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Abstract

In this thesis, ultra-coherent micro mechanical oscillators based on thin-film stoichiometric
silicon nitride were developed and experimentally tested. This work gathers on all existing
literature in the field. This includes theory work where a stochastic model was developed
for predicting how vibrations from sub-MHz oscillators couple to the surrounding substrate
and are subsequently lost. While this model hasn’t been systematically tested experimen-
tally yet, early results look promising and succeeds in predicting at least part of the high
spread in results.

Two design approaches were developed and tested in an effort to fabricate the most co-
herent device possible. The first approach uses WR SR ORJ\ R SW ertharijde \thé R Q
coherence of the fundamental mode of a resonator, which is to be used in quantum op-
tomechanics. Numerical evaluations showed a Qf product enhancement above a factor

of two compared to a reference design. Experimental results showed the best devices

for each design are limited by intrinsic losses. However, the large spread in the results
indicated most of them were heavily affected by phonon tunneling losses, which high-
lighted flaws in the topology optimization implementation. The best results matched the
numerical predictions making them the best fundamental mode resonators in existence
with Qf = 2.8 10",

The second design approach developed called GHQV LW\ S KFb@sRdh phbnonic
crystals defined by modulating the effective density of a material. This novel membrane
design was achieved by fabricating microscopic pillars. Early results showed fabrication is
non-trivial, but it is expected this can be optimized greatly by changing the process steps.
Nonetheless, the design approach was validated and the early batch resulted in 1:4 MHz
resonators with Qf = 8 10'* at room temperature, which is a new record for this type
of device. Furthermore, models predict quality factors above 10° should be possible with
continued refinement of fabrication.

Finally, two designs for both reducing and enhancing the tensile stress of two-dimensional
membranes was proposed. Numerical evaluations showed the former can reduce the
tensile stress by multiple orders of magnitude. This has applications in enhancing the
sensitivity of thermal sensing and derived sensing schemes. The second design used for
stress enhancement results in enhancements up to a factor of three. When combined
with density phononics, it is expected that room temperature resonators with Qf products
above 10'® should be possible.
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Resumé

| denne afhandling er ultrakohaerente mikromekaniske oscillatorer baseret pa tyndfilm
stgkiometrisk siliciumnitrid udviklet og eksperimentelt afprgvet. Arbejdet samler pa al
eksisterende litteratur inden for feltet. Det teoretisk arbejde inkluderer bl.a. udviklingen af
en stokastisk model til at estimere hvordan vibrationerne fra en sub-MHz oscillator kobler
til den omkringliggende substrat og er efterfalgende tabt. Systematisk test af modellen
er ikke blevet udfart eksperimentelt endnu. Tidlige resultater viser dog gode resultater og
modellen formar delvist at beskrive spredningen observeret i resultaterne.

To fremgangsmader til at designe oscillatorerne blev udviklet og eksperimentelt afprgvet

for at opna den mest kohaerente enhed muligt. 1den forsteblev WRSRORJL REHMHEUPHULQJ
at generere en struktur der maksimerer kohaerensen for den fundamentale vibrationstil-

stand til brug i kvanteoptomekanik. Numeriske beregninger viste at Qf produktet blev

forbedret med over en faktor to sammenlignet med en reference. Eksperimentelle resul-

tater viste de bedste prgver var begreenset af intrinsiske tab. Til gengeeld indikerede den

store spredning i resultaterne at fonon-tunnelerings-tab var betydelig. Dette fremhaevede

brister i modellen brugt til topologioptimering. Baseret pa de bedste praver blev den

samme forbedring observeret. Dermed er disse de bedste eksisterende oscillatorer for
fundamentale vibrationstilstand med Qf = 2.8 10,

Den anden fremgangsmade kaldet G H Q V L W H Vé\bidReper & Lfdvhoniske krystaller,
som er defineret af en modulering af materialets effektive densitet. Denne nye type
membran blev realiseret ved at fabrikere mikroskopiske sgjler. Fabrikationen viste sig
ikke at veere triviel, men det forventes dette kan optimeres ved at eendre pa fabrikation-
sprocesserne. lkke desto mindre kunne fremgangsmaden valideres eksperimentelt og
forelgbige resultater forte til 1:4 MHz oscillatorer med Qf = 8 10", hvilket er en ny
rekord for membraner. Endvidere, ud fra numeriske beregninger forventes det at kvalitets-
faktorer over 10° burde vaere muligt safremt fabrikationen optimeres.

