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Abstract

The investigation into people’s ability to understand speech in noisy everyday
situations, particularly those affected by hearing loss, constitutes an important
area of hearing research. Hearing devices, such as hearing aids, attempt to
restore a hearing-impaired person’s real-world hearing ability. However, many
psychoacoustic tests currently in use to evaluate speech intelligibility and im-
prove hearing aid performance do not take the acoustic properties of complex
real-world sound scenes into account, instead relying on artificial target speech
and background noise signals presented over headphones or small sets of loud-
speakers. While such laboratory settings provide highly controlled and reliable
results, they typically do not capture acoustic characteristics of real-world envi-
ronments such as reverberation and moving sound sources, and they do not
fully reflect how people experience their real-world auditory reality.

This thesis aimed to bridge the gap between laboratory-based hearing tests
and real-world listening by evaluating hearing using loudspeaker-based virtual
sound environments (VSEs). Such a VSE is reproduced inside a spherical array
of loudspeakers, capable of presenting spatialized sound fields to a listener
positioned in the center with a high level of physical accuracy. By employ-
ing VSEs in combination with spatially recorded real-world noise signals and
spatialized target speech, acoustically realistic speech intelligibility tasks were
designed and implemented. This included the development of a method for
in-situ, realistic conversational signal-to-noise ratio estimation, intended to
characterize a talker’s real-world speech levels. Measured speech reception
thresholds (SRTs) were shown to be elevated for realistic VSE conditions com-
pared to more artificial headphone and spatialized artificial noise conditions
for both normal-hearing and hearing-impaired listeners. However, the hearing-
impaired listeners’ SRTs increased more between the artificial conditions and
the realistic VSE condition than those of the normal-hearing listeners. Speech
recognition scores obtained at the normal-hearing conversational signal-to-
noise ratio provided percentage-correct scores relating speech intelligibility
performance to communication ability in the real world.
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Furthermore, it was shown that hearing aid dynamic range compression
benefited speech intelligibility more in the realistic VSE condition compared
to more artificial conditions, likely as a consequence of the acoustic proper-
ties of the speech and noise signals and their effect on the hearing aid signal
processing. Finally, a method for guided ecological momentary assessment
(EMA) was conceived to evaluate subjective, listener-reported hearing ability in
a way that would reduce the data variability found in conventional EMA. The
proposed method was shown to result in consistent ratings of hearing ability
across a group of normal-hearing participants. The ratings were found to be
reproducible inside acoustically matched, realistic VSEs.

Overall, this thesis showed the ability of VSE-based laboratory environ-
ments to provide increased acoustic realism in psychoacoustic listening tasks,
rendering more ecologically valid results, for both normal-hearing and hearing-
impaired individuals. The development of increasingly realistic VSE-based
hearing and hearing aid evaluation tests has the potential to increase the bene-
fit hearing devices provide to users in their everyday life.



Resumé

Udforskningen af menneskers evne til at forstå tale i støjende hverdagssitua-
tioner, især for dem, der er ramt af høretab, udgør et vigtigt område indenfor
høreforskningen. Høreapparater forsøger at genoprette en hørehæmmet per-
sons evne til at høre. Men mange psykoakustiske tests, der bruges til at evaluere
taleforståelighed og forbedre høreapparatets ydeevne, tager ikke højde for de
akustiske egenskaber i støjende hverdagssituationer, og bruger i stedet kunstige
mål- og baggrundsstøjsignaler, der præsenteres over hovedtelefoner eller fra
få højttalere. Selvom sådanne laboratorieopsætninger giver kontrollerede og
pålidelige resultater, fanger de typisk ikke de akustiske egenskaber ved rigtige
miljøer såsom efterklang og lydkilder i bevægelse, og afspejler ikke, hvordan
folk oplever deres virkelige auditive virkelighed.

Denne afhandling har til formål at bygge bro mellem laboratoriebaserede
høretests og hørelsen i den virkelige verden ved hjælp af højttalerbaserede vir-
tuelle lydmiljøer (VSE’er). Et VSE gengives i en sfærisk højttaler opsætning, der
er i stand til at gengive rumlige lydfelter for en lytter placeret i midten med et
højt niveau af fysisk nøjagtighed. Ved at anvende VSE’er i kombination med op-
tagede signaler fra den virkelige verden og en spatialiseret taletest blev akustisk
realistiske taleopfattelsesopgaver designet og implementeret. Dette omfattede
udvikling af en metode for in-situ, realistisk signal-støj-forholdsestimering. Må-
lte tærskler for talemodtagelse (SRT’er) viste sig at være forhøjede for realistiske
VSE-forhold sammenlignettil mere kunstige hovedtelefoner og spatialiserede
kunstige støjforhold for både hørehæmmede og normalt hørende lyttere. De hø-
rehæmmede lytteres SRT’er steg imidlertid mere mellem de kunstige forhold og
den realistiske VSE-tilstand end de, der hører normalt. Tale forståelighedsscore
målt ved realistiske signal-støj-forhold viste forholdet mellem taleforståelighed
og kommunikationsevne i den virkelige verden.

Det blev vist, at kompression i høreapparatets dynamik gavner taleforståelig-
hed mere i den realistiske VSE-miljøer sammenlignet med kunstige lytteforhold,
sandsynligvis som en konsekvens af tale- og støjsignalernes akustiske egen-
skaber og deres virkning på høreapparatets signalbehandling. Endelig blev en
metode til guidet momentan vurdering (EMA) brugt til at evaluere subjektiv
høreevne på en måde, der ville reducere variabiliteten, der findes i konventionel
EMA. Den foreslåede metode resulterede i ensartede vurderinger af høreevnen
på tværs af en gruppe deltagere med normal hørelse. EMA vurderingerne var
reproducerbare i akustisk matchede, realistiske VSE’er.
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Samlet set viste denne afhandling VSE-baserede laboratoriemiljøers evne
til øge akustisk realisme i psykoakustiske lytteopgaver. Udviklingen af mere og
mere realistiske VSE-baserede evalueringer kan potentialet øge effektiviteten af
høreapparaters signalbehandling.
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1
General introduction

A healthy auditory system enables people to reliably and almost effortlessly nav-

igate the world around them, to communicate with others and appreciate music.

When hearing functions normally it is taken for granted, yet impairments to this

ability can have severe consequences on the personal and professional lives

of those affected (National Research Council, 2004). As reported by the World

Health Organization, nearly 500 million people (over 6% of the world’s popu-

lation) are currently suffering from disabling hearing loss, an estimate which

is expected to rise to over 900 million by the middle of the 21st century (Davis

and Hoffman, 2019). Finding ways to help alleviate or overcome hearing im-

pairments has therefore never been more important.

1.1 Hearing in the real world

The world is a complex place, also from an auditory point of view. In hearing re-

search, the psychoacoustic properties of a real-world, multi-talker, reverberant

sound scene are often studied and typically qualified as elements in a "cocktail

party" environment (Cherry, 1953). By listening binaurally and using higher-

level, cognitive segregation mechanisms, a well-functioning human auditory

system has the ability to navigate such multi-talker scenes and selectively focus

on the speech sounds of interest (Arons, 1992). But even normal-hearing people

can struggle to understand speech in noisy environments. While increasing

background noise levels generally cause an increase in conversational speech

levels (known as the Lombard effect, Lombard, 1911), the signal-to-noise ratio

(SNR) between speech and noise levels tends to decrease at a fixed talker dis-

tance (Weisser and Buchholz, 2019). When increasing conversational speech

levels is no longer comfortable or socially acceptable, people will decrease their

talking distance to continue being able to understand their conversational part-

ner(s). The values and dynamics of real-world conversational SNRs between

normal-hearing (NH) people in real-world scenes are indicative of the challenge

1



2 1. Introduction

that a certain real-world sound scene poses to successful speech communica-

tion. Several studies have attemped to capture and characterize conversational

SNRs (Pearsons et al., 1977; Smeds et al., 2015; Wu et al., 2018), yet it has re-

mained unclear whether the used methodologies accurately represented the

range of commonly experienced SNRs.

For people affected by a hearing loss, understanding speech in a cocktail

party-like scene is substantially more challenging, as their loss of audibility

combined with supra-threshold distortions reduces the overall sensitivity to

sound and typically diminishes spatial, temporal and spectral resolution. Re-

search on speech intelligibility (SI) has shown that because of these deficits,

hearing-impaired (HI) individuals require higher conversational SNRs in order

to properly understand speech in noisy backgrounds compared to NH listen-

ers (Bradley et al., 1999). As such, any treatment or device that attempts to

restore a HI individual’s hearing should aim to re-establish the individual’s SI at

NH conversational SNRs.

1.2 The role of hearing devices

Over the course of the last 120 years, advances in science, engineering and

technology have seen the birth and subsequent development of electro-acoustic

devices that aim to restore, either partially or fully, normal hearing ability in

people with a hearing loss (Alexander, 1998). Particularly during the last five

decades, these hearing devices, or hearing aids (HAs), have seen a dramatic

increase in sophistication, miniaturization and versatility (Mills, 2011), resulting

in the tiny, digital machines manufactured today.

A typical modern HA works by recording sounds in the user’s environment

using microphones mounted on the HA shell, amplifying them and playing

them back into the ear using a small loudspeaker, or HA receiver. The core

sound amplification algorithm inside a HA operates in a non-linear, frequency-

and level-dependent way, configured via prescription rules which aim to com-

pensate for the HI person’s hearing deficits as indicated by their pure-tone

audiogram. The primary purposes of a prescription rule, such as the Desired

Sensation Level 5 rule (DSL 5, Scollie et al., 2005) and the National Acoustics

Laboratory-Non Linear 2 rule (NAL-NL2, Keidser et al., 2011), are to restore the

HI user’s ability to hear sounds, i.e. audibility, to that of a NH listener, while

simultaneously improving their ability to understand speech, i.e. speech intelli-
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gibility (SI). These prescription rules are commonly derived using models of SI,

such as the Speech Intelligibility Index (SII , ANSI, 1997), and loudness (Moore

and Glasberg, 1997; Moore and Glasberg, 2004), which are largely based on

psychoacoustic listener data. Similarly, the potential benefit of a "fitted" HA is

often assessed using psychoacoustic listening paradigms like SI tasks or speech-

in-noise tasks in general. It is therefore important that psychoacoustic listening

tasks, particularly those tasks that focus on aspects of speech-in-noise perfor-

mance, produce controlled estimates of hearing ability that reflect real-world

experience.

1.3 Experimental control versus realism

The empirical scientific investigation of any complex, real-world system is sub-

ject to a fundamental trade-off between experimental control and realism. A

high degree of control over the experimental environment and stimuli permits

the researcher to precisely relate the relative contributions of underlying phe-

nomena to the value of an observed outcome measure. However, this type of

investigative approach is sensitive to confounding effects because of its over-

simplification of reality, and it is not always clear how (if at all) its conclusions

can generalize to more realistic settings. Conversely, conducting experiments

in realistic, yet uncontrolled, ways may limit the degree to which the contribu-

tion of underlying phenomena can be quantified reliably, because of the large

variability in experimental conditions which decrease their reproducibility.

In the context of psychacoustic research, and particularly for speech-in-

noise paradigms, this trade-off typically occurs along dimensions of the speech

and noise stimuli as well as the presentation method. The most controlled

way of presenting the stimuli in a speech-in-noise task is by using headphones.

Using stationary noise as the masker, headphones can present speech stim-

uli ranging from individual words (Fogerty and Humes, 2010; Studebaker et

al., 1999), to matrix-based sentences (Elberling et al., 1989), brief natural sen-

tences (Nielsen and Dau, 2009) to potentially conversational speech. The same

speech types can be combined with increasingly realistic noise stimuli, by com-

bining modulated noise with matrix-based sentences (Hopkins and Moore,

2009) or brief sentences (Festen and Plomp, 1990), by combining noise ob-

tained through simulations with words (Yang and Bradley, 2009) or brief sen-

tences (Fogerty et al., 2020), by combining recorded noise with brief sentences
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(Compton-Conley et al., 2004) or conversational speech (Sørensen et al., 2019)

and possibly even by using environmental noise if open headphones were used.

While headphone-based setups are highly controlled, they are generally limited

in the accuracy with which they can spatialize stimuli and simulate the effects

of head movement. In addition, wearing HAs inside headphones is practically

challenging.

To address some of the limitations of headphones as a reproduction tool,

loudspeakers have been commonly used to present the speech and noise stim-

uli instead. Studies have employed a similar range of speech of noise types,

for example by combining stationary noise with word stimuli (Dirks and Wil-

son, 1969), stationary noise with brief sentences (Grange and Culling, 2016),

recorded noise with word stimuli (Litovsky, 2005) or environmental noise with

brief sentences (Hawley et al., 1999). Loudspeaker setups can reveal effects of

spatial release from masking and binaural interaural time and level differences,

yet they are generally not capable of accurately reproducing the physical sound

field experienced by listeners and HAs in the real world. Furthermore, simu-

lating realistic, moving interfering sound sources is difficult which means that

reproduced scenes may lack real-world complexity and dynamics.

The most realistic way of reproducing speech-in-noise task stimuli is by

conducting the task in the real world. Real-world speech-in-noise paradigms,

although much less prevalent, have been developed, for instance by using

environmental noise combined with word stimuli (Brungart et al., 2020) or

conversational speech (Astolfi and Filippi, 2004). Even though environmental

noise is always present in the real world, combinations can still be made by

using loudspeaker setups placed in the real-world scene to simulate, for example,

prerecorded interferers in the scene (Oreinos and Buchholz, 2016).

Figure 1.1 shows a three-dimensional depiction of the control-realism trade-

off within speech-in-noise tasks. The two horizontal axes represent choices

for the speech and noise stimuli while the vertical axis represents the ways of

reproducing them. The elements on each axis are arranged ranging from highly

controlled (red, at the origin of the coordinate system) to highly realistic (green,

at the edges). The grid points indicate specific speech-noise-reproduction

combinations. The brighter points represent specific combinations that are

associated with a study mentioned above. The colored planes group a method

of reproduction by a corresponding color. Even though the speech, noise and

reproduction methods indicated represent just the most prevalent choices
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for the three parameters, they render many potential ways for evaluating a

person’s speech-in-noise performance, each trading off control with realism in

a slightly different manner. All of the studies cited above are positioned in Fig. 1.1

according to their control-realism trade-off. They represent only examples, and

many more of the illustrated combinations can be found in literature.

Spee
ch
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Modulated

Simulated

Recorded

Environment

Headphones

Set of LS

VSE

Real world

REALISM
Reproduction

CONTROL

Noise

Words

Matrix-based
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Hopkins (2009)

Elberling (1989)

Nielsen (2009)
Festen (1990)

Yang (2009)

Fogerty (2020)
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Sørensen (2019)
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Grange (2016)
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Figure 1.1: Graphical depiction of the trade-off between control and realism in speech-and-noise
paradigms, with respect to the speech and noise stimuli types (horizontal axes) as well as their
method of reproduction (vertical axis). The speech and noise types and the reproduction method
range from highly controlled (red, origin) to highly realistic (green, edges). The grid points
indicate specific speech-noise-reproduction combinations. The brighter points, associated with
a reference, represent specific combinations that are referred to in the text. The colored planes
group a method of reproduction of the corresponding color.
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There are many possible ways of balancing experimental control with realism

in speech-in-noise research, and any individual combination may depend on

the specific hypotheses of the investigators. However, in recent years, a new

way of reproducing stimuli in speech-in-noise tasks has gained traction in an

attempt to achieve an optimal trade-off with respect to control and realism: the

virtual sound environment (VSE).

1.4 The Virtual Sound Environment

A VSE can be defined as an array of spatially arranged loudspeakers, most com-

monly configured as a horizontal ring or a three-dimensional sphere, that work

together to provide a desired spatial sound field to a listener positioned at the

center of the array. These sound fields can be reproduced to be perceptually

accurate to a human listener, using parametric techniques like directional au-

dio coding (Pulkki, 2007), or to be physically (and by extension perceptually)

accurate, using analytic techniques like wave field synthesis (WFS, Berkhout

et al., 1993) and higher-order Ambisonics (HOA, Gerzon, 1973).

Of the techniques targeting physical accuracy, necessary for evaluating the

non-human auditory processing of HAs, HOA-based methods are generally

preferred over WFS due to their efficiency and robustness at higher frequen-

cies (Daniel et al., 2003). The Ambisonic reproduction of a given sound field

relies on its decomposition into "spherical harmonics" based on the expression

of an acoustic pressure field as a Bessel-Fourier series. Similar to the Fourier

transform for one-dimensional sound waves, the spherical harmonic functions

form an orthonormal base which is modified by weighted spherical Bessel func-

tions that define the sound field pressure in a spherical coordinate system.

Depending on the order of the Ambisonic reproduction, the reproduced sound

field is physically accurate, up to the associated spatial and temporal aliasing

frequencies, within an area at the center of the array. This area is commonly

referred to as the "sweet spot" and it increases with increasing Ambisonic order.

First developed several decades ago, Ambisonic reproduction techniques

have recently gained popularity due to the successful practical expansion into

higher orders, beyond the first-order systems originally developed, made possi-

ble by increasing computational power and the decreasing cost of microphone

and loudspeaker array systems. The reproduction accuracy of current spherical

loudspeaker arrays is mainly limited by the total number of loudspeakers M
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required for a certain Ambisonic order N by the relation N > (M +1)2 (Ward and

Abhayapala, 2001). The weighted "B-format" functions necessary for Ambisonic

reproduction can either be obtained using virtual source encoding, e.g. based

on a room acoustic simulation, or by recording a desired sound field with a

spherical microphone array. The latter approach is becoming increasingly

widespread due to advances in microphone array technology, producing arrays

that can record up to 4th, and recently even 7th order Ambisonics (Elko, 2018).

VSEs have been used in hearing research, together with a variety of repro-

duction techniques including HOA, and have been shown to be powerful tools

for investigating spatial hearing and hearing aids in a controlled, yet more

realistic way (Cubick and Dau, 2016; Minnaar et al., 2010). As illustrated in

Fig. 1.1, studies have combined simulated HOA reproductions with matrix-

based speech (Ahrens et al., 2017) and brief sentences (Best et al., 2015; Wester-

mann and Buchholz, 2015), as well as spatially recorded HOA reproductions

with conversational-style speech (Nielsen et al., 2016).

1.5 Designing VSE-based speech-in-noise tasks

To increase the ecologically validity of VSE-based speech-in-noise tasks, atten-

tion should be paid to stages in their design beyond solely the reproduction. This

includes the way in which speech and noise stimuli are selected and acquired,

as well as the specific task a listener is asked to perform.

1.5.1 Stimulus selection

Speech and noise stimuli are usually selected based on a restricted set of prop-

erties they possess, such as noise modulations or word meter, to investigate

the impact of these properties on the considered outcome measures. When

increased stimulus realism is targeted, by e.g. simulating or recording back-

ground noise, the ecological validity of the noise content is arguably important

as well. Therefore, it may be a good idea to select background noise stimuli that

represent situations that people actually experience in their life.

Recent studies have categorized real-world sound scenarios of HA users

based on ecological momentary assessment (EMA) (Smeds et al., 2020; Wolters

et al., 2016). The methodology of EMA consists of data collection through

questionnaires that are presented to a participant (e.g. via a smartphone app) at
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regular intervals in their everyday life. By asking participants to rate the relative

importance, occurrence and difficulty of a scenario, the researchers were able

to quantify which scenarios were of greatest interest to reproduce in the context

of more ecologically valid speech-in-noise tasks.

1.5.2 Stimulus acquisition

A selected sound scenario can either be acquired through room acoustic simu-

lations or recordings. Simulations, made with software packages like ODEON

(ODEON A/S, 2020), have the advantage that they are fully controlled in terms

of room acoustic properties and source/receiver positioning, and there are

virtually no limits to the possible spatial geometry. However, the accuracy of

the simulation is limited by the complexity of the room acoustic model and the

approximations made by the software (e.g. ray-tracing order) and it is difficult

to simulate complex, moving sources in a realistic way. On the other hand,

spatial recordings made with spherical microphone arrays capture the scene

"as-is", i.e. with much less flexibility with regard to room acoustic properties

and positioning, but inherently tracking all present sources. Both approaches

have preferred use cases, yet it has been shown that spatial recordings provide

a better room acoustic approximation to a real-world reference scene than

simulations (Ahrens et al., 2019).

1.5.3 Listening task

Designing a controlled yet realistic listening task that mimics real-world speech

communication behavior is not straightforward, and most studies have instead

focused on evaluating aspects of SI instead. Adaptive SI paradigms that produce

speech reception thresholds (SRTs) as a measure of SI are widely used. Indeed,

most of the references in Fig. 1.1 descibe SI experiments. The most realistic

target speech stimuli used in these paradigms are brief natural sentences, even

though efforts have been made to include aspects of conversational speech into

the speech materials (Miles et al., 2020). However, it remains, as of yet, unclear

if and how well the outcome measures of SI tasks can be related to people’s

subjective reports of real-world hearing ability. Newer methods like EMA may

be able to bridge this gap between objective speech-in-noise assessments and

subjective real-world reporting, if they can be modified for use in VSEs.
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1.6 Overview of the thesis

This thesis investigates the impact of increased ecological validity on the results

of VSE-based speech-in-noise paradigms as well as the potential impact and

behavior of HA processing in such paradigms.

In Chapter 2, a method for in-situ, realistic SNR estimation is developed,

attempting to characterize the speech levels of people in natural, real-world

conversation in a more ecologically valid way. The method relies on a two-

channel approach, using a lavalier microphone mounted to the cheek of a target

talker and a second microphone placed next to the receiver. This approach is

derived from a theoretical, room acoustic model and compared to an existing

single-channel approach using simulations and real-world recordings.

