, hex-meshes
extracted from such a model tend to have minimized anisotropy and minimized
deterioration of the hexahedral elements.

For de-homogenization and hex-dominant meshing of homogenization-based
topology optimization results, it is of importance to note that the fields are
typically prescribed (rather than optimized during the meshing procedure) and
cannot be changed to obtain more smoothness without reducing the mechanical
performance of the obtained structure [Paper-II]. Approaches like Kälberer et al.
[2007] and Nieser et al. [2011] are promising for de-homogenization but contain a
pitfall since fields arising from the homogenization approach often have singular-
ities of higher indices (±1/2 in 2D) or have significant divergence at mechanical
boundary conditions. Such higher indices imply a greater rotational speed and
typically integration based methods for de-homogenization must enforce align-
ment to the fields with a penalization approach [Groen and Sigmund [2018];
Paper-I; Paper-II]. This penalization weight trades off structural alignment with
spacing of the structural members and implicitly introduces anisotropy. If the
alignment weight is chosen too small, the resulting parameterization will not
align well with the underlying field as it tries to create unit-length gradients. If
the alignment weight is chosen too large, the gradient of the parameterization
will become zero and result in stretched out iso-contours and missing structural
members [Paper-II]. These problems might be mitigated by introduction of ad-
ditional optimization terms, which has so far not been deeply investigated. It is
important to note that anisotropy is desired and of the utmost importance for
the mechanical performance.

In field-based hex-dominant meshing as done by Gao et al. [2017], the isotropy
of the desired hexahedra is a key ingredient of the algorithm. This is due to
the optimization, which trades off the regularity of the hexahedra and their
alignment to the underlying field. An expansion to anisotropic hex-dominant
meshing might be achieved, if the desired hex-edge length was known beforehand
and not only given implicitly.

Ni et al. [2018] have a promising approach to solve for vertex position of a
tetrahedral mesh, which is similar to Gao et al. [2017]. The nature of the
approach is aimed at producing vertices of a hex-mesh with a prescribed isotropic
edge-length. Note that Gao et al. [2017] and Ni et al. [2018] create tetrahedra
where the hexahedra do not align with the field, which could cost dearly in
terms of mechanical performance, when used for de-homogenization, since the
resulting structure would not align with the load path at all in these regions.
Recently, polycube methods have advanced the hex-meshing field, but since
methods like Guo et al. [2020] and Livesu et al. [2020] do not rely on fields they
are not applicable to de-homogenization.
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The work of Takayama [2019] expanding the 2D work of Campen, Bommes,
et al. [2012] and Campen and Kobbelt [2014] relies on user-defined (as opposed
to frame field aligned) implicit surfaces as an input to guide the creation of
hex-meshes. Moreover, several authors, including us, draw inspiration from
the notion of the spatial twist continuum which is, essentially, the dual of a
hexahedralization and was introduced by Murdoch et al. [1997].

Campen, Silva, et al. [2016] create a foliation as a means of finding a bijective
parameterization of a 3D shape. While there is a clear similarity between the
notion of a stream surface and a transversal section of a leaf of a foliation of a
3-manifold [Milnor, 1970], their aim is to create a bijective map entailing strong
conditions on the direction field whereas we take the frame field as is.

It should be mentioned that stream surfaces are often used as a visualization
tool seen in fluid dynamics [Hultquist, 1992; Machado et al., 2014].

We strive for global surfaces or layers, which are locally well-aligned with the
results from the homogenization-based topology optimization, while incorpo-
rating implicitly the anisotropy dictated by these fields and circumventing the
issue of missing structural parts due to enforcing field alignment and resulting
zero-gradient regions.

5.1.2 Frame fields and singularities in three dimensions

We are mainly motivated by fields arising from topology optimization, but one
can also think of fields that would not permit generating laminations or even
hexahedral meshes obtained from an integration-based method. In the following,
we will shortly discuss these fields and their origins. In Section 5.1.2 we will
give a discussion of singularities in three dimensions. As we will demonstrate in
Section 5.1.5, our selection algorithm can take fields from any of these sources
as input; it is designed to extract field-aligned structures while being agnostic
to the source of the field.

5.1.2.1 Singularities in three-dimensional topology optimization
fields

A crucial part of the homogenization-based topology optimization is to find
the optimal rotations of the microstructures, since microstructures have a high
stiffness in their principal directions but low shear. Thus regularization of the
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orientations during the topology optimization will influence the resulting per-
formance of the mechanical structure since more material needs to be allocated
to strongly regularized regions [Paper-II]. If regularization of the orientation
fields is done after the topology optimization, either actively as discussed in
Arora et al. [2019] or by not enforcing high enough penalization weights for an
integrative method as discussed in Groen and Sigmund [2018] and Paper-II, the
resulting structure will not align well to the optimal microstructure orientation.
Such non-optimally aligned regions may cause a dramatic loss of performance of
the structure [Groen and Sigmund [2018], Paper-II]. Therefore, the motivation
of this paper is to find structures that adhere to the local orientation of the
microstructure as closely as possible outside of void or fully solid regions. This
in turn introduces anisotropy between the global members of the structures.
Note, that this anisotropy is not negatively influencing the structure from a
mechanical point of view.

Singularities arise in two-dimensional homogenization-based topology optimiza-
tion for three reasons [Paper-II];

• Singularities in the underlying stress field will lead to singularities in the
layer-normal fields since the microstructure aligns to the principal stress
directions.

• Regularization inflicted on the layer-normal fields during the topology op-
timization will break up singularities with a higher index in the stress
fields into multiple singularities of lower index in the layer-normal fields.

• In regions where the microstructure is completely solid or void, singu-
larities can be introduced by noise. In solid regions the microstructure
becomes isotropic and the optimal orientation of it becomes non-unique.
In void regions the microstructure is not present and an optimal orienta-
tion of the microstructure is therefore non-existing.

In Paper-II, we showed that in two dimensions, singularities in topology opti-
mized layer-normal fields must occur in completely solid or void regions. Unfor-
tunately, this observation does not hold in three dimensions. Firstly, microstruc-
ture orientations in three dimensions are non-unique due to in-plane stress; this
can cause spurious singularities to appear, which can be tackled with a low
amount of regularization, as shown by Paper-I. Secondly, as seen in Figure 5.2,
singularities in stress fields can occur even when the microstructures are not
completely solid. If we consider Figure 5.2a we see a field describing a singular-
ity with index 1. In Paper-II we observed that because the rotational velocity of
the field increases towards infinity at the singularity, the topology optimization
process fills the region around the singularity with material to account for the
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(a) two-dimensional example of a singu-
larity with index 1.

(b) The same singularity as in Figure
5.2a but now embedded in an orthogo-
nal layer (in yellow) in three dimensions.

Figure 5.2: On the left we see an example of a singularity with index 1 in two
dimensions. It is clear that the rotational speed increases the closer we get to the
singular point. Paper-II have shown, that the optimizer has an incentive to put such
singularities in an either fully void or fully solid region, since there would always be
shear forces acting on any non-solid microstructure at the singular point. On the right
we see the same field and singularity embedded into an orthogonal layer (in yellow)
in three dimensions. Note how the optimizer now can choose to fill the yellow layer
with material and completely ignore the red and blue field, while still creating a stiff
structure. Moreover, this singularity does not have to be in a completely solid region
since the relative layer-thickness of the yellow layer can be lower than 100 percent.
In this case we refer to the microstructure as transversely isotropic since the the mi-
crostructure is isotropic in one plane (the yellow one) but anisotropic perpendicular
to this plane.

spinning stress-field at the singularity. On the other hand, when we embed the
fields from Figure 5.2a in three dimensions, as shown in Figure 5.2b, the opti-
mizer can choose to fill the newly introduced orthogonal layer with material and
not assign any material to the two existing layers. Furthermore, we observe that
this third layer does not have to be completely solid but can have any arbitrary
layer-thickness, e.g., 50%. In this case we refer to the microstructure as being
transversely isotropic since the the microstructure is isotropic in one plane (the
yellow one) but anisotropic perpendicular to this plane. The option to cut out
singularities and later on fill them with material, will inevitably lead to exces-
sive use of material in three dimensions. The example described in Figure 5.2 is,
to the best of the author’s knowledge, the only singularity in three dimensions
that occurs outside of fully solid or entirely void regions.

The following thoughts can explain this. First, if all layer-normals change direc-
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tion at a location outside the void, for example, around a source, then the region
would need to be filled with material by the optimizer to be made isotropic. Sec-
ond, non-zero stress directions will always be perpendicular to a layer-normal,
with non-zero layer-thickness, meaning that stresses must always be transferred
within a solid slab or plate. This will always align a stress field’s singular curve
with a layer-normal outside of fully solid or entirely void regions. This leaves
us only with fields as shown in Figure 5.2b, where of course, the indices of the
singularities can be different. Third, consider for a moment that in Figure 5.2b,
the red or blue layer would be non-zero. Then their layer-normal would rotate
infinitely fast at the singular curve, and thus the optimizer would fill the region
completely with material to make the microstructure isotropic at the singular
curve. Hence, we conclude that the only singular curve not embedded into
complete solid or the void can be seen in Figure 5.2b, where the red and blue
layer-thicknesses are zero.

Our stream surfaces generation method can differentiate the expansion of stream
surfaces near a singular curve. Note how in Figure 5.2b, the field with the yellow
normal is aligned with the singular curve while having a constant normal. We
could use this observation to identify which layer is traversing the singular region
orthogonal to the singular curve in a computationally cheap manner and expand
the corresponding stream surface through the singular region. However, we do
not need to do this for fields arising from the homogenization approach since we
stop the expansion of stream surfaces in zero-material layers (like the red and
blue labeled layers in Figure 5.2b). This means that only the stream surface
following the traversing layer will be created.

5.1.2.2 Boundary-aligned frame fields

Topology optimization yields frame fields as a by-product of a mechanical prob-
lem; the fields are not designed with meshability or integrability in mind. In
contrast, a number of techniques in geometry processing optimize for frame fields
with the specific goal of extracting a quadrilateral or hexahedral mesh. Since our
work focuses primarily on the volumetric case, we refer the reader to Vaxman
et al. [2016] for discussion of the many methods available for two-dimensional
field computation, and briefly highlight representative three-dimensional meth-
ods below.

The basic goal of volumetric frame field computation is to optimize for a field
of three orthogonal directions at each point in a region enclosed by a surface,
with the constraint that one of the three directions aligns to the surface normal
along the boundary. This field is then used as input to methods like Nieser et al.
[2011] and Lyon et al. [2016] to extract a mesh through parameterization.



74 Non-integrative de-homogenization

Huang et al. [2011] originally propose a representation of orthogonal frames—
later dubbed “octahedral” frames by Solomon et al. [2017]—that is agnostic to
their labeling. Their work extracts smooth fields by optimizing Euler angle
variables, with additional constraints at the boundary; their approach was re-
fined by Ray et al. [2016] with improved boundary constraints and optimization.
Solomon et al. [2017] propose a relaxation of [Ray et al., 2016], allowing for use
of the boundary element method (BEM). Palmer et al. [2019] provide a more
complete description of the space of octahedral frames, leveraging the struc-
ture they identify to propose manifold-based optimization schemes; they also
propose a related orthogonally decomposable (“odeco”) frame representation in
which the directions remain orthogonal but can scale independently.

Many open questions remain regarding the singular topology of octahedral /
odeco fields and its relationship to hexahedral meshing; see Liu, Zhang, et al.
[2018] for initial results and some relevant discussion. Corman et al. [2019] and
Liu, Zhang, et al. [2018] propose algorithms that compute frame fields with
prescribed singular structures.

5.1.2.3 Closed-form frame fields

A closed-form frame field is a field where the orientations of the frames can be
found using a closed-form mathematical expression instead of being found using
optimization or by solving a system of equations. In this paper, we consider a
field describing a cylinder, much like the field illustrated in Figure 5.2, where
there is a single singular curve in the center of the cylinder. Suppose one tries
to extract well-aligned hexahedra from such a field using integrative methods.
In that case, one will be challenged due to the high anisotropy of the hexa-
hedral elements, which can not be treated by methods, that were designed to
create isotropic hexahedra [Paper-II]. Note that the edge length of hexahedra
will ultimately deteriorate towards the singular curve with such a cylinder field.
A stream surface based approach can be designed to expand through singu-
lar curves for the cylinder’s near-constant field (as discussed earlier in Section
5.1.2.1), while creating highly anisotropic hexahedra in the remaining domain.
Extending this example, we also run our algorithm on a non-integrable field de-
scribing a helicoid. Again, this produces highly anisotropic hexahedra matching
the spiral shape of the input field.



5.1 Synthesis of frame field-aligned multi-laminar structures (related to
Paper-III) 75

5.1.3 Computing collections of stream surfaces

The overarching idea of our method is to compute a large set of surfaces, S,
which align with the frame field, and then find a well-spaced selection of these,
Sopt, representing the multi-laminar structure that we seek. In this section,
I discuss how we find and select these aligned surfaces using stream surface
tracing. Section 5.1.4 will discuss how the final output is computed from this
representation.

In engineering, a streamline is a curve that is everywhere tangential to a vector
field [Hultquist, 1992]. A stream surface is merely the generalization to 3D, i.e.,
a surface whose normal is everywhere aligned with one of the vectors of the
input fields.

We do not rely on the frame field being combed, and hence, we do not have
consistent labeling of the vectors in the frame. Instead, we find the frame vector
best aligned with the estimated normal of the next point that we compute when
expanding a stream surface. It is also worth noting that we generally wish to
stop stream surface tracing when the stream surface would otherwise exit a
given bounding shape. Thus, we assume a known mask or layer-thickness in the
following.

5.1.3.1 Tracing stream surfaces

I will here only give a summarized description of how we trace stream surfaces
and treat singularities. A more detailed description can be found in Paper-III.
We start by independently creating stream surfaces to obtain the set S. Instead
of computing a surface with connectivity, only a point cloud is computed for
each stream surface. We initialize each surface at a single randomly generated
seed point p0. The surface’s normal direction is chosen randomly from the
frame field directions. The surface is then grown from the seed point by adding
points in the vicinity and computing their location based on the normal-field.
A candidate for a new surface point is obtained by a method similar to Poisson
Disk Sampling (PDS) sampling introduced by Bridson [2007]. The candidate’s
location is then updated using a fourth-order Runge-Kutta method [Chapra,
2012] to mitigate drift in the surface expansion.

Once obtained, we add the newly generated point to a first-in-first-out queue.
Here it might be worthwhile in the future to investigate if layer-thickness priority
yields a benefit to the expansion of stream surfaces. We do not add the newly
generated point to the queue if it is too close to any previously generated point
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of the stream surface, lays outside the design domain. We also do not add points
to the queue that lie in fully solid regions or if the corresponding layer-thickness
is zero at the new point. Note that the last two cases are why our approach does
not need to handle singular curves actively for topology optimization examples.
Only traversal singular curves could be problematic but, since we only trace
stream surfaces in active layers we can expect the layer-normal to be nearly
constant.

There can arise a problem with drift when computing the stream surfaces. This
can be problematic if a stream surface meets itself, having traced around a
sphere, for example, since we obtain a sort of crack. This can be seen in Fig-
ure 5.3 for the torsion ball. To mitigate the problem, we recompute all point
locations based on the neighboring points of the surfaces in a post-processing
step.

We now have a method that allows us to trace stream surfaces in our input
fields.

Figure 5.3: On the left, we see the effect of drifting. Minor deviations in point posi-
tion and interpolation of the field over long distances lead to a crack in the surface. On
the right, we show the resulting surface after the surface points have been recomputed.

5.1.3.2 Singularities

In three dimensions, singularities are curves along which the frame field is not
defined. When creating stream surfaces in octahedral fields that do not arise
from the homogenization approach, we often need to deal with the singular
curves explicitly. If we do not actively prevent stream surfaces from getting close
to a singular curve, we risk that the stream surfaces split into two or more parts
(referred to as “forking”). The reason for forking surfaces is that the rotation
of the frame fields is very high near singular curves. These high rotations lead
to a considerable amount of local variations between the orientations computed
during the surface tracing and finally to forking surfaces. Figure 5.4 depicts an
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example of a forking stream surface. For an in-depth discussion of singularities
in octahedral fields can be found in [Liu, Zhang, et al., 2018].

The subselection approach does not choose forking stream surfaces if they only
represent a tiny portion in S. The reason is that a forking stream surface always
creates a worse energy response than two separate stream surfaces covering the
same region. However, multiple forking surfaces can be detrimental to the results
of our selection approach presented in Section 5.1.3.6. Therefore, we choose
to exclude singular regions from the design domain during the stream surface
creation for other examples than the topology optimization structures. This will
introduce holes in our model (see, for example, Figure 5.16) but will preserve
the overall quality of the output. We mark regions as singular by computing
a rotational energy based on the approach of Paper-I and then excluding the
outliers of that energy. A more detailed description of how we treat singular
regions can be found in Paper-III. With this method to prevent forking surfaces
in place, we now have everything to create the set of stream surfaces S.

Figure 5.4: A stream surface that has expanded to close to a singular curve and, as
a result, has forked into multiple sheets. Such surfaces are undesirable and are caused
by rapid changes in the normal fields.

5.1.3.3 Energy for an optimization-based subselection approach

We will now take the set of surfaces S that we have created in the previous
sections and continue with finding a well-spaced subset Sopt. We will compute
Sopt by optimizing over binary variables w that will be assigned to the stream
surfaces. However, before we can define our optimization problem, we need to
define the contribution of each stream surfaces to the optimization energy. For
simplicity and consistency with the figures, we will describe this procedure in
two dimensions. The algorithm works the same in three dimensions, and we will
explain essential details for the implementation inline on an ongoing basis.
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(a) Two streamlines following two different
orthogonal fields.

(b) Sum of energies ĒS for the streamlines
in Figure 5.5a. Green and blue elements
have an energy value of one, orange ele-
ments have a value of two.

Figure 5.5: On the left, we see two streamlines following orthogonal field directions.
On the right, we see the sum of the energies ĒS from Equation 5.1 for the two stream-
lines. Here the contributions of the streamlines are colored in blue and green in regions
with value one. The orange highlighted regions are elements where both streamlines
create an energy response and subsequently the summed value equals two. An op-
timizer would try to minimize the amount of these orange elements since it tries to
minimize overlapping streamline-energies. This version of the energy is blind for the
fact that the two streamlines follow different fields. In order to be able to space out
both family of streamlines correctly, we need to split the energy as shown in Equations
5.2 and Figures 5.6 and 5.7.

First let γ denote the desired average spacing in the set Sopt. As an aid, we
define the projection of a point x ∈ R2 onto a streamline S ∈ R2 as xp =
arg minxs∈S ||x− xs||. We can then define an energy for the streamline S by

ĒS : R2 → {0, 1} ,

ĒS(x) =

{
1, if ||x− xp|| ≤ γ,
0, else.

(5.1)

This energy is shown in Figure 5.5b for the two streamlines following orthogonal
field directions in Figure 5.5a. For our application to 4-direction fields, we need
to distinguish between the two orthogonal field directions locally. Therefore, we
choose for every x ∈ Ω, two orthogonal directions from the 4-direction field at
random and assign them to 2-direction fields f1 and f2. This assignment of the
orthogonal directions to f1 and f2 allows us to define a function Sdir(xs) = {1, 2}
that indicates for every point xs ∈ S if the streamline follows the local label of
field f1 or field f2. In three dimensions, we use the normal of the stream surface
as a field identifier. We now split the energy for every streamline into two parts:

ES : R2 → {0, 1} × {0, 1} ,
ES = (ES1

, ES2
) ,

(5.2)

where the split energies ES1 and ES2 are defined as,
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Figure 5.6: Example of the energies created from a streamline traced in the same
field but differently labeled. On the left, we see a streamline traced in a combed
(above) and uncombed (below) version of a 4-direction field. On the right, we see the
corresponding energies for label "red" and label "blue", which are local labels. Note
how the streamline activates only one of the two energies for each element, as indicated
by the gray coloring.

ES1(x) =

{
1, if Sdir(xp) = 1 ∧ ||x− xp|| ≤ γ ,

0, else,

ES2
(x) =

{
1, if Sdir(xp) = 2 ∧ ||x− xp|| ≤ γ ,

0, else.

(5.3)
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(a) Sum of energies ES1
for a combed field. (b) Sum of energies ES1

for an uncombed
field.

(c) Sum of energies ES2 for a combed field. (d) Sum of energies ES2 for an uncombed
field.

Figure 5.7: Sum of split energies from Equation 5.2 for the streamlines depicted in
Figure 5.5a. The sums of the energies are shown once when a combed version of the
underlying field is used and once when an uncombed version is used. Note how in a
combed field the streamlines are separated into the energy that follows the same field
label as the streamlines. In an uncombed field, the contributions of the streamlines
split to both energies. However, it is clear that the contributions of a streamline to
the two energies form a disjoint union. Regions with value two (highlighted in orange
in Figure 5.5) do no longer exist.

Note that there is no need for consistency of the field labels f1 or f2 in a
neighborhood, i.e., no combing is needed, as shown in Figure 5.6. This makes
the energies very simple to implement and the approach very robust. The split
energies from Equation 5.3 can be seen in Figure 5.7. Having defined the energy
we can now formulate a binary optimization problem,

minimize
w∈{0,1}nS

∫
Ω

∣∣∣∣∣
nS∑
i=1

w(i)ES(x)− (1, 1)

∣∣∣∣∣ dΩ , (5.4)

where we refer to the optimization variables wi as weights and nS = |S|. If we
use the energies from Equation 5.1 the selected streamlines would all follow the
same lamination direction since the optimizer would penalize crossing stream-
lines. Figure 5.8 shows an example of such an optimization. If we instead use
the same set of streamlines but use the energies defined in Equation 5.2 for the
optimization, we obtain both laminations, as can be seen in Figure 5.9.

Note that defining the problem in Equation 5.4 as a least-squares problem in-
stead of a least absolute deviations problem would overly punish multiple cov-
ered regions of the energy and lead to missing streamlines. The L1 norm in
Equation 5.4, on the other hand, penalizes double-covered probe points equally
as hard as non-covered probe points. The difference between using an L1-norm
or an L2-norm can be seen in Figures 5.10. Details on the solution of the min-
imization problem in Equation 5.4 are discussed in Section 5.1.3.6. We now
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continue to find the variable nS .

(a) This Figure shows the sum of the ener-
gies ES of all streamlines provided to the
optimizer.

(b) This Figure shows the sum of the ener-
gies ES of the streamlines selected by the
optimizer.

(c) This Figure shows the curves selected by the optimizer.

Figure 5.8: This Figure shows the selection result using the energies defined in
Equation 5.1.

5.1.3.4 Number of streamlines nS in the covering set of streamlines
S

To solve the minimization problem in Equation 5.4 we need to know how large
the number of streamlines nS = |S| provided to the optimizer needs to be.

First, we need to define the desired average spacing γ of the streamlines in Sopt.
Then the cardinality of Sopt can be approximated by,

|Sopt| =
nx
γ

+
ny
γ

, (5.5)

where nx and ny are the dimensions of the design space in x, respectively y
direction. Note that the cardinality of Sopt grows in linear dependence to the
dimensions of the design space, since streamlines are one dimensional objects.
This means that doubling all dimensions of the design space will only lead to
a doubling of the cardinality of Sopt. This also holds true in three dimensions,
here due to the two-dimensionality of stream surfaces. We further need to define
the error ε by which a streamline should deviate on average from its optimal
position. We denote this in fraction of the optimal average spacing γ, e.g.
ε = 0.1 would allow a streamline to be placed in a band of 0.2γ width around
its optimal location. We can then derive the cardinality of S by:

nS = |S| = 1

ε
|Sopt| =

1

ε

(
nx
γ

+
ny
γ

)
. (5.6)
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(a) This Figure shows the sum of the en-
ergies ES1 and ES2 of all streamlines pro-
vided to the optimizer.

(b) This Figure shows the sum of the en-
ergies ES1 and ES2 of the streamlines se-
lected by the optimizer.

(c) This Figure shows the curves selected by the optimizer.

Figure 5.9: This Figure shows the selection result using the energies defined in
Equation 5.2.

As with Sopt, we note that the cardinality of S grows linear with the dimensions
of the design space. We also note that the cardinality of S grows linear in
dependence to the desired error ε, meaning that reducing ε by a factor k will
increase the cardinality of S only by a factor k. Both these observations are
again valid in two dimensions as well as in three dimensions.

We have now computed how many stream surfaces we need to provide to the
minimization problem in Equation 5.4 to obtain good results.

5.1.3.5 Resolution of the energy

To solve the minimization problem in Equation 5.4 the only thing that remains
is to discretize the energy ES on a pixel grid, where we refer to a single pixel
as a probe point. To efficiently subselect streamlines, we need to know the
resolutions of the discretized energies, i.e., the number of probe points needed
to differentiate streamlines in the set S. This number depends on the desired
error ε and the desired average spacing γ. Each streamline should activate the
probe points lying in a band of width γ around the streamline. Two streamlines
that are more than ε · γ apart should activate a different set of probe points.
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(a) This figure shows the sum of the en-
ergies ES1 and ES2 of the streamlines se-
lected by the optimizer when using an L1
norm.

(b) This figure shows the sum of the en-
ergies ES1 and ES2 of the streamlines se-
lected by the optimizer when using an L2
norm.

(c) This figure shows the curves selected
by the optimizer when using an L1 norm.

(d) This figure shows the curves selected
by the optimizer when using an L2 norm.

Figure 5.10: This Figure shows the streamline selection results obtained when using
an L1 norm or an L2 norm during the optimization. Note the missing streamlines in
the L2 norm result due to multiply covered regions being penalized too harshly.

This implies that the number of probe points needed can be computed by,

np =
nx
ε · γ ·

ny
ε · γ =

1

ε2

(
nx
γ
· ny
γ

)
. (5.7)

Here we note that the number of probe points grows quadratically in two di-
mensions, meaning doubling both dimensions of the design space will increase
the number of probe points needed by a factor of four. Respectively, the number
of probe points grows cubically in three dimensions. Note, however, that the
subselection is only a fraction of the time spent on the whole approach as can
be extracted from Table 5.1.

We have now discretized the energy ES in the minimization problem in Equation
5.4 and are now ready to solve it.

5.1.3.6 Subselection using a relaxed approach to binary
programming

Solving the minimization problem in Equation 5.4 can be done by using integer
linear programming. However, the underlying problem is likely NP-hard due to
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the binary constraints. This makes a direct solve of the problem formulated in
Equation 5.4 infeasible. To solve the least absolute deviations problem, we relax
the optimization variables wi to be in the interval [0, 1] instead of {0, 1}. This
leads to the following convex linear program, which can be solved in polynomial
time:

minimize
w∈[0,1]nS

∫
Ω

∣∣∣∣∣
nS∑
i=1

w(i)ES(x)− (1, 1)

∣∣∣∣∣ dΩ . (5.8)

We solve the relaxed problem in Equation 5.8 with an interior point method
and then fix weights that have been set to either 0 or 1. Subsequently, we solve
a binary program with the remaining weights (typically < 5% of the original
weights) using a branch and cut algorithm. A branch and cut algorithm splits
the original problem into sub-problems and uses cutting planes to cut away
parts of the possible solution space until an optimal integer solution is found
for a sub-problem. If that solution is better than a relaxed solution of a second
sub-problem, the second sub-problem does not need to be solved. This is done
iteratively until the algorithm converges. For details, we refer to Padberg et al.
[1991]. We use the implementation provided in CVX [Grant et al., 2014].

Note that the high number of binary weights chosen in the relaxed problem
is due to the energy having binary values. If we were to base the energy on a
signed distance function instead, we would almost exclusively receive non-binary
weights as a result from the relaxed problem in Equation 5.8 since the optimizer
would try to trade off contributions of different streamlines.

The observation in Section 5.1.3.4 that the computational burden of the problem
in Equation 5.4 grows linear in the amount of stream surfaces has an important
practical use. Forking stream surfaces, which can occur due to heavy noise in
the topology optimized fields and are described in Section 5.1.3.2, will cover
more space than non-splitting surfaces. They are therefore chosen less by the
optimizer when the number of surfaces in S increases.

We have now found a well-spaced set of laminar surfaces Sopt and can now
continue with the generation of output structures.

5.1.4 Output generation

The stream surface tracing and selection procedure described above produces a
set of stream surfaces, Sopt, where each surface is represented as a point cloud.
In itself, this representation is helpful for visualization. However, our end goal
is to provide methods for synthesizing output structures. In this thesis, I will
shortly present two methods that can be used for a stream surfaces set Sopt.
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Detailed descriptions of these methods can be found in Paper-III. The first
method produces a volumetric structure using the layer-thicknesses obtained
from topology optimization. The second method generates hexahedral meshes
from the selected stream surfaces.

