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Abstract: Durability is considered as one of the main technical obstacles to the large-scale com-

mercialization of proton exchange membrane fuel cells (PEMFCs), which can be e↵ectively improved

through prognostics prediction techniques. This paper proposes a stacked echo state network (ESN)

based on the genetic algorithm (GA) to predict the future degradation trend of PEMFCs. By alter-

nately using the projection layer and the encoding layer, the proposed method can make full use of the

temporal kernel property of the ESN to encode the multi-scale and multi-level dynamics of the stack

voltage, thereby obtaining more robust generalization performance and higher accuracy than existing

methods. Specifically, a stack voltage time series of PEMFCs is projected into the high-dimensional

echo state space of the reservoir. Then, an auto-encoder projects the echo state representation into

the low-dimensional feature space. After that, the genetic algorithm is utilized to optimize the hyper-

parameters of the developed model. Based on two open-source datasets of PEMFCs with di↵erent

accelerated test conditions, this paper systematically tested the proposed degradation prediction meth-

ods based on di↵erent model structures. Test results demonstrate that the proposed method is superior

to traditional prediction methods in terms of accuracy and generalization performance.
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1. Introduction

Due to the advantages of little impact by environmental changes, high energy conversion e�ciency,

zero pollution, low noise, short refueling time, and long cruising range, the proton exchange membrane

fuel cells (PEMFCs) system is considered one of the most promising energy sources [1, 2]. It has been

widely used in vehicles, stationary power generation, portable equipment, etc. [3, 4]. However, the

poor durability of PEMFCs under complex dynamic operating conditions is one of the main technical

obstacles to the large-scale commercialization of PEMFCs systems. The existing studies have shown

that in addition to material improvement and structural optimization, the use of prognostics and health

management (PHM) techniques can also improve the durability of PEMFCs. The main principle of

PHM is to take e↵ective maintenance measures in advance to avoid further deterioration by accurately

estimating the current state of health and predicting the future state of degradation for PEMFCs [5,

6]. This paper focuses on predicting the future degradation trend of PEMFCs.

The degradation of PEMFCs is a complex nonlinear process involving multi-physics, multi-scale, and

multi-component. Various factors in design, production, and application will a↵ect the degradation

path of PEMFCs. Therefore, it is a challenge to accurately predict the future degradation trend of

PEMFCs. The existing PEMFCs degradation trend prediction methods [7, 8] are mainly divided

into three categories, namely model-based methods [9, 10], data-based methods [11, 12], and hybrid

methods [7, 13-15]. For model-based methods, most of the research oriented to online applications

achieves the prediction of degradation trends by establishing semi-mechanical or empirical models and

combining filtering algorithms, such as the method based on semi-mechanical models and unscented

kalman filter [16], the method based on extended kalman filter [17], the method based on empirical

models and particle filters [9], etc.

Compared with the model-based method and hybrid method, the data-based method has the ad-

vantages of small computational burden, simple deployment, strong generality, and does not require

an in-depth understanding of the degradation mechanism. In recent years, it has been widely used

in PHM related technologies of various complex systems. The existing data-based methods used to

predict the degradation trend of PEMFCs include: stacked long short-term memory (LSTM) method

[18], bi-directional LSTM recurrent neural network (RNN) method [19], LSTM RNN method [20],

wavelet analysis and nonlinear autoregressive exogenous neural network method [21], and particle fil-

ter and RNN fusion method [22], etc. In particular, many deep learning-based methods have achieved

impressive high performance. An attention-based RNN model was proposed to improve the prog-
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nostics of PHM [23], which enables a more accurate prediction of the stack voltage degradation of

PEMFCs based on the original long-term dynamic loading cycle durability test data. Similar works

have been developed by Ma et al., in [24]. The remaining useful life (RUL) prediction based on deep

learning (DL) algorithm was proposed to build the degradation model, which can e↵ectively and ac-

curately forecast the degradation of PEMFCs system. At the same time, some studies have also tried

to use automatic hyper-parameter optimization to further improve the prediction accuracy and the

automation of the method. A novel degradation model of fuel cells based on grey neural network

was proposed by Chen et al., in [25], which was optimized by particle swarm optimization algorithm.

Chen et al,.[5] proposed a hybrid method to establish the degradation model of PEMFCs based on

the wavelet analysis, extreme learning machine and genetic algorithm. Subsequently, the authors also

proposed a novel degradation model of PEMFCs based on the backpropagation neural network and

evolutionary algorithm [26]. Similar works in [18] proposed a stacked LSTM prognostic model based

on the di↵erential evolution algorithm, which can improve the prediction accuracy. Similar works also

in [21] proposed a novel wavelet neural network method to establish the degradation model of fuel

cells. The parameters of built model were optimized by cuckoo search algorithm. The results indicated

that the accuracy of the optimized degradation model was better than the manual parameters model.

Although most of the above methods have realized the accurate prediction of the future aging trend

of PEMFCs, the sensitivity analysis of the number of layers and training data lengths to degradation

prediction accuracy of the DL model mentioned above are rarely involved. Thus, these problems

motivate us to conduct the research of this paper.

