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Feasibility of using smart meter water consumption data

and in-sewer flow observations for sewer system

analysis: a case study

N. S. V. Lund , J. K. Kirstein , H. Madsen, O. Mark,

P. S. Mikkelsen and M. Borup
ABSTRACT
Globally, smart meters measuring the water consumption with a high temporal resolution at

consumers’ households are deployed at an increasing rate. In addition to their use for billing or leak

detection purposes, smart meters may provide detailed knowledge of the wastewater inflow to the

sewer systems in space and time and open up new types of system analyses aimed at closing the

urban water balance. In this study, we first validate the smart meter data against other, independent

water distribution data. Subsequently, we use a detailed hydrodynamic sewer system model to link

the smart meter data from almost 2,000 consumers with in-sewer flow observations in order to

simulate the wastewater component of the dry weather flow (DWF) and to identify potential

anomalies. Results show that it is feasible to use smart meter data as input to a distributed urban

drainage model, as the temporal dynamics of the model results and in-sewer flow observations

match well. Furthermore, the study suggests that in-sewer flow observations may be subject to

unrecognised uncertainties, which make them unsuitable for advanced investigations of the DWF

composition, and this underlines the necessity of collecting data from independent sources.

The study also exemplifies that digital system integration in the water sector may be complicated.

However, overcoming these obstacles may improve both offline and real-time urban drainage

management.

Key words | anomaly detection, distributed model, dry weather flow, smart meters, urban drainage,

wastewater flow
HIGHLIGHTS

• Smart meter-simulated wastewater flow is a valuable step towards closing the water balance in

urban drainage systems.

• Coupling between independent data sources opens up enhanced anomaly detection; here the

discovery of potentially erroneous in-sewer observations.

• It can be tedious to gain access to data and models as these may be stored in different silos, but

the effort is worthwhile.
This is an Open Access article distributed under the terms of the Creative

Commons Attribution Licence (CC BY 4.0), which permits copying,

adaptation and redistribution, provided the original work is properly cited

(http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION
The dry weather flow (DWF) describes the flow in the sewer

system during periods without rain. This flow consists of

wastewater from, for example, households, industry and

institutions, as well as groundwater infiltration and rain-

induced infiltration into the sewer that can take place for

days and weeks after the end of a rain event due to the

long transportation time of the stormwater through soil.

Accurate knowledge of the sources of DWF as well as an

estimation of its spatial distribution can be used for a wide

range of management objectives:

- Estimation of total suspended solids, chemical oxygen

demand, organic matter, drugs and nitrogenous pollution

loads if the DWF estimation is supported by compound

measurements or estimations for different consumer

types (Métadier & Bertrand-Krajewski ; Schilperoort

et al. ; Plósz et al. ).

- Optimised dimensioning (Cole & Stewart ) and oper-

ation (Brito et al. ) of sewer systems including

control during dry weather with focus on energy minimis-

ation and minimisation of sewer overflow during rain

events. This could both be based on water quantities and

estimated water quality, cf. the first bullet. Both types of

control may be carried out using model predictive control

(Lund et al. ).

- Optimised dimensioning and operation of wastewater treat-

ment plants (WWTPs) (for example, chemical dosing) by

knowing how much of the inflow to the plant originates

from households, from industry and from groundwater,

since these fractions will determine the expected pollutant

concentrations (Nguyen et al. ), cf. the first bullet.

- Asset management (Djebbar & Kadota ; Brito et al.

) based on, for example, knowledge of leaking sewer

pipes.

- Improved heat recovery from sewage systems (for

example, Abdel-Aal et al. ) and better planning of

decentralised wastewater reuse (Elías-Maxil et al. )

by using the estimation of the wastewater flow distribution

to pinpoint optimal heat pump locations and optimal

wastewater reuse locations, respectively.
om http://iwaponline.com/jh/article-pdf/23/4/795/910089/jh0230795.pdf
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In residential areas, the wastewater flow is dominated by

the citizens’ behaviour. In upstream parts of the system or in

small systems, the flow is intermittent (i.e. occurring at irre-

gular intervals) and the detailed flow dynamics may not be

captured if too large a sampling interval is used (Butler &

Graham ; Elías-Maxil et al. ). The DWF of smaller

areas is thus, in general, more difficult to estimate (Djebbar

& Kadota ). Further downstream, the aggregation of

different dynamic inputs from many small upstream sources

results in a change in the nature of the wastewater flow,

which forms a less dynamic pattern (Butler & Graham

). The DWF from a catchment has previously been

studied by a range of authors. For example, Métadier &

Bertrand-Krajewski () analysed DWF data and recog-

nised different flow patterns depending on the weekday

and date, but also found a relatively large variation within

each pattern; Djebbar & Kadota () estimated DWF

peaks and average DWF using a neural network model

based on the land use and population; and Brito et al.

