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Abstract: The interface between the metal catalyst and the support plays a critical role in 

heterogeneous catalysis. An epitaxial interface is generally considered “rigid” and tuning its 

intrinsic microstructure with atomic precision during catalytic reactions is challenging. Using 

aberration-corrected environmental transmission electron microscopy, we have studied the 20 

interface between Au and TiO2 support. Direct atomic-scale observations show an unexpected 

dependence of the atomic structure of the Au-TiO2 interface with the epitaxial rotation of gold 

nanoparticles on a TiO2 surface during CO oxidation. Taking advantage of the reversible and 

controllable rotation, we achieved the in situ manipulation of the active Au-TiO2 interface by 

changing gas and temperature. This result suggests that real-time design of the catalytic interface 25 

in operating conditions may be possible. 
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One Sentence Summary: In situ manipulating the active Au-TiO2 interface with atomic precision 

was realized via epitaxial rotation of Au during CO oxidation. 

Supported nanoparticles (NPs)  are widely used as catalysts for heterogeneous reactions (1–7). 

Their catalytic activities can depend on the interfaces between the NPs and their substrates 

because the most active sites in many reactions are located at the perimeter interface (PI) (7–15), 5 

as is the case for the Au-TiO2 PI in CO oxidation (14–16). Recent in situ experiments indicate 

that refacetting of NPs and surface reconstructions of the substrates can occur in reactive 

environments (17–25), but little is known about the dependence of the intrinsic interface on the 

surrounding environment (26). Although structural changes of the interface induced by the 

electron beam (e beam) have been reported (26–28), it is unclear whether the intrinsic interface 10 

changes in reactive environments, and whether the catalytic interface can be manipulated with 

atomic precision during reactions (29–32).  

In this work, by real-time monitoring the Au-TiO2 interface using environmental transmission 

electron microscopy (ETEM), we observed that Au NPs strongly anchored on TiO2 (001) surfaces 

rotate epitaxially during CO oxidation. Theoretical calculations indicate that this rotation was 15 

induced by the change of O2 adsorption coverage at the PI and demonstrate the change of electronic 

structure related to the activity of the PI before and after the rotation. Furthermore, through the 

control of the interfacial O2 by adjusting the reaction environment, we realized the in situ 

manipulation of the active Au-TiO2 interface. 

The experiments were performed in a spherical aberration (Cs)-corrected ETEM (FEI Titan 20 

80-300 ST), equipped with a heating holder (DENSsolutions Wildfire S3). To avoid the e-beam 

induced reconstruction of the interface as reported in previous in situ studies (26–28), we chose 
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to use low e-beam dose (6.45×10-1 to 8.73×10-1 A/cm2) and a Gatan OneView CMOS camera in 

this work to obtain the atomic in situ images of the intrinsic interface structure based on a 

previous work (26). We loaded Au NPs [diameter: 4~8 nm] on TiO2 nanosheets with dominant 

(001) surfaces [length: ~30 nm; thickness: ~5 nm] (33–36) using impregnation and annealing 

approaches. The very strong Au-TiO2 (001) interaction suppressed the sintering of Au NPs (37). 5 

A low oxygen pressure (~10-3 mbar) was first introduced into the ETEM to compensate for the e-

beam-induced oxygen loss of TiO2 nanocrystals. This addition did not change the structures of 

Au NPs and TiO2 (001) surfaces, as shown in a recent work (26).  

A high-resolution TEM (HRTEM) image of the Au-TiO2 (001) interface structure is shown in 

Fig. 1A viewed along the TiO2 [010] direction. The TiO2 (101) lattice spacings were 0.37 nm, 10 

and the Au (111) lattice spacings were 0.24 nm. The interface structure featured atomic steps 

between TiO2 (001) and Au (111) crystal planes. The in situ TEM observation showed that this 

interface structure was stable and did not change after long-term (~20 min) annealing at 500 °C. 

An image [Fig. 1B] of the atomic structure of the Au-TiO2 interface of the same NP at 6.5 mbar 

O2, three orders of magnitude higher than the low oxygen pressure environment, shows that the 15 

(101) lattice fringes are still clearly visible for TiO2. The Au NP exhibited two sets of lattice 

fringes with spacings near 0.24 nm that we are assigned to the Au (1-1-1) and (111) planes.  