Chapter 3 presents an approach for evaluating SI in a realistic VSE, focused

on increasing the ecological validity of the stimuli selection, acquisition and

reproduction. A real-world office meeting scenario is recorded with a spherical

microphone array and reproduced inside a 64-channel loudspeaker array using

HOA to provide the noise stimulus in a spatialized SI task. NH and HI listeners

are evaluated and the results are compared with those obtained with tasks using

more artificial stimuli and reproductions.

In Chapter 4, two real-world-recorded VSEs, as well as a reference condi-

tion employing artificial stimuli, are used to evaluate the effectiveness of a HA

dynamic range compression processing strategy on the SI performance of HI

listeners. The HA processing is simulated using a real-time "master" HA, and

the results are compared to an unaided reference condition. An instrumental

HA analysis is carried out to investigate the impact of the stimulus properties

on the performance of the HA.

Chapter 5 introduces a guided approach to EMA that attempts to overcome

some limitations to the applications of traditional EMA in hearing research and

allow it to be applied inside realistic VSEs. In the method, a guide accompanies

the participant to a known real-world location and assists the participant in

carrying out various listening tasks, combined with EMAs. The procedure is

then repeated inside two VSE-based laboratory environments to assess the

consistency of the subjective assessments between the real world and the lab.

Finally, the concluding Chapter 6 provides a general summary of the findings,

including a discussion of the implications of the results. Several perspectives

for future directions in hearing research employing realistic VSEs are given.
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2
A method for realistic, conversational

signal-to-noise ratio estimationa

Abstract

The analysis of real-world conversational signal-to-noise ratios

(SNRs) can provide insight into people’s communicative strategies

and difficulties, and guide the development of hearing devices.

However, measuring SNRs accurately is challenging in everyday

recording conditions, where only a mixture of sound sources can be

captured. This study introduces a method for accurate in-situ SNR

estimation, where the speech signal of a target talker in natural con-

versation is captured by a cheek-mounted microphone, adjusted

for free-field conditions, and convolved with a measured impulse

response to estimate its power at the receiving talker. A microphone

near the receiver provides the noise-only component through voice

activity detection. The method is applied to in-situ recordings of

conversations in two real-world sound scenarios. It is shown that

broadband speech level and SNR distributions are estimated more

accurately by the proposed method compared to a typical single-

channel method, especially in challenging, low-SNR environments.

The application of the proposed two-channel method may ren-

der more realistic estimates of conversational SNRs and provide

valuable input to hearing instrument processing strategies whose

operating points are determined by accurate SNR estimates.

a This chapter is based on Mansour, N., Marschall, M., May, T., Westermann, A., and Dau, T.

(2021); A method for realistic, conversational signal-to-noise ratio estimation. The Journal of

the Acoustical Society of America.

11
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2.1 Introduction

Speech communication is a complex phenomenon that combines auditory,

visual and cognitive processes to enable people to transmit and receive informa-

tion. Such a conversation often occurs in noisy backgrounds, where a speech

source of interest, i.e. the target talker signal, is accompanied by interfering

sources (e.g. noise or competing talkers) and reverberation. Levels of conversa-

tional speech have been shown to strongly depend on the background noise

level, as people raise their voice in increasingly loud surroundings to remain

intelligible (Lombard, 1911). At the same time, the ratio of the average speech

power arriving at the listener to the power of the background noise, i.e. the

signal-to-noise ratio (SNR), is known to decrease at a fixed talker distance when

the background noise level increases, i.e. people do not continue to increase

their speech power indefinitely (Weisser and Buchholz, 2019).

Knowledge of the SNR distributions that occur in real-world conversations

is important, since these SNRs affect a person’s ability to understand speech

in noisy environments. Developing more realistic listening tasks therefore

demands accurate estimates of real-world speech levels and corresponding

SNRs. Furthermore, the processing of hearing aids (HAs) strongly depends on

the input signal levels. For example, the output SNR of a fast-acting dynamic

range compression system depends on the input SNR, potentially impacting

HA performance (Naylor and Johannesson, 2009). Accurate conversational SNR

estimates would allow a HA to be tailored to the environment of its user (May

et al., 2018).

Several studies have focused on the estimation of real-world SNRs. Specifi-

cally with regard to broadband, long-term estimates of conversational SNRs,

two notable studies exist. In one of the studies, Pearsons et al. (1977) recorded

conversations between two normal-hearing (NH) talkers at the ear of one of

the participants in a diverse range of conditions, selected by the researchers. In

the study by Smeds et al. (2015), HA recordings (Wagener et al., 2008) obtained

by HA users in various situations of their daily lives were analyzed. Figure 2.1

shows the resulting broadband SNR distributions of the two studies (adapted

from Wu et al., 2018). The blue and red bars represent the results from Pearsons

et al. (1977) and Smeds et al. (2015), respectively. The purple shade indicates

areas where the distributions overlap.
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Figure 2.1: Distributions of speech-in-noise SNRs from Pearsons et al. (1977), indicated by the
blue bars, and Smeds et al. (2015), indicated by the red bars. The purple shade indicates areas of
overlap between the two distributions.

Both distributions reveal mostly positive SNRs across listening situations.

The Pearsons et al. distribution is shifted slightly toward lower SNRs compared

to the Smeds et al. distribution, most likely because Pearsons et al. collected

data from NH participants who commonly communicate relatively easily at

lower SNRs and may therefore not avoid such challenging acoustic conditions,

unlike the HI participants (even if aided) in the Smeds et al. study.

While there were differences between the studies in terms of the methodol-

ogy and hearing status of the participants, the SNRs were estimated in a similar

way, using recordings made with a single microphone at the receiver position.

Specificially, the root-mean-square (RMS) level of the clean speech was esti-

mated by subtracting the average power of the noise-only segments from the

average power of the noisy speech. These speech-in-noise and noise-only seg-

ments were hand-labeled by a human listener. The SNR was then obtained by

dividing the estimated speech power by the noise-only power. This approach as-

sumes that the speech and noise components in the recording are uncorrelated

and that the estimated noise power in the noise-only segments reflects the noise

power in the speech-and-noise segments. Both assumptions do not necessarily

hold in real-world conditions with multiple interacting talkers in fluctuating

background noise. Furthermore, it has been shown that at sufficiently negative

SNRs, when the speech power becomes indistinguishable from the random fluc-
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tuations in the noise power, this single-channel approach no longer provides

accurate estimates since the SNR distribution essentially reflects the magnitude

distribution of those fluctuations (Kim and Stern, 2008). In practice, the method

relies on the accurate labeling of speech-in-noise and noise-only segments,

which may become inaccurate at very low SNRs.

Here, a two-channel method is proposed to estimate real-world, in-situ

conversational SNRs. The method extends the single-channel approach by

introducing a cheek-mounted lavalier microphone to accurately capture the

speech-only component of the target talker, in addition to the microphone at

the receiver. A free-field correction and a room impulse response convolution

were applied to this cheek microphone recording to obtain the target-speech-

only signal at the receiving talker. From this signal, the SNR of the target talker at

the receiver was derived by division with a noise-only signal, recorded at the ear

of a mannequin standing next to the receiver. Accurate target speech labeling

was employed based on the high-SNR cheek microphone signal, allowing for a

reliable selection of segments where target speech was present, even in chal-

lenging situations containing speech-on-speech masking. The two-channel

method was evaluated in room acoustic simulations of two real-world scenes,

where theoretical, "true" SNR estimates could be calculated, and compared to

the single-channel approach of Pearsons et al. (1977) and Smeds et al. (2015).

In addition, both methods were evaluated for real-world recordings in the same

two scenes.

2.2 Methods

2.2.1 SNR estimation principle

Figure 2.2 illustrates the conversational SNR estimation of a speech signal S

produced by a target talker T at the location of a receiver R (yellow heads) in

the presence of background noise N (blue rectangle). All signals are expressed

in the frequency domain. SR denotes the speech signal of the target talker at

the position of the receiver.
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Figure 2.2: Conversational SNR estimation principle of a target talker T and their speech signal S
at a receiver R (yellow heads) in a real-world containing background noise N (blue rectangle),
for a single-channel method yielding SN R1c h (panel A) and the proposed two-channel method
yielding SN R2c h (panel B). SR denotes the speech signal of the target talker at the position of the
receiver. MC M and MR represent a cheek microphone and receiver microphone (green stick and
circle), respectively. HT R denotes the transfer function between T and R , made up of the transfer
function between T and MC M , HC M , a free-field correction transfer function HF F C and a room
impulse response transfer function, HR I R .

The "true" SNR, SN RT r ue , is the ratio between the average power of SR ,

P (SR ), and the receiver noise-only power P (N ):

SN RT r ue =
P (SR )
P (N )

(2.1)

Neither P (SR ) nor P (N ) can be measured in a real scene, since the target speech

is mixed with the background noise by the time it arrives at the receiver. As

illustrated in panel A of Fig. 2.2, a typical single-channel method uses a single

receiver microphone MR (green circle) to approximate P (SR ) as P̃ (SR ), by cap-

turing the noisy target speech power at the receiver P ([S +N ]R ) and subtracting

an estimate of the noise power P̃ (N ) from it. P̃ (N ) is obtained by estimating

the noise power in speech gaps where the target talker and receiver are silent.

Division of P̃ (SR ) by P̃ (N ) then yields the single-channel SNR:

SN R1c h =
P̃ (SR )
P̃ (N )

=
P ([S +N ]R )− P̃ (N )

P̃ (N )
(2.2)
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The proposed two-channel method, illustrated in the panel B of Fig. 2.2, es-

timates P (SR ) directly by applying the room acoustic transfer function between

T and R , HT R , to S . To account for HT R , a cheek(-mounted) microphone (green

stick) worn by the target talker MC M was used to capture the target speech

(HC M ). Next, a fixed free-field correction (FFC) transfer function HF F C , mea-

sured at a distance of 0.5 m, was applied to the recorded target speech to correct

for near-field and head scattering effects due to the close distance of MC M to the

mouth of the target talker. Finally, convolution with an in-situ measured room

impulse response (RIR), measured between T and R and calibrated to account

for the attenuation caused by HF F C , resulted in SR (HR I R ). Division of the aver-

age power of SR by P̃ (N ), estimated in the same way as for the single-channel

method, then yielded the 2-channel SNR:

SN R2c h =
P (SR )
P̃ (N )

=
P (S ·HT R )

P̃ (N )

=
P (S ·HC M ·HF F C ·HR I R )

P̃ (N )

(2.3)

Assuming that MC M captures negligible background noise and that the speech

power is the same at R and MR , SR can be obtained by the two-channel method.

This is the main difference from the single-channel method and implies that the

only deviations to SN RT r ue will be caused by the approximation P̃ (N ) = P (N )

if the assumptions for the speech signal, mentioned above, are fulfilled. This

approximation for the noise power only holds if N is isotropic in space between

R and MR and stationary over time. In addition, the two-channel method allows

for an accurate detection of the target talker speech segments even at low SNRs

by using a voice activity detector (VAD) applied to the MC M signal, which is not

possible with the single-channel method.

In the following, each step in the proposed method is outlined in detail.

All signals were sampled at a rate of 48 kHz and a resolution of 24 bit. Lev-

els of speech and background noise as well as SNRs were derived from their

broadband average power, in dB.

2.2.2 Microphone measurements and voice activity detection

The cheek microphone (DPA 4066, DPA Microphones, Lillerød, Denmark) used

to capture the target speech signal S was mounted at a 5-cm distance next to the

target talker’s mouth, representing HC M . It was assumed that, at this distance,
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the power in the speech signal picked up by MC M could be entirely attributed

to S and that the dynamic range of the signal would be sufficient to accurately

separate target speech segments. Energy-based VADs (Kinnunen and Li, 2010)

were applied to both the MC M and MR signals. The obtained binary speech

detection masks were used to exclude the speech of R and the noise N from the

signal in MC M and to exclude the speech of T and N from the signal in MR . The

VAD applied to MC M estimated the short-term energy of S by segmenting the

recording into frames of 20 ms duration and subsequently applying a threshold

to this short-term energy, relative to its maximum value, to identify frames

which contained relevant target activity. This threshold was set to the difference

in dB between the 95th and 50th percentile of the short-term energy in order to

adaptively separate the target speech energy distribution (peaking in the 95th

percentile) from the background noise distribution (assumed to be distributed

around the 50th percentile). Speech gaps longer than 200 ms (Demol et al.,

2007) were not considered to be part of T , ensuring that the estimated speech

power would not be affected by silence gaps.

The right-ear microphone of a Knowles Electronic Manikin for Acoustic

Research (KEMAR, GRAS Sound & Vibration A/S, Holte, Denmark) mannequin

with ear canals was used as MR to estimate the noise-only signal N in a way that

captures the effects of head and pinnae shape present in human listening. The

receiver speech was subsequently removed using the same VAD applied directly

to the MR signal, but with a fixed threshold energy at 15 dB below the global

maximum of the short-term energy, equal to the lower speech range boundary

used in the computation of the speech transmission index (Houtgast et al.,

1980). A fixed threshold was used in MR , but not in MC M . The target speech

S contained in MC M had a larger and more strongly varying dynamic range

between frames than the receiver speech in MR , due to the closer proximity of

MC M to T . This required an adaptive threshold to ensure the proper detection

of the target speech. As was verified, applying a fixed threshold to the MC M

signal would have resulted in an underestimation of speech activity. The MC M

and MR recordings were time-aligned to compensate for the acoustic delay

through cross-correlation (Stoica, Moses, et al., 2005), allowing for the usage of

both VAD masks in both microphone signals to remove R speech and T speech,

respectively.
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Figure 2.3: FFC measurement setup, including the KEMAR with mounted cheek microphone
MC M and reference microphone MR E F at a 0.5 m distance inside an anechoic enclosure. W N
and W NR E F denote the white noise stimulus at the position of MC M and MR E F , respectively.
HF F C denotes the transfer function between MC M and MR E F .

2.2.3 Free-field correction

The near-field signal produced by the target talker’s mouth was corrected for

free-field conditions using the measurement setup illustrated in Fig. 2.3. The

transfer function HF F C between the position of MC M mounted on the KEMAR

(mannequin icon) and that of a reference pressure field microphone MR E F

(GRAS AG40, GRAS Sound & Vibration A/S, Holte, Denmark), positioned upright

at a distance of 0.5 m to the KEMAR, was measured inside an anechoic chamber.

The KEMAR mouth simulator produced white noise, recorded by MC M as WC M ,

at a sound pressure level (SPL) of 90 dB at MR E F ’s position, recorded as WR E F .

A frequency-domain transfer function HF F C was then derived from the ratio

of the frequency-dependent cross-power spectral density of WC M and WR E F ,

P (WC M , WR E F ) and the auto-power spectral density of WR E F , P (WR E F , WR E F ):

HF F C =
P (WC M , WR E F )
P (WR E F , WR E F )

(2.4)

HF F C was smoothed in the frequency domain over critical bands using a 4th-

order gammatone kernel Gs resembling the critical bands of the human auditory

system, to avoid over-fitting HF F C to the exact MC M position and head shape

used in the measurement. The original and smoothed magnitude responses of

HF F C are plotted between 100 Hz and 24 kHz, in Fig 2.4. Finally, a linear-phase

finite-impulse response filter (FIR) was designed using the smoothed magnitude

response, consisting of n = 256 taps and applying Hamming windowing to

obtain hF F C [n ] as time-domain representation of HF F C :

hF F C [n ] = F I R
�Æ

(GS (|HF F C |2)
�

(2.5)
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The target and realized filter magnitude responses were compared to evaluate

that the chosen filter length was sufficient to correct for the main features of

the transfer function. The MC M -MR E F distance of 0.5 m was chosen to ensure

a high dynamic range in W NR E F despite the power limitations of the mouth

simulator. This resulted in highly coherent input signals to both microphones,

as is necessary for reliably estimating HF F C .

Figure 2.4: Magnitude response of the transfer function HF F C and its smoothed version
p

GS (|HF F C |2), between 100 Hz and 24 kHz.

2.2.4 Real-world measurement setup and RIR measurement

The two-channel SNR measurement setup was realized in two real-world en-

vironments: an office meeting and a public lunch scenario. Panels A and B

of Figure 2.5 show a top-down illustration of the measurement setup. In the

office meeting, twelve normal-hearing participants were present in a typical

office conference room of approximately 25 m2, seated and standing around

a large square table. The participants were coworkers who knew each other

well. They were asked to converse naturally in pairs for a period of 5 minutes

about everyday topics provided to them on a list, to generate the background

noise (blue heads) while the male target T and receiving talker R (red heads)

were having the conversation of interest at a distance of 2.4 m. Both the cheek

microphone MC M and the right ear of the KEMAR MR were connected to a
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sound card (Fireface 800, RME, Haimhausen, Germany) controlled by a laptop.

The MC M and MR inputs were clock-synchronized to sample precision. The

setup was similar in the lunch scenario, except that the twelve participants

were now seated at narrower lunch tables in a large open-plan canteen of ap-

proximately 800 m2, and the T -R distance was only 1 m. The single-channel

SNR estimation method was applied in both scenes as well, using only the MR

recording. However, it used the VAD masks derived by the two-channel method

to classify SR and N segments in the MC M and MR signals, ensuring manual

labeling errors would not affect classification performance.

For both the single-channel and two-channel SNR analyses, the input record-

ings were divided into frames of 5 s with a 1-s shift between frames to obtain

294 SNR estimates within the 5-min-long recordings. These values were chosen

to ensure a sufficient number of speech and noise samples within a frame and

smooth transitions between frames, while maintaining the same average frame

length that was used in the single-channel reference studies. Frames that con-

tained only speech or only noise samples were excluded from the calculation.

The speech and noise stimulus levels were calculated by computing digital RMS

values and converted to SPLs.

Since the RIR transfer function HR I R depends on the acoustic surroundings,

it was measured in-situ in both sound environments. As illustrated in Fig. 2.5C,

the RIR between T and R (red heads) was obtained by replacing the receiving

talker with the KEMAR and recording 15-s-long exponential sinusoidal sweeps,

from 20 Hz to 20 kHz, played by a two-way loudspeaker (KEF R3, KEF Audio,

Maidstone, United Kingdom) placed in the target talker position (green rect-

angle). The sweep was played in a quiet background (interfering speakers and

background were silent) at a level of 90 dB broadband SPL measured at R . Since

the RIR was recorded between T and R , it had to be calibrated to account for

the 0.5 m attenuation of S after convolution with HF F C . During the calibration

stage, the target talker was asked to speak at a conversational level to the receiver

(in the same configuration as in Fig. 2.5C), in quiet. In the absence of noise

(N = 0), the power of the recorded MR signal, P ([S +N ]R ) is equal to P (SR ). A

scaling factorαwas applied to HR I R , set such that the speech levels measured at

the receiver (P (SR )) and derived from the MC M signal (P (S ·HC M ·HF F C ·αHR I R ))

were equal.
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2.2.5 Simulated and real-world validation

To compare SN R2c h with SN R1c h and SN RT r ue , room acoustic simulations of

the two real-world scenes were constructed (further denoted by the suffix "Sim"

appended to a variable name). True SNR distributions around a desired median

value were established by modeling the target speech with an anechoic source

S , convolved with the HR I R measured in the two real-world scenes to obtain SR .

This SR signal was scaled and superimposed on an N signal, modeled by the

noise-only MR recordings made in the two real-world scenes, to obtain [S+N ]R .

R and MR were assumed to be in the same position. The target speech source

consisted of 30 concatenated, anechoic sentences from the Danish Hearing in

Noise Test (HINT) corpus. These male-spoken sentences were, on average, 1.5

s long and were separated by silence gaps set to 1 s, the average silence gap

length in the real-world version of the target speech. A 5-second frame length

and 1-second shift was used to process the signals. The two-channel method

was simulated at a median SN RT r ue by using S and [S +N ]R as inputs; the

single-channel method only had access to [S +N ]R . The two-channel method’s

calibration procedure was simulated by setting the N signal in [S +N ]R to 0.

The simulations assumed S as recorded by MC M to be anechoic (due to the

use of the HINT corpus) and N to be isotropic (because of the assumption that

MR was in the same position as R ). Since these assumptions may not entirely

hold true in the real world, comparing simulation results to actual measure-

ments is crucial. While SN RT r ue , by definition, could not be determined in the

real-world scenes, differences between SN R2c h and SN R1c h were compared

between the measurements and simulations. In addition, comparisons were

made between the measured SN R2c h , SN R1c h and the simulated SN R2c hSi m ,

SN R1c hSi m and SN RT r ue by matching the measured SN R1c h distributions to

their simulated counterparts SN R1c hSi m at their median.
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2.4m

MR

T

R

MCM

(A) Office meeting recording

1m

MR

T R
MCM

(B) Public lunch recording

2.4m

MR

R

T

(C) RIR measurement

Figure 2.5: Panel A: Conversation-in-noise recording setup in the office meeting scenario, includ-
ing the target T and receiving talker R (red), MC M and MR (green) and other participants (blue).
Panel B: Conversation-in-noise recording setup similar to (A), for the public lunch scenario. Panel
C: Illustration of the RIR measurement setup in the office meeting scenario in the presence of all
participants (blue and red), with the loudspeaker (top, green) and MR (bottom, green) producing
and capturing the excitation signal, respectively.
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2.3 Results

The results described below reflect the outcome of the room acoustic simu-

lations, evaluating the performance of the single-channel and two-channel

estimation methods compared to the true SNR in the office meeting and the

public lunch background noise. The in-situ measurement results relate the

different methods to each other in a real-world application.

2.3.1 Room acoustic properties

Table 2.1 displays the main room acoustic parameters that characterize the

office meeting and public lunch scenarios, based on the analysis (Hummersone,

2020) of the early decay characteristics of the measured RIRs: the reverberation

time at 1 kHz (RT60), the direct-to-reverberant ratio (DRR), the clarity (C50) and

early decay time at 1 kHz (EDT).