() fitted a partial least-squares model to DWF data to

estimate the DWF in situations with missing data. All of

these methods may be used to establish DWF patterns but

will not give a real-time picture of the DWF. Such real-

time information could be obtained from in-sewer measure-

ments, but flow sensors are often scarcely distributed, since

it is both expensive and impractical to cover a large urban

drainage system (Djebbar & Kadota ). Highly spatially

distributed real-time DWF information is therefore currently

not realistic to obtain using only in-sewer observations.

Water supply and urban drainage systems are intrinsi-

cally linked, since most of the consumed water ends up in

the sewer system. The wastewater flow can thus be approxi-

mated by estimating the water consumption. Butler &

Graham () and Elías-Maxil et al. () used a question-

naire and a probabilistic model to estimate the water

consumption. Both studies subsequently modelled the result-

ing flow in the sewer system to obtain a spatial and temporal

distribution of the wastewater flow. However, these methods

only provide generalised flow patterns. Contrarily, smart

meters measure the real-time water consumption in each
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household every hour or more frequently, and are increas-

ingly implemented as part of the digitalisation of the water

sector, mainly for billing and leakage detection purposes

(Boyle et al. ; Monks et al. ). Data collected from

the water supply system should be pre-processed before use

including validation and re-estimation of missing and invalid

data (Kirstein et al. ). After this, the smart meter data can

potentially be used to estimate the wastewater flow with a

high spatial and temporal resolution. Furthermore, knowl-

edge of the wastewater flow component can, in comparison

with in-sewer flow data, be used to estimate the addition or

loss of water through infiltration and exfiltration and thus

contribute to closing the water balance of the urban drainage

system. The concept of applying smart meter data to estimate

wastewater flows has been mentioned in the recent literature

(Cole & Stewart ; Nguyen et al. ; Monks et al. ).

Zhang et al. () used a combination of pressure and flow

data from the water distribution system, smart meter data

and a water distribution network model to successfully link

water consumption with sewage flow. In this effort, they

scaled the water consumption based on the sewage flow

observations and thus did not take, for example, infiltra-

tion/exfiltration and the uncertainty of flow measurements

into account.

This study investigates the hypothesis that smart meter

consumption data can be used directly to estimate the mag-

nitude, timing and spatial distribution of wastewater flow,

without the need of a water distribution network model.

This hypothesis is tested using data from the city of Elsinore,

Denmark. We validate the smart meter data by comparing

the data with observations from the waterworks outlet,

observations from the WWTP inlet, and annual water con-

sumption data from a year prior to the installation of

smart meters. The smart meter data are also routed through

a 1D hydrodynamic urban drainage model for simulating

the flow dynamics. We compare the smart meter data and

the simulated flow to in-sewer flow measurements from five

locations in Elsinore city centre. This comparison forms the

basis for assessing anomalies, including unreliable data and

other DWF components than wastewater. The comparison

is undertaken by using both quantitative methods and logical

reasoning to evaluate the wide range of possible sources of

uncertainty that arise when employing large amounts of

data in a real full-scale urban catchment study.
://iwaponline.com/jh/article-pdf/23/4/795/910089/jh0230795.pdf
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CASE STUDY AREA

The city of Elsinore, Denmark, is located 30 km north of

Copenhagen and has 47,000 inhabitants. It covers an area

of 18 km2 and has a dense medieval centre, surrounded by

suburbs developed mainly in the period 1930–1970. The

potable water is supplied by four waterworks and the city

contains one water tower. The drainage system is predomi-

nantly a combined system that leads most of the water to a

centralised WWTP. The average yearly precipitation in the

city is 670 mm. The upstream parts of the city have a low

degree of imperviousness (20–40%), whereas the down-

stream part containing the city centre is more paved

(imperviousness of 60–80%). The utility company has

installed permanent smart meters in all the consumers’

homes, and in-sewer sensors have been installed for a tem-

porary monitoring campaign in the sewer system, which

enables the type of investigations performed in this study.

