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1.  Introduction
There are 57 permanent Global Navigation Satellite System (GNSS) stations placed on the bedrock along 
the periphery of the Greenland Ice Sheet (GrIS). This network of GNSS stations—known as GNET (Bevis 
et al., 2012; Khan et al., 2016)—provides point measurements of 3-D bedrock motion. Some of these stations 
have been in operation since 1995, providing a valuable data set for probing causal relationships between 
ice load and solid-Earth deformation over a range of timescales. Interannual, seasonal, or shorter timescale 
GNET signals are interpreted as an elastic response of the solid Earth to short-period surface mass changes 
in Greenland, including fluctuations in mass transport through outlet glaciers and atmospheric pressure 
variability (e.g., Adhikari et al., 2017; Bevis et al., 2012; Zhang et al., 2019). The bedrock uplift as measured 
by GNET is also shown to track the apparent acceleration of ice mass change that is ongoing in Greenland 
(Bevis et al., 2019). Geophysical interpretation of secular trends in vertical bedrock motion—henceforth 
termed “uplift rates”—is ambiguous (e.g., Khan et al., 2016; Milne et al., 2018; Simpson et al., 2011; van 
Dam et al., 2017). We seek to reduce this ambiguity through improved quantification of the relative con-
tributions of contemporary and past load changes to the measured uplift rates, especially those associated 
with the emergence of Greenland from the Little Ice Age (LIA).

Abstract  The observed crustal uplift rates in Greenland are caused by the combined response 
of the solid Earth to both ongoing and past surface mass changes. Existing elastic Earth models and 
Maxwell linear viscoelastic GIA (glacial isostatic adjustment) models together underpredict the observed 
uplift rates. These models do not capture the ongoing mantle deformation induced by significant ice 
melting since the Little Ice Age. Using a simple Earth model within a Bayesian framework, we show 
that this recent mass loss can explain the data-model misfits but only when a reduced mantle strength is 
considered. The inferred viscosity for sub-centennial timescale mantle deformation is roughly one order 
of magnitude smaller than the upper mantle viscosity inferred from GIA analysis of geological data. 
Reconciliation of geological sea-level and modern crustal motion data may require that the model effective 
viscosity be treated with greater sophistication than in the simple Maxwell rheological paradigm.

Plain Language Summary  There are 57 permanent Global Navigation Satellite System 
(GNSS) stations on bedrock in Greenland. These stations provide point-measurements of three-
dimensional crustal motion. We can model a large portion of the observed crustal uplift rates as elastic 
Earth response to ongoing rates of ice-mass loss. We model the remaining part of the uplift rates as 
the ongoing viscous response of the solid Earth to past ice-ocean mass exchange—a process termed 
glacial isostatic adjustment (GIA). Earth structure and deglaciation history in GIA models are usually 
constrained by geological data that record paleo sea level and past ice margins. To fully explain the GNSS-
measured uplift rates, we propose that these geologically constrained GIA models should additionally 
resolve: (a) ice-mass changes during and after the Little Ice Age; and (b) broadband mantle relaxation 
processes. While such features are challenging to implement, they offer a more granular model paradigm 
appropriate to the improved temporal sampling that the collective geological and geodetic data sets now 
provide.
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Figure 1a shows the uplift rates measured over 2011–2016, derived by fitting the daily GNET data with a 
linear trend featuring periodic seasonal signals. The measured uplift rates in Greenland is primarily driven 
by surface loading phenomena. Of prime importance is a climate-driven transport of ice and water mass 
between the continents and the ocean over a range of timescales. These include the ongoing mass loss from 
the GrIS and peripheral glaciers since the LIA maximum (Khan et al., 2020; Kjeldsen et al., 2015; Marzeion 
et al., 2015; Mouginot et al., 2019; The IMBIE Team, 2020), and the deglaciation of Greenland and nearby 
ice sheets during the Late Quaternary and Holocene and the associated change in relative sea-level (RSL) 
(e.g., Fleming & Lambeck, 2004; Lecavalier et al., 2014; Simpson et al., 2009; Tarasov et al., 2012; Tarasov 
& Peltier, 2002). The response of the solid Earth to these surface loads is typically modeled by consider-
ing elastic Earth deformation due to present-day surface mass changes and a delayed viscous response of 
the mantle induced by past load changes, a process referred to as glacial isostatic adjustment (GIA). The 