Among all the methods mentioned above, DL and RNN methods have been proved to have a powerfully

ability to predict the RUL of fuel cells [20, 23-24]. Nevertheless, the lengthy process of training deep

RNN remains a practical problem, which limits its practical application. To overcome its shortcomings,

the structure of echo state network (ESN) was first proposed by Jaeger et al., in [27], which was worth

mentioning. ESN is a typical RNN with a fixed state transition structure (the reservoir) that has

exhibited excellent performance in time series prediction problems. Subsequently, Hua et al., [28]

proposed a multi-input ESN method to improve the accuracy of RUL prediction, which can obtain

the higher prediction accuracy than single-input ESN method under both static operating conditions

and dynamic conditions. Similar works also in [29] proposed an improved multi-input ESN method

to predict the RUL degradation of PEMFCs. Due to the most time series contains a multi-scale and

multi-level structure, a single-hidden-layer reservoir computing (RC) model cannot extract e↵ective

degradation features from the input time series [30]. Therefore, it is an important challenge to develop

a new ESN structure to further improve the prediction accuracy of fuel cells life.

Besides, the stack output voltage is chosen as the aging state of PEMFC in most literature, which

is easily measured by a sensor. For example, the aging of catalyst will cause a larger activation

overvoltage, which results in lower output voltage [31]. In addition, the stack voltage time series
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usually contains the multi-scale and multi-level information of the RUL degradation, which changes

with operating conditions. Thus, the stack output voltage is regarded as training input and an

evaluation index for the aging state of PEMFCs in this paper, which can be considered as a time

series prediction problem, and model it using machine learning methods.

To further improve the accuracy of degradation trend prediction without loss of simplicity, this paper

proposes a stacked ESN based on the genetic algorithm (GA) for the first time. The most notable

feature of the proposed method is its multiple projection-encoding-based stacked architectures. More

specifically, when the stack voltage input time series is projected into the echo state space of the

reservoir, the subsequent encoding layer receives the echo state of the previous reservoir as input and

encodes the high-dimensional echo state representations into a lower-dimensional feature space. Then,

these encoded representations are again projected into the high-dimensional state space of the next

reservoir through random connections. Using this multiple projection-encoding method, the stacked

ESN can make full use of the temporal kernel property of each reservoir to capture the multi-scale and

multi-level dynamics of the stacked voltage time series instead of directly stacking multiple reservoirs

in a completely random way. After that, based on the stacked ESN architecture, the GA is utilized to

optimize the hyper-parameters in the constructed model, which can further improve the degradation

trend prediction accuracy of PEMFCs. The contributions of this paper are as follows:

(1) A stacked ESN based on projection-encoding between reservoirs is proposed to build the degrada-

tion model of PEMFCs, which takes advantage of the merits of both DL and RC, and bridges the gap

between them. Because the advantages of a deep structure are used to capture the multi-scale and

multi-level dynamic of the stack voltage. In addition, RC is an e↵ective method to construct recurrent

networks that require less training of the network and pursues conciseness and e↵ectiveness.

(2) Unsupervised encoding the echo states layer by layer and using the parameters optimization

algorithm, the proposed method realizes the use of the advantages of the deep structure to capture the

multi-scale and multi-level dynamics of the stack voltage, while obtaining more robust generalization

performance and higher accuracy than existing methods.

(3) An evolutionary algorithm is proposed to optimize the reservoir hyper-parameters of stacked ESN,

which improves the accuracy and automation of degradation trend prediction for PEMFCs.

(4) Based on the training data of di↵erent lengths and di↵erent dataset sources, the proposed methods

of varying model structures have been tested and compared. Test results show that the proposed

method can guarantee the accuracy of the prediction even with less training data.

The rest contents of this paper are organized as follows. Problem formulation is illustrated in Section

2. Section 3 presents the principle of stacked ESN based on the GA. The experiment results are given

and further analyzed in Section 4, and it is followed by a conclusion and further study in Section 5.
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2.Problem formulation

A PEMFCs system mainly consists of air supply subsystem, hydrogen subsystem, PEMFCs stack, cool-

ing water subsystem, gas humidification, electronic load, and control subsystem [8]. The schematic

of PEMFCs system is illustrated in Figure 1. The air and hydrogen are humidified and transported

to the cathode and anode of the stack, respectively. To avoid the fuel cells stack “starvation” phe-

nomenon, the supply of gas is regulated by the pressure and flow controller. And to maintain the

internal temperature of the stack within an acceptable range, an additional cooling water subsystem

is often added to the system. Also, in order to e↵ectively prevent hydrogen leakage and control the

pressure di↵erence between the cathode and anode of the stack, hydrogen circulating pump and back

pressure valve components are added to the system.

Valve

Relief Valve
H2

Air

Motor Compressor

Hydrogen Tank

Vcm

PEMFC Stack

Hydrogen Circulating Pump

Stack 
Cooling

stI

Humidifier

PEMFC System

LoadPower Demand

Controller

Figure 1: Schematic of PEMFCs system.

There are many factors that a↵ect the PEMFCs degradation performance, operating conditions (open-

circuit/idling, dynamic load, startup-shutdown and constant load) are the most key factors that

accelerate the aging of the materials and components of fuel cells stack [29]. Among them, the constant

load is represented by a constant current of 70A in this paper. Dynamic load conditions are the most

serious impact on the degradation performance of fuel cells, and account for the highest proportion

of performance degradation factors. Firstly, dynamic load conditions mainly bring the change of

dynamic heat/humidity, and even operating pressure, and consequently, the mechanical degradation

of components will be accelerated. Secondly, potential voltage cycling accelerates degradation of the

electrochemical surface area and the growth of Pt particles. Thirdly, dynamic load increases the change

of gas starvation due to the combined e↵ects of demand dynamics, internal di↵erences, and lagging gas

supply in local reactant supply. Understanding the degradation mechanisms under di↵erent conditions

is of great significance to extend the RUL of fuel cells. This paper focuses on the two harsh conditions

for PEMFCs: constant load conditions and dynamic load conditions.