Table 1 explains the main characteristics of the wide range

of different data sources that form the basis for this study,

which focuses on three week-long periods in October and

November 2018 and February 2019.
Data from the water supply system

Around 19,000 MULTICAL21 smart meters with a temporal

resolution of 1 h and a measurement uncertainty of up to

±5% (Kamstrup ) are permanently installed in house-

holds and industries for billing purposes (Figure 1). In the

urban area, the meters are placed inside the households.

The smart meters cover the entire city, except 14 consumers

who still have manually read meters. There are no unme-

tered consumers. Around 2,000 of these smart meters are

situated in the catchment upstream of the in-sewer sensors

(Figure 1), which is the main area of interest in this study.

Contractor 1 undertook the installation of the smart

meters and provided data from three separate weeks in

2018 and 2019 (Table 1). The raw smart meter data are

accumulated volume readings. Due to the various data

transmission and collection mechanisms of smart meter

data, the raw data arrive at non-uniformly distributed time

steps (for example, Kirstein et al. ). Contractor 1 filled

the data gaps primarily using linear interpolation to obtain



Table 1 | Information about applied data sets

Data
Temporal
resolution

No. of
sensors

Declared
uncertainty Provider Period 1 Period 2 Period 3

Smart meter data hour 1,970a ±5% Contractor 1 8–14 October
2018

19–25 November
2018b

23 February–1
March 2019

Water consumption from 2012 year 2,075a ±2% Contractor 2 2012 – –

Waterworks outflow data hour 4 <± 5% Utility
Elsinore

11 October
2018

18 November
2018

23 February
2019

In-sewer
flow

Data 2 min 5 ±12% Contractor 4 8–14 October
2018

19–25 November
2018

23 February–1
March 2019

Latest calibration EU – – – Contractor 4 2 October
2018

6 November
2018

4 January 2019

Latest calibration WU – – – Contractor 4 6 September
2018

6 September
2018

14 January
2019

Latest calibration ED – – – Contractor 4 19 September
2018

16 November
2018

29 January
2019

Latest calibration CD – – – Contractor 4 6 September
2018

6 September
2018

14 January
2019

Latest calibration WD – – – Contractor 4 23 August
2018

7 November
2018

29 January
2019

WWTP
inflow
data

Data day 1 ±10 m3/h Utility
Elsinore

8–14 October
2018

19–25 November
2018

23 February–1
March 2019

Latest calibration – – – – March 2018

Last day with rain before each
period

– – – SVK data 7 October
2018

14 November
2018

21 February
2019

WWTP, WasteWater Treatment Plant; SVK, SpildeVandsKomiteen. EU, WU, ED, CD and WD are abbreviations for sensor locations and their upstream catchments.
aupstream of the in-sewer flow sensors; bthere is also additional smart meter data from November 18.
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a uniform interval between flow values of 1 h. Kirstein et al.

() showed that this interpolation procedure sufficiently

represents the total consumption within an area as long as

a great proportion of the individual consumers’ raw smart

meter data are not missing and if the raw data resolution

is less than 2 h. Contractor 1 furthermore reported the qual-

ity of the data. The time periods in Table 1 were selected

based on the availability of good quality data in periods

without rainfall creating direct runoff in the sewer system.

Hourly outflow data from the four waterworks supplying

clean water to the city were obtained from MAGFLOW

flowmeters type MAG3100 Water with an uncertainty of

less than 5% (Siemens ) for specific days in each time

period (Table 1). The utility estimated one of the waterwork

outlets and the outlet from the water tower based on other

observation points, meaning that the actual uncertainty is

higher than the declared uncertainty for the instruments.

Furthermore, Contractor 2, who maintains the utility’s

hydraulic water distribution network model, provided a

database with the annual water consumption readings for
om http://iwaponline.com/jh/article-pdf/23/4/795/910089/jh0230795.pdf
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each individual consumer in Elsinore from 1 January to 31

December 2012. This database contains readings from

manually read water meters (read once a year for billing pur-

poses) and is the newest available independent source of

water consumption data from before smart meters were

installed in Elsinore. In Denmark, it is legally required

that each consumer has a water meter at home, and these

meters are owned by the utility that performs random con-

trol samples to ensure that the meters provide accurate

and unbiased readings. The high Danish water price

means that most people and the utility are very aware of

large changes in the water bills, which further increases

the credibility of the consumption data. The 2012 data

have a declared uncertainty of ±2% and are thus the best

estimation of the annual water consumption we can get

that is independent of the smart meters.