Endeligt blev to strukturer udviklet til henholdsvis at seenke og haeve den elastiske spaend-
ing i todimensionelle membraner. Numeriske beregninger viste at ferstneevnte kan reduc-
ere den elastiske spaendingen med flere stgrrelsesordner. Dette har anvendelse inden
for maksimering af fglsomheden for termiske og afledte sensorer. Den anden struktur
viste en elastisk spaendingsforagelse med op til en faktor 3. Nar dette kombineres med
densitetsfononiske membraner er forventningen at oscillatorer med Qf produkter over
10"6 ved stuetemperatur vil veere mulige.
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1 Introduction

The study of ultra-coherent micromechanical resonators is a study of the very fundamen-

tals of mechanics. The overarching question of the thesis is: How can one design the

ultimate coherent micromechanical resonator? Answering this question is of great value

in a multitude of fields. Being part of the &HQWHU IRU ODFURVFRSLF 4XDQWXP 6\
the immediate application is quantum optomechanics, where ultra-coherent resonators is

key for realizing a number of great experiments and devices [3]. Examples of this include

fundamental tests of quantum mechanics, gravitational wave detection and solid-state

quantum memory. Beyond the scope of quantum mechanics, the exceptionally low me-

chanical noise may enable the development of sensors with groundbreaking sensitives.

There exists a large range of different mechanical oscillators. This is true even when one
only considers micromechanical devices, which even includes oscillations of individual
atoms [4]. To limit the scope of this project the focus is on thin-film resonators [5] with
an emphasis on stoichiometric silicon nitride. In more than a decade this type of res-
onator have demonstrated impressive results with iterative improvements over the years.
However, their full potential haven’t been reached yet. This leaves room for pushing the
coherence of these devices to even higher levels. This work strives to achieve just that.

The thesis consists of four parts. Part | combines all the relevant theory of the field. Basic
concepts of thin-film membranes are introduced. An overview of all important damping
mechanisms is given, which includes theoretical work to cover aspects not already cov-
ered by literature. State-of-the-art resonators are presented and discussed. Moreover,
the experimental setup used to characterize all devices is described. The part is used as

a foundation for the whole thesis and important results therein will continually be refer-
enced to. Part Il is the first of the major projects and the original motivation for the this
work. 7R SR O R J\ R S WsluBdd]tB dirieratg the best possible design for a fundamen-

tal mode resonator. Experimental results show world-record performance for this type of
resonator. Part lll introduces an alternative approach for implementing phononic crystals
basedon PRGXODWLQJ WKH HIIHF Wdf 4 mhebriviél Uhd3eéa® Hs@d/ds W \
platform for demonstrating resonators with unprecedented coherence for membranes not
matched anywhere else in the field. Finally, Part IV presents theoretical work on applying
strain engineering for both reducing and enhancing the tensile stresson WZR GLPHQVLRQDC
membranes.

Throughout the thesis some material parameters are used constantly in many of the cal-
culations and simulations. The values of these are found in appendix A unless otherwise
stated. All finite element simulations were performed using COMSOL Multiphysics.
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2 Overview

The aim of the first part of the thesis is to provide an overview of all the important theory
and concepts in the field of ultra-coherent micromechanical resonators. Many of the re-
sults here will be used in the following parts. Therefore, the first part acts as a foundation
for the rest of the thesis. Since a lot has already been done in this field, the first part is
partly a literature study while some novelty has been added where discrepancies or a lack
of knowledge was encountered.