For most degradation prediction methods, there are some problems such as the prediction accuracy

of the degradation model and the complexity of the degradation model. To solve these problems, a

stacked ESN based on the GA method is proposed to compromise the accuracy of the degradation
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model and the complexity of the degradation model. An accurate and e�cient degradation model of

fuel cells plays an important role in ensuring the safety and reliability of the system and extending its

service life.

3.Stacked ESN modeling based on GA

In this section, a novel stacked ESN method is proposed to develop accurate degradation model of fuel

cells. As illustrated in Figure 2, the implementation processes of the proposed degradation prediction

can be divided into five steps: (1) Collect two datasets from the fuel cells aging test bench. (2)

Preprocess the stack voltage time series data. (3) Train the stacked ESN model and optimize its

hyper-parameters using GA. (4) Calculate the output weight matrix of stacked ESN based on the GA

model. (5) Predict new data. The detailed content of the stacked ESN based on the GA method is

described as follows.
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Figure 2: Implementation framework of the stacked ESN based on the GA.

3.1.The stacked ESN model

According to the analysis of the aforementioned, the stack voltage of fuel cells is regarded as the input

time series (U) in this paper. Thus, the degradation prediction of fuel cells can be considered as a

time series prediction problem, and model it using a stacked ESN method. ESN has a strong ability

(a “reservoir” of dynamics) to deal with complex time series problems [32]. The input weights and

recurrent weights of ESN are randomly initialized and fixed during the training phase and only the

outputs weights are calculated. It can e↵ective avoid the laborious process of gradient-descent RNN

training, yet achieve excellent performance in time series prediction. Therefore, in this paper a stacked

ESN method is proposed to predict the degradation trends of fuel cells. By using projection layers

and encoding layers alternately and using parameters optimization algorithm, this method can not

only learn the multi-scale and multi-level dynamics of the stack voltage measurement data, and also

provide robust generalization degradation performance, which make it accurately predict the RUL of
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fuel cell. The formulation details of the stacked ESN method can be described as follows.

The structure diagram of the stacked ESN model is illustrated in Figure 3. The T -length time series

inputs are represented as U = [u(1), u(2), · · · , u(T )] and the prediction results are denoted as the

vector Ŷ = [ŷ(1), ŷ(2), · · · , ŷ(T )]. For the i-th reservoir (i=1, . . . , K), its high-dimensional states

can be expressed as

z(i) (t+ 1) = W res(i)x(i)res (t) +W in(i)x(i)in (t+ 1) (1)

x(i)res(t+1)= (1��)x(i)res(t) + �f(z(i)(t+ 1)) (2)

where x(i)res(t) and x(i)in (t+ 1) are the updated states in i-th layer reservoir at time step t and the input

of i-th reservoir at time step (t+ 1), W res(i) and W in(i) denote the hidden-to-hidden weights and the

input-to-hidden weights of i-th reservoir, respectively. f(·) and � are the nonlinear activation function

(tanh(·)) and the leak rate of the reservoir, respectively. When i is greater than one, the inputs of

i-th reservoir are the output of the (i-1)-th encoder, i.e. x(i)in (t+ 1) = x(i�1)
enc (t+ 1). On the contrary,

we have x(1)in (t+ 1) = u(t+ 1). For simplicity, an operator Fi is used to express the high-dimensional

projection Eq. (1) and the update step Eq. (2), which can be expressed as

x(i)res (t+ 1) = Fi(x
(i)
res (t) , x

(i)
in (t+ 1)) (3)

The states of the previous reservoir are known, to keep the computational merits of RC, the encoder

T should have low learning cost. The dimensionality reduction technique of ELM-AE [32] has the

advantages of less training parameters, fast learning speed and good generalization performance. It is

used for simplifying the training of traditional auto-encoders. The key idea is to achieve the hidden

random features H 2 M⇥N by using random weights W 0 2 M⇥D and bias b0 2 M⇥D, which can be

expressed as

H =g(W 0X + b0) (4)

in which X 2 D⇥N and g are the inputs and the activation function, respectively. Then the dimension

reduction mappings W ⇤ 2 M⇥D can be obtained by

W ⇤=argmax
W

kWH�Xk2 + �kWk2 (5)
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in which � is the regularization parameter. The above equation can be solved by the pseudo-inverse

method. Then, the reduced data can be represented by Henc=(W ⇤)TX. Therefore, the encoding

procedure of the j-th encoder (j=1, . . . , K-1) can be defined as

x(j)enc (t+ 1) = T
⇣
x(j)res (t+ 1)

⌘
(6)

Further, we can instantiate T (·) in Eq. (6) as

T
⇣
x(j)res (t+ 1)

⌘
= fenc

⇣
W enc(j)x(j)res (t+ 1)

⌘
(7)

in which fenc (·) denotes the activation function of the encoder, which is the identity function.

According to the above derivation, the state representations of the last reservoir can be formulated as

x(K)
res (t+ 1) = FK �HK�1 � · · · �H1(u(t+ 1)) (8)

in which Hj = Tj � Fj and the symbol � is a composition operator.