Figure 1.  Observed and modeled uplift rates and the residuals. (a) The positions of 57 Global Navigation Satellite System (GNSS) stations are shown with gray 
circles, whose size represents the average rate of crustal uplift, du dt/  , measured during 2011–2016. The background map shows the mean rate of ice thickness 
change, dH dt/  , during the same period. Following Kjeldsen et al. (2015), we outline seven regions for which the so-called glacial isostatic adjustment (GIA) 
corrections are estimated for GRACE and GRACE-FO missions (Table S1). Labels refer to north (N), northeast (NE), northwest (NW), central east (CE), 
central west (CW), southeast (SE) and southwest (SW). (b) Mean and (c) 1- E  uncertainty of elastic uplift rates induced by present-day ice thickness change. (d) 
Residual uplift rates at the GNSS stations, derived by subtracting the sum of the elastic and GIA uplift rates from the measured rates. The bars are based on the 
GIA solutions of Milne et al. (2018), and the maroon dots are based on the solutions of Lecavalier et al. (2014). Two stations located near Kangerlussuaq Glacier 
(gray circles in the right-side inset), whose residuals are shown with gray bars, are excluded from further analysis because their measurements are thought to be 
affected by the passage of the Icelandic hotspot (Khan et al., 2016), a feature not treated here.
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existing GIA models constrained by paleo RSL data generally do not fit the uplift rates corrected for the 
elastic loading effects (Khan et al., 2016; Milne et al., 2018; Simpson et al., 2011; van Dam et al., 2017).

Our main goal here is to better understand this general inconsistency between the observed and modeled 
uplift rates in Greenland through a closer examination of the model-predicted viscoelastic Earth deforma-
tion. We determine an improved elastic contribution by incorporating the present-day surface mass changes 
at kilometer-scale resolution and producing uncertainty estimates of both the surface load and the elastic 
Earth structure. We also develop an improved GIA model by considering ice mass changes since the Me-
dieval Warm Period (MWP) that preceded the LIA, which are either omitted or poorly represented in pre-
vious studies (e.g., Lecavalier et al., 2014; Milne et al., 2018; Peltier et al., 2015; Simpson et al., 2009; Wake 
et al., 2016).

2.  Elastic Uplift Rates
Satellite altimetry and gravimetry measurements have provided unprecedented constraints on the spatio-
temporal distribution of Greenland ice mass change over the past three decades (Mouginot et al., 2019; Sas-
gen et al., 2020; The IMBIE Team, 2020). CryoSat-2 measurements of surface elevation change are available 
at a kilometer-scale resolution. From these, we estimate that Greenland, including peripheral glaciers, has 
lost ice mass at an average rate of 237 47E   Gt/year between January 2011 and December 2016. We use the 
methods of Nilsson et al. (2016) to process the satellite altimetry data and apply an appropriate correction 
for firn air content to derive the ice-equivalent surface elevation change using the Regional Atmospheric 
Climate Model (RACMO) predictions (Noël et al., 2016). Figure 1a shows the spatial pattern of the rate of 
ice height change during 2011–2016. The modeled uplift rates at GNSS stations are sensitive to the spa-
tial structure of the surface mass changes (Adhikari et al., 2017). It is, therefore, essential to resolve these 
surface changes with a high level of spatial fidelity. For improved predictions of the elastic uplift, it is also 
important to consider contemporary mass changes in adjacent areas, especially those occurring in the Ca-
nadian Arctic where significant amount of ice has been lost recently (Wouters et al., 2019). Here we consid-
er the surface mass changes in the adjacent areas based on the Gravity Recovery and Climate Experiment 
(GRACE) data (Adhikari et al., 2019; Watkins et al., 2015). Rates of Greenland and adjacent mass changes 
and uncertainties therein are shown in Figure S1.