5.1.4.1 Post-processing the surfaces

Before we extract a volumetric solid or a hexahedral mesh, we employ a post-
processing step on the stream surfaces in Sopt. We do not need high-resolution
stream surfaces to create the energies for the selection algorithm. However,
higher resolved surfaces generate smoother and more precise structural members
of the volumetric structure. To obtain a high-resolution surface from a stream
surfaces in Sopt we proceed as follows. First, we add all surface points of a
selected stream surface, to a first-in-first-out queue. We then use the same
algorithm as for the original surface creation but with a lower minimal distance
requirement between surface points. This will generate new points between the
locations of the original surface points and thus we obtain a higher resolution.

5.1.4.2 Volumetric solids

For topology optimization results, we want to obtain a geometric structure from
our stream surfaces. To do so, we synthesize a structure from the selected sur-
faces and the layer-thicknesses obtained from the topology optimization. Ex-
tracting a volumetric solid from a point cloud in three dimensions is very similar
to the volumetric reconstruction of surfaces from point clouds [Fuhrmann et al.,
2014]. We create a distance field for each stream surface that attains value one
for stream surface points and value zero for points that are one layer-thickness
or more away from the stream surface. We then compute a voxel-based maxi-
mum of the distance fields of all stream surfaces and compute the boundary of
the volumetric solid as a triangle mesh using dual contouring with the iso-value
0.5 [Ju et al., 2002]. Note that the iso-value 0.5 is chosen since the resulting
structural lamination should be centered at the stream surface. A more detailed
description can be found in Paper-III

5.1.4.3 Tapering structural members

Computing the distance field in the above-stated manner yields one problem.
We will see tapering structural members of the volumetric solid depending on
the divergence of the layer-normal field.Figure 5.11 depicts this problem. The
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tapering structural members occur since the homogenization approach only de-
scribes local layer-thicknesses. Integration-based de-homogenization approaches
account for this by the use of parameterizations. If a voxel is inside the final
structure or not depends on the parameterization value and not on the distance
to the closest iso-contour. Since the parameterization will always change by one
integer from one iso-contour to the neighboring one, integration-based meth-
ods do not create tapering structural members. Our approach creates tapering
structural members since we do not account for the variation of spacing between
stream surfaces and only assign the local widths.

To obtain non-tapering structural members, we compute, in two dimensions, the
distance to the neighboring streamlines for each line segment. First, we mark all
points of a given streamline close to crossing streamlines and combine them into
clusters. Figure 5.11b depicts these clusters. We then use the distance between
the clusters on a streamline to measure the spacing between crossing streamlines.
Now we can compute a correction factor to account for the deviation of the actual
spacing from the desired spacing γ. We assign the correction values to the near
segments of the crossing streamlines. When we compute the volumetric solid
we can multiply the layer-thicknesses with these correction values to get rid of
tapering structural members as shown in Figure 5.11c. We obtain a decrease in
compliance of around 2.7% by removing tapering structural members from the
example in Figure 5.11.

In three dimensions, this approach would need a hexahedralization of the surface
results. This is hard to achieve with our current hexahedralization explained
in Section 5.1.4.4. The hexahedralization cannot handle stream surfaces con-
verging towards the boundary conditions, i.e., a minimal distance is needed
between stream surfaces. Further particular examples do not consist of a hex-
ahedral structure, e.g., the torsion ball or the cantilever with only one active
layer. Therefore, I believe that another approach is more promising than us-
ing hexahedra to compute correction values. From the surface of describing
our volumetric solid, we can create a tetrahedral mesh describing the structure.
We could then use such a tetrahedral description to do shape optimization as
proposed in Christiansen [2015]. This would correct tapering structural mem-
bers and could improve compliance values by correcting possibly miss-aligned
or forking stream surfaces. It should also be noted that for multi-load problems,
an approach using shape optimization seems far more promising.

5.1.4.4 Hexahedral meshes

Extracting a hexahedral mesh from the stream surfaces Sopt can be of interest
since the an-isotropy of the frame fields is preserved by our approach. However,
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(a) De-homogenization using no correction values for the layer-thicknesses. The shown
Figure has a compliance-volume value of C · V = 7.90.

(b) Mesh used for the computation of the correction values. The blue circles indicate the
clusters of intersection points found. If not both orthogonal segments exist a one-sided
correction value is computed.

(c) De-homogenization using correction values for the layer-thickness. Note how the
tapering bars problem is resolved. The shown Figure has a compliance-volume value of
C · V = 7.69.

Figure 5.11: Comparison between using and not using correction values on the layer-
widths. The usage of the local distance between the layer-thicknesses decreases the
compliance by around 2.7%.

the hexahedralization can not be used for topology optimization fields since a
minimal distance between stream surfaces is needed. But fields arising from
the homogenization approach have often laminations converging towards the
boundary conditions. A detailed description of the hexahedralization can be
found in Paper-III. I will give here a summary of the approach.

The hexahedra extraction is split into two parts. First, a graph is constructed
containing all stream surface crossings, and then a hexahedralization is obtained
by computing the dual thereof. As a first step, one creates an initial graph,
where all stream surface points are denoted as vertices, and closeby vertices are
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connected up by edges. Note that all graph vertices fall in one of the following
classes

• surface vertices are vertices whose neighbors belong to the same stream
surface,

• intersection vertices are vertices whose neighbors belong to two stream
surface, and finally,

• triple intersection vertices have neighbors belonging to three stream sur-
faces.

Surface vertices are discarded, and the clusters of triple intersection vertices are
collapse to a single cluster center. At each of these cluster center an instance of
Dijkstra’s algorithm is started assigning to each intersection vertex the minimal
distance from a cluster center. When all intersection vertices have been assigned
a minimal distance to a cluster, one can find the connection between two clusters
by simply looking at neighboring intersection vertices that have been reached
from different clusters. In a separate graph containing only the cluster centers,
one can then connect up the corresponding two clusters. This second graph
is called the spatial twist continuum (STC) graph. As Murdoch et al. [1997]
observed the dual of the STC graph is a hexahedral mesh, which is computed
in the final step.

5.1.5 Implementation and results

Our implementations are in C++ and Matlab. Codes related to the creation
and manipulation of surfaces are primarily written in C++. Codes for selecting
surfaces are running in Matlab by use of the CVX package [Grant et al., 2008,
2014] and the Mosek solvers [ApS, 2021].

Note that the generation of the stream surfaces and the synthesis of volumetric
are easy to parallelize. However, the subselection cannot be parallelized but
contributes only a fraction of the total runtime, as indicated in Table 5.1.

5.1.5.1 Missing structural members and field alignment – a
comparison

As discussed in subsection 5.1.1 our method aims to circumvent the problem of
missing structural members due to enforcement of alignment to the input field
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Table 5.1: In this table, we show the statistics for the different steps in our pipeline.
The first three blocks of rows offer relevant statistics for the initial point sampling
of stream surfaces, the selection of optimal stream surfaces, and the super-sampling
of the selected stream surfaces. The fourth block reports statistics for generating the
volumetric solids, and the fifth block shows the time to run the hexahedralization
algorithm. We then report in the sixth block the overall runtime of our approach. We
include the times for the homogenization-based topology optimization and document
them in the last block for completeness. Note how our algorithm is only a fraction of
the topology optimization runtime.

Cantilever
(3 layers)

Cantilever
(1 layer)

Electrical Mast Torsion Sphere Sphere Helix Cylinder

|S| (Number of stream sur-
faces)

480 478 450 374 480 170 400

Generating S (runtime) 20 min 28 min 17 min 1h 51 min 49 min 1 h 4 min 1 h 1 min
Average points per surface 961 1 351 667 5 043 2 019 5 082 1 906

Subselection (runtime) 45 sec 53 sec 2 min 5 sec 2 min 31 sec 39 sec 50 sec 37 sec
|Sopt| 38 22 35 4 27 24 41

Super-sampling (runtime) 2 h 30 min 3 h 18 min 1 h 19 min 1 h 30 min 1 h 52 min 2 h 9 min 6 h 20 min
Average points per
super-sampled surface

9448 9 735 3 483 58 148 25 073 26 320 15 535

Output volume dimension 700× 350× 350 700× 350× 350 266× 266× 800 500× 500× 500

Solid generation (runtime) 13 min 42 sec 11 min 3 sec 5 min 48 sec 8 min 30 sec

Hexahedralization (runtime) 1 min 24 sec 23 sec 38 sec

Summed runtime 3 h 04 min 3 h 58 min 1 h 44 min 3 h 32 min 2 h 43 min 3 h 14 min 7 h 20 min

Topology optimization time 7 h 48 min 9 h 54 min 22 h 20 min 40 h 21 min

when using an integrative method to create a parameterization. As discussed in
Groen and Sigmund [2018], Paper-I and Paper-II, alignment of the final struc-
ture to the input field needs to be enforced by a constraint when adapting in-
tegrative approaches as Bommes et al. [2009], Kälberer et al. [2007], and Nieser
et al. [2011]. This is done by enforcing the parameterization’s gradient to be or-
thogonal to the second (and third) normal direction. However, if this alignment
is too strict, the gradient of the parameterization may become almost zero in
large regions. This, in turn, can then lead to overly thick structural members
or to missing structural members especially around singularities as discussed in
Paper-II. The new approach creates well-aligned structures before selecting a
subset, eradicating the problem since we cannot suffer from vanishing gradients,
as we do not integrate the fields. We show an example in Figure 5.12. Note
that the same behavior can be observed in three dimensions.

The structure shown in Figure 5.12a has been obtained by de-homogenizing a
320 × 80 element topology optimization result using an integrative approach
proposed by Paper-II. Note how there are missing structural members above
and underneath the singularity. The structure has a compliance C = 26.46 and
a volume fraction of V = 0.275. For comparison, we use the compliance-volume
value C · V = 7.30. In Paper-II we obtained compliance-volume values of 7.05,
7.48, 7.63, and 21.39 for different alignment weights at the same resolution.
Here 7.05 is the best performing structure at an intermediate alignment weight,
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and 21.39 is a failure case.

Figure 5.12b shows the structure created by the new subselection approach also
using a 320× 80 element result. Note that the new approach yields a structure
with evenly spaced structural members. The structure has a compliance C =
27.67 and a volume fraction of V = 0.269. The compliance-volume value for
this structure is C · V = 7.44. Note that this value is only 5.5% worse than the
best value from Paper-II. Moreover, with the new approach we do not need to
tune an alignment weight, and do not risk a failure case due to bad alignment
or zero gradients in a parameterization.

(a) De-homogenization using an integrative approach proposed in Paper-II yielding miss-
ing structural members around the singularity, where the gradients have become almost
zero. A resolution of 320 × 80 is used as an input mesh. The shown Figure has a
compliance-volume value of C · V = 7.30. In Paper-II we obtained compliance-volume
values of 7.05, 7.48, 7.63 and 21.39 for different alignment weights, where 7.05 was the
best performing structure at an intermediate alignment weight and 21.39 was a failure
case.

(b) Our new approach yields a structure with evenly spaced structural members for the
same 320 × 80 input field as used above. The compliance-volume value for this structure
is C · V = 7.44 and is therefore a mere 5.5% worse than the best value from Paper-II.
However, with our approach we do not risk a failure case.

Figure 5.12: Comparison between an integrative approach based on Paper-II yield-
ing missing structural members and our new approach which creates evenly spaced
structural members.
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(a) (b)

Figure 5.13: This figure show two topology optimization examples created with our
method from subsubsection 5.1.4.2. In Figure a we see the electrical mast example
introduced in Geoffroy-Donders et al. [2020]. We show here three angles (side, front
and back), where in the rightmost image showing the mast from the back, the top
has been cut away to reveal the interior of the structure. In Figure b we show the
Michell torsion sphere example introduced in Paper-I, where the boundary conditions
with torsion applied are located in the top and the botton. Note that we cut out an
eigth to reveal the interior laminations of the torsion sphere.

5.1.5.2 Volumetric structures from topology optimized fields

We ran various input fields from topology optimization through our pipeline.
The fields were generated by the same method as for Paper-I. The timings of
the field generation and the de-homogenization are reported in Table 5.1, where
we see that the topology optimization dominates over our de-homogenization
approach. In Figure 5.13a we see a quarter of an electrical mast as proposed
by Geoffroy-Donders et al. [2020]. The fields generated for the electrical mast
example contain spurious singularities in fully solid regions and the void due
to the microstructure being isotropic (solid) or non-existent (void). Neverthe-
less, we produce very smooth surfaces, since our stream surfaces do not need
to expand into solid or void regions. In Paper-I we made use of the fact that
singularities only arise in fully solid or void regions by combing the fields in in-
termediate regions first, such that the spurious singularities cannot create seams
in the combed field that extend into the intermediate regions. However, we had
no control or guarantee over how much singularities influence thee designs since
we still relied on the orientations in solid and void for integration, although we
recomputed the orientations for such elements.

On the right, in Figure 5.13 we show our version of the torsion sphere example
proposed in Paper-I that was based on Michell’s famous torsion sphere [M.C.E.,
1904]. Note that since we use optimal rank-3 microstructures, we do not obtain
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(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 5.14: On the left, (a,e) show a cantilever produced from a homogenization
solution where all three layers have been forced to be active. The images on the right
show a comparison of our results for the cantilever (b,c,d) with the results from Paper-I
(f,g,h).

a truss structure, but a stiffer layer structure [Sigmund, Aage, et al., 2016].

Figure 5.14 shows the three-dimensional version of Michell’s cantilever. We
compute de-homogenization results for two versions. In Figure 5.14a, we depict
a solution for the cantilever where we enforce that either all three layers have
a layer-thickness of more than 5% or that all layer-thicknesses are zero. Such
a design is great for resistance against buckling. Note that due to all three
layers being enforced to have non-zero layer widths outside of the void, the mi-
crostructure orientation becomes unique in this example. Spurious singularities
only arise in solid and void regions. A cut section through the structure is given
in Figure 5.14e.

In Figure 5.14b, we show the second version of the cantilever that we consider.
These input fields have been created without any enforcement on the layer-
thicknesses and correspond to the cantilever from Paper-I. A comparison of the
results with Paper-I is given, first on a visual level in Figures 5.14b, c, d, f, g
and h, and then in terms of compliance and volume in Table 5.2.

In Figures 5.14b and f we see the full de-homogenized structures. The two
structures are very alike. Note that in Paper-I we used some additional fine-scale
evaluation to remove unused excess material, i.e., low strain energy elements.
This puts the structure from Paper-I at a slight advantage over the stream
surface-based one, since we do not incorporate such a step for our structure in
Figures 5.14b-d. Figures 5.14c and g show a detail and Figures 5.14d and h
show horizontal cuts through the structures.
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Since our input fields differ from the ones used in Paper-I we cannot compare
the values in Table 5.2 with too much emphasis. Note also that in Paper-I we
evaluated the designs using a fine scale 960 × 480 × 480 = 221 184 000 finite
element model, whereas in Paper-III we only evaluate our model on 512×256×
256 = 33 554 432 elements. We therefore also only compare our result to the
best performing value from Paper-I. The most meaningful value is certainly
Cs·Vs

Ch·Vh
which sets the compliance-volume value of the de-homogenized structure

to the compliance-volume fraction reported by the topology optimization. We
see that we are a mere 5.5% off the best performing structure from Paper-I,
although we do not yet treat the tapering structural members. We also have
not yet done a parameter study to find the best de-homogenization parameters.

Table 5.2: Comparison of our results for the cantilever example with results ob-
tained in Paper-I. We use the following abbreviations: Vs = volume of the de-
homogenized structure, Cs = compliance of de-homogenized structure, Vh = volume
of the homogenization-based topology optimization solution, Ch = compliance of the
homogenization-based topology optimization solution Note that in Paper-I we evaluate
the design on a 960× 480× 480 finite elements model, whereas here we only evaluate
our model on 512× 256× 256 elements.

Cantilever Paper-I Paper-III

Ch 226.68 228.45

Vh 0.1000 0.1000

Cs 243.31 223.72

Vs 0.1021 0.1181

Cs · Vs 24.845 26.428
Cs·Vs

Ch·Vh
1.0960 1.1568

5.1.5.3 Hexahedral meshes from boundary aligned and closed-form
fields

We developed the subselection approach with the goal of creating geometric
structures from fields arising from the homogenization approach. However, even
with our simple approach to hexahedralization we are able to extract hexahedral
meshes for certain boundary-aligned and closed form fields. For example, we
are able to obtain a highly anisotropic mesh from a cylinder field whose cut
section show a index 1 singularity (see Figure 5.16). We are also able to obtain
anisotropic hexahedras for a spiraling field, although we again need to cut out
the singular region (see Figure 5.16). Note that the need to cut out a rather large
area around the singular curve is due to the minimal distance requirement of the
hexahedralization and not due to the singular curve itself. In fact, for a simple
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Figure 5.15: Comparison of a hex mesh of a sphere produced by our method based
on an octahedral frame field generated using the method of Palmer et al. [2019] and
a similar hex mesh produced from a field created with the method of Corman et al.
[2019] and hex meshed using CubeCover in an implementation by David Bommes
(right). For both visualization we use Bracci et al. [2019]. The hexahedra are colored
according to the scaled Jacobian.

boundary aligned mesh, where cut sections only show 1/4 singularities we can
extract a reasonable hexahedral mesh without the need to cut out singularities
since the frame field has been optimized for smoothness. This can be seen in
Figure 5.15.

5.1.6 Conclusion and discussion

In the previous sections, I have presented a novel method for de-homogenization.
The so-called subselection approach does, contrary to previous work, not use in-
tegration to compute a parameterization. Instead, it finds a set of global struc-
tural members (streamlines/stream surfaces) and then creates an evenly spaced
subset. In Section 5.1.2.1, I discussed the occurrence and location of singular
curves in three dimensions. The obtained knowledge lets us understand three-
dimensional singularities in layer-normal fields much better. The finding that
traversal singular curves must align with a layer-normal has been crucial since
we, therefore, do not need to treat traversal singular curves with the subselection
approach. Actually, we do not need to consider singularities at all, as we found
traversal singular curves to be the only singular curves outside the void or fully
solid regions. This means that, to my knowledge, the subselection approach
is the first method to de-homogenize singularity containing three-dimensional
single-load problems. Of course, the fields from the homogenization approach
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Figure 5.16: In the top row, we see a hex mesh generated using our method on a
field describing a helicoid. Note that the underlying field is non-integrable. On the
left, we see the entire mesh, whereas on the right, we have removed several layers of
hexahedra. In the bottom row, we see a hex mesh generated on a cylindrical field.
Note how the shape of the hexahedra changes dramatically from the outside towards
the cut out singular curve. On the right, we peel away several layers of hexahedra,
which reveals that the minimal edge-length is significantly smaller than the maximal
edge-length. Note that we desire this from a field describing an anisotropic mesh.
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need to be aligned well enough with the underlying stress fields for active lay-
ers. However, since there exists an optimal solution aligned with the principal
stress directions [Norris, 2005; Pedersen, 1989], the challenge of obtaining well-
aligned layer-normal fields lies in the field of homogenization-based topology
optimization and not within de-homogenization. I am convinced that, espe-
cially in combination with the observations made in Paper-I and Section 4.3,
such fields will be available soon.

In Paper-III, we obtained well-performing structures without treating singu-
larities explicitly. Further, we have shown that the proposed energy can be
beneficial for other use cases as, for example, an-isotropic hex-meshing without
prescribed edge lengths. In this thesis, I discussed a way to solve the tapering
bar problem in two dimensions.

In three dimensions tapering structural members have yet to be addressed. I
believe that combining the results from the subselection approach with shape
optimization as done in [Nguyen et al., 2020] will decrease the compliance in
a similar amount as the 2.7% that I have achieved in two dimensions. Future
research on de-homogenization should consider more singularity-containing ex-
amples and should create stream surfaces using layer-thickness priority. We
also identified the expansion to multi-load as future research in Paper-III. I
will, in the next section, present my work on de-homogenizing two-dimensional
multi-load designs.
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5.2 Using the subselection approach for
multi-load designs

In this section, I would like to focus on using the subselection approach for prob-
lems with multiple loading cases. Multi-load problems yield far more complex
fields than single-load problems. On the one hand, as discussed in Section 2.4.1,
the optimal microstructure for multi-load designs consists of a rank-3 mate-
rial in two dimensions and a rank-6 material in three dimensions. On the other
hand, the homogenization-based results for multi-load problems are non-unique,
and several orientation and thickness combinations may yield the same optimal
stiffness.

For homogenization-based topology optimization to become useful for engineers,
the de-homogenization of multi-load problems needs to be addressed. However,
the de-homogenization of multi-load examples is far more complex than for
single-load problems. So far, there exists, for example, no notion of singularities
or seams. It is thus unclear if integrative approaches can be expanded to more
complex multi-load examples. For particular layer-normal fields, one can extract
three continuous 1-direction fields and parameterize them. However, at the
moment, the fields need to be labeled by hand, although a method using combing
might be viable.

When I designed the energy for the subselection approach, I realized its applica-
bility to multi-load designs. There is no need to sort the fields by hand or to have
a significant understanding of the multi-load design before de-homogenization.
Instead, the energy automatically accounts for the presence or absence of the
different fields as follows. For each location, we create three probe points in the
energy. Then each probe point gets assigned one of the three field directions. If
a probe point is assigned to a non-existing layer-normal or if the layer-thickness
is zero, we set the target amount of streamlines for this probe point to zero.
The optimizer will then not try to position a streamline at that probe point.
Note that as for the single-load case problems, we only need local information.
An example of an energy for a multi-load example can be seen in Figure 5.20.

Multi-load results are much harder to de-homogenization than single-load re-
sults. One of the reasons is that the layers are not orthogonal anymore. Con-
sider the example depicted in Figure 5.17, where the structure is supposed to
consists of only one active lamination. In element f1, the lamination is described
by the red normal n2 and thickness w2 = 0.1. However, at the same time, there
exists a second layer with normal n1 and width w1 = 0.01 in f1. In the example
in Figure 5.17, the widths of the layers are switched in element f2, i.e., w1 = 0.1
and w2 = 0.01. And in element f3, we obtain the same widths again as in
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element f1. Note that this interchangeability of layer widths cannot occur for
single-load problems due to their orthogonal layers. Both tracing streamlines
and combing the fields struggle with the above-described problem. The sudden
drop of the layer-thickness to zero produces holes in the de-homogenized struc-
ture as shown for a twice loaded cantilever in Figure 5.19a. Figure 5.19b shows
the same multi-load results as Figure 5.19a, where both layers were assigned the
larger of both layer-thicknesses if their normals enclosed an angle smaller than
five degrees. However, one should not do this kind of post-processing normally.
The intent here is simply to show one of the difficulties arising when going
from single-load to multi-load results. Post-processing of results obtained by
the homogenization approach risks to produce structures that were not initially
intended by the optimizer and should therefore not be taken lightly.

Luckily researchers of the homogenization method have made it possible to
enforce that all layers obtain a minimal width when one of the three layers
passes a certain minimum width value. This leads to the very clean fields shown
in Figure 5.21a and Figure 5.23a that are much easier to de-homogenize. If we
trace streamlines in these fields we obtain the sets of streamlines depicted in
Figure 5.21b and Figure 5.23a.

𝑓1 𝑓2 𝑓3

𝑛1 𝑛2 𝑛1

𝑛2 𝑛1 𝑛2

Figure 5.17: Multi-load problems produce layer fields that are much harder to de-
homogenize than single-load problems. One example is shown in this figure, where the
structure only describes one layer, but where two very similarly orientated layer are
assigned alternating widths. Note that this interchangeability of layer widths cannot
occur for single-load problems due to their orthogonal layers.

Figure 5.22a and Figure 5.24a show the well-spaced sets of streamlines one
obtains from the subselection approach. We can then assign the layer-widths
to the streamlines as we did for the single-load case examples to synthesize the
geometric structures depicted in Figure 5.22b and Figure 5.24b.

With the subselection approach for multi-load problems, there is no need to
sort the fields by hand or to have a significant understanding of the problem
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beforehand. Instead, the method can help engineers to get an overview of what
the optimizer deems an optimal design very fast. However, we can see tapering
structural members in Figure 5.22b and Figure 5.24b. Something that I hope can
be solved with a few shape optimization steps. Of course, it will be challenging
to prevent surfaces from forking in three dimensions since one suddenly has six
directions. Therefore, I believe that it would be advisable to, at first, use the
rank-4 microstructures for three-dimensional designs. The fields are likely to be
easier to handle, and the designs should only perform around 8% worse than
rank-6 microstructures [Wang et al., 2021].

In general, the challenges of creating stream surfaces in multi-load layer-normal
fields are similar to combing the fields. Making a mistake while combing or
choosing the wrong surface normal will both have global influence. However,
one can imagine that the subselection approach should be more robust since
a wrongly selected layer-normal only influences the creation of a single stream
surface. Further, the subselection is likely to exclude that stream surface if
some suitable, non-forking surfaces cover the same area. On the other hand,
a wrongly chosen field label for combing approaches will always influence the
whole parameterization and the resulting structure. To create surfaces more
robustly, one could possibly adopt the idea of using layer-thickness information
to stream surface creation. Stream surfaces could be expanded in intermediate
regions first using a layer-thickness-based priority queue, and one could choose
the surface normals based on the layer-thickness energy described in Section
4.3.6.2.

If we look at the largest examples of density-based compliance optimization
[Aage et al., 2017; Baandrup et al., 2020], we see that the obtained designs
from the optimization need some human interpretation to create manufacturable
structures. However, it is the designs produced by the topology optimization
that make it possible to develop those well-performing, interpreted structures.
The topology optimization results yield the basis needed for a human designer
to identify an optimal solution. For example, tiny features in the airplane wing
of Aage et al. [2017] show that new, organic-like features yield an improvement
over previous designs. Similarly, Baandrup et al. [2020] identify curved sheets
inside the bridge girders to be more optimal than conventional designs. I believe
that three-dimensional de-homogenized multi-load structures, at first, will re-
quire interpretation as well, even for simple examples. That, however, does not
mean that engineers will not profit from an understanding of what the topology
optimization believes to be an optimal solution.
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Figure 5.18: Fields obtained for a twice loaded cantilever without any restriction on
the layer-thicknesses.

(a) Without any post-processing one can
clearly see how certain layers have holes
since their width suddenly jumps to zero.

(b) For two layers with normals that en-
close an angle of less than five degrees the
widths have been post-processed. Per ele-
ment the larger width was assigned to both
layers. Note, that such post-processing is
not recommendable, but that the subse-
lection approach allows us to investigate
such problems and gain an understanding
of what is happening very easily.

Figure 5.19: De-homogenized structures for the twice loaded cantilever without any
restriction. The fields for this example are shown in Figure 5.18.
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Figure 5.20: An example of thee summed energies for the streamlines chosen by
the optimizer for a multi-load examples. The de-homogenized structure of the same
example is depicted in Figure 5.19a.
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(a) Layer-normal fields obtained from the homogenization approach for a twice loaded can-
tilever design.

(b) Full set of streamlines created for a twice loaded cantilever design.

Figure 5.21: This figure shows the layer-normal fields and the traced streamlines for
a twice loaded cantilever design.
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(a) Chosen set of streamlines for a twice loaded cantilever design.

(b) Structure obtained from the subselection approach for a twice loaded cantilever design.

Figure 5.22: This figure shows the selected subset of streamlines and the resulting
structure for a twice loaded cantilever design.
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(a) Layer-normal fields obtained from the homogenization approach for a twice loaded bridge
design.

(b) Full set of streamlines created for a twice loaded bridge design.

Figure 5.23: This figure shows the layer-normal fields and the traced streamlines for
a twice loaded bridge design.
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(a) Chosen set of streamlines for a twice loaded bridge design.

(b) Structure obtained from the subselection approach for a twice loaded bridge design.

Figure 5.24: This figure shows the selected subset of streamlines and the resulting
structure for a twice loaded bridge design.



Chapter 6

Concluding remarks

In this thesis, I have presented research in de-homogenization to synthesize
geometrical structures from topology optimized multi-scale designs. The main
goal was to obtain structures that perform well from a mechanical point of view.
Noise, singularities, non-uniqueness, and the lack of global connectivity were the
main challenges to achieve this. I would like to revisit the questions from the
beginning of my Ph.D. project, as mentioned in Chapter 1.

• Question 1: What kind of singularities arises in homogenization-based
topology optimization results, and where are they located?

• Question 2: How can we de-homogenize three-dimensional, singularity-free
results obtained by the homogenization approach?

• Question 3: How can we expand de-homogenization to allow the usage
of more challenging, singularity-containing problems in two and three di-
mensions?

• Question 4: Is there a way to expand possible findings to the previous
questions to examples with multiple loading cases?