A perfect epitaxial relationship was found at the interface between the Au NP and the TiO2 

(001) surface, i.e., Au NP (111) // TiO2 (001) (Au NP [01-1] // TiO2 [010], also see Fig. 1D); we 

refer to this configuration as S//. Compared to Fig. 1A, the interface at high oxygen pressure 20 

became atomically smooth and formed a semicoherent interface. The periodic misfit dislocations 

can be identified at the interface (Fig. 1B) with an extra Au (-111) plane appearing every two 
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TiO2 (101) planes. The different interface structures observed at different oxygen pressures 

indicate that the Au-TiO2 nanocatalyst changed its interface structure with changing O2 pressure.  

 

Figure 1. The tunable Au-TiO2 (001) interface under different gas environments (side 

view). The temperature is held at 500 °C. The Cs-corrected ETEM images of an Au NP 5 

supported on the TiO2 (001) surface in (A) a low-pressure oxygen (10-3 mbar), (B) a high-

pressure oxygen (6.5 mbar) and (C) a CO oxidation (total pressure: 4.4 mbar, VO2:VCO = 1:2) 

environments. The enlarged images of the Au-TiO2 interfaces [marked by the yellow rectangle in 

(A)] in different environments are shown below (A), (B) and (C). (D and E) The fast Fourier 

transform (FFT) patterns of the Au-TiO2 catalyst in (B) and (C), respectively. The FFT spots of 10 

Au and TiO2 are labeled by the yellow and green dashed cycles, respectively. 

 

To mimic the reaction condition of CO oxidation, CO was injected into the system, and the O2 

was adjusted to meet the ratio of VO2:VCO =1:2, with a total pressure of 4.4 mbar. The HRTEM 

image of the Au-TiO2 interface after exposure to the reaction condition for ~3 min (Fig. 1C) shown 15 

that the interface structure changed further in response to the more reducing environment. We kept 

the e-beam off between Fig. 1, B and C, which excludes the effect of e-beam on the interfacial 

changes. The disappearing of two-dimensional (2D) lattice fringes of the Au NP shows that the 

[01-1] zone axis of the Au NP was no longer parallel to the direction of observation (TiO2 [010]). 
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Only one-dimensional (1D) Au (111) lattice fringes could be identified—the interface remained 

atomically smooth with Au (111) attached to TiO2 (001), this configuration is referred to as S=. 

Because the lattice fringes of the whole (not a part of) Au NP changed in our observation, we 

can exclude the possibility that it is induced by surface reconstructions of the Au NP. Note that (1) 

the TiO2 crystal lattice showed no notable change compared with Fig 1B, so the TiO2 substrate 5 

remained immobile during the entire process; (2) the Au (111) planes kept parallel to the TiO2 

(001) surface during the rotation (Fig. 1, B to E). Thus, we conclude that from S// to S=, a rotation 

of the Au NP along the axis (Au [111]) perpendicular to the TiO2 (001) surface (i.e., epitaxial 

rotation) occurred, which is echoed in the top-view experiments (see below in Fig. 2). For 

comparison, if the Au NP rolls along another axis, the Au (111) planes will tilt an angle to the TiO2 10 

(001) surface, as demonstrated in the schematic Fig. S1. All of the results described above support 

an epitaxial rotation of Au NP on TiO2 surface induced by environmental change, which suggests 

the atomic configuration of the Au-TiO2 interface could be manipulated by controlling external 

environments.  

The top-view observations were obtained to help quantify the rotation angle. Figure 2 shows 15 

top-view TEM images of another Au NP located on a TiO2 nanosheet. To reduce the contrast 

interfering of the overlapping between Au and TiO2, the sample was slightly tilted off the zone 

axis of TiO2 [001]. The (100) and (010) lattice fringes of TiO2 still could be identified (yellow line 

in Fig. 2). The projection of the Au NP was approximately hexagonal with the interior angles of 

around 120°, indicating the observation direction was very close to the Au [111] zone axis. The 20 

FFT pattern in Fig. 2C verified that the epitaxial relationship was consistent with the side view 

result {Au [111] // TiO2 [001] and Au (01-1) // TiO2 (010)} although some spots of Au were not 

strong due to the slightly tilted sample and the interfering of the TiO2 substrate. The hexagonal Au 
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projection could serve as a very good reference for identifying the in-plane rotation. At 500 °C 

under 5 mbar O2 pressure, a hexagonal side was parallel to the TiO2 (010) lattice fringes (S//, Fig. 

