

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 07, 2024

Time-predictable End-system Design for Real-Time Communication

Kyriakakis, Eleftherios

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kyriakakis, E. (2021). Time-predictable End-system Design for Real-Time Communication. Technical University
of Denmark.

https://orbit.dtu.dk/en/publications/a720af3f-d5c2-4f97-9d37-b627bc45fea6

Time-predictable End-system
Design for Real-Time

Communication

Eleftherios Kyriakakis

Kongens Lyngby 2021
PhD

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, Building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3351
compute@compute.dtu.dk
www.compute.dtu.dk
PhD-2021
ISSN: 0000-0000

Abstract (English)

Over the years, computing systems have not only increased their processing
power but have also increased the total number of interconnected nodes. Nowa-
days, most computing systems found in industrial, automotive and aerospace ap-
plication domains are distributed cyber-physical systems comprised of a plethora
of networked platforms. Thus it is becoming a challenge to guarantee both time-
predictable task execution and bounded end-to-end communication latency. To
this end, different techniques are employed on the network and the processor.
On the network, different protocols have been developed to achieve determin-
istic and temporally isolated communication. While on the processor, time-
predictable execution can be guaranteed by employing different scheduling poli-
cies combined with static worst-case execution time analysis.

This thesis explores the software and hardware solutions that extend an embed-
ded system with mechanisms to provide precise and fault-tolerant clock synchro-
nization, minimal end-to-end communication latency and synchronous task exe-
cution. These solutions potentially increase the system’s time-predictability and
create an overall reliable time-triggered computing platform for safety-critical
system research.

Firstly, time-synchronization is established by exploring the IEEE 1588 Precise
Time Protocol and developing a hardware unit. The design is experimentally
verified and achieves nanosecond clock synchronization. The safety and secu-
rity properties of the IEEE 1588 protocol are analyzed, and a fault-tolerant
prototype design is proposed. The design enables reliable synchronization in
time-sensitive networking communication systems. The design is evaluated in
simulation using synthetic benchmarks that demonstrate the design’s capability
to tolerate multiple network failures and denial-of-service attacks.

ii

Next, the time-triggered communication protocol TTEthernet is explored, and
a time-analyzable network stack is presented. The design allows an embedded
platform to communicate and synchronize its time over TTEthernet networks.
Based on the developed network stack, synchronization of real-time tasks with
an underlying time-triggered communication layer is explored. An open-source
framework is presented for scheduling and executing synchronous distributed
tasks. The framework is evaluated experimentally using a multi-rate synthetic
application. The evaluation demonstrates minimal end-to-end communication
latency as well as distributed task synchronization with minimal jitter. Finally,
the evaluation is extended with an avionic benchmark application. The bench-
mark presents a longitudinal flight controller case study that is successfully
distributed and scheduled using the proposed time-triggered framework. The
benchmark is implemented in an experimental TTEthernet network with three
nodes and successfully executes a flight scenario.

Resumé (Dansk)

Med tiden er computersystemer ikke kun blevet kraftigere, men også det sam-
lede antal forbundne systemer er vokset. I dag er de fleste computersystemer
indenfor industrien, autobranchen og rumfarten, distribuerede cyberfysiske sys-
temer, bestående af en overflod af netværksenheder. Det er derfor en udfor-
dring at afgrænse kommunikationsforsinkelsen, samt garantere tidsforudsigelig
udførelse af opgaver. Til dette formål anvendes forskellige teknikker til netværk
og processorer. Til netværk er der udviklet forskellige protokoller for at opnå de-
terministisk og tidsmæssigt isoleret kommunikation, mens på processorerne kan
tidsforudsigelig udførelse garanteres ved at anvende forskellige planlægningspoli-
tikker kombineret med statisk analyse til at finde den længste udførelsestid.

Denne afhandling udforsker software- og hardwareløsninger der udvider et inte-
greret system med mekanismer til at give præcis og fejletolerant klokkesynkro-
nisering, minimal kommunikationsforsinkelse og synkron opgaveudførelse. Disse
løsninger øger potentielt systemets tidsforudsigelighed og skaber en tidspålidelig
computerplatform til forskning af tidskritiske systemer.

Først udforskes klokkesynkronisering ved undersøgelse af IEEE 1588 Precise
Time Protocol og udvikling af en hardwareenhed. Enhedens design er eksperi-
mentelt verificeret og opnår synkronisering med en fejlmargin indenfor nanosekun-
der. Sikkerhedsegenskaberne i IEEE 1588-protokollen analyseres også, og der
foreslås en fejltolerant udvidelse. Udvidelsen muliggør pålidelig synkronisering
i tidsfølsomme netværk. Designet evalueres i simulering og demonstrer tolerans
for flere netværksfejl og denial-of-service angreb.

Dernæst udforskes den tidsafhængige kommunikationsprotokol TTEthernet, og
en tidsanalyserbar netværkstak præsenteres. Designet gør det muligt for en

iv

integreret platform at kommunikere og synkronisere sin tid over TTEthernet-
netværk. Baseret på den udviklede netværksstak udforskes synkronisering af
realtidsopgaver med et underliggende tidsafhængigt kommunikationslag. Et
open-source bibliotek præsenteres til planlægning og udførelse af synkrone, dis-
tribuerede opgaver. Biblioteket evalueres eksperimentelt ved hjælp af en syn-
tetisk applikation med variabel kommunikation. Evalueringen demonstrerer
minimal kommunikationsforsinkelse samt distribueret opgavesynkronisering med
minimal tidsvarians. Endelig udvides evalueringen med en flysimulator test.
Testen består af en flykontroller der distribueres og synkroniseres med hjælp af
det præsenterede bibliotek. Testen implementeres i et eksperimentelt TTEthernet-
netværk med tre enheder og udfører succesfuldt et flyvescenarie.

Preface

The work presented in this thesis was conducted at DTU Compute in fulfillment
of the requirements of the PhD program. This project has received funding from
the European Union’s Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie grant agreement No. 764785.

The work was supervised by Associate Professor Martin Schoeberl and Profes-
sor Jens Sparsø. The thesis explores time-predictable communication and task
execution in distributed real-time systems.

The thesis is based on five published papers and is organized in seven chapters.
Starting with an introductive background chapter, followed by one chapter per
paper and finally closing with a conclusion chapter.

Kongens Lyngby, 01-May-2021

Eleftherios Kyriakakis

vi

Acknowledgements

Firstly, I would like to thank my supervisors Martin Schoeberl and Jens Sparsø
for their advice throughout my PhD years and all the interesting discussions
during our Friday meetings. Thank you for this opportunity.

Secondly, I would like to thank all my colleagues at the Embedded Systems En-
gineering section at the Technical University of Denmark. Particularly my PhD
colleagues Luca Pezzarossa, Tòrur Biskopstø, Koen Tange and Mohammadreza
Barzegaran for their support and fruitful discussions during the late afternoons
that helped lighten the frustration of the various coding bugs. Moreover, I wish
good luck to all the FORA PhD students with their future research and upcom-
ing defence. I am also very thankful for all the friends I have made over the last
few years.

Special thanks go to my close friends and flatmates Pavlina Senikoglou and
Christos Gkiokas for their perfectly cooked meals and for their patience in lis-
tening to my complaints during times of discouragement.

Finally, I would like to thank my girlfriend Myrto Asimakopoulou and my par-
ents, Aikaterini Gkioka and Giorgos Kyriakakis, for their love, encouragement
and sharing this journey with me despite the difficulties of the distance and the
encumbrance of COVID-19 travel restrictions.

viii

ix

To the fresh and ambitious PhD students I dedicate the following verse:

This is ten percent luck, Twenty percent skill
Fifteen percent concentrated power of will
Five percent pleasure, Fifty percent pain

Mike Shinoda - Fort Minor

x

Contents

Abstract (English) i

Resumé (Dansk) iii

Preface v

Acknowledgements vii

List of Acronyms xv

List of Publications xvii

1 Introduction 1
1.1 Hard Real-time Systems . 3
1.2 Time-predictable Hardware . 4
1.3 Task Execution . 5
1.4 Real-time Communication . 8
1.5 Time Synchronization . 11
1.6 Motivation . 15
1.7 Thesis Outline . 16

2 Hardware Assisted Clock Synchronization with PTP 19
2.1 Introduction . 20
2.2 Background . 21

2.2.1 IEEE 1588-2008 PTP . 22
2.2.2 Experimental Platform . 25

2.3 Related Work . 26
2.4 Design And Implementation . 27

2.4.1 Hardware Architecture . 27

xii CONTENTS

2.4.2 RX/TX Timestamp Unit 28
2.4.3 Clock Adjustment . 29
2.4.4 PTP Software Stack . 31

2.5 Evaluation . 34
2.5.1 Experimental Setup . 34
2.5.2 Hardware Resources . 34
2.5.3 WCET Analysis . 35
2.5.4 Clock Synchronization . 36
2.5.5 Source Access . 39

2.6 Conclusion . 39

3 Fault-tolerant Clock Synchronization using Precise Time Pro-
tocol Multi-Domain Aggregation 41
3.1 Introduction . 42
3.2 Background . 44

3.2.1 Fault-Tolerant Clock Synchronization 44
3.2.2 IEEE 1588-2019 Precise Time Protocol 44

3.3 Related Work . 46
3.4 Multi-domain Node and Algorithm Design 47

3.4.1 Node Architecture . 47
3.4.2 Network Topology . 49
3.4.3 Convergence Algorithms 49

3.4.3.1 Observation Window Filtering 50
3.4.3.2 Averaging Algorithm (AVG) 51
3.4.3.3 Fault Tolerant averaging Algorithm (FTA) . . . 51

3.5 Evaluation . 52
3.5.1 Simulation parameters . 53
3.5.2 Test-case 1: Single PTP master on four redundant domains 53
3.5.3 Test-case 2: Four PTP masters on four redundant domains 55

3.5.3.1 Link/node failure scenario 56
3.5.3.2 Malicious PTP master scenario 56

3.6 Discussion . 59
3.7 Future Work . 61
3.8 Conclusion . 62

4 A Time-predictable Open-Source TTEthernet End-System 63
4.1 Introduction . 64
4.2 Related Work . 65
4.3 TTEthernet Background . 68

4.3.1 Overview . 68
4.3.2 Time-Triggered Traffic . 69
4.3.3 Clock Synchronization . 70

4.4 Design and Implementation of the TTEthernet Node 72
4.4.1 Hardware . 72

CONTENTS xiii

4.4.2 Software . 74
4.4.2.1 Initialization . 75
4.4.2.2 Receiving and Clock Synchronization 76
4.4.2.3 Sending . 76
4.4.2.4 Generating the send schedule 77

4.4.3 Theoretical Limits of the Implementation 78
4.4.3.1 Earliest outgoing TT frame 78
4.4.3.2 Maximum execution time after a TT frame . . . 79
4.4.3.3 Maximum execution time during the integration

cycle . 80
4.4.4 Source Access . 80

4.5 Evaluation . 80
4.5.1 System Setup . 80
4.5.2 Clock Synchronization . 82
4.5.3 Latency and Jitter . 83
4.5.4 Worst-Case Execution Time 84
4.5.5 Verifying Theoretical Limits of the Demo Program 86
4.5.6 Future Work . 87

4.6 Conclusion . 88

5 Synchronizing Real-Time Tasks in Time-Triggered Networks 89
5.1 Introduction . 90
5.2 Related Work . 92
5.3 System Model . 93

5.3.1 Network Model . 94
5.3.2 Task Model . 95

5.4 Design and Implementation . 96
5.4.1 Hardware Platform . 96
5.4.2 Offline Scheduling . 97
5.4.3 Transmission and Reception 98
5.4.4 Runtime System . 99
5.4.5 Clock and Task Synchronization 101

5.5 Example Application . 103
5.5.1 Task set . 103
5.5.2 Source Access . 104

5.6 Evaluation . 104
5.6.1 System Setup . 104
5.6.2 WCET Analysis and Schedule Generation 105
5.6.3 Communication and Clock Synchronization 107

5.7 Future Work . 108
5.8 Conclusion . 109

xiv CONTENTS

6 Evaluating a Time-Triggered Runtime System by Distributing
a Flight Controller 111
6.1 Introduction . 112
6.2 Use-Case: Rosace Longitudinal Flight Controller 113
6.3 Background . 115

6.3.1 Time-triggered Communication 115
6.3.2 Offline Scheduler . 115
6.3.3 Runtime System . 116
6.3.4 Hardware Platform . 116

6.4 System Design and Implementation 116
6.4.1 Task and Network Model 117
6.4.2 Communication . 117
6.4.3 Static Scheduling . 118
6.4.4 Source Access . 121

6.5 Evaluation . 122
6.5.1 System Setup . 122
6.5.2 Runtime System and Task Scheduling 122
6.5.3 Clock Synchronization . 124
6.5.4 Quality of Control . 125

6.6 Related Work . 127
6.7 Future Work . 128
6.8 Conclusion . 129

7 Conclusion 131
7.1 Summary of Contributions . 131
7.2 Composing a Time-Triggered End-System 133
7.3 Future Research Outlook . 134

Bibliography 137

List of Acronyms

CM compression master
COTS commercial off-the-shelf
CPS cyber-physical systems
ET event-triggered
IO input-output
IP Internet protocol
LCM least-common multiplier
MAC medium access control
NIC network interface controller
NoC network-on-chip
NTP network time protocol
OS operating system
PCF protocol control frame
PTP precise time protocol
RC rate-constrained
RTC real-time clock
SC synchronization client
SM synchronization master
SMT satisfiability modulo theories
SPM scratchpad memory
TDM time-division multiplexing
TSN time-sensitive networking
TT time-triggered
TTP time-triggered protocol
UDP user datagram protocol
WCEL worst-case end-to-end latency
WCET worst-case execution time

xvi

List of Publications

Journal Publications

[J1] Eleftherios Kyriakakis, Maja Lund, Luca Pezzarossa, Jens Sparsø, and
Martin Schoeberl. “A time-predictable open-source TTEthernet end-system”.
In: Journal of Systems Architecture (2020), p. 101744.

Conference and Workshop Publications

[C1] Eleftherios Kyriakakis, Jens Sparsø, and Martin Schoeberl. “Hardware
assisted clock synchronization with the IEEE 1588-2008 precision time
protocol”. In: Proceedings of the 26th International Conference on Real-
Time Networks and Systems. 2018, pp. 51–60.

[C2] Eleftherios Kyriakakis, Jens Sparsø, Peter Puschner, and Martin Schoe-
berl. “Synchronizing Real-Time Tasks in Time-Aware Networks”. In: Pro-
ceedings of the 24th IEEE International Symposium on Real-Time Com-
puting (ISORC). IEEE. 2021.

[C3] Eleftherios Kyriakakis, Koen Tange, Niklas Reusch, Eder Ollora Zaballa,
Xenofon Fafoutis, Martin Schoeberl, and Nicola Dragoni. “Fault-tolerant
Clock Synchronization using PreciseTime Protocol Multi-Domain Aggre-
gation”. In: Proceedings of the 24th IEEE International Symposium on
Real-Time Computing (ISORC). IEEE. 2021.

xviii

[C4] Eleftherios Kyriakakis, Jens Sparsø, and Martin Schoeberl. “Evaluating
a Time-Triggered Runtime System by Distributing a Flight Controller”.
In: Proceedsings of the 26th International Conference on Emerging Tech-
nologies and Factory Automation (ETFA). IEEE. (Submitted).

Other Works

[O1] Eleftherios Kyriakakis, Jens Sparsø, and Martin Schoeberl. “Implement-
ing time-triggered communication over a standard ethernet switch”. In:
Proceedings of the Workshop on Fog Computing and the IoT. 2019, pp. 21–
25.

[O2] Eleftherios Kyriakakis, Jens Sparsø, and Martin Schoeberl. “InterNoC:
Unified Deterministic Communication For Distributed NoC-based Many-
Core”. In: Proceedings of the 13th Junior Researcher Workshop on Real-
Time Computing. Nov. 2019. url: https ://www.jopdesign.com/doc/
internoc-jrwrtc.pdf.

[O3] Eleftherios Kyriakakis, Jens Sparsø, Peter Puschner, and Martin Schoe-
berl. “Synchronizing Real-Time Tasks in Time-Aware Networks: Work-in-
Progress”. In: Proceedsings of the International Conference on Embedded
Software (EMSOFT). IEEE. 2020, pp. 15–17.

Chapter 1

Introduction

Over the years, computing systems have evolved from information processing
devices to microcontrollers embedded in several control systems both in industry
and everyday appliances. A prominent example of this trend is the automotive
industry, with manufacturers like BMW and Audi motors having triplicated the
number of electronic control units in their vehicles since 1995. These systems are
called embedded systems and consist of purpose-specific hardware and software
components integrated into a mechanical or electrical system, e.g., cameras,
refrigerators, vehicle cruise control systems and industrial robotics.

Nowadays, embedded systems are distributed over networks and interface with
multiple input-output (

IO) devices such as sensors that collect the relevant in-
formation about the physical world needed to control various actuation systems.
A cyber-physical system a collection of distributed embedded and control sys-
tems that often find application in safety-critical domains such as aerospace and
automotive. This integration adds the functional requirement of timeliness, and
such embedded systems are defined as real-time systems. It is thus beneficial for
embedded system designers to develop the necessary mechanisms that enable
time-predictable application deployment. The scope of this thesis is to explore
the design of hardware and software components necessary to provide temporal
guarantees in the computation and communication of distributed cyber-physical
systems.

2 Introduction

Controlled Actuator (C3,C4)

Real-time End-System B

Sampled Sensor (C3,C4)

Communication
Network

Real-time End-System A

Runtime System (C3, C4)

Time-triggered
Communication (J1, C3)

Clock Synchronization (C1, C2)

Cyclic Scheduling (C3)

Figure 1.1: Research contributions, [C1], [C3], [J1], [C2], [C4] , mapped to
the components of an example cyber-physical network with two
real-time systems.

A typical cyber-physical network between two end-systems A & B is illustrated
in Figure 1.1, which represents a typical command/control application. End-
system A controls an actuator, e.g., a motor, based on the input received from
end-system B conntected to a sensing device, e.g., a temperature sensor.

The example presents the hardware/software layers that comprise a distributed
real-time end-system. The distributed system is based on a network through
which end-systems can exchange data. Chapter 4 investigates a time-triggered
network protocol and develops the necessary network stack. Time-triggered
communication of connected end-systems requires a mechanism to synchronize
their time relative to each other. Chapter 2 develops the necessary hardware
and software components to achieve precise clock synchronization and Chap-
ter 3 analyzes the reliability of the clock synchronization protocol and presents
a fault-tolerant design. Actuators and sensing devices are controlled by the
implementation of a runtime system that executes a task schedule. Chapter 5
proposes the synchronization of executed tasks with the underlying communi-
cation layer to minimize end-to-end communication latency and the proposed
framework is evaluated using an avionic benchmark in Chapter 6.

1.1 Hard Real-time Systems 3

This chapter aims to introduce the reader to the fundamental terminology of real-
time systems and provide an overview of the background literature necessary
to understand this work’s contributions. Mainly, it summarizes the concepts
of hard real-time systems, time-predictable hardware, task execution, real-time
communication and time synchronization.

1.1 Hard Real-time Systems

Cyber-physical systems in safety-critical application domains such as aerospace,
industry and automotive are composed of systems that require bounded tem-
poral behaviour to guarantee safe and correct functionality [3]. For example,
a correctly computed result for an imminent crash in an autonomous vehicle
that is delivered with an un-predicted delay to the airbag deployment system
can have catastrophic results. These systems are defined as real-time systems,
and their functional correctness depends both on their functional aspects and
on their temporal behaviour. Depending on the importance of the temporal
requirements, real-time systems can be categorized into three classes:

1. Soft real-time: define systems with lose timing requirements that can
tolerate late results, i.e., a streaming media application.

2. Firm real-time: are systems that depend on strict timing guarantees
but can tolerate later or missed results due to the nature of the controlled
process, i.e., motor controllers and some actuation devices.

3. Hard real-time: is the system class with the strictest timing require-
ments that cannot tolerate any missed deadlines as it will result in signifi-
cant financial loss, casualty, and even fatality, i.e., a vehicle airbag system,
aircraft landing gears etc.

As the system input varies depending on the operating conditions and controlled
process, it can lead to different computation and communication times; thus, the
system engineer has to employ system architectures and technologies to guar-
antee that the worst-case execution time (

WCET) of any computation tasks
and the worst-case end-to-end latency (

WCEL) of any data communication is
analyzed and bounded to avoid late or missing results. Thus a system is de-
fined as time-predictable when the worst-case timing properties can be derived
through analysis [44]. This thesis does not examine all real-time systems classes
but instead it focuses on distributed hard real-time systems. The following sec-
tions summarize the most relevant technologies and techniques used to achieve
time-predictable end-to-end operation.

4 Introduction

1.2 Time-predictable Hardware

The architecture of embedded systems can significantly affect the timeliness of
safety-critical applications. Different standard hardware units are known to be
built for optimizing the average case, but that leads to architectures that are
hardly

WCET-analyzable. It is essential to investigate hardware architectures
that enable the overall system timing analysis and optimize the worst-case. The
following considerations have been proposed over the years here:

Avoid timing anomalies Real-time system architectures should avoid timing
anomalies during different executions of the same program over the same
data. A hardware architecture is free of timing anomalies when there is
some consistently worse hardware state that produces an upper bound
on the execution time of a program using the same data [61]. Timing
anomalies can appear in different hardware components such as caches
and processor pipelines, e.g., most-recently used cache replacement policy
or out-of-order execution [23]. In contrast, it is proposed that a platform
employs in-order processor pipeline execution with timing anomalous free
cache replacement policies such as the least-recently used policy.

Scratchpad memories instead of caches Access on caches has been known
to be hardly time-predictable; in research, two techniques have usually
been implemented to estimate a safe

WCET bound. Either during

WCET
analysis, the designer must assume that every load instruction is a cache
miss or employ the use of a scratchpad memory (

SPM) to provide constant
access time and increase performance [12, 45].

SPM usage is not limited
only for data access but recent research has also explored this concept for
caching program instructions. Results show that

SPM caches can offer
more optimistic

WCET bounds than method caches [84]. The drawback
is that most commercial off-the-shelf (

COTS) platforms are not equipped
with

SPMs with only a few exceptions, such as the recently introduced in
the ARM Cortex-R5 using a tightly coupled memory system [156]. Addi-
tionally, managing memory allocation and data structures in

SPMs must
be manually maintained. Finally, on-chip scratchpad memories cannot be
used for bulk data since their size is physically limited by the physical
integrated chip area.

Time-division multiplexing Traditional multicore embedded systems handle
memory access using fixed priority or round-robin arbitration through a
shared bus. Recent research has shown that access time can be optimized
for better worst-case analysis using a time-division multiplexing (

TDM)
access scheme that allocates pre-defined time-slots to processors during
which they can access a device such as a memory [82]. Alternatively,

1.3 Task Execution 5

Processor
Core 0Memory

IO devices

Shared bus for IO and Memory

Processor
Core 0

Memory IO devices

TDM
Memory
Arbiter IO

bus

Processor
Core 1

Processor
Core 2Processor

Core 1
Processor

Core 1

SPM
0

SPM
1

SPM
2

Figure 1.2: Multicore shared bus architecture on the left and TDM-based mul-
ticore architecture with private scratchpad memories on the right.

synchronizing access to

IO devices and memory can be achieved using
hardware locks [155], meaning that when a processor needs to access a
shared resource, it first tries to acquire a lock.

Embedded platforms that optimize their architecture towards timing predictabil-
ity by employing a number of the discussed components have been the focus of re-
cent research in hard real-time systems [31, 71]. This thesis extends an in-house
time-predictable platform of T-CREST [94], that implements the discussed op-
timizations. Figure 1.2 presents a comparison between a traditional multi-core
architecture and the

TDM-based architecture implemented in T-CREST.

1.3 Task Execution

Hard real-time applications are composed of several executing units, named
tasks which together comprise a task set. An executing task can be a thread,
or in the absence of an operating system (

OS), a simple function call. An
application can be composed of a fixed number of tasks or a dynamic task
set. Most real-time systems perform a specific control process and are usually
composed of a fixed number of tasks. This thesis only investigates solutions for
these type of systems. Any real-time task has a deadline and must finish its
execution before that, and some tasks also have a specified rate at which they
must execute, i.e., in control loops or sensor sampling. Additionally, tasks can
have precedence constraints relative to other tasks creating task chains between
producer and consumer tasks. Overall, tasks can be categorized into three
classes:

6 Introduction

1. Periodic: define tasks that must be executed at a specific rate, and thus,
are activated once every period based on a timer.

2. Aperiodic: are tasks that have no period constraints and are activated
by an event such as an interrupt.

3. Sporadic: are tasks that can be activated at any point in time but cannot
be re-activated until a certain period has elapsed.

Hard real-time systems require bounded timing guarantees on the execution of
the tasks and the delivery time of data between producer and consumer tasks.
It is, therefore, necessary to analyze a given task set and derive and execute
a suitable schedule with which all the tasks can finish their execution within
the deadline and adhere to their period and precedence constraints. Real-time
systems model their functionality as periodic and sporadic tasks. Aperiodic
tasks are not used in hard real-time systems, as they can interrupt the execution
of the schedule at un-predicted points in time. This schedule interrupt can
unwillingly elongate the execution of any ongoing task, missing its deadline and
invalidating the execution of the schedule.

On a single-core environment, the execution of a task set needs to be coordinated
by employing a scheduler mechanism. A scheduler is a piece of software that
dictates the execution order and activation time of a task based on the task
set constraints and using a specific algorithm. The schedule generation can be
static (offline), meaning that the scheduler generates a table of task activation
times that are executed at runtime using a function typically called dispatcher.
Alternatively, a scheduler can be dynamic (online), meaning that the order of
execution is determined at runtime and may change after each iteration. There
exist different scheduling policies for determining the order of execution, such as
fixed priority, rate-monotonic, earliest-deadline first, and cyclic executive [165].
Each policy offers different benefits and drawbacks. This thesis focuses on time-
predictability and real-time communication. Thus, it explores and employs
a cyclic executive policy that is hypothesized to combine seamlessly with the
underlying communication and the

TDM arbitration scheme of the T-CREST
platform.

Figure 1.3 presents the execution time model of an example task τi that calcu-
lates a result and writes it back to memory. The task needs to read the memory
for stored variables and sample new data from the connected IO devices to
complete its execution.

Cyclic executives map a fixed task set of size n into a statically planned collection
of periodic function calls. The minimum period Ti of a task τi defines the
minimum cycle time, while all the minor cycles together form the major cycle

1.3 Task Execution 7

time

WCET Ci

Task
τi

IO

Memory

Execution

Figure 1.3: Execution time model of a task that accesses both memory and

IO devices.

τA

τB

τA

M
in

or
 C

yc
le

 A

M
in

or
 C

yc
le

 B

τA

Minor
Cycle A

Minor
Cycle B

τA τB

time

Hyperperiod

Dispatcher
WCET

sA sA+CA sA+TA lcm(TA,TB)

Figure 1.4: Multi-rate precedence constraints on the left and cyclic schedule
on the right. Where sA is the activation of τA and CA its

WCET.

time or hyperperiod that is computed as the least-common multiplier (

LCM) of
all the task periods: lcm(Ti);∀i ∈ n. Figure 1.4 illustrates the task set order
periodic constraints and cyclic execution in time.

Scheduling tasks using the cyclic executive policy offers fully deterministic be-
haviour and timing. Communication between tasks can be performed using
shared data structures as it temporally guarantees mutual exclusion. Some of
the drawbacks are that the task periods have to be harmonic, meaning that
all tasks should be multiples of the minor cycle time. It is not very flexible as
it does not allow scheduling of aperiodic or sporadic tasks. Additionally, long
tasks need to split up to improve schedulability.

Figure 1.5 presents the localization part of an avionics flight management sys-
tem that is responsible for receiving data from a set of sensors to compute the
aircraft’s probable position [77]. The case study presents an exciting applica-

8 Introduction

Flight Management System Localization Group

LOCC1
(sensor merging)

Best Computed
PositionLOCC2

(flight phase
computation)

LOCC3
(magnitude variation

correction)

PerformanceLOCC4
(navigation performance

computation)

Sensors
data

LOCA1
(sensor selection)

LOCA2
(magnetic variation

configuration)

LOCA3
(navigation performance

configuration)

Figure 1.5: Example a flight management system localization task set that
estimates the aircraft’s position based on the input sensor data.

tion example that is composed of a task chain with periodic and aperiodic tasks.
The aperiodic tasks are not scheduled together with periodic tasks as they are
generated by the aircraft’s pilot input. Instead aperiodic tasks are executed
parallely in dedicated processors and the produced results are consumed by the
periodic tasks asynchronously, when the tasks are activated. The benefit of this
approach allows to successfully integrate aperiodic task (non real-time) with a
real-time cyclic schedule without interference that can potentially lead to missed
deadlines.

1.4 Real-time Communication

Although real-time communication has been investigated in various protocols
such as [13, 26], in modern industrial and automotive networks, Ethernet is the
preferred choice over fieldbuses [98]. This trend is mainly driven by the increas-
ing need for efficient systems interoperability and support for mixed-criticality
traffic, and Ethernet offers high-speed performance, flexibility and open specifi-
cations. Ethernet enables consistent integration on all levels of an application in

1.4 Real-time Communication 9

Table 1.1: Real-time Ethernet capabilities classification [33].

Class Achievable cycle time Implementation
C1 ≥100 ms Above the transport layer
C2 1 ms – 10 ms Above the

MAC layer
C3 250 us – 1 ms Built-in at the

MAC layer

these cases, allowing integration of an industrial system from the cyber-physical
systems (

CPS) level up to the data analytics level.

The operation of real-time Ethernet communication protocols is based on pro-
viding support for three levels of network traffic criticality that define the ur-
gency of delivery-time: best-effort, time-triggered (

TT), event-triggered (

ET)
and rate-constrained (

RC). The

ET,

TT, and

RC classes are analogous to the
task classifications: aperiodic, periodic and sporadic. Moreover, to guarantee
collision-free communication and without losses, the sender must never outpace
the receiver, therefore the processing speed of the receiver determines the max-
imum communication rate.

Best-effort traffic does not require any real-time guarantees, and the only re-
quirement is that the communication should be achieved at some point-in-time.
This work does not investigate further its end-to-end delivery time optimization,
and it can be assumed that this type of traffic can be scheduled as

TT or

RC
using a scheme called porosity [66].

Scheduling real-time traffic can be achieved at any OSI layer based on the re-
quired guarantees, i.e., scheduling on top of the Internet protocol (

IP) or the
medium access control (

MAC) layer. Additionally, handling the traffic can be
done in software or processed by dedicated network interface controller (

NIC).
The capabilities of a real-time Ethernet system can be classified based on the
schedule cycle time into three classes presented in Table 1.1.

Overall, communication in industrial, automotive and aerospace networks is
provided by various proprietary protocols [117] such as PROFINET, EtherCAT,
TTEthernet, and more recently, the IEEE 802.1 time-sensitive networking (

TSN)
task group [104]. These protocols implement a subset of the discussed traffic
models and offer different capabilities. Table 1.2 summarizes the most popular
hard real-time Ethernet solutions

Event-triggered

ET traffic usually corresponds to aperiodic or sporadic traf-
fic that initiates at arbitrary points in time based on an event, i.e., in
an industrial setting, this could be an alarm or sensor interrupt that is

10 Introduction

Table 1.2: Comparison of Real-time Ethernet Protocols [76, 159].

Protocol Capabilities
class

Traffic
scheduling

Hardware
requirements

IP support

PROFINET C3

TT Custom

NIC 7

EtherCAT C3

TT Custom

NIC
and software-based 7

AFDX C2

RC Switches 3

TTEthernet C2/C3

TT
&

RC
Switches

& Custom

NIC 3

TSN C1/C2/C3

TT
&

RC
& Priority

Switches 3

delivered to a control system through the network. Explicit flow control
mechanisms should be designed in place to protect a receiver from infor-
mation overflow. Additionally, to guarantee the delivery of messages, this
traffic flow needs a positive acknowledgement response. This scheme signif-
icantly increases the maximum transmission time as jitter can be induced
based on the sporadic network load, and possible retransmissions [19].

Rate-constrained

RC systems try to address the issues of

ET systems by en-
forcing a bandwidth budget to every communication flow. Thus the rate
of the sender is bounded by the communication system policy. Temporal
guarantees can be given as long as the minimum assigned bandwidth for
each channel is not exceeded. Guaranteed bandwidth in

RC systems re-
quires cooperative senders or a traffic shaping mechanism. Traffic shaping
or policing is applied to communication flows to enforce that no channel
exceeds the assigned bandwidth. Depending on the mechanism used, this
is enforced by either delaying or by dropping non-conforming traffic. By
delaying or dropping certain packets, the communication system can im-
prove latency and guarantee bandwidth usage. These mechanisms have
been studied and applied in avionic and industrial Ethernet protocols such
as AFDX [17] and

TSN [113].

Time-triggered This thesis does not examine

ET and

RC traffic criticalities.
In contrast, it opts for periodic

TT sampling of sporadic inputs to tem-
porally encapsulate arbitrary events. The drawback of this approach is
that the average latency is increased, but the maximum execution time is
bounded, which is favourable in the design of hard real-time systems.

TT
traffic corresponds to the highest criticality level, where the delivery of

1.5 Time Synchronization 11

jittertx dmin

txlatest

jitterrx

dmax
txearliest

time

WCETtx + clockoffset (dmax - dmin) + WCETrx

Figure 1.6: Example end-to-end transmission timing.