Through this Ph.D. project, we gained a better understanding of the layer-
normal fields arising from homogenization-based topology optimization. I have
investigated singularities in two and three dimensions and related them to the
layer-normal thickness and the principal stress directions [Paper-II, Paper-III].
We can now understand better how de-homogenization methods need to be
designed to account for occurring singularities (Question 1).
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The research into how regularization and starting orientations influence the
final layer-normal fields [Paper-II, Paper-III] yielded much easier fields to de-
homogenize, making it easier to create well-performing structures. Here, future
research should look into how we can benefit from the gained understanding
of singularities to produce layer-normal fields that are easier to de-homogenize.
Especially, periodically updating the layer orientations after a certain number
of iterations to align to the principal stress directions seems promising to me.
This would allow to simultaneously use regularization and profiting from the
singularities of principal stress directions.

In two dimensions, we are now able to de-homogenize examples that contain
singularities using an integration-based approach, thanks to the usage of preex-
isting methods from computer graphics (Question 3). The proposed integration-
based approach of Paper-I allows to de-homogenize singularity-free examples
(Question 2). The understanding of how we can use layer-thicknesses and den-
sity for combing yields not only advantages for de-homogenizing current exam-
ples in three dimensions but might be expandable to multi-load examples in the
future. I believe the performance gain of three orders of magnitude that we saw
for single-load three-dimensional problems should motivate further research to
bringing de-homogenization to a level where engineers can use it in everyday
work.

The novel and first non-integrative de-homogenization approach of selecting
stream surfaces has made it possible to address a multitude of problems. The
subselection method allows handling layers separately, circumventing the wall
problem and paving the path for three-dimensional multi-load problems. The
subselection approach is the first method to enable the de-homogenization of
three-dimensional singularity-containing examples (Question 3). For multi-load
examples, the subselection approach allows extracting structures in two dimen-
sions without sorting the normal fields by hand. Although undoubtedly complex,
I am positive that an expansion to three dimensions is possible in the future
(Question 4).

Looking back at the questions from the beginning of this Ph.D. project, I think
that the state of the art has been progressed for all questions. However, a vast
amount of research is left to be done, and the methods proposed in this thesis
are not robust enough for everyday usage at the moment. Both integration-
based methods and stream surfaces have advantages but also disadvantages.
With integration-based methods, one needs to fix the problem of missing struc-
tural members and start meshing and combing only active layers. For non-
integrative approaches, one needs to deal with the tapering structural members
by either computing correction values as shown for two-dimensional problems or,
arguably more straightforward, using tetrahedron-based shape optimization to
optimize the results. It is important to note that a de-homogenization method
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can only profit from smoother layer-normal fields. I believe that research on de-
homogenization is inseparable from researching the homogenization approach.
Further, the proposed methods might have applications reaching beyond the
mere use for de-homogenization since vector fields are a recurring topic through-
out physical and mechanical research fields. It is my hope that homogenization-
based topology optimization will soon make compliance minimization a widely
used tool in everyday engineering.
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Abstract

This paper presents a highly efficient method to obtain high-resolution, near-optimal 3D topologies optimized for minimum
compliance on a standard PC. Using an implicit geometry description we derive a single-scale interpretation of optimal
multi-scale designs on a very fine mesh (de-homogenization). By performing homogenization-based topology optimization,
optimal multi-scale designs are obtained on a relatively coarse mesh resulting in a low computational cost. As microstructure
parameterization we use orthogonal rank-3 microstructures, which are known to be optimal for a single loading case.
Furthermore, a method to get explicit control of the minimum feature size and complexity of the final shapes will be
discussed. Numerical examples show excellent performance of these fine-scale designs resulting in objective values similar
to the homogenization-based designs. Comparisons with well-established density-based topology optimization methods show a
reduction in computational cost of 3 orders of magnitude, paving the way for giga-scale designs on a standard PC.
c⃝ 2020 Elsevier B.V. All rights reserved.

Keywords: Optimal microstructures; Giga-scale topology optimization; Numerical efficiency; Length-scale enforcement; De-homogenization

1. Introduction

Topology optimization is an advanced design tool with the power to provide engineers with novel insights about
optimal design. Nowadays, availability of high performance computing resources allows for the application of
topology optimization on realistic design problems using different types of physics. Examples include, optimization
of heat sinks using natural convection [1], optimizing fluid flow systems by modeling turbulence using Reynolds-
averaged Navier–Stokes [2], and acoustic horn optimization [3]. However, the most studied (and arguably the most
simple) type of optimization problem is compliance minimization (i.e. stiffness maximization) of linear elastic
structures subject to one or more load-cases and an upper bound on the material usage. Recently, Aage et al. [4]
extended the state-of-the-art of solution methods for these type of problems by optimizing an airplane wing using
more than 1 billion design variables. To do so, 8000 cores were employed on a high performance computer system
up to 5 days. Hence, a significant reduction in computational cost is still required if large-scale topology optimization
is to be adapted interactively in engineering practice.

∗ Correspondence to: Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Nils Koppels Allé,
Building 404, 2800 Kgs. Lyngby, Denmark.
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Theoretically, it is known that the optimal shape for a compliance minimization problem contains periodic details
on several length-scales [5,6]. Instead of modeling these microscopic details on an extremely fine mesh, the problem
can be decomposed into a multi-scale problem. The theory of homogenization can be used to calculate the effective
macroscopic properties of these complex but periodic microstructures [7]. A class of microstructures that is able to
reach the bounds on maximum strain energy are the so-called rank-N laminates [8–11]. These composites, which
contain several length-scales, have the nice property that their corresponding elasticity tensors can be analytically
derived. By using homogenization-based topology optimization the design space can be relaxed to allow for these
rank-N laminates [12], such that optimal designs can be obtained at a much lower computational cost compared
to density-based topology optimization. The theory for performing homogenization-based topology optimization
using optimal microstructures is well-established and described in detail in the books by Allaire [13],Bendsøe and
Sigmund [14]. Nevertheless, the interest in this method has faded in the last decade, which can be explained by the
fact that the optimal designs are on several length-scales which prohibits their manufacturing.

To avoid the use of multi-scale microstructures, it is possible to use a database of near optimal single-scale
microstructures whose properties can be obtained using numerical homogenization [15]. Furthermore, it is possible
to perform the optimization procedure in a hierarchical sense, which means that both the material distribution
and single-scale microstructures are optimized iteratively by making use of inverse homogenization [16,17].
Unfortunately, such an approach comes at large computational cost [18]. To reduce this cost Liu et al. [19]
and Sivapuram et al. [20] restricted the number of different microstructures in the design domain; however, this
results in designs far away from the true optimum. Furthermore, the optimized unit-cell designs do not take into
account connectivity and load transfer between adjacent microstructures due to the separation of scales. In fact, it
is possible to reconstruct near optimal single-scale microstructures based on optimal rank-N laminates [21]. This
approach results in simpler microstructures than the ones obtained using inverse homogenization, at a negligible
computational cost. Furthermore, Pantz and Trabelsi [22] showed that a multi-scale design can be interpreted on a
single-scale using an implicit geometry description. Recent works on this so-called “de-homogenization” approach
have shown that high-resolution near-optimal 2D structures subject to a single loading case can be obtained at a
fraction of the cost of density-based topology optimization [23–25].

This article presents a natural extension of the de-homogenization approach for elasticity problems in 3D
subject to a single loading case. Optimal rank-3 microstructures are used for the homogenization-based topology
optimization, and the multi-scale designs are subsequently de-homogenized on fine meshes containing more than
200 million voxels. Using this approach large-scale designs can be efficiently obtained on a modern PC, without the
need for a high performance computing system, allowing topology optimization to become a more integrated part
of the design process. Finally, it should be noted that simultaneous to this study different research groups have been
working on related type of methods. Geoffroy-Donders et al. [26] present an approach in which sub-optimal open-
walled microstructures are de-homogenized on a fine grid using a slightly different approach. Wu et al. [27] present
an approach to reconstruct a conformal lattice design from a homogenization-based design without creating a global
parameterization. Contrary to above studies we use optimal rank-3 microstructures, since these microstructures have
much better load carrying capabilities than sub-optimal truss-like microstructures [28]. Nevertheless, the presented
approach can be used with other (non-optimal) orthotropic microstructure parameterizations e.g. open-walled. The
only condition is that the elastic properties are monotonously increasing for increasing material usage.

The article is organized as follows: the rank-3 parameterization and the methodology to do homogenization-
based topology optimization is presented in Section 2. The de-homogenization procedure and a method to control
the shape of the final designs is presented in Section 3. A large number of numerical examples to demonstrate the
performance of the presented approach as well as extensive comparisons with density-based topology optimization
are presented in Section 4. Finally, the most important conclusions of this study will be discussed in Section 5.

2. Homogenization-based topology optimization

2.1. The elasticity tensor of a rank-3 laminate

It is well-known that the optimal design for compliance minimization problems subject to a single loading
case can be described by macroscopically varying orthogonal rank-3 laminates [11,29,30]. These multi-scale
microstructures consist of two different materials, a stiff isotropic material (+) and a weak/compliant isotropic
material (−) mimicking void, using Young’s moduli E+ and E−, respectively, and both with identical Poisson’s
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Fig. 1. Visualization of how a rank-2 microstructure is constructed from a stiff isotropic material (+) and a weak/compliant isotropic material
(−). Please note the different length-scales.

ratio ν. To visualize such a laminate, we consider the orthogonal rank-2 laminate shown in Fig. 1, which is optimal
for a planar problem subject to a single load case. The first layering of this microstructure is a periodic rank-1
laminate, shown in Fig. 1(a). The orientation of the rank-1 laminate is described by the layer normal n1 and layer
tangent t1. Furthermore, the relative layer width of the stiff material is described by parameter µ1 ∈ [0, 1], hence the
layer width of the compliant material is (1−µ1). The elasticity tensor E R1 of the rank-1 laminate can be analytically
calculated using the theory of homogenization, by assuming a periodic microstructure and perfect bonding between
the two material phases, see e.g. [13,14].

The rank-1 microstructure is shown in relation to the global frame of reference (x1, x2); however, please note
that the depicted length-scale is x/ε2 with ε → 0. This means that the microstructure can be assumed uniform at
the length-scale x/ε. The rank-2 microstructure is then constructed on this length-scale, (i.e. x/ε) by combining
the stiff material phase and the rank-1 microstructure as is shown in Fig. 1(b). By setting n2

= t1 and t2
= n1

orthogonality of the layers is enforced. In a similar fashion as before the elasticity tensor E R2 of the rank-2 laminate
can be analytically derived as a function of orientation angle θ2 and relative layer widths µ1 and µ2.

The procedure for constructing a rank-3 laminate in 3D is exactly the same; however, now each layer i has two
tangents t i,1 and t i,2 to describe the plane spanned by the stiff material. The elasticity tensor for a rank-3 laminate
E R3 can be described by,

E R3
= E+

− (1 − µ1)(1 − µ2)(1 − µ3)
(

(E+
− E−)−1

−

(1 + ν)(1 − 2ν)
µ1Λ(n1, t1,1, t1,2) + (1 − µ1)(µ2Λ(n2, t2,1, t2,2) + (1 − µ2)µ3Λ(n3, t3,1, t3,2))

E+

)
−1.

(1)

The elasticity tensor is thus described by the layer normals ni and tangents t i,1, t i,2 as well as the relative layer
widths µi , for i = 1, 2, 3. The influence of the orientation of each layer is captured by the fourth-order tensor Λ,

Λ(ni ,t i,1, t i,2) =
1

(1 − ν)
ni

⊗ ni
⊗ ni

⊗ ni
+

1
2(1 − 2ν)(

t i,1
⊗ ni

⊗ t i,1
⊗ ni

+ ni
⊗ t i,1

⊗ t i,1
⊗ ni

+ t i,1
⊗ ni

⊗ ni
⊗ t i,1

+ ni
⊗ t i,1

⊗ ni
⊗ t i,1

+

t i,2
⊗ ni

⊗ t i,2
⊗ ni

+ ni
⊗ t i,2

⊗ t i,2
⊗ ni

+ t i,2
⊗ ni

⊗ ni
⊗ t i,2

+ ni
⊗ t i,2

⊗ ni
⊗ t i,2

)
,

(2)

where ⊗ indicates the dyadic product. The normal and tangent vectors of the three layers are linked since we use an
orthogonal rank-3 microstructure. It is well-known that three Euler angles are required to represent an orthogonal
frame in 3D. Hence, we use angles θ1, θ2 and θ3 to define the different layer normals and tangents,

n1
= t2,1

= t3,1
=

⎧⎨⎩cos(θ1)cos(θ3)sin(θ2) + sin(θ1)sin(θ3)
cos(θ1)sin(θ2)sin(θ3) − cos(θ3)sin(θ1)

cos(θ1)cos(θ2)

⎫⎬⎭ ,
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n2
= t1,1

= t3,2
=

⎧⎨⎩cos(θ3)sin(θ1)sin(θ2) − cos(θ1)sin(θ3)
sin(θ1)sin(θ2)sin(θ3) + cos(θ1)cos(θ3)

sin(θ1)cos(θ2)

⎫⎬⎭ ,
n3

= t1,2
= t2,2

=

⎧⎨⎩cos(θ2)cos(θ3)
cos(θ2)sin(θ3)

−sin(θ2)

⎫⎬⎭ . (3)

This means that the elasticity tensor of a rank-3 laminate can be described by six parameters µ1, µ2, µ3, θ1, θ2 and
θ3. And it is possible to find the derivatives of E R3 w.r.t to these variables to perform gradient-based optimization.
These expressions for the gradients are long but not necessarily difficult to derive; furthermore, the material volume
fraction ρ of a rank-3 microstructure is defined as,

ρ = µ1 + µ2 + µ3 − µ1µ2 − µ1µ3 − µ2µ3 + µ1µ2µ3. (4)

2.2. Regularization of layer widths and avoiding thin features

The homogenization-based topology optimization problem will be solved on a finite element mesh discretized
using tri-linear finite elements, which each hold a uniform microstructure. As is shown by Dı́az and Sigmund [31]
a checkerboard-like pattern analyzed using linear finite elements can be stiffer than an optimal microstructure with
the same average density. To avoid these artificially stiff patterns, a classical density filter is used to obtain filtered
relative layer widths µ̃i from µi [32,33]. As filter radius we use R = 1.5 hc, with hc the length of an element.

Additionally, we want to avoid very thin and very thick layers. Instead we want the layers to be either void,
completely solid or in the interval [η, (1 − η)], with η = 0.05 used in this study. To do so, we use the same
interpolation scheme as proposed in [23] that links the filtered relative layer widths µ̃i to the physical relative layer
widths ¯̃µi ,

¯̃µi = µ̃i
(
1 − H̄ (β, (1 − η), µ̃i )

)
H̄ (β, η, µ̃i ) +

(
β − 1
β

+
µ̃i

β

)
H̄ (β, (1 − η), µ̃i ). (5)

Where H̄ is the smoothed Heaviside function [34],

H̄ (β, η, µ̃i ) =
tanh(βη) + tanh(β(µ̃i − η))
tanh(βη) + tanh(β(1 − η))

, (6)

with parameter β controlling the sharpness of the projection and η the threshold parameter. The interpolation curves
for different values of β and η are shown in Fig. 2. The order of lines in the legend shows the continuation approach
that is taken, with 50 iterations per step. This means that the material interpolation scheme begins close to a linear
function, gradually η is increased to enforce a length-scale on the relative layer widths. Finally, β is increased to a
high value to ensure that ¯̃µi is either 0, 1 or in the region [0.05, 0.95].

2.3. Optimization and regularization of the microstructure orientation

It is known that a microstructure with an elasticity tensor having orthotropic symmetry conditions is optimally
aligned using the principal stress directions when a single load case problem is considered [35–37]. It is therefore
appealing to align the microstructure normals n1, n2, n3 with the eigenvectors v I , v I , v I I I corresponding to the
principal stresses. Unfortunately, solving the cubic equation for the 3D eigenvalue problem leads to an arbitrary
order of the principal stresses as σI ≥ σI I ≥ σI I I . This means that eigenvectors can swap 90 degrees when there
is multiplicity in eigenvalues, in turn leading to instability in the optimization when the layer normals interchange.
To circumvent these instabilities we update the orientation vectors based on the gradients w.r.t. θ1, θ2 and θ3.

For the de-homogenization approach to work it is very important that n1, n2, n3 are smooth and continuous
throughout the design domain Ω . This is unfortunately neither possible using the principal stress directions, nor
using gradient-based optimization of the Euler angles. As possible solution one can regularize the orientation field
using the approach by Geoffroy-Donders et al. [26]; however, in our experience this may lead to misaligned members
w.r.t. the load path. To have a de-homogenized design that performs well, we propose a computational approach in
which the smooth and continuous vector fields ñ1

, ñ2
, ñ3 are reconstructed from n1, n2, n3. This approach, that will
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Fig. 2. Interpolation scheme plotted for the intervals where the behavior is non-linear, for different values of η and β, that follow the order
of the continuation approach.

Fig. 3. Visualization of the penalization of difference in orientation vectors in two elements connected by face f .

be described in detail in the next Section, requires that n1, n2, n3 are smoothly varying through Ω with a rotational
symmetry of π/2. Hence interchanging vectors are allowed; however, large changes in frame orientation should be
avoided.

We perform a regularization step on the discretized mesh and consider all faces n f connecting two elements.
A penalization function P f i ∈ [0, 1] is introduced that penalizes the difference between two vectors ni (x f,1) and
ni (x f,2) that are connected by face f ,

P f i = 4
(
ni (x f,1) · ni (x f,2)

)2
− 4

(
ni (x f,1) · ni (x f,2)

)4
. (7)

This function has a minimum value if the vectors have the same orientation or an angle difference of kπ/2, for an
integer k, and a maximum value for a relative angle difference of π/4 + kπ/2. To demonstrate this, consider face
f and corresponding normal vectors ni (x f,1) and ni (x f,2) shown in Fig. 3(a). The value of penalization function
P f i plotted against the inner product of the two corresponding vectors is shown in Fig. 3(b).

By looping over the three normal vector directions, and all faces n f connecting two elements, we can obtain a
single regularization objective Fθ ,

Fθ =

( n f∑
f =1

3∑
i=1

Pq
f i

)1/q
. (8)

Numerical experiments have shown that a norm aggregation of q = 1 yields the best results. Finally, it should be
noted that regularization objective Fθ can be used to augment the optimization objective or can be imposed as a
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constraint. The sensitivities w.r.t. Euler angles θ1, θ2 and θ3 can be derived analytically to allow for gradient-based
optimization.

2.4. Topology optimization problem

The goal of the homogenization-based topology optimization problem is to minimize objective functional F ,
which is a combination of the compliance J (i.e. the external work), and regularization objective Fθ . The domain
is discretized using nx ×ny ×nz tri-linear finite elements, and hence the design variables can be discretized in design
vectors µ1,µ2,µ3, θ1, θ2 and θ3. The optimization problem is solved in a nested form, which means that for each
design iteration we solve the state equation after which the design vectors are updated. Hence, the discretized
optimization problem can be written as,

min
µ1,µ2,µ3,θ1,θ2,θ3

: F(µ1,µ2,µ3, θ1, θ2, θ3,U) = γcJ (µ1,µ2,µ3, θ1, θ2, θ3,U) + γθFθ (θ1, θ2, θ3),

s.t. : K(µ1,µ2,µ3, θ1, θ2, θ3)U = F,
: vT ρ(µ1,µ2,µ3) − V max

f V ≤ 0,

: 0 ≤ µ1,µ2,µ3 ≤ 1,
: −4π ≤ θ1, θ2, θ3 ≤ 4π ,

(9)

here v is the vector containing the element volumes and V max
f is the maximum allowed fraction of the material in

Ω , with V the volume of Ω . K is the stiffness matrix and vector F describes the loads acting on the domain. We
solve for the displacement vector U using a conjugate gradient method in combination with a geometrical multigrid
pre-conditioner [38]. For the design update the MATLAB implementation of the Method of Moving Asymptotes
(MMA) introduced by Svanberg [39] is used.

As a starting guess for the layer widths we use µ1 = µ2 = µ3, such that the volume constraint is exactly satisfied.
The starting guess for the orientation is based on a pre-analysis using isotropic microstructures, the corresponding
principal stress directions are used to determine θ1, θ2 and θ3.

Finally it should be mentioned that the scaling parameters γc and γθ have a large influence on the optimization
procedure. γc is based on compliance of the first analysis step J (1), while γθ is based on the regularization objective
for the starting guess F (1)

θ , such that,

γc =
1

J (1) , γθ =
1

2F (1)
θ

. (10)

2.5. Numerical examples

In this paper we will use four different examples, comprising the Michell cantilever, Michell’s torsion sphere,
an electrical mast example and the L-shaped beam all shown in Fig. 4.

For the Michell cantilever the load is applied in a distributed sense over a patch of L/6 × L/6 with a magnitude
of 36/L2. Furthermore, this patch of elements is set to solid with a depth of L/24 into the domain. For the torsion
sphere both the load and the Dirichlet boundary condition are applied on a square with dimensions L/12 × L/12.
The load is applied as a line load along the boundary of this square using a magnitude of 3/L. Finally, there are
solid elements at both boundary conditions. The electrical mast example is inspired by Geoffroy-Donders et al.
[26]. Like them, we only model a fourth of the full structure, hence the red shaded boundaries represent symmetry
conditions. The load is applied in a distributed sense over a patch of L/8 × L/8 with a magnitude of 64/L2. The
L-shaped design domain, consists of passive elements to show a torsion bending coupling. The load is applied in
a distributed sense over a square patch of solid materials of L/6 × L/6 with a magnitude of 36/L2. Finally, it
has to be mentioned that all examples are obtained using a Young’s modulus for the stiff material E+

= 1, and
E−

= 10−3 to represent the weak material in the rank-3 microstructures, since lower values result in a much slower
convergence. Furthermore, we use a length L = 1 and a maximum allowed volume fraction V max

f = 0.1.
To demonstrate the effect between the angle optimization and regularization methods we consider the electrical

mast example. The structure is optimized on two different mesh sizes, and corresponding compliance values on the
coarse optimization mesh J c are shown in Table 1. We demonstrate the difference between gradient-based alignment
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Fig. 4. Dimensions and boundary conditions for the four numerical examples used in this work.

Table 1
Compliance values J c for the electrical mast example, optimized using different discretizations, alignment
methods, starting guesses and regularization schemes. The method used in this work is denoted in boldface.

Mesh size Alignment method Starting orientation Regularization method J c

24 × 24 × 72 gradient-based principal directions Both widths and angles 98.23
24 × 24 × 72 Gradient-based Principal directions Only on widths 97.12
24 × 24 × 72 Gradient-based Principal directions Only on angles 99.17
24 × 24 × 72 Gradient-based Principal directions No regularization 97.17
24 × 24 × 72 Gradient-based θ1 = θ2 = θ3 = 0 Both widths and angles 100.10
24 × 24 × 72 Gradient-based θ1 = θ2 = θ3 = 0 Only on widths 97.39
24 × 24 × 72 Stress-based Principal directions Only on widths 97.69

48 × 48 × 144 gradient-based principal directions Both widths and angles 98.03
48 × 48 × 144 Gradient-based Principal directions Only on widths 97.44
48 × 48 × 144 Gradient-based Principal directions Only on angles 99.63
48 × 48 × 144 Gradient-based Principal directions No regularization 98.43
48 × 48 × 144 Gradient-based θ1 = θ2 = θ3 = 0 Both widths and angles 102.13
48 × 48 × 144 Gradient-based θ1 = θ2 = θ3 = 0 Only on angles 98.43
48 × 48 × 144 stress-based Principal directions Only on widths 97.57

of the microstructure and the use of a stress-based alignment procedure. Furthermore, we show the effect of the
starting guess for the microstructure orientation, which can be either based on stress directions in a pre-analysis or
by setting the Euler angles to zero. Finally, we show the effect of regularization on the angles and the regularization
scheme that avoids thin features in the relative widths of the layers. The method used in this work is denoted in
boldface.

As can be seen, the best results are obtained using gradient-based optimization of the orientation angles in
combination with the principal directions as starting guess. In general the effect of adding the projection scheme
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(see Fig. 2) to avoid thin relative widths does not increase the compliance, in fact it improves the performance.
Furthermore, the regularization of the angles only reduces the performance by 1−2%; however, it ensures structures
that can be de-homogenized as will be discussed in the next Section.

3. De-homogenization method

A design with rank-3 microstructures can be approximated on single scale using an approach similar to the one
presented in [23,25]. However, some extra steps need to be taken, since the vector fields that describe the layer
normals should be smooth and continuous. First of all, it is not directly possible to interchange the layer normals ni ,
n j and the physical relative layer widths ¯̃µi and ¯̃µ j for i ̸= j , due to the hierarchy contained in ¯̃µi Hence, before the
three layers are sorted to be smooth and continuous throughout domain Ω it is important that this hierarchy is taken
into account. Afterwards, we have three orthogonal vector fields that are aligned up to π/2. However, we should
note that the normal vectors n1, n2, n3 describing the microstructure orientation are rotationally symmetric up to π ,
i.e. using −n1 instead of n1 results in the same microstructures. Hence, we have a 3-dimensional 6-direction field,
i.e. 3 orthogonal 2-direction fields, which are rotationally symmetric vector fields with no assigned magnitude [40].
From this 6-direction field we extract 3 orthogonal, smooth and continuous 1-direction fields ñ1

, ñ2
, ñ3.

3.1. Single scale interpretation of a rank-3 microstructure

As discussed in [21] for the 2D case, it is possible to approximate a multi-scale rank-3 laminate with small loss
in performance on a single scale. Here, we extend the idea to orthogonal rank-3 microstructures in 3D. To do so we
make use of the relative layer contributions pi . These layer contributions are linked to the physical relative layer
width ¯̃µi using,

p1 =

¯̃µ1

ρ
,

p2 =
(1 − ¯̃µ1) ¯̃µ2

ρ
,

p3 =
(1 − ¯̃µ1)(1 − ¯̃µ2) ¯̃µ3

ρ
.

(11)

In a subsequent step we can obtain the single scale layer widths wi = αpi , with α > 0 a scaling factor such that
the following equation holds,

ρ = α(p1 + p2 + p3) − α2(p1 p2 + p1 p3 + p2 p3) + α3 p1 p2 p3. (12)

3.2. Obtaining smooth and continuous vector fields

Consider the 6-direction vector field consisting of layer normals ±n1,±n2,±n3 and layer widths w1, w2, w3.
From this we want to extract three smooth and continuous 1-direction fields ñ1

, ñ2
, ñ3 with sorted widths w̃1, w̃2,

and w̃3. Where the normal vectors ñi are smooth and continuous throughout the domain.
Similar to the method described by Geoffroy-Donders et al. [26] we require that the vector fields used for the

de-homogenization are free from singularities. The effect of singularities is that if you trace a curve around them
and follow a given vector as you move along this curve, then the vector will be rotated when you come full circle.
A more detailed explanation about vector fields, direction fields, singularities and possible treatments can be found
in [40–42].

Fortunately, we observe that singularities tend to occur in (nearly) void regions outside of the mechanical
structure, and this points to an effective way of computing the 1-direction fields such that the singularities do not
affect our results. We observe that in the absence of singularities, we can simply propagate a consistent choice of
vectors for our 1-direction fields from an initial element. If we propagate in such a way that we visit elements which
might have singularities (i.e. nearly void elements) only after we have visited all of the elements pertinent to the
mechanical structure, then we could stop once all significantly non-void elements have been visited and it will not
be possible to draw a loop containing a singularity in this region. Clearly, this does not protect us from singularities

128



J.P. Groen, F.C. Stutz, N. Aage et al. / Computer Methods in Applied Mechanics and Engineering 364 (2020) 112979 9

inside the mechanical structure (regardless of density) but these seem to occur only for specific boundary conditions.
Actually, Michell’s torsion sphere contains an internal singularity. The layer normals ni that describe the sphere
all point towards the center. However, since there is no material in the center we do not have a problem obtaining
smooth and continuous vector fields.

Informed by the observations above, we have designed a front propagation approach that visits all elements
in density sorted order. Initially, we take a starting element with all layers widths wi ∈ [0.05, 0.95] and we set
ñ1

= n1, ñ2
= n2, ñ3

= n3, hence the widths follow such that w̃1 = w1, w̃2 = w2, and w̃3 = w3. Then we add
its neighbors to a priority queue, Q. The priority is given by |0.5 − ρ| where smaller values correspond to higher
priority. Subsequently, when we take an element out of the queue, we fix its 1-direction fields in a way discussed
below, and add its non-visited neighbors to Q. Finally, we mark this element as visited in a vector V . This procedure
leads to a traversal of all elements in order of density closest to 0.5, but in a spatially contiguous fashion. If there is
a singularity in the void domain outside the mechanical structure, it will not influence the direction fields computed
by this approach.