Unlike the traditional ESNs, the stacked ESN incorporates additional middle-layer encoded features

into the last output layer. Thus, the outputs of the whole system at time step (t+1) can be obtained

as

ŷ(t+ 1) = fout(W outM(t+ 1)) (9)

where M (t+ 1) can be represented as

M(t+ 1) =

2

664x
(K)
res (t+ 1)T| {z }

A

, u(t+ 1)T| {z }
B

,
n
x(1,...,K�1)
enc (t+ 1)T

o

| {z }
C

3

775

T

(10)

in which A, B and C are the echo states of the last reservoir, the input along with direct connections,

and the multi-scale representations along with the feature links, respectively. Thus, the Eq. (9) can

be rewritten as

Ŷ = fout(W outM) (11)

in which fout denotes the element-wised output activation function and the columns of Ŷ and M range

over 1, . . . , T .

The parameters W outcan be represented by using a standard squared error loss function

E(W out) /
���Ŷ � Y

���
2

2
(12)

in which Y is the real data of the stack output voltage. Thus, Eq.(12) is a regression problem on

the parameters W out. As the time series is usually a high-dimensional form, this problem always is

over-determined, and the ridge-regression with Tikhonov regularization [33] is regarded as the most

universal and stable way to compute the output weight matrix.

Ŵ out = YMT (MMT + �I)
�1

(13)
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where I and � are the identity matrix and a small regularization parameter (such as 10�4).

According to the mentioned above, the proposed prediction method can preserve su�cient input

features in the states through using projection layers and encoding layers alternately, especially for

predicting long-term dependent measurement data. In addition, an analysis of stacked ESN’s compu-

tational complexity is illustrated in Appendix A. Furthermore, to promote the convergence rapidity

of the optimizing the hyper-parameters in each reservoirs and to further improve the accuracy of the

degradation prediction of fuel cells, a GA algorithm will be proposed in the next part.

3.2.Stacked-ESN fuel cells life prediction model based on GA

As the depth of stacked RC models increases, it becomes especially important to optimize the reservoir

hyper-parameters of stacked ESN, since it indirectly a↵ects the prediction accuracy of the degradation

trends of fuel cells. Generally, the manual adjustment of parameters is unsuitable for such the deep

reservoir networks structure. In addition, the parameters of stacked ESN are randomly generated.

Table 1: The parameter settings of GA.

Parameters Value

Population size 20

Maximum number of generations 100

Crossover probability 0.6

Mutation probability 0.1

Generational gap 10

Especially, when the randomly generated parameter value is zero, some neurons in the hidden layer

are ine↵ective, which reduces the accuracy of the stacked ESN model. The reservoir hyper-parameters

of stacked ESN should be optimized to obtain the better prediction performance. The GA can simplify

the calculation procedure of the traditional method. Therefore, the GA is introduced into the stacked

ESN, which is used for optimizing the reservoir hyper-parameters of the stacked ESN. Compared with

traditional ESN method, the proposed method only needs to optimize the key hyper-parameters in

each reservoir: the input scaling (IS), the spectral radius (SR), and the leak rate (�), which can

improve the prediction accuracy of the degradation model of PEMFCs. GA is proposed to optimize

three hyper-parameters in each reservoir for the improvement of convergence rapidity. A flow chart

of the GA is illustrated in Figure 4. The major implementation steps of the proposed stacked ESN

based on the GA are described as follows.

Step 1: Establish the degradation model of stacked ESN. According to the characteristics of the

PEMFCs aging data, the topology of the degradation model of stacked ESN includes the number of

neurons in the input layer, the number of neurons in the hidden layer, and the number of neurons in

9Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 08,2021 at 09:06:17 UTC from IEEE Xplore.  Restrictions apply. 



2332-7782 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TTE.2021.3111906, IEEE
Transactions on Transportation Electrification

Measurement data

Data preprocessing

Training data

Testing data
Calculation fitness

Build Stacked ESN model

Initialize population

Test Stacked ESN model

RUL prediction

Selection

Crossover

Mutation

Judging the end 
condition?

Output optimal hyper-parameters

YES

No

GA

Measurement data

Data preprocessing

Training data

Testing data
Calculation fitness

Build Stacked ESN model

Initialize population

Test Stacked ESN model

RUL prediction

Selection

Crossover

Mutation

Judging the end 
condition?

Output optimal hyper-parameters

YES

No

GA

Figure 4: Schematic diagram of stacked ESN based on the GA.

the output layer.

Step 2: Initialize population. All triple hyper-parameters of each reservoir are concatenated into a

vector, which is coded with the binary form to produce the initial population.

Step 3: Calculation fitness. To calculate the individual fitness value of the current population, the

training data are applied to train the stacked ESN model.

Step 4: Judge the end condition. If the individual reaches the optimization algebra or reaches the

set stop threshold, stop the iteration and jump to step 6; otherwise, perform step 5.

Step 5: Update the population. The selection, crossover, and mutation operations are performed

according to the current individual fitness value, and then the new progeny population is generated.

Take the progeny population as the current population, jump to step 2.

Step 6: Export the optimal IS, SR, and � of the key hyper-parameters in each reservoir.