A seismologically constrained, radially stratified, 1-D Preliminary Reference Earth Model (PREM) (Dzie-
wonski & Anderson, 1981) has been the standard model for surface loading studies, although more realistic 
models based on considerably denser teleseismic ray sampling are available for the upper mantle and crust. 
Cammarano et al. (2005), for example, utilize seismic and mineral physics constraints to deduce 99 plausible 
1-D profiles for the upper mantle and transition zone from global seismic data. Similarly, Laske et al. (2013) 
provide a   1 1E  gridded global shallow elastic Earth structure resolving three sediment layers and three 
underlying layers of crystalline crust. These models are critical to regional loading studies, as they define 
short-wavelength features that may influence the predicted uplift rates. The Laske et al. (2013) inferences of 
both density and Poisson's ratio in Greenland, averaged over the upper 50 km of solid Earth, are each small-
er than corresponding values from PREM by several percent (Figure S2). We combine PREM with more 
recent upper mantle (Cammarano et al., 2005) and crustal (Laske et al., 2013) models to generate a total of 
640 1-D elastic Earth models. The model ensemble provides a better approximation of the regional elastic 
and density structure than PREM does. It also captures the uncertainties that can be propagated into mod-
eled uplift rates for Greenland. Given 1-D profiles of density and Lamé parameters, we solve a linear system 
of equations for the perturbations in motion and gravitation subjected to appropriate boundary conditions 
in order to calculate the so-called load Love numbers (Longman, 1962). We define corresponding Green's 
functions (Farrell, 1972) that can be convolved with surface loads to calculate the elastic bedrock motion 
(Adhikari et al., 2017). We perform benchmark experiments for PREM and compare them to our regionally 
adapted elastic Earth models, both in terms of Love numbers and the modeled uplift rates (Figure S2).

Our estimates of both the elastic uplift rates and uncertainties are shown in Figures 1b and 1c. On average, 
the Greenland crust experienced uplift during 2011–2016. The central east region, however, subsided at a 
small rate of 1  mm/year. The highest uplift rates are found along the ice margin and in the ablation zone 
and generally decrease toward both the ocean and inland, reflecting the spatial pattern of the measured 



Geophysical Research Letters

ADHIKARI ET AL.

10.1029/2021GL094040

4 of 11

ice thinning rates (Figure 1a). Mass changes in the adjacent regions contribute to uplift at a peak rate of 
1 mm/year in the northwest but are generally negligible elsewhere in Greenland (Figure S3). Our uncer-
tainty estimate combines those associated with both the surface load and elastic Earth structure. For ice 
thickness change, both measurement and instrument uncertainties are quantified (Nilsson et al., 2016), as 
well as those associated with the model-based estimate of firn air content (Noël et al., 2016). The uncertain-
ty in mass change in the adjacent areas is taken from Adhikari et al. (2019). We find that the solid Earth 
model uncertainty is generally smaller than the absolute bias in the modeled uplift rates relative to PREM 
and that the surface load, rather than the elastic Earth structure, is the dominant source of uncertainty in 
the modeled uplift rates (Figure S3).

3.  GIA and Residual Uplift Rates
Model reconstructions of Greenland and nearby ice sheets during the late Quaternary and Holocene are 
constrained by a suite of geological and geodetic data sets (e.g., Fleming & Lambeck,  2004; Lecavalier 
et al., 2014; Tarasov et al., 2012; Tarasov & Peltier, 2002). These reconstructions are often limited in spatial 
and temporal resolution, although high spatiotemporal reconstructions are becoming available at least for 
part of Greenland (Briner et al., 2020; Cuzzone et al., 2019). Of particular relevance to this study is that 
surface load changes on decadal to century timescales are not well captured in GIA models. Previous GIA 
modeling studies have generally utilized available RSL data in order to constrain solid Earth properties, 
especially the 1-D radial profile of mantle viscosity (e.g., Caron et al., 2018; Lambeck et al., 2014, 2017; Lau 
et al., 2016). While regional geophysical data reveal significant lateral variability in Earth structure beneath 
Greenland (Darbyshire et al., 2018; Pourpoint et al., 2018; Steffen et al., 2018), to our knowledge, no GIA 
studies have yet incorporated these constraints in 3-D Earth models. Milne et al. (2018) determined a small 
number of plausible 3-D Earth structures using constraints from global models of seismic velocity (Auer 
et al., 2014; French & Romanowicz, 2014; Ritsema et al., 2011; Schaeffer & Lebedev, 2013) and lithosphere 
thickness (Zhong et al., 2003; Conrad & Lithgow-Bertelloni, 2006) and investigated the impact of 3-D Earth 
structures on the modeled deglacial RSL changes and modern crustal uplift rates. The deglacial load model 
and the laterally averaged Earth structure considered by Milne et  al.  (2018) are the same as those con-
strained using geological records of ice extent and RSL (Lecavalier et al., 2014).