Additionally, the utility provided the total amount of dis-

tributed drinking water per year in 2012 and 2018 and per

month in 2018 and 2019. The utility also provided a list of

known pipe bursts in the three time periods.



Figure 1 | Map of part of Elsinore, Denmark, showing smart meters, the sewer system, five in-sewer flow observation locations with related sub-catchments (sub-divided into 111 smaller

groups for smart meter aggregation), the WWTP and the catchment discharging water to the WWTP. The flow between the sub-catchments in the sewer system is displayed in

the lower left corner. EU, ED, CD, WU and WD contain 1,558, 64, 214, 45 and 134 meters, respectively. The extent of the urban drainage system and water supply system goes

beyond what is shown in the figure.
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Data from the urban drainage system

Utility Elsinore has divided the city into wastewater catch-

ments depending on the layout of the sewer system. These

catchments, together with asset data, are described in the

municipal wastewater plans, which in detail explain how

wastewater and rainwater flows are and will be managed.

The asset data have been used as the basis for a detailed

1D hydrodynamic model of the sewer system, which is con-

structed in MIKE URBAN and maintained by Contractor 3.

Contractor 4 installed level and velocity sensors in Elsi-

nore city centre, as part of a measurement campaign

running from May 2018 to June 2019, in order to obtain

data for calibration of the model. The sensors were installed

at five locations: East Upstream (EU), East Downstream

(ED), Central Downstream (CD), West Upstream (WU)

and West Downstream (WD) (Figure 1). These abbrevi-

ations will be used both to refer to the sensor locations

and to their upstream catchments. The level and velocity
://iwaponline.com/jh/article-pdf/23/4/795/910089/jh0230795.pdf
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observations stem from pressure and Doppler sensors,

respectively. The uncertainty of the resulting flow data for

the given sensors is estimated to be around ±12% (Franck,

T. 2019, Personal Communication, BlueNorth). Two of

each sensor types were installed at each of the five locations

to ensure that data were present even in case of failure as

well as for validation purposes. The contractor also com-

bined the level and velocity data with the geometry of the

pipes (multiplying the velocity with the wetted area based

on the geometry) to obtain flow observations. The pipes

are circular in four of the locations (WU, ED, CD and

WD), while one location has an egg-shaped geometry (EU).

Daily inflow data were also available for the WWTP

(Table 1). These were aggregated from an ultrasound inlet

flow sensor with an uncertainty of ±10 m3/h (Laursen,

B. 2019, Personal Communication, Utility Elsinore).

Furthermore, the utility and Contractor 4 provided infor-

mation on last calibration dates for the WWTP inlet

sensor and the in-sewer sensors, respectively (see Table 1).
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METHODS

Extraction of smart meter consumption data

Utility Elsinore supplied data from 18,804 meters, of which

18,449 were georeferenced. About 338 of the remaining

355 meters were successfully referenced using the QGIS

tool ‘MMQGIS’. We manually verified that the 17 non-refer-

enced meters are located outside the upstream area of the in-

sewer sensors and thus outside the main area of interest. Due

to the general data protection regulation, we could not obtain

water consumption data on household level for the 18,787

georeferenced meters, and they should thus be aggregated

into groups. It is important that all smart meters within a

group discharge water to the same part of the sewer system.

Thus, we initially based the groups on the catchments from

the Elsinore wastewater plans. 20% of the 18,787 meters

were discarded because they did not discharge wastewater

to the WWTP used in this study, leaving 15,011 meters. It

was important to get an accurate description of the flow

dynamics in the area upstream from the in-sewer sensors,

and we therefore further manually sub-divided the groups

in this area from 19 groups in the wastewater plans to 111

groups with a total of 2,015 meters and between 2 and 38

meters in each group (see the group divisions in Figure 1).

This division was based on the general flow paths in the

sewer system (described by the asset database). The overall

result was 15,011 meters distributed in 245 groups containing

each up to 869 meters.