Step 7: Build the degradation model with the optimal parameters based on stacked ESN.
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4.Experiment and validations

The experimental data comes from IEEE PHM 2014 DATA CHALLENGE [34], which is used to verify

the di↵erent models. The aging experimental test platform for PEMFCs system is 1.0 kW electrical

power, and the stack contains 5 cells and the active area of each cell is 100 cm2, which is integrated at

Federation for Fuel Cell Research (FCLAB). Some measurable and controllable physical parameters

in the test bench like the temperature, pressure, flow, current, etc. are presented in Table 2. All the

experiments are conducted under the MATLAB R2015b, and the computer with 2.3 GHz Intel Core

i5 processor.

Table 2: Range of physical parameters controlled of the aging experimental test bench.

Parameters Control range Unit

Cooling temperature 20-80 �C

Cooling flow 0-10 L/min

Gas temperature 20-80 �C

Gas humidification 0-100% RH

Air flow 0-100 L/min

H2 flow 0-30 L/min

Gas pressure 0-2 Bar

Fuel cell current 0-300 A

The stack output voltage is regarded as a health management indicator of a PEMFCs system in this

paper. The aging experimental test conducted two long-term durability tests for more than 1000

h under constant load and dynamic load operating conditions. In the first aging test, the constant

load current of 70 A (FC1) was imposed on the aging test. In the second aging test, a triangular

ripple current of 7 A with 5 kHz (FC2) was superimposed to the constant current of 70 A. The

aging experimental test data contain lots of noise and large spikes (durability test shut down after

restart) that would a very adverse e↵ect on the accurate prediction of degradation trend of PEMFCs.

The aging sampled data of FC1 with in red and FC2 with in blue are smoothed by gaussian-weighted

moving average filter, which is shown in Figure 5. It can be seen from Figure 5 that the stack voltage of

FC1 and FC2 decrease as time increased, which indicates the degradation phenomena of the PEMFCs

stack.

4.1.Evaluation metric

Two quantitative indicators are applied to evaluate the prediction performance of di↵erent models

such as root mean squared error (RMSE) and mean average percentage error (MAPE), which are
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Figure 5: Degradation voltage curves of FC1 and FC2.

respectively formulated as follows:

RMSE =

vuut 1

T

TX

t=1

⇣
Yt(n)� Ŷt(n)

⌘2
(14)

MAPE =
1

T

TX

t=1

�����
Yt(n)� Ŷt(n)

Yt(n)

����� (15)

in which Yt(n) and Ŷt(n) are the real voltage and the prediction voltage of the model during the RUL

time (n data points), respectively. T denotes the number of points. The lower RMSE, and MAPE

values, the better their corresponding degradation performances.

4.2.E↵ects of hyper-parameters

For all the weights of stacked ESN, W res(i), W in(i), and W enc(j) are given randomly, only W out needs

be trained. According to the output Eq. (11), the output weights depend on the last reservoir state

x(K)
res (t+ 1), the input u(1 + t) and the (K � 1) reservoir states x(1,...,K�1)

enc (t+ 1). The purpose of

training output weights is to minimize the network output error, such that the prediction output can

approximate to the desired output as much as possible.

Hyper-parameters optimization is seldom discussed in the existing methods. Since the optimization of

the built model parameters indirectly a↵ects the prediction accuracy of degradation performance for

fuel cells, it is very important for optimize the hyper-parameters such as IS, SR and �. IS is adopted

to scale the randomly-generated input matrix W in, SR means the spectral radius of W res, and � is

the leak rate of the reservoir.

In this paper, GA is used to optimize the hyper-parameters for the improvement of convergence

rapidity and the prediction accuracy of stacked ESN model. The triple hyper-parameters of each

reservoir are concatenated into a vector which is viewed as a population in GA. The search space for

IS limited to the range [0.00001,1], which is assigned as a small value of 0.00001 to avoid IS becoming
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Figure 6: The process of GA optimization parameter under FC1 and FC2. (a) 2 layers under FC1.

(b) 3 layers under FC1. (c) 4 layers under FC1. (d) 2 layers under FC2. (e) 3 layers under FC2. (f)

4 layers under FC2.

Table 3: The reservoir parameters optimization results.

Datasets Layers Parameters
Parameters of the nth layer

1st layer 2nd layer 3rd layer 4th layer

FC1

2

IS 0.0420 0.5586

SR 0.8804 0.4794

� 0.8660 0.8056

3

IS 0.5266 0.2463 0.8105

SR 0.4724 0.3006 0.2469

� 0.8979 0.9754 0.5287

4

IS 0.3460 0.8878 0.8787 0.3873

SR 0.8824 0.4607 0.3840 0.6360

� 0.5124 0.6602 0.9483 0.3851

FC2

2

IS 0.2024 0.6880

SR 0.3418 0.6012

� 0.9407 0.8037

3

IS 0.5543 0.7584 0.5662

SR 0.6315 0.1770 0.4951

� 0.7052 0.7637 0.5065

4

IS 0.4218 0.8235 0.5853 0.4733

SR 0.9340 0.4387 0.8909 0.7572

� 0.7431 0.6797 0.8143 1.0000
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zero. SR and � are limited to (0,1). SR is set to be smaller than 1 to ensure the echo state property in

each reservoir [34]. In the case of the proposed stacked ESN based on the GA algorithm, the prediction

error is selected as the fitness value of population (the smaller the loss, the higher the fitness). The

process of GA optimization parameters under FC1 and FC2 are respectively illustrated in Figure 6.