If we take an element e out of Q, we find the right handed frame F̃e that describes the layer widths,

F̃e =
[
ñ1(xe) ñ2(xe) ñ3(xe)

]
. (13)

There are j = 24 possible frame orientations F j
e that have to be tested to find the best F̃e. To do this, we identify

the set of neighbors of element e that already have been visited Ne. For each of these neighbor elements i ∈ Ne
we identify the rotation matrix R j

e,i between possible orientation F j
e and the already defined frame F̃i ,

R j
e,i = F̃

T
i F j

e . (14)

The corresponding orientation angle ψe,i, j that defines the frame orientation can be calculated as,

|ψe,i, j | = arccos
(

trace(R j
e,i ) − 1

2

)
, (15)

Hence, ψe,i, j = 0 would mean that the frame in e coincides with the frame in i for a given possibility j . The best
orientation follows as,

F̃e = Fk
e, for k = arg min

j=1,...,24

∑
i

|ψe,i, j |. (16)

Once, we have the sorted vectors for element e, ñ1
, ñ2

, ñ3 that describe frame F̃e we store the corresponding widths
w̃i . Subsequently we remove element e from the queue and mark it as visited; furthermore, we add the unvisited
neighbors of element e to the queue and sort again based on density. Subsequently, we take the element with the
highest priority out of the queue and perform the same procedure again. This process is repeated until we have
three smooth 1-direction fields.

3.3. De-homogenization of multi-scale designs

Similar to the work presented in [23] we need to calculate a mapping field φi for each of the three layers. Using
this mapping function we can create an implicit geometry description ρ̃i (x) of the i-th layer,

ρ̃i (x) = H
((1

2
+

1
2
S {Piφi (x)}

)
− w̃i (x)

)
. (17)

Here H is the Heaviside function and S ∈ [−1, 1] corresponds to a triangle wave. Furthermore, Pi is a periodicity
scaling, which as will be discussed later, depends on mapping function φi . The three implicit geometry functions
for each layer can be combined to create an implicit geometry description of the de-homogenized structure,

ρ̃(x) = min

{
1,

3∑
i=1

ρ̃i (x)

}
. (18)

Since small widths are avoided using the continuation scheme presented in Fig. 2 we only need an accurate
description of φi in Ω̃i ,

x ∈ Ω̃i if w̃i (x) > 0.01 and ρ(x) < 0.99. (19)
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To solve for φi we solve the following least-squares problem,

min
φi (x)

: I(φi (x)) =
1
2

∫
Ω

αi
1(x)

∇φi (x) − ñi (x)
2

dΩ ,

s.t. : αi
2(x)∇φi (x) · t̃ i,1(x) = 0,

s.t. : αi
2(x)∇φi (x) · t̃ i,2(x) = 0.

(20)

The domain is split into three parts, which dictate the weights on the objective αi
1 and the weights on the constraints

αi
2,

αi
1(x) =

⎧⎪⎨⎪⎩
0.01 if w̃i (x) < 0.01,
0.1 if ρ(x) > 0.99,
1 if x ∈ Ω̃i .

, αi
2(x) =

⎧⎪⎨⎪⎩
0 if w̃i (x) < 0.01,
0 if ρ(x) > 0.99,
1 if x ∈ Ω̃i .

(21)

The term αi
1 is introduced to relax the requirements for φi in regions that are either solid or void, where the low

values still ensure some regularization to the lattice spacing. Furthermore, the term αi
2 is used to turn off exact

angular enforcement in these regions. Numerically, we solve the above mentioned problem using a finite element
approach, where the constraints are enforced in an augmented setting using a penalty parameter γφ . Furthermore, the
complete sequence of topology optimization, creating mapping fields, and creating an implicit geometry description
can be solved in a multi-scale manner. It is known that homogenization-based topology optimization can be
performed on a relatively coarse mesh T c, while it can still contain a lot of details. The implicit geometry function
ρ̃ is a continuous description of the de-homogenized shape as long as the mapping functions φi and widths w̃i have
a continuous description. For practical purposes ρ̃ is evaluated using a discrete number of points; however, on a
fine mesh T f , such that h f

≤ hc/20.
Finally, it should be mentioned that we can impose an average layer spacing ε, which can be interpreted as the

unit-cell size. To do so, we define the periodicity scaling parameter Pi based on the average lattice spacing in the
domain of interest Ω̃i ,

Pi =
2π
ϵ

∫
Ω̃i

dΩ̃i∫
Ω̃i

∥∇φi (x)∥dΩ̃i
. (22)

3.4. Verification and clean up of de-homogenized designs

The de-homogenized designs can be interpolated on a very fine voxel grid, since an interpolation basis can be
made for mapping functions φi and widths w̃i . Similar to the 2D case (see [23]) we can identify: (1) de-homogenized
layers that consist of thin widths, (2) regions that do not carry load and (3) disconnected patches of material.

De-homogenized layers consisting of thin widths can be identified by evaluating the local spacing λi , corre-
sponding to layer i ,

λi (x) =
2π

Pi∥∇φi (x)∥
. (23)

This local spacing can be used to get a description of the actual feature size on the solid fi for layer i .

fi (x) = w̃i (x)λi (x). (24)

Similar to Groen and Sigmund [23], we add a minimum feature size fmin to the solid at places where this feature
size was violated. To do so we obtain a modified local width w̃∗

i in cases where the feature size on the solid is
violated, such that

w̃∗

i (x) =

{
w̃i (x), if fi (x) ≥ fmin and x ∈ Ω̃i ,
fmin
λi (x) , if fi (x) < fmin and x ∈ Ω̃i .

(25)

This new width w̃∗

i is then used in Eq. (18). However, this means that the volume of the de-homogenized shape is
slightly increased. This can be alleviated by proportionally removing material in the rest of the domain; however,
this option is not considered in this study.
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Fig. 5. A Michell cantilever de-homogenized on a fine mesh of 960 × 480 × 480 using ε = 30 h f and fmin = 0.

An example of the Michell cantilever evaluated on a mesh of 960 × 480 × 480 elements is shown in Fig. 5(a)
where it can be seen that there are disconnected patches of material. These patches of material can be identified
using the in-built connected component labeling algorithm in MATLAB (i.e. bwconncomp), which can identify
the separate components of solid material. By only keeping the component with the largest number of solid voxels,
the disconnected patches are removed as can be seen in Fig. 5(b). Unfortunately, this scheme cannot take care of
solid regions at the boundary that do not carry any load. These artifacts arise due to the fact that the modified local
widths w̃∗

i jump from a finite width to zero at the boundary of Ω̃i . To address this problem, we can either apply
a coated structure approach where boundary and infill are optimized simultaneously (see [25] and [43]) or ensure
that triangle wave S is at a minimum at the boundary of Ω̃i . Both remedies will be investigated in more detail in
a future study. For now, we make use of the simple iterative update scheme as proposed in [23].

First, we perform a fine-scale finite element analysis using a slightly modified version of the publicly available
topology optimization code using the PETSc framework [44]. Second, the solid elements that have a strain energy
density E lower than 10−2.5 of the mean strain energy density Ē are set to void. Third, to make sure that the
length-scale fmin is still satisfied after each iteration, an open–close filter operation [45] is applied. These steps are
then repeated until no changes are made. The final design for the Michell cantilever can be seen in Fig. 5(c).

The combination of removal of solid elements with a low strain energy density, followed by the open–close
filter operation, generally convergences within 5–10 iterations. Besides a clean and well-connected design, the
performance of the design on the fine-scale J f is immediately known. Furthermore, it has to be noted that for
the fine-scale analysis void is modeled using a Young’s modulus E−

= 10−9 E+.

4. Numerical examples

To demonstrate that our approach requires moderate computational resources, we perform both the
homogenization-based topology optimization step and the de-homogenization step on a modern workstation PC
using a single core MATLAB code. To be more specific, the PC uses Ubuntu 16.04.6 as operating system, contains
an Intel Xeon Platinum 8160 processor, with 64 GB RAM memory. Although the homogenization-based designs
can be evaluated on an infinitely fine voxel grid, we have been restricted by memory size to examples in the range
of 200 million voxels. These large-scale designs have been verified on the DTU Sophia cluster using 100 nodes
each containing 2 AMD EPYC 7351 processors and 128 GB RAM memory. Hence, a total of 3200 cores was used.

4.1. Homogenization-based topology optimization

The first step in the procedure is the homogenization-based topology optimization. All examples shown in
Fig. 4 are optimized on differently discretized coarse meshes T c. The corresponding compliance values on the
coarse optimization meshes J c, the volume fraction V c

f , number of iterations ni ter and the total time used for the
optimization T c are shown in Table 2.
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Table 2
Compliance J c , volume fraction V c

f , the number of iterations ni ter , and run time T c for different optimization
examples optimized using homogenization-based topology optimization. Reference compliance values J re f

obtained using density-based topology optimization are shown as well.

Example T c J c J re f V c
f ni ter T c [hh : mm : ss]

Michell cantilever 48 × 24 × 24 227.89 269.763 0.100 400 01:23:51
Michell cantilever 96 × 48 × 48 226.68 265.52 0.100 400 09:45:35
Michell’s torsion sphere 48 × 48 × 48 12.33 12.51 0.100 400 04:28:35
Michell’s torsion sphere 72 × 72 × 72 14.00 14.14 0.100 400 15:14:11
Electrical mast 24 × 24 × 72 98.23 107.53 0.100 400 01:14:20
Electrical mast 48 × 48 × 144 98.09 104.28 0.100 400 07:16:38
L-beam 48 × 48 × 24 590.56 668.37 0.100 400 02:02:02
L-beam 96 × 96 × 48 567.62 608.56 0.100 400 13:32:11

Fig. 6. Histograms demonstrating the frequency of intermediate density ρ and widths wi corresponding to the active elements in the Electrical
mast example optimized on a mesh of 48 × 48 × 144 elements.

It can be seen that even the example with the finest discretization (using approximately 1.2 million degrees of
freedom) does not require more than 16 CPU hours on the workstation, making the computational cost manageable.
All optimization examples took 400 design iterations due to the continuation scheme to avoid very thin or thick
lamination widths. After the last update of η and β at iteration 350, the design has to be updated for at least 50
more iterations. Furthermore, it should be mentioned that there is great potential for a speed up if the code is run
in parallel or in a lower-level programming language (e.g. C++ ) compared to MATLAB.

Contrary to many multi-scale approaches using non-optimal (e.g. isotropic and/or open-walled) microstructures,
our optimized designs have a large number of microstructures with intermediate density instead of being solid or
void. This can be seen in Fig. 6(a) which contains a histogram plot of the element densities ρ corresponding to
the active elements in the Electrical mast example optimized on a mesh of 48 × 48 × 144 elements. It is also
interesting to note that in most parts of the design domain, only one or two layers have a finite width as can be
seen in Fig. 6(b). This observation is in agreement with the work of Gibiansky and Cherkaev [30], where it is
shown that not all loading situations result in laminates of third rank.

Finally, reference compliance values J re f for designs obtained using the well-known Solid Isotropic Microstruc-
ture with Penalty (SIMP) method obtained on the same mesh sizes are shown in Table 2 as well. These reference
values have been obtained using a continuation scheme on the penalization factor (p). We start with p = 1 and
slowly increase this to p = 4 such that the design converges within 450 iterations. Furthermore, it should be noted
that the density filter is used in these examples with a filter radius of R = 2hc, where the filter is turned off in
the final iterations to allow for black and white designs. Furthermore, it has to be noted that the void material is
modeled using a Young’s modulus E−

= 10−9 E+.
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Table 3
Different mesh sizes T c , and T i , T f , and computational cost for the de-homogenization step T φ .

Example T c T i T f T φ [hh : mm : ss]

Michell cantilever 48 × 24 × 24 192 × 96 × 96 960 × 480 × 480 00:15:36
Michell cantilever 96 × 48 × 48 192 × 96 × 96 960 × 480 × 480 00:45:39
Michell’s torsion sphere 48 × 48 × 48 144 × 144 × 144 576 × 576 × 576 00:36:28
Michell’s torsion sphere 72 × 72 × 72 144 × 144 × 144 576 × 576 × 576 01:19:44
Electrical mast 24 × 24 × 72 96 × 96 × 288 384 × 384 × 1152 00:21:43
Electrical mast 48 × 48 × 144 96 × 96 × 288 384 × 384 × 1152 00:54:49
L-beam 48 × 48 × 24 192 × 96 768 × 768 × 384 00:23:32
L-beam 96 × 96 × 48 192 × 96 768 × 768 × 384 01:08:06

As expected the homogenization-based designs perform much better than the single-scale density-based designs.
The reason is obvious, for the multi-scale designs optimal rank-3 microstructures are used, which contain much
more information on this coarse mesh than the isotropic material using the SIMP method. Only for Michell’s torsion
sphere the values are close, this is expected since it is well-known that the optimal solution is a closed sphere of
solid material [28].

4.2. De-homogenization

As discussed before, the de-homogenization consists of two parts. The first part is the sorting of the vector
fields. The second part is calculating mapping functions φi , applying an average unit-cell spacing ε and a length-
scale fmin . The de-homogenization is performed in a multi-scale fashion, where the vector fields are sorted on
coarse optimization mesh T c, the mapping functions are calculated on T i , while the design is projected on fine
mesh T f . The total computational cost to de-homogenize each of the above-mentioned examples to a fine mesh of
approximately 200 million elements is shown in Table 3. For each example an average unit-cell spacing ε = 40 h f

is chosen, with fmin = 2 h f ; however, it is noted that changing these values does not affect the computational cost.
As can be seen all examples can be de-homogenized into very fine designs in less than one and a half hours,

rendering the total computational cost for obtaining very fine designs in the range of approximately 2–17 hours,
utilizing only a single core on the workstation PC.

4.3. Performance of the de-homogenized designs

The next step is to demonstrate the performance of the presented approach. First, we show the effect of changing
minimum length-scale fmin and average unit-cell spacing ε on the volume fraction of the de-homogenized design
V φ

f . To do so, we use the Electrical mast example projected on a fine mesh of 384 × 384 × 1152 elements. The
results for both optimization meshes T c are shown in Table 4.

As can be seen, adding a minimum length-scale adds a significant amount of material, hence the volume
constraint can be violated up to 0.20 Vmax . Nevertheless, this effect can be minimized if reasonable values for
ε and fmin are chosen. When fmin is large compared to ε, a large amount of material will be added to satisfy
the minimum length-scale, which results in a large violation of the volume constraint. Generally, a good rule of
thumb is that ε

fmin
> 10, such that the violation of the volume constraint stays below 10% of Vmax . Furthermore,

it is obvious that ε has to be small compared to the domain size, otherwise the de-homogenized design cannot
represent the homogenization-based design. Ideally, we would thus like to de-homogenize the multi-scale design to
a finer mesh, see e.g. Groen and Sigmund [23], since this would allow finer details and smaller or no violations
of the volume constraint, while a minimum length-scale can still be guaranteed, ideally related to η used in the
homogenization-based topology optimization procedure.

Furthermore, all the de-homogenized designs perform close to the homogenization-based solutions. This can be
verified by analyzing the compliance of the de-homogenized designs on the fine mesh J φ , which is also shown in
Table 4. As expected the designs which have a higher volume have a lower compliance. Nevertheless, it can be seen
that all values are close to the homogenization-based compliance J c. It can be seen that a smaller ε results in a better
performance, which is expected, since the de-homogenized designs better resemble the multi-scale designs. Hence,
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Table 4
The volume fraction V φ

f , compliance J φ , stiffness per weight measure Sφ and total computation time T tot of the de-homogenized electrical

mast on a fine mesh of 384 × 384 × 1152 elements. Furthermore, the volume fraction V post
f and compliance J post and stiffness per weight

S post after the post-processing step are shown. Results are shown for different T c , fmin and ε.

T c ε fmin V φ
f J φ Sφ T tot [hh : mm : ss] V post

f J post S post

24 × 24 × 72 24 h f 0 h f 0.0993 106.17 10.544 01:36:03 0.0992 106.17 10.528
24 × 24 × 72 24 h f 2 h f 0.1046 101.83 10.650 0.1041 101.83 10.598
24 × 24 × 72 24 h f 3 h f 0.1093 98.96 10.814 0.1086 98.42 10.692
24 × 24 × 72 24 h f 4 h f 0.1156 95.19 11.003 0.1151 93.83 10.796
24 × 24 × 72 32 h f 0 h f 0.0990 107.87 10.678 0.0987 107.86 10.650
24 × 24 × 72 32 h f 2 h f 0.1020 105.08 10.720 0.1015 105.06 10.669
24 × 24 × 72 32 h f 3 h f 0.1050 102.81 10.799 0.1043 102.40 10.680
24 × 24 × 72 32 h f 4 h f 0.1088 100.42 10.923 0.1077 99.44 10.713
24 × 24 × 72 40 h f 0 h f 0.0979 110.80 10.843 0.0976 110.78 10.812
24 × 24 × 72 40 h f 2 h f 0.0996 109.11 10.870 0.0993 109.11 10.837
24 × 24 × 72 40 h f 3 h f 0.1016 107.64 10.933 0.1008 107.36 10.824
24 × 24 × 72 40 h f 4 h f 0.1040 105.78 10.996 0.1028 105.27 10.822

48 × 48 × 144 24 h f 0 h f 0.0994 108.14 10.755 08:11:27 0.0993 108.14 10.737
48 × 48 × 144 24 h f 2 h f 0.1059 102.52 10.858 0.1054 102.50 10.805
48 × 48 × 144 24 h f 3 h f 0.1121 98.21 11.008 0.1115 97.37 10.853
48 × 48 × 144 24 h f 4 h f 0.1195 93.64 11.194 0.1198 91.70 10.984
48 × 48 × 144 32 h f 0 h f 0.0974 114.03 11.109 0.0972 114.03 11.080
48 × 48 × 144 32 h f 2 h f 0.1013 109.98 11.145 0.1007 109.99 11.083
48 × 48 × 144 32 h f 3 h f 0.1054 106.69 11.240 0.1042 106.38 11.088
48 × 48 × 144 32 h f 4 h f 0.1105 102.75 11.350 0.1088 102.00 11.097
48 × 48 × 144 40 h f 0 h f 0.0979 113.90 11.153 0.0976 113.90 11.119
48 × 48 × 144 40 h f 2 h f 0.1006 111.26 11.189 0.1001 111.26 11.139
48 × 48 × 144 40 h f 3 h f 0.1035 108.89 11.272 0.1026 108.15 11.098
48 × 48 × 144 40 h f 4 h f 0.1071 106.08 11.364 0.1058 104.76 11.086

this again shows the need for an even finer resolution of the de-homogenized designs. Furthermore, we introduce an
additional measure Sφ , which is the compliance multiplied by the volume and can be seen as a measure of stiffness
per volume. The lower this value, the better the material usage and hence performance. The use of Sφ allows us
to quantitatively compare the different de-homogenized designs with each other to show that an almost constant
performance is achieved for the different values of ε and fmin . However, with a slight advantage for the designs
without length-scale enforcement. The values for the stiffness per volume of the homogenization-based structures
are Sc

= 9.823 and Sc
= 9.809 for the coarse and slightly finer mesh respectively.

It is also interesting to see that the mesh on which the homogenization-based designs are achieved can be very
coarse. This demonstrates how much information is captured by using a rank-3 parameterization. Furthermore, this
shows that the total time T tot to obtain the de-homogenized designs without evaluating the fine-scale compliance
can be as low as one and a half hour on a single PC. The times are only shown once per optimization mesh, since the
choice of ε and fmin does not affect the calculation of mapping functions φi . Section views of the de-homogenized
designs for different values of ε and fmin are shown in Figs. 7(a),(b) and (c).

From these Figures it can also be seen that the average unit-cell spacing ε has to be small enough to allow
for the de-homogenized design to represent the homogenization-based design. Furthermore, it can be seen that the
de-homogenized design obtained using T c

= 48 × 48 × 144 contains more microstructural details. Finally, the
post-processing method described in the previous section can be used to get rid of some members that do not carry
any load. An example of a de-homogenized design including this post-processing step can be seen in Figs. 7(d) and
8(a) and (b). The corresponding values for the volume fraction V post

f , compliance J post and measure for stiffness
per weight S post can be seen in Table 4 as well. Here it should be noted that in general the post-processing step
not only removes material but also improves the stiffness per weight measure. Unfortunately however, this requires
several fine-scale analyses that come at a large computational cost, i.e. using 3200 cores on the DTU Sophia cluster.

The performance of the de-homogenized designs of the Michell cantilever, Michell’s torsion sphere and the
L-shaped beam are shown in Tables 5–7. The values for the stiffness per volume of the homogenization-based
structures are Sc

= 22.79 and Sc
= 22.67 for the coarse and slightly finer mesh respectively for the Michell
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Fig. 7. Cut-outs of the de-homogenized designs of the electrical mast example de-homogenized on a fine mesh of 1152 × 384 × 384
voxels for different values of ε and fmin . Example (a) is optimized on T c

= 24 × 24 × 72, while the other examples are obtained using
T c

= 48 × 48 × 144. For other views of the design in Fig. 7(d), see Figs. 8(a) and (b).

Fig. 8. The de-homogenized design of the electrical mast on a fine mesh of 1152 × 384 × 384 voxels for ε = 24 h f and fmin = 3 h f ,
after post-processing. Furthermore, a reference design using density-based topology optimization is shown.
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Table 5
The volume fraction V φ

f , compliance J φ , stiffness per weight measure Sφ and total computation time T tot of the de-homogenized Michell

cantilever on a fine mesh of 960 × 960 × 480 elements. Furthermore, the volume fraction V post
f and compliance J post and stiffness per

weight S post after the post-processing step are shown. Results are shown for different T c , fmin and ε.

T c ε fmin V φ
f J φ Sφ T tot [hh : mm : ss] V post

f J post S post

48 × 24 × 24 24 h f 0 h f 0.1004 253.37 25.427 01:39:27 0.0993 253.39 25.171
48 × 24 × 24 24 h f 2 h f 0.1109 232.91 25.825 0.1099 232.92 25.591
48 × 24 × 24 24 h f 3 h f 0.1228 214.72 26.367 0.1202 215.45 25.888
48 × 24 × 24 24 h f 4 h f 0.1378 195.72 26.978 0.1343 195.50 26.258
48 × 24 × 24 32 h f 0 h f 0.1018 245.15 24.947 0.1012 245.15 24.801
48 × 24 × 24 32 h f 2 h f 0.1081 234.41 25.345 0.1076 234.56 25.241
48 × 24 × 24 32 h f 3 h f 0.1153 222.83 25.697 0.1137 1152.2 130.98
48 × 24 × 24 32 h f 4 h f 0.1250 209.35 26.171 0.1229 209.79 25.784
48 × 24 × 24 40 h f 0 h f 0.1017 247.14 25.143 0.1010 247.15 24.952
48 × 24 × 24 40 h f 2 h f 0.1058 240.84 25.480 0.1051 240.86 25.321
48 × 24 × 24 40 h f 3 h f 0.1102 234.62 25.848 0.1082 235,31 25.449
48 × 24 × 24 40 h f 4 h f 0.1165 224.94 26.214 0.1140 225.64 25.712

96 × 48 × 48 24 h f 0 h f 0.1008 251.43 25.344 10:31:14 0.1004 251.43 25.231
96 × 48 × 48 24 h f 2 h f 0.1073 235.96 25.322 0.1069 236.55 25.281
96 × 48 × 48 24 h f 3 h f 0.1162 220.87 25.670 0.1149 222.73 25.598
96 × 48 × 48 24 h f 4 h f 0.1306 200.48 26.184 0.1287 201.98 25.988
96 × 48 × 48 32 h f 0 h f 0.1024 245.40 25.136 0.1019 245.42 25.010
96 × 48 × 48 32 h f 2 h f 0.1061 237.64 25.219 0.1055 237.86 25.104
96 × 48 × 48 32 h f 3 h f 0.1105 230.28 25.437 0.1089 231.80 25.236
96 × 48 × 48 32 h f 4 h f 0.1179 218.49 25.759 0.1156 220.10 25.447
96 × 48 × 48 40 h f 0 h f 0.1026 243.29 24.966 0.1021 243.31 24.845
96 × 48 × 48 40 h f 2 h f 0.1052 237.14 24.942 0.1049 238.70 25.034
96 × 48 × 48 40 h f 3 h f 0.1087 232.77 25.292 0.1076 234.29 25.202
96 × 48 × 48 40 h f 4 h f 0.1131 227.19 25.706 0.1117 228.36 25.508

Fig. 9. A Michell cantilever optimized on T c
= 96 × 48 × 48 elements and de-homogenized on a fine mesh of 960 × 480 × 480 using

ε = 40 h f and fmin = 2 h f .

cantilever, Sc
= 1.233 and Sc

= 1.400 for Michell’s torsion sphere and Sc
= 59.06 and Sc

= 56.76 for the
L-shaped beam.

As can be seen the Michell cantilever, is very sensitive to the enforcement of a minimum feature size. This is
because there are many vertical thin plates just a few voxels wide as can be seen in Figs. 9(a),(b) and (c). Hence,
the layer widths corresponding to that direction are around 0.1. This means that for a small unit-cell spacing, the
minimum width can be violated and a lot of material is added. Hence, for this example a slightly larger value of ε
is actually better. Furthermore, it can be seen that there is no noticeable difference between the two mesh sizes on
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Table 6
The volume fraction V φ

f , compliance J φ , stiffness per weight measure Sφ and total computation time T tot of Michell’s torsion sphere

de-homogenized on a fine mesh of 576 × 576 × 576 elements. Furthermore, the volume fraction V post
f and compliance J post and stiffness

per weight S post after the post-processing step are shown. Results are shown for different T c , fmin and ε.

T c ε fmin V φ
f J φ Sφ T tot [hh : mm : ss] V post

f J post S post

48 × 48 × 48 24 h f 0 h f 0.0955 20.77 1.983 05:05:03 0.0953 20.77 1.979
48 × 48 × 48 24 h f 2 h f 0.0969 20.46 1.981 0.0959 20.55 1.971
48 × 48 × 48 24 h f 3 h f 0.0988 20.53 2.029 0.0976 20.54 2.005
48 × 48 × 48 24 h f 4 h f 0.1051 20.59 2.164 0.1040 20.57 2.139
48 × 48 × 48 32 h f 0 h f 0.0989 20.16 1.995 0.0854 20.87 1.783
48 × 48 × 48 32 h f 2 h f 0.1023 20.44 2.090 0.1003 20.60 2.065
48 × 48 × 48 32 h f 3 h f 0.1082 20.55 2.225 0.0886 20.75 1.839
48 × 48 × 48 32 h f 4 h f 0.1152 19.82 2.284 0.0911 20.63 1.879
48 × 48 × 48 40 h f 0 h f 0.0976 20.20 1.972 0.0943 20.66 1.949
48 × 48 × 48 40 h f 2 h f 0.1012 19.84 2.007 0.0976 20.72 2.021
48 × 48 × 48 40 h f 3 h f 0.1034 20.70 2.140 0.0947 20.73 1.963
48 × 48 × 48 40 h f 4 h f 0.1055 20.58 2.170 0.0951 20.65 1.964

72 × 72 × 72 24 h f 0 h f 0.0968 20.71 2.005 16:33:55 0.0953 20.71 1.974
72 × 72 × 72 24 h f 2 h f 0.1018 20.60 2.097 0.1012 20.61 2.087
72 × 72 × 72 24 h f 3 h f 0.1068 20.69 2.210 0.1062 20.69 2.197
72 × 72 × 72 24 h f 4 h f 0.1156 20.37 2.355 0.1128 20.58 2.321
72 × 72 × 72 32 h f 0 h f 0.0898 20.91 1.878 0.0826 20.93 1.729
72 × 72 × 72 32 h f 2 h f 0.0964 17.54 1.690 0.0833 20.84 1.736
72 × 72 × 72 32 h f 3 h f 0.1027 20.43 2.098 0.0853 20.73 1.768
72 × 72 × 72 32 h f 4 h f 0.1100 16.19 1.781 0.0884 20.71 1.831
72 × 72 × 72 40 h f 0 h f 0.0984 20.70 2.036 0.0983 20.70 2.034
72 × 72 × 72 40 h f 2 h f 0.0992 20.57 2.040 0.0988 20.58 2.034
72 × 72 × 72 40 h f 3 h f 0.1011 19.58 1.980 0.1006 20.61 2.074
72 × 72 × 72 40 h f 4 h f 0.1035 20.67 2.139 0.1030 20.67 2.130

which the homogenization-based designs are obtained. Finally, it can be seen that for one case the post-processing
scheme resulted in a significantly worse compliance, which is caused by the open–close filter step in which also
load carrying material has been removed.

Moving on to Michell’s torsion sphere example, we observe a large difference in compliance between the
homogenization-based designs and the de-homogenized designs. This is mainly caused by the fact that the load
is applied along a line for simplicity, which results in a different loading condition depending on the mesh size.
Nevertheless, the goal of this example was to show that the optimized solution visually represents the analytical
solution of Michell’s torsion sphere which is a close-walled sphere [28]. Interestingly, this is the case; however, the
de-homogenized solution contains several closed spheres of different radii as can be seen in Fig. 10. The reason for
the multiple spheres is the relatively high volume fraction, the rank-3 material model and the fact that a relatively
coarse mesh is used for the homogenization-based topology optimization. Finally, it should be mentioned that
using the post-processing procedure a large number of passive solid elements at the boundary condition have been
removed, making the comparison with the homogenization-based design unfair.