We provided a list with the meters in each group to Con-

tractor 1 who returned the aggregated smart meter water

consumption for each group in hourly time steps. 2.4% of

the 15,011 meters were missing in the files provided by the

contractor, of which 45 were located in the area upstream

of the in-sewer sensors. These meters were missing because

they had either not yet been replaced with smart meters

(which are at most 14 meters) or because they were older

meters no longer in use. The total water consumption for

these 45 meters was estimated to be around 9,500 m3 in

2018 (corresponding to a yearly average of 0.3 L/s), which

is less than 2% of the water consumption in the area. The

final result included 14,694 smart meters in 245 groups, of

which 1,970 smart meters belonged to the 111 groups in

the area upstream of the in-sewer sensors.
om http://iwaponline.com/jh/article-pdf/23/4/795/910089/jh0230795.pdf
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Furthermore, Contractor 1 returned the aggregated con-

sumption data from all smart meters receiving water from

the Elsinore Waterworks.

Summed smart meter data

We calculated the summed smart meter data for each of the

five in-sewer sensor sub-catchments, QSM,loc, by summing

the smart meter consumption, QSM,loc,i, of the N,loc

groups belonging to these sub-catchments at all time steps, t:

QSM,loc(t) ¼
XN,loc

i

QSM,loc,i(t) (1)

Simulated wastewater flow

The applied MIKE URBAN model (supplied by Contractor

3) simulates the flow in the sewer system pipes by solving

the full 1D Saint-Venant equations. It can furthermore simu-

late the behaviour and flows through the most important

structures and elements in the system such as basins, over-

flow weirs, pumps and gates. The typical application for

this sort of model is to simulate stormwater flows to assess

the hydraulic capacity of the system, but it is also capable

of simulating flows under dry weather conditions, as in this

study. The applied model has a drainage area of 386 ha and

contains 1,959 nodes of which seven are basins, as well as

1,986 links, 30 pumps, 33weirs and one orifice. All asset attri-

butes have been derived from physical properties, such as

pipe lengths, slopes and pipe materials. There are no other

water sources included in the model than the wastewater

flow, which in this study is taken directly from smart meter

data. During dry weather, none of the overflows are activated

and the only sink is thus the WWTP. The model is thus well

suited for routing the wastewater from the consumers to the

WWTP and thereby taking into account the time dynamics of

the system. These time dynamics have not been calibrated for

the dry weather situation.

To simulate the wastewater flow, Qsim, with the MIKE

URBAN model, we identified the model entry (boundary)

node for each of the 245 smart meter groups. The aggregation

of a set of smart meters into one group will cause some water

consumption to be delayed and some to arrive too fast to the

sewer system, depending on the consumers’ distance to the
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entry node in the sewer systemmodel. Thus, we decided to add

the aggregated smart meter data to the node in the model that

was closest to the geometrical centre of each group. The error

introduced here will be in the form of a time displacement of

the wastewater inflow, and the magnitude of this error is

expected to be minor due to the limited size of the smart

meter groups. We found the node nearest to the centre of the

shape of each group with the Distance Matrix tool in QGIS.

TheM1DAPI (DHI ) inC#was hereafter employed to auto-

matically use the 245 water consumption time series files as

boundary conditions for the 245 localised entry nodes in the

MIKE URBAN model. Hereafter, we used C# to run the

model, which allowed us to calculate the simulated wastewater

flow in the entire sewer system model, including in the five

sensor locations (Qsim,loc). The model was run with adaptive

time steps between 5 and 60 s (but saving the results in 1-min

time steps), and it took less than 5 min to run one day of simu-

lations on a Windows server 2012 with an Intel® Xeon® CPU

E5-2670 v2 @ 2.50 GHz processor with 20 cores and 20 logical

processors when the runoff file was generated previously. The

setup used here could thus be applied in a real-time setting.

Phenomena affecting the observed DWF

QSM and Qsim may differ from Qobs if the system is affected

by other water inflows and outflows than the smart meter-

measured water consumption or due to erroneous data.