In Figure 6 (c), the maximum number of iterations for the optimization parameters of 4 layers is only

5, indicating the GA has a fast convergence speed. Figure 6 (d) also shows that the best convergence

is only 3 with 2 layers under FC2. The reservoir parameters optimization results of 2 layers, 3 layers,

and 4 layers are listed in Table 3. The results show that the GA has strong convergence ability when

optimizing hyper-parameters problems. In conclusion, the proposed prediction method can play a

very important guiding role in system fault diagnosis and PHM.

4.3.Prognostic under constant current load conditions

In the constant current load condition testing task, the datasets come from a 1154 h duration test on

the FC1 stack. No matter what the data-driven prognostics methods applied, the whole prognostics

process of PEMFCs should include two phases, which are training process and prediction process. The

data between 0 h and 550 h is used for training, the data between 551 h and 1154 h is used for the

prediction model.
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Figure 7: Prediction and error results of stacked ESN model before and after GA optimization for

di↵erent layers under FC1 (1154 h). (a) The prediction results of 2 layers. (b) The error results of

2 layers. (c) The prediction results of 3 layers. (d) The error results of 3 layers. (e) The prediction

results of 4 layers. (f) The error results of 4 layers.

Recently, a DL method is applied to automatically extract the degradation feature. However, the
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training of the DL method requires a large amount of aging data, which will take a long time and

poses a challenge for its applications such as energy management of electric vehicles and the distributed

energy generations, etc. In addition, as the number of ESN layers increases, the prediction speed of

degradation trend of PEMFCs will inevitably decrease, which is di�cult to apply in actual automotive

systems. Therefore, a compromise solution is considered to choose 2, 3, and 4 layers to build the

degradation prediction model for FC1 and FC2.

The degradation prediction results of FC1 can be obtained by the proposed stacked ESN based on the

GA under di↵erent layers. As shown in Figure 7 (a), the green is the prediction phase and its length

is 604 h, respectively. Figure 7 (a), (c) and (e) show the predicted results of the stacked ESN model

before and after GA optimization for 2 layers, 3 layers and 4 layers, respectively. It can be clearly

seen from local zoomed in Figure 7 (a), (c) and (e) that the proposed method has a high prediction

accuracy. Figures 7 (b), (d) and (f) show the prediction error of stacked ESN model before and after

GA optimization with di↵erent layers, which can accurately predict the general degradation trend of

the real voltage in the prediction phase under di↵erent layers.

Table 4: Comparison results of degradation prediction error under FC1.

Methods Layers
Evaluation metric

RMSE MAPE

Stacked ESN based on the GA

2 4.4711e-05 1.1051e-05

3 9.2535e-05 2.2579e-05

4 6.1152e-05 1.5064e-06

Stacked ESN

2 2.7565e-04 5.7584e-05

3 3.7690e-04 9.1256e-05

4 5.1074e-04 1.2562e-04

Hua et al. [28] SISO-ESN 0.01435 0.004010

The error results of the stacked ESN model before and after GA optimization with di↵erent layers are

summarized in Table 4. From Table 4, the error results of the proposed stacked ESN based on the

GA method for 2 layers are the smallest. The best result has been bolded in black. The RSME and

MAPE values of 2 layers are 4.4711e-05 and 1.1051e-05, respectively. The RMSE value of the stacked

ESN based on the GA model for 2 layers is 16.2 times that of stacked ESN model. The prediction

errors of the other layers are also small, which are within an acceptable range. In addition, it can be

found that the prediction accuracy of the proposed stacked ESN based on the GA outperforms the

stacked ESN and traditional prediction method [28] in terms of RMSE and MAPE.
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4.4.Prognostic under dynamic operation

To verify the prediction results of the di↵erent degradation models under dynamic operation, the data

comes from a 1020 h duration test on the FC2. Since the accelerated aging test time of FC2 is limited

and its voltage degradation rate is significantly faster than the first aging test for FC1. Similar with

the FC1, a compromise solution is considered to choose 2, 3, and 4 layers to build the RUL prediction

model for FC2.
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Figure 8: Prediction and error results of stacked ESN model before and after GA optimization for

di↵erent layers under FC2 (1020 h). (a) The prediction results of 2 layers. (b) The error results of

2 layers. (c) The prediction results of 3 layers. (d) The error results of 3 layers. (e) The prediction

results of 4 layers. (f) The error results of 4 layers.

Prediction and error results of stacked ESN model before and after GA optimization for di↵erent layers

under FC2 (1020 h) are illustrated in Figure 8. The data between 0 h and 550 h is used for training,

the rest of the data is used for the prediction with the green color. Figures 8 (a), (c) and (e) show

the prediction results of stacked ESN model before and after GA optimization for 2 layers, 3 layers

and 4 layers, respectively. Figures 8 (b), (d) and (f) show the error results of stacked ESN model

before and after GA optimization for 2 layers, 3 layers and 4 layers, respectively. It can be seen from

local zoomed in Figure 8 that the proposed prediction method can also accurately predict the general

degradation trend of the real voltage in the prediction phase under dynamic conditions. The results

in Figure 8 are highly consistent with the results in Figure 7. This is because, by using projection

layers and encoding layers alternately, the proposed prediction method can provide much more robust

generalization performance than the standard prediction method, and also fully take advantage of the

temporal kernel property of ESN [35] to encode the multi-scale dynamics of the voltage time series.
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The RMSE and MAPE assessment results are summarized in Table 5. The best result has been

bolded in black. The prediction error of the 3 layers proposed method is the smallest. The RSME and