The modeled uplift rates and associated uncertainties from Milne et  al.  (2018) are shown in Figure  S4. 
These solutions account for part of the uncertainty associated with the lateral Earth structure and do not 
account for that associated with the deglaciation history. Large subsidence is predicted in southwest Green-
land owing to the mid to late Holocene ice-sheet readvance and the forebulge collapse associated with 
the North American ice sheets (Lecavalier et al., 2014 and references therein), while considerable uplift is 
predicted in the north. This pattern is also evident in 1-D model solutions (e.g., Simpson et al., 2011; The 
IMBIE Team, 2020; Wake et al., 2016), implying that GIA models for Greenland constrained by geological 
data sets are in broad agreement, at least, in terms of the spatial pattern of modeled uplift rates. We com-
bine the model output of Milne et al. (2018) with the improved elastic uplift rates (Section 2) and find large 
disagreement with the observed rates at virtually all GNET stations (Figure 1d). The average data-model 
misfit is 3.4 1.9E   mm/year, with relatively larger misfits in the central west and southeast Greenland. These 
residuals, which have also been reported in previous studies (Khan et al., 2016; Milne et al., 2018; Simpson 
et al., 2011; van Dam et al., 2017), are much larger than the observational uncertainty at most sites and 
therefore require an additional geophysical explanation. Following Simpson et al. (2011), we hypothesize 
that the ongoing solid Earth response to the post-MWP load changes, especially the post-LIA mass loss, 
explains the residual uplift rates (Figure 1d). Despite the significant amount of mass being lost from Green-
land over the past ∼150 years (Khan et al., 2020; Kjeldsen et al., 2015; Marzeion et al., 2015), this recent 
deglaciation sequence is generally not accurately accounted for in ice sheet reconstructions tuned to geo-
logical RSL observations.
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4.  Post-MWP Loading and Solid Earth Response
Kjeldsen et al. (2015) provide a reconstruction of the post-LIA mass balance of the GrIS by investigating 
digital elevation models based on aerial imagery and historical maps with remarkable detail along much of 
the ice sheet periphery. They also utilize modern geodetic measurements of airborne and satellite altimetry 
to estimate ice sheet mass balance during the periods 1983–2003 and 2003–2010. The historical mass bal-
ance of Greenland peripheral glaciers has been modeled based on reconstructed climate data and found to 
be consistent with observations of glacier mass balance and ice volume change (Marzeion et al., 2015). This 
reconstruction reveals that more than three-quarters of total glacier mass loss since the LIA occurred during 
1925–1965 (Figure S5). We combine the ice sheet and peripheral glacier data to construct a time series of the 
post-LIA ice thickness anomaly, relative to AD 2016, assuming linear changes in thickness over the periods: 
LIA-1925, 1925–1965, 1965–1983, 1983–2003, 2003–2011, and 2011–2016 (Figure 2). As the spatial pattern 

Figure 2.  Post-Medieval Warm Period (MWP) loading history considered in our Bayesian exploration. (a) Summary of ice load history and uncertainty therein. 
Free parameters 1 and 2 (shown with vertical shadows) determine the inception and termination timing of the Little Ice Age (LIA), respectively, and parameters 
3 and 4 (horizontal shadows) are related to the amplitude of the mass anomaly during the LIA and MWP, respectively. A priori likelihood is imposed for 
parameters 2 and 3; black and red Gaussian functions show, respectively, the prior and (normalized) posterior probabilities. (b) A zoom-in of the loading history 
over the past 170 years. (c–e) Spatial distribution of ice thickness anomaly, relative to AD 2016, at select times: during the LIA maximum, at AD 1983 and 2003, 
respectively.
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of glacier mass evolution is not available, we distribute the mass anomaly (Marzeion et al., 2015) uniformly 
over the present-day glacier surface area as defined in the Randolph Glacier Inventory version 5.0 (Pfeffer 
et al., 2014). To encompass the entirety of the LIA period in our load model, we extend the loading history 
back to the preceding MWP (to be discussed later) whose median year is assumed to be AD 1000 (Figure 2a).