To assess these phenomena, we calculated the average

flows for the five sub-catchments (loc) over the three

1-week time periods (168 h or 10,080 min), where

Δtobs ¼ 2min, ΔtSM ¼ 1h and Δtsim ¼ 1min (Table 1):

�Qobs,loc ¼

P10,080

t¼2min
Qobs,loc(t)

10, 080min=Δtobs

�QSM,loc ¼

P168

t¼1h
QSM,loc(t)

168h=ΔtSM
(2)

�Qsim,loc ¼

P10,080

t¼1min
Qsim,loc(t)

10, 080min=Δtsim

Furthermore, we calculated the mass balances (change

in volume, ΔV ) for each of the five sub-catchments based
://iwaponline.com/jh/article-pdf/23/4/795/910089/jh0230795.pdf
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on the water consumption in the given sub-catchments as

well as inflows from upstream sub-catchments (Qobs,in,loc)

and the outflow (Qobs,out,loc) in the three investigated

1-week time periods:

ΔVloc ¼
X168

t¼1h

(QSM,loc(t)) � ΔtSM

þ
X10,080

t¼2min

(Qobs,in,loc(t)�Qobs,out,loc(t)) � Δtobs (3)

A positive mass balance means that more water enters

than leaves a catchment (thus, there may be a loss of

water in the sewer system); a negative mass balance contra-

rily means that there may be an additional source of

incoming water. The relative importance of the difference

in volume as a function of the outflow from each sub-catch-

ment was calculated as:

Rel% ¼ ΔVloc

P10,080

t¼2min
Qobs,out,loc(t)

� 100 (4)

The difference between observed and simulated flows in

the five sub-catchments, Qres,loc(t), was calculated based on

the observed and simulated flows:

Qres,loc(t) ¼ Qobs,loc(t)�Qsim,loc(t) (5)

These residuals may both be positive and negative, and

exhibit constant, diurnal or seasonal variations. They may

also vary according to the outside temperature, previous rain-

fall and pipe geometry. Table 2 lists three overall possible

reasons for deviations as well as expected residual patterns.

Some of the uncertainties can be quantified, such as the

declared uncertainty from the measurement devices

(Table 1). The uncertainty associated with the equipment

installed in situ may, however, be higher than declared by

the manufacturer, which can be difficult to quantify without

comparing the data with other, independent data sources.

The remaining potential uncertainties listed in Table 2 are

also difficult to quantify without additional data, since these

are often highly contextual and case-specific. One would

thus need to make additional independent measurements in

the case area for the same time period as the in-sewer



Table 2 | Potential reasons for the deviation between observed and simulated sewage flow

Deviation type Potential reason Expected residual pattern

Observed flow smaller than simulated flow
(negative residuals, Equation (5))

Consumed water not discharged to the sewer Diurnal
Exfiltration Seasonal

Observed flow larger than simulated flow
(positive residuals, Equation (5))

Unaccounted for consumers Diurnal
Pumping of groundwater to the sewer system Constant or seasonal
Rainwater harvesting Diurnal
Snow melting (only in winter) Temperature-dependent
Infiltration Constant-, seasonal- or rainfall-

dependent
Sedimentation Pipe geometry-dependent

General reasons Erroneous smart meters, data transmission or
data handling

Constant or diurnal

Wrong conceptualisation of the sewer system Diurnal
Erroneous in-sewer sensors Constant or diurnal
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observations were performed. Even here, however, the actual

corresponding uncertainty would be difficult to quantify. Com-

plex systems, such as the one presented in this study, are often

characterised by higher-order levels of uncertainties rather

than pure statistical uncertainty, and in this case pragmatism

is called for (Warmink et al. ). To prevent the pitfall of

underestimating the uncertainty by including only the uncer-

tainties that can be quantified explicitly (Warmink et al.

), the potential causes for deviations between the smart

meter and in-sewer data are evaluated based on their effect

on the residual pattern calculated by Equation (5). The three

sub-sections below elaborate on the three deviation types

individually.

Observed flow smaller than simulated flow (negative
residuals, Equation (5))

Consumed water not discharged to the sewer. Most of the

consumed water ends up in the sewer system either directly,

such as water used for showering, or delayed, such as the

water used for washing clothes. However, some consumed

water will end up elsewhere, such as water that evaporates

during cooking or from wet laundry or water that infiltrates

in the soil during car washing or gardening; the latter is

assumed to be season dependent and may even infiltrate

into the sewer system as discussed later. In Denmark, a con-

servative estimate is that at least 86% of the used water is

discharged to the sewer system (HOFOR ). This is in

alignment with results from, for example, Zhang et al.