The orientation field for the L-shaped beam actually contains a singularity at the corner with the passive void
domain. However, since this singularity is at the boundary of the domain, the sorting algorithm managed to return
smooth and continuous vector fields, although we have to note that this cannot be guaranteed for other cases
including singularities. In this example the microstructures and layer orientations are rapidly changing and hence the
design obtained on a very coarse optimization mesh resulted in worse performing de-homogenized designs than the
ones obtained on T c

= 96 × 96 × 48. As can be seen in Fig. 11(a) and (b), the optimized solution is a combination
of a cantilever optimized for bending stiffness and a hollow box optimized for torsion.
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Table 7
The volume fraction V φ

f , compliance J φ , stiffness per weight measure Sφ and total computation time T tot de-homogenized L-shaped beam

on a fine mesh of 768 × 768 × 384 elements. Furthermore, the volume fraction V post
f and compliance J post and stiffness per weight S post

after the post-processing step are shown. Results are shown for different T c , fmin and ε.

T c ε fmin V φ
f J φ Sφ T tot [hh : mm : ss] V post

f J post S post

48 × 48 × 24 24 h f 0 h f 0.0945 764.85 72.309 02:26:04 0.0934 764.93 71.476
48 × 48 × 24 24 h f 2 h f 0.1033 716.24 74.013 0.1004 716.32 71.947
48 × 48 × 24 24 h f 3 h f 0.1097 689.16 75.587 0.1039 2484.8 258.22
48 × 48 × 24 24 h f 4 h f 0.1164 663.32 77.220 0.1093 657.80 71.881
48 × 48 × 24 32 h f 0 h f 0.0951 833.78 79.321 0.0943 834.47 78.728
48 × 48 × 24 32 h f 2 h f 0.1050 765.99 80.425 0.1014 766.04 77.666
48 × 48 × 24 32 h f 3 h f 0.1004 795.00 79.812 0.0939 831.00 78.006
48 × 48 × 24 32 h f 4 h f 0.1098 736.13 80.859 0.1036 741.82 76.851
48 × 48 × 24 40 h f 0 h f 0.0991 682.37 67.589 0.0971 682.39 66.274
48 × 48 × 24 40 h f 2 h f 0.1031 669.78 69.083 0.0997 669.87 66.756
48 × 48 × 24 40 h f 3 h f 0.1064 659.90 70.249 0.1010 4193.0 423.55
48 × 48 × 24 40 h f 4 h f 0.1100 651.10 71.615 0.1030 643.14 66.140

96 × 96 × 48 24 h f 0 h f 0.1034 593.08 61.337 14:31:17 0.1031 593.08 61.122
96 × 96 × 48 24 h f 2 h f 0.1073 582.47 62.479 0.1066 582.56 62.083
96 × 96 × 48 24 h f 3 h f 0.1107 574.35 63.599 0.1087 4170.3 453.17
96 × 96 × 48 24 h f 4 h f 0.1143 564.24 64.486 0.1117 559.72 62.542
96 × 96 × 48 32 h f 0 h f 0.1051 599.99 63.037 0.1048 600.10 62.906
96 × 96 × 48 32 h f 2 h f 0.1075 590.90 63.546 0.1070 590.94 63.212
96 × 96 × 48 32 h f 3 h f 0.1100 581.51 63.986 0.1090 578.38 63.038
96 × 96 × 48 32 h f 4 h f 0.1128 571.21 64.433 0.1113 567.38 63.179
96 × 96 × 48 40 h f 0 h f 0.0985 645.21 63.569 0.0982 645.25 63.371
96 × 96 × 48 40 h f 2 h f 0.1002 638.44 63.974 0.0998 638.46 63.728
96 × 96 × 48 40 h f 3 h f 0.1018 633.05 64.490 0.1008 29504 2974.7
96 × 96 × 48 40 h f 4 h f 0.1038 625.70 64.924 0.1024 619.13 63.377

Fig. 10. Michell’s torsion sphere optimized on T c
= 48×48×48 and de-homogenized on a fine mesh of 576 × 576 × 576 using ε = 32 h f

and fmin = 2 h f .

4.4. Comparison with large-scale topology optimization

Besides verifying that the de-homogenized designs perform similar to the homogenization-based designs, it is
interesting to compare the results with a well-established density-based topology optimization method. To do so, we
make use of the publicly available topology optimization code using the PETSc framework [44]. The code has been
slightly modified to allow for different boundary conditions, passive elements and a continuation scheme on the
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Fig. 11. The L-shaped beam example optimized on T c
= 96 × 96 × 48 and de-homogenized on a fine mesh of 768 × 768 × 384 using

ε = 24 h f and fmin = 2 h f .

Table 8
Compliance J f , volume fraction V f

f , the number of iterations ni ter , and run time T f for different optimization examples optimized using
a density-based optimization procedure.

Example Mesh size J f S f V f
f ni ter T f

Michell cantilever 960 × 480 × 480 236.262 23.626 0.100 450 08:13:28
Michell’s torsion sphere 576 × 576 × 576 20.916 2.0916 0.100 450 01:03:06
Electrical mast 384 × 384 × 1152 99.961 9.9961 0.100 450 02:16:28
L-beam 768 × 768 × 384 585.114 58.511 0.100 450 04:38:50

penalization factor (p). We start with p = 1 and slowly increase this to p = 4, and stop the optimization procedure
after 450 iterations when the change in design is negligible. Furthermore, it should be noted that the density filter
is used in these examples with a filter radius of R = 3h f , where the filter is turned off in the final iterations to
allow for black and white designs.

All four examples shown in Fig. 4 are optimized on the same resolution as the de-homogenized designs discussed
above. The corresponding fine-scale compliance J f , measure of stiffness per weight S f , volume fraction V f

f , the
number of iterations ni ter , and run time T f are shown in Table 8. Furthermore, the design for the cantilever, and
the electrical mast example are shown in Figs. 8(c) and (d) respectively. Finally it is mentioned that the same
high-performance computing cluster is used as for the fine scale validations. Hence, for each optimization example
100 nodes each with 32 cores are used.

It can be seen that the compliance values of the density-based designs are close and in general even 5–10%
better than the de-homogenized designs. This is more or less similar when we compare the stiffness per weight
measure. The main reason is that the de-homogenized designs represent a multi-scale structure, which ideally should
be de-homogenized on a finer mesh, to accurately capture all these multi-scale features. But more importantly, the
well-performing de-homogenized designs can be obtained using a modern PC, while for the density-based designs an
expensive high-performance computing cluster is required. The de-homogenization procedure can therefore reduce
the threshold for using topology optimization for generating large-scale designs. By looking at the run time and
number of cores we can conclude that the total computational cost can be reduced by at least 3 orders of magnitude
compared to standard density-based topology optimization!

Finally, it should be mentioned that another improvement in compliance can be obtained by creating a conformal
mesh from the implicit geometry description ρ̃. This approach, which will be pursued in future work, allows for
more details and a better boundary description compared to the use of a voxel mesh.
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5. Concluding remarks

We have presented a highly efficient approach to obtain manufacturable and ultra-high resolution designs
from homogenization-based topology optimization. By doing homogenization-based topology optimization using
optimal microstructures, an optimal design can be represented on a relatively coarse mesh. A good rule of thumb
would be that at least 48 elements in each direction of the mesh are required. The subsequently de-homogenized
designs perform in general 5–10% worse than the designs obtained using well-established density-based topology
optimization. Hence, there is still room for improvement, for example by addressing the artifacts at the boundary
that do not carry any load. However, instead of using high performance computing facilities with more than 3000
cores the presented designs have been obtained using a single core MATLAB process on a modern workstation PC.
Hence, the presented procedure is a first step on the way to achieve giga-scale interactive topology optimization.

Besides obtaining near-optimal designs, we have presented a method to control the shape and minimum feature
size of these de-homogenized designs ensuring manufacturability. From the results it can also be seen that even
better performing designs can be obtained when de-homogenizing on a finer mesh. This paves the way for future
studies into different methods to represent the de-homogenized designs, other than the voxel grid that has been used
now. Note however that the presented procedure only works for examples where the homogenization-based designs
are free of singularities. Hence, a natural extension would be to better understand the occurrence of singularities and
extend the de-homogenization procedure such that it takes these singularities into account. We are confident that
this can be done to make topology optimization an integrated part of the design process for large-scale problems.

It is noted that the current formulation is only applicable to a single loading case. For multiple independent
loading cases, the optimal solution space consists of rank-6 laminates, where multiple different microstructures can
reach the same bounds on strain energy, see e.g. [21] regarding non-uniqueness. This type of optimization problems
consist of several new challenges, including the non-uniqueness, which will be addressed in future work. Finally,
it is important that more complex problems than compliance minimization are considered. Possible formulations
can be optimization of fundamental frequency for free vibration problems [46] or multi-physics design problems.
Although challenging, we believe that addressing these types of problems also can be solved in a multi-scale sense
allowing for efficient high-resolution designs.
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Abstract
Homogenization-based topology optimization has been shown to be effective but does not directly create mechanical
structures. Instead, the method gives a multi-scale description of the optimized design, e.g., lamination thicknesses and
directions. To obtain a realizable single-scale design, one can perform a subsequent de-homogenization step. This is done
by converting the lamination directions to integrable vector fields from which it is possible to compute a parameterization
of the domain. Unfortunately, however, singularities often make it impossible to find integrable vector fields that align
with lamination directions. We present a short introduction to homogenization-based topology optimization followed by an
overview of different types of singularities and how they impinge on the problem. Based on this, we propose a singularity
aware de-homogenization pipeline, where we use a method for vector field combing which produces consistent labeling of
the lamination directions but also introduces necessary seams in the domain. We demonstrate how methods from computer
graphics can subsequently be used to compute the final parameterization from which the mechanical structure can easily be
extracted. We demonstrate the method on several test cases.

Keywords De-homogenization · Singularities · Topology optimization · High-resolution structures

1 Introduction

Topology optimization, a numerical tool for determining
optimal mechanical layouts, has a broad spectrum of
possible industrial applications. Over the last decades, the
development and accessibility of computational power have
made it an interesting design tool for the industry. However,
further developments are still needed before large-scale,
real-time topology optimization is possible on desktop
computers.

Homogenization-based topology optimization, as pro-
posed by Bendsøe and Kikuchi (1988), allows for composite
material properties, which contain much more information
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compared to the isotropic material used in the SIMP (Solid
Isotropic Material with Penalisation) approach (Bendsøe
1989). Hence, performing homogenization-based topology
optimization allows us to solve the problem on a coarse grid
while still enabling near-optimal, high-resolution results as
shown in Groen and Sigmund (2018). In homogenization-
based topology optimization, we can describe the composite
material as infinitesimally small periodic unit cells on a
microscopic level. On a macroscopic level, we can assume
the material properties to be homogeneous. Hence, we can
analyze the performance of a design where these composite
properties are spatially varying in a multi-scale sense.

A subset of problems of interest in topology optimization
is the compliance minimization of a plane structure subject
to a single-load case, which is considered in this paper. For
these types of problems, it is known that hierarchical rank-2
laminates are the optimal material parameterization (Allaire
and Kohn 1993). Nevertheless, we use the square unit cell
with a rectangular hole as proposed by Bendsøe and Kikuchi
(1988) since these microstructures consist of a single length-
scale and have only a small difference in performance
(Bendsøe and Sigmund 1999; Träff et al. 2019).

The output from the single-load homogenization-based
optimization method can be interpreted as a cross-field: at
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each point of the optimized domain (in 2D), we have a pair
of directions (as well as lamination thicknesses). Ultimately,
our goal is to create a mechanical design whose structural
members are well aligned with these frame directions.
A particular approach to this problem involves creating
a parametrization of the domain such that the gradients
of the coordinate functions in the parametric domain are
aligned with the cross-field obtained from the optimization
procedure. If we are able to do that, it is possible to
create a regular structure in the parametric domain and
map it via the inverse parametrization back into the domain
of the optimization. This procedure is known as the de-
homogenization method (Pantz and Trabelsi 2008; Groen
and Sigmund 2018; Donders 2018; Groen et al. 2020).

There are different ways to optimize the unit cell
orientation of spatially varying designs. For instance, it is
well-known that for 2- and 3-dimensional single-load case
examples a unit cell is optimally aligned using the principal
stress directions (Pedersen 1989; Norris 2005). However,
the principal stress directions are not consistently labeled.
Only in 2D can the stress directions be sorted to be smooth
up to 180 degrees (see, e.g., Groen and Sigmund 2018).
Similarly, when the unit cell orientations are optimized
using gradient-based optimization, jumps of 90 degrees can
occur. In other words, the first lamination direction at one
point might correspond to the second lamination direction
at a nearby point.

Recently, Groen and Sigmund (2018) simplified and
further developed the projection approach by Pantz and
Trabelsi (2008). However, this approach relied on two
smooth vector fields (see Definition 2; 1-vector fields).
They showed that these can be obtained by using
orientations based on the principal stress direction. Similar
to these directions, the orientation of the microstructure is
rotationally symmetric by 180 degrees, i.e., the 1-vector
fields often contain jumps of angle π . Groen and Sigmund
(2018) showed that this problem can be solved by using
connected component labeling in case there is no singularity
present.

1.1 Contributions

In this paper, we would like to investigate how integration
approaches can be extended for usage in fields containing
singularities. This has been researched in Pantz and Trabelsi
(2010) and Donders (2018). The main contribution of this
paper is a pipeline for the de-homogenization of structures
containing singularities as they occur, for example, not only
due to loads inside the domain, but also due to numerically
unstable results in low-density areas and regularization.
Here, we use the word de-homogenization for the process
of extracting a mechanically well-performing structure from

the solution of the homogenization method. The pipeline
allows us to investigate the location and type of singularities
that appear in fields arising from the homogenization-based
topology optimization method, and their relation to the
density distribution. We compare different starting guesses
for the homogenization-based topology optimization and
their influence on the resulting structure. Furthermore,
we will investigate how to extract two as smooth as
possible vector fields in the presence of singularities. This
extraction of two vectors per element is called combing in
computer graphics and is normally done by using a breadth-
first search: Starting from a root element, all elements
in the domain are visited in order of growing distance
to the root element (see further in Section 5.2, Skiena
2008). We will use a density-based approach, which allows
for simpler seams (see Definition 5, seams) than in the
case of using a breadth-first search. We then relate the
parametrization step to a computer graphics method for
quadrilateral meshing (Bommes et al. 2009), by introducing
seams in the parameterization domain in order to allow for
mismatches caused by the singularities, while still getting
smooth de-homogenized designs.

In general, we specify parameters, running times, and
compliance values in order to allow the reader to observe
the influence of these parameters to the de-homogenized
structure and motivate further research areas. It is not our
primary goal in this work to tune the parameters of the
pipeline for mechanical performance.

2 Related work

Pantz and Trabelsi (2008) proposed a method to project
the unit square microstructure macroscopically. Their de-
homogenization approach minimizes alignment energy to
find a parametrization aligned with the orientation of the
microstructure. The approach assumes two separate vector
fields, whose orientation is not of importance. Groen and
Sigmund (2018) simplified the approach by Pantz and
Trabelsi, still using two separate vector fields, however, with
the challenge of having consistently aligned vector fields
as the approach is not invariant to angle jumps of angle π .
This was solved by using a connected component analysis
on the vector fields. Both approaches do not explicitly
deal with jumps of angle π/2. Pantz and Trabelsi (2010)
investigated the challenge of singularities for the first time.
The singularities, located in void regions, are nucleated,
i.e., the areas containing singularities are excluded from
the parametrization step and onwards. Donders (2018)
proposed a method of spotting singularities of index ±1/2
using a technique explained in more detail in Hotz et al.
(2010). This only allows for jumps of angle π . In order
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to deal with the singularities, correction functions are
computed to prevent mismatches at seams.

The work of Kälberer et al. (2007) proposed the
“QuadCover” algorithm for field-guided quad meshing
using multiple coverings. Multiple coverings in the sense
that the parametrization domain is duplicated multiple
times. This means that the rotationally symmetric field
simplifies to vector fields on every single covering
and thus becomes integrable. In practice, only a single
parametrization domain is used and operators to account for
the different coverings are introduced. Bommes et al. (2009)
proposed a refinement of QuadCover, solving the resulting
system in an iterative approach yielding better results.

3 Homogenization-based topology
optimization

The methodology to perform homogenization-based
topology optimization used here is very similar to the
method in Groen and Sigmund (2018), and therefore,
this section will be kept brief, with an emphasis on the
differences.

3.1 Microstructure parameterization

As a microstructure parameterization, we use the square
unit cell with a rectangular hole proposed by Bendsøe
and Kikuchi (1988) and shown in Fig. 1. The constitutive
properties of this microstructure, consisting of void and
isotropic material using E = 1 and ν = 0.3, can be
obtained using numerical homogenization on a conformal
mesh. A database of the constitutive properties in the local
frame can be pre-computed for various physical heights ¯̃a1

and physical widths ¯̃a2 of the hole. Afterwards, we can
interpolate the effective properties EH and corresponding
sensitivities for any combination of ¯̃a1 and ¯̃a2. The elasticity
tensor in the global frame of reference E can then be
obtained as

E(θ, ¯̃a1, ¯̃a2) = R(θ)EH ( ¯̃a1, ¯̃a2)R(θ)T, (1)

with R being the rotation matrix. The volume fraction of the
microstructure ρ is given as

ρ = 1 − ¯̃a1 ¯̃a2. (2)

3.2 Optimization and regularization of the
microstructure orientation

Contrary to the approach presented in Groen and Sigmund
(2018) we update the angles based on their gradients instead
of the principal stress directions. There are two reasons
for this. First, updating the angles based on the gradients
is slightly more stable than updating the orientation based
on the principal stress directions (Pedersen 1989), since
first-order finite elements are used. Second, and more
importantly, we can introduce regularization energy, similar
to the one in Groen et al. (2020) such that the 4-direction
field is slowly varying over the domain.

To perform the regularization, we loop over all ne edges,
each connecting two elements. We introduce a penalization
function Pe ∈ [0, 1]. This penalization function is based
on the orientation angles of the microstructure in the two
adjacent elements f1 and f2 connected by edge e. We denote
these two angles with θf1 and θf2 and calculate

Pe = 1

2
− 1

2
cos(4θf1 − 4θf2). (3)

It can be seen that Pe has minimum values at angle
differences of 0 or kπ/2 with k an integer and returns a
small penalty value for small angle differences. By looping
over all edges e, we obtain a single regularization objective
Fθ ,

Fθ =
ne∑

f =1

Pe, (4)

which is normalized in the optimization problem using the
regularization objective F (1)

θ for the starting guess of the
layer normals.

Fig. 1 Layout of the unit cell
with a rectangular hole, in local
(y1,y2), and global (x1,x2)
coordinate system
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3.3 Problem formulation

We focus on minimizing the objective functional F , which
is a combination of the compliance J and regularization
objective Fθ . The domain is discretized using bi-linear finite
elements and the material properties are assumed to be
element-wise constant. We want to avoid checkerboard-like
instabilities that can occur due to the use of bi-linear finite
elements (Dı́az and Sigmund 1995). Therefore, we use a
standard density filter to obtain the filtered hole height ã1

and width ã2 from design vectors a1 and a2 (Bourdin 2001;
Bruns and Tortorelli 2001).

Furthermore, we want the microstructure widths to be
either void, completely solid or in the interval [η, 1 − η],
with η = 0.05 used in this study. To do so, we use the
same interpolation scheme as in (Groen and Sigmund 2018;
Groen et al. 2020), which modifies the variables ã1 and
ã2 into the physical hole height ¯̃a1 and width ¯̃a2. The
optimization problem is solved in nested form, which means
that for each design iteration we solve the state equation
after which the design vectors are updated. Hence, the
discretized optimization problem can be written as,

min
a1,a2,θ

: F(a1, a2, θ ,U) =
J (a1, a2, θ,U)

J (1)
+ γθ

Fθ (θ)

F (1)
θ

,

s.t. : K(a1, a2, θ)U = F,

: vT ρ(a1, a2) − V max
f A ≤ 0,

: 0 ≤ a1, a2 ≤ 1,

: -4π ≤ θ ≤ 4π ,

(5)

where v is the vector containing the element areas and
V max

f is the maximum allowed fraction of the material
in Ω , with A the area of Ω . K is the stiffness matrix
and vector F describes the loads acting on the domain.
J (1) is the compliance of the first analysis step and F (1)

θ

the regularization objective for the starting guess. For the
design update, we use the MATLAB implementation of
the method of moving asymptotes (MMA) introduced by
Svanberg (1987). Finally, it should be mentioned that the
compliance minimization problem is self-adjoint, meaning
that we only require the solution of one linear system to
obtain both compliance and corresponding sensitivities.

As a starting guess for the microstructure, we use a1 =
a2, such that the volume constraint is exactly satisfied. The
starting guess for the orientation is based on a pre-analysis
using isotropic microstructures, the corresponding principal
stress directions are used to determine θ unless otherwise
noted. Finally, it should be mentioned that the scaling
parameter γθ has a large influence on the optimization
procedure and is in general chosen to be γθ = 1/20.

4 Singularities

In order to study the vector fields generated by the
homogenization method, it is important to have a general
understanding of vector fields, direction fields, and the
eigenvectors and eigenvalues of the stress tensors. This
allows us to precisely define singularities and their indices
and use this knowledge to study stress tensor and layer-
normal fields. Vaxman et al. (2016) introduced a notation
that is tailored for this purpose. We will in the following
section describe relevant definitions from Vaxman et al.
(2016) related to the homogenization method and introduce
their notation. We start with the definition of a directional
field and N-directional fields.

Definition 1 (Directional field, vector field, and direction
field) A directional field denotes a function v that assigns
directional information to almost every point in a given
domain. If a directional field v provides a magnitude of
importance for every point p, for which v is defined, then v
is called a vector field (see Fig. 2a). If the directional field
does not provide any magnitude (e.g. all assigned vectors
are normalized) it is called a direction field (see Fig. 2b).

Definition 2 (N-directional field) A directional field can
assign multiple directions to the same point in a domain
Ω . Let us assign N vectors to almost every point in Ω .
Then, the use-cases of N = 1, 2, 4 are of importance to
the application of the homogenization method. We write
N-vector or N-direction field to indicate the number of
directional information given at every point.

Figure 3 shows direction fields and vector fields
important to the homogenization method, where we indicate
a given magnitude with arrows. The 1-vector fields are what
we usually refer to when talking about vector fields. If
N = 2, the vector is invariant under a rotation of angle π

and we call such a field a 2-vector field. For N = 4 follows
the 4-vector field with rotational symmetry of π/2.

4.1 Index of a singularity

Singularities often arise in the presence of internal loads, multi-
ple loads, or a designated passive domain. The following
definitions describe singularities and their indices.

Definition 3 (Singular point, singularity) A point p in a 1-
vector field v for which v is not defined or zero is called a
singular point or singularity (see Fig. 4).

Definition 4 (Index of a singularity) A singular point p
can be assigned an index by the following procedure. We
consider the vector field v on a closed, simple curve c(t),
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Fig. 2 Comparison of 1-vector and 1-direction field

t ∈ [0, 1], around p, which does not contain a second
singular point. We obtain v limited to c(t), by

v(c(t)) = ‖v(c(t))‖
(

cos(α(t))

sin(α(t))

)
.

Here, c : [0, 1] → R
2 denotes the counterclockwise

parametrization of the curve and α : [0, 1] → R the
enclosed angle between the x-axis and v(c(t)). The index of

Fig. 3 Vector and direction fields for N ∈ {1, 2, 4}. A given magnitude
is indicated by arrows

p is then defined as idxp = 1
2π

(α(1) − α(0)) measuring the
rotation of the vector field around the singular point.

In Fig. 4, we consider a singularity in (0, 0) and depict
the curve c with c(0) = c(1) = (1, 0) as a red circle.
Further, we see that the enclosed angles α, depicted as
black circle arcs, grow from α(0) = 0 to α(1) = 2π .
Thus, we have a singularity (depicted in green) with index
idxp = 1

2π
(2π − 0) = 1. Note that singularities exist for all

types of N-directional fields, where the index must always
be a multiple of 1/N . In order to identify the index of a
singularity in a N-directional field, one proceeds similar
to singularities in 1-directional fields. Following a closed
curve around the singular point, one measures the change of
the angle of the N-directional field. In a discrete example,
as in Fig. 7d for example, one chooses one of the directions
and follows that one along the curve.

4.2 Singularities in smooth tensor fields

The singularities of smooth tensor fields have been studied
exhaustively in order to visualize tensor fields. Delmarcelle
and Hesselink (1994) show that singularities in tensor fields
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Fig. 4 Vector field containing a singularity of index 1 (in green),
showing the tracked curve (in red) and the angle arcs (in black)

can only have indices that are multiples of ±1/2. We try to
present a descriptive version in the following theorem.

Theorem 1 A smooth tensor field can only incorporate
singularities of index ±1/2 or multiples thereof.

(Sketch) If we follow a closed, simple curve around a
singularity p, not containing a second singularity, with index
±1/4 as depicted in Fig. 5, we see that red and blue vectors
trade places. That would not be a problem for a 4-direction
field where all four directions are equivalent, but if we have
a tensor, we can distinguish the red and blue direction from
each other by the magnitude of the eigenvalue. So, say blue
is the direction of maximum eigenvalue that we follow, but
coming back to the initial point it then must be red. The
tensor has changed smoothly along the black curve, so there
must have been a point along the black curve at which the
eigenvalues were the same. However, if the eigenvalues are
the same, any plane vector is an eigenvector, and we have a
singular point. This contradicts the way the black curve was
chosen and concludes the proof.

In homogenization-based topology optimization, the
layer normals are aligned with the stress tensors either by
demanding it through the implementation or in a gradient
descent algorithm since layers aligned to the load-path
are optimal (Pedersen 1989). Therefore, the following

singularity types are found regularly in the output fields of
the homogenization method.

For example, if all corners of a triangle are pulled
apart (see Fig. 6a) a singularity of index −1/2 occurs (see
Fig. 7a). Figure 7b shows a singularity of type −1. This can
be seen as two singularities of type −1/2 pushed together.
This type of singularity occurs in a corner loaded square
(see Fig. 6b). Figure 7c shows a singularity of index 1/2 as
occurs for example in a center loaded clamped beam (see
Fig. 6c).

4.3 Singularities in 4-direction fields

It is important to differentiate between the 4-vector field
described by a stress tensor field and the 4-direction
field described by the layer normals output by the
homogenization method. The latter can also incorporate
singularities of index ±1/4 due to numerical errors or
regularization of the layer normals or simply due to the
optimizer being stuck in a local minimum.

Figure 7 d and e show 4-direction fields incorporating
each a singularity of index ±1/4. It is not possible to
separate these 4-direction fields into two 1-direction fields,
which are shown in Fig. 7f. Especially regularization
seems to result in singularities of index ±1/4. Increasing
the regularization value γθ limits the angular changes. In
Fig. 8a–f, we depict how a singularity of index ±1/2
is spatially ripped apart more and more with increasing
regularization. In this example, the singularity of index
±1/2 is split into two singularities of index ±1/4 that are
located in the center of the domain at the end of the red lines.

Fig. 5 Sketch of a singularity with index 1/4
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Fig. 6 Examples of load cases leading to singularities

The red lines indicate where the vector fields jump by 90 or
180 degrees.

4.4 Occurrence of singularities
in the homogenization results

For the de-homogenization, it is of importance to have an
understanding of where singularities occur in the layer-
fields output by the homogenization method. We are not
aware of a theoretical solution to this, but we observe that,
in general, singularities occur in regions with very high or
very low density.

Let us assume that in the output of the homogenization
method, the layer normals are well aligned with the stress
directions everywhere, such that singularities in the stress
field correspond to singularities in the layer field. We

investigate a singularity p, where the stress field is non-zero.
At such a singular point, the stress field rotates with an index
idxp �= 0. Thus, in the immediate surrounding, we see all
directions in the interval I = [0, 2π idxp]. If we measure
the angular velocity on several curves around p, we realize
that the shorter the curve, i.e., the closer to p, the higher
the angular velocity becomes, as the field always needs to
rotate by 2π idxp. Or in other words, at p, the stress field
rotates infinitely fast. The homogenization method outputs
two-layer normals n1,2 and widths w1,2 and thus a density
ρ = w1 + w2 − w1w2 for the element containing p. Now,
if 0 ≤ ρ < 1, only the directions n1,2 in I are well
aligned with the unit cell. Thus, for all other directions in
I , a shearing force will arise. The optimizer can improve
compliance by making the element containing p isotropic,
which means that we can observe a density peak ρ → 1 in

Fig. 7 Vector and direction fields for different singularities
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Fig. 8 Vector fields and densities for different degrees of regularization

the vicinity of the singularity p. The same effect can be seen
in Fig. 8, where the material is distributed differently due to
the layer directions differing from the stress direction due to
smoothing. It is important to note that singularities also may
occur in void regions. Following the above thought of using
the material to create isotropic elements, it is intuitively
understandable that the optimizer mostly tries to stay clear
of regions with fast turning stress fields and hence creates
singularities in elements with ρ = 0 as well.