Ethernet frames must be guaranteed within specific time windows. This
traffic class is addressed using the time-triggered protocol (

TTP) paradigm
[8, 47], which models the Ethernet frame communication as periodic tasks
that are transmitted and received at predefined time-slots. The functional-
ity of this concept requires a global schedule among senders and receivers
that is dictated according to a network-wide notion of time [34]. Figure 1.6
illustrates the timing of a data structure transferred from one sender to one
or more receivers. In the

TT communication model, txearliest and txlatest

are the boundaries of the sender’s transmission window and introduce a
transmission jitter jittertx. This jittertx is dependent on the

WCET of
the processor plus the synchronization error of the device relative to the
network time. The arrival jitter jitterrx is bounded by the minimum
dmin and maximum dmax network delays experienced by the transmitted
data combined with the receiving task’s

WCET. Time-triggered commu-
nication has been explored and implemneted in a variety of safety-critical
domains inlcuding automotive [14, 64] and aerospace [90, 110] applications.

1.5 Time Synchronization

Embedded real-time systems keep track of time using dedicated hardware coun-
ters called real-time clock (

RTC). Each increment of the counter value represents
a time step based on the system’s clock frequency, typically provided by an os-
cillator crystal. Two distributed systems will always experience a time offset
relative to each other due to oscillator imperfections, temperature differences,
different system frequencies and different boot-up times. Thus the RTC of a
system A might appear to be ticking faster or slower relative to the RTC of a
system B. The drift from the reference clock is a function of the length of the
synchronization cycle and the drift rate of the clocks A and B. To mitigate this
time drift, we must implement a synchronization protocol as shown in Figure 1.7.

12 Introduction

RTC counter

real-time

synchronized clock

ideal clocksync interval

offset/
drift

Figure 1.7: Progress of a faster clock that is synchronized relative to an ideal
reference clock.

Real-time systems require clock synchronization for numerous reasons as it en-
ables the coordination of distributed tasks by providing a global timebase on
which systems can communicate [59], record the chronological order of sensor
inputs and messages [53, 49] and schedule the isochronous execution of control
loops in cyber-physical systems [38]. Synchronization of local clocks C(t) can
be performed in two main ways:

• External source meaning that an authoritative reference source S(t)
limits the skew to an offset bound D > 0 as |C(t)− S(t) < D|∀t.

• Distributed consensus allows synchronization of each local clock within
a distributed system to an offset bound D > 0 so that |Ci(t)−Cj(t)|∀i, j, t.

Moreover different techniques can be applied to enable the measurement of the
time offset between remote clocks such as timestamping, message passing and
round-trip time. Different algorithms have been investigated in literature over
the years and are summarized in the following paragraphs.

Cristian’s algorithm Cristian’s algorithm [4] presents the simplest form of
authoritative synchronization. Assuming an externally synchronized time

1.5 Time Synchronization 13

server with a GPS or an atomic clock, the clients send requests for the
current time and subtract the measured round-trip from the server. The
drawback of this algorithm is that it assumes that the response is delivered
through the same network as the request and the delay d of the server is
not known; thus, its accuracy is bounded by ±1/2Tround−dmin. Moreover,
it has a single point of failure, and thus, it is not suitable for safety-critical
systems.

Berkley algorithm An alternative to Cristian’s algorithm is the Berkley al-
gorithm [5]. It does not depend on an external source of synchronization.
Instead, it uses a master/slave network hierarchy. The master server peri-
odically polls the slave nodes for their clock readings to estimate the local
clock offset based on the round trip estimation. The master averages the
values obtained and informs back the slave nodes with the amount of time
to adjust their local clocks. If the master fails, a new master is elected.

Network time protocol The network time protocol (

NTP) [25] operation is
based on a layered client-server architecture that uses user datagram pro-
tocol (

UDP) message passing with timestamps. The protocol can operate
in two main modes, multicast and procedure-call. In multicast mode, the
server is responsible for periodically sending the time info to all nodes in
the network that update their local clocks, assuming a small transmission
delay. In procedure-call mode, the

NTP operates similar to Christian’s al-
gorithm, the server accepts requests from the clients and responds with the
current time. In contrast to Berkley’s and Christian’s algorithms,

NTP
deploys a four-step message passing with timestamping to estimate the
transmission delay and accurately derive the offset of the local clock from
the master clock. Filtering algorithms are usually implemented to reduce
network-induced jitter, and under particular conditions (i.e., in local area
networks and low latency), NTP can achieve sub-millisecond accuracy.
However, this is not sufficient for real-time systems, which often require
microsecond precision.

Three clock synchronization protocols have been developed recently aiming to
improve the performance of

NTP for industrial systems and have been widely
adopted by safety-critical real-time applications. The capabilities and require-
ments of these protocols are summarized in Table 1.3.

IEEE 1588 Precise Time Protocol The IEEE 1588 standard introduced the
precise time protocol (

PTP) as an alternative mechanism to NTP that
allows for sub-microsecond clock synchronization on local area networks.

PTP is a standard Ethernet protocol that uses a periodic exchange of mes-
sages based on master-slave network topology. It operates either on OSI

14 Introduction

Table 1.3: Comparison of time synchronization protocols.

Protocols Link layer Hardware
support Accuracy Open

standard
TTEthernet (AS6802) IEEE 802.3 required microsecond 7
IEEE 1588 IEEE 802.3 optional nanosecond 3
White Rabbit SyncE required picosecond 3

Layer 2 using Ethernet frames (IEEE 802.3) or Layer 3 using

UDP. The
protocol allows the precise calculation of each slave’s clock offset relative
to its master by considering the propagation delay of the message [24].
The recent extension of the protocol with the standard IEEE 802.1ASrev
added support for fault-tolerance and cascading topologies. Cascading
topologies are achieved with the use of the transparent clock component.
Transparent clocks are usually implemneted in bridges/switches and are
responsible for compensating the switch traverse time of a

PTP message
by injecting, in the message, the time from the reception of the frame until
its relay.

TTEthernet synchronization protocols TTethernet’s synchronization pro-
tocol [73] is a distributed clock protocol with multiple masters based on a
network-wide time convergence algorithm. The main components of the
synchronization protocol are the synchronization master (

SM) that is typ-
ically implemented in end-systems, the compression master (

CM) that is
implemented in switches and the synchronization client (

SC), which is im-
plemented either in end-systems or switches. To establish a synchronized
timebase, the synchronization protocols exchange protocol control frame
(

PCF)s between end-systems and switches. The

PCFs are encapsulated
as standard Ethernet frame format. There are two steps involved in the
two steps in TTEthernet’s clock synchronization algorithm: Firstly, the

SMs send

PCFs to the

CMs. From the arrival points in time of the re-
ceived

PCFs, the

CMs extract the current state of the

SMs local clocks
and estimate an average timebase. The

CMs then execute a first con-
vergence function, the so-called compression function. The result of the
convergence function is delivered to the

SMs and

SCs in the form of a
new

PCF compressed

PCF. In the second step, the

SMs and

SCs collect
the compressed

PCFs from the

CMs and execute a second convergence
function from which the synchronized time is derived.

White Rabbit Finally, it is worth mentioning the contribution of the synchro-
nization application called White rabbit [54]. White Rabbit is developed

1.6 Motivation 15

as part of the European Organization for Nuclear Research (CERN) and
has demonstrated that sub-nanosecond accuracy over Ethernet is possi-
ble even on large scale network composed of thousands of end-systems
that spans an area of tens of kilometres, claiming to be the most accu-
rate

PTP implementation of the world. The White Rabbit application
combines

PTP with the Synchronous Ethernet (SyncE) standard over a
custom fibre-optic network. On a hardware level, every compatible slave
node on the network uses a phase-locked loop to syntonize the phase of its
local clock to the master clock transmitted through SyncE. On an applica-
tion level, it uses the

PTP to synchronize the time offset of its local clock
to master network time [70], and can achieve sub-nanosecond precision in
the range of 135.25 ps with a standard deviation of ≈ 6 ps [69].

1.6 Motivation

Designing a hard real-time system requires, among other things, end-to-end tim-
ing analysis, communication and task scheduling, precise time-synchronization
and quality-of-control. While significant research efforts have been made to opti-
mize these components, individually, few unified frameworks for time-triggered
distributed systems have been proposed. Moreover, with most research relying
on

COTS platforms and proprietary solutions, even less focus has been given to
the architecture design and implementation evaluation of real-time distributed
systems experimentally.

Notably, research for time-triggered communication has been based on simu-
lation and proprietary

NICs to provide the necessary mechanisms for time-
aware frame transmission and reception. More research is needed in provid-
ing open-source solutions for time-predictable isochronous communication paths
that can guarantee bounded end-to-end communication delays that also con-
sider the

WCET of real-time applications. This could include providing net-
work stacks and frameworks for TTEthernet and TSN and optimizing existing
network stacks for

IP for deterministic execution times. Time-predictable net-
work stacks can enable the development of combined software/hardware time-
predictable end-system platforms that can guarantee bounded communication
delay. The benefits of isochronous software interfaces for communication have
been described in [163]. While early works have presented methods to provide

WCET-analyzable network stacks [143]. First efforts to provide an open de-
sign for low-latency and minimal jitter with

TSN communication have been
presented in [68, 78].

16 Introduction

Finally, as previously discussed, network-time synchronization is the basis for
time-triggered communication as it coordinates the data flow of distributed
cyber-physical systems. Network faults or malicious actions can cause loss of
precision, leading to data loss and possibly endanger lives even for a few millisec-
onds of local clock drift. Not all time-aware communication protocols provide
fault-tolerant synchronization. It has been shown that reliability issues can lead
to catastrophic failures in cyber-physical systems. The IEEE 1588

PTP used in
the

TSN communication protocol is vulnerable to a range of safety issues, denial-
of-service attacks, frame spoofing and even common network failures that can
significantly influence the achieved clock synchronization [139]. The author iden-
tifies that more research is needed to actively mitigate similar synchronization
faults by developing new hardware/software designs integrated with existing
communication protocols.

1.7 Thesis Outline

This thesis develops and proposes a collection of practical designs that enable
time-predictable communication for hard real-time end-systems and is composed
of five papers that are divided into five chapters.

Time-synchronization is explored first in Chapter 2, as it is the fundamental
requirement for time-aware distributed computing. A hardware unit and the
software driver are developed and presented that enable a computing system
to correct its local clock relative to a global network time using the IEEE 1588

PTP. The design is experimentally evaluated on FPGA and compared against
existing commercial solutions. Next, Chapter 3 analyzes the effects of network
failures on the clock synchronization quality as well as the safety and security
aspects of

PTP. A fault-tolerant synchronization scheme is designed that can
tolerate network failures and denial-of-service attacks. The design is integrated
and evaluated in a discrete network simulator using synthetic benchmarks. The
design can maintain bounded clock synchronization precision in various scenar-
ios that emulate network failures and malicious attacks.

Using the developed work as a basis, Chapter 4 investigates the time-triggered
paradigm by developing an open-source TTEthernet network stack that allows
the in-house computing platform to integrate with industrial Ethernet networks.
A complete worst-case analysis of the network stack is presented, and the de-
veloped platform is evaluated by integrating it into an existing TTEthernet
network.

1.7 Thesis Outline 17

Chapter 5 explores the concept of synchronizing task execution with the underly-
ing communication to achieve an overall time-triggered open-source architecture.
An offline static scheduler is developed that leverages satisfiability modulo the-
ories (

SMT) to generate schedules for both computation and communication.
Moreover, a cyclic dispatcher is developed and integrated with the TTEthernet
network stack. The open-source framework is evaluated experimentally using a
distributed synthetic benchmark of a multi-periodic control system, comprised
of one sensor node, one control node and one actuator node. A worst-case execu-
tion time analysis of the framework is presented while the distributed executed
tasks are synchronized with microsecond jitter.

Chapter 6 presents an improved experimental evaluation of the proposed frame-
work in Chapter 5, by implementing an avionic benchmark. The benchmark
presents a multi-rate longitudinal flight controller case-study that is imple-
mented and scheduled using the proposed framework. The flight controller
tasks are distributed over three nodes that communicate over a TTEthernet
network switch. The experimental setup is demonstrated to perform a stable
flight scenario validated using a set of quality-of-control objectives.

Finally, Chapter 7 concludes this work by summarizing the contributions of this
thesis and presenting an outlook of possible future research extensions.

18 Introduction

Chapter 2
Hardware Assisted Clock

Synchronization
with the IEEE 1588-2008
Precision Time Protocol

By Eleftherios Kyriakakis, Jens Sparsø, and Martin Schoeberl
[C1]

Abstract
Emerging technologies such as Fog Computing and Industrial Internet-
of-Things have identified the IEEE 802.1Q amendment for Time-
Sensitive Networking (TSN) as the standard for time-predictable
networking. TSN is based on the IEEE 1588-2008 Precision Time
Protocol (PTP) to provide a global notion of time over the local
area network. Commonly, off-the-shelf systems implement the PTP
in software where it has been shown to achieve microsecond accuracy.
In the context of Fog Computing, it is hypothesized that future in-
dustrial systems will be equipped with FPGAs. Leveraging their in-
herent flexibility, the required PTP mechanisms can be implemented
with minimal hardware usage and can achieve comparable synchro-
nization results without the need for a PTP-capable transceiver.
This paper investigates the practical challenges of implementing the

20 Hardware Assisted Clock Synchronization with PTP

PTP and proposes a hardware architecture that combines hardware-
based time-stamping with a rate adjustable clock design. The pro-
posed architecture is integrated with the Patmos processor and eval-
uated on an experimental setup composed of two FPGA boards
communicating through a commercial-off-the-shelf switch. The pro-
posed implementation achieves sub-microsecond clock synchroniza-
tion with a worst-case offset of 138 ns.

2.1 Introduction

The IEEE 802.1 TSN task group [104] is in the process of standardizing Ether-
net into a time-sensitive, deterministic, communication technology, by defining a
range of sub-standards based on IEEE 802 networks. TSN is gaining popularity,
in automotive and industrial automation networks over commonly used Fieldbus
protocols, such as PROFINET and EtherCAT [76]. This is due to its support
for: mixed-criticality traffic, high bandwidth and well-defined set of open stan-
dards [98, 111] that allow for interoperability between network devices. The
deterministic communication of such systems is based on time-scheduled traffic
with bound end-to-end latencies [102] and thus it requires a global notion of
time to accurately synchronize network operations.

To ensure a global time reference among network devices, TSN employs the
IEEE 1588-2008 Precision Time Protocol (PTP) [37] PTP enables accurate clock
synchronization over master-slave network hierarchies, where the master is usu-
ally equipped with a high precision source of time (i.e., GPS, atomic clock).
The worst-case precision of this clock synchronization correlates to the avail-
able scheduling accuracy of all network-based operations. There are two key
mechanisms that influence the achieved clock precision of PTP, the method
of time-stamping and the clock adjustment implementation [24]. These mech-
anisms are either implemented in software or via dedicated IEEE 1588-2008
compatible Ethernet PHY [86].

In the context of Industry 4.0, it is hypothesized that most upcoming industrial
embedded systems, such as Fog Nodes, will be equipped with Field-Programmable
Gate Array (FPGA) devices [137]. Based on the current price range of IEEE
1588-2008 compatible PHY transceivers, which is two times more expensive than
standard PHYs and the decreasing prices of FPGAs, we argue that by taking
advantage of the inherent flexibility of FPGAs, the PTP mechanisms can be
implemented in the existing hardware without the need of costly PTP-capable
PHY transceivers. These mechanisms can still provide comparable accuracy to

2.2 Background 21

PTP-capable PHY transceivers and at the same time minimize the cost of real-
time systems by 30% while provide design flexibility and hardware reusability.

This paper explores the challenges of clock synchronization with PTP and pro-
poses a hardware architecture that combines, a hardware IEEE 1588-2008 clock
adjustment unit together with a PTP message recognition and timestamping
unit. The proposed hardware is integrated within the FPGA-based platform
T-CREST [94] and evaluated using the worst-case execution time (WCET) op-
timized processor Patmos [145]. The design is evaluated on a simple network
composed of two T-CREST nodes, acting as a master-slave PTP pair, and
connected through a single commercial-off-the-shelf switch. The achieved clock
synchronization between the two nodes is evaluated regarding two metrics, accu-
racy as average mean and jitter as standard deviation. The results are compared
against a WCET analyzable software-based implementation of PTP. The con-
tributions of this paper are:

• A hardware design that allows for network nodes to synchronize with sub-
microsecond accuracy using standard PHYs.

• A WCET analysis of the PTP software-stack implementation.

• An evaluation of the achieved synchronization and the identified parame-
ters affecting its accuracy and jitter.

The paper is organized in 6 sections: Section 2.2 provides the reader with a
background on the fundamental concepts involved in the IEEE 1588-2008 PTP
as well as a short introduction on the T-CREST platform and the WCET op-
timized processor Patmos. Section 2.3 reviews the challenges of implementing
PTP and the different approaches that have been used. Section 2.4 presents the
proposed hardware architecture and describes its integration with the T-CREST
platform. Section 2.5 describes the experimental setup and presents the eval-
uation of the collected data from the implementations. Finally, Section 2.6
concludes the paper.

2.2 Background

Different protocols have been developed over the years to achieve time synchro-
nization between networked devices. The Network Time Protocol (NTP) [25]
is one the most widely used protocols due to its compatibility with the Internet
protocol as well as simple operation. It uses a polling mechanism where devices
request the current time from a server to update their own notion of time. This

22 Hardware Assisted Clock Synchronization with PTP

protocol does not consider the network propagation delays along the path of
the time server response and thus it can lead to significant offset and jitter.
Filtering algorithms are usually implemented to reduce network-induced jitter
and under special conditions (i.e., in local area networks), NTP can achieve
sub-millisecond accuracies. However, this is not sufficient for real-time systems
which often require microsecond precision.

2.2.1 IEEE 1588-2008 PTP

The IEEE 1588-2008 standard introduced PTP as an alternative mechanism to
NTP to allow for sub-microsecond clock synchronization on local area networks.
PTP is an Ethernet-based protocol that uses a periodic exchange of messages
based on a master-slave network topology. This allows the precise calculation of
each slave’s clock offset, relative to its master, by considering the propagation
delay of the message [24]. PTP is a distributed protocol that requires each
ethernet port of an IEEE 1588-2008 compatible network device to execute the
same stack of operations and implement the following fundamental blocks:

• IEEE 1588-2008 software stack

• IEEE 1588-2008 clock

• Clock adjustment

• Timestamp capturing

• Frame/Packet recognizer

These blocks can be implemented either in software or hardware and the most
common cases are reviewed in Section 2.3. Each IEEE 1588-2008 network port
can be either in a PTP_MASTER state or a PTP_SLAVE state. The port’s
state can be explicitly defined or implicitly by the best master clock selection
algorithm. This paper focuses on the clock synchronization between two network
devices, and thus the operation of the best master clock algorithm is out-of
the scope of this paper. It is assumed that all ports are explicitly defined as
PTP_MASTER or PTP_SLAVE.

The calculation of the slave clock offset involves two metrics, offset and delay
which are estimated using four timestamps t1, t2, t3, and t4 that are gener-
ated based on the messages, SYNC, FOLLOW_UP, DELAY_REQ and DE-
LAY_REPLY respectively. There are two synchronization mechanisms sup-
ported by the PTP protocol, the one-message model and the two-message model.

2.2 Background 23

t4: 105.x4 sec

100

101

102

103

104

105

106

107

108

M
75

76

77

78

79

80

81

82

83=

S
t1: 100.x1 sec

t2: 76.x2 sec

t3: 79.x3 sec

108

FOLLOW_UP(100.x1)

SYNC

DELAY
_REQ

UEST

DELAY_REPLY(105.x4)

Figure 2.1: Simplified overview of the IEEE 1588-2008 PTPmessage flow. The
example assumes a link delay of 1 second and variable delays xi

associated with each timestamp ti

The one-message model can be used when high precision is not an application
requirement and thus the message FOLLOW_UP containing the precise time
of SYNC transmission (t1) is not sent.

This paper implements the two-message model whose operation is illustrated
in Figure 2.1 and described below. The master port M is responsible for pe-
riodically broadcasting SYNC messages and storing the transmission time in
the timestamp t1. Each SYNC message is followed by a FOLLOW_UP mes-
sage containing the timestamp t1. The slave port S keeps a receipt timestamp
t2 of the SYNC message and together with the timestamp t1 contained in the
FOLLOW_UP message it can estimate its offset from the master clock, but
this does not take into consideration the transit time of the received messages.
To calculate the propagation delay involved in the transmission, the slave port
S sends a DELAY_REQ message to the master port M and keeps a transmit
timestamp t3. The master port M that receives the message replies with a DE-
LAY_REPLY message containing the exact time it received the request t4. The
PTP slave can now accurately calculate its offset from the master taking into
consideration also the transmission delay involved in their communication path.
The use of the gathered timestamps by the slave in the calculations is shown in
Equation 2.1 as described in [24].

24 Hardware Assisted Clock Synchronization with PTP

Preamble DstMAC SrcMAC Type FCS

11010101

SOF

IP Header UDP Header PTP Message
● 224.0.1.129

for all
● 224.0.0.107

for peer
delay
measurements

● Port: 319
for event
messages

● Port: 320
for other
messages

● PTP Header
● PTP Body
● PTP Suffix

Data

PTP over UDP over IPv4 (Type=0x0800)

Preamble DstMAC SrcMAC

11010101

SOF

PTP directly over Ethernet
PTP

Message FCSType

0x88F7

t
i

t
i

Figure 2.2: PTP Ethernet frame format depending on Ethernet Type. Mo-
ment of timestamping ti is illustrated at SOF byte.

offset = t2 − t1 − delay (2.1)

where:

delay = (dA + dB)
2

dA = t2 − t1

dB = t4 − t3

The example PTP synchronization, presented in Figure 2.1, assumes a propaga-
tion delay of 1 second and variable delays xi associated with each timestamp ti.
These delays correspond to the time interval between the actual transmission
of a PTP message and the moment the timestamp is captured. Considering the
timestamp capture delay variations in Equation 2.1 we calculate:

offset = (t2 + x2)− (t1 + x1)

− 1
2

((t2 + x2)− (t1 + x1) + (t4 + x4)− (t3 + x3))⇒

offset = 1
2

((t2 − t1 + t3 − t4) + (x2 − x1 + x3 − x4))

Thus we can derive that the approximate jitter is:

jitter = 1
2

(x2 − x1 + x3 − x4) (2.3)

As illustrated in Equation 2.3 the need for time-predictable timestamp capturing
(timestamping) is a crucial step in calculating the precise clock offset and ev-
ery component that handles a PTP message, until the timestamp is registered,
increases the synchronization error by a small amount. The IEEE 1588-2008
standard defines that timestamping should occur precisely when the last bit of
the start-of-frame (SOF) byte of an Ethernet frame is received as illustrated in

2.2 Background 25

Figure 2.2. However, depending on the timestamping technique used this cannot
always be achieved. In general, there are three common ways of implementing
timestamping as discussed in literature [24]:

1. Software-based timestamping, is handled in software at the reception/-
transmission of an Ethernet frame from the MAC layer. The application
has to interface with the MAC controller, pack/unpack the frame and
check for valid PTP message, or at the transmission of a PTP frame.

2. MAC-based timestamping, is handled by dedicated hardware on the MAC
layer, most often implemented by an FPGA or a micro-controller. The
hardware unit is responsible for parsing and timestamping the received
frame from the PHY.

3. PHY-based timestamping, is handled by a dedicated PHY device that
incorporates both an IEEE 1588-2008 Clock and a PTP frame recognition
& timestamping unit.

2.2.2 Experimental Platform

The implementation and evaluation described in this paper is built around the
open-source platform T-CREST [94].

T-CREST is an FPGA-based multi-core platform that has been developed for
on-going research in real-time applications and is based around the WCET-
optimized processor Patmos [145]. Patmos is a time-predictable, dual-issue,
RISC processor that has been designed with focus on WCET analysis. It uses
special WCET-optimized instruction and data caches along with private scratch-
pad memories for instructions and data. It is supported by an LLVM-based [18]
compiler, also optimized for WCET and by the WCET analysis tool platin [89].

The tool platin performs static analysis to compute the WCET of a certain code
segment by using the information generated and preserved during compilation
to determine a control flow graph. Together with low-level timing information
of the processor architecture it can calculate a safe WCET of the analyzed code
segment.

This work is integrated with the T-CREST platform as part of an on-going
effort to provide support for time-triggered communication over TSN networks.
Patmos is used to provide a time-predictable execution of the PTP software
stack and together with the WCET analysis tool platin it is used to identify
software-based causes of jitter in the PTP clock synchronization.

26 Hardware Assisted Clock Synchronization with PTP

2.3 Related Work

This section reviews the challenges and common approaches of implementing
PTP, including timestamping and clock correction methods, as well as presents
a state-of-art clock synchronization implementation.

Regarding the implementation of a PTP timestamping mechanism, different
solutions have been presented that each tries to address different system chal-
lenges.

Software-based timestamping is very simple to implement in existing systems as
it does not require any additional hardware. However, it can introduce signifi-
cant jitter since the application runs in user space and its performance cannot
be guaranteed. Both the processor load and the delay with handling interrupts
or checking flags impact the precise moment of timestamping and lead to error
offset and jitter. This is investigated in [30], where it was shown that under
special conditions (i.e., low network traffic, high bit-rate connection) this imple-
mentation can achieve sub-millisecond clock synchronization.

MAC-based timestamping can be found implemented in modern commercial
micro-processors, such as the STM32F105xx or the STM32F107xx [127] where
the clock synchronization has been characterized by [67]. To the best of our
knowledge, the implementation challenges and performance of this method have
not been thoroughly investigated for IEEE 1588-2008 PTP. Related works such
as [78] have investigated the concept of packet reception and timestamping using
the AS6802 [22, 59] synchronization algorithm but the implementation or the
precision of the achieved clock synchronization are not discussed. Designs for
hardware-based PTP timestamping have been presented in [58, 57], but they
have not been implemented in a real system nor evaluated in terms of their clock
synchronization precision.

Finally, PHY-based timestamping has been implemented in commercial pack-
ages such as the Texas Instruments PHYTER [86]. This off-the-shelf component
has been used in different works [53, 49] where it is presented that it can ensure
nanosecond accuracy clock synchronization.

Regarding the clock correction mechanism, the IEEE 1588-2008 standard does
not define an algorithm or procedure for adjusting the slave clock despite this
having a significant influence on the overall precision of the system. Different
approaches have been implemented to adjust the clock including:

2.4 Design And Implementation 27

• Clock rate adjustment by pulse addition and swallowing. An algorithm
has been proposed by [48] and the procedure is also described in [24].

• Error register maintenance instead of clock correction. This technique is
discussed in literature [24]. The error register is updated with the current
offset from the master clock while the slave clock is never modified.

Finally, PTP has also been investigated in simulation to identify common sources
of jitter and their effects on the synchronization as well as to estimate the best
achievable clock synchronization in multi-hop large-scale networks [122]. The
results show that the precision reduces as the number of hops increases and
guaranteed precise synchronization proves challenging as the network scales.

At this point it is worth mentioning that research at the European Organization
for Nuclear Research (CERN) has demonstrated the versatility of PTP and has
shown that sub-nanosecond accuracy is possible. The developed application
called White Rabbit [54] made use of PTP and Synchronous Ethernet standards
on a custom network built on fiber optic links. The application achieved sub-
nanosecond precision in the range of 135.25 ps with a standard deviation of
approximately 6 ps.

This paper differs from related work as it aims to realize and evaluate an
FPGA implementable architecture, able to provide nanosecond precision be-
tween master-slave node pairs using the IEEE 1588-2008 PTP on standard LAN
networks without the use of dedicated PTP-capable Ethernet PHY hardware.

2.4 Design And Implementation

This section presents the hardware architecture that integrates with T-CREST,
the proposed hardware-assist logic, for timestamping and clock adjustment, and
finally the PTP software stack that is used to control and evaluate the design.

2.4.1 Hardware Architecture

The proposed hardware architecture, presented in Figure 2.3, is integrated with
the T-CREST platform as a single IP core that interfaces with the Patmos
processor. Its functionality is to snoop on the media independent interface
RX/TX channels between the PHY and the MAC controller for PTP messages

28 Hardware Assisted Clock Synchronization with PTP

and provide times stamps for their arrival and departure accordingly. The unit
is composed of three functional entities:

1. The two RX/TX timestamp units (TSUs) that parse and timestamp a
received or transmitted PTP frame, based on the SOF byte (see Figure
2.2). The units also include an interrupt/flag signal that is raised when a
PTP frame has been parsed successfully and a valid timestamp is available
for reading.

2. The IEEE 1588-2008 Clock is composed of two counters representing sec-
onds and nanoseconds that operate under a pre-scaled frequency. This
unit is augmented with the proposed clock adjustment mechanism. In
addition, it includes a configurable timer interrupt which can be used to
schedule time-triggered network operations.

3. The PTP software stack, executing on the Patmos processor, is responsible
for the PTP message exchange as well as the offset calculation. The soft-
ware stack is also responsible for managing the time-stamping, either by
reading the RX/TX timestamp units or by reading the IEEE 1588-2008
Clock as well as for controlling the clock adjustment mechanism.

2.4.2 RX/TX Timestamp Unit

The RX/TX timestamp unit (TSU) is presented in Figure 2.4. The hardware
unit uses a finite state machine (FSM) to parse Ethernet frames as they are
communicated between the PHY and the MAC controller. Incoming nibbles
are de-serialized into bytes and consecutively stored into a double-word (64-bit)
buffer. The FSM is initialized in the SFD (start-of-frame-detect) state where
it waits and checks the double-word buffer until the frame’s preamble and SOF
sequence (0x55555555555555D5) is detected, at which moment it registers the
current IEEE 1588-2008 Clock time and transitions to the next state to start
parsing the incoming frame. Stepping through the FSM is done by keeping a
record of how many bytes have been received at each state and resetting the
counter when transitioning to a new state. States DSTMAC and SRCMAC read
the Ethernet frame’s destination and source MAC address respectively. State
ETHTYPE is responsible for recognizing the received Ethernet frame’s type
and it provides support for the two PTP frame formats (see Figure 2.2). After
the reception of the Ethernet type the state transitions to the IP state and
consecutively to the UDP state where it parses the respective protocol headers.
If the FSM detects that an IP header does not contain a valid UDP packet
or that the UDP header does not contain a valid PTP message it proceeds

2.4 Design And Implementation 29

Patmos
Processor

OCP Bus

TX PTP Frame TSU

RX PTP Frame TSU

IEEE
1588
Clock

FPGA Device

PHY

PHY
Device

T
X

MAC Ethernet
Controller

R
X

PTP
Software Stack

PTP Hardware-Assist

Figure 2.3: Implementation of PTP Hardware-Assist unit inside a T-CREST
node. PHY TX/RX signals are split between the MAC controller
and the hardware-assist PTP unit.

to transition to state FCS (frame-check-sequence) where it remains until the
remaining bytes have been received. When the FSM reaches the PTPHEAD
state, it registers the stored IEEE 1588-2008 time along with the PTP message
type and a valid bit indicating that a PTP timestamp is available for reading.

2.4.3 Clock Adjustment

The proposed IEEE 1588-2008 clock & adjustment mechanism is presented in
Figure 2.5, and is composed of three parts:

1. The clock counter which consists of a 48-bit nanosecond counter and a
32-bit seconds counter and complies with the time format specified by the
IEEE 1588-2008 standard.

2. The abrupt update register which can be used to instantaneously update
the clock to a specific time value

3. The offset correction register which is used to gradually correct the offset
by adjusting the clock rate.

30 Hardware Assisted Clock Synchronization with PTP

Nibble
Deserializer

Double-word
Bufer

SOF
detection

Byte Counter

TimestampType

IEEE 1588 clock time SFD DST
MAC

SRC
MAC

ETH
TYPE

IP
HEAD

UDP
HEAD

PTP
HEAD

FCS

Valid PTP

PHY Nibble

Initial

Figure 2.4: Implementation of the proposed RX/TX PTP timestamp unit
(TSU).

For large offsets (i.e., when a new node is connected to an already synchronized
network or epoch changes), the time can be updated through the abrupt update
register. For small values, the offset can be written directly in the offset cor-
rection register. The register indexes a look-up table (LUT) based on a set of
configurable thresholds. The threshold values for this implementation are cho-
sen empirically and are divided into the following categories for both positive
and negative rates:

• ±1 ms to ±1 us

• ±1 us to ±100 ns

• ±100 ns to ±50 ns

• ±50 us to ±1 ns

The LUT controls the amount added/subtracted to or from the base time-step
of the clock counter nanosecond counter. The operation increases or decreases
the offset correction register according to the indexed LUT value and stops
when its value reaches zero. This mechanism is based on the pulse addition and
deletion technique discussed in Section 2.3 and works by gradually correcting
the clock offset by increasing or decreasing the rate (time-step) of the clock
counter. The LUT is indexed by a set of configurable thresholds for the value of
offset correction register. The LUT rate values are chosen empirically, according

2.4 Design And Implementation 31

PTP Software Stack

IEEE 1588 Clock &
Adjustment

Adjustment Control

Abrupt Update
Register

Offset Correction
Register

Rate LUT (ns)

25

20

10

5

1

0

-1

-5

-10

-20

-25

++NanosecondsSeconds

IEEE 1588 clock counter

25 ns

Figure 2.5: Implementation of the proposed IEEE 1588-2008 clock adjustment
mechanism. Time-step of 25 ns is related to a clock frequency of
40 MHz and can be tuned accordingly.

to the resolution of the clock counter and allow to double the rate or completely
stop the counter. Further fine tuning depending on the system’s requirements
can be applied.

Choosing between correcting the clock offset using the abrupt update register or
the offset correction register is managed in software and can be configured by
the PTP_NS_OFFSET_THRESHOLD parameter in code.

2.4.4 PTP Software Stack

The PTP software stack runs on the Patmos processor and involves the execution
of a simplified PTP protocol were the master/slave mode is explicitly defined.
Although open-source software projects that implement the full IEEE 1588-2008
standard are available [93], they are not developed with WCET in mind and are
hardly time-predictable, thus they could not be used in our evaluation.

The PTP software stack is responsible for the following tasks:

32 Hardware Assisted Clock Synchronization with PTP

• Initializing Patmos in master or slave port mode.