Table 2.1: Room acoustic parameters for the two real-world scenarios

RT60 (s) DRR (dB) C50 (dB) EDT (s)
Office meeting 0.4 6.6 16.9 0.2
Public lunch 3.5 16.6 23.5 0.4

The office meeting room had a dry response (low RT60) of 0.4 s, with a consid-

erable amount of early reflections (high EDT) and a relatively small direct sound

contribution (low DRR) at the receiver position. In contrast, the large public

lunch space contained considerable reverberation (high RT60) and showed a

relatively fast decay of early reflections and an increased DRR. These room

acoustic parameters reflect the differences in the physical layout of the two sce-

narios. The office meeting space was a typical conference room with a carpeted

floor, two glass walls and a suspended ceiling, all of which contribute to the low

reverberation time. The public lunch took place in a large open-spaced canteen,

with multiple highly reflective surfaces contributing to increased reverberation.

The larger distance of 2.4 m between the target and receiver in the small office

meeting room implied that multiple pronounced early reflections reached the

receiver at different times after the direct sound, increasing the EDT and subse-

quently reducing the DRR and C50. Conversely, the target-receiver distance of

only 1 m in the public lunch space resulted in a much more prominent direct

sound component, with sparse early reflections due to the size of the space, as

evident through the low EDT and increased DRR and C50.
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2.3.2 Room acoustic SNR simulations

Figure 2.6A displays box plots of the true SNR distributions (SN RT r ue , red),

simulated at specified median SNRs between -16 dB and 10 dB, in steps of 2

dB, as well as the corresponding SNR distributions obtained by simulating the

single-channel (SN R1c h , blue) and the two-channel (SN R2c h , green) methods,

for the office meeting scenario. Figure 2.6B shows the corresponding simulated

distributions for the public lunch scenario. A one-way analysis-of-variance

test showed a significant effect of the applied method in both scenes across

all SNRs, with the single-channel method resulting in significantly increased

SNRs compared to both the two-channel method and the true SNR (p ≤ .0001

for all comparisons). The difference increased with decreasing SNRs, as the

single-channel distributions flattened out around -10 dB SNR. The two-channel

distributions were not significantly different from the true SNR distributions

(p = .77 and p = .87 for the office and public lunch scenario, respectively) but

slightly more spread out, especially for the public lunch scenario.

2.3.3 Real-world speech and background levels, SNR

Figure 2.7A shows the SR distributions obtained with the single-channel (S 1c h
R ,

blue) and the two-channel (S 2c h
R , green) methods as well as the common back-

ground noise level distribution (N , black) for the office meeting, using the

left, dB SPL ordinate. The SNRs for the single-channel method (SN R1c h , blue)

and the two-channel method (SN R2c h , green) are provided as well, alongside

the simulated single-channel SNR distribution (SN R1c hSi m , blue) matched

at the median to SN R1c h and the corresponding simulated two-channel dis-

tribution (SN R2c hSi m , green), using the right, dB SNR ordinate. Finally, the

corresponding simulated true SNR is shown (SN RT r ue , red). Figure 2.7B shows

the corresponding results for the public lunch scenario. The left- and right-hand

ordinates were aligned in both panels such that the median noise level in dB

SPL corresponded to 0 dB SNR.

In the office meeting scenario, the median of SR was 76.2 dB SPL for the

single-channel method and 71.2 dB SPL for the two-channel method. The

median of N was 73.5 dB SPL. The resulting median of S 1c h
R and S 2c h

R were

-2.5 dB and 2.3 dB, respectively. SN R2c hSi m had a median value of -3.1 dB at a

corresponding median SN RT r ue of -3.4 dB. In the public lunch scenario, the

median of SR was 79.5 dB SPL in the case of the single-channel method and
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75.4 dB SPL for the two-channel method, at a median of N of 75.5 dB SPL. The

median SN R1c h and SN R2c h were 4.0 dB and -0.6 dB, respectively. SN R2c hSi m

had a median value of 1.2 dB for a median SN RT r ue of 1.5 dB.
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(A) Office meeting scenario SNR simulation results
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(B) Public lunch scenario SNR simulation results

Figure 2.6: Room acoustic SNR simulations for the office meeting scene (panel A) and the public
lunch scene (panel B). The true SNR distributions (SN RT r ue , right, red) around the median, and
the corresponding SNR distributions obtained with the single-channel (SN R1c h , middle, blue)
and two-channel (SN R2c h , right, green) methods are shown.
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(A) Office meeting SNR measurement results
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(B) Public lunch SNR measurement results

Figure 2.7: For the office meeting (panel A) and public lunch scenario (panel B), speech level
distributions obtained with the single-channel (S 1c h

R , blue) and two-channel (S 2c h
R , green) meth-

ods as well as the common background noise level distribution (N , black) are shown along-
side SNR distributions for the single-channel method (SN R1c h , blue), the two-channel method
(SN R2c h , green), the simulated single-channel method (SN R1c hSi m , blue) matched at the median
to SN R1c h , the corresponding simulated two-channel method (SN R2c hSi m , green) and simulated
true SNR (SN RT r ue , red). The speech and noise level distributions use the left, dB SPL ordinate,
while the SNR distributions use the right, dB SNR ordinate.
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A one-way analysis-of-variance test showed that the speech level and SNR

distributions were significantly higher for the single-channel method compared

to the two-channel method, both in the office meeting and the public lunch

scenario (p ≤ .0001 when comparing S 1c h
R to S 2c h

R and SN R1c h to SN R2c h ). Also

in both scenarios, the SN R2c hSi m distribution was significantly lower than the

SN R1c hSi m distribution, but not significantly different from either the SN R2c h

or the SN RT r ue distributions.

2.4 Discussion

The room acoustic simulation results clearly showed that the single-channel

method consistently overestimated the true SNR, measured across a range of

evaluated SNRs. The two-channel method approximated the true SNR very

closely. Since the N signal was estimated in the same way for both methods, the

difference was caused by the SR signal estimations. The single-channel method

assumes that speech and noise signals are uncorrelated, which is not the case

for the multi-talker babble noise signal used here and therefore results in an

overestimation of the clean speech power. This challenge did not arise in the

two-channel method since P (SR )was derived directly from the MC M signal.

In addition, the single-channel method suffered from saturation at SNRs

below -10 dB, regardless of the true input SNR. This happens because, at low

SNRs, P (SR )becomes small compared to the underlying P (N ), such that the SNR

distribution essentially reflects the distribution of P (N ) during target speech

relative to P (N ) during speech pauses (Kim and Stern, 2008). The two-channel

method’s use of the MC M avoids such saturation. Lastly, while the implemen-

tation of the single-channel method in the present study avoided practical

target-speech-segment labeling issues by reusing the two-channel method’s

VADs, the hand-labeled data in the reference studies may have been affected by

the resulting under-representation of low speech levels in the SNR distributions.

Since the simulated two-channel method only differs conceptually from the

true SNR in its approximation of P (N ) by P̃ (N ), its slightly differing estimates

occurred because the distribution of N during target speech and during speech

pauses was not identical. This was more apparent in the public lunch scenario

than in the office meeting, since the higher DRR and C50 values in the public

lunch reflected a more fluctuating N . Nevertheless, the two-channel method

approximated the true SNR far more closely than the single-channel method.
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With regard to the real-world measurements, the potential effect of the

target speech presence on the noise level as well as the likely violation of the

assumptions of anechoic, noise-free target speech and the isotropic receiver

noise need to be considered. The measured speech, noise and SNR distributions

in the two real-world scenes indicated that, while the absolute SR and N levels

as well as the SNRs were higher for the public lunch scenario than for the office

meeting scenario, the two-channel method provided about 4 dB lower median

SR levels and SNRs compared to the single-channel method in both scenes.

These differences were roughly consistent with the corresponding differ-

ences between the matched simulated single-channel SNR distributions and

their two-channel counterparts, even though the widths of the measured two-

channel SNR distributions were narrower than the simulated ones. This reduc-

tion in width was due to the more narrow distribution of the real-world recorded

speech signal compared to the simulated one. The two-channel method es-

timated the median of SN RT r ue in the office meeting scenario slightly more

accurately than in the public lunch. This is likely due to the lower DRR and C50

values in the office meeting scenario, indicating a more isotropic and stationary

noise field compared to the public lunch, in line with the assumptions pertain-

ing to the N signal. Nevertheless, the two-channel measured SNR distribution’s

inter-quartile range was lower than that of the simulated SNR distribution, for

both scenarios.

The estimated median SNRs of the two-channel method of -2.5 dB and -0.5

dB are in line with SNRs obtained in other realistic scenarios (Culling, 2016) and

consistent with the notion that conversational SNRs decrease with increasing

talker distance (Weisser and Buchholz, 2019). The width of the SR level distri-

butions was found to be smaller in the office meeting than in the public lunch

scenario for both methods. One explanation for this is that talkers maintained

a reasonably constant talking level at a larger fixed distance - where commu-

nication is more difficult - compared to when they are close together. This, in

turn, affects the widths of the corresponding SNR distributions as well. The

distributions for the background noise level were found to be rather symmetric

in both scenarios, and did not differ between the estimation methods since the

noise contribution was calculated in exactly the same way.
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While the two-channel method most likely characterizes conversational

SNRs more accurately than the single-channel approach, it has several limi-

tations. The necessity of the cheek microphone signal implies that existing

single-channel recordings cannot be re-analyzed, such that that additional mea-

surements are needed to acquire SNR distributions in scenes other than the two

described here. The fact that the room impulse response needs to be recorded

and calibrated at a predefined distance implies that the method is tailored to

the fixed talker distance in a specific target-receiver configuration in the scene.

Additionally, the free-field correction applied to the cheek microphone signal

was only measured from the front, and thus did not account for potential head

movements of the target talker. The two-channel method implements one spe-

cific way of estimating the acoustic path between the target and receiver, aiming

to more accurately approximate the true SNR.

Nonetheless, the proposed SNR estimation method captures real-world

SNR distributions with an increased degree of accuracy compared to the single-

channel approach, while also allowing for the dynamical tracking of speech

levels and SNRs in real-world scenarios. It can be applied in real-world scenes

for both offline data collection, as implemented here, or real-time tracking. This

enables applications beyond broadband level estimation, including precise

frequency-specific target speech analysis and the accurate temporal characteri-

zation of speech rates, turn-taking and conversational behavior in a realistic

way.

2.5 Conclusion

A two-channel method for the SNR estimation of a target talker in conversation

was developed based on a room acoustical approximation to the true SNR. With

the proper calibration and setup, the method was shown to result in significantly

reduced speech levels and downward-shifted SNR distributions compared to a

common single-channel reference method. Median values for the two-channel

method were more than 4 dB lower than for the single-channel method, likely

due to an overestimation of the level of a noise-correlated speech signal in the

single-channel method. As such, the proposed method might provide interest-

ing perspectives on how conversational real-world signal-to-noise ratios can be

estimated.
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3
Speech intelligibility in a realistic virtual

sound environmenta

Abstract

In the present study, speech intelligibility was evaluated in realis-

tic, controlled conditions. "Critical sound scenarios" were defined

as acoustic scenes that hearing aid users considered important,

difficult and common through ecological momentary assessment.

These sound scenarios were acquired in the real world using a spher-

ical microphone array and reproduced inside a loudspeaker-based

virtual sound environment (VSE) using Ambisonics. Speech recep-

tion thresholds (SRT) were measured for normal-hearing (NH) and

hearing-impaired (HI) listeners, using sentences from the Danish

Hearing In Noise Test, spatially embedded in the acoustic back-

ground of an office meeting sound scenario. In addition, speech

recognition scores (SRS) were obtained at a fixed signal-to-noise

ratio (SNR) of -2.5 dB, corresponding to the median conversational

SNR in the office meeting. SRTs measured in the realistic VSE-

reproduced background were significantly higher for NH and HI

listeners than those obtained with artificial noise presented over

headphones, presumably due to an increased amount of modula-

tion masking and a larger cognitive effort required to separate the

target speech from the intelligible interferers in the realistic back-

ground. SRSs obtained at the fixed SNR in the realistic background

could be used to relate the listeners’ SI to the potential challenges

they experience in the real world.

a This chapter is based on Mansour, N., Marschall, M., May, T., Westermann, A., and Dau, T.

(submitted); Speech intelligibility in a realistic virtual sound environment.
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3.1 Introduction

Through their auditory perception, normal-hearing people are able to com-

municate nearly effortlessly even in challenging acoustic scenarios, such as at

a social gathering or in a busy restaurant. In contrast, a person whose hear-

ing is impaired often experiences diminished speech communication ability,

hindering many social interactions (Moore, 1996). Hearing aids (HA) aim at com-

pensating for hearing deficits by employing frequency- and level-dependent

amplification to restore the wearer’s sensitivity to soft sounds, compensate for

loudness recruitment and increase overall sound quality. However, despite con-

siderable technological advances in hearing aid technology, hearing aid benefit

varies greatly among individual users, particularly in reverberant situations with

multiple interfering sound sources.

To appreciate why this occurs, it is necessary to understand how human

hearing is currently evaluated in the context of hearing aid applications. Typ-

ically considered paradigms, such as loudness perception or speech intelligi-

bility, utilize well-defined, artificially created acoustic stimuli presented over

headphones or small sets of loudspeakers. This approach, while having the

advantage of being fully controlled and replicable, does not necessarily reflect

conditions in the real world.

With respect to the acoustic stimuli employed in speech intelligibility (SI)

para-digms, the often used speech-shaped stationary noise (SSN) maskers differ

considerably from actual multi-talker acoustic interferers. SSN lacks the typical

low-frequency modulations of multi-talker interferers and therefore does not

provide the listener with the opportunity to utilize speech "glimpses" in the

interferer (Dreschler et al., 2001). The Hearing In Noise Test (HINT), that has

been widely used to evaluate speech intelligibility across many languages and

in various acoustic conditions, typically uses SSN as its masker, or modulated

noise lacking intelligible interferers. This test, along with other approaches like

matrix-based sentence tests (Houben et al., 2014; Kelly et al., 2017; Wagener

et al., 2003), results in normal-hearing (NH) speech reception thresholds (SRT)

- corresponding to 50% speech intelligibility - that are well below a signal-to-

noise ratio (SNR) of 0 dB (Nielsen and Dau, 2011; Soli and Wong, 2008; Wagener

et al., 2003). In contrast, research trying to categorize real-world SNRs has

consistently found a substantially higher range of values in the majority of

sound scenarios (Smeds et al., 2015).
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The presentation of the stimuli in an SI task is equally problematic in terms

of realism. Headphones can "spatialize" the presented sounds using head-

related-transfer functions (Wightman and Kistler, 1989), but this approach is

limited in accuracy by many factors, including headphone placement and the

limited spatial resolution imposed by the angle between the discrete functions.

In addition, accounting for head movements and fitting a HA with headphones

is cumbersome in practice. Quadraphonic loudspeaker setups, often used for

the spatial evaluation of HA algorithms, physically separate the noise maskers to

alleviate these problems, but they generally still do not faithfully reproduce spa-

tially diffuse noise (ITU-T, 2018). In short, an SI task presenting artificial stimuli

in a simplified spatial manner might misrepresent the difficulties that both NH

and HI people experience when listening to speech in noise in their daily lives.

Due to these discrepancies, it has remained unclear how SI performance scores

in laboratory settings relate to these real-world difficulties (Culling, 2016).

To more precisely tailor the performance of a hearing aid to the needs of a

user, it would be advantageous to utilize an SI testing paradigm that mimics

conditions in the real world to the highest possible degree, thereby making it

more ecologically valid (Reis and Judd, 2000). One option could be to actually

conduct the SI task in the real world (e.g. through field tests). While perfectly

realistic, real-world acoustic conditions are highly variable, resulting in outcome

measures that would be difficult to interpret and reproduce. Attempting to bring

the real world into the lab represents a trade-off between control and realism,

both regarding stimulus choice and acoustic presentation. A proper balance

of "controlled realism" would have the potential to result in consistent, yet

ecologically valid, findings (Best et al., 2015).

A virtual sound environment (VSE) in the form of a spherical loudspeaker

array is able to render complex three-dimensional sound fields at its center

through Higher-Order Ambisonic (HOA) reproduction techniques (Bertet et al.,

2006). Using such an array to present target speech sentences superimposed

onto spatial recordings of realistic sound scenarios would ensure the reproduc-

tion of acoustic sound field properties within the limitations of the recording

setup, allowing for head movements and providing a sense of spatial immersion.

VSEs have been used extensively in combination with simulated spatialized

maskers based on room-acoustic simulations (e.g. ODEON A/S, 2020) to study

aspects of auditory spatial separation (Best et al., 2017a), informational mask-

ing (Westermann and Buchholz, 2015), hearing aid performance (Cubick and
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Dau, 2016; Minnaar et al., 2010) and speech intelligibility (Ahrens et al., 2017;

Best et al., 2015; Westermann and Buchholz, 2017). However, this approach is

still limited by the number and complexity of sources that can be simulated

and has been shown to correlate only poorly with real-world conditions (e.g.

Ahrens et al., 2019). While real-world HOA recordings have become increas-

ingly available (e.g. Weisser et al., 2019b), there exists, to the best of the authors’

knowledge, no research that utilizes such spatially recorded maskers in VSE-

based SI tasks. In addition, for these recorded sound scenarios (e.g. an office

meeting or a restaurant visit) to become more ecological valid, they should

be selected based on scenarios that users consider critical in their lives and

captured in a real-world environment.

In the present study, a speech intelligibility task is presented that aims

to increase ecological validity. A set of critical sound scenarios was selected

based on a categorization of HA user ecological momentary assessment (EMA)

data (Smeds et al., 2018). Out of these scenarios, an office meeting scenario was

recorded in-situ with a spherical microphone array. This recording was subse-

quently reproduced as a VSE using Ambisonics over a 64-channel, fully spherical

loudspeaker array inside an anechoic enclosure. Finally, the reproduced masker

was combined with the spatialized speech corpus of the Danish HINT as part of

a speech intelligibility task carried out by NH and HI listeners. Adaptive SRTs

were captured as well as speech recognition scores (SRS) at a constant SNR of

-2.5 dB, corresponding to the median conversational SNR between NH people in

the office meeting scenario (Mansour et al., 2021). The hypotheses were that (i)

a speech intelligibility paradigm employing realistic, spatialized stimuli would

produce higher SRTs compared to those obtained with an artificial approach;

and that (ii) SRSs at a real-world conversational SNR would reflect some of the

difficulties HI people experience in the real world.

3.2 Methods

3.2.1 Sound scenario selection

To increase the relevance and ecological validity of the recorded critical sound

scenarios as potential maskers in the speech intelligibility task, the scenario

selection was based on EMA data from 281 field reports by HA users, collected

by Smeds et al. (2018).



3.2 Methods 35

In EMA, user data are captured in real-time by subjects in everyday scenarios.

The use of EMA data obtained in this way has become increasingly popular in at-

tempts to describe and characterize which scenes HA users experience (Timmer

et al., 2017).

Important

CommonDifficult

Is this scenario important...?

difficult...?
common...?

Important, difficult, not common

- Cocktail party 

Difficult, common, not important

- Strangers' conversation on the bus

Important, common, not difficult

- Watching TV at home 

Important, common, difficult

- Workspace meeting

EMA questionnaire

Figure 3.1: The critical sound scenario framework, developed to categorize HA users’ ecological
momentary assessment (EMA) field report data based on a binary combination of metrics of
reported importance, difficulty and occurence of understanding speech in everyday scenarios.
Examples of scenarios at the different intersections are given, with the area considered important,
common and difficult displayed in bold.

Figure 3.1 shows the critical sound scenario framework that was developed

in this study and which categorized a real-world scenario based on the binary

combination of three EMA questionnaire metrics: the reported importance, dif-

ficulty and occurence of understanding speech in that scenario. Combinations

of these three parameters have been shown to accurately separate different

real-life situations (Wolters et al., 2016). The examples provided in Fig. 3.1 illus-

trate different combinations of these metrics, graphically depicted as a Venn

diagram. For instance, while watching TV at home is a common and important

scenario for HA users, it is generally not considered as difficult. Understanding

speech in cocktail party scenarios is important and difficult even for normal-

hearing people, but not very common for many HA users. Workspace meetings

and having lunch in public are considered important as well as difficult and

common. For the scenarios rated as important, the percentages displayed in

the four sections of the corresponding circle in the Venn diagram denote their

relative occurrences.
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In the present study, the subset of scenarios that were simultaneously rated

important, difficult and common were chosen for further analysis as they rep-

resent conditions in which HA users are challenged the most. This subset was

cross-referenced with the EMA reports to reveal the three most prevalent critical

sound scenarios: a public lunch, a small festive event (e.g. a family house party)

and a workspace meeting. From these, the workspace meeting scenario was

selected for further processing.

3.2.2 Sound scenario acquisition

Figure 3.2 illustrates the recording setup used to acquire the office meeting

scenario. The scenario was captured during a staged office meeting with a

spherical microphone array (em32 Eigenmike, mh acoustics LLC, USA) capable

of 4th HOA recording (Bertet et al., 2006) with its spatial aliasing frequency at 9

kHz. In addition, a Knowles Electronic Manikin for Acoustic Research (GRAS A/S,

2018) with ear canals was used to capture binaural signals. While 12 participants

conversed in pairs, seated at and standing around a conference table in the

office meeting room (Fig. 3.2A), spatial scene recordings were obtained with

the EigenMike and KEMAR in the listener position at the bottom center of the

table. Room impulse responses (RIR) were captured from the target position

(top center of the table) using a mounted loudspeaker producing a series of

three repeated 15-second exponential sweeps (Müller and Massarani, 2001)

between 20 Hz and 20 kHz, while all participants remained still and quiet to

avoid altering the room reverberation (Fig. 3.2B).