What is considered important? Firstly, the focus is on micromechanical resonators based
on very thin (200 nm and below) silicon nitride layers kept under high tensile stress. These
devices have interesting properties which set them apart from the more common thicker
and relaxed counterparts. To gain a proper understanding of their behavior the differential
equations governing their solutions will be studied in chapter 3.

In the quest for maximizing the coherence of a resonator a key challenge is to reduce DO O
loss contributions which limit their performance. Understanding which damping mecha-
nisms affect these resonators and how each of them can be minimized is of great impor-
tance. Chapter 4 introduces all the relevant mechanisms. This includes a deeper study

into phonon tunneling losses, i.e. vibrations of the resonator which couple to the sur-
rounding environment. It was found the latter is poorly understood in case of resonators
operating at relatively low frequencies. This lead to an extensive study into how this can

be modeled correctly.

One of the key properties of resonators with ultra-high quality factors and low mass is
that they can easily be excited to high amplitudes. This makes them prone to nonlinear
effects which perturb their response and behavior. These are briefly discussed in chapter
5, where both the effects on resonance frequency and damping are investigated.

One of the recent innovations in the field which has pushed the quality factor frequency
(Qf ) products by at least an order of magnitude is the use of patterns, or phononic crystals,
to localize a mode of vibrations to a defect. This isolation of the mode has great advan-
tages and is right now the design of choice for ultra-coherent resonators. The theory of
phononic crystals is briefly presented in chapter 6 and examples of its implementation in
literature is discussed.

Finally, the resonators fabricated during this work need to be characterized. The extremely
high quality factors and small dimensions creates a number of criteria which needs to be
fulfilled for a successful characterization. A setup was built based on the mechanical
ringdown method and is described in chapter 7.

Itis expected that after the reader has studied the first part of the thesis, he or she will know
the basics and important aspects in designing ultra-coherent resonators. The reader will
be well equipped to understand and hopefully motivated to see how this knowledge has
been utilized to push the coherence to new extreme heights in the field of ultra-coherent
resonators.
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3 Differential equations of motion

To obtain a good understanding on the fundamentals of micromechanical resonators,
studying the differential equations which govern their motion is a good starting-point. In
literature there are countless examples on how to derive the wave equation dominated
by bending stiffness of strings and plates [6] as well as approximate solutions for cor-
responding tensile stress dominated strings and membranes [7]. As will be seen in this
chapter, even though the dynamics at high tensile stress can be described purely by the
tensile stress induced stiffness, the bending stiffness still plays a vital role in order to ob-
tain a full understanding of how the systems behave and how to predict key properties
like damping.

This chapter is divided into two sections. First, a one-dimensional string is studied. This
simple case is easy derive, yet it gives, in principle, all the insight needed to understand
all key effects in play. In the following section, the solution is briefly extended to a two-
dimensional membrane.

3.1 1D system

The partial differential equation of a beam under tensile stress can be derived by studying
a small beam segment shown on Figure 3.1. At first, the movement along the x-direction
is considered. Using Newton’s second law, the total force on the x-axis must equal the
beam element’s mass times it acceleration, i.e.

Z“
T
@M
M+ gy X
@N
N+ — X
ux+ xt) + N @x
ux;t) + M ("T T T @t
Fg T+ @X X
X X+ X X

Figure 3.1: A differential beam segment with length x and with the in-plane force N,
transversal force T, bending moment M and external force distribution FQillustrated.