• Performing the clock synchronization, depending on the port mode.

• Reporting the clock offset at each synchronization interval.

The software is implemented in a way that both the PTP_MASTER and the
PTP_SLAVE share the same codebase with the following functions:

1. ptpv2_issue_message() involves creating, sending and timestamping the
transmission of a PTP message. Checking the completion of the transmis-
sion and registering the timestamp is done by function read_tx_timestamp().

2. check_ptpv2_frame(), involves reading the MAC receive buffer, checking
the ethernet type field of the frame and responding accordingly. When a
PTP frame is detected the function ptpv2_handle_message() is called.

3. ptpv2_handle_message() involves the unpacking, timestamping and the
possible clock offset calculation/correction depending on the received PTP
message type. Registering the time of reception timestamp is done by call-
ing the function read_tx_timestamp(). Correcting the clock offset is done
by first calling the functions ptp_calc_one_way_delay() and ptp_calc_offset(),
for seconds and nanoseconds respectively, and finally calling the function
ptp_correct_offset() for adjusting the clock.

Since both the PTP_MASTER and the PTP_SLAVE are explicitly defined,
their operation was implemented as two simple cyclic procedures presented in
Figures 2.6a & 2.6b respectively. The PTP_MASTER is responsible for is-
suing SYNC and FOLLOW_UP messages at a fixed rate as well as checking
for any received PTP messages and replying to DELAY_REQ messages. The
PTP_SLAVE is responsible for checking for any received PTP messages and, if
a FOLLOW_UP message is received, replying with a DELAY_REQ message.

As presented in [30], multi-tasking can have a negative impact on the clock
synchronization precision of software-based PTP. Taking this into account, to
allow us to compare the performance of the proposed hardware-assist mecha-
nisms with the best-case software execution, the application is implemented on
a single task environment on the Patmos processor.

2.4 Design And Implementation 33

PTPMasterLoop

ptpv2_handle_msg()

check_ptpv2_frame()

DELAY_REQ
YesNo

IsPTPFrame?
YesNo

ptpv2_issue_msg()

ptpv2_issue_msg()

ptpv2_issue_msg()

ElapsedTime?

(a) PTP_MASTER loop

PTPSlaveLoop

ptpv2_issue_msg()ptpv2_handle_msg()

check_ptpv2_frame()

FOLLOW_UP?
YesNo

IsPTPFrame?
YesNo

(b) PTP_SLAVE loop

Figure 2.6: Program flow of PTP master and slave

34 Hardware Assisted Clock Synchronization with PTP

Table 2.1: Hardware-assist Architecture Resource Utilization

Entity Combinational LUTs Logic Registers
PTP Hardware-Assist 1485 (82) 1182 (142)
MIITimestampUnit 454 (376) 402 (327)
DeserializePHYbyte 13 (13) 11 (11)
DeserializePHYBuffer 65 (65) 64 (64)
RTC 431 (431) 234 (234)

2.5 Evaluation

This section presents the experimental setup over which the proposed hard-
ware architecture was evaluated as well as its hardware resources. Finally, the
collected results from the WCET analysis and the clock synchronization are
discussed.

2.5.1 Experimental Setup

The presented hardware architecture was synthesized on two FPGA Terasic
DE2-115 boards and explicitly configured as a PTP master/slave pair. The
clock synchronization was evaluated on a simple experimental setup composed
of the two FPGA boards communicating over a single off-the-shelf switch via a
100 Mbps Ethernet. Each FPGA board used a PLL to generate the internal logic
clocks. The Patmos processor was operating at frequency of 80 MHz. The IEEE
1588-2008 clock was operating at a frequency of 40 MHz and had a resolution
of 25 ns. The PLL input was provided by a commercial off-the-shelf oscillator
operating at a nominal frequency of 50 MHz with an accuracy of 50 ppm.

2.5.2 Hardware Resources

The hardware was synthesized for an Altera Cyclone IV FPGA [103]. Table
2.1 presents the hardware utilization of the proposed PTP Hardware-Assist IP.
The values outside the parentheses indicate the aggregate resources used by
the entity, while the value inside the parentheses indicate the utilization of the
specific entity alone.

2.5 Evaluation 35

Table 2.2: WCET Analysis of PTP Software Stack

Function WCET
Clock Cycles Time (at 80 MHz)

ptpv2_issue_msg() 2560141 32 ms
readTXTimestamp() 5 62.5 ns
check_ptpv2_frame() 684 8.55 us
ptpv2_handle_msg() 3893 48.6 us
readRXTimestamp() 5 62.5 ns
ptp_correct_offset() 66 850 ns
ptp_calc_offset() 4 50 ns
ptp_calc_one_way_delay() 7 87.5 ns

The hardware cost of the proposed hardware-assist unit is minimal. The utiliza-
tion of PTP Hardware-Assist is only 1.7 % of the total available resources of the
Cyclone IV FPGA device (114480 Logic Elements) and when compared to the
the small-sized processor Patmos, it is 11 % of its total size (13503 LUTs and
8325 Logic Registers).

2.5.3 WCET Analysis

To reveal possible sources of jitter, as well as to estimate the processor load
involved in the execution of the PTP software-stack, a formal WCET analysis
was performed using the tool platin [89] and the results are presented in Table
2.2.

The WCET revealed that the worst-case delay between the arrival of a PTP mes-
sage and the software capturing the timestamp to be 8.6 us. This includes the
software packing/unpacking the frame plus registering the time of arrival/de-
parture that amounts to 685 + 5 = 689 WCET clock cycles. As shown in
Equation 2.3 this can lead to significant error in the calculated clock offset and
consecutively lead to jitter. If hardware-based timestamping is used, the worst-
case delay of 689 clock cycles does not introduce any jitter, since the timestamp
has already been captured in hardware and thus the software only needs to read
the stored value.

Furthermore, the WCET analysis of functions ptpv2_issue_msg() and
ptpv2_handle_msg() showed that there is a significant overhead in the proces-
sor to execute the PTP protocol.

36 Hardware Assisted Clock Synchronization with PTP

We propose as future work a complete in-hardware implementation of the PTP
synchronization. Building up from the presented results, the proposed hardware-
assist architecture can be extended with the addition of a PTP message genera-
tor controller. This is hypothesized to both minimize jitter but also significantly
reduce the processor load especially in multi-tasking environments where the pre-
cision of PTP can be reduced significantly [30]. This will also allow for greater
scalability on large scale networks, were devices require more than one ethernet
ports to synchronize using PTP.

2.5.4 Clock Synchronization

To evaluate the clock synchronization, the PTP_SLAVE was configured to re-
port, over serial a port, the calculated clock offset at each PTP synchronization
interval (after all four timestamps were gathered). To best evaluate the perfor-
mance of the proposed implementation, four sets of results were collected by
testing different combinations of implementation, namely:

• software-based timestamping

• hardware-based timestamping

• abrupt clock updates

• clock rate control adjustment

As a base of comparison to the evaluation of the results and to determine the
static drift between the master and slave clocks on the two FPGA boards, mea-
surements were gathered using PTP but without implementing any corrections
or adjustments to the slave clock. Figure 2.7 presents the PTP slave’s clock
offset as calculated after an initial correction and no further adjustments. The
relative drift was estimated at an average of 34 us/sec, which corresponds to 34
ppm and illustrates the need for accurate synchronization.

First, the effects of the proposed hardware-based timestamping against software-
based timestamping were compared in terms of jitter as standard deviation.
Figure 2.8 presents the results from 18000 collected samples from two differ-
ent measurements with a SYNC period of 0.5 ms. The calculation used only
abrupt updates for correcting the clock offset, to clearly reveal the influence of
the timestamping mechanism. The hardware-based timestamp mechanism man-
aged to reduce jitter to a standard deviation of 49.8 ns, while software-based
timestamping could only achieve a standard deviation of 95.3 ns.

2.5 Evaluation 37

0 50 100 150 200 250 300 350 400 450 500
Time (samples)

-10000

-8000

-6000

-4000

-2000

C
lo

ck
 O
ff

se
t

(n
s)

Measured Clock Offset using PTP

Not corrected clock offset

Figure 2.7: Measured clock offset between the two FPGA boards (using
hardware-based time-stamping).

Software-based Timestamping Clock Synchronization (std.dev=95.3ns)

-500 -400 -300 -200 -100 0 100 200 300
Clock Offset (ns)

0

1000

2000

3000

S
a
m

p
le

s
C

o
u

n
t

Hardware-based Timestamping Clock Synchronization (std.dev=49.8ns)

-500 -400 -300 -200 -100 0 100 200 300
Clock Offset (ns)

0

500

1000

1500

2000

S
a
m

p
le

s
C

o
u

n
t

Figure 2.8: PTP-Slave clock offset timestamping method comparison between
software-based (top) and hardware-based (bottom).

Secondly, the effects of the proposed rate control mechanism were investigated
in terms of accuracy (avg. mean) of the calculated offset. The measurements
presented in Figure 2.8 show that there is an avg. mean offset of 154 ns. This
offset is introduced by the time it takes to read the clock, add the delay and
write-back the new value into the clock. Figure 2.9 presents and compares the
improved avg. mean using the proposed rate control mechanism against the
achieved accuracy using only abrupt updates. The data were collected from
two different measurements that both used a 0.5 ms SYNC message period and
hardware-based timestamping. The achieved achieved accuracy of rate-control
was within 17 ns with a std. deviation of 48.7 ns.

38 Hardware Assisted Clock Synchronization with PTP

Clock Synchronization Using Abrupt Updates (mean=-153.9ns)

-300 -250 -200 -150 -100 -50 0 50 100
Clock Offset (ns)

0

500

1000

1500

S
a
m

p
le

s
C

o
u

n
t

Clock Synchronization Using Rate-Control (mean = -17.3ns)

-300 -250 -200 -150 -100 -50 0 50 100
Clock Offset (ns)

0

500

1000

1500

S
a
m

p
le

s
C

o
u

n
t

Figure 2.9: PTP-Slave clock offset adjustment method comparison between
abrupt-updates (top) and rate-control (bottom).

The results show that the timestamping method influences the jitter of the cal-
culated offset, while the clock adjustment method was mainly responsible for the
accuracy of the achieved synchronization but also revealed a slight improvement
in jitter.

The proposed PTP Hardware-Assist implementation offers sub-microsecond clock
synchronization of an avg. mean of −17.3 ns and a jitter of approx. 48.7 ns with
a worst-case clock offset of 138 ns. The results improve the worst-case synchro-
nization offset of 500 ns that was achieved when using only software-based time-
stamping and abrupt updates. The presented results also achieve better worst-
case offset when compared to the related architecture of the STM32F107xx
microprocessor, which as characterized by [67] it achieves a worst-case offset
of 260 ns. Moreover, the achieved performance is comparable to the clock syn-
chronization of a commercial PTP-capable Ethernet PHY transceiver that is
presented in [53, 49], and allows for an avg. mean of 10 ns and a jitter of
approximately 50 ns.

We propose as future work to extend the experimental setup and evaluate the
presented architecture over a large-scale TSN network composed of multiple T-
CREST nodes. It is hypothesized that traffic load and multiple-hops will have a
negative effect on the clock synchronization precision between network nodes due

2.6 Conclusion 39

to an increased transit time of PTP messages, as shown in the analysis of [122]
[30]. In addition we plan to increase the resolution of the clock counter. Finally,
the WCET analysis highlighted the need for hardware-based timestamping as
well as revealed how time intensive the execution of PTP is. Based on the
results we plan to investigate a complete in-hardware solution for performing the
PTP synchronization, including transmission of PTP frames, that will effectively
reduce the processor load of network devices as well as provide transparent to
the user clock synchronization.

2.5.5 Source Access

The presented hardware-architecture is integrated with the open-source project
T-CREST which is hosted at [128]. The PTP Hardware-Assist design can be
found at https://github.com/t-crest/patmos/tree/master/hardware/src/main
/scala/ptp1588assist. The PTP software is part of the ethernet lib of Patmos
and is available at https://github.com/t-crest/patmos/tree/master/c/ethlib.
To monitor the live offset from a connected PTP_SLAVE T-CREST node, a
visualization script was developed available at https://github.com/t-crest/patm
os/blob/master/c/ethlib/other/plotPTPOffset.py

2.6 Conclusion

This paper investigated the IEEE 1588-2008 Precise Time Protocol, which pro-
vides a global time reference for IEEE 802.1 TSN networks. We explored the
design of a hardware-assisted implementation of PTP using a standard Ether-
net PHY transceiver and finally implemented a hardware architecture that can
achieve sub-microsecond precision.

The proposed architecture was successfully integrated with the T-CREST and
synthesized on FPGA with minimal hardware overhead. The PTP software
stack was implemented on the time-predictable Patmos processor which allowed
for a full WCET analysis of the application.

The clock synchronization was evaluated on an experimental setup, composed
of two FPGA boards implementing the proposed architecture and communicat-
ing through a commercial off-the-shelf switch at 100 Mbps. The evaluation was
performed using two metrics, jitter as standard deviation and accuracy as av-
erage mean, and data were collected over a variety of timestamping and clock
adjustment combinations.

40 Hardware Assisted Clock Synchronization with PTP

The results showed that the proposed architecture greatly improved the preci-
sion of software-based timestamping and it achieved comparable results with
commercial off-the-shelf PTP-capable Ethernet PHY transceivers, showing that
FPGA-based PTP clock synchronization is feasible.

Acknowledgment

This is work was part of the Fog Computing for Robotics and Industrial Au-
tomation (FORA) European Training Network (ETN) funded by the European
Union’s Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 764785.

Chapter 3
Fault-tolerant Clock

Synchronization using Precise
Time Protocol Multi-Domain

Aggregation

By Eleftherios Kyriakakis, Koen Tange, Niklas Reusch,
Eder Ollora Zaballa, Xenofon Fafoutis, Martin Schoeberl, and

Nicola Dragoni [C3]

Abstract
Distributed real-time systems often rely on time-triggered commu-
nication and task execution to guarantee end-to-end latency and
time-predictable computation. Such systems require a reliable syn-
chronized network time to be shared among end-systems. The IEEE
1588 Precision Time Protocol (PTP) enables such clock synchroniza-
tion throughout an Ethernet-based network. While security was not
addressed in previous versions of the IEEE 1588 standard, in its most
recent iteration (IEEE 1588-2019), several security mechanisms and
recommendations were included describing different measures that
can be taken to improve system security and safety. One proposal to
improve security and reliability is to add redundancy to the network

42
Fault-tolerant Clock Synchronization using Precise Time Protocol

Multi-Domain Aggregation

through modifications in the topology. However, this recommenda-
tion omits implementation details and leaves the question open of
how it affects synchronization quality.
This work investigates the quality impact and security properties
of redundant PTP deployment and proposes an observation window-
based multi-domain, PTP end-system, design to increase fault-tolerance
and security. We implement the proposed design inside a discrete-
event network simulator and evaluate its clock synchronization qual-
ity using two test-case network topologies with simulated faults.

3.1 Introduction

Modern Cyber-Physical Systems (CPS) are becoming increasingly connected
to the Internet through the advancements of Fog Computing and Industrial
Internet of Things. Thus nowadays, security becomes an essential factor in
the design of such systems, in addition to the traditional safety and reliability
requirements [125, 74].

Time-triggered communication is often used in distributed CPS that require
strict guarantees on the timing of messages. Such systems need a high precision
global notion of time to be shared among the nodes in the network to achieve syn-
chronous scheduled communication and computation [121, 162]. Time-Sensitive
Networking (TSN) [104] is a newly developed standard that aims to enable deter-
ministic real-time communication for mixed-criticality traffic while preserving
the high-bandwidth capabilities of Ethernet. It is developed by the TSN Task
Group as an extension to the 802.1 Ethernet standard and consists of many
sub-standards for different components. TSN uses a profile (802.1 AS-Rev [99])
of the IEEE 1588 Precision Time Protocol (PTP) standard [39] to enable accu-
rate clock synchronization. Although PTP has been in use for decades, recent
research indicates that this protocol’s security and safety aspects have been over-
looked, leaving it vulnerable to time synchronization attacks [151]. An attack
on an automated factory’s network time would disrupt the communication and
computation schedule leading to missed deadlines and messages. This could
have catastrophic consequences both in the production line and operating ma-
chinery, as well as possibly endanger human lives or the environment.

To address some of these issues, the IEEE Precise Networked Clock Synchroniza-
tion Working Group has included various security measures in the updated IEEE
1588-2019 standard [160]. This updated standard proposes several measures in-
volving redundancy to mitigate security and safety issues due to unavailable
links. To support the proposed redundancy, the standard recommends using a

3.1 Introduction 43

voting algorithm to derive a converged clock offset from the multiple domains.
However, no further information is given, leaving the algorithm’s choice and its
implementation to the user.

While distributed consensus and voting algorithms are extensively studied [100],
to our knowledge, no such work exists in the context of highly time-sensitive
PTP networks. We explore the concept of fault-tolerant clock synchronization
within TSN and propose a multi-domain synchronization scheme that uses re-
dundant paths combined with frame aggregation and a time-based observation
window to achieve secure and fault-tolerant operation. We evaluate the proposed
approach by simulating three test-case network topologies in a discrete-event
network simulation tool OMNeT++ [42]. The achieved clock synchronization
is compared against standard PTP end-systems and evaluated regarding two
metrics, accuracy as average mean and jitter as the standard deviation of the
clock offset. The proposed multi-domain design is able to preserve microsecond
precision despite the existence of network failures. The contributions of this
paper are:

• A fault-tolerant PTP end-system design that supports multiple synchro-
nization domains.

• A timed observation window mechanism that aims to increase security by
filtering received frames.

• A comparative analysis of clock synchronization quality in different test-
case scenarios with faults.

The remainder of this paper is structured in 6 sections: Section 3.2 presents the
fundamental concepts of PTP and fault-tolerant synchronization and introduces
the problem statement. Section 3.3 discusses the related work in PTP security
and fault tolerance. Section 3.4 presents the proposed multi-domain end-system
architecture and discusses the required network topology. Section 3.5 evaluates
the proposed multi-domain design and compares its performance against the
standard PTP mechanisms by simulating different test-cases with synthetic sce-
narios. Section 3.6 provides a discussion on the safety and security implications
of the proposed multi-domain aggregation mechanism. Section 3.7 presents the
planned future extensions of this work. Section 3.8 summarizes the presented
work and concludes the paper.

44
Fault-tolerant Clock Synchronization using Precise Time Protocol

Multi-Domain Aggregation

3.2 Background

3.2.1 Fault-Tolerant Clock Synchronization

Precise and fault-tolerant time synchronization is an operational requirement of
distributed safety-critical real-time systems, such as those found in aerospace
and automotive industry. Redundancy is the key to tolerate Byzantine faults
in these systems, as any master clock can exhibit arbitrary behaviour and pro-
vide false readings of its local clock to connected systems. Consequently, slave
clocks can misinterpret this information either because accurate convergence
algorithms have not been implemented or simply because the in-place redun-
dancy is not sufficient. It can lead to drift in the relative clock offset of the
network-wide time base.

This effect has been described in research [6, 7], where the authors have analyzed
the need for 3f + 1 nodes available in a distributed system that can tolerate
f faults and have provided static bounds for different convergence algorithms.
The most predominant algorithm of these is the Fault-Tolerant Average (FTA),
which was first introduced in [1] and is incorporated in the fault-tolerant clock
synchronization of TTEthernet [73] that is now part of the aerospace standard
AS6802 [59]. In this work, we try to incorporate FTA principles in PTP and
evaluate its performance in TSN networks as a means to provide fault-tolerant
multi-domain clock synchronization.

3.2.2 IEEE 1588-2019 Precise Time Protocol

PTP is a hierarchical clock synchronization protocol based on a periodic ex-
change of Ethernet frames that estimates the clock offset between end-system
ports configured as slaves and masters [24]. Typically, a PTP stack is assigned
to each PTP port and is responsible for executing the protocol. A mecha-
nism, called a clock servo, is responsible for correcting the device clock using a
proportional-integral filter [32]. The PTP stack on a slave port calculates the
time difference from a master by collecting four timestamps using four respective
frames:

1. SYNC, from master to slave

2. FOLLOW_UP, from master to slave

3. DELAY_REQ, from slave to master

3.2 Background 45

4. DELAY_REPLY, from master to slave

Moreover, precise time-stamping of the received/sent frames is a crucial part of
the protocol, as it directly influences the precision of the estimated clock offset.
Select hardware units can be used for this purpose [138] . In the rest of this
work, we assume that such time-stamping units are available in all end-systems.

PTP allows for multiple masters to exist, but only one master’s synchroniza-
tion frames are used to calibrate an end system’s internal clock at each given
synchronization cycle. This selection is made using the best master clock al-
gorithm (BMCA). The BMCA works by comparing an arbitary value, which
represents the remote clock quality, connected network end-systems advertised
that in dedicated periodic frames called ANNOUNCE frames. From this infor-
mation it derives the best clock and then it compares that to the quality of its
local clock to determine its role as a master or a slave.

The IEEE-1588-2019 standard adds several security features to PTP [160]. Most
notably, it adds support for multiple types of authenticated encryption, address-
ing many of the security concerns that were present in its predecessor, IEEE-
1588-2008 [39]. However, none of the introduced features protects against delay
attacks, nor do they consider faulty master nodes (e.g., compromised by a mali-
cious party). A malicious master node might try to influence the system time by
announcing high accuracy during the BMCA, subsequently moving the time win-
dow once it has been elected. Delay attacks assume that an attacker can control
a link, and might delay messages for an indefinite amount of time. To mitigate
the impact of such attacks, the IEEE-1588-2019 standard only includes two rec-
ommendations: to deploy redundant master clocks; and to deploy redundant
network topologies. The first recommendation works without any alterations to
the protocol. As the PTP protocol is a distributed algorithm, it will eventually
select one of the redundant master clocks if the primary one fails; however, this
can introduce significant time overhead that leads to jitter. The second recom-
mendation stands out: a PTP system distils a logical minimum spanning tree
topology with the elected master clock as a root, and all slaves (i.e., consumers
of the synchronization signal) as leaves. A minimum spanning tree does not
allow multiple paths between any two nodes to exist by its very definition. The
solution to this is to run multiple PTP domains in parallel, ensuring that they
choose different physical network paths for their tree topology. A PTP domain
is a numerical identifier included in every protocol message. It allows multiple
PTP systems to operate on one network without interfering with other PTP
systems.

A multi-domain setup combines neatly with the first recommendation of using
multiple master clocks. With multiple parallel domains, every slave system

46
Fault-tolerant Clock Synchronization using Precise Time Protocol

Multi-Domain Aggregation

needs to execute a deterministic voting algorithm to arrive at the same approx-
imate time. However, the IEEE-1588-2019 standard does not recommend any
voting algorithms. Additionally, it is left unclear what the performance impact
and effectiveness of these measures will be. Therefore, we attempt to fill this
knowledge gap by analyzing two voting algorithms’ performance in a simulated
PTP system. Further, we explore the impact of link failures on timing accuracy
during the execution of a PTP system both with and without redundancy in
place.

3.3 Related Work

In the broad spectrum of network attacks related to PTP, disrupting the syn-
chronization is the primary goal. Lack of message authentication is one of the
main attack vectors to break master-slave synchronization. The authors of [151]
analyze the security risks associated with PTP by building a testbed that shows
synchronization disruption between PTP devices. The tests conducted include
master spoof attacks (spoofing ANNOUNCE and SYNC packets), ANNOUNCE
DoS attacks (spamming target slave) and master clock takeover attacks. Sim-
ilarly, Lisova [139] presents a threat model that shows an attack classification
that lists several PTP clock synchronization attacks (e.g. replay and delay
attacks, flooding/DoS) that target availability among other factors. Lisova pro-
poses a distributed monitoring strategy to detect if an attacker is affecting
clock synchronization. While both studies [151] [139] point out existing threats
to availability, the current work provides a fault-tolerant design to guarantee
availability.

To tackle some of the attacks mentioned earlier, IPSec and MACSec have al-
ready been analyzed for time synchronization [55] to provide authentication,
encryption, and confidentiality. However, neither provide any availability guar-
antees or fault tolerance against a compromised endpoint or delay attacks. We
consider IPSec and MACsec complementary to the fault tolerance algorithms
and mechanism discussed in this work.

In 2014, Mizrahi published an informational Request For Comments (RFC)
with the requirements to secure time protocols in packet-switched networks [79].
The document presents a threat model and threat analysis that lists several
attack types such as packet manipulation, spoofing or replay attacks. It focuses
on listing minimum security requirements such as authentication, authoriza-
tion, confidentiality. While these requirements could create a security basis for
next versions of time synchronization protocols, they do not guarantee availabil-
ity. Additionally, the document briefly references a few mechanisms to protect

3.4 Multi-domain Node and Algorithm Design 47

against delay attacks or attacks that degrade clock accuracy, such as using of
multiple paths [63]. This RFC also proposes that outliers in received time val-
ues should be considered erroneous and be ignored. The current study aims to
fill the gap of fault tolerance, resilience and availability that the RFC does not
cover. Specifically, it presents an implementation and evaluates its resilience to
faults.

Mizrahi presents the concept of slave diversity [63] to obtain high clock accuracy
and reduce time error using multiple paths. Similarly, Shipiner et al. present
a multi-path approach [72] that evaluates path diversity. While both studies
demonstrate the applicability of multiple path time synchronization, there are
significant differences with this work. First, Mizrahi [63] does not tackle the
master redundancy and availability features into fault tolerance and Shipiner
et al. [72] do not provide simulation and performance results. In contrast, this
work, uses different PTP domains with multiple masters to guarantee availability
and evaluates the fault-tolerance in simulation.

3.4 Multi-domain Node and Algorithm Design

Our proposed approach consists of multiple design elements and considerations
spread over multiple layers. Firstly, we introduce a redundant variant of a typ-
ical PTP node. A node’s ability to interact with singular (i.e., non-redundant)
nodes is preserved, leaving room for hybrid PTP systems. Secondly, we discuss
network topology requirements that should be taken into account when design-
ing redundant PTP systems. Finally, we describe the implemented convergence
algorithms.

The design proposed in this section aims to mitigate link failures and protect
against Byzantine actors on the network, but it does not guarantee the com-
municated messages’ integrity or authenticity. It is intended to complement
existing resilience and security features proposed by the IEEE-1588-2019 stan-
dard, which provide these properties.

3.4.1 Node Architecture

A redundant PTP node has to support running PTP on n domains at once. To
this end, we design a node architecture that maintains n parallel PTP stacks
and aggregates their computed offsets. As is usual for Byzantine fault-tolerant
systems, to protect against f faults, n should be picked as n = 3f +1. Figure 3.1

48
Fault-tolerant Clock Synchronization using Precise Time Protocol

Multi-Domain Aggregation

...

IF#1 IF#2 ... IF#N

offset[1]

PTP
Stack

Instance
#1

offset[2]

PTP
Stack

Instance
#2

...

offset[N]

PTP
Stack

Instance
#N

time

RTC

align

Clock Servo

Domain
#1

Domain
#2

Domain
#N

Multi-domain PTP End-System

aggregated
offset

Figure 3.1: Extended PTP end-system architecture to support multi-domain
aggregation. Each domain uses a separate network interface and
PTP stack. The calculated offsets are fed into an aggregation
function, which corrects the clock.

3.4 Multi-domain Node and Algorithm Design 49

presents the design of the proposed node. Each PTP stack is assigned an indi-
vidual network interface port and executes isolated from the others. Using only
one network interface is possible, but it would turn this into a bottleneck and
the weakest link for each node. If the node is a slave, each stack periodically
receives PTP messages that have to be aggregated somehow. Each stack distils
an offset from the incoming messages. The calculated offset is combined with
the latest PTP frame ingress timestamps as a tuple and fed into a convergence
algorithm. If the node is a master node, it simply has to transmit PTP messages
on every domain.

The convergence algorithm aggregates the most recently received offsets for each
domain within an observation window, and produces a single aggregated offset
correction for the real-time clock (RTC). This convergence algorithm is trans-
parent to the PTP stacks, the clock servo, and any applications depending on
the synchronized time of the RTC.

3.4.2 Network Topology

To effectively mitigate link/node failures and malicious PTP actor nodes, net-
work paths for each domain should be entirely disjoint. Therefore, one can spec-
ify the main goal for the network topology is to introduce redundancy where
possible. The observation window should be tuned according to the maximum
expected latency of all the redundant domain paths. Thus, to minimize the ob-
servation window span , a design using redundant network paths should strive
to preserve a symmetric topology with the same number of hops between slaves
and master nodes. Further optimization on the asymmetry of links has been in-
vestigated by [11, 40]. Note that while a fully symmetric topology describes an
ideal situation, it is not an explicit requirement. A symmetric topology allows
for balanced network delays with equal worst-case end-to-end latency (WCEL),
and thus it is hypothesized to lead to better convergence algorithm performance.
In the remainder of this work, we thus assume a fully symmetric topology to
explore the ideal case.

3.4.3 Convergence Algorithms

The convergence algorithm is run on each PTP slave node individually and takes
as inputs a collection of latest observed offsets from each domain PTP stack. We
implement two different convergence algorithms for evaluation. The first offset
aggregation algorithm is a simple averaging function (AVG) over the available

50
Fault-tolerant Clock Synchronization using Precise Time Protocol

Multi-Domain Aggregation

Master Node D

Master Node C

Master Node B

Master Node A

t4t3t2timestamp: t1

4th Observation Window
Aggregated Frames: {D, C, B}

Slave Node

Frame A

Frame B

Frame C

Frame D Tim
elines

Figure 3.2: Observation windows are generated by new SYNC/FOLLOW_UP
frames. Received frames that are within the time window are used
in the aggregated offset calculation.

offsets. The second algorithm implements a Byzantine Fault Tolerant approach
(FTA) for clock synchronization.

3.4.3.1 Observation Window Filtering

Figure 3.2 illustrates how individual PTP frames from the different PTP stacks
are converged by initiating separate observation windows. Each received SYNC,
or FOLLOW_UP frame initiates a new observation window based on the ingress
timestamp over which the convergence algorithm operates. Only frames within
an observation window time are taken into account to calculate the converged
clock offset for that specific point in time. The duration of the observation
window, controls the accepted time difference threshold of the received master
frame timestamps from the last received PTP frame timestamp. This parameter
should be tuned proportionally to the WCEL that the PTP master frames can
experience, i.e. the longest path delay between a redundant master and the
receiving slave.

The windowed decision algorithm is listed in Algorithm 1. This algorithm takes
a new (incoming) offset o from its local clock as input, together with its ingress
time i and PTP domain d. The algorithm’s output is an approximate offset and
ingress time, which can be used by the clock servo to correct the RTC. First, it
stores the tuple (o, i) in a table structure using the domain as an index, ensuring

3.4 Multi-domain Node and Algorithm Design 51

Algorithm 1 Windowed Decision Algorithm
1: procedure WindowedDecision(o, i, d) ▷ Executes a windowed decision

algorithm using the latest received timestamps
State: S ▷ A table d −→(od, id) mapping all domains d ∈ D to (offset, ingress)

tuples
2: S[d]← (o, i)
3: S′ ← {x −→(ox, ix) ∈ S where |i− ix| ≤WINDOW}

4: ia ←
{

0 if |S′| = 0
Σx∈S′ ix

|S′| otherwise
5: oa ← FTA(S′) or AVG(S′)
6: return (oa, ia)
7: end procedure

that only one offset per domain is considered. After this, the table S is filtered
to S′, excluding offsets that were not received within a given delta WINDOW from
the new ingress timestamp. Then, the ingress of all offsets in S′ are averaged to
ia, and an approximate offset oa is calculated using either the FTA or the AVG
algorithm.

3.4.3.2 Averaging Algorithm (AVG)

The AVG consists of a simple averaging function that extracts all offsets from
the given map and returns the average of these, or 0 if there are no offsets.

3.4.3.3 Fault Tolerant averaging Algorithm (FTA)

The FTA [1] is an algorithm that provides bounded clock synchronization even in
the presence of faulty and possibly malicious master clocks (see also Section 3.2).
Algorithm 2 describes the implemented FTA algorithm.

In the general case where k faults should be tolerated, this algorithm drops
the earliest and last k offsets and averages the remaining offsets. First, usable
offsets are extracted from the given map structure S′, and special assignments
are made for the 2k most extreme offsets. Then, it distinguishes 3 cases: firstly,
if there is only one offset, we return that offset; secondly, if there are only two
offsets, their average is returned, and finally, if there are three or more offsets,
it drops the extremes and returns the average of the remaining offsets.

52
Fault-tolerant Clock Synchronization using Precise Time Protocol

Multi-Domain Aggregation

Algorithm 2 Fault Tolerant Algorithm
1: procedure FTA(S) ▷ Executes a fault-tolerant convergence algorithm

over a set of offsets
2: if |S| = 0 then
3: return 0
4: end if
5: O = {ox|x ∈ S}
6: omin ← k earliest offsets in O
7: omax ← k latest offsets in O
8: if |O| = 1 then
9: return omin

10: else if |O| = 2 then
11: return omin+omax

2
12: else if |O| ≥ 3 then
13: O′ ← O \ {omin, omax}
14: return Σx∈O′ x

|O′|
15: end if
16: end procedure

The first two cases will usually only trigger if there are remote failures, and the
system does not receive enough offsets. In this case, the failures are regarded
as faulty nodes, thereby exceeding the number of tolerated faults, and the most
we can do is a best-effort execution of the algorithm. The third case covers
the standard execution of the algorithm. By dropping the 2k outer offsets,
adversaries are forced to operate within a limited time offset range. By taking
the average of the remaining offsets, adversaries would have to control more
master nodes than our model tolerates to have a considerable effect on the
aggregated offset. For a formal proof, we refer the interested reader to [1, 6].