2A). At the same temperature, with the addition of CO, the hexagonal Au NP rotated and the 

hexagonal side was no longer parallel to the TiO2 (010) lattice fringes (S=, Fig. 2B). The measured 

rotation angle was ~9.5 °, quantified by comparing Fig. 2B with 2A and confirmed by the FFT 5 

pattern in Fig. 2D. 

 

Figure 2. The rotation of a Au NP on the TiO2 (001) in different environments (top view). 

(A–B) Top view ETEM images show the structural evolution of the Au-TiO2 (001) nanocatalyst 

from an oxygen environment [(A), 5 mbar] to a reactive environment [(B), 500 °C, total 10 

pressure: 5 mbar, VO2:VCO = 1:2)]. (C and D) The FFT patterns of the Au-TiO2 catalyst in (B) 

and (C), respectively. The FFT spots of Au and TiO2 are labeled by the yellow and green dashed 

cycles, respectively.  

 

DFT calculations were performed to obtain insight into the rotation behavior in different 15 

environments. A truncated octahedral cluster (Au116) was used as an ideal model for the face-
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centered-cubic Au NP. The gold cluster was deposited on a TiO2 slab, and the contact interface is 

TiO2 (001) and Au (111) based on the ETEM observations. The S// was first modelled as a 

reference (Fig. 3B), according to the featured 2D crystal lattice of the Au cluster viewing along 

the TiO2 [010] direction (Fig. 1B). A sequence of test configurations was set up by the clockwise 

and counterclockwise rotation of the reference Au cluster in small angles (Fig. S2). The energy-5 

calculation results showed that without O2 adsorption S// became unfavorable in energy, 0.3 eV 

higher in energy than the most stable configuration. The Au NP of the most stable one (Figs. 3A 

and 1C) has 1D lattice fringes and was identified as the S= observed in our experiments. The 

rotation angle between this configuration and the S// was ~8° (Fig. S2), which is near the 

experimental measurements (~9.5°, Fig. 2, C and D).  10 

The effect of O2 adsorption was investigated by calculating its adsorption coverage  at the PI 

of modeled S// and S=, respectively, by combining the DFT calculated adsorption energy (𝐸𝑎𝑑𝑠) 

and the Fowler-Guggenheim adsorption isotherm (details in the Supplementary Materials). Under 

the experimental condition (500 C, 5 mbar O2), O2 barely adsorbed at the PI of S= (𝜃𝑆=  is 0.08), 

whereas the 𝜃𝑆//  was 0.31. The total O2 adsorption energies at the PI of S// and S= are -4.42 eV and 15 

-0.77 eV respectively, which caused S// to be 3.35 eV more stable than S= in such a condition. 

Similar results were obtained using a truncated-octahedral Au79 cluster as well (see the 

Supplementary Materials). When CO molecules were introduced, they consumed the O2 at 

interface (38). Direct effects of CO adsorption on the rotation could be excluded because CO does 

not prefer the perimeter site (39), but CO adsorbed on the Au NP could easily react with the O2 at 20 

the PI to form CO2 (Fig. S6) (39, 40). As the coverage of interfacial O2 molecules decreased, the 

stability of S// decreased and the Au NP rotated to S= (refer to Figs. 1 and 2). 
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Figure 3. Electronic structure analysis of the supported Au116 cluster with S= (A, C, and E) 

and S// (B, D, and F) configurations. (A-B) The side view of the theoretically identified S// and 

S= configurations of Au116/TiO2 (001). (C-D) Density of states of the supported Au116 cluster. (E-

F) Three-dimensional charge density difference of the supported Au clusters with isosurface 5 

value of 0.002 e/Bohr3, green for gaining electrons and blue for losing electrons.  