T, - mo@

T T+ @x = i X; (3.1)

where T is the beam tension in units of force, m®= A is the mass per unit length where

and A are the beam’s material density and cross-sectional area, respectively, and is
the longitudinal beam displacement. When a transversal displacement is present the total
beam length experiences an elongation which creates a coupling between the transversal
and longitudinal displacements. However, in section 5.1 it will be shown this relation is
nonlinear. For small transversal displacements the induced longitudinal displacement is
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negligible and will henceforth be ignored, i.e. @ / @t! 0. Solving Eq. (3.1) then leads
to
TX)! T=A (3.2)

where s the tensile stress in the string and A its cross-sectional area. The transversal
force balance can be written as

Q@F

F F+— x +F2=m° x
@x ©

@u @F
@% @x

where F is the total force, and Fe0 the external force distribution. F can be related to the
bending moment M by looking at the moment balance

Fo mocg;J : (3.3)

@m @u Fo
M M + “@x X F x @x xXT > xc 0 (3.4)
Fi oimF= @Y% @M. (3.5)

x! 0 @x @x’

where the element’s rotational inertia is ignored, since the wavelength is assumed much
longer than the beam thickness. M can be derived by considering the bending induced
strains inside the beam element illustrated on Figure 3.1
z

( + (xz;1)zdA
zA z

z dA + (x;z;t)z dA
ZA A

E (x;z;t)zdA (3.6)

A
Z
@u
= E ——z zdA
A @%

du.
@R’
where (z;t) and "(z;t) are the bending induced changes in longitudinal stress and
strain, respectively. Note the z term cancels out in the integyation. B = EI is the beam
stiffness, where E is the material Young’s modulus and | = A z2 dA is the area moment
of inertia. For rectangular beams it is defined as | = wh®/12, where h and b are the
beam’s thickness and width, respectively. Substituting Eq. (3.5) and (3.6) into (3.3) finally
yields the one-dimensional wave equation

@ ,@u @u, @u

@z B@ T@+m@%

which is a fourth order partial differential equation (PDE). For a uniform beam, i.e. @B @x=
0, the above simplies to

B @u T@ + mo@ =

@f  @% @t

An interesting case is when the tensile stress is high. Here, the stiffness from the stress will
dominate the total stiffness everywhere except at regions with sharp modeshape features.
The latter is typically present near the boundaries of a domain. When far away from any
boundaries the PDE reduces to

M (x;t)

B

= FJ; (3.7)

FO: (3.8)

¢ Qu. G rp, (3.9)
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which is a typical inhomogeneous wave equation where ¢ = P / is the propagation
velocity of a wave traveling in a tensile stress dominated beam. From the homogeneous
part of Eq. (3.8) the dispersion relation of a uniform beam can be derived by assuming a
harmonic wave of the form u(x;t) = e(® ') Jeading to

Bk* Tk?> mi2=0: (3.10)

The wavenumber K has 4 solutions

(
K= k. (3.11)
T ke '
where
' —— ' S —
2BT Bma2/T+1 1 2BT ABma2/T+1+1

k = i ke = : (3.12)

2B 2B

When in the high stress regime, i.e. T2 4Bm9 2 and assuming a rectangular beam this

can be simplified to r r

k ! — 0 ke 12

Eh2 "~
When on the other hand no tensile stress is presenti.e. T =0, Eq. (3.12) can be reduced
to

(3.13)

o 14 1/4
12
= = | ZE = 1222
kK = ke ' 5 = (3.14)
The general solution for a beam at a given frequency is
u(x) = a1e™ + age ™ + bk + e K. (3.15)

suitable for traveling waves. ltis clear from Eq. (3.15) that the first two terms are traveling
waves V\61ereas the last two terms are evanescent waves with a characteristic length of
1/ ke Eh2/12 . For a typical silicon nitride beam with h = 50nm and = 1GPa
the characteristic lengthis ¢ 200nm. It can be seen that high tensile stress may lead
to very short but extremely sharp bending at domain boundaries. This effect can lead to
enhanced damping along a boundary as described in section 4.2.6. Finally, for standing
waves a more suitable form of Eq. (3.15) is

u(x) = Aijcoskx + Azsinkx + B1coshkex + Basinhkex : (3.16)