The above observation does not allow a prediction of
where singularities occur in the layer field. It does however
allow to reason, why regions containing singularities can
often be filled completely with the material in the post-
processing without an excessive amount of additional
material needed as we already see a density peak. One needs
to be careful as the above observation assumes layer fields
that are well aligned to the principal stress directions.

5 De-homogenization for singularity
containing 4-direction fields

With the knowledge accrued about singularities in the last
section, we are now able to study examples that contain

singularities. In this section, we revisit approaches for
the de-homogenization in singularity free problems (see
Section 5.1), propagate consistent labeling of the direction
fields in the case of singularities (see Section 5.2), and show
the connection to quad meshing (see Section 5.3).

5.1 De-homogenization for smooth, continuous,
and singularity free 4-direction fields

Similar to Pantz and Trabelsi (2008), Groen and Sigmund
(2018), and Allaire et al. (2018), we de-homogenize the
square unit cell with a rectangular hole using two periodic
layers superimposed onto each other. Provided that vector
fields are smooth, we can use the procedure as presented
in Groen et al. (2019) which will be repeated here for
convenience.

Based on the two smooth 1-direction fields ni , i ∈ {1, 2},
we create two mapping functions φ1 and φ2 that preserve the
orientation of the microstructures. Nevertheless, it should be
noted that the map is not strictly conformal. The values of
φi do not need to be accurate when there is no material in
the layer (i.e., wi < 0.01) or when the domain is completely
solid (i.e., ρ > 0.99). Hence, the problem only needs to
be solved accurately in the intermediate material part of the
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domain of the i − th layer Ω̃i . This leads to the following
spatially weighted partial differential equations (PDE),

αi
1(x)∇φi(x) = αi

1(x)ni (x), x ∈ Ω

s.t. αi
2(x)∇φi(x) · t i (x) = 0, x ∈ Ω

(6)

where t i denotes the orthogonal vector to ni . The domain
is split up into three parts, which dictate the weights on the
objective αi

1 and the weights on the constraints αi
2,

αi
1(x) =

⎧
⎪⎨

⎪⎩

0.01 if wi(x) < 0.01,

0.1 if ρ(x) > 0.99,

1 if x ∈ Ω̃i .

αi
2(x) =

⎧
⎪⎨

⎪⎩

0 if wi(x) < 0.01,

0 if ρ(x) > 0.99,

1 if x ∈ Ω̃i .

(7)

Numerically, we solve the above-mentioned problem as
a linear system using the finite element approach, where
the constraint is enforced in an augmented setting using
penalty parameter γφ , called the alignment weight. With
both mapping fields known, we can create an implicit
geometry description ρ̃i for each of the layers:

ρ̃i (x) = H

((
1

2
+ 1

2
S {Piφi(x)}

)
− w̃i(x)

)
. (8)

Here, H is the Heaviside function and S ∈ [−1, 1]
corresponds to a triangle wave. Furthermore, Pi is
a periodicity scaling. Hence, the design can be de-
homogenized by an implicit geometry function ρ̃ as

ρ̃(x) = min

{
1,

2∑

i=1

ρ̃i (x)

}
. (9)

Finally, we can impose an average layer spacing ε, which
can be interpreted as the unit cell size. To do so, we define
the periodicity scaling parameter Pi based on the average
lattice spacing in the domain of interest Ω̃i

Pi = 2π

ε

∫
Ω̃i

dΩ̃i
∫
Ω̃i

||∇φi(x)||dΩ̃i

, (10)

where the average layer spacing ε allows to steer the average
spacing between the structural members.

We depict the main steps in Fig. 9. From a 4-direction
field (Fig. 9a), two 1-direction fields are extracted
(Fig. 9b) for a standard cantilever beam. The corresponding
parametrization φi is depicted in Fig. 9c, where contour
lines have been added for a better understanding. Figure 9
d shows the cosine of the parametrization indicating all
isocontours and the periodic structure. Figure 9e shows ρ̃i

and ultimately ρ̃ is depicted in Fig. 9f. For further examples
of de-homogenization using smooth 1-direction fields in 2-
and 3D, the reader is referred to Groen and Sigmund (2018),
Groen et al. (2019, 2020).

5.2 De-homogenization in the presence of
singularities

In the presence of singularities, the above-described
methods can fail for several reasons. Depending on the
index of the singularity, different issues can arise:

– If a singularity of index ±1 is contained in the 4-
direction layer-normal field, the separation into two
integrable 1-direction fields is still possible (see
Fig. 7b). As locally neighboring vectors need to be
pointing in the same direction, the extraction of vector
fields does not arise trivially. This extraction is called
combing. In practice, a breadth-first search has shown
to fail with this task as depicted in Fig. 10b because
the singular point is hit. More robust results can be
reached by expanding the search through intermediate
densities first, before expanding into void and solid.
This algorithm has been used in 3D in Groen et al.
(2020) and is explained in Section 5.2.1 and depicted
in Fig. 11 and the result for the corner loaded square in
Fig. 10c.

– In the case of a singularity of index ±1/2, the 4-
direction field can still be combed, such that two
separate 1-direction fields arise (see Fig. 7a and c).
However, the combing of these 1-direction fields
cannot be done consistently anymore. Any combing
strategy will inevitably create mismatches, i.e., some
neighboring elements will contain vectors that are
rotated by π (see further Section 5.2.2). A promising
approach to extract a high-resolution structure for such
fields has been proposed in Donders (2018).

– In case of a singularity with index ±1/4, the whole
procedure gets even more challenging. Recall that
following a curve c around a singularity of index 1/4 in
a 4-direction field means that we return to the start of
our curve misaligned by π/2 (see Fig. 7d–f). Therefore,
we cannot find two 1-direction fields to which we can
assign the directions of our 4-direction field. Instead,
one needs to cut open the field in such a way that
one can integrate the 1-direction fields using multiple
coverings as introduced in Kälberer et al. (2007). We
will discuss this topic extensively in Section 5.3.

5.2.1 Combing the 4-direction field

As a first step, we have to comb our 4-direction field. This
means we want to choose two orthogonal 1-directions for
every element. In quad meshing, this is normally done with
a breadth-first search as shown in Kälberer et al. (2007). As
the homogenization method results are noisy and unreliable
in normals of layers with very low or very high width,
it makes sense to prioritize combing in medium-density
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Fig. 9 Projection pipeline—from a 4-direction field to de-homogenized mechanical structure

regions. This has recently been proposed in Groen et al.
(2020) and we depict an example of our implementation
in Fig. 11, where the chosen directions are given as black
arrows and seam edges are depicted in bright red. We color
the elements according to the time where they are visited
by the combing algorithm. For readability, we bundle 50
elements to one step and color them with the same color.
Unlike Groen et al. (2020), we only use the direction of a
single neighboring element to compute the direction to be
fixed in element f . This allows for a much faster algorithm
and is possible due to the angular information being more
robust in 2D. The density priority is obtained by ρpriority =
|ρstart − ρf |, where normally ρstart = 0.5 is chosen. We
therefore comb the field first in areas with a density close
to 0.5 and then spread out into the remaining domain. The
numerical implementation of the combing only selects one

direction per element. The second direction is implicitly
given as the rotation of the extracted 1-direction field by
π/2.

5.2.2 Finding the seams

For every 4-direction field containing a singularity with
index 1/4 or 1/2, we receive a combed 1-direction field
that has jumps of angle π/2 and/or π . Such fields are not
integrable and to be able to parameterize our domain, we
need to cut open our mesh as done in Kälberer et al. (2007).

Definition 5 (Seams, mismatch, seam edge) Two directions
whose enclosed angle exceeds π/4 are said to mismatch
by π/2. Accordingly, two directions whose enclosed angle
exceeds 3π/4 are said to mismatch by π . An edge e is called
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Fig. 10 Example of two different combing strategies for a given 4-direction field resulting in different seams. The breadth-first combing only uses
information about the neighborhood of elements, whereas the density-based combing uses density values to prioritize the combing of elements

seam edge if the directions in the two adjacent elements
f1, f2 mismatch. A seam is any series of connected seam
edges.

5.3 Constrainedmixed-integer solver

In quad meshing, multiple coverings and thus resulting
seams were introduced in Kälberer et al. (2007). An
expansion introducing an iterative scheme to enforce
integers is given in Bommes et al. (2009). We want to
exploit the underlying mechanisms to create a topology
on which we can integrate the combed fields, combining
them with the integration scheme introduced in Groen and
Sigmund (2018). Therefore, we give a short simplified
introduction to Bommes et al. (2009) in Sections 5.3.1–
5.3.3.

5.3.1 Cutting the mesh open

As a first step, one cuts open the mesh along the seams
created in Section 5.2.2. Let e = (v1, v2) be a seam edge,
connecting the vertices v1 and v2 as in Fig. 12. The edge e

separates the two elements f1 and f2. Auxiliary vertices ṽ1

and ṽ2 are introduced and the connectivity of f2 is changed
from [v1, v2, vt , vs] to [ṽ1, ṽ2, vt , vs].

5.3.2 Gluing the mesh together

If one would solve the resulting linear system in (6) on
this cut open mesh, disconnected structural members would
arise at the seam locations, since the integer isolines on
the left and the right side of the seam would not meet up.
Therefore, one needs to make sure that the parametrizations
φ1 and φ2 in vertex v differ by integers i, j from the
parametrizations in ṽ. This ensures connected bars and also
the same spacing between bars on both sides of the seam.
In case of a singularity of 1/4, the parametrization φ1 can
corresponds to the parametrization φ2 on the other side.
These rotations Rote90 are given implicitly by the combed
field. Kälberer et al. (2007) formulate the rotational and
integer condition with the following equations

(φ1(ṽ1), φ2(ṽ1)) = Rote90((φ1(v1), φ2(v1))) + (i, j),

(φ1(ṽ2), φ2(ṽ2)) = Rote90((φ1(v2), φ2(v2))) + (i, j),

(11)

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8

Fig. 11 Extraction of a 1-direction field using a density-based comb-
ing strategy. The combing is started at a root element and follows
intermediate densities first. The colors show steps of 50 elements at a

time, whose 1-direction has been fixed. The colors show steps of 50
elements at a time, whose 1-direction has been fixed
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Fig. 12 Sketch of cutting a grid open between two neighboring elements at a seam edge

where i, j ∈ Z enforces that the integer isolines meet
up. The operator Rote90 accounts for the mismatch of
the rotations on both sides of the seam. It can be seen
as a multiplication with the imaginary number i in the
complex plane, where we regard the parameterizations
(φ1(v1), φ2(v1)) as a complex number. Maybe most
intuitively is the rotation with angle π . When we look
at Fig. 12 and think of the vectors as gradients of the
parameterizations φ1 and φ2, we see, that if the value of
a parameterizations φ increases on one element, then it
must be decreasing on the other element. Thus, the signs
of the parameterizations need to change, which corresponds
to a multiplication with i2. For rotations of angle π/2 or
3π/2, the two parameterizations φ1 and φ2 need to switch
position, since the “blue” field becomes the “red” field.
This corresponds to a multiplication with i or i3 in the
complex plane. If we define the angle as the rotation in
counterclockwise direction, we get

Rote90((φ1(v1), φ2(v1))) = il(e)(φ1(v1), φ2(v1)),

where l(e) ∈ {1, 2, 3} is given by the mismatch of the
angles at edge e. Further details about the operator Rote90
and this procedure can be found in Kälberer et al. (2007)
and Bommes et al. (2009).

5.3.3 Solving for the parametrization

Once the system is assembled, it is solved in the continuous
case, i.e., no integer restrictions are applied at first. This
yields an approximation to the desired solution solving the
problem up to disconnected bars at the seams. The mismatch
variables (i, j) can now be seen as slack variables j ∈ J ,
where J is the set of all slack variables. For every iteration,
the slack variable closest to an integer

k = argmin
j∈J

| j − round(j) |,

is enforced to round(k) and the new system is solved. In an
iterative fashion, this procedure is continued until no more
slack variables are left.

6 Parameter choice for homogenization and
de-homogenization

The homogenization and the de-homogenization are both
influenced by some key parameters. The pipeline introduced
in Section 5 allows us to study different examples of start
orientations for the layer normal and regularization values
(see Section 6.1). Further, we also outline the important
de-homogenization parameters (see Section 6.2).

6.1 Influence of the start point choice
and the regularization of the homogenization
method

It is known for the corner loaded square (see Figs. 6b,
13, 14, 15, and 16) that there does not exist a unique
optimal solution. The shown examples were all achieved
using a resolution of 120 × 120 elements for the topology
optimization as well as for the parameterization step. To
visualize the resulting structures, we choose for the de-
homogenization an average layer spacing ε = 5hf , where
hf = 15 is the number of fine-scale elements used, and an
alignment weight γφ = 50. For the examples in Figs. 14
and 16, the value γθ = 1

5 is applied. In this example, we
see that the start guess dictates the resulting structure. If
the start point for the homogenization method consists of
a grid aligned 4-direction field, we receive the structures
depicted in Figs. 15 and 16 that are fairly grid aligned.
However, if we solve one finite element step, assuming
that in all elements we have a density ρ = 1, we receive
a stress tensor field, whose eigenvectors can be used as
a start guess for the homogenization method, as shown
in Groen et al. (2020). The results differ from the grid
aligned start guess and are shown in Figs. 13 and 14. Note
that even if we impose regularization, the start guess still
dictates the outcoming structure as shown in the Figs. 14
and 16. With the principal stress directions as starting
guess, we receive spatially ripped apart singularities, when
imposing regularization. With the uniform grid as starting
guess, we stay completely clear of getting a singularity
in the center of the domain. Note that despite the large
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Fig. 13 Example of a corner loaded square using principal stresses as a start guess for the layer-orientation, no regularization applied

geometric variations in these solutions, compliance values
Ch for obtained homogenization results are extremely close
demonstrating the non-uniqueness of this problem.

6.2 Alignment weight γφ and structural member
thickness ε

There are two main parameter choices influencing the result
during the de-homogenization: the alignment weight γφ

and the average layer spacing ε. We refer to Groen and
Sigmund (2018) for the choice of the layer spacing ε. For
comparison reasons, we use in this subsection an ε = 10/L,
where L is the resolution in vertical direction. Further,
topology optimization and de-homogenization are done on
the same resolution. If no singularity is present, then the

alignment weight γφ should be chosen in a range of 100–
1000 as shown in Groen et al. (2019). It holds that the
lower the maximal absolute divergence of a vector field,
the bigger ε can be chosen, as it simply enforces a very
strict alignment to the second vector field. However, in
case of a singular point, the field spins with a certain
index around that point. If we now enforce a big alignment
weight on a low-resolution (80 × 20 elements) example,
we receive stretched isocontours as shown in Fig. 17a.
The gradient of the parametrization becomes almost zero
in a large region. The constraint of (6) is implemented as
a penalization term multiplied with the alignment weight
γφ . Note that this term can be minimized by the gradient
becoming zero due to the usage of the dot product. However,
this leads to an increase in the first term of (6) and an

Fig. 14 Example of a corner loaded square using principal stresses as a start guess for the layer-orientation, regularization γθ = 1
5 applied
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Fig. 15 Example of a corner loaded square using grid aligned directions as a start guess for the layer-orientation, no regularization applied

unwanted stretching of the isocontours. For a low-resolution
example, the space of bi-linear basis-functions is limited
and thus the parametrization is limited in adapting to the
rotation around a singularity. This leads to smearing out of
the rotational influence from the singularity to neighboring
elements. If the element size is large, this influences a
higher relative area of the optimization domain. Thus, if the
alignment weight is chosen very high, the gradient becomes
zero in these elements due to the first term of (6) being
suboptimal already. This often results in a violation of the
volume constraint as can be extracted from Table 1. In
order to allow for a better comparison, we provide the value
VsCs , which should however not be considered as the sole

objective, since the compliance does not depend linearly on
the volume. By using a higher resolution (160 × 40, 320
× 80, 640 × 160) (see Fig. 17b, c and Table 1) most of
this problem is resolved. We can see that a tradeoff in the
alignment weight is still desirable for these high-resolutions.
On the one hand, a low alignment weight can lead to non-
load-bearing bars, as isocurves might lead to an area with
zero layer width due to bad alignment. On the other hand,
a too large alignment weight can lead to an overvaluing
of the constraint and thus to stretched isocontours. For the
examples in Table 1, we observe that the optimal alignment
weight can depend on the resolution γφ between 50 and
5000 dependent on the de-homogenization grid.

Fig. 16 Example of a corner loaded square using grid aligned directions as a start guess for the layer-orientation, regularization γθ = 1
5 applied
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Fig. 17 Examples of center
loaded clamped beam for
different resolutions and
alignment weights

Table 1 Performance for
different alignment weights γφ

and resolutions res

res γφ Ch Vs Cs VsCs th ts t

80 × 20 0 21.89 0.298 61.79 18.42 44.8 5.4 50.2

50 21.89 0.316 32.60 10.30 44.8 6.2 51.0

500 21.89 0.349 24.26 8.45 44.8 5.2 50.0

5000 21.89 0.351 24.50 8.60 44.8 4.0 48.7

160 × 40 0 21.82 0.295 337.74 99.52 135.4 11.2 146.6

50 21.82 0.334 24.69 8.25 135.4 10.2 145.6

500 21.82 0.343 22.76 7.81 135.4 10.2 145.7

5000 21.82 0.338 23.46 7.93 135.4 10.8 146.2

320 × 80 0 21.84 0.297 71.95 21.39 402.9 34.3 437.2

50 21.84 0.313 22.52 7.05 402.9 30.8 433.8

500 21.84 0.300 24.89 7.48 402.9 30.7 433.7

5000 21.84 0.285 26.75 7.63 402.9 30.8 433.7

640 × 160 0 22.02 0.298 73.51 21.90 1824.5 112.8 1937.3

50 22.02 0.293 25.57 7.48 1824.5 109.9 1934.3

500 22.02 0.288 25.91 7.46 1824.5 147.1 1971.6

5000 22.02 0.313 22.07 6.91 1824.5 111.5 1936.0

Ch compliance of homogenization method, Vs, Cs volume and compliance of de-homogenized structure,
th, ts , t time for homogenization-based topology optimization, the de-homogenization and the overall time
in seconds. Since the compliance does not depend linearly on the volume, VsCs should not be considered as
the sole objective
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6.3 Island removal via connected component

To get rid of elements that are neither connected to the bound-
ary condition nor to the load, we do a simple connected
component analysis, where we only retain the largest com-
ponent. This immediately leads to the desired removal of
islands. However, this still leaves some unloaded bars, these
can be removed by a couple of FE analysis and removal
of unloaded elements as proposed in Groen and Sigmund
(2018).

7 Conclusion and future work

We have identified the singularities occurring most often
in 4-direction fields arising from homogenization-based
topology optimization. Further, we investigated the location
and reasons for singularities to occur. We have shown the
influence of the start guess of the layer-orientations on the
outcome of the optimization. The proposed parametrization
approach using QuadfCover allows parametrizing fields
containing singularities of index ±1/4. The proposed
parametrization approach also allows us to cut out areas
completely filled with void or solid material from the
parametrization step. These contributions increase the
number of designs for which the de-homogenization method
can generate high-resolution near-optimal structures at a
low computational cost. In order for the aforementioned
points to come to carry the next step for further research is
the adaptation of the projection step outlined in Groen and
Sigmund (2018) to allow for singularities with index 1/4.
As an alternative, it might be of interest to extract an explicit
quad mesh from the parametrizations produced in this paper.
Such an explicit structure would allow the use of graph-
based algorithms, which in turn enable the investigation
of several challenges, like disconnected or badly aligned
structural members, but also stretched isocontours. Finally,
we identify the expansion of the presented approach to
3D as another, highly interesting research area. Besides
an increase in computational cost, most of the ideas
introduced in this paper can be reused, but we envision
challenges such as non-uniqueness of 6-direction fields
when only 1 layer has a finite width and challenges with
the smoothness of the layer fields as has been discussed
in Groen et al. (2020).

8 Replication of results

Our work relies on several programming languages (Python,
Matlab, C++) and also several other codes. Specifically,
we use the described homogenization-based topology
optimization based on the 88 line MATLAB code by

Andreassen et al. (2011). The resulting 4-direction fields are
combed using the described density-based search method,
and in order to compute the final structures, we use the
QuadCover implementation in libigl.

Rather than providing a source code package which
would only work under very strict platform requirements,
we instead opt to aid the reader in reproducing our results
by providing three types of materials:

– An example 4-direction field with associated densities
of the type produced for example by the code from
Groen and Sigmund (2018)

– A Python script that demonstrates the density-based
combing

– A document outlining the necessary changes that have
to be made to the libigl library to make QuadCover
work on our type of problems. In particular, this
supplementary document explains the implementation
of the constraint in (6).
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Fig. 1: Given a frame field as an input we can generate a set of optimal laminations aligning exactly with the field orientations (Subfigures
a and d). Using a novel optimization energy that only needs local orientation awareness, we can create a well-spaced subset of these
laminations (Subfigures b and e). We then proceed to create near optimal, highly stiff multi-laminar structure as a volumetric solid
(Subfigure c) or in some cases output a hexahedral mesh (Subfigure f).

Abstract

In the field of topology optimization, the homogenization ap-
proach has been revived as an important alternative to the
established, density-based methods because it can represent
the microstructural design at a much finer length-scale than
the computational grid. The optimal microstructure for a
single load case is an orthogonal rank-3 laminate. A rank-3
laminate can be described in terms of frame fields, which are
also an important tool for mesh generation in both 2D and
3D.

We propose a method for generating multi-laminar struc-
tures from frame fields. Rather than relying on integrative
approaches that find a parametrization based on the frame
field, we find stream surfaces, represented as point clouds
aligned with frame vectors, and we solve an optimization
problem to find well-spaced collections of such stream sur-
faces. The stream surface tracing is unaffected by the pres-
ence of singularities outside the region of interest. Neither

stream surface tracing nor selecting well-spaced surface rely
on combed frame fields.

In addition to stream surface tracing and selection, we pro-
vide two methods for generating structures from stream sur-
face collections. One of these methods produces volumetric
solids by summing basis functions associated with each point
of the stream surface collection. The other method reinter-
prets point sampled stream surfaces as a spatial twist contin-
uum and produces a hexahedralization by dualizing a graph
representing the structure.

We demonstrate our methods on several frame fields pro-
duced using the homogenization approach for topology op-
timization, boundary-aligned, algebraic frame fields, and
frame fields computed from closed-form expressions.
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1 Introduction

In recent years, topology optimization [Bendsøe and Sigmund,
2004] has emerged as an important tool in digital model-
ing and fabrication. By minimizing compliance, for exam-
ple, topology optimization can produce mechanical struc-
tures that are stiffer than what a human designer would usu-
ally be able to achieve, using only a specified amount of ma-
terial. More generally, topology optimization algorithms can
directly optimize for structures, extremizing assorted quality
measures of fabricated objects.

Density-based approaches for topology optimization em-
ploy a straightforward minimization over parameters that
represent element-wise material density and, as such, oper-
ate directly on a volumetric shape representation. Unfortu-
nately, large-scale topology optimization problems are very
computationally demanding with this type of approach, al-
beit feasible in many contexts [Aage et al., 2017; Baandrup
et al., 2020].

The homogenization-based approach to topology optimiza-
tion offers an alternative wherein the material is repre-
sented in terms of homogenized microstructures [Bendsøe
and Kikuchi, 1988]. The optimal microstructure for single-
load case stiffness optimization, which we also employ, is the
rank-3 microstructure, a lamination system with three or-
thogonal lamination directions. Using the orientation and
lamination thicknesses obtained during topology optimiza-
tion, we can realize a physical structure from the homoge-
nization solution at a finite length scale in a process called de-
homogenization. In practice, this two-step procedure yields
finely resolved structures at a much lower computational cost
than density-based methods [Bendsøe and Sigmund, 2004;
Pantz and Trabelsi, 2008; Geoffrey-Donders, 2018; Geoffroy-
Donders et al., 2020; Groen and Sigmund, 2018; Groen et al.,
2020].

Clearly, one could also choose truss-based microstructures
for homogenization-based topology optimization, resulting in
a final structure consisting of trusses as done in Wu et al.
[2019]. However, a truss carries load only in the direction
of the truss itself, while a sheet can carry load along two
directions. In practice, this means that closed wall structures
are up to three times stiffer than Michell structures [Sigmund
et al., 2016]. Consequently, our goal is to construct closed
wall structures.

The specific problem we address is the following. Assuming
the lamination orientations are given by a frame field, we seek
a set of surfaces such that each surface aligns everywhere
with one of the frame orientations. The surfaces should be
approximately evenly-spaced, and the spacing corresponding
to a choice of length scale; up to three surfaces might intersect
at any point.

If we can find a 3D parametrization of the domain such
that the gradients of the coordinate functions are everywhere
aligned with the frame field, the surfaces are simply constant
coordinate surfaces pulled back from the parametrization do-
main. Unfortunately, the frame field might be far from inte-

grable, and there are few if any robust approaches that can
handle such cases. While recent work modifies the frame field
at the cost of structural performance to promote integrabil-
ity [Arora et al., 2019], we take a different route which does
not require a parametrization of the domain.

We seek a set of surfaces whose local tangent planes are
aligned to a frame field. We find these surfaces individually
using an approach that amounts to stream surface tracing.
Given a large superset of such surfaces, it is then possible to
find an evenly-spaced subset by solving a binary optimization
problem, which we solve efficiently through relaxation.

Our first contribution is a method that solves the afore-
mentioned problem by tracing and selecting stream surfaces
that locally align with frame fields. The tracing is discussed
in Section 4.1 and the selection procedure in Section 4.3.

Given a set of stream surfaces, we further provide two
methods for the synthesis of output shapes. In topology opti-
mization, we usually need a manufacturable solid as the out-
put. This volumetric solid can be extracted by compositing
samples of each stream surface onto a voxel grid—a procedure
sometimes known as splatting, described in Section 5.2. For
frame fields that lead to reasonably isotropic families of sur-
faces, we also can compute a graph of the intersection points
and output a combinatorial structure from which a hexahe-
dral mesh can be obtained, as described in Section 5.3.

2 Related Work

Frame fields resulting from topology optimization impose
particular requirements on hexahedral mesh generation
schemes. For example, the frame fields might exhibit
anisotropy to an extent where one edge length deteriorates.
Moreover, the rotation of the frame fields might be higher
than is usual in the case of fields designed for hexahe-
dral meshing, and this could make the fields non-integrable.
These challenges suggest that existing hex-meshing or hex-
dominant meshing algorithms are not suitable for such prob-
lems.

In recent years, density-based topology optimization has
been used to find optimal mechanical structures in various
fields. In the area of compliance minimization, giga-scale fi-
nite element models have been applied [Aage et al., 2017;
Baandrup et al., 2020]. While such large-scale topology opti-
mization makes the benefits of topology optimized structures
very apparent, it also relies on supercomputing hardware and
is not applicable in real time, which is one of the key steps
towards the goal of incorporating topology optimization in
the everyday engineering design process.

Density-based topology optimization methods such as
SIMP or RAMP [Sigmund and Maute, 2013] were designed
to directly produce single-scale mechanical structures. How-
ever, earlier work, specifically the groundbreaking work by
Bendsøe and Kikuchi [1988], modelled material as having
an infinitesimal microstructure—as opposed to being locally
characterized only by density. Materials consisting of mi-
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crostructures have been shown to be computationally op-
timal, while circumventing the problem that density-based
topology optimized structures depend on the size of the cho-
sen finite element mesh [Avellaneda, 1987; Francfort et al.,
1995; Sigmund and Maute, 2013].

The process of going from the results of homogenization
based topology optimization to high-resolution structures is
called de-homogenization. It was introduced by Pantz and
Trabelsi [2008], who combined homogenization-based topol-
ogy optimization with field integration, as done in quad-
meshing, to de-homogenize 2D examples whose orientation
fields do not contain singularities. They expanded their ap-
proach in Pantz and Trabelsi [2010] to structures with sin-
gularities of index ±1/2 lying in void regions by punching
out holes around these singularities. Groen and Sigmund
[2018] revisited this method and simplified the approach,
while introducing additional parameters for more control of
the de-homogenized structure. Their approach was limited
to singularity-free fields and has since been ported to 3D
in Groen et al. [2020]. Geoffrey-Donders [2018] proposed a
method for de-homogenizing structures in 2D with singulari-
ties of index±1/2 without the need of punching holes based on
Hotz et al. [2010]. Stutz et al. [2020] expanded the approach
by Groen and Sigmund [2018] to incorporate examples with
singularities of index ±1/4.