3.5 Evaluation

To demonstrate the fault-tolerance of the proposed redundant PTP scheme and
evaluate the synchronization quality, we generate two test-case network topolo-
gies 1. These topologies are simulated witin the OMNeT++-4.6 [42] discrete-
event network simulator using our extended version 2 of a PTP simulation
library named LibPTP [116]. LibPTP [115] is a complete simulation framework
for OMNeT++ that allows the simulation of standard PTP devices. To the RTC

1https://github.com/dtu-ese/ptp_multidomain
2https://github.com/dtu-ese/libPTP

3.5 Evaluation 53

oscillator noise and yield more realistic clock drift results, we utilize a Power-law
noise library (LibPLN [114]) as described in the LibPTP documentation [116].
All experiments are done on a 64-bit i7-7700HQ CPU system running at 2.8
GHz with 32GB RAM.

3.5.1 Simulation parameters

The presented experiments are based on the following assumptions. Firstly, we
assume that every node has multiple network interfaces, one for each domain,
which is in line with the standard’s recommendations, where it is advised that
each domain operates over a separate network interface. Secondly, to optimize
the simulation time and isolate the PTP evaluation, we assume that the network
is used exclusively by PTP, so no other network traffic is simulated in the ex-
periments. Empirically, we assume that every link has a bit-rate of 1 Gbps and
is 1 meter long. Finally, every PTP stack uses the recommended gPTP profile
for TSN [96] as shown in Table 3.1 and a peer-to-peer (P2P) delay mechanism.

Table 3.1: PTP port profile options. Values correspond to the interval of the
respective messages in seconds and are represented as powers of
two.

Parameter Value
logAnnounceInterval 1
announceReceiptTimeout 3
logSyncInterval -3
logMinDelayReqInterval -3
logMinDelayReqInterval -3

3.5.2 Test-case 1: Single PTP master on four redundant
domains

This experiment aims to evaluate the stability of the proposed multi-domain ag-
gregation scheme using the custom design of Figure 3.1 for both master and slave
nodes. We generate a synthetic topology with three nodes and four switches
as shown in Figure 3.3. A single multi-domain PTP master is connected to
four redundant transparent clock nodes over four different domains. We inte-
grate three different types of PTP slaves in the network: (A) a standard PTP

54
Fault-tolerant Clock Synchronization using Precise Time Protocol

Multi-Domain Aggregation

Standard PTP Slave 1

Multi-domain PTP Slave 2
(AVG aggregation)

Multi-domain PTP Slave 3
(FTA aggregation)

Transparent Clock
Domain 1

Transparent Clock
Domain 2

Transparent Clock
Domain 3

Transparent Clock
Domain 4

Multi-domain PTP
Master 1

Figure 3.3: First test-case network topology of single multi-domain PTP mas-
ter on four isolated redundant domain paths. The domains are
isolated using four different switches.

slave connected only to the first transparent clock switch (domain), (B) a multi-
domain PTP slave that uses the AVG algorithm and is connected to all domains
and (C) a multi-domain PTP slave that uses the proposed FTA algorithm and
connects to all domains.

We evaluate the synchronization quality in terms of average mean clock off-
set and standard deviation using a synthetic scenario. We simulate a simple
scenario of consecutive link failures where at 60 seconds the first link between
Master 1 and Transparent Clock 1 is disconnected. The rest of the links between
Master 1 and the transparent clocks are disconnected/fail similarly in intervals
of 30 seconds. We simulate the scenario for a total run-time of 180 seconds.

Figure 3.4 compares the measured mean clock offset and jitter of the two clock
servo aggregation methods (AVG and FTA). Although the mean of the AVG
and FTA aggregation methods are similar when no failures occur, we measure
significantly less jitter using FTA throughout the experiment’s run-time, result-
ing in more predictable clock synchronization. This is likely due to the nature of

3.5 Evaluation 55

AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
3o

ffs
et

35
ns

)

No3link3failures3t=[30:60]

AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
3o

ffs
et

35
ns

)

First3link3failure3t=[60:90]

AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
3o

ffs
et

35
ns

)

Second3link3failure3t=[90:120]

AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
3o

ffs
et

35
ns

)
Third3link3failure3t=[120:150]

Figure 3.4: Comparison of the mean clock offset and std. deviation measure-
ments through the link failures of the experimental test-case 1 (see
Section 3.5.2) with topology from Figure 3.3.

the FTA: outliers are discarded , ensuring that the system will take the average
of the most consistent master clocks. If there are some master clocks that drift
at different rates, or if these clock oscillators are very noisy, then it is likely that
they are often discarded for the aggregated timestamp.

3.5.3 Test-case 2: Four PTP masters on four redundant
domains

For the second test-case, we generate and simulate two network topologies com-
paring the standard BMCA against the proposed multi-domain scheme. The
first topology (see Figure 3.5a) has four PTP master capable standard nodes
and a standard node that is configured as a PTP slave. All nodes operate over
the same domain and are connected through a transparent clock switch in a star
topology. The second topology (see Figure 3.5b) has four standard PTP masters

56
Fault-tolerant Clock Synchronization using Precise Time Protocol

Multi-Domain Aggregation

connected and two redundant PTP slave nodes. The PTP masters operate over
four different domains and are respectively connected to four different transpar-
ent clock switches. For simplicity, we assume that individual PTP master node
clocks are synchronized to each other in order for the observation window to use
all available domains. This requirement is further discussed in Section 3.6. PTP
slave nodes 1 and 2 use respectively, the multi-domain aggregation methods de-
scribed in Section 3.4. We evaluate the performance of the synchronization by
simulating two synthetic scenarios.

3.5.3.1 Link/node failure scenario

In the first scenario, each of the PTP masters fails in sequence every 30 seconds
after the first minute of stable operation. This scenario covers a variety of real-
life failures such as device failures, cable failures or denial-of-service attacks. We
simulate the experiment for a total run-time of 180 seconds.

Figure 3.6 presents the mean time difference of the three PTP slave nodes and
compares the upper/lower bounds of the three PTP slave nodes. We observe
that in contrast to Test-case 1, the standard PTP slave node can stay synchro-
nized to the master through the consecutive link failures as it can now select
a new master, from each operating domain, after each link failure. However,
BMCA suffers from significant synchronization drift of more than 2 µs. The
FTA and the AVG aggregation manage to achieve better clock synchronization
accuracy with tighter bounds than the standard BCMA during the first two
link failures. As more links fail this difference between the methodologies is
normalized because fewer nodes are available to aggregate.

3.5.3.2 Malicious PTP master scenario

In this scenario, we investigate the effects of a malicious PTP master clock
that tries to offset the synchronized network time. The malicious end-system is
connected to the network at a specific point in time and advertises that it has
a higher clock quality that the existing master clocks. We emulate this scenario
by simulating the instantaneous connection of a new PTP master with higher
quality clock attributes after one minute of run-time at the first switch. The
malicious master has its local clock offset by 100 µs than the existing masters.
Due the implemented observation window’s properties, a malicious master must
be carefully implemented so that its local clock offset is within the observation
window’s bounds.

3.5 Evaluation 57

Standard PTP Slave

Transparent Clock
Domain 1

Standard PTP Master 1

Standard PTP
Master 2

Standard PTP
Master 3

Standard PTP Master 4

(a) Connect one standard PTP slave to four PTP masters operating on the same
domain. Clock selection based on BMCA.

Multi-domain PTP Slave 1
(averaging aggregation)

Multi-domain PTP Slave 2
(FTA aggregation)

Transparent Clock
Domain 1

Transparent Clock
Domain 2

Transparent Clock
Domain 3

Transparent Clock
Domain 4

Standard PTP
Master 1

Standard PTP
Master 2

Standard PTP
Master 3

Standard PTP
Master 4

(b) Two multi-domain PTP slaves connected to four PTP masters operating on
separate domains. Clock offset calculation uses multi-domain aggregation.

Figure 3.5: Second test-case parallel network topologies evaluation.

58
Fault-tolerant Clock Synchronization using Precise Time Protocol

Multi-Domain Aggregation

BMCA AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
=o

ffs
et

=d
ns

1

No=link=failures=t=[30:60]

BMCA AVG FTA

Algorithm

-2000

0

2000
C

lo
ck

=o
ffs

et
=d

ns
1

First=link=failure=t=[60:90]

BMCA AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
=o

ffs
et

=d
ns

1

Second=link=failure=t=[90:120]

BMCA AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
=o

ffs
et

=d
ns

1

Third=link=failure=t=[120:150]

Figure 3.6: Comparison of the mean clock offset and std. deviation measure-
ments through the link failures of the experimental test-case 2
(Section 3.5.3.1) with topology from Figure 3.5.

3.6 Discussion 59

We measure this attack’s effects on the clock synchronization precision of the
topology’s three PTP slaves relative to node Master 1. Figure 3.7 presents the
measured results of the time-difference for the three PTP slaves. The top plot
corresponds to the measurements taken from the Standard BMCA slave shown
in Figure 3.5a. In comparison, the bottom plot presents the measurements from
the multi-domain slaves shown in Figure 3.5b. We run the experiment for 120
seconds of simulation time.

In the standard PTP topology 3.5a, the newly connected malicious master is
quickly elected as the best clock by the BMCA. We note a significant initial drift
of the PTP slave relative to Master 1 after which the network is synchronized
to the time of the malicious master clock. In the redundant PTP topology 3.5b,
the connection of the malicious master cannot influence the independent masters
as they operate in different domains. The simple approach of averaging the
aggregated multi-domain master clocks is not sufficient as it is easily disturbed
by the malicious clock’s offset. In this scenario, the FTA proves to be the most
resilient as the malicious master’s relative clock offset is discarded according to
Algorithm 2.

3.6 Discussion

In the evaluated test-cases, we experimentally showed that a multi-domain ap-
proach could guarantee synchronized network time availability despite network
failures and malicious actions.

The platform designer has to guarantee that the PTP stack processes are isolated
and cannot affect each other if the security of one PTP stack is compromised.
This can be achieved using specialized hardware or sandboxing techniques such
as virtualization. Considering the capabilities of modern industrial computing
systems [137], the software cost for running the redundant PTP stacks in-parallel
is minimal, especially if the proposed design is implemented completely in soft-
ware. Preliminary results show that the CPU overhead generated by the PTP
stack is less than 1% of the available computing resources. Nevertheless, the
system designer should consider the additional cost for the redundant network
topology based on the safety requirements of the application, as there is a sig-
nificant cost increase in the number of links and switches.

The results showed that the FTA convergence algorithm could mitigate against
link or node failures, as well as a compromised master node broadcasting in-
correct timestamps. This work illustrates the importance of a fault-tolerant
method of converging the calculated offset from the multiple PTP domains. It

60
Fault-tolerant Clock Synchronization using Precise Time Protocol

Multi-Domain Aggregation

30 60 90 120
Time (s)

-10

-5

0

O
ff

se
t

(s
)

#10-5

Standard BCMA

30 60 90 120
Time (s)

-2

-1

0

O
ff

se
t

(s
)

#10-5

Averaging aggregation
FTA aggregation

Figure 3.7: Measured PTP-Slave clock offset relative to Master 1 in the test-
case scenario of a new malicious PTP master node connection at
t=60s (Section 3.5.3.2).

3.7 Future Work 61

is worth noting that although the averaging aggregation performed as well as the
FTA method, it was easily influenced by a malicious node and failed to provide
secure synchronization. While our design does not enforce authentication and
integrity of PTP messages by itself, the FTA algorithm leaves very little room
for tampered messages, as it discards everything outside of a margin known to
have a majority of correct offsets. What this approach does inherently provide
is protection against various forms of DoS, timing, and delay attacks where the
number of affected links/nodes is less than k. As already noted in Section 3.4,
this can be combined with the security measures proposed in IEEE-1588 (2019)
to further harden the security by providing authenticity, confidentiality and in-
tegrity of messages. Thus, the combined application of the measures proposed
in this work and the standardized security measures results in a secure PTP
system that in addition to the standardized measures is difficult to disrupt with
DoS and timing attacks.

Finally, although the proposed multi-domain PTP end-system scheme was tested
with both master and slave roles, its functionality is based on the assumption
that the redundant master clocks of each separate domains are synchronized
to each other. This assumption is easily achievable using the proposed multi-
domain PTP end-system design (see Figure 3.1), however standard PTP master
clocks on separate devices require an external fault-tolerant mechanism of clock
synchronization. One possible solution to this would be to use dual roles for
master nodes, were on specific domains they would act as slaves to each other
and other domains as masters in an interleaved scheme. It is hypothesized that
the standard PTP boundary clock component can support this dual role func-
tionality, but its implementation in a multi-domain network topology requires
further investigation.

3.7 Future Work

As future work, we plan to explore the implementation and characterization of
boundary clocks as a mechanism to enable standard PTP master clock synchro-
nization in redundant domains. Additionally, we plan to extend the evaluated
scenarios and investigate different types of attacks on PTP, such as frame spoof-
ing. This will allow us to characterize further the proposed multi-domain design
performance and identify its tuning parameters.

Moreover, one can think of a scenario where only a limited subset of all nodes
are connected to multiple domains. This raises questions such as how many
multi-domain nodes are necessary to meet a certain required timing accuracy?
For this, we plan to explore the integration of the proposed design in boundary

62
Fault-tolerant Clock Synchronization using Precise Time Protocol

Multi-Domain Aggregation

clocks that are connected to multiple domains, each maintaining slave clocks
connected to only one of these domains.

3.8 Conclusion

The presented work investigated the requirements for fault-tolerance in TSN
clock synchronization and proposed a PTP end-system design that supports
multi-domain aggregation. The proposed design implements isolated PTP stacks
that use an FTA-based aggregation mechanism to correct the clock servo. This
is combined with a time-based observation window for additional security. The
multi-domain PTP end-system was evaluated and compared against standard
PTP nodes in two scenarios with emulated link failures and possible malicious
PTP masters. Overall, this work illustrated empirically the necessity for fault-
tolerance in PTP and multi-domain aggregation design that manages to over-
come network faults.

Acknowledgment

This is work was part of the Fog Computing for Robotics and Industrial Au-
tomation (FORA) European Training Network (ETN) funded by the European
Union’s Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 764785.

Chapter 4
A Time-predictable

Open-Source TTEthernet
End-System

By Eleftherios Kyriakakis, Maja Lund, Luca Pezzarossa,
Jens Sparsø, and Martin Schoeberl [J1]

Abstract
Cyber-physical systems deployed in areas like automotive, avionics,
or industrial control are often distributed systems. The operation of
such systems requires coordinated execution of the individual tasks
with bounded communication network latency to guarantee quality-
of-control. Both the time for computing and communication needs
to be bounded and statically analyzable.
To provide deterministic communication between end-systems, real-
time networks can use a variety of industrial Ethernet standards
typically based on time-division scheduling and enforced by real-time
enabled network switches. For the computation, end-systems need
time-predictable processors where the worst-case execution time of
the application tasks can be analyzed statically.
This paper presents a time-predictable end-system with support for
deterministic communication using the open-source processor Pat-

64 A Time-predictable Open-Source TTEthernet End-System

mos. The proposed architecture is deployed in a TTEthernet net-
work, and the protocol software stack is implemented, and the worst-
case execution time is statically analyzed. The developed end-system
is evaluated in an experimental network setup composed of six TTEth-
ernet nodes that exchange periodic frames over a TTEthernet switch.

4.1 Introduction

Advancements in the field of safety-critical systems for industrial control and
avionics/automotive automation have brought a recent focus on distributed real-
time system communication [98]. This trend is emphasized by the upcoming
paradigm of Industry 4.0 and the recent efforts of the time-sensitive networking
(TSN) group [104] to develop a set of deterministic Ethernet standards that
meets the requirement for system’s interoperability and real-time communica-
tions.

The correct execution of real-time applications depends both on the functional
correctness of the result as well as the time it takes to produce the result. A
typical example that illustrates this criticality of functional and temporal cor-
rectness is a vehicle collision avoidance system. In this situation, the processor
must correctly detect a possible object, but it is equally important that com-
munication time, from the camera to the processor, and processing time, of the
image on the processor, are deterministically bounded to consider the system as
correctly functioning.

To achieve deterministic communication with bounded latency, real-time sys-
tems often employ a time-triggered (TT) communication schemes such as the
well-known time-triggered protocol [8], which is based on a cooperative schedule
and a network-wide notion of time [34]. This approach can be implemented on
Ethernet communications, such as TTEthenet [22] and TSN [133], to provide
the guaranteed networking services (latency, bandwidth, and jitter) required by
distributed real-time applications such as avionics, automotive, and industrial
control systems.

In this work, we focus on safety-critical systems and thus investigate the TTEth-
ernet protocol. TTEthernet uses a fault-tolerant synchronized communication
cycle with strict guarantees for transmission latency [22]. In addition, the pro-
tocol provides support for rate-constrained traffic and best-effort traffic classes.
TTEthernet has been standardized under the aerospace standard SAE AS6802 [59]
and has been implemented as a communication bus replacement in both auto-
motive and aerospace real-time applications [62, 90].

4.2 Related Work 65

This paper presents a time-predictable TTEthernet end-system implemented on
the open-source processor Patmos [145], allowing for static WCET analysis of
the networking code. This work enables the Patmos processor to communicate
through a deterministic network protocol, allowing the possibility for end-to-end
bounded latency communication that includes the software stack. We do so by
extending the existing Ethernet controller driver and implement a TTEthernet
software stack. We test the performance of the controller driver by evaluat-
ing the achieved clock synchronization and correct exchange of TT frames and
perform a static WCET analysis of the software stack.

The main contributions of this work are:

• A TTEthernet node that combines time-predictable execution of tasks
with time-triggered communication through TTEthernet

• A WCET analyzable Ethernet software stack, which allows to statically
guarantee that all deadlines and end-to-end timing requirements are met

• Performing a comparative analysis of the effects of number of integration
cycles against the achieved clock synchronization

• Implementing a PI controller that improves the achieved clock synchro-
nization precision

To the best of our knowledge, this is the first WCET analyzable TTEthernet
node that combines time-predictable communication over Ethernet with time-
predictable execution of tasks. The presented design is available in open source.1
An initial version of this work has been presented in [153].

This paper is organized into six sections: Section 4.2 presents related work
on TTEthernet. Section 4.3 provides a background on the TTEthernet inter-
nals. Section 4.4 describes the design and implementation of a time-predictable
TTEthernet node. Section 4.5 evaluates our design with measurements and
static WCET analysis performed on a system consisting of a switch and six
nodes. Section 4.6 concludes the paper.

4.2 Related Work

Traditional real-time communication was based on bus protocols such as CAN
and PROFIBUS that can send small prioritized frames with bounded latency.

1see https://github.com/t-crest/patmos

66 A Time-predictable Open-Source TTEthernet End-System

CAN was later extended with TT capabilities. This TTCAN bus restricts nodes
to only transmit frames in specific time slots, thus increasing the determinism
of the communication [14]. The main limitations of both CAN and TTCAN are
a maximum bandwidth of 1Mbit/s, and limited cable length, which depends
on the bandwidth of the bus [9]. To overcome these obstacles, FlexRay was
introduced to replace CAN discussed in [27].

As the demand for higher bandwidth increases, the industry has started look-
ing towards Ethernet-based real-time protocols. Several different standards and
protocols, such as EtherCAT, Ethernet Powerlink, and TTEthernet, were devel-
oped, some of which have been compared in [76].

Another emerging Ethernet protocol for real-time systems is TSN [133]. TSN
emerges from the audio-video bridging (AVB) protocol with the addition of
a time-scheduled mechanism for real-time communication through the use of a
gate control list on the transmission paths. Worst-case analysis of TSN networks
is presented in [148]. The schedulability of the gate control list has been inves-
tigated by various works such as [135, 154] that showed that rate-constrained
traffic can co-exist with time-triggered but introduces small jitter. In [102], the
authors achieve zero jitter determinism of TT frames by enforcing time-based
isolation of the traffic flows but reducing the solution space for TSN networks.
The timing synchronization mechanism of TSN is based on the well known IEEE
1588 Precise Time Protocol which has been characterized by[107] and experimen-
tally verified to achieve sub-microsecond precision by various works such as [54,
136, 138].

Both protocols, TSN and TTEthernet, aim to provide support for TT communi-
cation. They have been directly compared in [147], and the two protocols focus
on different real-time system requirements and provide different levels of criti-
cality. TSN offers greater flexibility and bandwidth fairness over TTEthernet
but is only suitable for soft-real time traffic due to its lack of fault-tolerant clock
synchronization and low granularity scheduling mechanism [121].

Research on TTEthernet communication has been focused on the following per-
spectives: (a) timing analysis of the communication links [129, 119], (b) schedule
synthesis for frame flows [65, 66, 132], and (c) investigating the clock synchro-
nization [73, 29]. In contrast, this work investigates the implementation charac-
teristics of a TTEthernet compatible end-system that supports WCET analysis
of the software on the end-system and its integration within a TTEthernet net-
work.

Latency and jitter through a single TTEthernet switch have been measured in
[51] using off-the-shelf components combined with a proprietary TTEthernet
Linux driver. A performance validation setup was presented for TTEthernet

4.2 Related Work 67

networks, and the relation between end-to-end latency, jitter, and frame size
was investigated. A comparison between a commercial off-the-shelf switch and a
TTEthernet switch was presented as a function of link utilization and end-to-end
latency. This emphasized the benefits of TTEthernet over standard Ethernet
switches. The measured jitter for the system was dependent on frame size, and
the authors observed a jitter of 10 µs for frames smaller than 128 bytes and 30 µs
for larger frames. Furthermore, a model of analyzing the worst-case latency of
TTEthernet in the existence of rate-constrained traffic load is presented in [119].
The model shows that it is possible to provide safe bounds for rate-constrained
traffic, and it is evaluated over a simulated network topology of an Airbus A380
aircraft.

Scheduling of TTEthernet communication has been investigated in [65]. It pro-
poses a scheduling approach for TT traffic that allows the calculation of the
transmission and reception time instants by each connected real-time applica-
tion. The synthesis for static scheduling for mixed-criticality systems has been
investigated in [66]. The concept of schedule porosity was introduced, allowing
un-synchronized (best-effort or rate-constrained) traffic to be mixed with time-
triggered traffic without suffering from starvation. Moreover, in [83], the authors
further optimize TTEthernet schedules for mixed-criticality applications by pre-
senting a schedule that allocates more bandwidth to best-effort traffic while still
preserving determinism of TT traffic.

Clock synchronization is an essential part of TTEthernet as it guarantees the
synchronized communication of the network end-systems according to the global
schedule. Depending on the clock synchronization accuracy requirements of an
application, the minimum number of integration cycles per cycle period can
be calculated [126]. In [118], the authors investigate in a simulated environ-
ment a least-squares algorithm that manages the compensation of the error.
In both cases, accurate measurements of the achieved synchronization accu-
racy, i.e., standard deviation and avg/max/min values, are not discussed, and
the methodology is implemented on a simulated environment of a TTEthernet
clock. In our setup, we use the TTEthernet clock synchronization mechanism
but improve the clock error by adding a PI controller.

In our review of related work, we identified that most papers focus on analyzing
the communication components of TTEthernet. We found just a single paper
that described the implementation and analysis of a TTEthernet end-system. A
software-based TTEthernet end-system has previously been developed for AU-
TOSAR [87], which is a standardized software architecture for control units
in cars. The implemented AUTOSAR system acts as a synchronization client
and uses existing hardware capabilities of Ethernet controllers to timestamp
incoming clock synchronization frames, and the authors observed a jitter of ap-
proximately 32 µs. Regarding the processing time of the protocol the authors

68 A Time-predictable Open-Source TTEthernet End-System

provide CPU utilization and memory overhead metrics. Precise end-to-end la-
tency of the system is unclear due to a non-deterministic dispatch and receive
function. In contrast to our work, the authors do not provide WCET analysis
of these functions, and although they discuss the importance of these delays in
the calculation of the end-to-end latency, they do not provide measurements
or static timing analysis. We provide static WCET analysis of all software
components of our TTEthernet stack.

To the best of our knowledge, our paper is the first to present a WCET ana-
lyzable TTEthernet end-system that combines time-predictable communication
over Ethernet with time-predictable execution of tasks. The presented design is
available in open source.

4.3 TTEthernet Background

4.3.1 Overview

The deterministic communication capabilities offered by TTEthernet are based
on special switches that handle TT traffic according to a global schedule, as well
as end-system equipped with TTEthernet capable controllers for transmission
and clock synchronization. TTEthernet technology is proprietary. However, an
initial version of the switch architecture is presented in [28]. The design of the
first hardware TTEthernet controller is presented in [35].

TTEthernet supports best-effort (BE) traffic and two types of critical traffic
(CT): rate-constrained [17, 129] and time-triggered (TT). TT traffic takes pri-
ority over rate-constrained traffic, which takes priority over best-effort traffic.
This paper focuses on TT traffic.

CT is sent and received using the concept of a virtual link (VL). A VL is a
relation between a sender and one or more receivers and is identified by a unique
ID. Switches know the VL definitions, and nodes know on which VL they are
allowed to send. CT is formatted as standard Ethernet frames, but it differs
from best-effort traffic by having the destination MAC address field used for the
CT marker and for the VL on which the frame belongs, as shown in Figure 4.1.
Depending on the VL, switches can forward the CT frame to the right port.

4.3 TTEthernet Background 69

Ethernet type II frame - 64 to 1518 bytes

Destination MAC
6 bytes

Source MAC
6 bytes

Ethertype
2 bytes

MAC header - 14 bytes

Data
46 to 1500 bytes

CRC
4 bytes

CT marker
4 bytes

VL ID
2 bytes

Critical traffic

Figure 4.1: Ethernet type II frame. Critical traffic identifies a destination
using a CT marker and VL ID instead of a MAC address.

receive window send window

actual receive
time

minimum delay
actual delay

maximum delay

Figure 4.2: Switch delay in relation to the receive and send windows.

4.3.2 Time-Triggered Traffic

TT traffic is transmitted at pre-defined time slots. Thus, a VL definition includes
a receive window where the switch accepts frames from the sender, and send
windows where the switch passes frames to the receivers. The switch ignores all
frames received outside of the defined window in order to guarantee bounded
end-to-end latency and minimal jitter for other frames. The latency depends on
the delay between the receive and the send windows in the switch. This latency
is called switch delay. Figure 4.2 shows the possible minimum and maximum
delays of an outgoing frame in relation to the receive and send windows.

The latency also depends on the transmission time (frame size over bandwidth)
and the propagation delay (cable distance over propagation speed). For a sys-
tem with short wires, the propagation delay is in the range of nanoseconds.
The expected minimum and maximum latency for a VL in a given TTEthernet
system can be calculated using Equations 4.1 and 4.2. 64 and 1518 are the

70 A Time-predictable Open-Source TTEthernet End-System

integration cycle 0 integration cycle 1 integration cycle 0 integration cycle 1

cluster cycle cluster cycle

TTE1 TTE2 TTE2 TTE1 TTE2 TTE2receive

send TTE3 TTE3

Figure 4.3: Example of integration and cluster cycles.

minimum and maximum possible Ethernet frame sizes, SDmin and SDmax are
the minimum and maximum switch delays, d the network cable length, and s
the propagation speed.

Lmin = SDmin(s) +
64 bytes · 8 bit

byte

bandwidth(bit
s)

+ dcable(m)
scable(m

s)
(4.1)

Lmax = SDmax(s) +
1518 bytes · 8 bit

byte

bandwidth(bit
s)

+ dcable(m)
scable(m

s)
(4.2)

4.3.3 Clock Synchronization

All nodes and switches need a global notion of time to send frames at the
right moment in time. Clock synchronization is carried out periodically every
integration cycle (typically in the range of 1 to 10 milliseconds). The schedule
for TT traffic is also periodic and repeats every cluster cycle, which is an integer
multiple of the integration cycle. Figure 4.3 shows an example of TT traffic in
a system with an integration period of 10 ms and two integration cycles per
cluster cycle. The schedule defines TT traffic by its period and the offset from
the start of the cluster cycle. For example, TTE3 in Figure 4.3 has a period of
20 ms and an offset of 10 ms.

Clock synchronization is achieved through the exchange of protocol control
frames (PCF). There are three types of PCFs in TTEthenet: integration frame,
cold-start frame, and cold-start acknowledge frame. Integration frames are used
in the periodic synchronization, while the last two types of PCF are used ex-
clusively during start-up. PCFs are used for synchronization only when they
become permanent. This happens at the point in time when the receiver knows

4.3 TTEthernet Background 71

that all related frames that have been sent to it prior to the send time of this
frame have arrived or will never arrive [52]. The permanence point in time
(PermanenceP IT) is calculated by the TTEthernet protocol as the worst-case
delay (Dmax) minus the dynamic delay (Dactual) that a synchronization frame
experiences plus the reception timestamp as shown in Equation 4.3. The dy-
namic delay (Dactual) is provided by the frames transparent clock value. This
mechanism allows for a receiver to re-establish the send order of frames, and it
used for remote clock reading during a synchronization operation. Assuming the
transparent clock depicts the transmission time (Dactual) and based on the stat-
ically scheduled receive point in time (ScheduledRXP IT) the clock difference
(ClockDiff) is calculated as in Equation 4.4.

PermanenceP IT = RXP IT + (Dmax −Dactual) (4.3)

ClockDiff = ScheduledRXP IT − PermanenceP IT (4.4)

Switches and nodes are involved in the exchange of PCFs for synchronization in
three different roles: synchronization masters, synchronization clients, and com-
pression masters. Typically, the switches act as compression masters, and the
nodes are either synchronization masters or clients. Each node keeps track of
when they believe the integration cycle has started, which is when synchroniza-
tion masters send out integration frames. Compression masters use the perma-
nence times of these frames to decide on the correct clock and send integration
frames to all synchronization masters and clients. A returning integration frame
is expected to be permanent 2 ·max_delay + comp_delay after the beginning
of the integration cycle, where comp_delay is the time it takes a compression
master to evaluate the frames. An acceptance window around this expected
permanence point defines whether or not the node should accept the PCF as
correct. The acceptance window has a width of twice the expected precision
of the system, defined as the maximum difference between two correct local
clocks. If the PCF is accepted, the difference between the expected and actual
permanence time is used to correct the clock. Correction is typically delayed
until it is sure that the corrected clock will not fall back within the acceptance
window, as shown in Figure 4.4. If more than one compression master is present,
the synchronization masters and clients receive multiple PCF in the acceptance
window. In this case, the clock correction uses a fault-tolerant average of the
differences between expected and actual permanence time.

72 A Time-predictable Open-Source TTEthernet End-System

2*max_delay+comp_delay

acceptance window

sync master
sends PCF

max_delay

earliest possible
receive time

latest possible
receive time

tte_receive

earliest send tick

Figure 4.4: Overview of clock synchronization, adapted from [146].

4.4 Design and Implementation of the TTEther-
net Node

In this section, we present the design and implementation of our TTEthernet
node. First, we describe the hardware platform. Then, we explain the function-
ality of the developed software stack. Finally, we present the theoretical limits
of the implementation.

We provide a time-predictable end node for a TTEthernet system, including
hardware design and WCET analysis of the network software. We focus on
time-predictable program execution and traffic transmission. Generating the
static schedule for the time-triggered traffic and allocation of TT frames is out
of the scope of this paper. We rely on available solutions, e.g., the scheduling
tool that is part of the TTEthernet toolset.

4.4.1 Hardware

The proposed TTEthernet node is based on the Patmos [145], a time-predictable
processor used in the T-CREST platform [94, 144], and on an open-source Ether-
net controller. The controller is based on the EthMac block from OpenCores [15],
which was previously ported for Patmos [91].

Figure 4.5 shows the hardware architecture of the node. The Patmos processor,
as well as the RX/TX buffer, uses a variant of the OCP interface, while the
EthMac block uses the Wishbone interface. A dedicated multiplexing bridge
component manages the conversion between the two protocols. It allows Patmos
to access the configuration registers in the EthMac controller and the RX/TX
buffer as memory-mapped IO devices. The EthMac controller connects to the
PHY chip through the media-independent interface (MII).

4.4 Design and Implementation of the TTEthernet Node 73

Patmos

Ethernet controller

EthMac
controller

RX/TX buffer
D

em
ux

/
br

id
ge

PHY
chip

RJ-45

Ethernet
cable

OCP

OCP

WB

WB

MII

Figure 4.5: Overview of the Patmos Ethernet controller, adapted from [91]. It
is connected to Patmos through OCP signals, and to a physical
PHY chip through MII.

Receiving and transmitting frames from the EthMac block is based on buffer
descriptors. These are data structures stored in the EthMac controller and
containing the address to an associated buffer in the RX/TX buffer component,
as well as the length and status of the buffer. The EthMac controller can receive
a new frame only when there is at least one available receive buffer. Otherwise,
the EthMac controller discards the frame. After receiving a frame, the controller
writes the receive status into the associated buffer descriptor, and the controller
may generate an interrupt (if enabled). The buffer will stay unavailable until
the driver software marks the buffer descriptor empty again.

To send and receive TT traffic, no changes are required to the hardware ar-
chitecture of the existing Ethernet controller [91]. However, the EthMac core
was configured in promiscuous mode to avoid any filtering of frames on MAC
addresses. Additionally, it was configured as full-duplex to avoid sending and
receiving blocking each other. The functionality of the proposed node entirely
lies in software, in the C library tte.c.

We implemented two different versions of the proposed solution: (1) where the
program discovers received frames through polling, and (2) where the Ethernet
controller triggers an interrupt whenever a frame is received. Using interrupts
for time stamping of an arriving Ethernet frame is not the best solution since the
start of the execution of the interrupt routine introduces jitter due to cache hits
and misses. This receive jitter is critical in our implementation as it degrades
the timestamp precision and results in lower clock synchronization quality. The
jitter was measured at -26 µs, with the resulting clock precision varying be-

74 A Time-predictable Open-Source TTEthernet End-System

tween -10 µs and 16 µs. Further results regarding the evaluation of the clock
synchronization are discussed in Section 4.5.2.