We explore the contribution of this recent loading sequence to present-day uplift rates with the aim of ex-
plaining the relatively large data-model misfits in question. GIA modeling approaches generally tune the 
viscosity structure of the mantle in order to fit geological data sets, especially the globally distributed paleo-
RSL data that span the past ∼20,000 years. In Greenland, inferred values for the upper mantle viscosity are 
on the order of  205 10E   Pa s (Fleming & Lambeck, 2004; Lecavalier et al., 2014; Simpson et al., 2009). For 
this value of mantle viscosity, the post-MWP mass changes (Figure 2) yield present-day uplift rates at the 
sub-millimeter per year level (Figure S6). We have also explored the influence of lateral variations in litho-
spheric thickness and sub-lithosphere viscosity structure using a subset of the models considered by Milne 
et al. (2018). Specifically, we generated results based on the seismic models S40RTS (Ritsema et al., 2011) 
and SL2013sv (Schaeffer & Lebedev, 2013) and the lithospheric thickness model of Zhong et al. (2003). We 
find that the impact of these lateral heterogeneity models on the predicted post-MWP signal is generally 
insignificantly different, except for a few stations in the central east where the effect of the Icelandic hot 
plume is well documented (Figure  S7). We conclude that including a geologically-constrained viscosity 
structure, with or without lateral heterogeneity, does not result in uplift rates associated with the post-MWP 
loading that are large enough to explain the data-model misfits.

We therefore postulate the importance of alternative mantle relaxation processes that are either governed 
by inherently transient rheology (Ivins et al., 2020; Lau et al., 2020) or by non-linear stress-dependent rhe-
ology (Blank et al., 2021). Such enhancement of the relaxation process acts to lower the effective viscosity 
on timescales of decades to centuries and thus produce more rapid uplift rates for post-MWP mass changes. 
To a first approximation, the possibility of reduced mantle strength can be tested using any Maxwell model 
(e.g., Barletta et al., 2018; Nield et al., 2014). Here we consider an incompressible half-space Earth defor-
mation model with an elastic lithosphere over a Maxwell mantle rheology (Adhikari et al., 2014; Ivins & 
James, 1999), which places an upper bound on the effective viscosity reduction required to reconcile RSL 
and GNSS data sets (to be discussed later). As we explore model parameter tradeoffs within the formal 
Bayesian framework, the consideration of more comprehensive Earth models (both in terms of rheology 
and spatial structure) is not feasible due to the associated computational burden. Here, we independently 
vary a total of six parameters within their respective plausible ranges: lithosphere thickness, mantle viscos-
ity, and four parameters related to the deglaciation history (Figure 2a). The latter set of parameters include 
(a) LIA inception time; (b) LIA termination time; (c) amplitude of the mass anomaly during LIA; and (d) 
amplitude of the mass anomaly during the MWP.

The duration and timing of the LIA can vary considerably from glacier to glacier, even within the same fjord 
system. For example, in Nuuk fjord in southwest Greenland, the marine-terminating Kangiata Nunaata 
Sermia was at its LIA maximum extent at 1761 and had already retreated ∼5 km by 1808 (Lea et al., 2014), 
while the nearby Narsap Sermia remained close to its LIA maximum extent until as late as the early 2000s 
(Motyka et al., 2017). Due to a lack of such a comprehensive record for many glaciers, it is not feasible to 
consider glacier-specific timings of the LIA. Several lines of evidence based on geological, archeological, 
lake sediment, and ice core studies suggest that most of the Greenland glaciers advanced to their maximum 
extents sometime in the period 1400–1900 (e.g., Fischer et al., 1998; Grove, 1988; Kelly & Lowell, 2009; 
Larsen et al., 2015; Woodroffe et al., 2017). While the LIA inception time is relatively uncertain, which we 
consider here to vary between 1350 and 1500, the termination time is generally better constrained through 
a combination of above-noted data sets. In various sectors of Greenland, glaciers began a retreat from their 
respective maximum extents at various times, roughly centered around 1850–1900. For example, Jakob-
shavn Isbræ in the central west began to retreat from its maximum extent before 1850 (Briner et al., 2011; 
Khan et al., 2015), while Helheim and Kangerdlugssuaq glaciers in the southeast began to retreat since 
∼1930 (Khan et al., 2014). We consider this parameter (i.e., termination time) to vary with a Gaussian prior 
centered at AD 1875 having a standard deviation of 50 years. Due to modern geodetic measurements and 
modeling capabilities, the ice thickness change since 1983 has been quantified with relatively little ambigu-
ity. The ice thickness anomaly during the LIA has relatively large uncertainty. A total of 14,862 3,758E   Gt 
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of LIA mass anomaly is estimated for the GrIS and peripheral glaciers (Kjeldsen et  al.,  2015; Marzeion 
et al., 2015). We consider this parameter to vary with a Gaussian prior estimate. We assume that the ice 
thickness, and by inference the mass, does not evolve during the LIA. Finally, we bound the MWP ice mass 
to be no less than the present-day value and no more than that during the LIA (Figure 2a).