To obtain conversational signal-to-noise ratios resulting from two interact-

ing participants seated in the listener position and the target position, respec-

tively (Fig. 3.2C), the method detailed in Chapter 2 (Mansour et al., 2021) was

used. In this method, speech produced by the target speaker was recorded via

a DPA 4066 cheek microphone. The recorded cheek microphone signal was

free-field corrected and convolved with the captured impulse response to obtain

an estimate of the target speech at the listener. The free-field correction was

obtained as the transfer function between white noise recorded by the cheek

microphone mounted on the KEMAR in an anechoic chamber and a reference

microphone at 0.5m distance. The background noise was measured with the

right ear of the KEMAR during gaps where neither the target nor the listener was

speaking, and the resulting SNR was calculated as the ratio of the speech energy

at the receiver and the background noise energy. Energy-based broadband
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voice activity detection (VAD, Kinnunen and Li, 2010) was used to separate the

target and listener speech from the background. The median value of the SNRs

obtained in this manner, -2.5 dB, was used in the constant-SNR SI assessment.

(A) Background recording

(B) RIR recording (C) SNR estimation

Figure 3.2: Illustrations of the office meeting scenario acquisition stages, consisting of the back-
ground scene recording (panel A), the room impulse response (RIR) recording stage (panel B) and
the conversational SNR estimation stage (panel C). Each panel contains the human participants
(blue heads) distributed around a large, square conference table, as well as the sound card and
recording laptop. The spherical microphone array is depicted in the listener position at the
bottom of panel A and panel B (green circle). Panel B additionally includes the loudspeaker in
the target position at the top (green rectangle). The target talker, wearing the cheek microphone
(green line), and the listener are depicted in the panel C in the target and listener positions,
respectively (grey heads). The KEMAR is positioned to the left of the listener (green mannequin).
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3.2.3 Sound scenario reproduction

The spherical microphone recordings made with the Eigenmike were encoded

from the 32 raw input channels to a 25-channel Ambisonic 4th-order HOA

format. These HOA signals were then rendered on the 64-channel spherical

loudspeaker array in the AudioVisual Immersion Lab (AVIL) at DTU (Fig. 3.3A)

using dual-band (basic, max-rE) decoding, with a crossover frequency of 2400

Hz. HOA auralization was chosen because of its physically faithful rendering of

sound fields in the sweet spot at the center of the array (subject to the limitations

imposed by the spatial aliasing frequency of the microphone array), ensuring

their usability for HAs as well as human ears.

The level of the reproduced masker was required to not fluctuate strongly

during its playback, to avoid largely varying SRTs in the SI task. To this end,

specific subsections of the raw Eigenmike recording were extracted and con-

catenated before Ambisonic rendering based on level estimates derived from its

front-facing microphone. The 10-minute-long recording was segmented into

frames of 5 seconds (with 80% overlap) and level differences (in dB) were calcu-

lated between consecutive frames. The upper and lower boundaries for allowed

level differences were set to the 5th and 95th percentile of the level difference

distribution, respectively. The collection of consecutive frame segments within

these boundaries was retained and concatenated in decreasing duration (from

25 seconds to about 7 seconds), resulting in a level-equalized recording of 2.5

minutes. The full 32-channel synchronized version of this reduced recording

was rendered to the 64-channel reproduction, calibrated segment by segment

to a fixed target sound pressure level (SPL) of 73.5 dB using a B&K 2669 free-field

microphone, and cross-faded with a 1-s Hann-windowed overlap for smooth

transitions between segments. The target SPL was selected as the median value

of the noise level distribution measured during the conversational SNR esti-

mation stage. Finally, the resulting 2-minute-long background reproduction

was calibrated binaurally inside the loudspeaker array, using a B&K Type 4128

Head and Torso Simulator (HATS) with ear canals. This approach ensured that

the background reproduction retained its intelligible properties despite having

been dynamically stabilized in level.
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3.2.4 Speech stimuli and interferers

To evaluate speech intelligibility, the Danish HINT (Nielsen and Dau, 2011) was

used. The HINT uses brief, mundane, male-voiced, 5-word target sentences

presented in speech-shaped stationary noise (SSN) to estimate SRTs using an

adaptive, 1-up-1-down, sentence-based scoring procedure. During each trial,

consisting of a sequence of 20 sentences, the procedure decreased the SNR of a

sentence by 2 dB if the previous sentence was repeated back entirely correctly

and increased it by 2 dB otherwise. The initial SNR was set to 0 dB and the first

sentence was replayed at increasing SNRs until it was repeated back correctly,

before continuing. The SRT of a trial was then calculated as the average of the

SNRs across the last 15 sentences. In addition, a non-adaptive procedure, which

presented the sequence of 20 sentences at a constant SNR, was implemented to

estimate speech reception scores in % correct, testing the second hypothesis

that SRSs at real-world SNRs reflect difficulties with speech intelligibility. Three

conditions were evaluated for each procedure:

• (HP) The classical HINT reference condition, where anechoic target sen-

tences were presented diotically in SSN over headphones, served as the

control condition. In the following, this condition is referred to as the

"headphone condition" (HP).

• (RE) The primary spatial condition used spatialized HINT target sentences

that were integrated into the reproduced office meeting interferer and

presented through the loudspeaker array. The spatialized sentences were

obtained by convolving the 60 training and 200 test HINT sentences in-

dividually with the spherically recorded IR that was captured between

the target and listener positions. Each sentence was calibrated individu-

ally to retain the same unique level as that of the single-channel version,

measured in the sweet spot of the loudspeaker array. This condition is

referred to in the following as the "realistic noise" condition (RE).

• (AR) The secondary spatial condition, with similarly spatialized HINT

sentences presented in a decorrelated quadraphonic version of the HINT

SSN playing from four loudspeakers in the array at 45◦, 135◦, 225◦ and 315◦

azimuth, 0◦ elevation. This "artificial noise" condition (AR) was included

primarily to investigate the effect of changing only the type of spatialized

background noise on speech intelligibility.
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In each condition, speech-to-noise SNRs were established by varying speech

sentence levels with respect to the continuously playing, looped background.

The fixed SNR used in the non-adaptive procedure was set to the median SNR

of -2.5 dB obtained from the conversational assessment (Sub. 3.2.2), considered

as a representation of a realistic NH conversational SNR.

3.2.5 Listeners

Ten NH and ten HI listeners participated in the experiment. The NH listeners

were between 21-69 years old with a median age of 28, while the HI listeners

were between 56-75 years old with a median age of 70. The NH listeners had

a four-frequency average hearing loss (HL) of maximally 15 dB, while the HI

listeners had an average sloping mild (N2) to moderate (N3) hearing loss (Bis-

gaard et al., 2010). Figure 3.3B shows the individual audiograms as well as their

mean (with shaded standard deviations) for the NH (gold, solid) and HI (silver,

dashed) listener groups. All HI listeners had a word discrimination score in

quiet of at least 92% for both ears, and a left-right-ear HL difference of maxi-

mally 10 dB for all frequencies. All listeners provided informed consent and all

experiments were approved by the Science-Ethics Committee for the Capital

Region of Denmark (reference H-16036391).

3.2.6 Speech intelligibility procedure

Three adaptive training rounds were carried out for target speech in quiet (to

ascertain audibility), as well as for the target speech presented in the AR and

RE conditions. Then, two evaluation rounds were conducted for all adaptive

conditions, and one for all constant-SNR conditions. One HINT round contains

a sequence of 20 predetermined sentences, presented in random order. The

testing order was randomized over condition (HP-RE-AR) and test list number

(1-9) through the use of two 9x9 Latin squares (Bradley, 1958) with two random

completions. Within one condition, two adaptive test lists were always followed

by one at the constant SNR. The two corresponding SRTs were averaged to

obtain a final SRT, and an SRS was established as the percentage of correctly

understood words in the constant-SNR list. The SNRs in the adaptive procedure

were adjusted based on sentence scoring, where a 5-word target sentence is

marked correct only when all 5 words were repeated accurately by the listener.

This is the standard way of scoring the Danish HINT (Nielsen and Dau, 2011).
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Figure 3.3: The AudioVisual Immersion Lab (AVIL), serving as the reproduction laboratory,
containing a spherical loudspeaker array in an anechoic enclosure (panel A) and the mean
audiograms of the normal-hearing (NH, solid gold) and the hearing-impaired (HI, dashed silver)
listener groups as well as their standard deviations (panel B).
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The SRSs in the constant-SNR procedure were based on word scoring, where

the number of correctly repeated words in every sentence is counted, summed

over all sentences in a list and divided by 100. The decision to use word scoring

for the constant-SNR procedure was taken to increase the scoring sensitivity of

the SI task, thereby avoiding flooring effects, at an SNR were HI listeners were

expected to struggle considerably.

All listeners provided informed consent and all experiments were approved

by the Science-Ethics Committee for the Capital Region of Denmark (refer-

ence H-16036391). The experiment lasted, on average, one hour and the HINT

scoring was carried out by a native Danish speaking audiologist.

3.2.7 Questionnaire and statistical analysis

In addition to the objective SI assessment, all listeners were asked to fill out

a questionnaire after completion of the experiment. Table 5.1 displays the

questions that were asked, pertaining to the realism of the sound of the stimuli

and the difficulty in understanding speech. The response scale was a 5-point

Likert scale, asking the respondent to rate a percept from not at all present (1)

to extremely present (5).

To check the data obtained in the different conditions (HPNH, HPHI, RENH,

REHI, ARNH and ARHI), a two-way mixed-effects analysis of variance (MANOVA)

statistical test was used where the condition HP/RE/AR represented a within-

listener factor and the hearing status NH/HI represented a between-listener

factor. The normality of each group was verified with the Anderson-Darling

and Shapiro-Wilk tests and the similarity in variance between the compared

groups required for the MANOVA was evaluated with a Bartlett test. A one-way

analysis-of-variance (ANOVA) test was applied to investigate specific paired

comparisons between NH and HI listeners, as well as a repeated-measurement

ANOVA (RANOVA) to compare between HP/RE/AR conditions within a listener

group. In all tests, the significance level was set at 5%.
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3.3 Results

3.3.1 Acoustic properties of the stimuli

Figure 3.4 shows the long-term average spectra (LTAS, panel A) and the modula-

tion power spectra (panel B) for the speech-shaped noise used by the HINT (red,

dotted), the quadraphonic SSN (blue, dot-striped), the office meeting noise

(green, solid), and a concatenation of all two hundred HINT test sentences,

monophonic and spatialized with the office meeting room impulse response

(black, dashed). The LTAS functions were normalized to have the same broad-

band RMS. The modulation power spectra were obtained by normalizing the

calculated power within a modulation band by its respective bandwidth as well

as the power in the DC component (Dreschler et al., 2001). The quadraphonic

noise, the office meeting noise and the auralized HINT sentences were recorded

binaurally with the HATS inside the loudspeaker array (left-ear spectra shown).

The LTAS of the HINT SSN (panel A) represents its speech-shaped spectral

character. The averaged monophonic HINT sentence LTAS is identical to that

of the HINT SSN, since this noise was originally constructed from the averaged

power spectrum of one hundred HINT sentences. For the quadraphonic SSN,

the LTAS is increased by up to 10 dB relative to the monophonic version at

frequencies above 1100 Hz. The LTAS of the spatialized HINT sentences reflects

the effect of the room on the speech-shaped stimuli. Similarly, the LTAS of the

office meeting noise shows its speech-like nature, smoothed and altered by the

room reverberation.

For the modulation spectra (Fig. 3.4B), the quasi-stationary nature of the

HINT SSN is reflected by its low energy across the considered modulation fre-

quencies. The modulation power remains low and roughly constant at all fre-

quencies. The quadraphonic SSN exhibits the same modulation spectrum as

the classical version. The monophonic HINT sentences contain a large amount

of modulation power, typical for signals with speech-like envelope fluctuations.

Spatializing these signals hardly alters these contributions. The modulation

spectrum of the office meeting noise lies in between these two extreme patterns,

since it contains various talkers speaking in a reverberant environment. As

such, the HINT SSN reflects the averaged spectral characteristics of the speech

stimuli but not their low-frequency modulations, while the office meeting noise

is speech-like in both the spectral and the modulation spectral domains.
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Figure 3.4: Root-mean-square (RMS) normalized long-term average spectra (panel A) and RMS
normalized modulation frequency spectra (panel B) of the stimuli used in the speech intelligibility
task, specifically the HINT monophonic target sentences and speech-shaped noise (SSN, red),
the quadraphonic SSN (blue), the office meeting noise (green) and the spatialized HINT target
sentences (black).
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3.3.2 Speech reception thresholds

Figure 4.1A shows individual SRT results for the adaptive HINT procedure (di-

amonds), as well as their mean (black circle) and standard deviations (black

squares), median and 25th/75th percentiles (box plot) for the NH and HI listen-

ers in the three conditions HP (red, left), AR (blue, middle) and RE (green, right).

Each individual SRT result represents the average of two SRT measurements.

The mean HP SRTs were obtained at -3.3 dB for the NH listeners as opposed to

-1.5 dB for the HI. The mean SRTs in the RE condition were -1.2 dB for the NH

listeners and 1.5 dB for the HI listeners. For the AR condition, the mean SRT

was -1.1 dB for the NH listeners, compared to -0.3 dB for the HI listeners.

Comparing the HP to the RE condition, a significant effect of condition

(F (1,18) = 41.57, p ≤ 0.0001) and hearing status (F (1,18) = 205.13, p ≤ 0.0001)

was found, but no significant interaction between the two (F (1, 18) = 2.86, p =

0.1049). Similarly, comparing the results obtained for the HP and AR conditions,

significant effects for condition (F (1, 18) = 40.26, p ≤ 0.0001) and hearing status

(F (1, 18) = 14.56, p = 0.0013) were observed, but no interaction effect (F (1, 18) =

3.08, p = 0.0962). Finally, a comparison of the results obtained in the AR and

RE conditions revealed significant effects of condition (F (1,18) = 8.80, p =

0.0083) and hearing status (F (1, 18) = 27.57, p ≤ 0.0001), as well as a significant

interaction (F (1, 18) = 10.78, p = 0.0041).

Pair-wise comparisons showed that the SRTs for the HI listeners were signifi-

cantly higher than for the NH listeners in the HP (p = 0.0003) and RE (p ≤ 0.0001)

conditions, but not in the AR condition (p = 0.1056). Within the NH listeners,

SRTs were significantly higher in the RE (p ≤ 0.0001) and AR (p ≤ 0.0001) con-

ditions compared to the HP condition, but similar between the RE and AR

conditions (p = 0.801). For the HI listeners, SRTs were significantly increased

in the RE condition compared to the AR (p = 0.0034) condition. Lastly, SRTs

in the AR condition were significantly higher than those in the HP condition

(p = 0.034).

These results demonstrate that speech intelligibility decreased (i.e. SRTs

increased) in the RE condition compared to the HP condition in both listener

groups, whereas the performance in the RE condition (compared to both the

AR and HP conditions) was much more affected in the HI listener group than in

the NH listener group.
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Figure 3.5: Speech intelligibility results for the adaptive procedure (panel A) and the percentage
correct procedure at the conversational SNR (panel B). Results are shown for the headphone
condition (HP, red, left), the artificial speech-shaped noise condition (AR, blue, middle) and the
office meeting noise condition (RE, green, right), for normal-hearing (NH) and hearing-impaired
(HI) listeners. The box plots show median values and inter-quartile ranges. Individual data points
are shown (diamonds) as well as the mean (black circle) and standard deviations (black squares).
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3.3.3 Speech reception scores at the normal-hearing SNR

Figure 4.1B shows the speech reception scores obtained with the constant-SNR

HINT procedure, summarizing the word scores of all listeners for the percentage

correct evaluation at -2.5 dB SNR, the median SNR in the office meeting record-

ing. The mean HP results corresponded to 84% correct for the NH listeners and

63.7% correct for the HI. The mean RE results corresponded to 67.1% correct for

the NH and 36.6% correct for the HI listeners. For the AR condition, mean scores

of 68.6% and 62.7% were obtained for the NH and HI listeners, respectively.

A significant effect of condition (F (1,18) = 47.58, p ≤ 0.0001) and hearing

status (F (1,18) = 30.72, p ≤ 0.0001) was found with respect to the HP and the

RE conditions, but no significant interaction (F (1,18) = 2.56, p = 0.1272). Sig-

nificant effects for condition (F (1,18) = 7.94, p = 0.0114) and hearing status

(F (1, 18) = 9.13, p = 0.0073) as well as a significant interaction effect (F (1, 18) =

6.12, p = 0.0235) were found between the HP and AR conditions. Comparing

the AR to the RE condition revealed significant effects of condition (F (1,18) =

14.52, p = 0.0013) and hearing status (F (1, 18) = 19.85, p = 0.0003), again with a

significant interaction (F (1, 18) = 11.53, p = 0.0032) a.

Paired comparisons showed that percentage correct scores for the HI listen-

ers were significantly lower than for the NH listeners in the HP (p = 0.0013) and

RE (p ≤ 0.0001) conditions, but not in the AR condition (p = 0.2614). Within

the NH listeners, percent correct scores were significantly higher in the RE

(p ≤ 0.0001) and AR (p = 0.0008) conditions compared to the HP condition, but

similar in the RE and AR conditions (p = 0.7210). For the HI listeners, percent-

age correct scores were significantly decreased in the RE condition compared to

the HP (p = 0.0003) and AR (p = 0.0018) conditions, but were not significantly

different between HP and AR conditions (p = 0.8429).

The SI scores showed the same trend as in the case of the adaptive SRT

estimation procedure: 1) Speech intelligibility at -2.5 dB SNR was consistently

poorer in the RE condition than in the HP condition for all listeners; 2) when

comparing the RE to the AR condition, the HI listeners showed substantially

poorer performance than the NH listeners. Overall, the spread of percentage

correct responses for NH and HI listeners across conditions showed that neither

a Contrary to the SRT results, the Bartlett test rejected the null-hypothesis of equal variance
between the groups (p = 0.0337), but given the balanced group size and the borderline
significance, the MANOVA was still valid (Stevens, 2012).
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ceiling nor flooring effects occurred, and that the RE condition resulted in the

greatest separation between NH and HI performance.

3.3.4 Questionnaire results

Table 5.1 displays the results of the questionnaire given to all listeners. For

both the NH and HI listeners, answers were accumulated per question and per

response to produce the number ranges in the rightmost two columns. The

highest frequency response within each response group is highlighted in bold.

The results indicate that all listeners rated the background noise in the RE con-

dition as mostly very realistic sounding, while the HI listeners experienced the

speech in the RE condition as overall more realistic and difficult to understand.

Table 3.1: Content of the questionnaire given to all listeners after completing the experiment, as
well as the 5-point Likert response scale. The frequency of responses of the normal-hearing (NH)
and hearing-impaired (HI) listeners to each possible response are displayed in the two rightmost
columns. The most often occurring response in each group is highlighted in bold.

Questions asked to the normal-hearing (NH) NH HI
and hearing-impaired (HI) listeners listener listener
Response: Not at all (1) - Not that (2) 1 2 3 4 5 1 2 3 4 5
Somewhat (3) - Very (4) - Extremely (5)
How realistic did the office background noise
in the experiment sound to you? 0 1 3 4 2 0 0 3 6 1
How difficult was it to understand the speech
in the artificial background noise in the exp.? 1 1 5 2 0 0 2 6 2 1
How difficult was it to understand the speech
in the office background noise in the exp.? 0 1 3 5 1 0 0 2 7 1
How realistic did the speech that you had
to listen to in the exp. sound? 0 1 3 5 1 0 0 2 7 1
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3.4 Discussion

3.4.1 Speech reception thresholds

SRTs for both listener groups were found to be 2-3 dB higher in the RE condition

compared to the HP condition. This effect was likely caused by several factors.

First, the HP condition used anechoic target sentences presented over head-

phones, as opposed to reverberant ones presented over loudspeakers in the RE

condition. Thus, in the RE condition, the target speech direct-to-reverberant

energy ratio (DRR) decreased considerably for the same broadband SNR, which

is known to cause decreased speech intelligibility (Roman and Woodruff, 2013).

Second, the modulation spectra in Fig. 3.4B indicate the presence of mod-

ulation energy in the office meeting noise, in contrast to the stationary (and

thus less modulated) speech-shaped HINT noise. These modulations were a

consequence of the mixture of speech sources in the RE noise, but were less

prominent than for the monophonic HINT target speech due to the room effect

and the number of interfering talkers (Dreschler et al., 2001). Still, this spe-

cific type of speech-like noise can lead to energetic speech-on-speech masking

of the target in both the spectral (Brungart et al., 2006) and the modulation

spectral (Jørgensen and Dau, 2011) domains.

Third, the many interfering talkers in the RE noise were intelligible and

distributed throughout the frontal plane of the listener position. This may have

produced informational masking (Westermann and Buchholz, 2015), with a

detrimental effect on SI, especially since the male gender of the target talker

matched that of 10 out of 12 interfering talkers in the room (Helfer and Freyman,

2008). The overall higher variance in the obtained data for the HI listeners

compared to the NH listeners was expected and was most likely caused by the

differences in hearing loss across the HI listeners.

While the transition from the AR condition to the RE condition led to an

increase in SRTs for the HI listeners, this was not the case for the NH listeners.