The polling solution solves this problem by using a periodic task that is sched-
uled to be released just before the next synchronization frame arrives. The
release time needs to include enough time to contain the worst-case preemption
delay and the possible jitter of the PCF itself. In this case, the processor is ready
to listen to the Ethernet port in a tight loop in order to get a better timestamp
in software. Therefore, in the polling solution, the actual polling runs only for a
short time, without wasting processor time. As future work, we plan to change
the Ethernet controller to include hardware support for time-stamping [138].

4.4.2 Software

Our node only acts as a synchronization client and only connects to a single
switch. The developed software stack offers three main functionalities: initial-
ization, receiving, and sending.

Figure 4.6 shows the intended flow of programs using the developed system. At
first, the program initializes the controller with static information regarding the
system, information on VLs, and the schedule. After initialization, the periodic
task starts. It contains a call to the application code, which the programmer
needs to organize as a cyclic executive, and then polling the Ethernet controller
when a new frame is expected to arrive.

It is necessary to ensure that the receive time of integration frames is recorded
as precisely as possible to enable correct clock synchronization. The received
frame is then passed through the tte_receive function, which will synchronize
the local clock in case of an integration frame, or otherwise return a value
indicating the frame type. The rest of the body depends on the purpose of the
program itself.

Outgoing TT frames can be scheduled anywhere in the program body and will
be sent according to the system schedule through timer interrupts. To avoid
fluctuations in the clock synchronization, the system schedule, and the WCET
of the program body should follow the limits described in Section 4.4.3.

4.4 Design and Implementation of the TTEthernet Node 75

initialization

receive msg

call tte receive
function

tte message

reply=2

succesfull clock
sync message

reply=1
other ethernet

message
reply=3failed clock sync

message
reply=0

Figure 4.6: The intended flow of user programs. The controller is first initial-
ized with all constants of the system. The regular operation is
performed by a loop where the program continually waits until a
frame is received, calls the tte_receive function, and then reacts
to the reply.

4.4.2.1 Initialization

The system needs to be initialized before a program loop can start. The initial-
ization data includes: the integration cycle, the cluster cycle, how many VLs
the node can send on, the maximum transmission delay, the compression de-
lay of the switch, and the system precision. Furthermore, the permitted send
time for each VL needs to be known, so each VL gets initialized with an ID,
an offset, and a period. The TTEthernet switch ensures that only relevant and
correctly timed TT frames are passed on to the network. As soon as the TTEth-
ernet receive function receives the first PCF, it starts the timer for the sending
function.

During initialization, RX buffers are also set up (by configuring buffer descrip-
tors). Multiple buffers are needed to ensure that frames are not lost while the
latest frame is still in use. The precise number of buffers depends on the system
and schedule.

76 A Time-predictable Open-Source TTEthernet End-System

4.4.2.2 Receiving and Clock Synchronization

Frame reception is performed periodically based on the scheduled receive point
in time. At each reception cycle, a function starts continuously polling the
interrupt source register for a specified timeout duration, until the bit signifying
that a frame has been received is set. This is done with a function called
tte_wait_for_frame, which is also responsible for recording the receive time by
reading the current cycle count. After a frame has been received and the receive
time has been stored, we mark the buffer as empty and clear the interrupt
source (implemented in the function tte_clear_free_rx_buffer). Afterwards,
the tte_receive function (described below) is called.

The tte_receive function initially checks the type of the frame. If it is a PCF
type, the integration frame is used to synchronize the local clock to the master
clock. If the received frame is not a PCF type, the function returns the received
frame to the application.

For clock synchronization, the permanence point is calculated by adding the
maximum delay and subtracting the transparent clock. For keeping track of
when the controller expects synchronization masters to have sent the PCF, a
variable called start_time is used. On receiving the very first PCF, this is set
to permanence_time − (2 · max_delay + comp_delay). start_time is used
to calculate the scheduled receive point, which is used to calculate the accep-
tance window. If the permanence point is outside the acceptance window, the
start_time is reset to zero, and the function returns zero. In this way, the user
program can immediately see that an error has occurred, and the controller
returns to regular operation when it receives a correctly timed PCF once again.

If the permanence point is within the acceptance window, the difference be-
tween permanence point and scheduled receive point is added to the start_time,
synchronizing the local clock to the master clock. The controller does not need
to wait until after the acceptance window to synchronize, because the imple-
mentation only assumes one switch in the network, and thus only one PCF per
integration cycle. Therefore, it is irrelevant whether or not the local clock goes
back within the acceptance window.

4.4.2.3 Sending

Frames must be sent according to a predefined schedule, which requires some
queuing mechanism, as the program should not be expected to calculate the
exact send times itself. The ethlib send function expects outgoing frames to

4.4 Design and Implementation of the TTEthernet Node 77

be stored in the RX/TX buffer and requires the specific address and size of the
frame. One send queue is created per VL during initialization and is allowed to
hold the maximum amount of frames that the VL can send in one cluster cycle,
calculated as clustercycle

V Lperiod . The send queues hold addresses and sizes of frames
scheduled for sending. Each queue operates in a FIFO manner, keeping track
of the head and tail through two variables.

The programmer has the responsibility to create frames in the RX/TX buffer
according to its intended use by mean of the function tte_prepare_header to
create the header of a TTEthernet frame. Frames are scheduled through the
function tte_schedule_send, which takes the address and size of the frame and
which VL it should be scheduled. The function then checks the queue of the
VL and, if not full, schedules the frame for sending. The programmer shall not
overwrite the buffer before the software stack sends the frame.

4.4.2.4 Generating the send schedule

An end-system should know the TTEthernet schedule running on the switch.
By knowing the maximum frame size of a VL, the period, and the offset, it
is the possible send times for each VL can be computed by repeatedly adding
the period to the offset. A small algorithm is then used to combine these into
a single schedule, generated on the fly at the startup time of the end-system.
This is explained through the example presented in Figure 4.7. To simplify the
scheduling of the next timer interrupt, each entry in the schedule represents the
time until the next interrupt. We represent time in tenths of ms.

The first event for each VL is at its offset; thus, the very first event in the
schedule can be found by finding the smallest offset. The starting offset is
stored in a global variable startTick and the VL it belongs to in the first place
in the schedule. For all VLs, a temporary variable named current is set to the
offset of the VL. The VL that had the starting offset adds its period to this
value, which is the V L.current value when i is 0 in Figure 4.7. We calculate the
schedule time when i = 0 as the difference between the minimum current value
(here 26) and the last current value (here 10). We store the VL with the smallest
current value in the next place in the schedule (when i = 1), and we increment
its current value by its period. We repeat these steps until the smallest current
value is larger than the cluster-cycle (8 ms in this example).

78 A Time-predictable Open-Source TTEthernet End-System

startTick 0 1 2 3 4 5

26 66 66 106 106

30 70

26 66

10 30 50 70 90

i

VL0

VL1

startTick 0 1 2 3 4 5

10 30-26
4

50-30
20

70-66
4

90-70
20

1 1

26-10
16

66-50
16

0 1 0 1

i

time

VL

4.0ms

1.0ms 2.0ms

2.6msVL0

VL1

offset period VL.current

generated schedule

Figure 4.7: Example of schedule generation. The two VLs with the offset and
period shown in the top left result in the schedule in the bottom
right when the cluster cycle is 8 ms. The top right shows the next
send time of each VL at different steps in the algorithm.

4.4.3 Theoretical Limits of the Implementation

Because of the single-threaded nature of the implementation, the controller is
characterized by certain limits, which we describe in the following three subsec-
tions.

4.4.3.1 Earliest outgoing TT frame

At the start of every cluster cycle, the transmission of frames is scheduled by
the PCF handle function right after the clock has been corrected. Since the
start of the cycle is defined as the point were the PCF frame is sent by the
synchronization masters, scheduling a VL to send at 0 ms would cause the
function to schedule a timer-tick in the past.

We do not know the exact receive times of PCFs at compile-time, but we can
assume that a PCF is permanent within the acceptance window, the latest
possible receive time would be the same as the latest possible permanence time.
Since the acceptance window is twice as wide as the precision, the latest receive
time can be calculated with Equation 4.5.

reclatest = 2 ·max_delay + comp_delay + precision (4.5)

4.4 Design and Implementation of the TTEthernet Node 79

expect returned
PCF to be
permanent

2*max_delay+comp_delay

acceptance window

sync master
sends PCF

max_delay

earliest possible
receive time

latest possible
receive time

tte_receive

earliest send tick

Figure 4.8: The earliest possible receive time is max_delay before the start
of the acceptance window. The latest possible receive time is at
the end of the acceptance window. The first TT frame should
be scheduled no earlier than the WCET of tte_receive after the
latest possible receive time.

To ensure that the first outgoing TT frame is never scheduled too soon, it should
be scheduled no earlier than the latest possible receive time plus the WCET of
the tte_receive function. Figure 4.8 illustrates this timing relationship.

4.4.3.2 Maximum execution time after a TT frame

If the program has a long execution time, the reception of PCF might be delayed,
negatively impacting the clock synchronization. Part of this could arise from
the code executed after receiving a TT frame. The maximum allowed execution
time after a TT frame depends on the TT frame scheduled with the smallest gap
to the next integration frame. In our switch implementation, the send_window
defined in the switch dictates the latest possible receive time in the node.

The earliest possible receive time of a PCF (assuming it is on schedule) would
be if the actual transmission time were 0, and the frame was permanent as
early as possible in the acceptance window. This is equivalent to max_delay
before the acceptance window, as seen in Figure 4.8. All in all, the maximum
execution time of the code executed on receiving a TT frame can be calculated
with Equation 4.6, as illustrated in Figure 4.9.

maxtt =start_time− ttreclatest + max_delay

+ comp_delay − precision
(4.6)

80 A Time-predictable Open-Source TTEthernet End-System

earliest pcf
receive timelatest TT

receive time
syncmaster
sends pcf

maximum execution timesend_window

max_delay + comp_delay
 - precision

Figure 4.9: The code executed after receiving a TT frame should take no
longer than from the latest TT receive time until the earliest re-
ceive time of the next PCF.

4.4.3.3 Maximum execution time during the integration cycle

Even if code executed upon receiving TT frames follow the limits described
above, the reception of a PCF could still be delayed if the combined execution
times of everything executed during an integration cycle exceed the integration
period. This limit can be expressed with Equation 4.7, where inctt is the number
of received TT frames.

period > WCETint + inctt ·WCETtt + send_ticks ·WCETsend (4.7)

4.4.4 Source Access

The TTEthernet controller and the relevant software are in open source and are
available at https://github.com/t-crest/patmos. The software can be found at
https://github.com/t-crest/patmos/tree/master/c/apps/tte-node.

4.5 Evaluation

4.5.1 System Setup

For implementation and testing, we used the star network configuration shown
in Figure 4.10. It consists of a TTEthernet Chronos switch from TTTech Inc.,
four Linux end nodes (AS, AC, VS, and VC), a Microsoft Windows node used
for configuration and monitoring, and our TTEthernet node. Three of the Linux
end nodes (AS, AC, and VC) act as synchronization masters. The fourth Linux
node (VS), as well as our TTEthernet node, act as synchronization clients.

4.5 Evaluation 81

Switch

AS AC VS VC

Board Monitor

VL 1001 VL 2001 VL 3001 VL4001
 VL4002

Figure 4.10: Illustration of components and VLs in the system. Red nodes
are synchronization masters; purple nodes are synchronization
clients. This is also the physical setup used for tests presented
in Section 4.5.

The TTTech Chronos switch has 24 ports: six supporting Gigabit Ethernet
and 18 supporting fast Ethernet (10/100Mbit/s). We use 100 Mbits/s. The
four Linix nodes are Dell precision T1700 PCs running Ubuntu. They are
all equipped with a TTEthernet PCIe network card. The network card has
two small form-factor pluggable ports that support connections with 100/1000
Mbit/s. The PCs execute a TTEthernet driver and API, as well as various
test programs. The Windows PC does not contain any TTEthernet specific
hardware. It runs the TTEthernet tools from TTTech Inc. that is used for
configuring the TTEthernet system. The Windows PC is used to monitor the
traffic on all VLs using Wireshark. The final node is our TTEthernet node,
which is implemented on an Altera DE2-115 FPGA board using two Ethernet
controllers: one for sending and one for receiving. All implemented hardware
and software is open-source.

The TTEthernet tools are a TTTech development suite for configuring TTEth-
ernet systems [166]. The tools include a GUI editor based on Eclipse [166].
Figure 4.11 shows the typical process for generating configuration files for all de-
vices in a TTEthernet system. The first step is to create a network description
file. It contains information about: senders, receivers, physical links, virtual
links, and synchronization domain. The TTE-Plan tool uses this file to gener-
ate a network configuration file, including the schedule for the entire network.
For a specific schedule, we can also manually edit the network configuration
file. From the network description and the network configuration files the tool
TTE-Build generates the device-specific binary images that are loaded into the
switch and the end nodes at initialization time.

82 A Time-predictable Open-Source TTEthernet End-System

TTEPlan TTEBuild

Network
description

XML

Network
configuration

XML

Binary
configuration

images

Figure 4.11: Typical process using TTEthernet tools.

We have experimented with different schedules, all implementing the same set
of VLs, as shown in Figure 4.10. We tested the network at different integration
periods and cluster cycles, but most experiments have used an integration period
of 10 ms and a cluster cycle of 20 ms. The maximum possible transmission
delay of any frame in the system was calculated with the TTEthernet tools
and configured as 135600 ns. The compression delay of 10500 ns was used
for collecting the results in Section 4.5. We calculated the precision with the
provided TTEthernet tools, and configured it as 10375 ns.

4.5.2 Clock Synchronization

The clock error is calculated as the difference between the scheduled receive point
in time, and the actual permanence point in time at each received integration
frame as specified by the TTEthernet standard SAE AS6802 [59]. The clock
error was measured in two different setups using different integration periods
(synchronization cycles), a 10 ms period, and a 100 ms period. Figure 4.12
presents a comparison of the measured clock error for the two integration periods.
For an integration period of 100 ms, the clock error ranges between 2875 ns and
3225 ns with a mean of 3055 ns, while for an integration period of 10 ms, the
clock error ranges between 2812 ns and 3112 ns with a mean of 2948 ns.

To reduce the systematic error, we implemented a proportional/integral (PI)
controller. The controller was manually tuned by first increasing the propor-
tional part until there was a steady oscillation and then increasing the integral
part until the systematic error was removed, this procedure led to the coefficient
values Ki = 0.3 and Kp = 0.7. The results of the PI controller implementation
are presented in Figure 4.13 and compared between the two different integra-
tion periods. When the control loop stabilizes, the clock error is just a few clock
cycles with a mean of 126 ns for the integration period of 100 ms and a mean
of 16.23 ns for the integration period of 10 ms. This is the best that can be
achieved by taking timestamps in software in a tight loop. Similar methods
for compensating the clock error have been investigated in [43]. The authors
presented in simulation the use of a Least Squares Algorithm that managed
to achieve 2000 ns offset. By applying a simple PI controller, not only we re-

4.5 Evaluation 83

0 500 1000 1500 2000 2500 3000
2800

2850

2900

2950

3000

3050

3100

3150

3200

Time (ms)

C
lo

c
k
 o
ff

s
e
t

(n
s
)

Integration period 100 ms
Integration period 10 ms

Figure 4.12: Clock error comparison between two different integration periods.

duce the complexity, but we also measured a significant increase in the clock
synchronization accuracy.

4.5.3 Latency and Jitter

To precisely measure latency and jitter of TT frames from the implemented
controller, we used a physical setup similar to the one described in [51] and
shown in Figure 4.10.

The test uses the two available Ethernet ports on the Altera board and sets up
a schedule with a VL from one port to the other. Both ports are considered to
be their own device by the schedule and are both synchronization clients. The
second controller is accessed like the first, but uses a different address in local
memory. This was not supported by the original ethlib, and was accommodated
by duplicating several ethlib IO functions. A single VL with a period of 10 ms
and an offset of 8.2 ms was used, which simplifies the test program since one
frame can be sent and received each integration cycle.

The test program follows the form described in Figure 4.6, with the first con-
troller receiving frames in the overall loop. After a successful synchronization
frame, a TT frame is scheduled, and the program waits until the second con-
troller receives the frame before proceeding. This enables the program to collect
both the schedule and receive points of frames as the current clock cycle count.
A slightly modified version of the sending interrupt function was used to mea-

84 A Time-predictable Open-Source TTEthernet End-System

0 500 1000 1500 2000 2500 3000
-2000

-1000

0

1000

2000

3000

4000

C
lo

c
k
 o
ff

s
e
t

(n
s
)

Time (ms)

Integration period 100 ms
Integration period 10 ms

Figure 4.13: Clock error with two different integration periods using a PI con-
troller.

sure the send point, making it possible to calculate latency and jitter. Both
receive and send window in the switch where 263 µs wide.

Figure 4.14 shows latency measured as the average difference in send and receive
time over 2000 measurements for 3 different frame sizes with various minimum
switch delays. Lmin and Lmax have been calculated using Equations 4.1 and 4.2,
disregarding propagation delay, and plotted alongside the values. All measured
values are inside the expected minimum and maximum values.

The expected transmission times for frames of the measured sizes are 5.12 µs,
32 µs, and 121.12 µs respectively, which means that the actual switch delay
for these experiments must be approximately 200 µs higher than the minimum,
judging by the trend-lines. This indicates that the switch receives the frames
approximately 63 µs into the receive window in these tests. The jitter, measured
as the smallest latency subtracted from the highest, did not vary significantly
as a function of switch delay but stayed between 4.5 us and 4.6 us throughout
all experiments.

4.5.4 Worst-Case Execution Time

To enable the WCET analysis of the software, all loops need to be bounded.
Therefore, we needed to perform some small modifications to our code. The
function which converts the transparent clock from the format used in PCF to

4.5 Evaluation 85

0

100

200

300

400

500

600

700

0 50 100 150 200 250

La
te

nc
y

(µ
s)

Minimum switch delay (µs)

64bytes 400bytes 1518bytes Lmin Lmax WCET

Figure 4.14: Latency for various frame sizes as a function of minimum switch
delay. The correlation is solid, and well within the expected
minimum and maximum values.

clock cycles initially performed division on an unsigned long. According to the
analysis tool, the division function contains an unbounded loop. We replaced
the division by an almost equivalent series of multiplication and bit-shifting to
make the function analyzable. Additionally, we added pragmas containing loop
bounds to all loops in the code, to aid the analysis tool.

We performed a WCET analysis on significant parts of the controller using the
platin WCET tool [89]. For the analysis, the board configuration was assumed
to be the default for DE2-115.

We run the WCET analysis on a program resembling the demo program used
with the regular implementation in Section 4.5.2. To verify that the program
and schedule satisfy the limits presented in Section 4.4.3, parts of the program
have been moved into separate functions. Additionally, to analyze the timer
interrupt function, it had to be explicitly called.

The tool requires that analyzed functions have the attribute noinline to prevent
inlining. This makes the analysis slightly more pessimistic than necessary. The
results can be seen in Table 4.1, where all functions are part of the implemented

86 A Time-predictable Open-Source TTEthernet End-System

Table 4.1: Worst case execution time of TTEthernet software stack functions.

Function WCET (in clock cycles)
tte_clear_free_rx_buffer 10
tte_receive 3018 (3424)
tte_receive_log 3154 (3561)
handle_integration_frame 1454 (1860)
hande_integration_frame_log 1590 (1997)
tte_prepare_test_data 63149
tte_schedule_send 244
tte_send_data 306
tte_clock_tick 1721
tte_code_int 392419
tte_code_tt 40156

tte.c library, except for the final two, which are part of the tested demo program.
The parentheses indicate WCET with PI implementation.

tte_clear_free_rx_buffer and tte_receive are mentioned in Section 4.4.2.2.
tte_receive_log is the TTEthernet receive function with logging enabled.
handle_integration_frame and
handle_integration_frame_log are called by the tte_receive function if the
frame is an integration frame. tte_prepare_test_data creates a TT frame where
the data part repeats a specified byte until the frame has a certain length.
tte_schedule_send is described in section 4.4.2.3. tte_clock_tick and
tte_clock_tick_log are the timer interrupt functions with and without logging,
and call tte_send_data when sending a frame. tte_code_int is executed after
each successfully received integration frame, and tte_code_tt is executed after
each received TT frame. The addition of logging adds about 150 clock cycles to
the WCET. It is worth noting that the PI implementation adds 400 clock cycles
while using fixed-point calculations.

4.5.5 Verifying Theoretical Limits of the Demo Program

With this example program and schedule, it is possible to verify that it satisfies
the theoretical limits. The earliest outgoing TT frame in this example has an
offset of 0.8 ms. Equation 4.8 presents the calculation of the earliest allowed
transmission of a TT frame. It accounts for the equations presented in Sec-
tion 4.4.3.1, the system constants, and the WCET of the tte_receive function
(the log version) as WCETtte_rx. Since 332.3 µs is approximately 0.33 ms, the

4.5 Evaluation 87

example follows this limit.

ttout = 2 ·max_delay + comp_delay + precision + WCETtte_rx

= 2 · 135.6µs + 10.5µs + 10.4µs + 3216cycles ·
12.5 ns

cycle

1000 ns
µs

= 332.3µs

(4.8)

The TT frame, which arrives closest to a PCF in this example, arrives between
18.6 ms and 18.863 ms. Using this information, Equation 4.6 and the system
constants, the maximum allowed execution time after TT frames is calculated
with Equation 4.9. The WCET of tte_code_tt in this example can be seen
in Table 4.1. Since it is less than the 101,816 calculated cycles, the example
program follows this limit.

maxtt = sched_send− ttreclatest + max_delay

+ comp_delay − precision

= 20, 000µs− 18, 863µs + 135.6µs + 10.5µs− 10.4µs

= 1272.7µs

(4.9)

maxcc = 1272.7µs ·
1000 ns

µs

12.5 ns
cycle

= 101, 816cycles

(4.10)

The example schedule has a maximum of 3 incoming TT frames in a single
integration cycle. One of the VL can send a maximum of 3 outgoing TT frames,
and the other a maximum of 5. An integration period of 10 ms is assumed,
which is equivalent to 800,000 clock cycles. This information, Equation 4.7 and
the WCET in Table 4.1 are used to verifying the final limit in Equation 4.11 (in
clock cycles (cc)).

int_period > WCETint + inctt ·WCETtt + send_ticks ·WCETsend

800, 000cc > 392, 419cc + 3 · 40, 156cc + 8 · 1824cc

800, 000cc > 527, 479cc

(4.11)

4.5.6 Future Work

The presented time-predictable TTEthernet controller is a good basis for future
work. We plan to re-implement the whole TCP/IP stack in a time-predictable

88 A Time-predictable Open-Source TTEthernet End-System

version. We will avoid the blocking calls to read and write, as the usual im-
plementation of sockets. We will use non-blocking functions that can be called
from periodic tasks.

Furthermore, we are working on coordinating the scheduling of tasks with the
scheduling of TTEthernet frames. With a tight coupling of time-triggered execu-
tion and time-triggered communication, the end-to-end latency can be reduced.

Furthermore, we plan to add support of TSN to our node. Then we can directly
compare TTEthernet with TSN.

4.6 Conclusion

This paper presented a time-predictable TTEthernet end-system, built on top
of the time-predictable Patmos processor. To the best of our knowledge, this
solution is the first TTEthernet end-system that can be analyzed for the worst-
case execution time.

We evaluated the TTEthernet node in a test environment with one TTEthernet
switch and six TTEthernet nodes that exchanged frames in various periods.
The presented end-system can synchronize to the network clock with nanosecond
precision by using a PI controller that significantly improved the synchronization
error measured in previous work.

We performed a WCET analysis of the main functions of the network code. This
analysis allowed to statically estimate the end-to-end latency of transmitted
time-triggered frames and verify the expected maximum latency. Overall, this
paper provides a solution for deterministic communication with TTEthernet
and WCET analyzable tasks and network code on the Patmos platform. To
the best of our knowledge, this is the first open-source TTEthernet node with
a WCET analyzable network stack.

Acknowledgement

This research has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant
agreement No. 764785, FORA—Fog Computing for Robotics and Industrial
Automation

Chapter 5
Synchronizing Real-Time
Tasks in Time-Triggered

Networks

By Eleftherios Kyriakakis, Jens Sparsø, Peter Puschner, and
Martin Schoeberl [C2]

Abstract
In order to guarantee end-to-end latency and minimal jitter in dis-
tributed real-time systems, it is necessary to provide tight synchro-
nization between computation and communication. This requires
time-predictable execution of tasks across all processing nodes, and
the use of a network protocol that can provide a global time base and
bounded communication latency. TTEthernet is one such industrial
communication protocol.
This paper investigates the synchronization of the task execution
schedule with the underlying communication schedule, and we pro-
pose an open-source software framework for time-triggered end-systems.
We present the implementation of a static cyclic task schedule, on
a time-predictable platform that is integrated within a TTEthernet
network and synchronized with the communication schedule. We
evaluate the presented framework by developing a simple one-sensor,
one-actuator industrial control example, distributed over three nodes

90 Synchronizing Real-Time Tasks in Time-Triggered Networks

that communicate over a single TTEthernet switch. The presented
real-time system can exchange messages with minimal jitter as the
distributed tasks are synchronized over the TTEthernet network
with about 1.6 us precision. Due to the tight time synchronization,
the system can operate stably with zero missed frames, using a single
receiver and a single transmitter buffer.

5.1 Introduction

Modern safety-critical systems are often composed of distributed cyber-physical
systems where applications tasks execute in different sub-systems. In such sys-
tems, both the communication and the task execution time become part of the
critical end-to-end latency of the application, as transmitted frames often con-
tain computation results that an actuator should consume at a precise moment
in time, in-order and without missed data [130].

To achieve a high level of determinism, the synchronization of the task execution
with the underlying communication layer would benefit the application. A typ-
ical real-time communication paradigm in industrial and safety-critical systems
is the time-triggered protocol [8] and its Ethernet-based extension TTEther-
net [46]. TTEthernet deploys a cyclic communication schedule, called TTE
network schedule, that is built offline and defines the exact transmission and
reception points in time. At runtime, end-systems use a fault-tolerant, network-
wide, time-synchronization protocol that allows for sub-microsecond precision.
TTEthernet is standardized under the aerospace standard AS6802 [59] and is
used in the underdevelopment NASA Orion spacecraft [141].

In this work, we follow the time-triggered communication paradigm and use
TTEthernet as the underlying communication layer. Using a time-triggered
communication paradigm does not only increase the application’s level of deter-
minism, but it also allows for precise end-to-end latency calculation, reduced
jitter and relaxed end-system buffer requirements. System properties such as
buffer usage can be statically estimated and decreased as the exact transmis-
sion/reception points in time are known during the development phase [163].

This paper investigates the problem of synchronizing the execution of real-time
tasks with a time-triggered communication layer. This paradigm’s key points are
providing a stable time synchronization mechanism for the tasks and estimating
the worst-case execution time (WCET) of the complete software stack. Static
deterministic WCET analysis allows smaller pessimism in the WCET estimate
than probabilistic or measurement-based methods of WCET [85]. Subsequently,

5.1 Introduction 91

sensor
(accelerometer +

gyroscope)

control
(angle estimation)

actuator
(pwm generator)

Node 1 Node 2 Node 3

TTEthernet switch

Figure 5.1: Classic industrial control example with tasks distributed over
TTEthernet network.

this leads to improved resource utilization and end-to-end latency. The pre-
sented implementation uses the time-predictable T-CREST platform [94] and
its WCET-optimized toolchain, which allows us to guarantee all timing proper-
ties, even in a distributed system setup. The paper extends the work-in-progress
paper [162] and presents in-detail the design of a WCET analyzable open-source
framework that achieves high precision task synchronization with short end-to-
end communication latency, minimal jitter and buffer usage. We evaluate the
proposed system by distributing a synthetic control application example of one-
sensor and one-actuator, over three nodes, as shown in Figure 5.1.

The main contributions of this work are:

• The integration of a TTEthernet communication system and open-source
time-predictable computing nodes to an overall highly time-predictable
distributed real-time system for applications that have tight deadlines and
require microsecond end-to-end timing jitter.

• An open-source task scheduler that utilizes information about task depen-
dencies and the TTEthernet communication schedule to generate cyclic
executives for the time-predictable nodes that synchronize to the TTEth-
ernet communication schedule.

• An experimental assessment of the proposed framework that demonstrates
our approach’s successful deployment using a time-predictable distributed
sample application implemented within a standard TTEthernet network.

The rest of this paper is organized in 8 sections: Section 5.2 discusses the related
work on time-triggered communication. Section 5.3 presents the system model

92 Synchronizing Real-Time Tasks in Time-Triggered Networks

of the task and network schedule. Section 5.4 presents the proposed software
framework and its implementation. Section 5.5 presents the synthetic control
application example. Section 5.6 evaluates the proposed design using the de-
veloped application. Section 5.7 discusses the future improvements and plans.
Section 5.8 concludes the paper.

5.2 Related Work

This section reviews recent research related to distributed time-triggered net-
works and the challenges of synchronizing the task execution with an underlying
communication schedule.

The benefits of synchronizing task execution with time-triggered network com-
munication have been described by [163] where the authors compare an asyn-
chronous, non-blocking communication interface with the synchronous, time-
aware communication of the tasks of the computing nodes. They explain that
the following two mechanisms must be implemented for time-aware systems :
(b) a mechanism for adjusting the local clock and providing the synchronized
global time to all computing nodes and (a) a real-time task scheduler. In this
paper, we implement, describe and WCET-analyze these proposed mechanisms
in detail. Moreover, we evaluate them over an experimental control application
example.

The feasibility of task synchronization with the network schedule has been previ-
ously presented by [75]. However, the runtime system TTE-RTS used is propri-
etary, and thus the implementation and the WCET analysis were not presented.
In contrast, we propose an open-source runtime system for synchronizing and
communicating with a TTEthernet network.

The challenges of generating schedules with synchronized tasks and communi-
cation have been investigated by [101]. The authors discuss the simultaneous
co-generation of static network and task schedules for distributed systems. Their
task set consists of preemptive time-triggered tasks, prioritized by earliest dead-
line first and scheduled using satisfiability modulo theory (SMT). The authors
proceed to optimize various properties of the system, such as end-to-end latency
and buffer utilization using mixed integer programming solvers. Our work also
uses SMT solvers but, in contrast to the previous work, our work uses a more
straightforward cyclic executive scheduling policy. We focus on presenting the
software framework’s implementation details for synchronizing an application
task schedule with the TTEthernet network schedule.

5.3 System Model 93

Different works have investigated further optimization of communication sched-
ules. In [97], the authors pack multiple application messages in different time-
triggered frames of selected order and length. In [150], the authors investigate
the implementation of a basic AI fuzzy particle swarm algorithm for optimizing
scheduling in high load TTEthernet networks. Such optimization methods are
complementary to our work. Such optimization methods are complementary to
our work.

The implementation of TTEthernet end-systems has been previously presented
in the context of automotive real-time communication use-case for AUTOSAR
in [87]. The implemented end-system acts as a synchronization client and the
results show an observed jitter of 32 µs end-to-end latency jitter. Additionally,
the authors provide metrics for the CPU utilization and the memory overhead
of the end-system and discuss the non-determinism of the transmit and receive
functions. In contrast, the system presented in this work uses a fully WCET
analyzable software stack, and our system can synchronize the individual dis-
tributed tasks among the network with microseconds precision. The tight task
synchronization bounds the evaluated end-to-end latency jitter

In [51], the authors investigate and develop a measurement technique for per-
formance analysis of TTEthernet using commercial off-the-shelf tools. However,
the related work software stack used for synchronizing and communicating with
the TTEthernet network is based on proprietary drivers provided by TTTech.
Thus no details on the implementation and its functionality are presented.

Finally, cyclic executive scheduling is a well-known engineering concept [10]
that has also been implemented in multicore real-time systems [50], but to the
knowledge of the authors, no work has investigated this concept in distributed
systems. In contrast, we focus on implementing a cyclic executive synchronized
with the underlying cyclic network communication.

5.3 System Model

This section describes the model involved in synchronizing a distributed cyclic
task execution with a time-triggered communication schedule, which is com-
posed of two aspects.

94 Synchronizing Real-Time Tasks in Time-Triggered Networks

VL3VL1 VL2

1

Virtual link 3

4

32

Virtual link 1

Virtual link 2

Link 1

Link 3

Link 2

VL1 VL2PCF PCF VL3VL1 VL2VL1 VL2PCF PCF

integration
cycle 0

integration
cycle 1

integration
cycle 2

integration
cycle 3

cluster
cycle 0

cluster
cycle 1

Figure 5.2: Example three end-system TTEthernet network with three VLs.
Communication cluster cycle comprising of two integration cycles.

5.3.1 Network Model

TTEthernet follows the time-triggered protocol paradigm by extending it to
IEEE 802.3 Ethernet networks to guarantee bandwidth and end-to-end latency.

Each network device (i.e., switches and end-systems) defines a critical traffic
domain using a critical traffic (CT) marker for the frames and specifies commu-
nication flows called virtual links (VL). TTEthernet uses a cyclic communication
schedule (called TTE network schedule) of the defined VLs, to transmit time-
triggered frames within a scheduled transmission window. Subsequently, the
reception of any CT frames is only accepted within the network devices’ sched-
uled reception window. Any frames that arrive outside the reception window are
not forwarded. This way, collision-free and temporally isolated communication
can be guaranteed. The cyclic transmission pattern in a TTE network schedule
is repeated in hyper-periods called cluster cycles, as illustrated in Figure 5.2.

TTEthernet employs a global fault-tolerant clock synchronization algorithm [59]
to align the transmission window and the reception window of the network’s
distributed end-systems. The synchronization protocol works periodically on
iterations called integration cycles and a cluster cycle defining several integra-

5.3 System Model 95

tion cycles. At the start of each integration cycle, the TTEthernet end-systems
exchange synchronization frames called protocol control frames (PCF). A PCF
contains the accumulated time information of the transmission from a sender to
a receiver. Synchronization masters transmit PCFs at fixed points in time to the
connected switch. A TTEthernet switch with the role of compression master
uses this information to calculate the global network time using a compression
function, as described and analyzed in [73]. The switch transmits a compressed
PCF at the beginning of each integration cycle that can be used by synchro-
nization masters/clients to align their time with the network time, as shown in
[146]. The number of integration cycles per cluster cycle controls the network’s
clock synchronization precision, and thus by configuring these parameters, the
network can be configured to the desired clock precision as shown in [126].