We simulate an ensemble of 3,000 1-D viscoelastic Earth model simulations. Each model considers a unique 
ice load history and solid Earth parameters sampled by a simulated annealing algorithm (Caron et al., 2018). 
Based on the predicted uplift rates, we construct a misfit function for each model as follows




 ,i i
i

i

m dJ� (1)

where iE m  and iE d  are the model prediction and the target value (i.e., the residual uplift rate) at the  -th GNSS 
station, respectively, and  iE  is the associated data uncertainty. We have a total of data 55E N  constraining data 
points (Figure 1d). We construct the model likelihood function, E L , as follows
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which represents the likelihood of a given model to explain the target uplift rates and, hence, serves as a 
weighting factor in our statistics of the model parameters and the predicted uplift rates. Given a multivari-
ate Gaussian prior, the posterior probability, E p , that updates our prior state of knowledge with information 
gained during the inversion (i.e., the likelihood function) is given by
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Here E x is the row vector of parameter values that have Gaussian priors (see Figure 2a), E μ is the correspond-
ing vector of prescribed parameter means, and E E is the covariance matrix. We assume these parameters to 
be independent of one another, or, in other words, with correlation coefficients equal to zero.

Posterior probability density functions (PDFs) projected into 2-D spaces formed by each pair of parameters 
are shown in Figure S8. We find that our solutions are insensitive to two of the most uncertain parameters: 
the MWP ice mass anomaly and the LIA inception time. The solution is relatively weakly dependent on 
the lithosphere thickness, although it has a slight trade-off with mantle viscosity. Posterior statistics of the 
LIA mass anomaly (  14,860 2,670E   Gt) and the termination time (AD 1865 30E  ) are not much different 
from those of the prior PDFs in terms of their means, although they exhibit reduced variance in both cases. 
One feature that stands out in the posterior PDFs is the correlation between the LIA mass anomaly and the 
mantle viscosity. Models with larger LIA mass anomaly perform better when the mantle viscosity is also 
larger. Given our knowledge of the LIA mass anomaly and its uncertainty (Kjeldsen et al., 2015; Marzeion 
et al., 2015), we find the preferred mantle viscosity to be in the range of   196 11 10E   Pa s, which is smaller 
than the local upper mantle viscosity inferred in Greenland GIA studies by a factor of 4–8 (Fleming & Lam-
beck, 2004; Lecavalier et al., 2014; Simpson et al., 2009). Had our Earth structure model included increases 
in viscosity with depth, our preferred values for the asthenospheric environment would be even lower. 
Indeed, a 3-layer spherical Earth model featuring a 120-km thick lithosphere and  212 10E   Pa s lower mantle 
viscosity (Lecavalier et al., 2014) yields the upper mantle viscosity value of  193 10E   Pa s (Figure S9).

5.  Improved GIA Uplift Rates
Figures 3a and 3b show the expected uplift rates and associated uncertainties that are attributable to the 
post-MWP load changes. Large uplift rates of order 3–5 mm/year are predicted along the coastal margins 
in the west and southeast. While at many GNET stations our predictions are within 1- E  uncertainties of 
target values, there are a few stations where we fail to predict the uplift rates even within 3- E  uncertainties 
(Figure S10). Our attempt to vary regional deglaciation history independently (see Figure 1a for the region-
al outline) does not reduce the misfit. A more granular deglaciation history than is presented here might 
be possible as the constraining data are improved (e.g., Briner et al., 2020). Furthermore, we have hardly 
exhausted the full list of additional complexities to invoke in the underlying constitutive approximations 
governing the deforming solid Earth (e.g., Blank et al., 2021; Ivins et al., 2020; Lau & Holtzman, 2019). One 
result, nevertheless, is inescapable: incorporation of the post-MWP load model coupled to an upper mantle 
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of reduced creep strength compared to values found in previous GIA studies substantially improves the 
overall GNSS data fit (compare Figure 3c vs. Figure 3d).