This may have resulted from a combination of effects. Comparing the LTAS

(Fig. 3.4A) for the quadraphonic SSN in the AR condition to the LTAS of the

office noise in the RE condition, there is a considerable decrease in spectral

energy above 1 kHz for the AR noise. This lower amount of high-frequency

noise of the office noise might reduce its speech masking effect for the NH

listeners, while the HI listeners would not benefit to the same extent due to

their increasing hearing loss at higher frequencies. However, this effect could be
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ruled out by testing a version of the AR noise that was spectrally matched to the

office noise, rendering a similar NH and HI performance to the one reported

here. Instead, one likely explanation is that the modulated maskers in the RE

condition allowed for dip-listening, aiding the phonemic restoration of noisy

speech (Warren, 1970) and leading to increased speech intelligibility (Peters

et al., 1998). Such dip-listening ability is commonly reduced in HI listeners,

negatively affecting their SI performance (e.g. Takahashi and Bacon, 1992). In

addition, the effect of better-ear glimpsing on spatial release from energetic

masking, a strategy used by NH listeners to increase their SI performance (Glyde

et al., 2013), has been shown to be limited in HI listeners, potentially due to

reduced audibility, even at increased target-to-masker ratios (Best et al., 2017b).

Finally, the presence of realistic, meaningful speech in the RE condition may

have increased the difficulty of the SI task to a greater extent in the HI listener

group than in the NH listener group. This was evidenced by spontaneous and

unanimous testimony by the HI listeners, who noted that the most challenging

(and recognizable) aspect of performing the SI task in the RE condition was

to not get distracted by the content of the background conversations. The NH

listener group did not report these difficulties.

The increase in SRTs for both the NH and HI listeners between the HP condi-

tion and the AR condition occurred despite the fact that speech intelligibility typ-

ically increases when the target and the masker become spatially separated (Lick-

lider, 1948), binaurally unmasking the speech from the noise (Durlach, 1963).

However, the transition from diotic, anechoic target speech to spatialized, re-

verberant speech simultaneously decreased its spatial separation and its intelli-

gibility. Spatial release from masking probably played a smaller role in the RE

condition, since the background noise consisted of a large number of similar,

interfering talkers (Freyman et al., 2001).

Besides the overall increases in SRTs and decreases in SRSs obtained in the

office meeting condition (RE), the results for the HI listeners differed consider-

ably from NH performance in this condition compared to the corresponding

results in the HP and AR conditions. The virtual sound environment, combined

with more realistic target and masker stimuli, therefore might reflect some of

the described hearing deficits in HI listeners.
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3.4.2 Speech reception scores at the normal-hearing SNR

While the adaptive SRTs results inform on changes in transitioning from an arti-

ficial to a more realistic SI task paradigm, SRSs at a constant SNR that represents

normal-hearing conversation may provide insight into how the SI paradigm

relates to the real world. For all conditions and both listener groups, the SRSs

followed the same trend as the SRTs obtained with the adaptive procedure.

The word scoring procedure successfully avoided flooring effects, but the

SRSs need to be corrected in order to compare them directly to the SRTs ob-

tained with the adaptive, sentence-based scoring procedure. This is necessary

because the word score of a HINT sentence between zero and four translates

to a sentence score of zero, creating a non-linear negative bias of the sentence

score versus the word score that increases with increasing word score. The

distributions of the difference between the SRSs computed as word scores and

those same SRSs computed as sentence scores are shown in Fig. 3.6. For all

listeners, the word scores were consistently about 20-25% higher than the sen-

tence scores across conditions, indicating that most listeners still repeated 2-3

words correctly in a sentence marked as incorrect by sentence scoring.
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Figure 3.6: Distributions of the difference between the speech reception scores when calculated
based on sentence scores (SS) and based on word scores (WS) in the percentage correct procedure
at -2.5 dB SNR. Results are shown for the headphone condition (HP, red), the artificial speech-
shaped noise condition (AR, blue) and the office meeting noise condition (RE, green), for normal-
hearing (NH) and hearing-impaired (HI) listeners.
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The RE condition shows that, on average, the HI listeners correctly received

just over one word out of two, while the NH listeners correctly received two

words out of three. Thus, the HI listeners understood about half as many words

as the NH listeners did. While this relative comparison is irrespective of absolute

performance, the SRSs for the NH listeners were only at a level of 67% for an SNR

where their ability to communicate was close to 100% in the real office meeting

scene. SRSs that reflect real-world SI might be used as target percentage correct

scores for NH listeners when conducting an adaptive SI tasks in other VSE-based

critical sound scenarios to relate the obtained SRTs back to real-world SNRs

necessary for proper speech communication. A percentage correct task at these

SNRs would then reveal the comparable HI performance. Once an appropriate

SNR for real-world NH SI has been established, this method could be used in

any SI task to relate the performance of NH listeners to that of HI listeners.

Lastly, Fig. 3.7 shows the psychometric functions of the HP condition (red,

panel A) and the RE condition (green, panel B) for the NH listeners (solid line)

and the HI listeners (dashed line), derived by fitting a cumulative normal distri-

bution to the pooled percentage correct scores per discrete SNR data point for

the adaptive SRT procedure. These functions thus represent performance based

on sentence scoring. The mean SRTs, corresponding to the 50% correct point

on the psychometric function, are indicated by straight dashed lines intersect-

ing the black diamonds, and the aggregated NH and HI percentage scores are

represented by diamonds and circles, respectively. The RE condition resulted

in narrow, steeply sloped psychometric functions for both listener groups, com-

parable to those obtained with in the HINT HP condition. The realistic VSE

therefore seems to provide sensitive as well as stable SI outcome measures.

The SI task implemented in the office meeting VSE still remained limited

in realism in several ways. No visual stimuli were presented in the laboratory

environment alongside the auditory signals. In the HP condition, the absence

of visuals matched the HINT procedure it represented, since no visual stimuli

were used there either. It has been shown that speech reception scores can

increase by 20% or more when the face of the target speaker is visible to the

listener (Neely, 1956), an effect which becomes especially important at negative

SNRs (Sumby and Pollack, 1954) and high background noise levels (Hadley et al.,

2019).
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Figure 3.7: Psychometric functions for the HP condition (red, panel A) and RE condition (green,
panel B) for the NH (solid line) and HI (dashed line) listeners. The NH and HI aggregated
percentage scores are shown as diamonds and circles, respectively. The straight dashed lines
that intersect the black diamonds relate the SNRs for both listener groups and conditions to the
50% correct point on the psychometric function.

With regard to the acoustical reproduction accuracy of the SI stimuli, the VSE

condition remains limited by the applied HOA recording and reproduction

methods. The spatial aliasing frequency of the microphone array reduces the

acoustic reliability of the office meeting recording at frequencies beyond 10 kHz.

The Ambisonic reproduction order of 4 used by the loudspeaker array guaran-

tees a sufficiently large sweet spot for the listener, but might not supply enough

spatial accuracy to accurately replicate narrow acoustic sources. However, this

reproduction error is offset by the presence of reverberation in the reproduced

environment (Oreinos and Buchholz, 2015).

Furthermore, only a limited number of conditions were considered in this

study, due to limitations in the size of the SI speech corpus as well as time limi-

tations in listener participation. It may be valuable to consider a condition with

an unintelligible, phase-scrambled version of the office meeting background

noise to assess the relative impact of informational masking and cognitive effort

on SI performance, or to evaluate conditions with anechoic target speech in the

spatialized maskers.
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Lastly, while the experimental setup considered in this study was elaborate,

it is not given that this level of sophistication is required to capture real-world SI

performance. However, developing laboratory environments that approximate

reality with increasing accuracy is a worthwhile endeavor, increasingly enabling

the assessment of psychoacoustic phenomena beyond SI in an empirical way.

A more qualitative argument in support of increasing realism in SI paradigms

is the juxtaposition of experimental realism to mundane realism, as defined

in psychology. Mundane realism refers to experimental conditions that mimic

those of the real world as closely as possible, whereas experimental realism

indicates the extent to which listeners actually experience those conditions as

realistic (Aronson et al., 1990). Therefore, to obtain meaningful results from a

listener, his or her perception of realism may be just as important as its objective

realization. Despite the mentioned limitations of the proposed SI paradigm, the

questionnaire results from Table 5.1 confirmed that the experimental realism

experienced by all listeners with respect to the sound of both the office meeting

background noise as well as the speech stimuli was high. It was interesting to

observe that, despite slight numerical differences, the overall distributions of

difficulty and realism ratings were very similar for both listener groups. While

the NH listeners achieved lower SRTs than the HI listeners, they rated the task

in the realistic environments as similarly difficult as the HI listeners because the

50%-correct, adaptive HINT procedure presented both listeners groups with

target speech sentences at similarly challenging SNRs.

3.5 Conclusion

A speech intelligibility task was designed and implemented, aiming to increase

ecological validity and experimental realism with respect to the nature and

presentation of the acoustic stimuli. It was shown that both NH and HI SRTs

obtained in an HOA-reproduced office meeting critical sound scenario were,

on average, 2-3 dB higher compared to the headphone-based HINT reference

condition. These differences were found to be mainly due to the spatialization

of the background noise (causing reverberation), the presence of speech-like

modulations (causing speech-on-speech modulation masking) and the intelli-

gibility of the interfering talkers (causing informational masking). Comparison

with a spatialized artificial noise condition revealed that the HI listeners were

more negatively affected by the realism in the VSE than the NH listeners, likely
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due to their reduced ability to use better-ear listening and listening in the dips,

as well as due to an increased cognitive effort to focus on the target speech in

the presence of intelligible, interfering speech-like noise. SRSs provided a way

to relate SI performance to potential difficulties experienced by HI listeners in

the real world, by evaluating SI at a constant SNR at which NH communication

ability was close to 100%. The approach presented in this study might be valu-

able for investigations into the effects of hearing loss and hearing aid benefit on

SI in simulated real-world environments and could be extended by providing

visual information to increase the realism of the simulated environment.
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4
The effect of hearing aid dynamic range

compression on speech intelligibility in a
realistic virtual sound environmenta

Abstract

Measures of "aided" speech intelligibility (SI) in listeners wearing

hearing aids (HA) are commonly obtained using rather artificial

acoustic stimuli and spatial configurations compared to those en-

countered in everyday complex listening scenarios. In the present

study, the effect of hearing aid dynamic range compression (DRC)

on SI was investigated in simulated real-world acoustic conditions.

A spatialized version of the Danish Hearing In Noise Test (HINT) was

employed inside a loudspeaker-based virtual sound environment

(VSE) to present spatialized target speech in background noise con-

sisting of either spatial recordings of two real-world sound scenarios

or quadraphonic, artificial speech-shaped noise (SSN). Unaided

performance was compared with results obtained with a basic HA

simulator employing fast-acting DRC. Speech reception thresholds

(SRTs) with and without DRC were found to be significantly higher

in the conditions with real-world background noise than in the

condition with artificial SSN. Improvements in SRTs caused by the

HA were only significant in conditions with real-world background

noise and were found to be related to differences in the output

signal-to-noise ratio of the HA signal processing between the real-

world versus artificial conditions. The results may be valuable for

the design, development and evaluation of HA signal processing

strategies in realistic, but controlled, acoustic settings.

a This chapter is based on Mansour, N., Marschall, M., Westermann, A., May, T., and Dau, T.

(submitted); The effect of hearing aid dynamic range compression on speech intelligibility in

a realistic virtual sound environment.
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4.1 Introduction

Hearing aids (HA) attempt to restore hearing-impaired (HI) people’s ability to

reliably explore their auditory world. The usage of modern digital HAs has

been shown to improve a wearer’s hearing ability in complex real-world envi-

ronments (Noble and Gatehouse, 2006). However, the introduction of more

sophisticated HA signal processing algorithms over the past decades has not

led to a substantial increase in HA user satisfaction (Kochkin, 2002). While

a satisfaction rating depends on many factors, such as ease of use and wear-

ing comfort, improving speech intelligibility (SI) in noise remains one of the

core purposes of a HA. However, HAs have failed to provide a consistent SI

benefit across users (Kochkin, 2002). This may be partially due to the focus of

current HA fitting procedures on restoring audibility, rather than addressing

supra-threshold distortions which HI listeners commonly experience when

listening to speech in noisy situations (e.g. Sanchez-Lopez et al., 2019). In ad-

dition, signal processing algorithms in HAs have mostly been optimized for SI

using speech-recognition-in-noise metrics, such as speech reception thresholds

(SRTs), obtained with artificial acoustic stimuli, which may not correlate well

with HA satisfaction in the listeners’ real-world experience (Bentler et al., 1993;

Cord et al., 2007; Wu, 2010). Therefore, it may be worthwhile to explore SI in

more realistic, ecologically valid ways, both in unaided conditions as well as in

conditions aided by the HA.

Various studies have investigated the impact of HA processing on SI, widely

varying in scope and methodology. A common approach has been to com-

bine speech-shaped noise (SSN) or some type of babble noise as a masker with

anechoic speech sentences as the target, both presented over headphones,

whereby the recordings were pre-processed to simulate the effect of HA am-

plification (Hunt et al., 2019; Jirsa and Norris, 1982; Saunders and Kates, 1997;

Souza et al., 2015). Reverberant properties of both the background noise and

the target speech, as well as effects of spatial source separation have often not

been considered. In addition, head movements have largely been ignored in

both the static playback of the stimuli and the HA processing. A few studies

focused on the realism of the acoustic conditions and presented the noise and

target speech stimuli over a spatially distributed set of loudspeakers, allowing

for the use of physical HAs, either as a fitted commercial HA (Köbler and Rosen-

hall, 2002; Moore et al., 1985; Wouters et al., 1999), the participant’s own HA
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(Best et al., 2015; Oreinos and Buchholz, 2016) or a fully-controlled, real-time

"master" HA (Hendrikse et al., 2020). In most of these studies, the small number

of loudspeakers and the involved playback methods did not allow for a realis-

tic reproduction of a real-world spatial sound field whereas Best et al. (2015)

and Oreinos and Buchholz (2016) employed so-called virtual sound environ-

ments (VSEs), using a large number of loudspeakers to accurately reproduce

real-world environments. Best et al. (2015) used a parametric room acoustic

simulation technique to reproduce the spatialized sound field, while Oreinos

and Buchholz (2016) employed recordings made in a room populated with

simulated talkers, using higher-order Ambisonics (Daniel, 2000). Both studies

still relied on simulated interferers in the noise masker, constructed using a

number of anechoic speech samples placed in a room or room model, rather

than in-situ recordings of real scenes.

In the present study, the effects of HA processing, specifically dynamic range

compression (DRC), on speech intelligibility were evaluated in realistic acoustic

conditions representing and based on recordings of real-world environments.

Best et al. (2015) found that HAs provided a greater benefit to SI in their sim-

ulated VSEs compared to more artificial masker types. Here, the effect of HA

processing was verified inside recorded VSE using Ambisonic auralizations of

spatial recordings (Mansour et al., 2019). Two real-world scenes were recorded

with a spherical microphone array using higher-order Ambisonics and repro-

duced inside a 64-loudspeaker loudspeaker array, providing the background

noise masker for the VSE. An artificial, quadraphonic SSN stimulus matched

to the long-term average spectrum of one of the real-world scenes was used

as a reference condition. Target sentences from the Danish Hearing in Noise

Test (Nielsen and Dau, 2011) were convolved with a room impulse response

(RIR) recorded in the respective real-world scenes, obtaining spatialized target

speech material for the SI task. A master HA was used to ensure consistency

in HA processing across listeners and to relate the potential SI benefits caused

by the HA to instrumental HA improvements. Ten listeners with symmetric

mild-to-moderate hearing loss carried out the adaptive SI task wearing a HA

shells controlled by the master HA, which implemented DRC based on the

NAL-NL2 fitting rationale (Keidser et al., 2011). The listeners also completed

the SI task using an "unaided" reference strategy, i.e. without wearing a HA.

An instrumental HA analysis was conducted to relate the HA’s input-output

signal-to-noise ratio (SNR) performance to the SI results.
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4.2 Methods

4.2.1 Virtual sound environment and spatial noise maskers

The Audiovisual Immersion Lab (AVIL) at the Technical University of Denmark,

comprised of a fully spherical loudspeaker array mounted inside an anechoic

chamber, provided the VSE which was used to play back the masker and target

speech stimuli. The array consists of 64 loudspeakers (KEF LS50, KEF Audio,

United Kingdom) at a distance of 2.4 m to a chair positioned in the center, with

24 loudspeakers separated by 15º in the horizontal ring (at 0º elevation).

Three spatial background noise conditions were considered in the experi-

ment. The first condition was based on a one-minute-long spatial recording

of a real-world office meeting, obtained with a 32-channel microphone array

(em32 Eigenmike, mh acoustics LLC, USA). In the office meeting scenario, 12

normal-hearing participants conversed in pairs around a square conference

table (2.4 m long) inside a conference room. The microphone array was placed

at head level in one of the seats around the table. Fourth-order Ambisonic en-

coding and decoding steps were applied to the recording to match the geometry

of the loudspeaker array for playback. The resulting signal was calibrated to

the average broadband sound pressure level (SPL) of 73.5 dB observed in the

original recording using the left ear of a head-and-torso simulator (HATS, B&K

Type 4128, Brüel & Kjær A/S, Denmark) placed on the chair in the center, i.e.

the sweet spot of the Ambisonic sound field.

The second background noise condition was constructed using a one-minute-

long spatial recording of a public lunch. In this scenario, the 12 participants

were seated around a rectangular lunch table (1 m in diameter) inside a large

corporate restaurant. All recording and processing steps were the same as for

the first masker, with the final signal calibrated to 75.5 dB SPL as the average

level measured during recording.

The third background noise condition included SSN, matched to the long-

term average spectrum (LTAS) of the public lunch recording. The SSN maskers

were obtained by first recording the 64-channel public lunch masker at the left

and right ear of the HATS placed in the center of the array. Then, the LTAS of the

left- and the right-ear recordings were computed separately using frames of 64

ms, Hann-windowing with 50% overlap, and smoothed over 1/3rd octave bands

using a normalized Gaussian kernel. A white noise signal was then filtered using

a linear-phase finite impulse response filter (FIR), matched to the magnitude
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spectrum of the LTAS. The resulting SSN signals were band-pass filtered be-

tween 20 Hz and 20 kHz using a 4th order Butterworth filter. Uncorrelated

versions of the SSN masker derived from the left LTAS were played back over

two loudspeakers in the horizontal ring at 45º and 135º azimuth, while the right,

uncorrelated SSN maskers were played over the loudspeakers at 225º and 315º

azimuth, creating a quadraphonic loudspeaker setup. The final, 4-channel SSN

masker was calibrated in the center of the array to the same broadband level of

75.5 dB SPL as in case of the public lunch masker.

4.2.2 Listeners

Ten hearing-impaired (HI) listeners, nine male and one female, participated in

the experiment. They were between 62 and 84 years old with a median age of

71.5. All listeners had a symmetric sensorineural hearing loss not exceeding an

N3/S1 hearing loss category (Bisgaard et al., 2010) and showed word discrimina-

tion scores higher than 90%. The listeners were seated in a chair in the center of

the AVIL loudspeaker array and their SI was evaluated for the unaided hearing

strategy and the aided hearing strategy detailed below, in each of the three back-

ground noise conditions. The resulting 9 trials were randomized across listeners

according to a balanced 9-by-9 Latin square design (Bradley, 1958) with one

random completion. The SI scoring was carried out by a Danish audiologist,

while the master HA was monitored to ensure its proper processing of the input

signal without delay or feedback. All participants provided informed consent

and all experiments were approved by the Science-Ethics Committee for the

Capital Region of Denmark (reference H-16036391).

4.2.3 Speech intelligibility task

Using the spatialized noise maskers, a speech intelligibility (SI) task was de-

signed based on the Danish Hearing in Noise Test (HINT, Nielsen and Dau,

2011). The anechoic target speech sentences, on average 1.5 s long, were con-

volved with RIRs measured in the office meeting and the public lunch scenario

between a loudspeaker and the microphone array placed on opposite sides of

the table. The sentences were then calibrated at the left ear of the HATS placed

in the center of the loudspeaker array. SRTs were determined using an adap-

tive, 1-up-1-down procedure, presenting the noise maskers at their constant

broadband levels of 73.5 and 75.5 dB SPL for the office meeting and public
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lunch recordings, and varying the level of the spatialized target sentences. The

artificial SSN condition presented the noise masker at the same broadband level

of 75.5 dB SPL as the public lunch masker from which it was derived, and used

the target speech sentences that were convolved with the public lunch RIR.

4.2.4 Real-time hearing aid signal processing

To ensure that the HA signal processing operated consistently across listeners, a

fully controlled, real-time HA system was implemented. Two HA shells (Signia,

WSAudiology, Germany), each containing a microphone and a receiver, were

connected via a custom preamplifier box and a sound card (RME Fireface 800,

Audio AG, Germany) to a laptop. The HA signals were processed by the open-

MasterHearingAid framework (openMHA, Herzke et al., 2017), encapsulated in

a MATLAB control layer.

HA algorithms

The basic building blocks of the HA signal processing chain consisted of input-

and output-level equalization with clipping protection, as well as a filter bank

decomposition with windowing and gain application. The input signal was sam-

pled at a rate of 44.1 kHz in time windows of 64 samples. An 65-tap finite impulse

response (FIR) input equalization filter was applied to flatten the calibrated HA

microphones’ frequency response, while an output FIR filter was necessary to

ensure that the frequency-dependent effect of the ear canal was compensated

for in the calibrated HA receivers. The filter bank used an overlap-add strategy

to process frames decomposed by a fast Fourier Transform at a length of 512

time-domain samples, windowed by a 256-sample Hanning window with 50%

overlap. Each frame was decomposed in the frequency domain into 9 rectangu-

lar, 3
4 -octave-wide, non-overlapping bands with the lowest center frequency at

177 Hz (177, 297, 500, 841, 1414, 2378, 4000, 6727 and 11314 Hz).

The HA amplification employed DRC based on the listener’s pure tone audio-

gram thresholds and following the gain prescription of the National Acoustics

Laboratory-Non Linear 2 (NAL-NL2) fitting rationale (Keidser et al., 2011) (see

Appendix A for more details). The attack and release time constants for the DRC

were set to 5 ms and 100 ms, respectively. These values correspond to a fast-

acting compression scheme, where the output gain is adjusted relatively quickly

after a change in input level, both at the onset and end of the level change. Such
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a configuration aims at restoring audibility on short time scales correspond-

ing to syllables or phonemes.b Other features, such as feedback cancellation,

noise reduction and beamforming, common in commercially available hearing

aids, were not included in the HA processing. This was done to focus on the

essential components in the processing and exclude potentially confounding

adaptive algorithms. The omission of feedback cancellation implied that the

HAs needed to be equipped with a fully closed dome and were limited in their

gain prescription to at most a N3 or S1 hearing loss category (Bisgaard et al.,

2010), or about a 40 dB hearing loss at 1 kHz.