MAPE values of the prediction of 3 layers proposed stacked ESN based on the GA are 1.1027e-04 and

3.0978e-05, respectively. The RMSE value of stacked ESN model after GA optimization for 3 layers

is 3 times that of stacked ESN model. In addition, the prediction error results of the other layers

methods are also within an acceptable range. It is obvious from the above results that the stacked

ESN model after GA optimization can accurately predict the actual degradation voltage signal no

matter in constant current load conditions (FC1) and dynamic conditions (FC2). It can be seen

from Table 4 and Table 5 that the stacked ESN model based on the GA can significantly improve

the prediction accuracy. These results also reveal that the number of di↵erent layers has an impact

on the prediction accuracy. Compared with the traditional method, the results also indicate that

the proposed method has a strong robustness to accurately predict the degradation trends under the

variable extreme operating conditions. This is because a distinctive feature of the proposed method

is its multiple projection-encoding based stacked architecture. The stacked ESN alternates between

Table 5: Comparison results of degradation prediction error under FC2.

Methods Layers
Evaluation metric

RMSE MAPE

Stacked ESN based on the GA

2 1.8081e-04 5.2952e-05

3 1.1027e-04 3.0978e-05

4 1.4130e-04 4.1660e-05

Stacked ESN

2 3.6550e-04 5.8857e-05

3 3.8123e-04 9.2243e-05

4 5.6994e-04 1.4431e-04

Hua et al. [28] SISO-ESN 0.033538 0.009735

a projection layer and an encoding layer to connect the reservoirs. More specifically, when the stack

voltage time series is projected into the echo-state space of a reservoir, a subsequent encoding layer

receives the echo states of the previous reservoir as input and encodes the high-dimensional echo-

state representations into a lower-dimensional feature space (e.g., by ELM-AE). Then these encoded

representations are once again projected into the high-dimensional state space of the following reservoir

by random connections. By using this multiple projection-encoding method, the stacked ESN can fully

take advantage of the temporal kernel property of each reservoir to represent the multi-scale dynamics

of the stack voltage time series, rather than directly stacking multiple reservoirs in an entirely random

way. The experimental results illustrated that the stacked ESN based on the GA outperforms both

the stacked ESN and traditional ESN models on the stack voltage time series prediction by capturing

the rich multi-scale dynamics of the data.
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4.5.Prognostic under di↵erent training lengths

In order to further analyze the e↵ectiveness of di↵erent training data lengths on the prediction accuracy

of the degradation trends of PEMFCs. The training data is divided into 600 h and 700 h and 800 h to

verify di↵erent prediction models, respectively. Figure 9 shows the prediction results under constant

600 800 1000 1200

Operating time (h)
(a)

3.1

3.2

3.3

S
ta

ck
 V

o
lt

ag
e(

V
)

700 800 900 1000 1100 1200

Operating time (h)
(c)

3.1

3.2

3.3

S
ta

ck
 V

o
lt

ag
e(

V
)

800 900 1000 1100 1200

Operating time (h)
(e)

3.1

3.2

3.3

S
ta

ck
 V

o
lt

ag
e(

V
)

600 700 800 900 1000 1100 1200

Operating time (h)
(b)

-2

0

2

E
rr

o
r

×10
-3

700 800 900 1000 1100 1200

Operating time (h)
(d)

-2

0

2

E
rr

o
r

×10
-3

800 900 1000 1100 1200

Operating time (h)
(f)

-2

0

2
E

rr
o

r
×10

-3

1131 1132

3.2178

3.2179

Actual

Prediction

1131 1132

3.2175

3.218

Actual

Prediction

1131 1132

3.2177

3.2178

3.2179

3.218

3.2181

Actual

Prediction

Figure 9: Stacked ESN based on the GA method for FC1 with various training length. (a) The

prediction results of 600 h training length. (b) The prediction error results of 600 h training length.

(c) The prediction results of 700 h training length. (d) The prediction error results of 700 h training

length. (e) The prediction results of 800 h training length. (f) The prediction error results of 800 h

training length.

current load. The results clearly show that the proposed model can accurately predict the voltage

degradation trend under di↵erent training lengths. Among them, when the training length reaches

80%, and the prediction accuracy can achieve the highest. The RMSE and MAPE assessment results

for di↵erent methods are given in Table 6. Despite training length varies, the proposed method is

better than other methods with smaller RMSE and MAPE in fuel cell degradation prediction under

constant current load.

In order to further verify the prediction results of di↵erent training lengths of the proposed method

under dynamic operating conditions, the results of stacked ESN based on the GA method for FC2 with

various training lengths are illustrated in Figure 10. Figure 10 (a), (c) and (e) present the predicting

performance under 60%, 70% and 80% of the overall training degradation data, respectively. The

training length is 70%, and the prediction accuracy is the highest. The prediction and error analysis

for di↵erent methods under dynamic load are also given in Table 6. In a word, the degradation

prediction of PEMFCs with varying training lengths, the proposed method is significantly better than
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Figure 10: Stacked ESN based on the GA method for FC2 with various training length. (a) The

prediction results of 600 h training length. (b) The prediction error results of 600 h training length.