Our uplift rates associated with the post-MWP loading (Figures 3a–3b) are combined with the deglacial 
uplift rates (Figure S4) to give a comprehensive picture of the ongoing (viscous) solid Earth deformation 
induced by past load changes (Figure S11). The combined uplift rate—termed “improved” GIA uplift rate—
at the KULU station in southeast Greenland is 4.71 0.93E   mm/year, which is consistent with the estimate 
of van Dam et al. (2017) who deduce the corresponding uplift rate to be 4.49 1.44E   mm/year from GNSS 
and absolute gravity data. The agreement is important as the data combination method used by van Dam 
et al. (2017) uniquely isolates the relative contributions of contemporary (elastic) and past (viscous) load 
changes to the GNSS rate.

The improved GIA uplift rates have ramifications for reinterpreting ice-sheet mass balance from space 
gravimetry. For example, a recent reanalysis of the first three years of the GRACE mission data (2002–2005) 
determined mass balance during that period at roughly 180  Gt/year (Velicogna et al., 2020). The improved 
GIA correction developed here increases that estimate by more than 10E  % to near 200  Gt/year (Table S1). 
The increase is due to the more robust GIA-related positive trend in geoid change—primarily owing to the 
post-LIA ice mass loss and associated sub-centennial timescale mantle deformation—and is consistent with 
the estimates of Khan et al. (2016) and Sasgen et al. (2020) who provide direct GNSS constraints to their 
respective GIA models.

6.  Conclusions
Previous efforts to explain the modern crustal uplift rates in Greenland have considered the elastic response 
of solid Earth to contemporary surface mass changes and the viscous deformation of mantle induced by de-
glaciation of Greenland and nearby ice sheets during the Late Pleistocene and Holocene (Khan et al., 2016; 
Milne et al., 2018). What has been missing in these studies is the consideration of the ongoing solid Earth 

Figure 3.  Crustal uplift rates due to the post-Medieval Warm Period (MWP) loading and improvements to Global Navigation Satellite System (GNSS) data 
fit. (a) Expected uplift rates due to the post-MWP loading history and (b) associated uncertainties inferred from our Bayesian analysis. (c) The summed elastic 
(Section 2) and glacial isostatic adjustment uplift rates (Section 3) plotted against the measured GNSS uplift rates at 55 GNET stations. (d) Same as c but after 
adding the post-MWP load induced uplift rates to the modeled rates. Notice the improvement to data fit and an overall reduction in data variance.
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response to more recent mass loss following the Little Ice Age (Kjeldsen et al., 2015; Simpson et al., 2011). 
Here we show that the consideration of this recent loading history results in uplift rates that are sufficient 
to explain the majority of data-model misfits but only when a relatively reduced mantle strength is consid-
ered. The viscosity for sub-centennial timescale mantle deformation resolved by our constraining data is 
roughly one order of magnitude smaller than the upper mantle viscosity typically inferred in GIA analysis 
of relative sea-level data. Future glacial loading studies should, therefore, consider a more comprehensive 
than the Maxwell mantle rheological model that captures mantle relaxation across a range of timescales 
(Blank et al., 2021; Caron et al., 2017; Ivins et al., 2020; Lau et al., 2020; Lau & Holtzman, 2019). Laboratory 
experiments of rock creep at high temperature and pressure environments (e.g., Faul & Jackson, 2015; Kohl-
stedt & Hansen, 2015) and recent studies of post-seismic mantle flow (e.g., Liu et al., 2020; Muto et al., 2019; 
Pollitz, 2019) suggest the necessity of considering such higher-order constitutive relations.

Data Availability Statement
The authors use an open-source software package Ice-sheet and Sea-level System Model (ISSM; https://
issm.jpl.nasa.gov/) to compute the elastic and post-MWP uplift rates. Earth models, associated Love num-
bers, and modeled uplift rates are stored and visualized at JPL's Virtual Earth System Laboratory (https://
vesl.jpl.nasa.gov/visualizations/solid-earth/greenland-crustal-motion/).
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