HA implementation, fitting and evaluation

The HA processing chain was implemented in the openMHA framework. This

plugin-based open source platform includes several basic HA features as well

as HA calibration and validation tools and can interface in real-time with input-

output sound card channels using a desired sample rate and frame size (see

Appendix C for more details).

After the calibration of the HA microphones and receivers (see Appendix D

for more details), a listener-specific validation routine was carried out, verifying

that the HA receiver output levels matched the target gains of the NAL-NL2

rationale at the 65 dB SPL DRC knee point at each filterbank center frequency.

The HAs were placed on the HATS, positioned on the chair in the center of the

loudspeaker array and the HA receiver calibration values were fine-tuned until

the measured gains at the HATS microphones deviated by less than 1 dB from

the target gains. The processing delay between the sound card microphone

input channels and receiver output channels was determined by feeding a test

signal into each of the input channels and tracking the time it took for the signal

to be processed by an openMHA instance and reach a receiver output channel.

On average, the input-output delay amounted to 11 ms, which is more than the

5 ms delay commonly targeted in commercial HAs yet still considerable lower

than the 20 ms limit tolerable to individuals with mild-to-moderate hearing

loss (Stone and Moore, 1999).

b To limit the maximum output level of the receiver signal, an additional ultra-fast-acting

compressor was applied to the output signal, with attack and release times of 2 ms and 5 ms

respectively. This soft clipping protection mechanism compressed the signal at a slope of 0.5

when broadband levels of 0.8 or higher relative to the digital maximum were detected (Herzke

et al., 2017).
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4.2.5 Instrumental HA analysis

In addition to the SI assessment, an instrumental HA analysis was conducted

to evaluate how the HA DRC processing affected the broadband SNR of target

HINT sentences in the three noise conditions. With the HAs placed on the

HATS in the center of the loudspeaker array, HA microphone recordings were

made of 20-second excerpts of the two real-world background noises and the

SSN as well as 10 randomly selected HINT target sentences. Each sentence

was superimposed onto 10 different noise clips within each background noise

excerpt, which was set to its respective broadband level. The sentences were

scaled to achieve the desired SNR. Using the method proposed by Hagerman

and Olofsson (2004), this process was then repeated while all noise clips were

shifted in phase by 180◦. For each speech-in-noise mixture, the in-phase and

out-of-phase versions were then processed by an offline, file-based openMHA

instance, configured to provide amplification with DRC according to the NAL-

NL2 rationale fitted to the mean audiogram across all listeners. By adding or

subtracting the output in-phase and out-of-phase mixtures, the separate speech

and noise components can be recovered perfectly, assuming that the HA has a

linear phase response. In this way, 100 speech-in-noise clips were analyzed per

target SNR value, across a range from -12 dB to 12 dB (the approximate range of

SNRs presented in the SI task), in 3 dB increments.

4.3 Results

Figure 4.1A shows the measured SRTs across listeners for the unaided and the

aided hearing strategies. Individual thresholds are plotted for the SSN (AR, red

circles), the real-world office meeting noise (RE1, blue diamonds) and public

lunch noise (RE2, green squares), as well as the median and 25th/75th per-

centiles of the SRT distributions (box plots). The mean values (black circles)

and standard deviations (black squares) are also shown. A large variability of

the SRTs across listeners can be observed in all conditions and for both pro-

cessing strategies. For the unaided strategy, mean SRTs were obtained at 0.1

dB in the artificial SSN, at 2.2 dB in the office meeting noise and at 2.8 dB in

the public lunch noise. Similarly for the aided strategy, the mean SRTs where

-0.6 dB, 1.0 dB and 1.0 dB in the AR noise, RE1 noise and RE2 noise, respectively.

The standard deviations for the unaided strategy amounted to 2.2 dB in the AR
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condition, 1.8 dB in the RE1 condition and 2.1 dB in the RE2 condition. For the

aided strategy, the standard deviations were 1.8 dB, 1.4 dB and 2.5 dB in the AR

condition, RE1 condition and RE2 condition, respectively.

A two-way repeated-measures analysis of variance (RANOVA) revealed a

significant effect of noise type (F (1, 9) = 23.2, p = 0.0001) and hearing strategy

(F (1,9) = 47.7, p ≤ 0.0001). Pair-wise comparisons between noise conditions

showed that SRTs were significantly higher for the RE1 and RE2 condition than

for the AR condition, both for the unaided and the aided strategy. Comparisons

between the RE1 and RE2 conditions did not reveal a significant difference.

Conversely, there was a significant decrease in SRTs between the unaided and

the aided hearing strategy for the RE1 and RE2 conditions, but no significant

difference for the AR condition. SI performance within each noise condition

was not significantly different between listeners. Thus, the realistic noises made

it consistently more difficult to understand speech compared to the artificial

noise, regardless of whether HAs were used or not. At the same time, the artificial

noise did not show a significant effect of the HA processing, while both realistic

noise types did.

Figure 4.1B illustrates the unaided versus aided SRTs for each of the three

noise conditions AR, RE1 and RE2, as well as their linear least squares fits, with

respective R2 correlation factors of 0.68, 0.68 and 0.66. This indicates that the

aided strategy was strongly correlated with the unaided strategy across all noise

types, suggesting that the effect of the HA DRC processing depended on the

unaided SRT. Most data points lie below the 45◦ line and all least squares fits

have slopes below one, demonstrating the increasingly beneficial effect of the

HA DRC processing on SI with increasing values for the SRT (i.e. decreasing

SI) in the unaided condition. This effect was stronger for the RE1 and RE2

conditions, for which the HA started to provide a benefit at lower unaided SRTs

compared to the AR condition.

Table 4.1 shows the R2 correlation factors between the listeners’ SRTs and

their the four-frequency-average hearing loss (4FAHL). Correlations were weak

across all noise types and weakest for the realistic noise types, and there was

virtually no difference between the unaided and the aided hearing strategy.

Thus, the 4FAHL was a poor predictor of supra-threshold SI performance in

the conditions considered in the present study, especially in realistic VSEs,

regardless of whether a HA DRC processing strategy was active or not.
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Figure 4.1: Panel A: Measured speech reception thresholds (SRTs) for the unaided and the aided
hearing strategies, in the SSN (AR), the real-world office meeting noise (RE1) and public lunch
noise (RE2) conditions. The mean values (black circles) and standard deviations (black squares)
are also shown. Panel B: Unaided vs. aided SRTs and R2 correlation factors in the three noise
conditions; AR, RE1 and RE2. The least-squares fits to each noise conditions are shown as dashed
lines.
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Table 4.1: Unaided and aided R2 correlation factors between the average four-frequency-average
hearing loss (4FAHL) across participants and their speech reception thresholds for the three
noise types.

R 2 Unaided Aided
AR 0.27 0.26

RE1 0.15 0.19
RE2 0.09 0.07

Figure 4.2 shows the output SNR distributions for the AR, RE1 and RE2

conditions at nine input SNRs between -12 dB and 12 dB, obtained from the

instrumental HA analysis. The AR noise produced considerably lower SNR

values (red symbols) than the RE1 (blue) and RE2 conditions (green), for all

input SNRs. For the RE1 and RE2 conditions, the HA DRC processing increased

the output SNR of the provided speech-in-noise mixture by up to 2 dB at negative

input SNRs. The effect decreased with increasing input SNR and at input SNRs

beyond around 5 dB, the output SNR became smaller than the input SNR. For

the AR condition, the HA DRC processing decreased the output SNR regardless

of the input SNR, but again most strongly at positive input SNRs. The HA

processing in the AR condition started to provide a positive median output SNR

at an input SNR of 4.1 dB, while this happened at input SNRs of -1 dB and -1.8

dB, respectively, for the RE1 and RE2 conditions. The spread in the SNR output

distribution was markedly larger in the AR and RE2 conditions relative to that

in the RE1 condition.

Figure 4.3A displays the histograms of the noise levels (in dB) estimated for

a ten-second excerpt of the AR (red), RE1 (blue) and RE2 (green) interferers

as recorded by the left front HA microphone and normalized to unit average

power. Each level estimate was obtained by calculating the average power over

a time window of 5 ms, corresponding to the analysis window of the HA DRC

processing. The histogram bin width of 1 dB corresponds to the resolution of the

compression lookup table inside the HA. These histograms show that the RE1

and RE2 noise types exhibit considerably greater amplitude fluctuations over

time than the stationary AR noise. Similarly, Fig. 4.3B shows the corresponding

histograms of the speech levels across the ten HINT sentences used in the

instrumental SNR analysis, calculated in the same way as in the case of the noise

histograms. The histogram for the anechoic speech is shown in black, together

with the histogram for the RE1 (in blue) and the AR/RE2 (in green) speech, as

recorded by the left front HA microphone and normalized to unit average power.
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Figure 4.2: Output SNR distributions vs. input SNR values resulting from the instrumental HA
analysis for 10 target speech sentences superimposed onto 10 noise fragments at nine input
SNRs between -12 dB and 12 dB, for the artificial noise type (AR) and the two realistic noise types
(RE1 and RE2).

The histograms obtained for the anechoic and the AR/RE2 speech were similar

in width whereas the RE1 histogram showed a narrower distribution. This was

expected due to the much lower direct-to-reverberant ratio (DRR) in the office

meeting scenario (RE, 6.6 dB), introducing more reverberation into the anechoic

HINT sentences than in the public lunch scenario (RE2, 16.6 dB). The more

reverberant RIR of the office meeting reduced the level fluctuations in the target

speech signals, thereby also reducing the width of the RE1 SNR distribution (see

Fig. 4.2) compared to the AR and RE2 SNR distributions.
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Figure 4.3: Panel A: Histograms of the noise levels (in dB) estimated for a ten-second segment
of the AR (red), RE1 (blue) and RE2 (green) interferers, normalized to unit average power. Each
level estimate was obtained by calculating the average power over a time window of 5 ms. Panel
B: Corresponding histograms of the speech levels across the ten HINT sentences used in the
instrumental SNR analysis, calculated in the same way as in the case of the noise histograms.
The anechoic speech histogram is shown (black), alongside the RE1 (blue) and AR/RE2 (green)
speech histograms, normalized to unit average power. The analysis window was the same as for
the noise signals.
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4.4 Discussion

The main aim of this study was to investigate the impact of applying in-situ

background noise recordings as maskers in a speech intelligibility task con-

ducted with and without hearing aids. Consistently with previous work (Best

et al., 2015; Mansour et al., 2019), employing realistic noise maskers resulted in

increased SRTs compared to artificial noise maskers. This reduction in SI in re-

alistic backgrounds has been linked to energetic speech-on-speech masking in

the spectral and modulation-spectral domains (Brungart et al., 2006; Jørgensen

and Dau, 2011) as well as the presence of intelligible interferers in the realistic

background (Westermann and Buchholz, 2015). In the present study, the LTAS

of the AR noise was matched to that of the RE2 noise, such that the differences

in the SRTs obtained in these conditions could not be caused by differences in

the (long-term) spectral properties of these interferers.

At the same time, SRTs did not differ between the RE1 and RE2 conditions.

Despite room acoustic and spectral differences between the two realistic scenes,

the stimuli were presented at rather similar broadband SPLs (73.5 dB and 75.5

dB) and contained the same number of nearby interfering talkers (ten). This

suggests that SI in realistic VSEs might be more strongly influenced by the overall

background level and the number of interfering talkers, which have been found

to be predictors of perceived scene complexity (Weisser et al., 2019a), than by

the acoustic details of the background noise. The results obtained across noise

types were similar between the aided and unaided strategies, indicating that

the realistic VSEs were robust to the HA processing employed here.

The applied HA processing led to improved SI in the realistic conditions, but

not in the AR condition. Several factors could have contributed to this finding.

First, hearing-impaired listeners that have their audibility (partially) restored

through HA amplification may regain the ability to employ dip listening, which

may be more beneficial in modulated interferers (such as the realistic noises in

the present study) than in stationary noise interferers (Peters et al., 1998).

Second, as revealed by the instrumental analysis, the HA DRC processing

affected the different noise types differently. Due to the stationarity of the AR

noise type, the applied compression resulted in a reduction in the output SNR

of the HA across the entire input SNR range (see Fig. 4.2). In contrast, due

to the wider dynamic range in the RE1 and RE2 noise types, the compressive

processing was able to reduce the peak noise energy to a greater degree (at the



4.4 Discussion 71

same overall SPL), resulting in an increase in the median output SNR at low input

SNRs (up to about 3 dB). At highly positive SNRs, this effect disappeared (as can

be seen in Fig. 2, above around 6 dB) because the speech signal, shared between

all noise types, now determined the envelope of the mixture and thereby the

impact of compression (Rhebergen et al., 2009). Unaided SRTs in the RE1 and

RE2 conditions, however, fell in the range where the HA DRC processing still

resulted in an SNR improvement for most segments (roughly between 0 dB and

5 dB, see the ordinate of Fig. 4.1B), which likely contributed to the HA benefit

observed in these conditions. Previous work (Boike and Souza, 2000; Moore

et al., 1999) also demonstrated the benefit of fast-acting DRC on the SNR of

noise-dominated speech in modulated (artificial) maskers versus stationary

maskers, as well as its beneficial effect on SI (Kowalewski et al., 2018; Rhebergen

et al., 2009). Thus, the presence or lack of benefit of compressive HA processing

on SI, both in terms of instrumental and perceptual measures, depends strongly

on the range within which SRTs are obtained, which, in turn, depends on the

properties of the speech and noise stimuli presented to the HA and the listener.

The results of the present study suggest that a realistic VSE can provide an

effective setting for evaluating the impact of HA signal processing algorithms on

a listener’s SI performance and for relating that performance to instrumental HA

performance metrics. The present approach, however, did not consider visual

information, which is known to greatly improve speech intelligibility and subse-

quently shift unaided SRTs ranges downward, especially at low SNRs (Sumby

and Pollack, 1954). It is likely that the lack of visual cues also affected the SRTs

of the listeners in the current experiment, and by extension the aided benefit

shown by the HA processing. Thus, an important next step would be to establish

measurements of visually aided speech intelligibility in realistic VSEs.

The results of the instrumental analysis showed that, with a shift to lower

SNRs, the HA DRC processing continued to improve the output SNR in the realis-

tic scenes, implying that a visually aided SI assessment would continue to reveal

an increased HA benefit for realistic versus artificial scenes. Furthermore, only

a simple HA was implemented in this study, excluding commonly used features

such as noise reduction and beamforming. The methodology proposed here

can, however, be applied to HA simulators including any number of features.

Lastly, it may be informative to consider psychoacoustic outcome measures

beyond SI, such as localization or loudness perception in realistic VSEs.



72 4. The effect of hearing aid DRC on speech intelligibility in a realistic VSE

Combining aided psychoacoustic measures with instrumental HA analyses

may provide a better understanding of how various signal processing strategies

perform in real-life environments.

4.5 Conclusion

In this study, the effect of HA DRC processing on SI was investigated in two

realistic acoustic scenes, constructed using spatial background recordings and

anechoic speech samples convolved with RIRs measured in-situ. It was found

that both unaided and aided SRTs were significantly increased inside both

realistic VSEs compared to a reference condition employing quadraphonic SSN

as a masker. This is consistent with previous studies, which showed increased

spectral and modulation-spectral energetic masking for realistic noises as well

as a detrimental effect of intelligible speech in the maskers on SI (Best et al.,

2015; Mansour et al., 2019). Despite the acoustic differences, SI was similar

between the two realistic noise types, suggesting that precise acoustic details in

the reproduced environment may be less important than its overall loudness

and number of interfering sources.

HA DRC processing was found to provide a benefit to SI in the realistic scenes,

but not in the artificial reference condition, which was consistent with output

SNR differences observed between the realistic versus reference conditions.

Results of an instrumental SNR analysis revealed that the stationary nature of

the artificial noise led to consistently lower median SNRs at the output of the

HA compared to the two realistic background noises.

The results of this study illustrate the relevance of evaluating the impact

of HAs on SI in experimental conditions that are realistic, such that the SI task

might produce SRTs that reflect real-life experience. By achieving this, HA

processing strategies may then be tailored to SNRs that occur in real-world

conditions and consequently become better matched to the user’s every-day

experiences.
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Guided ecological momentary

assessment in real and virtual sound
environmentsa

Abstract

Ecological momentary assessment (EMA) outcome measures can

relate people’s subjective auditory experience to their objective

acoustical reality. While highly realistic, EMA data often contain

considerable variability, such that it can be difficult to interpret the

results with respect to differences in people’s hearing ability. To

address this challenge, a method for "guided" EMA is proposed

and evaluated. Accompanied and instructed by a guide, normal-

hearing participants carried out specific passive and active listening

tasks inside a real-world public lunch scenario and answered EMA

questionnaires related to aspects of spatial hearing, listening ability,

quality and effort. In-situ speech and background noise levels were

tracked, allowing the guided EMA task to be repeated inside two

acoustically matched, loudspeaker-based laboratory environments:

a 64-channel virtual sound environment (VSE) and a three-channel

audiology clinic setup. Results showed that guided EMA provided

consistent passive listening assessments across participants and

conditions. During active listening, the clinic setup was found to

be less challenging than the real-world and the VSE conditions.

The proposed guided EMA approach may provide more focused

real-world assessments and can be applied in realistic laboratory

settings to aid the development of ecologically valid hearing testing.

a This chapter is based on Mansour, N., Westermann, A., Marschall, M., May, T., Dau, T., and

Buchholz, J. (submitted); Guided ecological momentary assessment in real and virtual sound

environments.

73
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5.1 Introduction

Relating the subjective auditory experience of an individual person in complex,

real-world environments to objective measures of hearing ability has been of

interest within hearing research for many years. Most studies have focused on

evaluating psychoacoustic measures like loudness perception, spatial aware-

ness, speech intelligibility and localization ability using well-controlled, yet

artificial stimuli. Efforts have been made to increase the ecological validity (Reis

and Judd, 2000) of these stimuli by reproducing real-world environments in the

laboratory (e.g. Ahrens et al., 2017; Best et al., 2015; Mansour et al., 2019; West-

ermann and Buchholz, 2015). However, it is unclear how the task paradigms in

such studies and their corresponding outcome measures, though reliable and

reproducible, can be related to subjective hearing ability in the real world (Lut-

man, 1991; Timmer et al., 2015). Retrospective questionnaires, like the Speech,

Spatial and Qualities of Hearing Scale (SSQ, Gatehouse and Noble, 2004) or

the Glasgow Hearing Aid Benefit Profile (GHABP, Gatehouse, 1999), were devel-

oped specifically to quantify subjective hearing ability. While their responses

can correlate well with objective measures (e.g. better-ear average hearing

thresholds, Gatehouse and Noble, 2004), providing so-called construct validity,

responses are often affected by recall bias (Moskowitz and Young, 2006), limiting

their reliability.

To overcome these issues, the methodology of ecological momentary assess-

ment (EMA) has emerged as an approach in which questionnaires are employed

to capture people’s subjective environmental impressions at frequent (chosen or

triggered) intervals over an extended period of time in their every-day life (Shiff-

man et al., 2008). Effects of recall bias can largely be avoided since participants

evaluate their surroundings while they are observing them and instrumental

measures (e.g. background noise levels and frequency spectra) can be applied

to acoustically characterize the in-situ environment. Several recent studies have

applied the methodology of EMA to hearing research, establishing its reliability

and construct validity (Galvez et al., 2012; Henry et al., 2012; Timmer et al., 2017;

Wu et al., 2015).

However, drawbacks to the successful use of EMA remain. As reported

in Timmer et al. (2017), there are potential issues of compliance (the partici-

pant’s willingness to complete the assessments), feasibility (the extent to which

the participant can fulfill the EMA task requirements), burden (the demand
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placed on the participant) and data variability (the large inter-subject variability

contained within EMA data sets). The variability in EMA data has two main

sources: temporal, or intra-participant variability, i.e. the spread within a single

participant’s questionnaire responses over time due to the changing environ-

ment and circumstances, and inter-participant variability, i.e. the spread across

different participants’ responses due to differences in their every-day environ-

ment and their hearing ability. While EMA data in their traditional form are

useful for characterizing experienced trends and differences across large groups

of people and data sets, an approach with reduced intra- and inter-participant

variability may be beneficial to explore measures of individual hearing ability.

In this exploratory study, a "guided" approach to EMA is proposed. Dur-

ing the experiment, which took place at a fixed time of the day and over a

short time interval, each participant visited the same, predetermined real-world

(RW) scene, accompanied by a human guide. The location and time-of-day

constraints served to reduce the inter-participant variability in the EMA data,

while the duration constraint aimed to reduce the intra-participant variabil-

ity caused by environmental changes. The guide facilitated the participant’s

EMAs, attempting to improve compliance and feasibility and reduce burden,

by providing a clearly structured passive listening task, a communication task

and an active listening task. Each task was followed by a brief questionnaire on

commonly addressed hearing topics in EMA research. The passive listening task

required the participant to simply listen to their environment for one minute,

while the conversation task consisted of one minute of natural conversation

between the participant and the guide. During the active listening task, the

participant was asked to listen to two monologues told by the guide, the first

held at natural speech levels, established during the communication task, and

the second at challenging speech levels, subjectively determined by the guide.