5.3.2 Task Model

In TTEthernet end-systems, applications use transmission and reception mecha-
nisms implemented by proprietary network-interface hardware cards and drivers.
In this work, we investigate and implement these mechanisms, in software, on
an open-source end-system platform. Although we do not implement a real-time
operating system, we develop a cyclic executive runtime system that executes
tasks according to their scheduled release time and period. The system takes
into consideration the clock offset calculated by the TTEthernet clock synchro-
nization protocol to search for the next scheduled task to activate. The presented
runtime system does not support task preemption as this facilitates the WCET
analysis of the presented platform. Section 5.4 discusses the runtime system
implementation in detail.

In our task model, each task τi is defined by the tuple (Ti, Ci, Di, Oi, Ji), where
Ti is the period, Ci is the WCET, Di is the deadline of the task, Oi is a relative
offset to the release time and Ji is the maximum allowed jitter. We only consider
tasks with harmonic periods, i.e., all periods of the tasks are an integer multiple
of a shorter period. This allows scheduling tasks for zero allowed jitter Ji = 0
and is not a limitation of the proposed system rather than a design decision.
The schedule’s hyper-period is the least-common multiplier of the periods of
the considered tasks: lcm{T1, T2...Tn}. Let Si,n be the release time of task
i at its n-th instance within a hyper period. First, we constrain the release
time to the period, deadline and relative offset as shown in Eq. 5.1c & 5.1b.
Setting these constraints to predefined points in time, such as the transmission
or the reception window of the TTE network schedule allows to set precedence

96 Synchronizing Real-Time Tasks in Time-Triggered Networks

constraints on the task execution and order the task release times accordingly.

Si,n − Si,n−1 ≤ Ti ± Ji Ji ≤ Ti (5.1a)
Si,n ≥ n× Ti + Oi Oi ≤ Ti (5.1b)

Si,n + Ci ≤ n× Ti + Di + Ji Di, Ji ≤ Ti (5.1c)

Subsequently, we test each task’s release time instance Si,n to never coincide
within the execution instance of an on-going task Sj,k using Eq. 5.2. This is
considered within a hyper-period of the schedule. Additionally, we define ϕ as a
constant offset between release time, which allows us to account for the WCET
of the runtime system or any other possible delays: ϕ = WCETruntime.

(Si,n ≥ Sj,k + Cj + ϕ) ∨ (Si,n + Ci + ϕ ≤ Sj,k) (5.2)

Where n, k are instances of the tasks i, j respectively in the range of a hyper-
period, ∀i ̸= j.

5.4 Design and Implementation

This section presents the fundamental components of the proposed open-source
framework, the hardware platform, the schedule generation and the design of the
runtime system. It presents the methodology for generating the synchronized
cyclic executive task schedule and the mechanisms involved in synchronizing the
task execution with the underlying communication schedule.

5.4.1 Hardware Platform

The presented system is implemented on the open-source research platform T-
CREST with a few modifications. The platform features a time-predictable pro-
cessor, Patmos [145]. Patmos is a dual-issue RISC processor that uses WCET-
optimized caches along with private scratchpad memories. A complete toolchain
supports it with an LLVM-based compiler [18] and a static deterministic WCET
analysis tool platin [89]. The platform also features a hardware-assisted time-
stamping unit [138] that measures the the arrival time and transmit time of
Ethernet frames. The hardware timestamp unit, built to identify PTP frames,
is modified to parse and identify the PCF frame format of the AS6802 [59] stan-
dard presented in Figure 5.3 and timestamp it at the start-of-frame (SOF) byte.

5.4 Design and Implementation 97

Preamble SOF CT
Marker VL MAC

Destination
Type

(0x891d)
Integration

Cycle Membership Sync
Priority

Sync
Domain

Sync
Type

Transparent
Clock

MAC Header
14B

Data
24B

6B 1B 4B 2B 6B 1B 4B 4B 1B 1B 6B 8B

Figure 5.3: TTEthernet (AS6802) PCF Format.

5.4.2 Offline Scheduling

The synthesis of the task schedule based on the communication schedule re-
sembles the process proposed by [75]. Figure 5.4 presents the general design
flow of the proposed framework’s fundamental blocks (in blue). It illustrates
how the individual node task sets are defined using information from the appli-
cation requirements, the network schedule and the WCET bounds of the task
implementation.

First, the task set is defined, and the periods Ti are constrained to the applica-
tion’s control requirements.

Second, the code of the application is developed. The WCET bounds of the
implemented tasks and the runtime system’s significant functions are calculated
using the WCET analysis tool platin [89]. The WCET bounds are used as input
to execution times Ci in the task set definition.

Third, a network description is created according to the application’s require-
ments using the TTTech development suite for configuring TTEthernet sys-
tems [166]. In this step, properties such as the synchronization domain, virtual
links, maximum frame size and communication periods are defined. The net-
work configuration is then generated using the TTE-Plan tool, which contains
the TTE network schedule. The network configuration is then compiled to the
individual configuration files for TTTech built end-systems and switches using
the TTE-Build tool.

Finally, the cyclic task schedule is generated based on the task definition, the
WCET analysis bounds and uses the transmission and reception points defined
in the TTE network schedule as precedence constraints to the equations pre-
sented in Section 5.3. More specifically, the WCET is used as input to each
task’s execution time Ci and the transmission/reception time slots, defined by
the TTE network schedule, are used as input to the activation times Si,n of
each related task. To synchronize any computation tasks relative to the trans-
mission/reception tasks, the receive and transmit time slots defined in the TTE

98 Synchronizing Real-Time Tasks in Time-Triggered Networks

Task set definition

Network
description

Network
configuration

TTE-Build

TTEthernet
switch and end-system

configuration files
Node Task
Schedule

TTE-Plan

Task
implementation

WCET
bounds

Application
requirements

SimpleSMTScheduler

platin

Figure 5.4: Design flow for synchronized communication and task schedule
generation. Yellow represents the application specific definitions,
green represents the components/tools of the proposed framework
and blue represents the tools provided by TTTech.

network schedule are mapped to the offset Oi and the deadline Di of the computa-
tion task. The total utilization of the defined task set is tested before scheduling
according to

n∑
i=1

Ci

Ti
≤ 1. A custom SMT Python script is developed to generate

a cyclic executive schedule synchronized to the TTE network schedule using the
Z3 Theorem Prover (SMT solver) [36].

5.4.3 Transmission and Reception

A transmission task encapsulates the data message in a TTEthernet compatible
link-layer protocol frame format that specifies the correct CT marker and VL.
The frame is then transmitted using a non-blocking call to the Ethernet con-
troller that returns a success boolean. The frame must arrive within the receive
acceptance window of the connected switch, and in the correct VL; otherwise,
the frame is dropped. The start of the sending task is set to a bit earlier than the
start of the frame transmission, offset by its WCET, as illustrated in Figure 5.5.

5.4 Design and Implementation 99

Transmission delayWCET τSEND

Activation
τSEND

Expected transmission
by tte-network-

schedule

 reception-window

Switch scheduled
reception point

t

Figure 5.5: Task activation point in time relationship to the scheduled
transmission-window.

Listing 5.1: Time-triggered task type definition.
1 typedef s t ruct
2 {
3 unsigned long long period ;
4 unsigned long long * r e l e a s e s ;
5 unsigned long act_inst ;
6 unsigned long nr_releases ;
7 unsigned long long last_time ;
8 unsigned long long delta_sum ;
9 unsigned long exec_count ;

10 generic_task_fp task_fp ;
11 } SimpleTTETask ;

The reception of CT frames on each VL is handled by respective tasks scheduled
periodically at each receive point in time defined by the TTE network schedule.
Each reception task is listening for a predefined reception-window time duration.
During this time window, the receive function polls the Ethernet controller for
any received frames that match the expected frame Ethernet type. The polling
is active for a predefined duration of time. The reception window time duration
is specified during the generation of the TTE network schedule.

5.4.4 Runtime System

In the proposed runtime system, tasks are defined as a simple C structure shown
in Listing 5.1. Each task has the following functional properties: a period, an
array of release times, the current release time index, the number of releases
and a function pointer. Additionally, each task keeps track of the following
properties for quality control: the last time it was executed, the sum of delta
times (the difference between the current and the last time the task executed)
and the number of times it was executed. The task set is defined globally as
an array of SimpleTTETask type variables, as presented in the example shown
in Listing 5.2. The release times of each task are initialized according to the
generated offline schedule.

100 Synchronizing Real-Time Tasks in Time-Triggered Networks

Listing 5.2: Example task set definition of actuator node.
1 s t a t i c SimpleTTETask sched [NR_TASKS] = {
2 {
3 . period = 10000000 ,
4 . r e l e a s e s = {0} ,
5 . act_inst = 0 ,
6 . nr_releases = 2 ,
7 . last_time = 0 ,
8 . delta_sum = 0 ,
9 . exec_count = 0 ,

10 . task_fp = (generic_task_fp) task_sync
11 } ,
12 {
13 . period = 5000000 ,
14 . r e l e a s e s = {1200000 , 6200000} ,
15 . act_inst = 0 ,
16 . nr_releases = 1 ,
17 . last_time = 0 ,
18 . delta_sum = 0 ,
19 . exec_count = 0 ,
20 . task_fp = (generic_task_fp) task_recv
21 } ,
22 {
23 . period = 5000000 ,
24 . r e l e a s e s = {1471107 , 6471107} ,
25 . act_inst = 0 ,
26 . nr_releases = 2 ,
27 . last_time = 0 ,
28 . delta_sum = 0 ,
29 . exec_count = 0 ,
30 . task_fp = (generic_task_fp) task_ctrl
31 } ,
32 {
33 . period = 5000000 ,
34 . r e l e a s e s = {3571700 , 8571700} ,
35 . act_inst = 0 ,
36 . nr_releases = 2 ,
37 . last_time = 0 ,
38 . delta_sum = 0 ,
39 . exec_count = 0 ,
40 . task_fp = (generic_task_fp) task_send
41 }
42 } ;

5.4 Design and Implementation 101

Listing 5.3: Code excerpt from runtime cyclic execution loop.
1 void executive_loop (SimpleTTETask* sched)
2 {
3 uint64_t start_time = get_rtc_nanos () ;
4 while (1){
5 uint64_t sched_time = get_tte_aligned_time (
6 get_rtc_nanos () - start_time) ;
7 f o r (int i = 0 ; i < NR_TASKS; i++) {
8 i f (sched_time >= sched [i] . act ivate)
9 {

10 sched [i] . task_fp (/∗arguments∗/)
11 sched [task] . r e l e a s e s [sched [task] . act_inst] +=
12 HYPERPERIOD;
13 sched [task] . act_inst =
14 (sched [task] . act_inst + 1) %
15 sched [task] . nr_releases ;
16 sched [i] . delta_sum += sched_time -
17 get_tte_aligned_time (
18 sched [i] . last_time) ;
19 sched [i] . last_time = sched_time ;
20 sched [i] . exec_count += 1 ;
21 break ;
22 }
23 }
24 }
25 }

The cyclic execution dispatcher of the task set is defined as a loop function
illustrated in Listing 5.3. This function is called after the program has initialized
fully, i.e., configured the Ethernet controller, initialized the task set according
to the scheduled release times and allocated the communication message buffers.
The function takes as argument a pointer to the initialized task set.

The dispatcher searches through the task set for an upcoming release time using
the TTEthernet synchronized time. When a task is found, the system proceeds
to execute activated task’s function call and subsequently update its release
time by adding the schedule hyper-period. The rest of the fields are updated
accordingly. It is worth noting that before executing the executive loop, the
task set is ordered according to the initial release time values. This eliminates
unnecessary search queries since after a task has been activated, the loop can
safely break and take a new time reading to begin a new search.

5.4.5 Clock and Task Synchronization

The presented system acts as a synchronization client to the TTEthernet net-
work. It synchronizes with the network time by scheduling a periodic task

102 Synchronizing Real-Time Tasks in Time-Triggered Networks

PC
F

PC
F

PW
M

TSYNC
TPWM

t (before sync)

Clock
offset

Initial task activation points in time

PW
M

PC
F

PC
F

PW
M

t (after time sync)PC
F

PW
M

t (real time)PW
M

PC
F

PC
F

PW
M

Period constraints violated

Activation points not updated after sync
get_tte_aligned_time()

Figure 5.6: Erroneous task execution example, due to a miss-alignment be-
tween the time-base of the dispatcher schedule time and the up-
coming task release times.

responsible for handling incoming PCFs. The task is scheduled to execute at spe-
cific points in time according to the TTE network schedule and is responsible for
calculating the clock offset according to the permanence function [59]. Accord-
ing to the permanence function, the clock offset is calculated as the difference
between the scheduled receive point in time and the actual reception timestamp
of the incoming PCF, plus the difference between a maximum transparent clock
value and the transparent clock information found in the PCF [146]. The cal-
culated clock offset is not used directly to modify the hardware clock. Instead,
the value is stored and used by calling the function get_tte_aligned_time(),
which accepts a time value and returns the synchronized time after applying a
proportional-integral filter similar to [161, 32].

The synchronization task accepts a parameter pointer to the defined task set
and is responsible for updating the release times based on the calculated clock
offset. This is necessary because after executing a synchronization task, the
next dispatch loop will use the newly aligned time to query any upcoming task
activations. If the task release times are not updated accordingly, it can cause
an activation point to be considered in the past or the present and thus violate
the task period. This miss-alignment is demonstrated in Figure 5.6.

5.5 Example Application 103

5.5 Example Application

To evaluate the presented framework, we define and implement a simple control
application that reads the input from a motion processing unit to determine its
attitude/orientation and control servo motor’s rotation. The application com-
prises one sensor and one actuator distributed over three nodes: a sensor node,
a control node and an actuator node. Similar multi-periodic control systems can
be found in various safety-critical applications including flight controllers [56].

The sensor node interfaces with a motion processing unit sensor MPU-9250 [109],
which features an inertia measurement unit (IMU), a gyroscope and magnetome-
ter. The sensor is sampled by reading alternating measurements from either the
IMU or the gyroscope at a sampling frequency of 100 Hz. The values are trans-
mitted to the control node. The sampling rates of the sensors are empirically
chosen.

The control node is responsible for converting the received values from the sen-
sor node to a duty-cycle sent to the actuator node. The control node calculates
the motion processing unit sensor’s angle on the X-axis by fusing the accelerome-
ter’s and the gyroscope’s measurements of the using a complimentary filter (see
Equation 5.3a) [88]. The angle is then converted to a valid duty-cycle range
according to Equation 5.3b.

θx = 0.93 ∗ (θx + gyrox ∗ dt) + 0.07 ∗ atan2 (accely, accelz) (5.3a)

duty_cycle = θx ∗ (0.1− 0.015)
180

+ 0.015 (5.3b)

The actuator node drives a servo motor using pulse-width modulation (PWM)
signal. The PWM signal must adhere to the following characteristics; a duty
cycle in the range of 1.5%–10% and a period of 20 ms. This requirement does
not only sets a constraint on the task execution but also on the end-to-end
latency, as the new command for the servo motor should arrive before its next
period.

5.5.1 Task set

The following task set is derived based on the presented application’s description
and requirements. The sensor node executes three tasks:

104 Synchronizing Real-Time Tasks in Time-Triggered Networks

1. τSSY NC synchronizes with the TTEthernet network time

2. τSENSE(a/g) collects alternating measurements from either the IMU sensor
(a) or the connected gyroscope sensor (g)

3. τSSEND transmits the sensor values to the control node

The control node executes four tasks:

1. τCSY NC synchronizes with the TTEthernet network time

2. τCRECV receives the read sensor measurement

3. τCT RL calculates the angle of the MPU-9250 sensor and computes a valid
duty-cycle value

4. τCSEND transmits the computed duty-cycle result

The actuator node executes four tasks:

1. τASY NC synchronizes with the TTEthernet network time

2. τARECV receives the control instructions computed from the control node

3. τP W M produces the pulse-width modulation to move the interfaced actu-
ator

5.5.2 Source Access

All the components of the presented framework are open-source. The SMT
scheduler for the task generation is hosted at https://github.com/egk696/Si
mpleSMTScheduler The implemented runtime system is integrated with the
T-CREST platform and the developed application is hosted at https://github.c
om/t-crest/patmos/tree/master/c/apps/ttecps

5.6 Evaluation

5.6.1 System Setup

The cyclic executive’s proposed synchronization with the communication sched-
ule is evaluated and tested experimentally using a synthetic control application

5.6 Evaluation 105

TTEthernet end-system
(SM)

Sensor node
(SC)

TTEthernet end-system
(SM)

Control node
(SC)

Actuator node
(SC)

TTEthernet
Switch
(CM)

Figure 5.7: Experimental network setup of the evaluated control application
example.

example of one-sensor, one controller, and one-actuator distributed over three
nodes. The nodes are integrated, as synchronization clients (SC), in an exist-
ing TTEthernet network star topology and assume the different roles described
in Section 5.5 by executing the proposed runtime system. The hardware plat-
form is synthesized on three FPGA Terasic DE2-115 boards [112] and operates
at a frequency of 80 MHz. The network consists of a single industrial TTE
Chronos 18/6 Rugged Switch acting as a compression master (CM) and two
Linux desktops equipped with TTEthernet capable PCI Ethernet cards acting
as synchronization masters (SM). Figure 5.7 presents the network setup of the
evaluated control application example. A similar network setup has been de-
scribed in [123].

5.6.2 WCET Analysis and Schedule Generation

It is necessary to perform a static WCET analysis on the runtime system’s sig-
nificant functions and the task set to reveal possible jitter sources and accurately
schedule and synchronize the task execution. We analyze the developed software
using the tool platin and present the results for implementing and evaluating
the experimental setup.

106 Synchronizing Real-Time Tasks in Time-Triggered Networks

Table 5.1: WCET of runtime system functions of the individual nodes in clock
cycles.

Function Node
Sensor Control Actuator

sort_ttetasks 6607 24123 13908
get_tte_aligned_time 129
executive_loop 3579

Table 5.1 presents the significant functions of the proposed runtime system
in clock cycles. It is worth noting that the sorting function, sort_ttetasks(),
depends on the number of tasks scheduled; thus, the WCET varies depend-
ing on the task set. The static WCET bound of the runtime dispatcher
executive_loop() is used to set the Φi = 44.737 µs constant, which is used
in the scheduling constraints (see Section 5.3).

Table 5.2 presents the combined generated task set using the presented SMT
scheduler of the three nodes’ distributed tasks. As discussed in Section 5.4, the
receive and transmit points are generated using the TTEtools and provided to
the scheduler as constraints for the respective tasks initial activation point Si,∅
(indicated by an asterisk). The activation times of the transmission functions
are offset by the WCET bounds of the respective tasks. The reception- and
transmission-window of the TTE network schedule is configured at 20 µs, and
this is added to the WCET of the related tasks: τSSY NC , τCSY NC , τASY NC ,
τCRECV and τARECV . It is worth noting that the WCET of the synchronization
tasks varies in each node as it depends on the number of task release times that
it has to update. According to the specification of the generated PWM for the
servo motor, the total execution time of task τP W M can vary. In the presented
analysis, it is considered that task τP W M generates the maximum duty-cycle
duration of 2 ms (0.1%), which is added in the WCET of the task τP W M .

The processor utilization of the three task sets for the sensor node, the control
node and the actuator node is 4.5%, 16.7% and 16.6% respectively. The devel-
oped SMT scheduler is executed on an Intel Core i7-7700HQ CPU (2.80 GHz)
and requires 17.47 ms, 20.04 ms and 10.07 ms to find a solution for each of the
three nodes task sets: sensor node, control node and actuator node respectively.

5.6 Evaluation 107

Table 5.2: Generated task set of the three end-systems. The asterisks indicate
a constrain by the TTE network schedule.

Node Task Period (µs) WCET (µs) Si,∅ (µs)

se
ns

or τSSY NC 10000 90.550 0
τSENSE(a/g) 5000 153.412 67.220
τSSEND 5000 23.200 (*) 771.700

co
nt

ro
l τCSY NC 10000 90.550 0

τCRECV 5000 285.450 (*) 1200.000
τCT RL 5000 485.05 1471.107
τCSEND 5000 23.200 (*) 3571.700

ac
tu

at
or τASY NC 10000 90.550 0

τARECV 5000 285.450 (*) 4000.000
τP W M 20000 2005.462 4271.107

5.6.3 Communication and Clock Synchronization

To evaluate the correctness of the presented runtime system as well as to em-
phasize the precision of the synchronization, each node’s Ethernet controller is
configured with a single transmit and a receive buffer. This way any packets
that are not captured in-time within the reception-window are overwritten and
dropped. The system was tested for a timespan of 24-hours and with zero missed
frames recorded.

The clock synchronization precision of the presented distributed system, is eval-
uated by generating an I/O pulse during the synchronization tasks’ execution
(τSSY NC , τCSY NC , τASY NC) and measuring the relative time offset of the pulses
using a digital logic analyzer. Both the clock synchronization relative to the
TTEthernet switch and the synchronized schedule execution between the nodes
were evaluated. The maximum measured relative time offset between the three
nodes’ task I/O pulses was ≈1.6 µs while the individual synchronization accu-
racy of each node relative to the TTEthernet switch was measured at ≈136 µs.

Finally, we consider the end-to-end latency of the presented distributed system
as the time difference between when the system measures the physical world on
the sensor node to when the new duty-cycle is consumed by the τP W M on the
actuation node shown in Equation 5.4.

Le2e = SτP W M ,∅ − (SτSENSE ,∅ + WCETτSENSE(a/g)) (5.4)

108 Synchronizing Real-Time Tasks in Time-Triggered Networks

The end-to-end latency is statically calculated at 4.05 ms. We verify the calcu-
lated bound experimentally by comparing a time-difference of the timestamps
between the sensor readout and the value’s extraction by the PWM generation
task. We measure this time-difference at ≈ 4.034 ms. The task τP W M consumes
the new duty-cycle well within the required deadline for the PWM period of the
servo motor.

The presented evaluation emphasized that tight synchronization of transmis-
sion/reception tasks with the communication schedule is essential to software-
based TTEthernet end-system’s operation. Moreover, although the synchroniza-
tion of computation tasks to the communication is not functionally required, it
is beneficial to the overall end-to-end latency of a real-time distributed system.
Using the evaluated control application as an example, we calculate and mea-
sure that if the sensor reading task τSENSE(a/g) were not synchronized with
the transmission task τSSEND, the worst-case end-to-end latency would be in-
creased by half the period the next scheduled transmission slot. In some hard
real-time distributed systems, the end-to-end latency requirements are in the
range of a few milliseconds [141], and thus an increase of ≈ 2.5 ms could be
intolerable.

5.7 Future Work

To relax the restrictions of a cyclic executive on a single core, we plan to extend
the presented framework to a multicore version that will allow us to dedicate a
single core to handle the TTEthernet traffic. Inter-core communication can be
handled using time-division multiplexing (TDM) network-on-chip such as [21,
106, 16]. TDM-based network-on-chip use cyclic schedules similar to TTEth-
ernet but with different resolutions. An interesting research challenge arises
regarding the synchronization of these schedules that theoretically can improve
the end-to-end latency and jitter of messages transmitted via both communica-
tion channels [152].

The presented framework and runtime system is not dependent on a specific
communication protocol. Thus we plan to investigate its implementation within
time-sensitive networks (TSN), which have shown promising results in support-
ing mixed-criticality industrial applications together with time-triggered com-
munication [142, 134].

5.8 Conclusion 109

5.8 Conclusion

This paper investigated the concept of synchronizing the task execution in a
real-time distributed system with the time-triggered communication schedule
in a time-aware network and presented an open-source and WCET analyzable
software framework.

First, the problem was explored by describing the system model comprising
the network and the task model. Subsequently, an open-source SMT scheduler
was developed that utilizes information regarding task dependencies and the
communication schedule to generate a cyclic executive for a time-predictable
node. An open-source runtime system was developed and integrated with a
time-predictable open-source research platform, and the overall design process
was presented in detail.

The developed framework was evaluated by developing and successfully deploy-
ing a synthetic distributed control application of one sensor, one controller, and
one actuator over a TTEthernet network with three nodes. The task schedule
synchronization with the communication schedule was emphasized by configur-
ing the nodes to use only one receive, and one transmit buffer. A full static
WCET analysis was performed on the tasks as well as the significant parts of
the runtime system. The individual cyclic executives of the nodes were synchro-
nized relative to each to a measured precision of ≈ 1.6 µs and the end-to-end
latency was bounded at ≈ 4.05 ms.

Overall, we demonstrated the feasibility of precise task synchronization with
time-triggered communication using a COTS open-source TTEthernet frame-
work and presented a synthetic distributed control application example.

Acknowledgment

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant
agreement No. 764785.

110 Synchronizing Real-Time Tasks in Time-Triggered Networks

Chapter 6
Evaluating a Time-Triggered

Runtime System by
Distributing a Flight

Controller

By Eleftherios Kyriakakis, Jens Sparsø, and Martin Schoeberl
[C4]

Abstract
With the recent advancements in the Industrial Internet of Things
and Industry 4.0, cyber-physical systems have become increasingly
inter-connected. It is becoming a challenge to maintain the same
quality-of-control and time-predictability of computation and com-
munication required by safety-critical hard real-time systems as pre-
viously achieved through non-distributed architectures.
This paper examines the problem of implementing and distributing a
closed-loop command-control system over an Ethernet network with
guaranteed timing bounds. To achieve bounded communication and
computation time, we use an open-source software framework run-
ning on the T-CREST platform combined with a TTEthernet net-
work star topology. We evaluate its quality-of-control performance
in our experimental setup and compare the results against single-core

112
Evaluating a Time-Triggered Runtime System by Distributing a Flight

Controller

and multi-core implementations. The proposed distributed time-
triggered runtime system executes with a microsecond jitter and
can perform a stable flight scenario as verified by the benchmark
implementation.

6.1 Introduction

Safety-critical application domains like avionics, automotive, and Industrial In-
ternet of Things can benefit from the design of computing systems that pro-
vide bounded timing in both computation and communication as this facilitates
certification due to the guaranteed end-to-end temporal behavior [140]. How-
ever, as real-time systems become more interconnected, deploying multi-rate
time-critical task chains on distributed systems and maintaining the same time-
predictability becomes a challenge [120].

One approach to guarantee timing closure of distributed safety-critical appli-
cations is to employ the synchronous data-flow [2] model on time-predictable
hardware architectures [31]. Following the synchronous data flow model allows
an application to define the number of produced and consumed data samples at
each given point-in-time during the design phase. This model enables the static
analysis of all the timing properties of a design as well as memory, processor
and network load since both communication and computation resource usage
can be statically scheduled at design time.

Time-predictable platforms can enable static worst-case execution time (WCET)
analysis for computation by providing WCET-optimized hardware design, such
as in-order processor pipeline and support for scratchpad memories. Addition-
ally, they aim to minimize end-to-end communication jitter and latency aim by
providing a synchronized interface to the underlying communication layer [163,
124]. Different scheduling mechanisms must be implemented for both the com-
munication and computation layer of an application to support the synchronous
data flow model. Various policies can be used to generate static schedules that
enable static execution of time-critical tasks on the processor, such as cyclic
execution, earliest deadline first, and fixed priority [165]. Regarding commu-
nication, several industrial protocols have been developed to enable bounded
network latency and temporal isolation of communication flows, such as TSN,
TTEthernet, and PROFINET [76, 149].

The purpose of this work is two-fold: first, to experimentally demonstrate the
distribution of open-source avionic control/command case study and, secondly
to evaluate the open-source time-triggered framework proposed by [164] as well

6.2 Use-Case: Rosace Longitudinal Flight Controller 113

as the underlying communication layer. We achieve this by implementing a
realistic case study of a flight controller on a time-predictable processor Pat-
mos [145], and distributing the application using a time-triggered communica-
tion protocol TTEthernet [41]. The main contributions are:

• A case study of a flight management system in a distributed implementa-
tion.

• An experimental evaluation of an open-source time-triggered runtime sys-
tem.

• A comparative analysis between the quality of control of the proposed
time-triggered implementation against single-core and multi-core imple-
mentations.

The rest of this paper is organized into eight sections: Section 6.2 presents
the use-case application of a flight management system. Section 6.3 presents a
background on the technologies and tools employed by this work. Section 6.4
presents the design and implementation of the distributed flight management
system using the proposed runtime system. Section 6.5 evaluates the proposed
design using the developed application. Section 6.6 discusses related work on
time-triggered communication and relevant use-cases. Section 6.8 summarizes
the main conclusions derived from this work.

6.2 Use-Case: Rosace Longitudinal Flight Con-
troller

This section describes the case study of the Research Open-Source Avionics and
Control Engineering (ROSACE) longitudinal flight controller and its control
constraints along with its hard real-time specification.

The case study developed and analyzed by Pagetti et al. [80] describes a multi-
rate longitudinal flight controller operating on a medium-sized aircraft that is
in the en-route phase at a starting altitude of 10000 m. The study investigates
a flight management system for the scenario of a 1000 m step climb command.
During the climb, the autopilot flight management system has maintains a con-
stant ascend rate Vz while preserving a constant airspeed Va and achieving a
stable flight at the commanded altitude h. Similar flight-level changes are of-
ten performed in real life for fuel economy or maintain altitude separation from
ongoing air traffic routes.

114
Evaluating a Time-Triggered Runtime System by Distributing a Flight

Controller

Table 6.1: Flight controller closed-loop variables

Entity Variable name Description

Reference Inputs hc commanded altitude
Vac

commanded true airspeed

Aircraft dynamics

Vz vertical speed
Va true airspeed
h altitude
az vertical acceleration
q pitch rate

Filtered measurements

Vzf
vertical speed

Vaf
true airspeed

hf altitude
azf

vertical acceleration
qf pitch rate

Control outputs
Vzc

vertical speed command
δec

elevator deflection command
δthc throttle change command

Aircraft Inputs δec elevator deflection
T engine thrust

The flight controller in use has been designed in SIMULINK [158] as a closed-
loop system and is divided into two logical parts: (a) the system that simulates
the aircraft, elevator, and engine dynamics and (b) the controller that includes
the control loops (altitude_hold, Vz_control, Va_control) and a collection of
filters, which aim to model the sensor data acquisition. Table 6.1 lists the
variables involved in the operation of the flight controller.

The case study provides a set of four validation objectives (P1, P2, P3, P4)
for the step response of the Va and Vz loops to the input command for the
climbing scenario. P1 is the amount of time required for the controlled variable
to settle within 5% of the steady-state value. P2 examines the overshoot as the
maximum value attained minus the stead-state value. P3 is the time duration
it takes for the value to rise from 10% to 90% of the steady-state value. Lastly,
P4 is the steady-state error, which is the difference between the input and the
output as t → 0. These validation objectives are used in Section 6.5 to drive
the evaluation of the presented real-time system implementation and compare
it against other non-distributed implementations.

6.3 Background 115

6.3 Background

This section provides an overview of the relevant technologies and tools that
this work integrates.

6.3.1 Time-triggered Communication

For the network communication, we integrate the nodes in a TTEthernet net-
work. TTEthernet is based on a cyclic communication schedule (called TTE net-
work schedule) that specifies periodic communication flows called virtual links
(VL) to transmit time-triggered frames within a scheduled transmission window.
Subsequently, the reception of any frames is only accepted within the network
devices’ scheduled reception window. Any frames that arrive outside the recep-
tion window are dropped and not forwarded by devices. The cyclic transmission
pattern of the TTE network schedule repeats in hyper-periods called cluster
cycles.

Network time synchronization is required for all hosts to synchronize their
communication to the respective transmission/reception windows. TTEther-
net achieves this by exchanging unique Ethernet frames called called protocol
control frames (PCF). A PCF contains the accumulated time information of
the transmission from a sender to a receiver. Synchronization masters transmit
PCFs at fixed points-in-time to their connected switch. Typically, each switch
assumes the role of a compression master that uses this information to calculate
the global network time offset using a compression function, as described and
analyzed in [73]. The switch broadcasts a new PCF to all connected devices at
the beginning of each integration cycle that can be used to align their local time
with the network time.

6.3.2 Offline Scheduler

The task and network schedules are synthesized using the open-source frame-
work described by [164]. The authors present a static scheduler for synthesizing
time-triggered schedules using constraint programming. They present a custom
Python application developed to generate a cyclic executive schedule synchro-
nized to the TTE network schedule using the Z3 satisfiability modulo theory
(SMT) Prover/Solver [36].

116
Evaluating a Time-Triggered Runtime System by Distributing a Flight

Controller

6.3.3 Runtime System

This work aims to evaluate and deploy the open-source runtime system presented
in [164]. Commercial off-the-shelf TTEthernet applications rely on transmission,
reception and synchronization mechanisms implemented on proprietary hard-
ware. The implemented runtime system performs this operations completely in
software.

The runtime system is responsible for controlling the execution policy of the
tasks and the communication with the underlying TTEthernet network. The
system deploys a cyclic dispatcher to execute tasks based on their release time.
Each task is defined as a simple C structure that maintains a period, an array
of release times, the current release index and the total number of releases. The
dispatcher searches through an array of tasks for an upcoming release time using
the TTEthernet synchronized time as a parameter. After executing a task, its
period is increased by the hyper-period of the schedule and the current release
index points to the next release time. The proposed runtime system does not
support task preemption as this facilitates the WCET analysis of the presented
platform. Instead best-effort tasks such as the LOGGING task can be scheduled
with relaxed jitter constraints and are executed in a time-triggered fashion.