All of the above papers indicate a strong relationship to
quad-dominant meshing in 2D and hex-dominant meshing
in 3D. Depending on the examples, a deterioration of the
hexahedra is desirable as is the anisotropy resulting thereof.
However, as shown in [Groen and Sigmund, 2018; Stutz et al.,
2020], spurious singularities can occur. In 3D, orientations
of the microstructures are not unique, a problem for the de-
homogenization that can to a certain degree be circumvented
by regularization [Groen et al., 2020].

Approaches for truss-structures have been presented for
singularity-free fields in Larsen et al. [2018]; Arora et al.
[2019] and in Wu et al. [2019] for fields containing singu-
larities.

Field-based quad-meshing and hex-meshing is most often
done by combing fields and integrating to find scalar func-
tions with integer-jump conditions, where the combed field
are differently labelled [Kälberer et al., 2007; Bommes et al.,
2009; Nieser et al., 2011]. A lot of research for field-based
hex-meshing focuses on achieving pure-hex meshes [Huang
et al., 2011; Ray et al., 2016; Solomon et al., 2017; Palmer
et al., 2019]. These methods focus on the field design part
of the hex-meshing pipeline with the main goal to achieve
as many hexahedral elements as possible. Thus, these meth-
ods minimize a smoothness energy while ensuring that at the
surface one direction of the octahedral frame is well-aligned
with the surface normal [Huang et al., 2011]. As a natu-
ral effect, hex-meshes extracted from such a model tend to
have minimized anisotropy and minimized deterioration of
the hexahedral elements.

For de-homogenization and hex-dominant meshing of ho-
mogenization-based topology optimization results, it is of

importance to note that the fields are typically prescribed
(rather than optimized during the meshing procedure) and
cannot be changed to obtain more smoothness without re-
ducing the mechanical performance of the obtained structure
[Stutz et al., 2020]. Approaches like Kälberer et al. [2007] and
Nieser et al. [2011] are promising for de-homogenization but
contain a major pitfall since fields arising from the homog-
enization method often have singularities of higher indices
(±1/2 in 2D) or have significant divergence at mechanical
boundary conditions. Such higher indices imply a greater
rotational speed and typically integration based methods for
de-homogenization must enforce alignment to the fields with
a penalization approach [Groen and Sigmund, 2018; Groen
et al., 2020; Stutz et al., 2020]. This penalization weight
trades off structural alignment with spacing of the structural
members and implicitly introduces anisotropy. If the align-
ment weight is chosen too small, the resulting parametriza-
tion will not align well with the underlying field as it tries
to create unit-length gradients. If the alignment weight is
chosen too large, the gradient of the parametrization will
become zero and result in stretched out iso-contours [Stutz
et al., 2020]. These problems might be mitigated by intro-
duction of additional optimization terms, which has so far
not been deeply investigated. It is important to note that
anisotropy is desired and of the utmost importance for the
mechanical performance.

In field-based hex-dominant meshing as done by Gao et al.
[2017], the isotropy of the desired hexahedra is a key ingredi-
ent of the algorithm. This is due to the optimization, which
trades off the regularity of the hexahedra and their align-
ment to the underlying field. An expansion to anisotropic
hex-dominant meshing might be achieved, if the desired hex-
edge length was known beforehand and not only given im-
plicitly.

Ni et al. [2018] have a promising approach to solve for
vertex position of a tetrahedral mesh, which is similar to
Gao et al. [2017]. The nature of the approach is aimed at
producing vertices of a hex-mesh with a prescribed isotropic
edge-length. Note that Gao et al. [2017] and Ni et al. [2018]
create tetrahedra where the hexahedra do not align with the
field, which could cost dearly in terms of mechanical perfor-
mance, when used for de-homogenization, since the resulting
structure would not align with the load path at all in these
regions. Recently, polycube methods have advanced the hex-
meshing field, but since methods like Guo et al. [2020] and
Livesu et al. [2020] do not rely on fields they are not appli-
cable to de-homogenization.

The work of Takayama [2019] expanding the 2D work of
Campen et al. [2012] and [Campen and Kobbelt, 2014] relies
on user-defined (as opposed to frame field aligned) implicit
surfaces as an input to guide the creation of hex-meshes.
Moreover, several authors, including us, draw inspiration
from the notion of the spatial twist continuum which is, es-
sentially, the dual of a hexahedralization and was introduced
by Murdoch et al. [1997].

Campen et al. [2016] create a foliation as a means of finding
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a bijective parametrization of a 3D shape. While there is a
clear similarity between the notion of a stream surface and
a transversal section of a leaf of a foliation of a 3-manifold
[Milnor, 1970], their aim is to create a bijective map entailing
strong conditions on the direction field whereas we take the
frame field as is.

It should be mentioned that stream surfaces are often used
as a visualization tool seen in fluid dynamics [Hultquist, 1992;
Machado et al., 2014].

We strive for global surfaces or layers, which are locally
well-aligned with the results from the homogenization-based
topology optimization, while incorporating implicitly the
anisotropy dictated by these fields and circumventing the is-
sue of missing structural parts due to enforcing field align-
ment and resulting zero-gradient regions.

3 Sources of Frame Fields

We are mainly motivated by fields arising from topology op-
timization, but one can also think of fields that would not
permit generating laminations or even hexahedral meshes ob-
tained from an integration based method. In the following,
we will shortly discuss these fields and their origins. As we
will demonstrate in Section 6, our algorithm can take fields
from any of these sources as input; it is designed to extract
field-aligned structures while being agnostic to the source of
the field.

3.1 Topology Optimization

Homogenization-based topology optimization uses mi-
crostructures that vary their shape and orientation at an
infinitesimal scale. The optimization aligns microstructures
with the principal stresses implicitly [Pedersen, 1989; Nor-
ris, 2005]. Two examples of microstructures are depicted in
Figures 2a and 2b, the rectangular hole microstructure con-
sidered for topology optimization by Bendsøe and Kikuchi
[1988] and a rank-2 material with orthogonal layers consid-
ered by Bendsøe [1989]. The rectangular hole microstruc-
ture can be rotated, and the size of the hole can be changed
for both directions independently. The rectangular hole mi-
crostructure is a single-scale approximation of the multiscale
rank-2 material in Figure 2b. These multiscale rank-2 materi-
als have been shown to be optimal for two-dimensional prob-
lems with a single strain tensor by Avellaneda [1987]. The
rank-2 microstructure can also be orientated and the relative
thickness of its layers can vary independently. Note that the
three dimensional equivalent to the rank-2 microstructure is
called a rank-3 microstructure with orthogonal layers and is
optimal for three-dimensional problems with a single strain
tensor.

These infinitesimal microstructures are used in topology
optimization using the theory of homogenization. By as-
suming periodicity at the infinitesimal microscale we can ob-
tain effective (homogenized) properties at the macroscale.
By assuming only variation of the microstructures at the

(a) Rectangular hole
microstructure.

(b) Rank-2 microstructure with
orthogonal layers.

Fig. 2: Most commonly used microstructures in two dimensions.
On the left the rectangular hole microstructure introduced for
topology optimization in Bendsøe and Kikuchi [1988]. On the right
the rank-2 microstructure with orthogonal layers first used for
topology optimization in Bendsøe [1989]. This rank-2 microstruc-
ture with orthogonal layers at two different length scales is known
to be optimal for single strain tensor problems [Avellaneda, 1987].

macro-scale we can model a complex structure using rela-
tively few finite elements compared to the mesh-dependent
density-based topology optimization [Bendsøe and Sigmund,
2004]. Now the optimizer can optimize the orientations of the
microstructure and the layer-widths. We obtain a coarse rep-
resentation of the locally optimal microstructure orientation
and layer thicknesses as a result of the topology optimiza-
tion. The orientations are described as 4-direction fields in
two dimensions and as octahedral fields in three dimensions.

A crucial part of the homogenization-based topology opti-
mization is to find the optimal rotations of the microstruc-
tures, since microstructures have a high stiffness in their prin-
cipal directions but low shear. Thus regularization of the
orientations during the topology optimization will influence
the resulting performance of the mechanical structure since
more material needs to be allocated to strongly regularized
regions [Stutz et al., 2020]. If regularization of the orien-
tation fields is done after the topology optimization, either
actively as discussed in Arora et al. [2019] or by not en-
forcing high enough penalization weights for an integrative
method as discussed in Groen and Sigmund [2018] and Stutz
et al. [2020], the resulting structure will not align well to
the optimal microstructure orientation. Such non-optimally
aligned regions may cause a dramatic loss of performance of
the structure [Groen and Sigmund, 2018; Stutz et al., 2020].
Therefore the motivation of this paper is to find structures
that adhere to the local orientation of the microstructure as
closely as possible outside of void or fully solid regions. This
in turn introduces anisotropy between the global members
of the structures. Note, however, that this anisotropy is not
negatively influencing the structure from a mechanical point
of view.

Singularities arise in homogenization-based topology opti-
mization for three reasons in two dimensions [Stutz et al.,
2020];
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• Singularities in the underlying stress field will lead to
singularities in the layer-normal fields since the mi-
crostructure aligns to the principal stress directions.

• Regularization inflicted on the layer-normal fields dur-
ing the topology optimization will break up singularities
with a higher index in the stress fields into multiple sin-
gularities of lower index in the layer-normal fields.

• In regions where the microstructure is completely solid
or void, singularities can be introduced by noise. In
solid regions the microstructure becomes isotropic and
the optimal orientation of it becomes non-unique. In
void regions the microstructure is not present and an
optimal orientation of the microstructure is therefore
non-existing.

Stutz et al. [2020] show that in two dimensions singulari-
ties in topology optimized layer-normal fields must occur in
completely solid or void regions.

(a) Two dimensional example
of a singularity with index 1.

(b) The same singularity as in
Figure 3a but now embedded
in an orthogonal layer (in yel-
low) in three dimensions.

Fig. 3: On the left we see an example of a singularity with index
1 in two dimensions. It is clear that the rotational speed increases
the closer we get to the singular point. Stutz et al. [2020] have
shown, that the optimizer has an incentive to put such singulari-
ties in an either fully void or fully solid region, since there would
always be shear forces acting on any non-solid microstructure at
the singular point. On the right we see the same field and sin-
gularity embedded into an orthogonal layer (in yellow) in three
dimensions. Note how the optimizer now can choose to fill the
yellow layer with material and completely ignore the red and blue
field, while still creating a stiff structure. Moreover, this singu-
larity does not have to be in a completely solid region since the
relative layer thickness of the yellow layer can be lower than 100
percent. In this case we refer to the microstructure as transversely
isotropic since the the microstructure is isotropic in one plane (the
yellow one) but anisotropic perpendicular to this plane.

Unfortunately, this observation does not hold in three di-
mensions. Firstly, microstructure orientations in three di-
mensions are non-unique due to in-plane stress; this can cause
spurious singularities to appear. These singularities can be
tackled with a low amount of regularization, as shown by
Groen et al. [2020]. Secondly, as seen in Figure 3 that singu-
larities in stress fields can occur, even when the microstruc-
tures are not completely solid. If we consider Figure 3a we

see a field describing a singularity with index 1. Stutz et al.
[2020] observed that because the rotational velocity of the
field increases towards infinity at the singularity, the topol-
ogy optimization process fills the region around the singular-
ity with material to account for the spinning stress-field at
the singularity. On the other hand, when we embed the fields
from Figure 3a in three dimensions, as shown in Figure 3b,
the optimizer can choose to fill the newly introduced orthog-
onal layer with material and not assign any material to the
two existing layers. Furthermore, we observe that this third
layer does not have to be completely solid but can have any
arbitrary layer-thickness, e.g. 50%. In this case we refer to
the microstructure as being transversely isotropic since the
the microstructure is isotropic in one plane (the yellow one)
but anisotropic perpendicular to this plane. The option to
cut out singularities and later on fill them with material, will
inevitably lead to excessive use of material in three dimen-
sions. The example described in Figure 3 is, to the best of the
author’s knowledge, the only singularity in three dimensions
that occurs outside of fully solid or entirely void regions.

The following thoughts can explain this. First, if all layer
normals change direction at a location outside the void, for
example, around a source, then the region would need to be
filled with material by the optimizer to be made isotropic.
Second, non-zero stress directions will always be perpendic-
ular to a layer normal, with non-zero layer thickness, mean-
ing that stresses must always be transferred within a solid
slab or plate. This will always align a stress field’s singular
curve with a layer normal outside of fully solid or entirely
void regions. This leaves us only with fields as shown in Fig-
ure 3b, where of course, the indices of the singularities can
be different. Third, consider for a moment that the red or
blue layer would be non-zero. Then their layer-normal would
rotate infinitely fast at the singular curve, and thus the opti-
mizer would fill the region completely with material to make
the microstructure isotropic at the singular curve. Hence
we conclude that the only singular curve not embedded into
complete solid or void can be seen in Figure 3b, where the
red and blue layer thicknesses are zero.

Our stream surfaces generation method can differentiate
the expansion of stream surfaces near a singular region. Note
how in Figure 3b the field with the yellow normal is aligned
with the singular curve while having a constant normal. We
can use this observation to identify which layer is travers-
ing the singular region orthogonal to the singular curve in a
computationally cheap manner and expand the correspond-
ing stream surface through the singular region. However, in
practice, we do not need to do this for topology optimized
fields since we stop the expansion of stream surfaces in zero-
material layers. This means that only the stream surface
following the traversing layer is created.

3.2 Boundary-Aligned Frame Fields

Topology optimization yields frame fields as a by-product of
a mechanical problem; the fields are not designed with me-
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shability or integrability in mind. In contrast, a number of
techniques in geometry processing optimize for frame fields
with the specific goal of extracting a quadrilateral or hexa-
hedral mesh. Since our work focuses primarily on the volu-
metric case, we refer the reader to Vaxman et al. [2016] for
discussion of the many methods available for two-dimensional
field computation, and briefly highlight representative three-
dimensional methods below.

The basic goal of volumetric frame field computation is
to optimize for a field of three orthogonal directions at each
point in a region enclosed by a surface, with the constraint
that one of the three directions aligns to the surface normal
along the boundary. This field is then used as input to meth-
ods like Lyon et al. [2016] and Nieser et al. [2011] to extract
a mesh through parametrization.

Huang et al. [2011] originally propose a representation
of orthogonal frames—later dubbed “octahedral” frames by
Solomon et al. [2017]—that is agnostic to their labeling.
Their work extracts smooth fields by optimizing Euler an-
gle variables, with additional constraints at the boundary;
their approach was refined by Ray et al. [2016] with improved
boundary constraints and optimization. Solomon et al. [2017]
propose a relaxation of [Ray et al., 2016], allowing for use of
the boundary element method (BEM). Palmer et al. [2019]
provide a more complete description of the space of octa-
hedral frames, leveraging the structure they identify to pro-
pose manifold-based optimization schemes; they also propose
a related orthogonally decomposable (“odeco”) frame repre-
sentation in which the directions remain orthogonal but can
scale independently.

Many open questions remain regarding the singular topol-
ogy of octahedral/odeco fields and its relationship to hexa-
hedral meshing; see Liu et al. [2018] for initial results and
some relevant discussion. Corman and Crane [2019] and Liu
et al. [2018] propose algorithms that compute frame fields
with prescribed singular structures.

3.3 Closed-Form Frame Fields

A closed-form frame field is a field where the orientations of
the frames can be found using a closed-form mathematical
expression instead of being found using optimization or by
solving a system of equations. In this paper, we consider a
field describing a cylinder, much like the field illustrated in
Figure 3, where there is a single singular curve in the center
of the cylinder. Suppose one tries to extract well-aligned hex-
ahedra from such a field using integrative methods. In that
case, one will be challenged due to the high anisotropy of
the hexahedral elements, which can not be treated by meth-
ods, that were designed to create isotropic hexahedra [Stutz
et al., 2020]. Note that the edge length of hexahedra will
ultimately deteriorate towards the singular curve with such
a cylinder field. A stream surface based approach can be de-
signed to expand through singular curves for the cylinder’s
near-constant field (as discussed earlier in Section 3.1), while
creating highly anisotropic hexahedra in the remaining do-

main. Extending this example, we also run our algorithm
on a non-integrable field describing a helicoid. Again, this
produces highly anisotropic hexahedra matching the spiral
shape of the input field.

4 Computing Collections of Stream
Surfaces

The overarching idea of our method is to compute a large set
of surfaces, S, which align with the frame field and then find
a well-spaced selection of these, Sopt, to get a representation
of the multi-laminar structure that we seek. In this section,
we discuss how we find and select these aligned surfaces us-
ing stream surface tracing. In the next section, Section 5,
we will discuss how the final output is computed from this
representation.

In engineering, a streamline is simply a curve that is every-
where tangential to a vector field [Hultquist, 1992]. A stream
surface is simply the generalization to 3D, i.e. a surface whose
normal is everywhere aligned with one of the vectors of the
input frame field.

We cannot rely on the frame field being combed, and
hence, we do not have consistent labeling of the vectors in
the frame. This is handled by simply finding the frame vec-
tor best aligned with the estimated normal of the next point
that we compute when expanding a stream surface. It is
also worth noting that we generally wish to stop stream sur-
face tracing when the stream surface would otherwise exit a
given bounding shape. Thus, we assume a known mask or
layer thickness in the following.

4.1 Tracing Stream Surfaces

We start by tracing stream surfaces to create the set S. The
stream surfaces are traced independently, starting from ran-
dom seed points in the domain. Rather than constructing
a surface connectivity, we compute a point cloud for each
stream surface. The points are placed using a method simi-
lar to the technique for Poisson Disk Sampling (PDS) sam-
pling introduced by Bridson [2007], except that our points
are placed on a surface in 3D and are not filling the entire
3D domain.

We initialize each surface with a single seed point p0 and
with two of the three frame vectors at p0. The first vector
is our desired surface normal N at the seed point, and the
second vector is perpendicular to N and describes our rota-
tional origin D. New points are now generated in an annulus
centered on the seed point and perpendicular to the surface
normal. Uniformly distributed random variables control the
rotation angle from D and distance from p0. The annulus has
an inner radius of r, which is the minimum distance allowed
between points. The outer radius is set to 2r in accordance
with Bridson’s algorithm [Bridson, 2007]. Each time we gen-
erate a new point, we check if it is too close to any previously
generated points of the stream surface, using a lookup grid
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for efficiency. This generation process is visualized in Fig-
ure 4. When a new point is accepted, it is added to a queue
of points used to further expand the surface.

r
2r

N

p
φD
p0

Fig. 4: Outline of how a new point p is generated at a random
position inside the annulus around p0 oriented perpendicularly to
the desired surface normal N.

To mitigate drift, we employ the fourth order Runge-Kutta
method [Chapra, 2012]. Starting from a previously deter-
mined point, p0, with normal N, we search in direction d0

with step length ∆. We need a parallel transform operator
P : R3 → R3 to transform the initial direction d0 onto the
tangent plane estimated at a given point x with a normal de-
fined by the field. The RK4 method combines partial steps
through a weighted sum, to estimate the new point. The full
update can be described by,

k1 = ∆ · P(p0) ,

k2 = ∆ · P(p0 +
k1

2
) ,

k3 = ∆ · P(p0 +
k2

2
) ,

k4 = ∆ · P(p0 + k3) ,

pn = p0 +
1

6
(k1 + 2k2 + 2k3 + k4) .

While this method is relatively precise, some drift is still
unavoidable. To improve precision, we compute the position
of pn had p0 instead been any point inside the sphere with
radius 2r centered at pn. These new estimates are avearaged
to produce the new point p.

We discard a point if it is too close to a neighbor, distance
< r. This could still allow for spiralling surfaces, therefore
we also look at all neighbours within 3r. If any of these
neighbours, when projected onto the tangent plane defined
by p and the associated normal, are closer to p than r we also
discard the point. We also do not expand stream surfaces into
regions where the corresponding layer has a layer-thickness
of zero. No material would be assigned in these regions by
the splatting method described in subsection 5.2. We also
do not expand into fully solid regions, since these areas will
be filled with material anyways by the splatting procedure.
Note that these two last cases are why we do not need to
actively handle singular curves in fully solid or entirely void
regions.

Unfortunately, the computed stream surfaces are not en-
tirely independent of the starting point. The drifting can be

Fig. 5: Here we see the effect of drifting. Small deviations in point
position and interpolation of the field over long distances lead to
a crack in the surface. To the right, we show the resulting surface
after smoothing.

problematic when the front of the stream surface meets itself
having traced around a round object (see the torsion sphere
example in subsection 6.2 and closeup in Figure 5). This can
lead to seams in the surface where it does not entirely close
up. To mitigate this problem, we post-process the surface by
recomputing the positions of all points from their neighbors
using the scheme described above. This will strengthen align-
ment to the field, since we use the field information from all
directions instead of only behind the expanding front. Pseu-
docode for the above algorithm is given in Algorithm 1.

We now have a method that allows us to trace stream
surfaces in our input fields.

Algorithm 1 Stream surface creation

Inputs: Frame field, lamination thicknesses, list of seed
points, list of probe points.

1: for each seed point ps, do
2: Initialize queue Q with ps and PDS grid with desired

radius.
3: while Q is not empty, do
4: Set p0 to front of Q.
5: Compute 30 new points pi using weighted RK4.
6: if pi is a valid point, then
7: Save pi to point-cloud Ss, PDS grid and Q.
8: end if
9: end while

10: for every point p in Ss, do
11: Re-estimate p using weighted RK4.
12: end for
13: Save Ss to the set of surfaces S.
14: end for

4.2 Singularities

When tracing stream surfaces, we will inevitably expand
into regions containing singularities. In 3D, singularities are
curves along which the frame field is not defined. For a more
complete discussion of the notion, we refer the reader to the
comprehensive overview by Vaxman et al. [2016]. In this
context, singularities are challenging because the frame field
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rotates quickly in their vicinity. In particular, singularities
of index ±1 are challenging since the frame makes a com-
plete turn around these. These rapid rotations mean that we
cannot reliably continue tracing the stream surface when it
is close to a singularity. It would often lead to the stream
surface effectively splitting into two or more parts (which we
call ”forking”) due to local variations in the amount of ro-
tation. We illustrate a forking stream surface in Figure 6.

Fig. 6: Here we see a stream surface that has hit a singularity
during the expansion through the domain. We see the surface
fork into several sheets, which is highly undesirable and is caused
by numerical imperfections when generating the stream surface
and rapid changes in the frame field.

Forking surfaces can be detrimental to the quality of our
results. If a surface forks, it is challenging to obtain a uni-
form spacing between surfaces in the selection part of our
approach in subsection 4.6. Therefore, it is essential to have
a way to handle these problematic regions. We choose to stop
tracing surfaces in areas close to singularities. This approach
will produce holes in our models (see for example Figure 18).
However, we preserve the overall quality of the output. As
explained in Section 3.1 cutting out the singular curve in
topology optimized fields does not cause problems. Recall
that for singularities outside of complete solid or void only
the case in Figure 3b occurs, where we can track the layer
traversing the singular curve perpendicular by its nearly con-
stant layer normal.

Identifying singularities is a common problem in meshing
and a wide range of other fields. We are using an approach
adapted from the combing approach in Groen et al. [2020].
The rotational energy at a voxel is computed by examin-
ing the rotation needed to align the frame in a voxel to the
frames in the neighboring voxels. The average rotation is
saved since we are looking for spikes in the energy. Once we
have computed the energy value at every voxel, we compute
some simple statistics to identify singular curves.

We then prevent stream surfaces from entering regions
close to these singular curves and now have everything that
we need to create the set of stream surfaces S

4.3 Energy for an Optimization-Based
Subselection Approach

We will now take the set of surfaces S that we have created in
the previous sections and continue with finding a well-spaced
subset Sopt. We will compute Sopt by optimizing over binary
variables w that will be assigned to the stream surfaces. How-
ever, before we can define our optimization problem, we need
to define the contribution of each stream surfaces to the op-
timization energy. For simplicity and consistency with the
figures, we will describe this procedure in two dimensions.
The algorithm works the same in three dimensions, and we
will explain essential details for the implementation inline on
an ongoing basis.

First let γ denote the desired average spacing in the set
Sopt. As an aid, we define the projection of a point x ∈ R2

onto a streamline S ∈ R2 as xp = arg minxs∈S ||x− xs||. We
can then define an energy for the streamline S by

ĒS : R2 → {0, 1} ,

ĒS(x) =

{
1, if ||x− xp|| ≤ γ,
0, else.

(1)

This energy is shown in Figure 7b for the two streamlines
following orthogonal field directions in Figure 7a. For our
application to 4-direction fields, we need to distinguish be-
tween the two orthogonal field directions locally. Therefore,
we choose for every x ∈ Ω, two orthogonal directions from
the 4-direction field at random and assign them to 2-direction
fields f1 and f2. This assignment of the orthogonal directions
to f1 and f2 allows us to define a function Sdir(xs) = {1, 2}
that indicates for every point xs ∈ S if the streamline follows
the local label of field f1 or field f2. In three dimensions, we
use the normal of the stream surface as a field identifier. We
now split the energy for every streamline into two parts:

ES : R2 → {0, 1} × {0, 1} ,
ES = (ES1 , ES2) ,

(2)

where the split energies ES1 and ES2 are defined as,

ES1(x) =

{
1, if Sdir(xp) = 1 ∧ ||x− xp|| ≤ γ ,

0, else,

ES2(x) =

{
1, if Sdir(xp) = 2 ∧ ||x− xp|| ≤ γ ,

0, else.

(3)

Note that there is no need for consistency of the field labels
f1 or f2 in a neighborhood, i.e. no combing is needed, as
shown in Figure 8. This makes the energies very simple to
implement and the approach very robust. The split energies
from Equation 3 can be seen in Figure 12. Having defined the
energy we can now formulate a binary optimization problem,

minimize
w∈{0,1}nS

∫

Ω

∣∣∣∣∣

nS∑

i=1

w(i)ES(x)− (1, 1)

∣∣∣∣∣ dΩ , (4)
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(a) Two streamlines following two different orthogonal fields. (b) Sum of energies ĒS for the streamlines in Figure 7a. Green and
blue elements have an energy value of one, orange elements have a value
of two.

Fig. 7: On the left, we see two streamlines following orthogonal field directions. On the right, we see the sum of the energies ĒS from
Equation 1 for the two streamlines. Here the contributions of the streamlines are colored in blue and green in regions with value one. The
orange highlighted regions are elements where both streamlines create an energy response and subsequently the summed value equals two.
An optimizer would try to minimize the amount of these orange elements since it tries to minimize overlapping streamline-energies. This
version of the energy is blind for the fact that the two streamlines follow different fields. In order to be able to space out both family of
streamlines correctly, we need to split the energy as shown in Equations 2 and Figures 8 and 12.

where we refer to the optimization variables wi as weights
and nS = |S|. If we were to use the energies from Equation
1 the selected streamlines would all follow the same lami-
nation direction, since the optimizer would penalize crossing
streamlines. This can be seen in Figure 9. If we use the same
set of streamlines but use the energies defined in Equation
2 for the optimization we obtain both lamination as can be
seen in Figure 10

Note that defining the problem in Equation 4 as a least-
squares problem instead of a least absolute deviations prob-
lem would overly punish multiple covered regions of the en-
ergy and lead to missing streamlines. The L1 norm in Equa-
tion 4 on the other hand, penalizes double covered probe
points equally as hard as non-covered probe points. The
difference of using an L1-norm or an L2-norm can be seen
in Figures 11. Details on the solution of the minimization
problem in Equation 4 are discussed in Section 4.6. We now
continue to find the variable nS .

4.4 Number of Streamlines nS in the Covering
Set of Streamlines S

To solve the minimization problem in Equation 4 we need to
know how large the number of streamlines nS = |S| provided
to the optimizer needs to be.

First, we need to define the desired average spacing γ of
the streamlines in Sopt. Then the cardinality of Sopt can be
approximated by,

|Sopt| = nx

γ
+
ny

γ
, (5)

where nx and ny are the dimensions of the design space in
x, respectively y direction. Note that the cardinality of Sopt
grows in linear dependence to the dimensions of the design
space, since streamlines are one dimensional objects. This
means that doubling all dimensions of the design space will
only lead to a doubling of the cardinality of Sopt. This
also holds true in three dimensions, here due to the two-
dimensionality of stream surfaces. We further need to define
the error ε by which a streamline should deviate on average

from its optimal position. We denote this in fraction of the
optimal average spacing γ, e.g. ε = 0.1 would allow a stream-
line to be placed in a band of 0.2γ width around its optimal
location. We can then derive the cardinality of S by:

nS = |S| = 1

ε
|Sopt| = 1

ε

(
nx

γ
+
ny

γ

)
. (6)

As with Sopt, we note that the cardinality of S grows lin-
ear with the dimensions of the design space. We also note
that the cardinality of S grows linear in dependence to the
desired error ε, meaning that reducing ε by a factor k will
increase the cardinality of S only by a factor k. Both these
observations are again valid in two dimensions as well as in
three dimensions.