These tasks were designed to mimic common aspects of unguided EMAs in

a more controlled fashion, while the inclusion of the active listening task at

challenging speech levels was intended to avoid potential ceiling effects.

Due to its rigid structure and short duration, the guided EMA method could

be applied inside realistic laboratory environments, represented by a virtual

sound environment (VSE) in the form of a spherical 64-loudspeaker array and

a three-loudspeaker (front-left-right) clinic environment (CL), a simple yet

common setup in audiology clinics. Both laboratory environments employed

Ambisonic renderings of spatial audio recordings made in the RW environment
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to represent the background noise, as well as prerecorded audiovisual (AV) clips

to visually represent the guide’s speech during the active listening tasks. The

use of these prerecorded stimuli was intended to further reduce the inter- and

intra-participant variability caused by acoustic changes in the speech and noise

signals in the RW environment.

The background noise levels and the guide’s speech levels occurring in the

RW environment were matched inside the lab using an in-situ signal-to-noise

ratio (SNR) estimation method. This matching technique aimed at reducing

the intra-subject variability in the EMA data between the RW environment

and the laboratory environments. Both the use of guided EMA and the level

matching were undertaken to compare the participants’ laboratory EMA data

with their real-world EMA data and to investigate the consistency of the results

across participants and conditions. It was hypothesized that the EMA results

for both the passive and the active listening tasks would be consistent (i.e. have

a low variability) between participants in the RW condition, and that the RW

EMA results would be similar to the corresponding results in the VSE and CL

conditions.

5.2 Methods

5.2.1 Real-world assessment

The RW assessment phase of the experiment took place inside a canteen on

a university campus over lunch time. Such a public lunch scenario is known

to occur commonly in people’s lives and is generally rated as important and

challenging to hear in (Mansour et al., 2019; Wolters et al., 2016). The public

lunch scenario was characterized acoustically by a reverberation time (RT60) of

2.5 s, an early decay time (EDT) of 0.2 s and a direct-to-reverberant ratio (DRR) of

7.4 dB. As shown in Fig. 5.1, a participant and the guide were seated across from

each other at a table without other occupants, with a distance of 1 m between

them. Several similar tables were placed in the immediate surrounding area,

populated by people having lunch. As outlined in the left column of Fig. 5.2,

the participant, following the instructions of the guide, completed a passive

listening task, a communication task and an active listening task.
In the passive listening task, the participant listened to their surroundings

for one minute without talking and then completed a 4-part EMA questionnaire

using a proprietary smartphone app. The communication task consisted of
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Figure 5.1: Schematic overview of the physical setup of the real-world phase in the guided
EMA experiment, which took place inside a crowded university canteen over lunchtime. The
participant and guide are seated across from each other at a table (yellow heads). The mobile
microphone recording system is also shown (green icons).

a one-minute-long unscripted conversation between the participant and the

guide, in order to determine the natural, conversational speech levels in the

scenario. Finally, the participant listened to two one-minute monologues held

by the guide, the first at the established conversational speech levels and the

second at challenging levels that were subjectively determined by the guide.

After each monologue, the participant answered another 4-part EMA question-

naire on their listening experience. The monologues were the same in content

for each participant but were not scripted.

During the one-minute assessments of the passive listening, communica-

tion and active listening tasks, audio recordings (sampled at 48 kHz, 24 bit)

were made with a custom-built, mobile microphone system, to obtain mea-

surements of the broadband background levels as well as the guide’s speech

levels at the position of the participant. The system contained a cheek-mounted

microphone and a reference microphone (both DPA 4066, DPA, Denmark), both

connected to a portable audio recorder (Zoom H6 Handy Recorder, Zoom Corp,

USA). The reference microphone was mounted vertically on a stand and placed

at ear-height next to the participant, the same distance away from the guide.

The cheek microphone was worn by the guide, who also operated the recording

system.
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The system was calibrated before each experiment by recording the digital

level measured in the reference microphone with a 1-kHz pure tone calibrator at

a sound pressure level (SPL) of 94 dB (B&K Type 4231, Brüel & Kjaer, Denmark).

To calibrate the cheek microphone, the guide spoke a brief, scripted message

while wearing the microphone inside an anechoic chamber, at a distance of 1 m

to the reference microphone. This allowed for the derivation of a fixed scaling

factor representing the broadband, free-field decay in speech level from the

mouth of the guide to the reference microphone position at 1 m.

The microphone recordings were analyzed to derive broadband-level esti-

mates of the background noise and the speech of the guide. The overall back-

ground noise level during the passive listening tasks was determined by calculat-

ing the average power in the reference microphone’s recorded signal in dB SPL.

To derive the guide’s speech level at the participant’s position during the com-

munication and active listening tasks, the calibrated scaling factor was applied

to the speech segments in the cheek microphone recording, which had been

extracted using an adaptive, energy-based voice activity detector (VAD, Kin-

nunen and Li, 2010). The background noise level was then computed from the

reference microphone signal, using segments where the guide was not speaking

(using the VAD derived from the synchronized cheek microphone signal). To

obtain the background noise level during the communication task, the voice

of the participant was also removed from the reference microphone signal us-

ing an additional energetic VAD. The details of the used VADs are described in

Chapter 2 (Mansour et al., 2021).

5.2.2 VSE assessment

Following the RW assessment, each participant repeated the passive and ac-

tive listening tasks while seated inside an anechoically enclosed, 64-channel

spherical loudspeaker array. This environment represented the fully spatial-

ized VSE condition. The loudspeaker array, with a 2.4 m radius, used a spatial

reproduction of a pre-recorded background noise signal to simulate the can-

teen environment. The background noise signal was recorded by a 32-channel

spherical microphone array (em32 Eigenmike, MH Acoustics, USA), placed at

head height inside the canteen, in the position where the participant was seated

during the RW assessment. This 2-minute-long recording was then encoded to

a 4th order Ambisonic signal and subsequently decoded to the geometry of the

loudspeaker array for the VSE condition. The participants also carried out the
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tasks in the CL condition. This condition employed only two loudspeakers in the

array to present the background noise, positioned at+/-90 degrees azimuth and

0 degrees elevation, mimicking a simple audiology clinic setup. The two loud-

speaker signals were derived from the same Ambisonic signal by decoding them

to a binaural reproduction (Weisser et al., 2019b) and subsequently applying a

diffuse-field equalization step to account for the path between the loudspeakers

and the ears of a head-and-torso simulator head-and-torso simulator (B&K

Type 4128, Brüel & Kjær A/S, Denmark) located in the sweet spot. Both noise

conditions were calibrated using the reference microphone, positioned in the

acoustic sweet spot of the loudspeaker array.

The passive listening task was carried out by the participant in both the

VSE and CL conditions, identical in structure to the corresponding tasks in the

RW condition, as is summarized in the center and right columns of Fig. 5.2, re-

spectively. To simulate the background noise, one-minute-long excerpts of the

decoded noise signals described above were played back at the same participant-

dependent broadband level as was measured in the real world. For the active

listening task, the guide’s monologue was simulated using pre-recorded, 1-

minute-long AV recordings spoken by the guide. For each participant, four

monologues on four different topics were selected randomly out of a total of

16. The monologues were filmed inside an anechoic chamber on a neutral

background using a digital camera (Sony a6000, Sony, Japan), and simultane-

ously recorded with the reference microphone, both at a distance of 1m. The

microphone recordings were calibrated and stored in both an unprocessed,

single-channel format as well as a 64-channel, spatialized format obtained

by convolving the single-channel signal with a spatialized room impulse re-

sponse (RIR). This RIR was constructed by deriving the 64-channel Ambisonic

loudpeaker signals from a spatial RIR recording, captured in quiet with the

microphone array positioned at head height on the participant’s chair inside

the canteen. The resulting speech signals were then scaled to match the levels

for the corresponding conditions in the real world and superimposed onto the

background noise signal. The spatialized speech was used for the VSE condition,

while the anechoic speech was presented from the frontal array loudspeaker (0◦

azimuth and elevation) in the CL condition. All speech signals were processed

to provide 1 s of silence in the beginning and at the end.
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The video recordings were played back on an 11-inch iPad positioned 1 m

in front of the participant at eye level. The recordings were synchronized to the

speech playback by using the video camera’s own recorded speech signals to

derive the delay with those of the reference microphone via cross-correlation.

Since the video signals were played back using VLC media player, and not

MATLAB, the additional processing delay between both signal paths was taken

into account by recording the video camera audio signal played back over the

iPad at the same time as the loudspeaker array audio signal and using cross-

correlation to derive the constant offset between both signals.

5.2.3 EMA questionnaire design

Table 5.1 describes the EMA questionnaires for the passive and active listening

stages, designed specifically for this experiment, detailing individual questions

as well as their title in the smartphone app.

Table 5.1: EMA questionnaires for the passive listening and the active listening stages and their
respective title in the smartphone app, as well as the 5-point Likert response scale (for Q1-Q7).
Q8 was rated on a continuous scale between 0 and 100% (in 1% increments).

Passive listening stage
No. Title Question
Q1 Difficulty to focus Is it difficult for you to focus on specific

sounds in this environment?
Q2 Pleasantness of sound Does this environment sound

pleasant to you?
Q3 Annoyance with sound Are you annoyed with certain sounds

in this environment?
Q4 Effort to relax Is it effortful for you to relax

in this environment?
Active listening stage

Q5 Loudness of speech How loudly did you feel that the person
the person talking to you was speaking?

Q6 Listening effort How effortful was it to listen to
the person talking to you?

Q7 Naturalness of speech How naturally did you think
the person was talking to you?

Q8 Understanding of speech How well did you understand what
the person talking to you was saying?

Response scale for Q1-Q7
Not at all (1) - Not that (2) - Somewhat (3) Very (4) - Extremely (5)
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The passive-stage questions focused on spatial sound perception (Q1),

sound quality (Q2-Q3) and ability to relax (Q4), while the active-stage questions

probed loudness perception of speech (Q5), listening effort (Q6) and quality

of speech (Q7) as well as self-assessed speech understanding (Q8). These top-

ics were chosen for their commonality in existing EMA research as well as in

retrospective questionnaires like the SSQ. The response scale at the bottom of

Tab. 5.1 indicates the possible responses on a 5-point Likert scale (Likert, 1932)

for all questions except the final one (Q8), which was rated on a continuous scale

from 0 to 100% (in 1% increments). Questions Q1 through Q7 were phrased

to fit the 5-point Likert response scale in order to provide a rigid and consis-

tent structure to the questionnaires. The continuous answer scale of Q8 was

chosen to allow the derivation of a self-assessed speech understanding score,

similar to speech intelligibility (SI) scores produced by SI paradigms. Because

of the known RW location, no questions were needed to establish the nature of

a participant’s surroundings. To reduce the variability in the RW environment

between the assessment stages, the number of questions in both the passive

and active listening questionnaires was limited to four, ensuring that the entire

RW session could be completed within 30 minutes.

5.2.4 Participants

Fifteen participants with self-reported normal hearing carried out the guided

EMA experiment. The participants were between 21 and 39 years old, with a

median age of 25, and all had English as their native language. The partici-

pants were recruited from the general public using a web advertisement and

were financially compensated for their time. All regulations and guidelines

with regard to hygiene and social distancing, brought about by the COVID-19

pandemic, were adhered to. All participants provided informed consent and all

experiments were approved by the Science-Ethics Committee for the Capital

Region of Denmark (reference H-16036391).
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5.3 Results

5.3.1 Real-world noise and speech levels

Figure 5.3A shows the distributions of broadband noise SPLs (left), measured

inside the canteen during the RW passive (blue), communication (red) and

active listening stages (green) as well as the guide’s speech SPLs (middle) and

SNRs (right) during the communication (red) and active listening stages (green).

The left SPL ordinate indicates the noise data, while the right SNR ordinate

represents the SNR data. The means (black circles) and standard deviations

(black squares) of the distributions are indicated as well. The normality of

each group was verified with the Anderson-Darling and Shapiro-Wilk tests.

Mean noise levels were 65.8 dB SPL during the passive listening stage, 66.8 dB

SPL during the communication stage and 66.4/65.6 dB SPL during the active

listening stage at normal and challenging speech levels, respectively. As veri-

fied with a repeated-measures analysis-of-variance test (RANOVA), the noise

distributions, though ranging from 62.5 dB SPL to 69.5 dB SPL, were not signifi-

cantly different from each other (F (3,42) = 1.15, p = 0.34). The mean speech

level during the communication stage was 62.4 dB SPL, resulting in an SNR

distribution with a mean of -4.5 dB. For the active listening stages at normal

and challenging speech levels, the mean speech levels were 63.3 dB SPL and

53.6 dB SPL, respectively, yielding SNR distributions with mean values of -3.1

dB and -11.9 dB. Similarly, there was no significant difference between com-

munication stage speech levels and normal speech levels in the active stage

(F (1,14) = 2.70, p = 0.13), nor between communication SNRs and normal,

active-stage speech SNRs (F (1, 14) = 3.37, p = 0.09). However, there were signifi-

cant effects of participant on the difference between the noise level distributions

(F (14,42) = 11.1, p < 0.001), as well as on the difference between the speech

level distributions (F (14,14) = 9.41, p < 0.001) and the corresponding SNR

distributions (F (14, 14) = 9.41, p < 0.001).

These results confirm that the background noise levels in the canteen stayed

constant over the course of the RW assessment phase, which was intended to

limit the intra-subject variability in the guided EMAs. In addition, the speech

levels and SNRs remained constant between the communication task and the

normal active listening task, implying that normal speech levels in the active

listening task could be established using the communication task.
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least-squares fits to the data and its R2 correlation value and significance p. The passive noise
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correlation factor and goodness-of-fit p-value.
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For each of the participants, the maximum difference between the four

background noise levels, as well as the maximum difference between the com-

munication speech level and the normal active listening level, never exceeded 3

dB. Both the noise levels and the guide’s speech levels did, however, vary sig-

nificantly across different participants, despite the imposed time-of-day and

location restrictions. The subjectively determined, challenging speech level for

the normal-hearing participants was found to occur at a level of more than 10

dB below the background noise level.

Similarly, Fig. 5.3B shows the individual speech levels occurring during the

communication task and the active listening task at normal speech levels as a

function of their respective noise levels, as well as the noise levels during the

passive listening task (shown on the bottom x-axis, without a corresponding

speech level as marked by X). Least-squares fits between corresponding speech

and noise levels are shown with their R2 correlation factor and goodness-of-

fit p-value. The results highlight the varying background noise levels across

participants during the passive listening tasks and indicate that the speech and

noise levels were significantly positively correlated across a similar range during

the communication task and the active listening task at normal speech levels.

This correlation is in agreement with the established increase in speech effort

as well as level with increasing background noise level (known as the Lombard

effect, Lombard, 1911) and explains the observed effects of participant in the

statistical analysis. Particularly for the active listening task at normal speech

levels, the least-squares fit matches the data very well and is evident from the

low variance observed in the SNR distribution of the active listening task at

normal speech levels.
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Figure 5.4: EMA questionnaire responses for the passive listening (left, blue) and active listening
(right, green) stages. For each question, the number of responses for the real-world (RW), VSE
and clinic (CL) condition are given for each possible response on the 5-point Likert scale. The
saturation of each response box corresponds to the relative frequency of the response. The
summary statistics are displayed underneath each question title and the significances of the
post-hoc results are indicated to the right of each table. Each active listening stage question is
divided into responses at the normal (Norm.) and challenging (Chall.) speech level.
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5.3.2 EMA responses

Figure 5.4 displays the participants’ responses to the questions in the passive

(left, blue) and active (right, green) listening stages of the guided EMA. For each

question, the number of responses for the RW, VSE and CL conditions are given

for each possible response on the 5-point Likert scale. The saturation of each

response box corresponds to the relative frequency of the response. Each active

listening stage question is divided into responses at normal (Norm.) speech

levels and at challenging (Chall.) speech levels. Due to the non-parametric

nature of the categorical output data, a Friedman test was applied, combined

with Wilcoxon-rank post-hoc tests with Bonferroni correction, to investigate

differences between the conditions. The summary statistics are displayed un-

derneath each question title and the significances of the post-hoc results are

indicated on the right side of each table.

Of the passive stage questions (Q1 through Q4), only Q1 revealed significant

differences between any of the conditions, specifically between the RW condi-

tion and both VSE and CL conditions. This implies that it was more difficult

for participants to focus on specific sounds in the laboratory environments

than in the real world (Q1). There were no significant differences between any

of the conditions with regard to the experienced pleasantness of sound (Q2),

the annoyance with sound (Q3) or the effort it took to relax (Q4). Participants

generally agreed that the public lunch environment sounded mainly "some-

what pleasant" and "not that annoying", and was "not that effortful" to relax

in. Except for Q1, these results support the absence of significant deviations in

EMA results between the real world and the laboratory environments.

When actively listening to the guide’s speech, its loudness was perceived

as significantly higher in the CL condition than in the VSE condition, both at

normal and challenging speech levels (Q5). At challenging speech levels, the RW

condition was perceived significantly softer than the CL condition, but equally

soft as the VSE condition. There were no significant differences between the RW

and VSE conditions, which were perceived as mainly "not that loud" and "not

at all loud" when judged at normal and challenging speech levels, respectively.

These results indicate that while the VSE provided the expected consistency in

loudness perception of speech to the real world, the clinic environment did not.

With regard to the participants’ listening effort (Q6), the VSE condition was

perceived as significantly more effortful than both the RW and CL conditions at
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normal speech levels, which were both perceived as mainly "not at all effortful".

This difference disappeared at challenging speech levels, where the listening

effort was now lower in the CL condition than in the RW and VSE conditions,

where listening was perceived as mainly "extremely effortful". In contrast to

what was expected, the listening effort at normal levels was thus higher in the

VSE than in the real world, despite its equal perceived loudness. While the clinic

environment reflected real-world listening effort at normal speech levels, it

resulted in an "underestimation" of listening effort at challenging speech levels,

unlike the VSE which was now similar to the real world. However, the clinic

environment’s similarity in listening effort to the real world at normal speech

levels may have been caused by a flooring effect on the response scale.

No significant differences in the naturalness of the speech (Q7) were ob-

served between the RW, VSE and CL conditions at normal speech levels, per-

ceived everywhere as mainly "very natural". At challenging speech levels, there

was only a significant difference between the RW and CL conditions, whereby

the RW condition was considered as mainly "not at all natural" compared to

the CL condition being perceived as mainly "somewhat natural". As expected,

the real-world naturalness of speech was thus preserved inside the laboratory

environments at normal speech levels. At challenging speech levels, the natu-

ralness of speech in the real world as well as the VSE was reduced, potentially

due to the level of the speech stimulus being considered unnaturally low. This

effect was partially mitigated in the CL condition due to the increased perceived

loudness of speech (Q6).

Interestingly, there were no significant differences between participants for

any of the passive listening questions and for any of the active listening questions

at normal speech levels, despite the indicated fluctuations in speech and noise

levels. All active listening questions at challenging speech levels contained a

significant effect of participant. These observations support the guided EMA

method’s ability to produce, under normal listening circumstances, consistent

assessments across participants. At challenging speech levels, the variability

between participants increased, potentially due to the greater variance in SNRs

and the absence of ceiling effects.

Figure 5.5 shows the distributions of percentage speech understanding for the

final active listening question about self-assessed speech understanding (Q8)

in each condition (RW, VSE, CL) at normal (Norm.) and challenging (Chall.)

speech levels. A one-way repeated-measurement ANOVA (RANOVA) showed a



5.3 Results 89

Q8. Understanding of speech
(Norm.: F(2,28) = 13.86, p < 0.001 - Chall.: F(2,28) = 44.61, p < 0.001) 
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Figure 5.5: EMA questionnaire responses for question 8 on self-assessed speech understanding.
Panel A shows the ratings for the real-world (RW), VSE and clinic (CL) condition, at the normal
(Norm.) and challenging (Chall.) speech levels. The summary statistics (one-way repeated-
measurement ANOVA) are displayed underneath the question title and the post-hoc results
(paired-samples t-test) are indicated to the right of the table.

significant effect of condition, both at normal and challenging speech levels. As

verified by paired-samples t-tests, speech at normal levels was understood sig-

nificantly less well in the VSE condition than in both the RW and CL conditions,

which were not significantly different from each other. This difference disap-

peared at challenging speech levels, where the RW and VSE conditions were no

longer significantly different even though the VSE condition remained some-

what more challenging than the RW condition. Here, speech understanding in

the RW and VSE conditions was significantly lower than in the CL condition.

Similar to Q6, the clinic environment seems to have been affected by a ceiling

effect at normal speech levels, whereas the VSE reflected the real world most

accurately at challenging speech levels.

Figure 5.6 shows psychometric functions of the participants’ self-assessed speech

understanding scores, representing each score as a function of the correspond-

ing speech SNR established in the real-world and laboratory environments

(see Fig. 5.3). The psychometric functions for the RW and VSE conditions are
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Figure 5.6: Psychometric curves (solid lines) fitted to the participants’ self-assessed speech
understanding scores in question 8 as a function of the corresponding guide’s speech SNRs
established in the real-world (RW, circles), VSE (diamonds) and clinic (CL, squares) environments.

very similar in their overall range and slope, with a 50% correct SNR of -10.2

dB and -9 dB, respectively. The CL psychometric function has a shallower

decay towards far more negative SNRs, with a 50% correct SNR at -19 dB. R2

goodness-of-fit values for the psychometric functions are 0.69 for the RW con-

dition, 0.60 for the VSE condition and 0.53 for the CL condition. This indicates

that self-rated speech understanding in the VSE resembled real-world values

very closely, while the clinic environment resulted in both substantially overes-

timated speech understanding ratings as well as a poorer fit. The poorer quality

of the clinic environment psychometric function is exacerbated by the absence

of data points below 60% correct understanding.