6.3.4 Hardware Platform

The presented system is implemented on the open-source research platform T-
CREST [94]. The platform features a time-predictable processor, Patmos [145],
that uses WCET-optimized caches along with private scratchpad memories. Ad-
ditionally, we use its toolchain, particularly the static WCET analysis tool
platin [89], to derive the execution time constraints for our scheduler. The
platform is also equipped with an Ethernet controller that features a hardware-
assisted timestamping unit [138]. The timestamping unit measures the arrival
time and transmit time of PTP and PCF Ethernet frames by monitoring the
MII interface between the PHY and the Ethernet controller.

6.4 System Design and Implementation

This section describes the system model involved in distributing a flight manage-
ment system in a TTEthernet network using a synchronized cyclic task execution
runtime environment.

6.4 System Design and Implementation 117

6.4.1 Task and Network Model

In this work, we use the offline scheduler described in Section 6.3, and thus we
model each task τi as a tuple (Ti, Ci, Di, Oi, Ji), where Ti is the period, Ci is
the WCET, Di is the deadline of the task, Oi is a relative offset to the release
time, and Ji is the maximum allowed jitter.

We also model the communication of VL flows as periodic tasks that can be
constrained by the transmission time of the VL together with the WCET of the
end-system software responsible for transmitting or receiving the frame. The
communication tasks are then integrated with the cyclic task set of each node to
derive valid transmission and reception points-in-time for the network schedule.
The start of each sending task is offset a bit earlier than its scheduled point-of-
transmission to account for the copy of the data into the Ethernet controller’s
buffer. Finally, we model the PCF reception and clock synchronization as a
periodic task since it is handled in software.

6.4.2 Communication

We distribute ROSACE over three nodes, as shown in Figure 6.1. Node 1 is
responsible for simulating the aircraft dynamics, engine, and elevators and pro-
vides raw data of the aircraft state. Node 2 is responsible for filtering the
aircraft state. Node 3 generates the control commands for the aircraft. Node 4
is a TTEthernet switch. The communication takes place over three VLs between
each of the three TTEthernet nodes, and a total of 21 tasks are distributed over
the nodes, which include communication and computation.

We implement dedicated periodic transmission and reception tasks for each
scheduled VL in software. Listing 6.1 presents the communication message
structures for the respective three nodes encapsulated in IP/UDP frames at
transmission time. The payload size of the exchanged UDP packets is 33 bytes,
25 bytes and 25 bytes for VL_DYN, VL_FILTER and VL_CTRL, respectively. The
floating-point variables correspond directly to the case study variables described
in Table 6.1. The variable step represents the current simulation time derived
from the Aircraft Node 1 and it propagates through the rest of the distributed
nodes to indicate when to stop the benchmark simulation.

Additionally, we introduce the variables enable_filtering, enable_control, and
is_controlling that we use as flags to facilitate the programming and boot-up of
the nodes in a sequential order starting from Aircraft Node 1. The flags indicate

118
Evaluating a Time-Triggered Runtime System by Distributing a Flight

Controller

1

Virtual link
Control

3

24

Virtual link
Aircraft Dynamics

Virtual link
Filtering

Link 1

Link 3

Link 2

VL_DYN VL_FILTERPCF

integration
cycle 0

cluster
cycle 0

VL_CTRL

integration
cycle N

0 ms 80 ms 960 ms

PCF VL_DYN VL_FILTER VL_CTRL

integration
cycle 13

1040 ms

Figure 6.1: Distributed ROSACE topology and example TTEthernet VL com-
munication schedule.

to the receiving nodes, Filter Node 2 and Control Node 3 that the previous node
is programmed and should process the received data.

As discussed in Section 6.3, all transmission tasks are associated with a recep-
tion task acceptance window. Thus, we implement the reception tasks as non-
blocking functions that poll the Ethernet controller for the scheduled acceptance
window time. We configure the Ethernet controller to use dual-buffering in a
ping-pong management scheme. When we read from the active buffer, we clear
the other buffer and swap the active buffer pointer to the other buffer so that
it is ready to receive a new frame.

6.4.3 Static Scheduling

The ROSACE benchmark is composed of 12 periodic tasks (see Table 6.2) that
are scheduled over three distributed nodes. Each of the aircraft, filtering and
control nodes is assigned in-order three, five and four tasks respectively.

Originally, the case study is coded using the PRELUDE [56] formal language
to generate a set of dependent periodic tasks. PRELUDE can add real-time

6.4 System Design and Implementation 119

Listing 6.1: Implemented message structs containing the closed-loop vari-
ables (see Table 6.1) for each communication flow (VL_DYN,
VL_FILTER, and VL_CTRL).

1 typedef s t ruct {
2 uint32_t step ;
3 uint8_t enab le_f i l t e r ;
4 f l o a t engine_T ;
5 f l o a t elevator_delta_e ;
6 f l o a t Va;
7 f l o a t Vz ;
8 f l o a t q ;
9 f l o a t az ;

10 f l o a t h ;
11 } aircraft_state_message ;
12

13 typedef s t ruct {
14 uint32_t step ;
15 uint8_t enable_control ;
16 f l o a t h_meas ;
17 f l o a t q_meas ;
18 f l o a t az_meas ;
19 f l o a t vz_meas ;
20 f l o a t va_meas ;
21 } fi lter_state_message ;
22

23 typedef s t ruct {
24 uint32_t step ;
25 uint8_t i s_contro l l ing ;
26 f l o a t h_c ;
27 f l o a t Va_c;
28 f l o a t Vz_c;
29 f l o a t delta_e_c ;
30 f l o a t delta_th_c ;
31 } control_state_message ;

120
Evaluating a Time-Triggered Runtime System by Distributing a Flight

Controller

communication tasks

computation tasks

TTE_SYNC

Aircraft_dynamics elevatorengine

VL_DYN VL_CTRL

Node 1 Schedule
hyper = 80 ms

communication tasks

computation tasksh_filteraz_filterVz_filterq_filter Va_filter

TTE_SYNC VL_FILTER

Node 2 Schedule
hyper = 80 ms

VL_DYN

communication tasks

computation tasksaltitude_holdVz_control Va_control

TTE_SYNC VL_FILTER VL_CTRL

Node 3 Schedule
hyper = 80 ms

Figure 6.2: Example ROSACE tasks distribution on three nodes with software-
based TTEthernet network communication.

primitives to the synchronous data-flow model. by modelling tasks as nodes,
where consuming nodes have a proportional rate constraint relative to a respec-
tive producing node. More precisely, the authors [80] describe the following
proportional execution rates for the flight controller tasks. The filter tasks (
h_filter, Va_filter, Vz_filter, az_filter, q_filter) should execute at half the
rate of the environment simulation (aircraft_dynamics, engine, elevator), and
the control tasks (altitude_hold, Vz_control, and Va_control) should execute
at half the rate of the filter tasks.

In contrast, we do not use PRELUDE but instead deploy a distributed synchro-
nized cyclic executive. We derive a task set for each node constrained by the rel-
ative rates of the tasks, the WCET and the network transmission points-in-time.
Figure 6.2 illustrates an example distribution of the tasks in a time-triggered
network.

To generate the combined task and network schedule, we follow a process similar
to the one proposed by [75]. First, we perform a static WCET analysis on the
implemented ROSACE tasks using the tool platin [89] and present the results
in Table 6.2.

The lack of a floating-point unit in the used hardware platform significantly
increases the tasks’ WCET. In [80], the authors report a WCET of 200µs for the
aircraft_dynamics while the presented implementation is estimated at 17.9 ms.
Consecutively, we derive valid periods for the tasks that aim to maintain the
relative proportions to each other as defined in [80]:

• Aircraft dynamics: 20 ms

6.4 System Design and Implementation 121

Table 6.2: WCET of ROSACE tasks/functions on the T-CREST platform.

Function WCET (clock cycles)
engine 13326
elevator 33675
aircraft_dynamics 1435878
h_filter 14923
q_filter 15119
az_filter 14902
Vz_filter 15119
Va_filter 14923
h_c 1046
Vz_control 35420
altitude_hold 14084
Va_control 40352

• Filtering: 40 ms

• Control loops: 80 ms

Empirically, we select the TTEthernet integration period at 80 ms based on the
slowest transmission rate. This allows aligning the start of each node’s schedule
hyper period with the reception of a PCF and a synchronization task.

To generate a valid schedule, we derive the maximum transmission time from
the TTTech development suite [166] and consider this duration additionally to
the WCET of each transmitting task. Moreover, we configure the acceptance
window time of each receiving task to the maximum clock drift and include this
time in the WCET of the respective tasks. Finally, we allocate an inter-task time
gap ϕ that is bounded by the overhead of the runtime dispatcher, the WCET
of reading the system clock, and the measured clock synchronization offset, as
shown in Equation 6.1.

ϕ = WCETdispatcher + WCETread_clock + Offsetclock (6.1)

6.4.4 Source Access

All the components of the presented framework are open-source. The SMT
scheduler for the task generation is hosted at https://github.com/egk696/

122
Evaluating a Time-Triggered Runtime System by Distributing a Flight

Controller

SimpleSMTScheduler. The implemented runtime system is integrated with
the T-CREST platform and the presented benchmark application is hosted at
https://github.com/t-crest/patmos/tree/master/c/apps/rosace.

6.5 Evaluation

This section presents the experimental setup that the case study is deployed and
evaluates the performance of the proposed open-source runtime system.

6.5.1 System Setup

The presented ROSACE benchmark is distributed over three nodes that execute
the proposed runtime system using the softcore processor Patmos. The hard-
ware platforms are synthesized on three Terasic DE2-115 FPGA boards [112]
that operate at a frequency of 80 MHz. The nodes are integrated, as synchro-
nization clients, in a TTEthernet network star topology that is composed of a
single TTE Chronos 18/6 Rugged switch acting as a compression master and
two Linux desktops that act as the synchronization masters. Figure 6.3 shows
the experimental setup composed of the three distributed ROSACE nodes in-
terconnected through a TTEthernet network switch. A logic analyzer is used
to monitor the clock synchronization precision and the task execution.

To enable our comparative analysis, we additionally execute and measure the
original ROSACE benchmark code 1 in simulation time on a 64-bit i7-7700HQ
CPU system running at 2.8 GHz with 32 GB RAM.

6.5.2 Runtime System and Task Scheduling

We perform a complete system analysis by collecting statistics from the dis-
tributed schedules of the three nodes during the benchmark execution time of
600 seconds. Table 6.3 presents the gathered results of the performance of the
proposed runtime system. The dispatcher manages to execute jobs with jitter
below 10 µs compared to 32 µs of the software system presented by [87]. The
existing dispatcher jitter, is hypothesized to be caused by reading the clock and

1https://svn.onera.fr/schedmcore/branches/ROSACE_CaseStudy/c_posix_implementat
ion/

6.5 Evaluation 123

Aircraft
Node

Filter
Node

Control
Node

Switch
Node

Logic
Analyzer

Figure 6.3: Distributed ROSACE setup over three nodes that are integrated
in a TTEthernet network.

124
Evaluating a Time-Triggered Runtime System by Distributing a Flight

Controller

Table 6.3: Runtime system task execution measurements from the three dis-
tributed nodes.

Node Task Avg. ∆t (µs) Avg. Jitter (µs) Max. ET (µs)

ai
rc

ra
ft

SYNC 79996.464 3.536 44189.587
ENGINE 19997.416 2.584 118.325
ELEVATOR 19997.478 2.522 292.263
AIRCRAFT_DYN 19997.074 2.926 13749.913
VL_DYN_SEND 19997.404 2.596 110.600
LOGGING 19997.484 2.516 2656.088
VL_CTRL_RECV 79993.408 6.592 287.463

fil
te

r

SYNC 79991.664 8.336 14304.613
VL_DYN_RECV 19996.990 3.010 286.100
Q_FILTER 39996.480 3.520 133.000
VZ_FILTER 39996.480 3.520 133.000
AZ_FILTER 39995.624 4.376 133.000
VA_FILTER 39995.656 4.344 134.025
H_FILTER 39995.676 4.324 134.025
VL_FILTER_SEND 39995.700 4.300 103.750

co
nt

ro
l

SYNC 79991.600 8.400 3272.250
VL_FILTER_RECV 39996.108 3.892 286.100
VZ_CONTROL 79991.600 8.400 278.850
ALTI_HOLD 79991.600 8.400 129.238
VA_CONTROL 79991.600 8.400 103.488
VL_CTRL_SEND 79991.600 8.400 317.538

searching through the schedule table. Moreover, the computed schedule is a can-
didate for further optimization by estimating tighter bounds for the acceptance
windows and network transmission time. However, this is outside the scope of
this work.

6.5.3 Clock Synchronization

We evaluate the distributed system’s clock synchronization relative to the TTEth-
ernet network switch by generating I/O pulses from the synchronization tasks
on each node and the hardware timestamp units when a valid PCF is received.
By comparing the time difference between the I/O pulse generated by the ar-
rival of a PCF frame and the I/O pulse generated by the execution time of the
synchronization task, we can derive the overall synchronization quality of the

6.5 Evaluation 125

Figure 6.4: Measured clock synchronization accuracy of the synchronization
task I/O pulse relative to the arrival time of the TTEthernet PCF
I/O pulse.

node. We measure the offset using a logic analyzer and present the results in
Figure 6.4. The nodes are synchronized to the network schedule to a measured
precision of ≈ 100µs. While the observed synchronization of the distributed
task schedules relative to each other is ≤ 50µs.

6.5.4 Quality of Control

The achieved quality of control of the presented design is evaluated by measuring
the step response of the aircraft during the scenario of a 1000 m climb that starts
at 50 seconds and executes for 600 seconds. The aircraft has an initial altitude
of h = 10000m and requires a total of ≈ 400 seconds to reach the designated
altitude with a reference vertical speed V z = 2.5m/s and a reference airspeed
V a = 230m/s. Figure 6.5 presents the results of the distributed ROSACE
implementation, gathered by the LOGGING task, during the commanded flight
scenario. The results are compared against the simulated execution on the Linux
machine. The figure is split into three sub-plots that describe the aircraft’s
ascend as follows:

• The top plot presents the altitude curve during the entire runtime of the
scenario.

• The bottom-left plot presents a close-up view of the aircraft’s true airspeed
step response during a 20 seconds time-widnow around the commanded
climb.

• And the bottom-right plot presents a view of the aircraft’s vertical speed
response during the commanded step climb.

126
Evaluating a Time-Triggered Runtime System by Distributing a Flight

Controller

0 100 200 300 400 500 600
Time (s)

0.95

1

1.05

1.1

1.15
h

(m
)

104

C
lim

b

E
nd

Simulation
Distributed

60 80 100
Time (s)

229.8

229.9

230

230.1

V
a

(m
/s

) C
lim

b

60 80 100
Time (s)

0

1

2

3
V

z
(m

/s
) C

lim
b

Figure 6.5: Aircraft step response comparison between simulation and dis-
tributed real-time system implementation. Commanded 1000 m
climb starts at 50 seconds.

The presented design performs a stable flight-level climb similar to the simulated
implementation with a slightly higher overshoot and response delay due to the
reduced sampling frequency of the implementation.

To validate the performance characteristics of the presented distributed real-
time system, we focus on the time-domain performance specifications defined
by the ROSACE case-study. In [80], the authors use the same validation rules to
verify the correctness of the SIMULINK model performance. Table 6.4 presents
the flight validation results of the presented distributed system evaluation that
executes in real-time and compares them against a Linux implementation that
executes in simulation time. The results evaluate the performance of the flight
regarding the vertical speed V z and true airspeed V a quality-of-control against
a set of objectives discribed in Section 6.2. The system performs well within the
specification bounds and with results very close to the simulated performance
of the Linux implementation.

6.6 Related Work 127

Table 6.4: ROSACE requirements validation and results comparison

Property Objective Linux Results Distributed Results

P1 5% settling time Vz ≤ 10 s 6.430 s 8.360 s
Va ≤ 20 s 5.560 s 0.020 s

P2 Overshoot Vz ≤ 10 % 3.443% 4.360%
Va ≤ 10 % 0.014% 0.023%

P3 Rise time Vz ≤ 6 s 0.170 s 5.460 s
Va ≤ 12 s 0 s 0 s

P4 Steady-state error Vz ≤ 5 % 0.973% 0.960%
Va ≤ 5 % 0.004% 4.374e-04%

6.6 Related Work

This section reviews recent related research in the domain of distributed time-
triggered system evaluation.

Synchronizing task execution with the underlying communication schedule has
been advertised over an asynchronous approach by [163] and has been explored
in detail by [101], where the authors present an SMT-based approach for synthe-
sizing combined schedules for communication and task execution. The authors
focus on optimizing the approach’s schedulability and using an earliest-deadline
first scheduling policy evaluated on a proprietary runtime system using a syn-
thetic task set. In contrast, our work focuses on designing and evaluating a
realistic closed-loop control application experimentally using a complete open-
source framework.

There is much significant research being carried out in the field of optimizing
time-triggered systems regarding communication and scheduling, some examples
being [97, 20, 92]. To the authors’ knowledge, few of these have illustrated the
design process of a realistic case study in time-triggered embedded systems that
evaluates the performance of a runtime system and the underlying network,
particularly in the case of TTEthernet.

An analytical view on time-triggered architectures for avionic embedded systems
is presented in [105]. The authors present a time-triggered constraint-based
calculus framework for formal analysis of integrated modular avionics systems.
They present a formal analysis of an avionic landing-gear system connected
through a TTEthernet network that can specify the schedulability and the end
to end delay of functional chains properties of such a system.

128
Evaluating a Time-Triggered Runtime System by Distributing a Flight

Controller

A TTEthernet-based flight management system is investigated and modeled in
[60]. The authors present a methodology to model the individual components of
a time-triggered embedded system and evaluate the model in simulation using
the Ptolemy II actors framework [81]. In contrast, our work is experimentally
driven and presents the evaluation of a runtime system that is implemented on
an experimental distributed system setup.

In [80], the authors presented the ROSACE case study of a multi-rate longi-
tudinal flight controller. The authors presented a complete design approach
from modelling the controller in SIMULINK to implementing the application
in a multi/many-core executable using PRELUDE. The tasks were mapped to
three tiles on a many-core TILERA TILEMPOWERGX-36 platform [108] based
on their periods. In this work, we examine and extend this approach to a dis-
tributed time-triggered implementation. We evaluate an open-source framework
to derive and schedule a cyclic task set that we distribute in a TTEthernet net-
work over three nodes.

Finally, in [87], the authors present a software-based time-triggered system for
automotive applications. It deploys a buffering scheme for standard Ethernet
controllers to support time-triggered communication and evaluate the perfor-
mance and time-predictability of the end-system with synthetic traffic flows. In
contrast to our work, the authors do not evaluate a specific benchmark con-
trol application, and thus they do not evaluate task execution together with
communication.

6.7 Future Work

Distributing the ROSACE benchmark over a TTEthernet network using an
open-source framework for time-triggered communication allows evaluating the
performance of different communication protocols and scheduling policies using
a realistic closed-loop control application.

Industry 4.0 is enabling fog computing for industrial automation through the
use of time-sensitive networking (TSN). We identify the challenges involved
in the control optimization performance [157] and plan to explore the design
extensions of the proposed framework needed to integrate into a TSN network
and deploy the presented distributed ROSACE benchmark. This will allow us to
perform a comparative analysis of the design and performance between different
underlying network protocols and scheduling policies.

6.8 Conclusion 129

6.8 Conclusion

This work explored the design of distributing a closed-loop control application
on a TTEthernet network using an open-source time-triggered runtime system.
Using the proposed open-source framework, we were able to successfully dis-
tribute and schedule the benchmark tasks on three nodes as well as schedule
the underlying communication.

We presented the ROSACE longitudinal flight controller and the validation ob-
jectives of the benchmark. Consecutively, we described the design process of
distributing the flight controller on a time-triggered distributed system and the
implementation details needed to achieve a functional and time-predictable de-
sign.

Finally, we deployed and evaluated the runtime system in an experimental
TTEthernet network and measured its performance. The benchmark demon-
strated the correct functionality of the proposed framework, and the presented
design was able to pass the validation goals with tight synchronization and min-
imal task jitter within 10µs.

Acknowledgment

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant
agreement No. 764785.

130
Evaluating a Time-Triggered Runtime System by Distributing a Flight

Controller

Chapter 7

Conclusion

This chapter summarizes the presented contributions of this work and how they
can be integrated within an end-system to provide an overall time-predictable
architecture suitable for real-time communication. Finally, it concludes this
work by outlining future research based on the proposed hardware/software
components.

7.1 Summary of Contributions

The presented thesis was composed of five research papers to enable time-
predictable communication for networked end-systems by exploring the required
components. The contributions of the presented research chapters can be the-
matically grouped into three areas:

1. Time synchronization

2. Open-source real-time communication

3. Synchronized task execution with communication

132 Conclusion

Time synchronization Time synchronization was first explored in Chapter 2
using the IEEE 1588

PTP. The developed software stack was able to
achieve sub-microsecond precision. The design is enhanced by a proposed
hardware-assisted timestamping and clock correction hardware compo-
nent. The developed hardware component reduces the standard deviation
(jitter) of the achieved clock synchronization as illustrated in Figures 2.8
& 2.9. This component can enable an end-system to accurately synchro-
nize within

TSN networks and enable time-aware communication as was
illustrated in the implementation presented in [O1]. The investigation on
time synchronization is extended in Chapter 3, which explores the current
reliability and safety issues of

PTP using a simulation setup of multiple
network failures and malicious

PTP masters. A fault-tolerant end-system
design is presented, that combined with redundant network topology, can
effectively guarantee precise clock synchronization.

Synchronized task execution with communication This work promotes
the synchronous data flow model for hard real-time systems. Chapter 5 in-
vestigated the concept of end-to-end synchronization of computation tasks
with the underlying time-triggered communication layer and proposed an
open-source framework to allow scheduling of both computation and com-
munication. A static scheduler is developed that uses constraint program-
ming to derive valid cyclic schedules. A bare-metal runtime system enables
the network-time synchronized execution of the generated schedule. This
work illustrated that using a fully synchronous approach enables bounded
communication and computation jitter and minimal memory usage as com-
putation and memory resources can be statically scheduled.

Open-source real-time communication Chapter 4 first presented a proto-
type open-source TTEthernet node. The communication and synchroniza-
tion mechanisms were implemented entirely in software and enable any
bare-metal processor to be integrated within a TTEthernet network as
a synchronization client. The experimental clock synchronization results
(see Figure 4.12) highlighted the feasibility of the design as the TTEther-
net node was able to synchronize with the network time with a precision
of ≈ 3µs. It is worth noting that the

WCET analysis of the developed
network stack illustrates the cost of this implementation. Transmission,
reception and synchronization have shown to be time consuming software
functions that should be taken into consideration by system designers of
performance constrained embedded systems. Chapter 5 extends the de-
veloped TTEthernet node by presenting a complete time-triggered frame-
work for scheduling computation and communication tasks together with
an open-source runtime system. Chapter 6 demonstrates the successful op-
eration of the proposed framework by distributing an avionic benchmark
over an experimental TTEthernet network. The runtime system can suc-
cessfully perform a flight scenario with microseconds jitter (see Table 6.3).

7.2 Composing a Time-Triggered End-System 133

Time-triggered End-System A

Cyclic Schedule (C3,C4)

Hardware
Clock Synchronization

(C1)

Time-triggered
Task

Controlled Actuator (C3,C4)

Network
redundancy (C2)

Switch

TTEthernet (J1)

Time-triggered End-
System B

Time-triggered
Frame (J1,C3)

Sampled Sensor (C3,C4)

Figure 7.1: Composition of the fundamental components of an example time-
triggered end-system integrated within a TTEthernet network.
Papers indicated within parentheses ([C1], [C3], [J1], [C2], [C4]).

7.2 Composing a Time-Triggered End-System

The presented components of this work can be integrated with any

WCET-
analyzable platform to provide support for fault-tolerant time-synchronization
and time-triggered communication and computation to industrial and safety-
critical real-time applications. Figure 7.1 presents an overview of the proposed
components mapped to an example time-triggered network architecture between
two end-systems A & B (see Figure 1.1). The example illustrates how the
proposed contributions, indicated in parentheses, can be combined to provide
synchronous operation of a hard real-time cyber-physical system network. The
network redundancy, together with the hardware clock synchronization unit,
allow for fault-tolerant clock synchronization. The open-source network stack
enables integration with industrial communication protocols (i.e. TTEthernet).
Furtermore, the

SMT scheduler, together with the time-predictable runtime sys-
tem, allow for synchronized distributed task execution. Overall, the composed
time-triggered end-system offers time-predictable sensor sampling and actuator
control with synchronized communication and minimal jitter.

134 Conclusion

7.3 Future Research Outlook

As previously discussed, this work aims to design open-source hardware and
software components that enable real-time communication and computation for
distributed end-systems. Although the presented efforts have demonstrated the
successful operation of an open-source time-triggered research platform, they
have covered just part of the available communication protocols (e.g., TTEth-
ernet, IEEE 1588), and have mainly focused on single-core processors. Some
suggestions for future research topics are presented below:

Expanding communication support: The author suggests that part of fu-
ture research extend the proposed runtime system to support different
protocols such as PROFINET, EtherCAT and particularly

TSN. The pre-
sented runtime system can be easily modified to support

TSN provided
that the existing TTEthernet synchronization function will be replaced
with a

PTP slave function similar to the one presented in Figure 2.6b.
The author identifies that the primary research challenge is that TTEth-
ernet schedules synchronization frames (

PCF) together with data frames
at the start of each integration cycle. In contrast,

TSN does not specify
a specific point-in-time that

PTP frames are transmitted; thus, synchro-
nization slave end-systems should always be ready to accept

PTP frames.
Thus reducing the determinism of computation and memory resources us-
age. It is proposed that scheduling of

PTP frames together with data
should be investigated to compose isochronous communication channels
between end-systems and neighbouring

TSN switches.

Extending the framework to multicore: Additionally, it is worth explor-
ing time-triggered communication in multicore architectures. The author
has made first efforts to modify the static scheduler to generate mapped
schedule tables per core, and an initial coding example for the ROSACE
benchmark has been developed 1 that executes on the T-CREST mul-
ticore platform using the Argo network-on-chip (

NoC) message-passing
library for inter-core communication [95]. The efforts presented in this
thesis can serve as a base for future research to explore synchronization of
task chains beyond multicore processors to mixed

NoC and time-triggered
communication topologies as has been already proposed in [O2]. In the
proposed work, the author describes a communication scheme that hides
the spatial locality of cores by employing a

NoC driver layer that maps
each core to an

IP address. The driver-layer converts the on-chip core-to-
core message-passing communication to off-chip Ethernet communication
depending on the

IP address. This operation is transparent to the user
1https://github.com/t-crest/patmos/blob/master/c/apps/rosace/rosace_patmos_argo.c

7.3 Future Research Outlook 135

application level, which communicates using only

IP packets. It is hypoth-
esized that the combination of Internet Protocol core masking with an
on-chip

TDM-based

NoC layer and a time-triggered off-chip communica-
tion channel can enable flexible distribution of applications on real-time
distributed multicore systems such as modern avionics [131].

136 Conclusion

Bibliography

[1] Danny Dolev, Nancy A Lynch, Shlomit S Pinter, Eugene W Stark, and
William E Weihl. “Reaching approximate agreement in the presence of
faults”. In: Journal of the ACM (JACM) 33.3 (1986), pp. 499–516.

[2] Edward A. Lee and David G. Messerschmitt. “Synchronous Data Flow”.
In: Proceedings of the IEEE 75.9 (Sept. 1987), pp. 1235–1245. issn: 0018-
9219. doi: 10.1109/PROC.1987.13876.

[3] John A. Stankovic. “Misconceptions about real-time computing: A se-
rious problem for next-generation systems”. In: Computer 21.10 (1988),
pp. 10–19.

[4] Flaviu Cristian. “Probabilistic clock synchronization”. In: Distributed com-
puting 3.3 (1989), pp. 146–158.

[5] Riccardo Gusella and Stefano Zatti. “The accuracy of the clock synchro-
nization achieved by TEMPO in Berkeley UNIX 4.3 BSD”. In: IEEE
transactions on Software Engineering 15.7 (1989), pp. 847–853.

[6] Hermann Kopetz, Andreas Damm, Christian Koza, Marco Mulazzani,
Wolfgang Schwabl, Christoph Senft, and Ralph Zainlinger. “Distributed
fault-tolerant real-time systems: The Mars approach”. In: IEEE Micro
9.1 (1989), pp. 25–40.

[7] Parameswaran Ramanathan, Kang G. Shin, and Ricky W. Butler. “Fault-
tolerant clock synchronization in distributed systems”. In: Computer 23.10
(1990), pp. 33–42.

[8] Hermann Kopetz and Günter Grunsteidl. “TTP-A time-triggered proto-
col for fault-tolerant real-time systems”. In: FTCS-23 The Twenty-Third
International Symposium on Fault-Tolerant Computing. IEEE. 1993,
pp. 524–533.

138 BIBLIOGRAPHY

[9] William Buchanan. “CAN bus”. eng. In: Computer Busses (2000), pp. 333–
343. doi: 10.1016/B978- 034074076- 7/50021- 3, 10.1016/B978- 0- 340-
74076-7.X5000-7.

[10] Alan Burns and Andrew J Wellings. Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX. Pearson Edu-
cation, 2001.

[11] Omer Gurewitz and Moshe Sidi. “Estimating one-way delays from cyclic-
path delay measurements”. In: Proceedings IEEE INFOCOM 2001. Con-
ference on Computer Communications. Twentieth Annual Joint Con-
ference of the IEEE Computer and Communications Society (Cat. No.
01CH37213). Vol. 2. IEEE. 2001, pp. 1038–1044.

[12] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, Mahesh Balakrishnan,
and Peter Marwedel. “Scratchpad memory: A design alternative for cache
on-chip memory in embedded systems”. In: Proceedings of the Tenth In-
ternational Symposium on Hardware/Software Codesign. CODES 2002
(IEEE Cat. No. 02TH8627). IEEE. 2002, pp. 73–78.

[13] Wilfried Elmenreich and Martin Delvai. “Time-triggered communication
with UARTs”. In: Factory Communication Systems, 2002. 4th IEEE In-
ternational Workshop on. IEEE. 2002, pp. 97–104.

[14] Gabriel Leen and Donal Heffernan. “TTCAN: A New Time-Triggered
Controller Area Network”. In: Microprocessors and Microsystems 26.2
(2002), pp. 77–94.

[15] Igor Mohor. Ethernet IP core design document. eng. 2002. url: http :
//opencores.org/project,ethmac (visited on 02/07/2018).

[16] Erland Nilsson. “Design and Implementation of a hot-potato Switch in
a Network on Chip”. In: Mémoire, Departement of Microelectronics and
Information Technology, Royal Institute of Technology (2002).

[17] Airlines Electronic Engineering Committee. Aircarft Data Network, Part
7-avionics Full Duplex Switched Ethernet (AFDX) Network. 2004.

[18] Chris Lattner and Vikram S. Adve. “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation”. In: International Sym-
posium on Code Generation and Optimization (CGO’04). IEEE Com-
puter Society, 2004, pp. 75–88. isbn: 0-7695-2102-9.

[19] Roman Obermaisser. Event-triggered and time-triggered control para-
digms. Vol. 22. Springer Science & Business Media, 2004.

[20] Paul Pop, Petru Eles, and Zebo Peng. “Schedulability-driven communi-
cation synthesis for time triggered embedded systems”. In: Real-Time
Systems 26.3 (2004), pp. 297–325.

[21] Kees Goossens, John Dielissen, and Andrei Radulescu. “Æthereal net-
work on chip: concepts, architectures, and implementations”. In: IEEE
Design & Test of Computers 22.5 (2005), pp. 414–421.

BIBLIOGRAPHY 139

[22] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinham-
mer. “The time-triggered Ethernet (TTE) design”. In: Eighth IEEE In-
ternational Symposium on Object-Oriented Real-Time Distributed Com-
puting (ISORC’05). IEEE. 2005, pp. 22–33.

[23] Ingomar Wenzel, Raimund Kirner, Peter Puschner, and Bernhard Rieder.
“Principles of timing anomalies in superscalar processors”. In: Fifth Inter-
national Conference on Quality Software (QSIC’05). IEEE. 2005, pp. 295–
303.

[24] John C. Eidson. Measurement, Control, and Communication Using IEEE
1588. 1st. Springer Science & Business Media, 2006. isbn: 9781846282508.

[25] David L. Mills. Computer Network Time Synchronization: The Network
Time Protocol. 2006.

[26] Roman Obermaisser. “Reuse of CAN-based legacy applications in time-
triggered architectures”. In: IEEE Transactions on Industrial Informatics
2.4 (2006), pp. 255–268.

[27] F Sethna, FH Ali, and E Stipidis. “What lessons can controller area net-
works learn from FlexRay”. In: 2006 IEEE Vehicle Power and Propulsion
Conference. IEEE. 2006, pp. 1–4.

[28] Klaus Steinhammer, Petr Grillinger, Astrit Ademaj, and Hermann Kopetz.
“A time-triggered ethernet (TTE) switch”. In: DATE ’06: Proceedings of
the conference on Design, automation and test in Europe. Munich, Ger-
many: European Design and Automation Association, 2006, pp. 794–799.
isbn: 3-9810801-0-6.

[29] Astrit Ademaj and Hermann Kopetz. “Time-triggered Ethernet and IEEE
1588 clock synchronization”. In: 2007 IEEE International Symposium on
Precision Clock Synchronization for Measurement, Control and Commu-
nication. IEEE. 2007, pp. 41–43.

[30] L Benetazzo, C Narduzzi, and M Stellini. “Analysis of clock tracking
performances for a software-only IEEE 1588 implementation”. In: Pro-
ceedings of the Instrumentation and Measurement Technology Conference
Proceedings (IMTC). IEEE, 2007, pp. 1–6.

[31] Stephen A Edwards and Edward A Lee. “The case for the precision timed
(PRET) machine”. In: Proceedings of the 44th annual Design Automation
Conference. 2007, pp. 264–265.