3.2 2D system

Deriving the PDE for a two-dimensional system can be done in a similar manner, and will
therefore simply be stated. It is worth noting that during the derivation extra care must be
taken to ensure that all relevant cross coupling between forces in x and y directions are
included. The two-dimensional wave equation for a tensile stressed embedded plate is
given by . .
u u u
BY 4u Tf@ Tf@—g, + mmg% = Pe; (3.17)

and if TO= T)?: TO it simplifies to

4 2 odu _
BY u T% u+m@—pe, (3.18)
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wherer 2= @/ @%+ @/ @yandr *=r?r2 T, = h ; withi = fx;yg are the tensile
stress per unit length in both in-plane directions, B®= Eh3/[12(1  ?)] is the bending
stiffness per unit length and m®=h is the mass per unit area. The shear force per unit
length are given by

Fo= To@U oM, @M Fo o= T2 ON. @M (349
@y @y @x @x @x @y
where Fy is the force per unit length along the x-direction. The bending moments Mj; are
given by
@u @u @u @u
M= B =—+ = . M2= BO ="+ =" 2
Xy @s" @ M @’ @y (520
while the bending contribution from in-plane shearing is given by
Z
@u
Myx = Myy = zdA= BTl : 3.21
XX yy A Xy 0( )@x@y ( )

From the homogeneous part of Eq. (3.17) the dispersion relation can be derived by as-
suming a harmonic wave of the form u(x;y;t) = e'(®&**Ky ') \When there is a non-
uniformity in the stress, i.e. T>? 6 T)P this is non-trivial to solve. For a uniform stress
distribution Eqg. (3.18) can be used, which when using the same approximations as in the
one dimensional case yields

RZ + Ko = K? (3.22)

where in the high tensile stress regime k and ke are approximated as
( r r

_ k| . 121 2.
K= ke k I — ; ke —Ehz (3.23)
and correspondingly for no tensile stress
moo Y4 121 23
k=ke= ! 2@ = | 2% (3.24)

Notice the similarity to the one-dimensional case, where the only difference being the
slightly added stiffness for the evanescent wavenumber. The general solution for a two-
dimensional system is much more complicated, and it is not used in any context in this
work. Instead, solutions are obtained by probing a proposed modeshape into Eq. (3.17).

The partial differential equations derived above give a good overview of the expected
behavior of a resonator and is a good starting point for analyzing idealized resonators like
strings and membranes under high tensile stress from which we can derive qualitative
conclusions. Note for patterned membranes the stress distribution will not be uniform
as assumed in Eq. (3.18). Consider a rectangular membrane initially fabricated with
a completely uniform tensile stress distribution equal in both directions. Now etch some
patterns into it. As soon as the membrane is released the whole structure will be in a state
of force imbalances at the etched features. The whole membrane is then displaced until
a new force equilibrium state is obtained. The membrane will now have a new spatially-
dependent tensile stress distribution in both x and y directions which generally will be
non-uniform. This makes any purely analytical solutions practically impossible except for
the simplest membrane designs.
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4 Mechanical damping mechanisms

The main goal of the project is to design and fabricate mechanical resonators with the
highest possible quality factors. This requires a deep understanding of all the relevant
damping mechanisms one can expect in such resonators. This chapter outlines all the
relevant damping mechanisms which may affect the resonator’s performance. These can
largely be divided into three types:

1. Gas damping, an external force of colliding gas molecules impeding the movement
of the resonator.

2. Intrinsic loss, internal friction force resulting in internal damping.

3. Phonon tunneling loss, phonons of the resonator which couple and are lost to the
surrounding substrate.

While most of the content will be a review of the existing literature, phonon tunneling
losses for resonators operating at up to the low MHz range is largely unexplored. This is
highly relevant for especially trampolines and other resonators operating in the sub-MHz
range. A significant part of the chapter is dedicated to studying this loss mechanism in
detail and develop applicable models for it.

Throughout the thesis damping will be represented by their respective quality factor con-

tribution W W

P = =1 :
where W is the resonator mode energy, W, the lost energy per cycle for the dam