(c) The prediction results of 700 h training length. (d) The prediction error results of 700 h training

length. (e) The prediction results of 800 h training length. (f) The prediction error results of 800 h

training length.

other methods in terms of RMSE and MAPE.

Table 6: Di↵erent training lengths on the accuracy of life prediction under FC1 and FC2.

Datasets Methods Training Length

Evaluation metric

RMSE MAPE

FC1

Stacked ESN based on the GA

(2 layers)

60% 1.9468e-05 4.7683e-06

70% 3.3681e-05 8.3055e-06

80% 1.4046e-05 3.4779e-06

LSTM RNN [36]

60% 0.0091 0.0027

70% 0.0046 0.0016

80% 0.0059 0.0021

ARIMA [36

60% 0.0111 0.0030

70% 0.0084 0.0022

80% 0.0073 0.0019

Fusion [36]

60% 0.0044 0.0011

70% 0.0041 0.0010

80% 0.0039 0.0010

FC2

Stacked ESN based on the GA

(3 layers)

60% 7.2543e-05 2.0558e-05

70% 2.2239e-05 5.7112e-06

80% 3.8044e-05 9.7321e-06

LSTM RNN [36]

60% 0.0058 0.0017

70% 0.0054 0.0014

80% 0.0062 0.0015

ARIMA [36]

60% 0.0206 0.0042

70% 0.0219 0.0042

80% 0.0248 0.0063

Fusion [36]

60% 0.0165 0.0036

70% 0.0178 0.0034

80% 0.0206 0.0051
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5.Conclusion

The stack voltage degradation prediction of the PEMFCs plays an important role in its applications,

such as energy management of electric vehicles and the distributed energy generations, etc. To im-

prove the prediction performance under di↵erent operating conditions, this paper proposed a stacked

ESN based on the GA to implement the degradation prediction for the PEMFCs system. As the

improvement structure of standard ESN, the stacked ESN has the advantages of low computational

complexity and high life prediction accuracy. The e↵ectively and feasibility of the stacked ESN based

on the GA model with di↵erent levels were verified under both constant current load conditions and

dynamic operation conditions. Furthermore, the e↵ect of di↵erent training lengths on the prediction

accuracy of the models were also verified. Experimental results indicated that the proposed stacked

ESN based on the GA has the ability to perform robust prediction and capture the rich multi-scale

dynamic in each reservoir. Since RC was an e�cient method to construct recurrent networks that

required less training network and pursued conciseness and e↵ectiveness, this was the di↵erence from

deep learning methods. Thus, there was a gap between the advantages and disadvantages of two meth-

ods. Therefore, the proposed stacked ESN based on the GA algorithm can provide a novel perspective

towards bridging this gap between RC and deep learning. In future work, the proposed prediction

method will be further applied to system diagnosis and PHM of electric vehicles system.
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Appendix A. An analysis of stacked ESN’s computational complexity

Assuming a stacked ESN has K reservoirs and K � 1 ELM-AE, in which all reservoirs’ sizes are fixed

by N , and the reduced dimensionality is M(M < N). Given T -length D-dimensional input sequences,

the computational complexity of stacked ESN is analyzed as follows.
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The complexity at the steps of high-dimensional projection (1) and update (2) in i-th reservoir can

be expressed as

8
><

>:

Cres(i) = O
�
2↵TN2 + 2TND

�
, i = 1

Cres(i) = O
�
2↵TN2 + 2TNM

�
, i = 2, 3, . . . ,K.

(A.1)

in which the sparsity ↵ is small (such as 0.01).

Besides, the complexity of encoding j-th states with ELM-AE mentioned before can be calculated by

[32]

Cenc(j) = O (NTM) (A.2)

After updating echo states of all the layers at all the time stamps, the last reservoirs states, inputs and

all the middle-layer-encoded features are collected into a matrixM with the size of (N+(K�1)M+D)T

which is full row rank. Solving the regression problem in (13) has the complexity

Cregression = O((T + (P/3)))P 2 (A.3)

in which P = N + (K � 1)M +D. Since the dimension of a reservoir usually is much larger than the

sizes and inputs of encoders. In this way, Cregression can be approximately rewritten as O
�
TN2 +N3

�
.

Further, if N is much less than T (high dimension property of the input time series), then we can have

N  T and Cregression = O
�
TN2

�
.

Finally, the computational complexity of stacked ESN can be expressed as

CDeePr�ESN =
KX

i=1

Cres(i) +
K�1X

j=1

Cenc(j) + Cregression (A.4)

That is

CDeePr�ESN ⇡ O
�
2↵TKN2 + 2TND + (K � 1) 2TNM + (K � 1)TNM + TN2

�
⇡ O(TN2)

(A.5)

As can be seen from the above analysis, with e�cient unsupervised encoders (e.g., ELM-AE) and

the assumption of high dimension property of the input time series, the computational complexity of

stacked ESN is O(TN2). It is the training complexity of stacked ESN and the run-time burden is

much smaller. In addition, a conventional single-reservoir ESN’ s computational complexity can be

computed by
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CESN = Cres + Cregression ⇡ O(2↵TN2 + 2TND + TN2) ⇡ O(TN2) (A.6)

Therefore, the proposed stacked ESN can achieve equivalent computational performance to a stan-

dard ESN (single-reservoir), which shows that the proposed method remains the high computational

e�ciency of traditional reservoir-computing networks.
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