 

The density of states of the two configurations (Fig. 3, C and D) showed that occupied orbitals 

of Au at the Femi level upshifted toward the Femi level from Au116-S
= to Au116-S

//, so Au116-S
// 

would lose electrons more readily than Au116-S
= and would bond more strongly with O2. Charge-10 

density difference calculations also showed that the interfacial Au atoms of Au116-S
// lose more 

electrons than Au116-S
= (enlarged blue region in Fig. 3E-F). The Bader charge calculations also 

show the number of Au+ ions with larger positive charges (>0.1 e) at the interface are increased 

from 4 (S=) to 9 (S//). Previous studies have shown the Au+ sites can help the adsorption and 

activation of O2 at the PI (40). It explains why the S// can adsorb more O2 and also indicates a 15 

promoted catalytic activity could be realized by tuning PI with S//. 
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Figure 4. Manipulating Au-TiO2 (001) interface configurations through an environment 

dependent rotation. Side-view ETEM images show the structural evolution of the Au-TiO2 

(001) nanocatalyst (A and C, B is the snapshot between A and C) from a reactive environment 

[(A), total pressure: 4.4 mbar, VO2:VCO = 1:2)] to an oxygen environment [(C) 1 mbar]; (D and 5 

F, E is the snapshot between D and F) from an oxygen environment [(D) 4 mbar] to a reactive 

environment [(F), total pressure: 5 mbar, VO2:VCO = 1:3)]. The temperature is held at 500°C. (G 

to J) Top-view ETEM images show the structural evolution of the Au-TiO2 (001) nanocatalyst 

under different temperatures. (G, H) were acquired at 500°C [(G), reactive environment, total 

pressure: 5 mbar, (VO2:VCO = 1:2). (H), oxygen environment, total pressure: 5 mbar.]. (I and J) 10 

were acquired at 20°C [(I), oxygen environment, total pressure: 5 mbar. (J), reactive 

environment, total pressure: 5 mbar, VO2:VCO = 1:2)]. (J) was acquired after exposing under 

reactive environment for 25 min.  
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The discovery of NP rotation showed that the structure of an active interface could be controlled 

during catalytic reactions. As illustrated in Figs. 1 and 2, the tuning could be carried out by 

changing the reactive gas environments. To further confirm the tunability, we periodically stopped 

injecting CO during the CO oxidation reaction. Intriguingly, when we stopped injecting CO and 

reverted to an O2 environment (1 mbar; Fig. 4A acquired a few minutes after Fig. 1C), a reverse 5 

change from S= to S// was observed (Fig. 4, A to C). When the O2 pressure changed from 1 mbar 

(Fig. 4C) to 4 mbar, the interface structure showed no notable change (Fig. 4D). In Fig. 4, D to F, 

we again introduced CO, and rotation from S// to S= was observed again (the intermediate stages 

during the rotations are presented as Fig. 4, B and E, respectively). A typical rotation process was 

recorded in Movie S1 and more cases were shown in Figs. S7-S10. These results showed that the 10 

Au-TiO2 (001) interface dynamically responding to the external environment at high temperature 

was reversible.  

In order to exploit the promoted activity of the S// interface, it would be necessary to fix the 

interfacial configuration in the application. Additional top-view observations showed that the 

rotation of the Au NP in CO/O2 reactive environments was temperature dependent. Different from 15 

the reversible rotation behavior at 500 °C (Fig. 4, G and H, acquired after Fig. 2B), the rotation of 

Au NP caused by the gas environment change could be frozen by cooling to 20 °C. When the Au 

NP was cooled down from 500° to 20 °C (Fig. 4, H to I) in oxygen, the S// state was preserved.  At 

20 °C, CO injection did not induce the rotation of the Au NP and the S// state kept unchanged 

during the observation of 25 min (Fig. 4J) in CO/O2 reactive environments. These results indicate 20 

the S// configuration is fixed during low-temperature CO oxidation. After raising the temperature 

to 500 °C, the dynamic change between S// and S= was observed again. Thus, combining gas control 

and temperature control, the atomic level interface tunability was realized. These results indicate 
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various approaches towards the in situ control, which paves the way to the design of distinctive 

catalysts based on these approaches. 
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