[32] G Giorgi and C Narduzzi. “Modeling and simulation analysis of PTP
clock servo”. In: 2007 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication. 2007.

[33] Peter Neumann. “Communication in industrial automation-What is go-
ing on?” In: Control Engineering Practice 15.11 (2007), pp. 1332–1347.

140 BIBLIOGRAPHY

[34] Wilfried Steiner. “Advancements in Dependable Time-Triggered Commu-
nication”. In: Software Technologies for Embedded and Ubiquitous Sys-
tems. Ed. by Roman Obermaisser, Yunmook Nah, Peter Puschner, and
Franz J. Rammig. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 57–66. isbn: 978-3-540-75664-4.

[35] Klaus Steinhammer and Astrit Ademaj. “Hardware Implementation of
the Time-Triggered Ethernet Controller”. In: Embedded System Design:
Topics, Techniques and Trends, IFIP TC10 Working Conference: Inter-
national Embedded Systems Symposium (IESS), May 30 - June 1, 2007,
Irvine, CA, USA. Ed. by Achim Rettberg, Mauro Cesar Zanella, Rainer
Dömer, Andreas Gerstlauer, and Franz-Josef Rammig. Vol. 231. IFIP Ad-
vances in Information and Communication Technology. Springer, 2007,
pp. 325–338. isbn: 978-0-387-72257-3.

[36] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver”.
In: International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer. 2008, pp. 337–340.

[37] Institute of Electrical and Electronics Engineers. 1588-2008 - IEEE Stan-
dard for a Precision Clock Synchronization Protocol for Networked Mea-
surement and Control Systems. 2008.

[38] Fang He and Shouhua Zhao. “Research on synchronous control of nodes
in distributed network system”. In: 2008 IEEE International Conference
on Automation and Logistics. IEEE. 2008, pp. 2999–3004.

[39] IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems. eng. 2008. doi: 10 . 1109 /
IEEESTD.2008.4579760.

[40] Sungwon Lee. “An enhanced IEEE 1588 time synchronization algorithm
for asymmetric communication link using block burst transmission”. In:
IEEE communications letters 12.9 (2008), pp. 687–689.

[41] Wilfried Steiner, Günther Bauer, and David Jameux. “Ethernet for space
applications: TTEthernet”. In: International SpaceWire Conference 2008,
Nara, Japan. 2008.

[42] András Varga and Rudolf Hornig. “An Overview of the OMNeT++ Simu-
lation Environment”. In: Proceedings of the 1st International Conference
on Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops. Simutools ’08. Marseille, France: ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications En-
gineering), 2008. isbn: 9789639799202.

[43] D Macii, D Fontanelli, and D Petri. “A master-slave synchronization
model for enhanced servo clock design”. In: 2009 International Sympo-
sium on Precision Clock Synchronization for Measurement, Control and
Communication. IEEE. 2009, pp. 1–6.

BIBLIOGRAPHY 141

[44] Martin Schoeberl. “Time-predictable computer architecture”. In: EURASIP
Journal on Embedded Systems 2009 (2009), pp. 1–17.

[45] Martin Schoeberl, Wolfgang Puffitsch, and Benedikt Huber. “Towards
time-predictable data caches for chip-multiprocessors”. In: IFIP Interna-
tional Workshop on Software Technolgies for Embedded and Ubiquitous
Systems. Springer. 2009, pp. 180–191.

[46] Wilfried Steiner and Günther Bauer. “TTEthernet: Time-triggered ser-
vices for Ethernet networks”. In: Proceedings of 28th IEEE Digital Avion-
ics Conference (DASC). 2009.

[47] Wilfried Steiner, Günther Bauer, Brendan Hall, Michael Paulitsch, and
Srivatsan Varadarajan. “TTEthernet dataflow concept”. In: 2009 Eighth
IEEE International Symposium on Network Computing and Applications.
IEEE. 2009, pp. 319–322.

[48] Weidong Ye. “IEEE1588 Clock servo algorithm”. In: Proceedings of the
9th International Conference on Electronic Measurement & Instruments.
IEEE, Aug. 2009, p. 5274861.

[49] Jeff Preston, Dan Blankenship, Les Hoy, MF Ohmes, Andrey Gueorguiev,
and Juergen Stein. “Novel timing method using IEEE 1588 and syn-
chronous Ethernet for Compton telescope”. In: Proceedings of the Nu-
clear Science Symposium Conference Record (NSS/MIC). IEEE, 2010,
pp. 1404–1407.

[50] Anders P. Ravn and Martin Schoeberl. “Cyclic executive for safety-critical
Java on chip-multiprocessors”. In: Proceedings of the 8th International
Workshop on Java Technologies for Real-time and Embedded Systems
(JTRES 2010). Prague, Czech Republic: ACM, 2010, pp. 63–69. isbn:
978-1-4503-0122-0. doi: 10.1145/1850771.1850779.

[51] Florian Bartols, Till Steinbach, Franz Korf, and Thomas C Schmidt.
“Performance analysis of time-triggered ether-networks using off-the-shelf-
components”. In: 2011 14th IEEE International Symposium on Object /
Component / Service-Oriented Real-Time Distributed Computing Work-
shops. IEEE. 2011, pp. 49–56.

[52] Hermann Kopetz. “Temporal Relations”. In: Real-Time Systems. Springer,
2011, pp. 111–133.

[53] Yan Lin, Li Hao, and Tian Dan. “Research and implementation in syn-
chronized system of data acquisition based on IEEE 1588”. In: Proceed-
ings of the 10th International Conference on Electronic Measurement &
Instruments (ICEMI). Vol. 2. IEEE, 2011, pp. 198–201.

142 BIBLIOGRAPHY

[54] Maciej Lipiński, Tomasz Włostowski, Javier Serrano, and Pablo Alvarez.
“White rabbit: A PTP application for robust sub-nanosecond synchroniza-
tion”. In: Proceedings of the International IEEE Symposium on Precision
Clock Synchronization for Measurement Control and Communication (IS-
PCS). IEEE, 2011, pp. 25–30.

[55] T. Mizrahi. “Time synchronization security using IPsec and MACsec”. In:
2011 IEEE International Symposium on Precision Clock Synchronization
for Measurement, Control and Communication. 2011, pp. 38–43. doi:
10.1109/ISPCS.2011.6070153.

[56] Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, and
David Lesens. “Multi-task implementation of multi-periodic synchronous
programs”. In: Discrete event dynamic systems 21.3 (2011), pp. 307–338.

[57] Jae Won Park, Jin Ha Hwang, Won Young Chung, Seung Woo Lee, and
Yong Surk Lee. “Design time stamp hardware unit supporting IEEE
1588 standard”. In: SoC Design Conference (ISOCC), 2011 International.
IEEE, 2011, pp. 345–348.

[58] Mingzhu Qi, Xiaoli Wang, and Zhiqiang Yang. “Design and implementa-
tion of IEEE1588 time synchronization messages timestamping based on
FPGA”. In: Electric Utility Deregulation and Restructuring and Power
Technologies (DRPT), 2011 4th International Conference on. IEEE, 2011,
pp. 1566–1570.

[59] TTTech. AS6802: Time-Triggered Ethernet. 2011.
[60] Guillaume Brau and Claire Pagetti. “TTEthernet-based architecture sim-

ulation with Ptolemy II”. In: 6th Junior Researcher Workshop on Real-
Time Computing (JRWRTC 2012). 2012, p29–32.

[61] Franck Cassez, René Rydhof Hansen, and Mads Chr Olesen. “What is a
timing anomaly?” In: 12th International Workshop on Worst-Case Exe-
cution Time Analysis. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
2012.

[62] Rodney Cummings, Kai Richter, Rolf Ernst, Jonas Diemer, and Arkadeb
Ghosal. “Exploring use of Ethernet for in-vehicle control applications:
AFDX, TTEthernet, EtherCAT, and AVB”. In: SAE International Jour-
nal of Passenger Cars-Electronic and Electrical Systems 5.2012-01-0196
(2012), pp. 72–88.

[63] T. Mizrahi. “Slave diversity: Using multiple paths to improve the accu-
racy of clock synchronization protocols”. In: 2012 IEEE International
Symposium on Precision Clock Synchronization for Measurement, Con-
trol and Communication Proceedings. 2012, pp. 1–6. doi: 10.1109/ISPCS.
2012.6336621.

BIBLIOGRAPHY 143

[64] Till Steinbach, Hyung-Taek Lim, Franz Korf, Thomas C Schmidt, Daniel
Herrscher, and Adam Wolisz. “Tomorrow’s in-car interconnect? A com-
petitive evaluation of IEEE 802.1 AVB and Time-Triggered Ethernet
(AS6802)”. In: 2012 IEEE Vehicular Technology Conference (VTC Fall).
IEEE. 2012, pp. 1–5.

[65] Ekarin Suethanuwong. “Scheduling time-triggered traffic in TTEthernet
systems”. In: Proceedings of 2012 IEEE 17th International Conference
on Emerging Technologies & Factory Automation (ETFA 2012). IEEE.
2012, pp. 1–4.

[66] Domitian Tamas-Selicean, Paul Pop, and Wilfried Steiner. “Synthesis of
Communication Schedules for TTEthernet-Based Mixed-Criticality Sys-
tems”. In: Proceedings of the eighth IEEE/ACM/IFIP international con-
ference on Hardware/software codesign and system synthesis. ACM. 2012,
pp. 473–482.

[67] Guang You Yang, Yi Zheng, Zhi Yan Ma, and Xin Yu Hu. “The Imple-
mentation of IEEE 1588-2008 Precision Time Protocol on the STM32F107”.
In: Key Engineering Materials 522 (2012), pp. 868–873.

[68] Gonzalo Carvajal and Sebastian Fischmeister. “An open platform for
mixed-criticality real-time Ethernet”. In: 2013 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE. 2013, pp. 153–
156.

[69] PPM Jansweijer, HZ Peek, and E DeWolf. “White Rabbit: Sub-nanosecond
timing over Ethernet”. In: Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment 725 (2013), pp. 187–190.

[70] Maciej Lipinski. “White Rabbit-Ethernet-based solution for sub-ns syn-
chronization and deterministic, reliable data delivery”. In: IEEE Plenary
Meeting Geneva. Vol. 15. 2013.

[71] Peter Puschner, Daniel Prokesch, Benedikt Huber, Jens Knoop, Stefan
Hepp, and Gernot Gebhard. “The T-CREST approach of compiler and
WCET-analysis integration”. In: 16th IEEE International Symposium
on Object/component/service-oriented Real-time distributed Computing
(ISORC 2013). IEEE. 2013, pp. 1–8.

[72] A. Shpiner, Y. Revah, and T. Mizrahi. “Multi-path Time Protocols”. In:
2013 IEEE International Symposium on Precision Clock Synchroniza-
tion for Measurement, Control and Communication (ISPCS) Proceedings.
2013, pp. 1–6. doi: 10.1109/ISPCS.2013.6644754.

[73] Wilfried Steiner and Bruno Dutertre. “The TTEthernet synchronisation
protocols and their formal verification”. In: International Journal of Crit-
ical Computer-Based Systems 17 4.3 (2013), pp. 280–300.

144 BIBLIOGRAPHY

[74] Ivan Studnia, Vincent Nicomette, Eric Alata, Yves Deswarte, Mohamed
Kaaniche, and Youssef Laarouchi. “Survey on security threats and pro-
tection mechanisms in embedded automotive networks”. In: Proc. DSN
(2013).

[75] Silviu S Craciunas, Ramon Serna Oliver, and Valentin Ecker. “Optimal
static scheduling of real-time tasks on distributed time-triggered net-
worked systems”. In: Proceedings of the 2014 IEEE Emerging Technology
and Factory Automation (ETFA). IEEE. 2014, pp. 1–8.

[76] Peter Danielis, Jan Skodzik, Vlado Altmann, Eike Bjoern Schweissguth,
Frank Golatowski, Dirk Timmermann, and Joerg Schacht. “Survey on
Real-Time Communication via Ethernet in industrial automation envi-
ronments”. eng. In: 19th Ieee International Conference on Emerging Tech-
nologies and Factory Automation, Etfa 2014 (2014). doi: 10.1109/ETFA.
2014.7005074.

[77] Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez,
Claire Pagetti, and Wolfgang Puffitsch. “Predictable flight management
system implementation on a multicore processor”. In: Embedded Real
Time Software (ERTS’14). 2014.

[78] Friedrich Groß, Till Steinbach, Franz Korf, Thomas C Schmidt, and
Bernd Schwarz. “A hardware/software co-design approach for Ethernet
controllers to support time-triggered traffic in the upcoming IEEE TSN
standards”. In: Proceedings of the Fourth International Conference on
Consumer Electronics–Berlin (ICCE-Berlin). IEEE, 2014, pp. 9–13.

[79] Tal Mizrahi. Security Requirements of Time Protocols in Packet Switched
Networks. RFC 7384. Oct. 2014. doi: 10.17487/RFC7384. url: https:
//rfc-editor.org/rfc/rfc7384.txt.

[80] Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre
Siron. “The ROSACE case study: From Simulink specification to multi
/many-core execution”. In: 2014 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE. 2014, pp. 309–
318.

[81] Claudius Ptolemaeus, ed. System Design, Modeling, and Simulation using
Ptolemy II. Ptolemy.org, 2014.

[82] Martin Schoeberl, David Vh Chong, Wolfgang Puffitsch, and Jens Sparsø.
“A time-predictable memory network-on-chip”. In: 14th International Work-
shop on Worst-Case Execution Time Analysis. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. 2014.

[83] Domiţian Tămaş-Selicean and Paul Pop. “Optimization of TTEthernet
networks to support best-effort traffic”. In: Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA). IEEE. 2014, pp. 1–
4.

BIBLIOGRAPHY 145

[84] Jack Whitham and Martin Schoeberl. “WCET-based comparison of an
instruction scratchpad and a method cache”. In: 2014 IEEE 17th Inter-
national Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing. IEEE. 2014, pp. 301–308.

[85] Jaume Abella, Carles Hernandez, Eduardo Quiñones, Francisco J Ca-
zorla, Philippa Ryan Conmy, Mikel Azkarate-Askasua, Jon Perez, Enrico
Mezzetti, and Tullio Vardanega. “WCET analysis methods: Pitfalls and
challenges on their trustworthiness”. In: 10th IEEE International Sympo-
sium on Industrial Embedded Systems (SIES). IEEE. 2015, pp. 1–10.

[86] DP83640 Precision PHYTER-IEEE 1588 Precision Time Protocol Trans-
ceiver. Texas Instruments. Apr. 2015. url: www.ti.com/lit/ds/symlink/
dp83630.pdf (visited on 07/03/2018).

[87] Thomas Fruhwirth, Wilfried Steiner, and Bernhard Stangl. “TTEthernet
SW-based end system for AUTOSAR”. eng. In: 2015 10th Ieee Interna-
tional Symposium on Industrial Embedded Systems, Sies 2015 - Proceed-
ings (2015), pp. 21–28. doi: 10.1109/SIES.2015.7185037.

[88] Pengfei Gui, Liqiong Tang, and Subhas Mukhopadhyay. “MEMS based
IMU for tilting measurement: Comparison of complementary and kalman
filter based data fusion”. In: 2015 IEEE 10th conference on Industrial
Electronics and Applications (ICIEA). IEEE. 2015, pp. 2004–2009.

[89] Stefan Hepp, Benedikt Huber, Jens Knoop, Daniel Prokesch, and Peter P.
Puschner. “The platin Tool Kit - The T-CREST Approach for Compiler
and WCET Integration”. In: Proceedings 18th Kolloquium Programmier-
sprachen und Grundlagen der Programmierung, KPS 2015, Pörtschach,
Austria, October 5-7, 2015. 2015.

[90] Andrew T Loveless. “On TTEthernet for integrated Fault-Tolerant space-
craft networks”. In: AIAA SPACE 2015 Conference and Exposition. 2015,
p. 4526.

[91] Luca Pezzarossa, Jakob Kenn Toft, Jesper Lønbæk, and Russell Barnes.
Implementation of an Ethernet-Based Communication Channel for the
Patmos Processor. eng. 2015.

[92] Francisco Pozo, Guillermo Rodriguez-Navas, Hans Hansson, and Wilfried
Steiner. “SMT-based synthesis of TTEthernet schedules: A performance
study”. In: 10th IEEE International Symposium on Industrial Embedded
Systems (SIES). IEEE. 2015, pp. 1–4.

[93] PTPd. PTPd. 2015. url: https://github.com/ptpd/ptpd (visited on
06/02/2018).

[94] Martin Schoeberl et al. “T-CREST: Time-predictable Multi-Core Archi-
tecture for Embedded Systems”. In: Journal of Systems Architecture 61.9
(2015), pp. 449–471. issn: 1383-7621. doi: 10.1016/j.sysarc.2015.04.002.

146 BIBLIOGRAPHY

[95] Rasmus Bo Sørensen, Wolfgang Puffitsch, Martin Schoeberl, and Jens
Sparsø. “Message passing on a time-predictable multicore processor”. In:
2015 IEEE 18th International Symposium on Real-Time Distributed Com-
puting. IEEE. 2015, pp. 51–59.

[96] Karthik Sridharan, KK Goossens, Nicola Concer, and HGH Bart Ver-
meulen. “Investigation of time-synchronization over Ethernet in-vehicle
networks for automotive applications”. MA thesis. Eindhoven: Eindhoven
University of Technology, 2015.

[97] Domiţian Tămaş–Selicean, Paul Pop, and Wilfried Steiner. “Design op-
timization of TTEthernet-based distributed real-time systems”. In: Real-
Time Systems 51.1 (2015), pp. 1–35.

[98] TTTech. “Deterministic Ethernet & TSN: Automotive and Industrial
IoT”. In: Industrial Ethernet Book 89 (July 2015).

[99] 802.1AS-Rev - Timing and Synchronization for Time-Sensitive Applica-
tions. http://www.ieee802.org/1/pages/802.1AS-rev.html. Accessed:
17.12.2020. 2016.

[100] Sergiy Bogomolov, Christian Herrera, and Wilfried Steiner. “Verification
of Fault-Tolerant Clock Synchronization Algorithms.” In: ARCH@ CP-
SWeek. 2016, pp. 36–41.

[101] Silviu S Craciunas and Ramon Serna Oliver. “Combined task-and network-
level scheduling for distributed time-triggered systems”. In: Real-Time
Systems 52.2 (2016), pp. 161–200.

[102] Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelı́k, and Wilfried
Steiner. “Scheduling real-time communication in IEEE 802.1 Qbv time
sensitive networks”. In: Proceedings of the 24th International Conference
on Real-Time Networks and Systems. ACM. 2016, pp. 183–192.

[103] Cyclone IV FPGA Device Family Overview. ALTERA. Mar. 2016. url:
https://www.altera.com/en_US/pdfs/literature/hb/cyclone- iv/cyiv-
51001.pdf (visited on 07/03/2018).

[104] Institute of Electrical and Electronics Engineers. Time-Sensitive Net-
working Task Group. 2016. url: http://ieee802.org/1/pages/tsn.html
(visited on 06/22/2018).

[105] Sardaouna Hamadou, John Mullins, and Abdelouahed Gherbi. “A real-
time concurrent constraint calculus for analyzing avionic systems embed-
ded in the IMA connected through TTEthernet”. In: Theoretical Infor-
mation Reuse and Integration. Springer, 2016, pp. 85–111.

[106] Evangelia Kasapaki, Martin Schoeberl, Rasmus Bo Sørensen, Christian T.
Müller, Kees Goossens, and Jens Sparsø. “Argo: A Real-Time Network-
on-Chip Architecture with an Efficient GALS Implementation”. In: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 24 (2016),
pp. 479–492. doi: 10.1109/TVLSI.2015.2405614.

BIBLIOGRAPHY 147

[107] Tamás Kovácsházy. “Towards a quantization based accuracy and pre-
cision characterization of packet-based time synchronization”. In: 2016
IEEE International Symposium on Precision Clock Synchronization for
Measurement, Control, and Communication (ISPCS). IEEE. 2016, pp. 1–
6.

[108] Ye Liu, Hiroshi Sasaki, Shinpei Kato, and Masato Edahiro. “A scalabil-
ity analysis of many cores and on-chip mesh networks on the TILE-GX
platform”. In: 2016 IEEE 10th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSOC). IEEE. 2016, pp. 46–
52.

[109] MPU-9250 Product Specification. InvenSense. June 2016. url: https://
invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-
v1.1.pdf (visited on 04/06/2020).

[110] Tiyam Robati, Abdelouahed Gherbi, and John Mullins. “A modeling and
verification approach to the design of distributed IMA architectures using
TTEthernet”. In: Procedia Computer Science 83 (2016), pp. 229–236.

[111] Wilfried Steiner and Stefan Poledna. “Fog computing as enabler for the
Industrial Internet of Things”. In: e & i Elektrotechnik und Information-
stechnik 133.7 (2016), pp. 310–314.

[112] Terasic DE2-115 User Manual. Altera. Mar. 2016. url: https://www.
intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/
doc - us - dsnbk - 42 - 1404062209 - de2 - 115 - user - manual .pdf (visited on
03/25/2020).

[113] Daniel Thiele and Rolf Ernst. “Formal worst-case timing analysis of Eth-
ernet TSN’s burst-limiting shaper”. In: 2016 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE. 2016, pp. 187–192.

[114] Wolfgang Wallner. LibPLN: A Library for Efficient Powerlaw Noise Gen-
eration. 2016.

[115] Wolfgang Wallner. LibPTP: A Library for PTP Simulation. 2016.
[116] Wolfgang Wallner. “Simulation of Time-synchronized Networks using

IEEE 1588-2008”. PhD thesis. Wien, 2016.
[117] Bogdan M Wilamowski and J David Irwin. Industrial communication

systems. CRC Press, 2016.
[118] Yingjing Zhang, Feng He, Guangshan Lu, and Huagang Xiong. “Clock

synchronization compensation of Time-Triggered Ethernet based on least
squares algorithm”. In: 2016 IEEE/CIC International Conference on
Communications in China (ICCC Workshops). IEEE. 2016, pp. 1–5.

[119] Xuan Zhou, Feng He, and Tong Wang. “Using network calculus on worst-
case latency analysis for TTEthernet in preemption transmission mode”.
In: 2016 10th International Conference on Signal Processing and Com-
munication Systems (ICSPCS). IEEE. 2016, pp. 1–8.

148 BIBLIOGRAPHY

[120] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and
Thomas Nolte. “End-to-end timing analysis of cause-effect chains in auto-
motive embedded systems”. In: Journal of Systems Architecture 80 (2017),
pp. 104–113.

[121] Silviu S Craciunas, Ramon Serna Oliver, and TC AG. “An overview of
scheduling mechanisms for time-sensitive networks”. In: Proceedings of
the Real-time summer school LÉcole dÉté Temps Réel (ETR) (2017),
pp. 1551–3203.

[122] Marina Gutiérrez, Wilfried Steiner, Radu Dobrin, and Sasikumar Pun-
nekkat. “Synchronization quality of IEEE 802.1 AS in large-scale indus-
trial automation networks”. In: Proceedings of the Real-Time and Em-
bedded Technology and Applications Symposium (RTAS). IEEE, 2017,
pp. 273–282.

[123] Peter Lambert. D11.4-Final demonstrator implementation and evalua-
tion. Tech. rep. EMC2 Project Consortium, Apr. 2017. url: https://www.
artemis - emc2 .eu/fileadmin/user_upload/Publications/Deliverables/
EMC2_D11.4_WP11_Final_demonstrator_implementation_and_
evaluation_v1.0.pdf (visited on 03/25/2020).

[124] Ayhan Mehmed, Sasikumar Punnekkat, and Wilfried Steiner. “Determin-
istic Ethernet: Addressing the Challenges of Asynchronous Sensing in
Sensor Fusion Systems”. In: 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W).
IEEE. 2017, pp. 22–28.

[125] T. Pereira, L. Barreto, and A. Amaral. “Network and information secu-
rity challenges within Industry 4.0 paradigm”. In: Procedia Manufactur-
ing 13 (2017).

[126] Miladin Sandić, Ivan Velikić, and Aleksandar Jakovljević. “Calculation of
number of integration cycles for systems synchronized using the AS6802
standard”. In: 2017 Zooming Innovation in Consumer Electronics Inter-
national Conference (ZINC). IEEE. 2017, pp. 54–55.

[127] STM32F107VC. DocID15274 Rev 10. ST Microelectronics. Mar. 2017.
url: https://www.st.com/en/microcontrollers/stm32f107vc.html (vis-
ited on 07/03/2018).

[128] T-CREST. Patmos Source. 2017. url: https : //github . com/t - crest /
patmos (visited on 06/02/2018).

[129] Luxi Zhao, Paul Pop, Qiao Li, Junyan Chen, and Huagang Xiong. “Tim-
ing analysis of rate-constrained traffic in TTEthernet using network cal-
culus”. In: Real-Time Systems 53.2 (2017), pp. 254–287.

[130] Richard Zurawski. Industrial communication technology handbook, sec-
ond edition. eng. CRC Press, 2017, pp. 1–1756. isbn: 9781482207323,
9781482207330. doi: 10.1201/b17365.

BIBLIOGRAPHY 149

[131] Laure Abdallah, Jérôme Ermont, Jean-Luc Scharbarg, and Christian
Fraboul. “Reducing afdx jitter in a mixed noc/afdx architecture”. In: 2018
14th IEEE International Workshop on Factory Communication Systems
(WFCS). IEEE. 2018, pp. 1–4.

[132] Sascha Einspieler, Benjamin Steinwender, and Wilfried Elmenreich. “In-
tegrating time-triggered and event-triggered traffic in a hard real-time
system”. In: 2018 IEEE Industrial Cyber-Physical Systems (ICPS). IEEE.
2018, pp. 122–128.

[133] Janos Farkas, Lucia Lo Bello, and Craig Gunther. “Time-sensitive net-
working standards”. In: IEEE Communications Standards Magazine 2.2
(2018), pp. 20–21.

[134] Voica Gavriluţ and Paul Pop. “Scheduling in time sensitive networks
(TSN) for mixed-criticality industrial applications”. In: 2018 14th IEEE
International Workshop on Factory Communication Systems (WFCS).
IEEE. 2018, pp. 1–4.

[135] Voica Gavriluţ, Luxi Zhao, Michael L Raagaard, and Paul Pop. “AVB-
aware routing and scheduling of time-triggered traffic for TSN”. In: Ieee
Access 6 (2018), pp. 75229–75243.

[136] Shiying He, Liansheng Huang, Jun Shen, Ge Gao, Guanghong Wang,
Xiaojiao Chen, and Lili Zhu. “Time Synchronization Network for EAST
Poloidal Field Power Supply Control System Based on IEEE 1588”. In:
IEEE Transactions on Plasma Science 46.7 (2018), pp. 2680–2684.

[137] Intel’s Fog Reference Design Overview. Intel. Apr. 2018. url: https://
www.intel.com/content/www/us/en/internet-of-things/fog-reference-
design-overview.html (visited on 06/22/2018).

[138] Eleftherios Kyriakakis, Jens Sparsø, and Martin Schoeberl. “Hardware
assisted clock synchronization with the ieee 1588-2008 precision time pro-
tocol”. In: Proceedings of the 26th International Conference on Real-Time
Networks and Systems. 2018, pp. 51–60.

[139] Elena Lisova. “Monitoring for Securing Clock Synchronization”. PhD the-
sis. Mälardalen University, 2018.

[140] Tulika Mitra, Jürgen Teich, and Lothar Thiele. “Time-critical systems
design: A survey”. In: IEEE Design & Test 35.2 (2018), pp. 8–26.

[141] M. Paulitsch, E Schmidt, C Scherrer, and H Kantz. “Industrial Applica-
tions”. In: Time-Triggered Communication. CRC Press, 2018. Chap. 14,
pp. 315–333.

[142] Paul Pop, Michael Lander Raagaard, Marina Gutierrez, and Wilfried
Steiner. “Enabling fog computing for industrial automation through time-
sensitive networking (TSN)”. In: IEEE Communications Standards Mag-
azine 2.2 (2018), pp. 55–61.

150 BIBLIOGRAPHY

[143] Martin Schoeberl and Rasmus Ulslev Pedersen. “tpIP: A Time-Predictable
TCP/IP Stack for Cyber-Physical Systems”. In: 2018 IEEE 21st Interna-
tional Symposium on Real-Time Distributed Computing (ISORC). IEEE.
2018, pp. 75–82.

[144] Martin Schoeberl, Luca Pezzarossa, and Jens Sparsø. “A Multicore Pro-
cessor for Time-Critical Applications”. In: IEEE Design Test 35 (2018),
pp. 38–47. issn: 2168-2356. doi: 10.1109/MDAT.2018.2791809.

[145] Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and
Daniel Prokesch. “Patmos: A Time-predictable Microprocessor”. In: Real-
Time Systems 54(2) (Apr. 2018), pp. 389–423. issn: 1573-1383. doi: 10.
1007/s11241-018-9300-4.

[146] Wilfried Steiner, Günther Bauer, Brendan Hall, and Michael Paulitsch.
“Time-triggered Ethernet”. In: Time-Triggered Communication. CRC Press,
2018. Chap. 8, pp. 209–248.

[147] Lin Zhao, Feng He, Ershuai Li, and Jun Lu. “Comparison of Time Sen-
sitive Networking (TSN) and TTEthernet”. In: 2018 IEEE/AIAA 37th
Digital Avionics Systems Conference (DASC). IEEE. 2018, pp. 1–7.

[148] Luxi Zhao, Paul Pop, and Silviu S Craciunas. “Worst-case latency anal-
ysis for IEEE 802.1 Qbv time sensitive networks using network calculus”.
In: Ieee Access 6 (2018), pp. 41803–41815.

[149] Lucia Lo Bello andWilfried Steiner. “A perspective on IEEE time-sensitive
networking for industrial communication and automation systems”. In:
Proceedings of the IEEE 107.6 (2019), pp. 1094–1120.

[150] Huang Chen, Lide Wang, Ping Shen, and Jun Di. “Static Schedule Gen-
eration for Time-Triggered Ethernet Based on Fuzzy Particle Swarm Op-
timization”. In: Chinese Journal of Electronics 28.6 (2019), pp. 1250–
1258.

[151] Casimer DeCusatis, Robert M Lynch, William Kluge, John Houston,
Paul Wojciak, and Steve Guendert. “Impact of Cyberattacks on Pre-
cision Time Protocol”. In: IEEE Transactions on Instrumentation and
Measurement (2019).

[152] Eleftherios Kyriakakis, Jens Sparsø, and Martin Schoeberl. “InterNoC:
Unified Deterministic Communication For Distributed NoC-based Many-
Core”. In: th Junior Researcher Workshop on Real-Time Computing.
2019.

[153] Maja Lund, Luca Pezzarossa, Jens Sparsø, and Martin Schoeberl. “A
Time-predictable TTEthernet Node”. In: 2019 IEEE 22nd International
Symposium on Real-Time Computing (ISORC). May 2019, pp. 229–233.
doi: 10.1109/ISORC.2019.00048.

BIBLIOGRAPHY 151

[154] Maryam Pahlevan, Nadra Tabassam, and Roman Obermaisser. “Heuris-
tic list scheduler for time triggered traffic in time sensitive networks”. In:
ACM Sigbed Review 16.1 (2019), pp. 15–20.

[155] Tórur Biskopstø Strøm, Jens Sparsø, and Martin Schoeberl. “Hardlock:
Real-time multicore locking”. In: Journal of Systems Architecture 97
(2019), pp. 467–476.

[156] Robert Wittig, Friedrich Pauls, Emil Matus, and Gerhard Fettweis. “Ac-
cess Interval Prediction for Tightly Coupled Memory Systems”. In: In-
ternational Conference on Embedded Computer Systems. Springer. 2019,
pp. 229–240.

[157] Mohammadreza Barzegaran, Anton Cervin, and Paul Pop. “Performance
optimization of control applications on fog computing platforms using
scheduling and isolation”. In: IEEE Access 8 (2020), pp. 104085–104098.

[158] Simulink Documentation. Simulation and Model-Based Design. 2020. url:
https://www.mathworks.com/products/simulink.html.

[159] Owais Hamid and Sayyid Anas Vaqar. “A comparison of Distributed
Data Communications using Ethernet in Aircraft”. In: (2020).

[160] IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems. eng. 2020. doi: 10 . 1109 /
IEEESTD.2020.9120376.

[161] Eleftherios Kyriakakis, Maja Lund, Luca Pezzarossa, Jens Sparsø, and
Martin Schoeberl. “A Time-predictable Open-Source TTEthernet End-
System”. In: Journal of Systems Architecture (2020), p. 101744.

[162] Eleftherios Kyriakakis, Jens Sparsø, Peter Puschner, and Martin Schoe-
berl. “Synchronizing Real-Time Tasks in Time-Aware Networks: Work-
in-Progress”. In: 2020 International Conference on Embedded Software
(EMSOFT). IEEE. 2020, pp. 15–17.

[163] Peter Puschner and Raimund Kirner. “Asynchronous vs. synchronous in-
terfacing to time-triggered communication systems”. In: Journal of Sys-
tems Architecture 103 (2020), p. 101690.

[164] Eleftherios Kyriakakis, Jens Sparsø, Peter Puschner, and Martin Schoe-
berl. “Synchronizing Real-Time Tasks in Time-Triggered Networks”. In:
24th International Symposium On Real-Time Distributed Computing
(ISORC). IEEE. 2021.

[165] Anna Minaeva and Zdeněk Hanzálek. “Survey on Periodic Scheduling for
Time-triggered Hard Real-time Systems”. In: ACM Computing Surveys
(CSUR) 54.1 (2021), pp. 1–32.

[166] TTTech. TTETools - TTEthernet Development Tools v4.4. url: https://
www.tttech.com/products/aerospace/development-test-vv/development-
tools/tte-plan/ (visited on 07/05/2018).