5.4 Discussion

5.4.1 Real-world noise and speech levels

Due to the highly structured design of the guided EMA experiment and the

presence of a guide, participants were able to carry out the EMAs without fail,

indicating the full compliance of the participants in the proposed guided EMA

method. The participant burden was reduced by the help of the guide and
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the limited assessments required by the participant. By using the same RW

environment across all participants, selected for its importance, common oc-

currence and difficulty in people’s lives, and limitating the experiment in time,

the method also aimed to reduce inter- and intra-participant data variability.

The observations from Fig. 5.3 showed that the background noise levels in the

RW environment were consistent across the different assessment stages and

that the guide’s speech levels during the communication stage were similar to

their normal speech levels during the active listening stage, as intended. Thus,

the RW environment was acoustically stable in terms of sound levels over the

course of the RW assessment stage, despite modest fluctuations across different

participants caused by the changing distribution and number of interferers in

the RW environment. Interestingly, the normal-speech-level SNRs were con-

sistently negative around -4 dB, implying that conversational SNRs between

normal-hearing interlocutors reached values below 0 dB even at noise levels

below 70 dB SPL. Noise levels necessary to produce negative SNRs were re-

ported to be over 5 dB higher in other studies (Pearsons et al., 1977; Weisser

and Buchholz, 2019). This may partially have been caused by the method with

which the speech and noise levels were derived from the microphone recordings,

which has been shown to result in lower, yet more accurate, SNR estimates (see

Chapter 2, Mansour et al., 2021).

5.4.2 EMA responses

With regard to data variability and laboratory applicability, the passive stage

questionnaire results (Q1-Q4) seem to have provided focused and consistent

responses across participants (in favor of the first hypothesis) and, with the ex-

ception of Q1, across environmental conditions. The highly similar perception

of pleasantness of sound (Q2), annoyance with sound (Q3) and effort to relax

(Q4) between the RW, VSE and CL conditions further indicates that both labora-

tory environments could reproduce these sensations realistically (in favor of the

second hypothesis). The increased difficulty of focusing on specific sounds (Q1)

in the laboratory environments was likely due to the absence of visual stimuli,

which are known to aid sound source localization (Shelton and Searle, 1980), as

well as (to a lesser extent) resulting from the limited spatial resolution the VSE

could provide (Huisman et al., 2020).

Similarly, the active stage assessments yielded consistent RW responses be-

tween participants at normal speech levels (in favor of the first hypothesis), with
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the variance increasing somewhat at challenging levels. However, there were

significant differences in the performance of the two laboratory environments

relative to the real-world environment (in contrast to the second hypothesis).

First, despite the presence of an AV speech stimulus, the VSE caused an

increased listening effort and speech understanding difficulty compared to

the real world. This was likely a consequence of the imperfect sound field re-

construction of the target speech by the 4th order Ambisonics system which

has been shown to negatively affect speech intelligibility (Favrot and Buchholz,

2009). The absence of the differences in listening effort and speech understand-

ing at challenging levels may have been caused by the overall perceived difficulty

of the task. Nevertheless, the similarity between the psychometric functions of

the VSE and the real world (see Fig. 5.5B) suggests that the VSE-based guided

EMA task could discriminate self-rated speech understanding in a similar way to

the real world. Second, the greater perceived loudness of speech (Q5), reduced

listening effort (Q6) and shallower psychometric function resulting from the

CL condition compared to the VSE and RW conditions suggests that the clinic

environment allowed for an overall easier perception of speech in noise than

the VSE and the real world.
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Figure 5.7: Long-term average spectra of the VSE and CL noise (solid lines) and speech (dashed
lines), binaurally recorded inside the loudspeaker array, averaged over both ears and normalized
relative to their average power.
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The perceptual differences between the VSE and CL conditions might have

originated from the acoustic differences between the single-loudspeaker ane-

choic CL speech source and the 64-loudspeaker reverberant VSE speech source.

The absence of reverberation in the single-loudspeaker CL speech increased its

intelligibility compared to the more reverberant VSE speech (Duquesnoy and

Plomp, 1980), consistent with the higher speech transmission index (Steeneken

and Houtgast, 1980) of 0.98 for the CL stimulus compared to 0.89 for the VSE

speech. In addition, the spectral dissimilarities between the VSE and CL speech

stimuli may have further contributed to the differences in perception. Figure 5.7

displays the long-term average speech spectra (LTAS) of the VSE and CL back-

ground noise (solid lines) and the VSE and CL speech (dashed lines), binaurally

recorded inside the loudspeaker array, averaged over both ears and normalized

relative to their average power. While the LTAS for both noise types was very

similar (average power difference of less than 1 dB), the CL speech contained

more speech power than the VSE speech, particularly in the region between 700

Hz and 1 kHz and anywhere above 1.5 kHz (average power difference of 3 dB).

5.4.3 Limitations and outlook

The high naturalness with which speech was perceived by participants across

conditions at normal speech levels showed that the guided EMA methodology

could elicit natural listening experiences, in the real world as well as in the

lab. Nevertheless, more efforts can still be made to improve the realism of the

laboratory environments. Particularly the inclusion of more realistic visuals of

the surroundings in addition to the target talker video would bolster the validity

of EMA inside laboratory environments even further. The fact that participants

always assessed the real-world environment first may have biased some of the

EMAs due to the prior knowledge of what the environment was supposed to look

and sound like. This was a necessary constraint, since the real-world speech

and noise signals needed to be captured to inform the reproduction inside the

laboratory environments. Finally, an important next step would be to apply the

guided EMA methodology to hearing-impaired individuals, a participant group

which was not included in the current study due to restrictions imposed by the

COVID-19 pandemic. By evaluating hearing-impaired participants, unaided

as well as aided by a hearing device, differences in subjective hearing ability

between participants, as well as the effects of wearing a hearing device, could

be captured. As such, the method of guided EMA could be further validated
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and potentially used to relate subjective hearing ability to objective measures

of hearing loss and hearing device processing, both in the real world as well as

in the lab.

5.5 Conclusion

This study explored a guided approach to EMA, which was designed to rep-

resent high feasibility, high participant compliance and low burden, as well

as low inter- and intra-subject variability. The method was applied in a RW

canteen environment and inside a VSE and a clinic laboratory environment,

which were both acoustically matched with respect to the guide’s speech and

background noise levels. The results showed that the guided EMA methodology

produced consistent passive listening EMAs within and across participants and

environments. During active listening, the VSE generally resulted in EMAs most

similar to the real-world environment, an observation which was supported

by their highly similar psychometric functions. The clinic environment was

perceived as less challenging, likely due to the increased intelligibility of its

target speech source. The method of guided EMA may provide a new way of

assessing subjective hearing ability in the real world as well as in the lab that can

capture differences between participants and relate them to objective acoustic

or psychoacoustic outcome measures.



6
General discussion

In this thesis, the evaluation of hearing and hearing devices was investigated

in a more ecologically valid way by making use of realistic VSEs. A method

was developed to accurately estimate real-world conversational SNRs in-situ

(Chapter 2). Knowledge of these SNRs was used in a VSE-based SI experiment

which explored differences in NH and HI SI performance caused by the in-

creased ecological validity of the stimuli and reproduction method (Chapter

3). The same paradigm was subsequently employed to assess the impact of

HA DRC processing in realistic VSEs (Chapter 4). Finally, a guided approach to

EMA was proposed that attempted to reduce the data variability inherent in

traditional EMA methodologies and was evaluated inside VSE-based laboratory

environments (Chapter 5).

6.1 Summary of main findings

The two-channel method for realistic, conversational SNR estimation was shown

to yield more accurate SNR estimates in a room acoustic simulation compared

to those produced by a single-channel reference method. The accuracy advan-

tage of the two-channel approach increased with decreasing SNR due to the

saturation of the single-channel method’s estimate at negative SNRs caused by

its inability to reliably estimate the speech power in dominating background

noise. A similar pattern was observed when applying both methods to in-situ

recordings made in two real-world scenes.

Overall, the VSE-based SI tasks revealed an increased difficulty of under-

standing speech in noise (higher SRTs) compared to a headphone-based refer-

ence condition. This was the case both for NH listeners and, in particular, for HI

listeners. An intermediary condition using artificial spatialized noise revealed

that the presence of envelope modulations and intelligible interferers in the

realistic background noise contributed to the increased SI difficulty experienced

by the HI listeners. SRSs of around 67% correct at the median NH conversational

95



96 6. General discussion

SNR of -2.5 dB could be used to relate SI performance to communication ability

in a real-world scene.

When aided by a simple HA with DRC processing, HI listeners continued to

have a reduced SI performance in the realistic VSE-based condition compared

to a more artificial spatialized noise condition. In addition, the HA processing

provided a greater benefit in the realistic VSE than in the artificial spatialized

noise. By instrumentally analyzing the HA processing, the difference in HA

performance could be related to modulation properties of the background noise

and their effect on the SNR at the output of the compressive HA processing.

Lastly, the guided EMA method showed mostly consistent assessments of

subjective passive and active hearing ability across participants and across the

real-world and the acoustically matched VSE conditions. A simplified, three-

loudspeaker clinic condition over-estimated active hearing ability, i.e. speech-

in-noise performance, both at normal and challenging speech levels, likely

due to the absence of reverberant target speech. Guided EMA may provide

an outcome measure that can relate subjective hearing ability to objective

differences in hearing status and the environmental acoustics.

6.2 The importance of accurate real-world SNRs

Since conversational SNRs have been shown to directly affect a person’s SI per-

formance (Bradley et al., 1999) as well as the performance of HA algorithms, it

is important to capture their real-world values accurately. Differences in con-

versational SNRs can be influenced by many factors, including the considered

real-world acoustics and the nature of the communication task. However, the

observations in Chapter 2 indicated that the traditional single-channel estima-

tion method introduced a fundamental positive bias in its SNR estimates. This

bias was most severe at negative SNRs, which was also where the in-situ mea-

sured NH SNR distributions were situated. Thus, real-world conversations may

occur at considerably lower SNRs for commonly occurring background noise

levels than what has previously been reported. Since those negative real-world

SNRs are especially challenging for HI listeners, the previous estimates may

have underestimated HI people’s struggle in everyday life.
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6.3 Speech intelligibility in the VSE versus the real world

The finding that a more realistic, VSE-based SI task lead to higher overall SRTs, i.e.

lower SI performance, compared to those obtained with artificial SI paradigms

is in line with results obtained in previous research (Best et al., 2015; Culling,

2016). However, the greater detrimental effect of the realistic VSE on HI listeners’

SI performance, compared to NH listeners, demonstrated that such increased

realism was required to more accurately characterize the effect of hearing loss

on SI performance. In addition, by increasing the ecological validity of an

SI task, SRSs obtained at real-world SNRs corresponded more closely to SI

performance in the real world. It is important that the values of such SRSs,

which reflect the difficulty of understanding speech in noise, are established for

the "right" reasons. For example, a headphone-based SI paradigm that results

in increased SRSs, at a constant offset with respect to a realistic SI paradigm,

may not be an ecologically valid replacement for that realistic paradigm, even

when compensating for such an offset. This is because the precise real-world

mixture of (psycho)acoustic phenomena that influence the realistic SRSs is not

present in the headphone-based paradigm. However, since contextual visual

stimuli were not present in the VSE-based SI tasks considered in Chapter 3,

these tasks probably underestimated SI performance at a given SNR. If visual

information was included, this would cause SRSs to be higher for the real-world

SNRs than the 67% found here. Generally, the more realistic a VSE-based SI task

becomes, the closer its objective SRSs will correspond to the "true" SRS values

occurring in the real world.

6.4 Realistic hearing aid testing

The instrumental HA analysis in Chapter 4 revealed that the potential benefit

of compressive HA processing on SI strongly depended on the type of back-

ground noise as well as the input SNR of the target speech. This implies that

SI results obtained with paradigms that do not make use of realistic stimuli or

reproduction methods may not reflect the (lack of) benefit provided by HAs

in the real world. Furthermore, the SNR range within which SRTs converged

in an adaptive scoring procedure critically affected the performance of the HA

used by the HI listeners, emphasizing again the importance of knowing real-

world conversational SNRs and constructing SI tasks that capture real-world
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performance at those SNRs. Even though current HAs do not (yet) make use

of visual information, the decrease in SRTs caused by adding visual stimuli to

the SI task would affect the performance of the HA, particularly at challenging

SNRs.

Beyond influencing instrumental HA performance, the realism of the VSE-

based SI task may also influence the perceptual benefit experienced by aided lis-

teners, e.g. through restoring dip-listening ability and amplifying high-frequency

speech portions. Disentangling instrumental and perceptual effects of HA pro-

cessing in a purely psychoacoustic experiment is difficult, and it would therefore

be important to conduct purely acoustic HA tests (e.g. using a HATS) inside

realistic VSEs as well. Nevertheless, the HA user’s individual hearing ability is

inextricably linked to any potential benefit of their HA, such that ecologically

valid psychoacoustic evaluations are at least as important as objective, acoustic

ones. Chapter 4 only considered relatively simple HA processing, and it is likely

that more advanced configurations, e.g. including beamforming and noise

reduction, would render an SNR-dependent benefit that is different from that

shown in this thesis. The principle, however, remains the same.

6.5 Real-world hearing ability and EMA

The most ecologically valid measure of real-world hearing ability and the poten-

tial benefit of a HA processing strategy is arguably the user’s subjective opinion.

The main takeaway from Chapter 5 is that the proposed guided approach to EMA

was able to provide concise, questionnaire-driven measures of self-rated, real-

world hearing ability which could be reproduced inside acoustically matched,

realistic laboratory environments. This may provide opportunities for using

guided EMA as a tool to relate subjective hearing experiences to objective mea-

sures like SI or environmental acoustic properties. Moreover, by applying the

methodology to (un)aided HI listeners, effects of HA processing could be di-

rectly related to a person’s real-world experience. The applicability of guided

EMA in the lab allows for these comparisons to happen in a controlled, yet more

ecologically valid way.

From a clinical perspective, guided EMA may be useful as a realistic speech-

in-noise task in the context of hearing evaluation and HA fitting, using knowl-

edge of predetermined correlations between HA parameter settings and EMA

responses. While further research beyond this exploratory work is needed to
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better match EMAs obtained inside a simplified clinic laboratory environment

to those obtained in the real world, VSE-based guided EMA tasks provide yet

another application for VSEs in hearing research, bridging the gap between the

laboratory and the real world.

6.6 The future of ecologically valid hearing research

The way people use their auditory system to communicate in complex, real-

world acoustic scenes is characterized by a multitude of interacting physiologi-

cal, psychoacoustic and behavioral mechanisms. Highly controlled experimen-

tal paradigms are valuable and necessary for isolating individual components

of this system, signifying a bottom-up approach. Highly realistic paradigms,

signifying a top-down approach, remain indispensable to empirically character-

ize the way in which those individual components work together to produce a

subjectively perceived reality. Even though the focus in psychoaoustic research

has been mainly on the former approach, both are symbiotic elements of a

reality where the whole may be greater than the sum of its parts.

In this thesis, approaches to hearing and hearing device testing were ex-

plored that attempted to increase their ecological validity by trading off control

and realism. However, as discussed, several limitations to the present work re-

main, providing possibilities for future investigations. Further improvements to

the proposed real-world SNR estimation method, such as accounting for a mov-

ing target talker or making the setup more portable, may render it practically

applicable in a wide variety of everyday sound scenarios, providing estimates

of conversational SNRs for use in fully integrated, audiovisual speech-in-noise

experiments. Those experiments could then be used to evaluate more advanced

HA processing strategies with regard to both objective and subjective measures

of hearing ability and support HA fitting procedures.

Lastly, an often overlooked advantage of constructing speech-in-noise experi-

ments that are maximally ecologically valid is that potentially unknown phe-

nomena may be reflected in their outcome measures. Paradigms that trade off

control and realism in an optimal way may thus lead into uncharted auditory

territory. By integrating ever more realistic sensory modalities into experimen-

tal designs, future ecologically valid hearing research may one day be able to

obtain maximally controlled and fully realistic measures of hearing ability.
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A
Appendix

A.1 NAL-NL2 fitting rationale

The NAL-NL2 rationale attempts to restore speech intelligibility of a HA user

while preserving comfortable normal-hearing loudness levels. This is achieved

using a level- and frequency-dependent fitting formula, that specifies real-ear

insertion gain (REIG) factors to be applied to the input signal at 50 dB, 65 dB

and 80 dB across 19 frequencies between 125 Hz and 8 kHz, spaced 1/3rd of

an octave apart. Linear level interpolation is applied in the 50-65 dB and 65-80

dB ranges, while linear gain is applied below 50 dB and above 80 dB. Further

linear frequency interpolation is applied to match the center frequencies of the

HA filter bank. The fitting formula is defined for a range of 10 standard audio-

grams (Bisgaard et al., 2010), from which the one is selected that minimizes the

sum of absolute differences with the listener’s available audiogram frequencies.

A.2 openMHA programming

The openMHA framework uses a custom configuration language allowing for

line-by-line human-readable text commands to be inserted in a configuration

file in order to build a HA signal processing chain. A basic code sample is shown

in Fig A.1. Elements of the microphone and receiver level equalization stages

are shown, as well as excerpts from the algorithm chain, the filter bank settings

and the input-output channels.

All of the used processing algorithms, including the DRC and beamforming,

were sourced from available openMHA plugins. To control the basic operations

of toggling the HA processing and loading appropriate configuration files, open-

MHA uses Java interface libraries that can invoked from encapsulating MATLAB

functions. This allowed for a homogeneous implementation of the HA process-

ing alongside the MATLAB-based spatial sound processing programming.

101
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Figure A.1: Excerpts from an openMHA configuration file

In addition, the openMHA framework provides a graphical user interface for

deriving appropriate configuration file values based on an input audiogram and

a desired fitting rationale. The NAL-NL2 rationale was implemented specifically

for this experiment.

A.3 Hearing aid calibration

The microphones and receivers in the master HA were calibrated to ensure

proper operation with the listeners. To calibrate the 4 HA microphones for a

equal level across frequencies, the HAs were placed in an portable anechoic en-

closure inside of which 3rd-octave band white noise bursts around the HA filter

bank center frequencies were played at a level of 80 dB SPL. The obtained digital

levels for each of the microphones were then transformed to the appropriate

openMHA configuration peak values and FIR filters using openMHA-provided

scripts. The validation of the microphone calibration consisted of rerunning

the calibration procedure and verifying the correct 80 dB SPL values across the

considered frequencies.
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The HA receiver calibration ensured that the prescribed gain of the fitting ratio-

nale accounted for the natural frequency dependency of the ear canal, resulting

in the real-ear insertion gain (REIG). By definition, the REIG is equal to the

difference between the real-ear aided gain (REAG) and the real-ear unaided

gain (REUG), referring to the gain at the eardrum compared to a reference point

at the canal entrance,with the HA inserted into the ear canal and turned on or

not inserted, respectively.

Here, a single set of general REUG values was measured for use across all lis-

teners using the ear canals of the HATS, which was placed in the center of the

loudspeaker array. Specifically, 1/3rd octave band noise around the HA filter

bank center frequencies was played from the frontal horizontal loudspeaker in

the array, calibrated to 80 dB SPL by a calibrated reference microphone placed

at the entrance to the HATS’ left and right ear canals. Simultaneously and with-

out the HAs inserted, the levels at the calibrated ear drum HATS microphones

were recorded. Subtraction of the ear canal entrance levels from the ear drum

levels resulted in the left and right REUGs. The HA receivers were calibrated by

repeating this procedure with the HAs inserted into the ear canals, configured

to unit gain. The measured levels at the ear drum microphones then had to

match the desired level of 80 dB SPL after subtraction of the REUG.

This procedure ensured that potential additional corrections to the receiver

equalization filter, e.g. caused by the fact that the closed HA ear tip attenuated

sound entering the ear canal in a frequency-dependent way, were taken into

account in the calibration.
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To be continued. . .



Hearing well in noisy everyday situations can be challenging, especially for people affected by

hearing loss. Hearing devices try to restore a hearing-impaired person’s ability to accurately

perceive sounds and understand speech. However, many psychoacoustic tests currently in

use to evaluate speech intelligibility and hearing device performance do not take the acoustic

properties of complex real-world sound scenes into account, typically relying on artificial target

speech and background noise signals presented over headphones or small sets of loudspeakers.

While these laboratory settings provide highly controlled and reliable results, they may not entirely

reflect how people experience their real-world auditory reality.

The aim of this thesis was to increase the realism in psychoacoustic listening tasks inside

controlled laboratory environments by employing "virtual sound environments". A virtual sound

environment, or VSE, consists of a spherical array of many loudspeakers and is capable of

rendering physically accurate, spatial sound fields to a listener positioned in the center. By

using VSEs in combination with spatially recorded real-world noise signals and spatialized target

speech, realistic speech intelligibility tasks were designed and implemented. This included

the development of a new, realistic method for measuring conversational speech levels. The

tasks were shown to increase the difficulty of understanding speech compared to more artificial

conditions, especially for hearing-impaired listeners. Hearing aids benefited speech intelligibility

most in the realistic conditions, which could be related to properties of the speech and noise

signals and their effect on the hearing aid processing. A newly devised method for evaluating

subjective, listener-reported hearing ability in a more controlled way was shown to be applicable

inside realistic VSEs.

Overall, this thesis showed the ability of VSE-based laboratory environments to provide increased

realism in psychoacoustic listening tasks, as well as render more ecologically valid results for

both normal-hearing and hearing-impaired listeners. The development of increasingly realistic

hearing and hearing device evaluation tests, using these environments, has the potential to

increase the benefit these devices provide to users in their everyday life.
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