We have now computed how many stream surfaces we need
to provide to the minimization problem in Equation 4 to
obtain good results.

4.5 Resolution of the Energy

To solve the minimization problem in Equation 4 the only
thing that remains is to discretize the energy ES on a pixel
grid, where we refer to a single pixel as a probe point. To
efficiently subselect streamlines, we need to know the reso-
lutions of the discretized energies, i.e. the number of probe
points needed to differentiate streamlines in the set S. This
number depends on the desired error ε and the desired av-
erage spacing γ. Each streamline should activate the probe
points lying in a band of width γ around the streamline. Two
streamlines that are more than ε · γ apart should activate a
different set of probe points. This implies that the number
of probe points needed can be computed by,

np =
nx

ε · γ ·
ny

ε · γ =
1

ε2

(
nx

γ
· ny

γ

)
. (7)

Here we note that the number of probe points grows quadrat-
ically in two dimensions, meaning doubling both dimensions
of the design space will increase the number of probe points
needed by a factor of four. Respectively, the number of probe
points grows cubically in three dimensions. Note, however,
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Fig. 8: Example of the energies created from a streamline traced in
the same field but differently labeled. On the left, we see a stream-
line traced in a combed (above) and uncombed (below) version of
a 4-direction field. On the right, we see the corresponding ener-
gies for label ”red” and label ”blue”, which are local labels. Note
how the streamline activates only one of the two energies for each
element, as indicated by the gray coloring.

that the subselection is only a fraction of the time spent on
the whole approach as can be extracted from Table 1.

We have now discretized the energy ES in the minimization
problem in Equation 4 and are now ready to solve it.

4.6 Subselection using a Relaxed Approach to
Binary Programming

Solving the minimization problem in Equation 4 can be done
by using integer linear programming. However, the underly-
ing problem is likely NP-hard due to the binary constraints.
This makes a direct solve of the problem formulated in Equa-
tion 4 infeasible. To solve the least absolute deviations prob-
lem, we relax the optimization variables wi to be in the inter-
val [0, 1] instead of {0, 1}. This leads to the following convex
linear program, which can be solved in polynomial time:

minimize
w∈[0,1]nS

∫

Ω

∣∣∣∣∣

nS∑

i=1

w(i)ES(x)− (1, 1)

∣∣∣∣∣ dΩ . (8)

We solve the relaxed problem in Equation 8 with an inte-
rior point method and then fix weights that have been set

to either 0 or 1. Subsequently, we solve a binary program
with the remaining weights (typically ¡ 5% of the original
weights) using a branch and cut algorithm. A branch and
cut algorithm splits the original problem into sub-problems
and uses cutting planes to cut away parts of the possible so-
lution space until an optimal integer solution is found for a
sub-problem. If that solution is better than a relaxed solu-
tion of a second sub-problem, the second sub-problem does
not need to be solved. This is done iteratively until the algo-
rithm converges. For details, we refer to Padberg and Rinaldi
[1991]. We use the implementation provided in CVX [Grant
and Boyd, 2014].

Note that the high number of binary weights chosen in the
relaxed problem is due to the energy having binary values.
If we were to base the energy on a signed distance func-
tion instead, we would almost exclusively receive non-binary
weights as a result from the relaxed problem in Equation 8
since the optimizer would try to trade off contributions of
different streamlines.

The observation in subsection 4.4 that the computational
burden of the problem in Equation 4 grows linear in the
amount of stream surfaces has an important practical use.
Forking stream surfaces, which can occur due to heavy noise
in the topology optimized fields and are described in subsec-
tion 4.2, will cover more space than non-splitting surfaces.
They are therefore chosen less by the optimizer when the
number of surfaces in S increases.

We have now found a well-spaced set of laminar surfaces
Sopt and can now continue with the generation of output
structures.

5 Output Generation

The stream surface tracing and selection procedure described
above produces a set of stream surfaces, Sopt, each repre-
sented as a point cloud. In itself, this representation is use-
ful for visualization. However, our end goal is to provide
methods for synthesizing output structures. Here we present
a method that produces a volumetric solid from the stream
surfaces by compositing a small implicit primitive into a voxel
grid for each point in the point cloud representing the stream
surfaces. As an additional output modality, we also describe
a mesh generator that converts stream surfaces to hexahe-
dral meshes. While imposing restrictions on the proximity
of the stream surfaces, the mesh generator can mesh certain
non-integrable frame fields.

5.1 Post-Processing the Surfaces

When constructing the initial set of surfaces, we do not need
a particularly high density of points in each surface. We
only need enough to be able to compute the activation of
probe points. However, a high density of points will provide
a smoother and more precise volumetric solid and will make
it easier to tell surfaces apart when computing a hex mesh.
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(a) The sum of the energies ES of all stream-
lines provided to the optimizer.

(b) The sum of the energies ES of the
streamlines selected by the optimizer.

(c) The curves selected by the optimizer.

Fig. 9: Optimization results using the energies defined in Equation 1.

(a) The sum of the energies ES1
and ES2

of
all streamlines provided to the optimizer.

(b) The sum of the energies ES1
and ES2

of
the streamlines selected by the optimizer.

(c) The curves selected by the optimizer.

Fig. 10: Optimization results using the energies defined in Equation 2.

It is crucial that our post-processing still adheres to the
field and follows the initial surface. Therefore, our up-
sampling is a continuation of the generation procedure. We
initialize a new grid for our Poisson Disk Sampling proce-
dure with a much smaller allowed point distance. We then
add all of the original points of a selected stream surface to
the grid. Subsequently, we add all original points to a queue
and restart the point generation. This way, we fill in addi-
tional points between the original points since we have chosen
a smaller distance for the Poisson Disk Sampling. Any new
position is generated as the average of estimates from neigh-
boring points, hence the super-sampled surface will still be
following the field closely.

5.2 Volumetric Solids

A volume representation is convenient for shapes of complex
topology, and we can efficiently synthesize a volumetric rep-
resentation from a stream surface collection.

We compute the volume representation of each stream sur-
face as a sum of basis functions. This is very similar to meth-
ods used for volumetric reconstruction of surfaces from point
clouds, e.g. [Fuhrmann and Goesele, 2014], except that we
design the basis functions to attain their maximum value at
the origin. In contrast, in point cloud reconstruction, the
basis function’s zero level contour typically passes through
the origin. The specific basis function that we employ is,

φi(x) = ss(−τi, 0,−|ni · (x− pi)|) , (9)

where pi is the position of point i which is orientated accord-
ing to the normal, ni, and has thickness τi. Finally, ss is the

smoothstep function,

ss(a, b, x) = 3t2 − 2t3,

where, t = min

(
1,max

(
0,
x− a
b− a

))
.

(10)

For each stream surface, s, we compute the volumetric rep-
resentation as a sum for each voxel,

Vs[x] =

∑
i wi(x)φi(x)∑

i wi(x)
, (11)

where Vs is the voxel grid, x ranges over the positions of all
voxels, s indexes the stream surface, and the weight, wi, is
given by

wi(x) = ss(−r, 0,−‖x− pi − n(ni · (x− pi))‖) . (12)

The product of wi and φi is non-zero only in a cylindri-
cal region of radius r centered in point i. We only need to
consider this region when adding the contribution to Equa-
tion 11. The weights are summed to a separate grid, and
then normalization is performed in a second step.

Having computed a volumetric representation of each
stream surface, the volumetric solid corresponding to stream
surface collection is simply the union of the solids for each of
the stream surfaces. The union is computed as the maximum
over all stream surfaces,

V [x] = max
s

(Vs[x]) . (13)

Finally, we compute a triangle mesh of the boundary of
the volumetric solid using dual contouring with the iso-value
0.5 [Ju et al., 2002].
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(a) The sum of the energies ES1
and ES2

when using an L1 norm
for selecting streamlines.

(b) The sum of the energies ES1
and ES2

when using an L2 norm
for selecting streamlines.

(c) The curves selected by the optimizer when using an L1 norm. (d) The curves selected by the optimizer when using an L2 norm.

Fig. 11: Streamline selection results obtained when providing an L1 norm or an L2 norm to the optimizer. Note the missing streamlines
that occur for the L2 norm results due to multiply covered regions being penalized too harsh.

5.3 Hexahedral Meshes

For certain frame fields, we are also able to produce hexahe-
dral meshes. For reasons explained in subsubsection 5.3.1, we
require a minimum separation between stream surfaces of 4r
where r is the minimum distance between samples on a single
stream surface. In practice, this requirement is not possible
to fulfill for our topology optimization examples, but with
this approach, we can, in fact, handle certain non-integrable
fields.

The hex meshing approach is based on the following obser-
vation. Given a collection of surfaces in 3D, we can form a
curve network by finding all the intersecting curves between
pairs of surfaces. It has been observed by Murdoch et al.
[1997] that such a system of interlocking surfaces, called the
spatial twist continuum (STC), is the dual of a hexahedral
mesh. It is relatively easy to see that this is true if we as-
sume that surfaces only intersect along a curve and that no
more than three surfaces meet at a single point. Since in
that case, all the vertices formed as triple intersections must
have valence six and thus correspond to a hexahedral cell in
the dual. A very simple example with two hexahedra formed
by dualizing an STC consisting of four surfaces is shown in
Figure 13.

5.3.1 Constructing the STC Graph

Since our stream surfaces are represented as point clouds, we
cannot directly compute the intersections. Instead, we for-
mulate the problem as a graph problem. We form a graph,
G = 〈P,E〉, whose vertices, P , are the union of the points
in all stream surfaces, i.e. P =

⋃
j Sj ∈ Sopt. Two vertices

are connected by an edge in E if their distance is smaller
than 2r, where r is the distance used in the stream surface
super-sampling. Assuming that the stream surfaces corre-
sponding to the same lamination direction are always further
away than 4r, no vertex should have neighbors belonging to
more than three stream surfaces. In fact, the vertices of P
belong to three classes: surface vertices all of whose neigh-
bors belong to a single stream surface, intersection vertices
whose neighbors belong to two stream surface, and triple in-
tersection vertices whose neighbors belong to three stream
surfaces.

Forming connected components of vertices which satisfy
the equivalence relation, we can now create a model of the
STC as a new graph GSTC = 〈PSTC, ESTC〉 from G based
on the vertex classification. Initially, we discard all surface
vertices and form the vertex set, PSTC, by creating a vertex
for each connected component of triple intersection vertices
of P . The vertex connectivity is found using a simple run of
Dijkstra’s algorithm on G. We initialize all triple intersection
vertices with distance 0 and compute the graph distance to
all intersection vertices. Each such vertex is also assigned
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(a) Sum of energies ES1
for a combed field. (b) Sum of energies ES1

for an uncombed field.

(c) Sum of energies ES2
for a combed field. (d) Sum of energies ES2

for an uncombed field.

Fig. 12: Sum of split energies from Equation 2 for the streamlines depicted in Figure 7a. The sums of the energies are shown once when a
combed version of the underlying field is used and once when an uncombed version is used. Note how in a combed field the streamlines are
separated into the energy that follows the same field label as the streamlines. In an uncombed field, the contributions of the streamlines
split to both energies. However, it is clear that the contributions of a streamline to the two energies form a disjoint union. Regions with
value two (highlighted in orange in Figure 7) do no longer exist.

Fig. 13: The two hexahedra (dark wireframe) are dual to the struc-
ture formed by intersecting the four surfaces.

the index of its predecessor, allowing us to recursively trace
back to the originating cluster. Once all intersection vertices
have been visited, we visit all edges in G. If the two incident
vertices were reached from different clusters, then the vertices
in PSTC that correspond to these clusters are connected by
an edge in ESTC.

5.3.2 Hexahedralization

From GSTC we compute a hexhedral mesh by computing the
dual. A hexahedron is created for each vertex in PSTC. The
hexahedron is scaled to the average length of edges incident
on the vertex and rotated to align with the same edges. Fi-
nally, we assign the best-aligned quadrilateral face with each
outgoing edge of the vertex.

To construct the connectivity of the hexahedral mesh, we
now visit all edges in ESTC and cluster the vertices of the
associated quads. Since every vertex is associated with up

to eight hexahedra, these clusters may be of size up to eight.
We compute each cluster’s barycenter and assign this as the
position of the vertex in the final hex mesh.

This method can only produce hexahedra. Hence, the
frame field singularities do not result in irregular cells but
gaps in the mesh or irregular vertices. The former is shown
in Figure 18 where a field that spirals around a central axis
has been hexahedralized. Since stream surface tracing stops
at the central singularity, it leaves a gap in the mesh. The
latter effect is shown in Figure 17 where the hexahedra can
be observed to have slightly worse quality near the network
of singular curves inside the sphere.

6 Implementation and Results

Our implementations are in C++ and Matlab. Codes related
to the creation and manipulation of surfaces are primarily
written in C++. Codes for selecting surfaces are running in
Matlab by use of the CVX package [Grant and Boyd, 2014,
2008] and the Mosek solvers [MOSEK ApS, 2021].

The generation of stream surfaces and the synthesis of
volumetric solids are parallel processes and have been par-
allelized using MPI and native threading facilities of C++,
respectively. The stream surface tracing and the subselection
were executed on a node equipped with two Intel Xeon E5-
2650 v4 processors. The volumetric solid and hex meshing
was executed on a single Intel Core i7. An overview of the
statistics, including computation time, is shown in Table 1.

6.1 Missing Structural Members and Field
Alignment – a Comparison

As discussed in section 2 our method aims to circumvent
the problem of missing structural members due to enforce-
ment of alignment to the input field when using an integra-
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Table 1: Here we show the statistics for the different steps in our pipeline. The first three blocks of rows show relevant statistics for the
initial point sampling of stream surfaces, the selection of optimal stream surfaces, and the super-sampling of the selected stream surfaces.
The fourth block reports statistics for generating the volumetric solids and the fifth block shows the time to run the hexahedralization
algorithm. We then report in the sixth block the overall runtime of our approach. We include the times for the homogenization-based
topology optimization and report them in the last block for completeness. Note how our algorithm is only a fraction of the topology
optimization runtime.

Cantilever

(3 layers)

Cantilever

(1 layer)

Electrical Mast Torsion Sphere Sphere Helix Cylinder

|S| (Number of stream surfaces) 480 478 450 374 480 170 400

Generating S (runtime) 20 min 28 min 17 min 1h 51 min 49 min 1 h 4 min 1 h 1 min

Average points per surface 961 1 351 667 5 043 2 019 5 082 1 906

Subselection (runtime) 45 sec 53 sec 2 min 5 sec 2 min 31 sec 39 sec 50 sec 37 sec

|Sopt| 38 22 35 4 27 24 41

Super-sampling (runtime) 2 h 30 min 3 h 18 min 1 h 19 min 1 h 30 min 1 h 52 min 2 h 9 min 6 h 20 min

Average points per
super-sampled surface

9448 9 735 3 483 58 148 25 073 26 320 15 535

Output volume dimension 700× 350× 350 700× 350× 350 266× 266× 800 500× 500× 500

Solid generation (runtime) 13 min 42 sec 11 min 3 sec 5 min 48 sec 8 min 30 sec

Hexahedralization (runtime) 1 min 24 sec 23 sec 38 sec

Summed runtime 3 h 04 min 3 h 58 min 1 h 44 min 3 h 32 min 2 h 43 min 3 h 14 min 7 h 20 min

Topology optimization time 7 h 48 min 9 h 54 min 22 h 20 min 40 h 21 min

tive method to create a parametrization. As discussed in
Groen and Sigmund [2018]; Groen et al. [2020]; Stutz et al.
[2020], alignment of the final structure to the input field
needs to be enforced by a constraint when adapting inte-
grative approaches as Kälberer et al. [2007]; Bommes et al.
[2009]; Nieser et al. [2011]. This is done by enforcing the
parametrization to be orthogonal to the second (and third)
normal direction. However, if this alignment is too strict, the
gradient of the parametrization may become almost zero in
large regions. This, in turn, can then lead to overly thick
structural members or to missing structural members espe-
cially around singularities as discussed by Stutz et al. [2020].
Our approach creates well-aligned structures before select-
ing a subset, eradicating the problem since we cannot suffer
from vanishing gradients, as we do not integrate the fields.
We show an example in Figure 14. Note that the same be-
havior can be observed in three dimensions.

The structure shown in Figure 14a has been obtained de-
homogenizing a 320× 80 layer-normal field by an integrative
approach proposed by Stutz et al. [2020]. Note how there
are missing structural members above and underneath the
singularity. The structure has a compliance C = 26.46 and
a volume fraction of V = 0.275. For comparison we use the
compliance-volume value C ·V = 7.30. Stutz et al. [2020] re-
port compliance-volume values of 7.05, 7.48, 7.63, and 21.39
for different alignment weights at the same resolution. Here
7.05 is their best performing structure at an intermediate
alignment weight, and 21.39 is a failure case.

Figure 14b shows the structure created by our approach
using also a 320× 80 layer-normal field as was used by Stutz
et al. [2020] in Figure 14a. Note that our approach yields a
structure with evenly spaced structural members. The struc-

ture has a compliance C = 27.67 and a volume fraction of
V = 0.269. The compliance-volume value for this structure
is C ·V = 7.44. Note that this value is only 5.5% worse than
Stutz et al. [2020] best value. Moreover, with our approach
we do not risk a failure case due to bad alignment or zero
gradients in a parametrization.

6.2 Volumetric Structures from Topology
Optimized Fields

We ran various input fields from topology optimization
through our pipeline. The fields were generated by the
method proposed by Groen et al. [2020]. For problem formu-
lations of the homogenization-based topology optimization
and a description of the load cases, we refer to Geoffroy-
Donders et al. [2020]; Groen et al. [2020]. The timings of
the field generation and the de-homogenization are reported
in Table 1, where we see that the topology optimization
dominates over our de-homogenization approach. In Fig-
ure 15a we see a quarter of an electrical mast as proposed
in [Geoffroy-Donders et al., 2020]. The fields generated for
the electrical mast example contain spurious singularities in
fully solid regions and the void due to the microstructure be-
ing isotropic (solid) or non-existent (void). Nevertheless, we
produce very smooth surfaces, since our streamsurfaces do
not need to expand into solid or void regions. Groen et al.
[2020] make use of the fact that singularities only arise in
fully solid or void regions by combing the fields in intermedi-
ate regions first, such that the spurious singularities cannot
create seams in the combed field that extend into the inter-
mediate regions. However, their approach yields no control or
guarantee over how much singularities influence their designs
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(a) De-homogenization using an integrative approach proposed in
Stutz et al. [2020] yielding missing structural members around the
singularity, where the gradients have become almost zero. A reso-
lution of 320×80 is used as an input mesh. The shown Figure has a
compliance-volume value of C ·V = 7.30. Stutz et al. [2020] report
Compliance-Volume values of 7.05, 7.48, 7.63 and 21.39 for different
alignment weights, where 7.05 is their best performing structure at
an intermediate alignment weight and 21.39 is a failure case.

(b) Our approach yields a structure with evenly spaced structural
members for the same 320 × 80 input field as used above. The
compliance-volume value for this structure is C · V = 7.44 and is
therefore a mere 5.5% worse than Stutz et al. [2020] best value.
However, with our approach we do not risk a failure case.

Fig. 14: Comparison between an integrative approach based on
Stutz et al. [2020] yielding missing structural members and our
approach which creates evenly spaced structural members.

since they still rely on the orientations in solid and void for
integration, although they use relaxation for such elements.

On the right, in Figure 15 we show our version of the tor-
sion sphere example proposed in Groen et al. [2020] that
was based on Michell’s famous torsion sphere [Michell, 1904].
Note that since we use optimal rank-3 microstructures, we do
not get a truss structure, but a stiffer layer structure [Sig-
mund et al., 2016]. The torsion sphere has a singularity that
connects the two boundary conditions, similar to a towel be-
ing wrung out. This singular curve passes through the solid
region at one boundary condition, then through the void and
the solid region at the opposite boundary condition. Note
that this is again not a problem for our algorithm since we
neither need to expand into void nor solid regions. Groen
and Sigmund [2018] include the singular curve in their inte-
gration of the field without any special measurement, since
they are relaxing the parametrization in the void and fully
solid regions. Our method produces three high-quality shells
that align well with the input field.

Figure 16 shows the three dimensional version of Michell’s
cantilever. For loading cases and problem formulation we
refer to Geoffroy-Donders et al. [2020]; Groen et al. [2020].
We compute de-homogenization results for two versions. In
Figure 16a, we depict a solution for the cantilever where we
enforce that either all three layers have a layer thickness of
more than 5% or that all layer thicknesses are zero. Such
a design is great for resistance against buckling. Note that
due to all three layers being enforced to have non-zero layer
widths outside of the void, the microstructure orientation

becomes unique in this example. Spurious singularities only
arise in solid and void regions; therefore, we have no problems
with forking stream surfaces in this example neither. A cut
section through the structure is given in Figure 16e.

In Figure 16b, we show the second version of the cantilever
that we consider. These input fields have been created with-
out any enforcement on the layer-thicknesses and correspond
to the cantilever Groen et al. [2020] propose. We compare
our results with theirs, first on a visual level in Figures 16b,
c, d, f, g and h and then in terms of compliance and volume
in Table 2.

In Figures 16b and f we see the full de-homogenized struc-
tures. The two structures are very alike. Note that Groen
et al. [2020] use some additional fine-scale evaluation to re-
move unused excess material, i.e. low strain energy elements.
This puts their structure at a slight advantage over ours,
since we do not incorporate such a step for our structure in
Figures 16b-d. Figures 16c and g show a detail and Figures
16d and h show horizontal cuts through the structures.

Since our input fields differ from Groen et al. [2020] we
cannot compare the values in Table 2 with too much em-
phasis. Note also that Groen et al. [2020] evaluated their
design using a fine scale 960 × 480 × 480 = 221 184 000 fi-
nite elements model, where as we only evaluate our model on
512×256×256 = 33 554 432 elements. We therefore also only
compare our result to the best performing values that Groen
et al. [2020] report for a 96 × 48 × 48 frame field as we use.
The most meaningful value is certainly Cs·Vs

Ch·Vh
which sets the

compliance-volume value of the de-homogenized structure to
the compliance-volume fraction reported by the topology op-
timization. We see that we are a mere 5.5% off the Groen
et al. [2020] best performing structure, even though we do no
parameter study to find the best performing structure for the
de-homogenization parameters since this would be outside of
the scope of this paper.

Table 2: Comparison of our results for the cantilever example with
results obtained by Groen et al. [2020]. We use the following ab-
breviations: Vs = volume of the de-homogenized structure, Cs

= compliance of de-homogenized structure, Vh = volume of the
homogenization-based topology optimization solution, Ch = com-
pliance of the homogenization-based topology optimization solu-
tion Note that Groen et al. [2020] evaluated their design on a
960 × 480 × 480 finite elements model, where as we only evaluate
our model on 512 × 256 × 256 elements.

Cantilever Groen et al. [2020] Our approach

Ch 226.68 228.45

Vh 0.1000 0.1000

Cs 243.31 223.72

Vs 0.1021 0.1181

Cs · Vs 24.845 26.428
Cs·Vs
Ch·Vh

1.0960 1.1568
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(a) (b)

Fig. 15: This figure show two topology optimization examples created with our method from subsection 5.2. In (a) we see the electrical
mast example introduced in Geoffroy-Donders et al. [2020]. We show here three angles (side, front and back), where in the rightmost
image showing the mast from the back, the top has been cut away to reveal the interior of the structure. In (b) we show the Michell
torsion sphere example introduced in Groen et al. [2020], where the boundary conditions with torsion applied are located in the top and
the botton. Note that we cut out an eigth to reveal the interior laminations of the torsion sphere.

6.3 Hexahedral Meshes from Boundary
Aligned and Closed-Form Fields

Our main goal was to synthesis volumetric structures from
frame fields, but it is also possible to generate hex meshes
from a collection of stream surfaces. However, it should be
noted that while the volumetric synthesis method does not
impose demanding requirements on the stream surfaces, hex
mesh generation requires a minimum distance between the
stream surfaces. Moreover, our topology optimization ex-
amples (in particular, the torsion sphere and the cantilever
with one active layer) are clearly ill-suited to hex meshing.
For this reason, our hex meshing examples are very different
from the examples above.

Figure 17 illustrates the hex meshing of a sphere (3328
hexahedra) based on a boundary aligned frame field created
using the method of Palmer et al. [2019]. We compared this
mesh to one created by Corman and Crane [2019] with assis-
tance from David Bommes containing 4032 hexahedra. The
meshes are structurally similar, and the min/average scaled
Jacobian [Bracci et al., 2019] for our mesh are 0.425/0.956 vs
Corman et al.: 0.474/0.964. Note that since the boundary
aligned frame field inside the sphere has been optimized for
smoothness, it only contains singularities of index 1/4. In this
specific example our stream surface tracing can be used with-
out cutting out the singular curves, since the field is smooth
enough.

Figure 18 shows hex meshes of a spiral and a cylinder gen-
erated based on frame fields from closed-form expressions. In
both cases we have an index 1 singularity in the center, and
the spiraling frame field is non-integrable making it challeng-
ing for many other strategies. The min/average scaled Jaco-

bian are 0.474/0.964 (spiraling frame field) and 0.870/0.977
(cylinder).

7 Discussion and Future Work

In this paper, we have introduced a novel method for creating
multi-laminar structures that align to frame fields. The main
challenge lies in the fact that even though we can easily make
a local structure that aligns with the frame field, we cannot
easily assemble these into a global structure. One way to ap-
proach this is through the introduction of a parametrization
of the domain. Indeed, the previous methods of which we
are aware require a parametrization of the domain. This is
however only straightforward to compute in the absence of
singularities in the frame field.

While singularities do need to be taken into account with
our method, their presence does not fundamentally change
the algorithms we use to create and select stream surfaces.
In that sense, our approach is (almost) oblivious to singulari-
ties. In contrast, a parametrization based approach needs to
explicitly deal with singularities by introducing seams and
clearly cannot align perfectly to a non-integrable field. For
the application of de-homogenization this translates into the
pitfall that the parametrization modifies the resulting me-
chanical structures negatively. Moreover, a practical chal-
lenge when computing a parametrization is that the frame
field must be combed – i.e. there must be a consistent label-
ing of the frame vectors.

Stream surface tracing and selection sidestep both of these
issues, and we have demonstrated that our approach can
provide robust output for various types of fields and cre-
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(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Fig. 16: On the left, (a,e) show a cantilever produced from a homogenization solution where all three layers have been forced to be active.
The images on the right show a comparison of our results for the cantilever (b,c,d) with the results produced using the method of Groen
et al. [2020] (f,g,h).

Fig. 17: Comparison of a hex mesh of a sphere produced by our
method based on an octahedral frame field generated using the
method of Palmer et al. [2019] and a similar hexmesh produced
from a field created with the method of Corman and Crane [2019]
and hex meshed using CubeCover in an implementation by David
Bommes (right). For both visualization we use Bracci et al. [2019].
The hexahedra are colored according to the scaled Jacobian.

ate highly anisotropic structures and hex meshes outside of
the singular region. We do not require any prescribed edge-
lengths; the implicit description of anisotropy by the input
fields suffices.

Admittedly, there are also several limitations to our ap-
proach. Stream surface tracing in highly rotating fields is
difficult. We need to stop tracing stream surfaces that cross
the singular regions at an angle not perpendicular to the sin-
gular curve. However, for topology optimized fields this is
no major concern as discussed in Section 3.1. We are further
able to keep the hole size minimal, such that these regions
can mostly be filled with hexahedra for a boundary opti-

mized field if a hexahedral mesh is output. However, our hex
meshing scheme is admittedly simplistic. The limit on the
proximity of stream surfaces means that we can only reliably
generate hexahedral meshes for relatively simple frame fields,
whereas there is no restriction on the frame fields for which
we can synthesize volumetric solids. As a further limitation,
we have realized that an excess amount of stream surfaces
can overload the optimizer. This situation occurs if one field
is activated by a large amount of stream surfaces, which are
all equally good, such as in the case of the helicoid example
(Figure 18). Here, it is possible to end up with hundreds of
helicoidal surfaces each of which activates almost all probe
points. Consequently, an important next step is to avoid
oversampling by monitoring which regions (i.e. probe points)
are already well-covered.

Finally, we have focused on applying the method to fields
arising from compliance minimization in this paper, but
topology optimization is replete with problems where the
proposed method might be applicable, hinting at future ap-
plication areas.
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Fig. 18: In the top row, we see a hex mesh generated using our
method on a field describing a helicoid. Note that the underly-
ing field is non-integrable. On the left, we see the entire mesh,
whereas on the right, we have removed several layers of hexa-
hedra. In the bottom row, we see a hex mesh generated on a
cylindrical field. Note how the shape of the hexahedra changes
dramatically from the outside towards the cut out singular curve.
On the right, we peel away several layers of hexahedra, which re-
veals that the minimal edge-length is significantly smaller than
the maximal edge-length. Note that we desire this from a field
describing an anisotropic mesh.
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