(). Since more water is used during the day than at
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night, the residuals will be larger during the day and thus

exhibit a diurnal pattern. In coastal cities like Elsinore, dis-

crepancies may also arise if ferries and trains take clean

water on board in the city for kitchens, toilets and cleaning

but discharge the foul water somewhere else or at another

time of the day. This may lead to irregular residual patterns.

Leakage may occur in the supply pipe after the smart

meter location, which means the metered consumption

would not enter the urban drainage system and the observed

sewer flow would be smaller than the simulated flow. If the

smart meter in this case is placed at the property boundary,

the water from a leakage in the supply pipe between the prop-

erty boundary and the house is likely to infiltrate into the soil,

a situation hard to diagnose. If the smart meter is instead

placed inside a household, leakage after the smart meter is

likely to lead to building damage which is easier to diagnose.

Exfiltration. Exfiltration from the sewer system may occur

when there are cracks and fractures in the pipes and the

groundwater level is below the sewer system. The ground-

water level is generally lower in the summer than during

winter, meaning that the exfiltration rate is expected to

follow a seasonal pattern with peaks in the summer.

Observed flow larger than simulated flow (positive
residuals, Equation (5))

Unaccounted for consumers. Qsim only contains data from

consumers that have smart meters installed. Some consu-

mers may, however, have older meters requiring manual
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readings. In fact, large consumers will often have such

meters installed. Such a deviation would exhibit a diurnal

pattern unless missing industrial users consume water, for

example, during the night. Some of the water discharged

to the sewer system may furthermore originate from some-

where else. This may be the case for, for example, ferries

and trains that take on board clean water when they set

out and discharge it through the sewer system at their desti-

nation. This may result in irregular residual patterns.

Pumping of groundwater to the sewer system. Buildings and

construction sites that are located partly underground may

need to pump away groundwater and possibly intruding sea-

water if they are located on the coast. This water may be

discharged into the ocean, infiltrated somewhere else or dis-

charged to the sewer system. Such pumping would most

likely occur both day and night leading to a constant devi-

ation. If the groundwater level is only an issue in the

winter, the residual pattern will be seasonal. Sea-level vari-

ations may, however, also affect the groundwater level and

thus impact the amount of pumping.

Rainwater harvesting. Rainwater may be used for toilet

flushing and laundry, and this will increase the flow in the

urban drainage system compared with the recording by

the smart meters. Since more water is consumed during

the day, the residual pattern would follow a diurnal pattern.

An increase in water consumption from the water distri-

bution system would be seen again when the rainwater

tanks are empty.

Snow melting. In winter, precipitation falling as snow can

cause a delayed runoff into the sewer system. This may

increase the measured flow in the urban drainage system.

The temperature determines when the snow melts, and the

residuals will thus neither follow a constant, diurnal or sea-

sonal pattern.

Infiltration. Infiltration into leaky sewers can arise from

either groundwater, rain, groundwater pumped from per-

imeter drains around buildings and construction sites, or

leaking water supply pipes:

- Groundwater levels change slowly over the course of the

year, and groundwater infiltration thus exhibits a seasonal
://iwaponline.com/jh/article-pdf/23/4/795/910089/jh0230795.pdf
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change in the infiltration rate, which may also be affected

by the sea water level.

- Rain-induced infiltration increases the sewage flow only

after rain events and slowly decreases with time.

- Infiltration stemming from the pumping of groundwater

exhibits a constant or seasonal pattern (see ‘Pumping of

groundwater to the sewer system’).

- Leakage from the water distribution system into the urban

drainage system is expected to be a function of the pressure

in the water distribution system. If the system pumping is

pressure controlled or if the pressure fluctuates due to vari-

ations in demand, the leakages could, to some extent,

display a diurnal pattern. In Denmark, the water supply

pipes in general have too large diameters due to former

expectations of growth in the water consumption and

requirements of being able to supply fire hydrants. Therefore,

the pressure drops in the distribution systems are small, and

temporal variations in demand will only have a minor effect

on the pressure in the pipe system. The residuals would thus

predominantly be constant over the day.

Sedimentation. Some sewer system flow observations, like

the ones in Elsinore, are obtained by multiplying the velocity

with the wetted area of the cross-section of the pipe. If sedi-

mentation is present at the location of the sensor, the water

level will rise and lead to a larger calculated than actual

flow. The residuals will vary in size depending on the geome-

try of the pipe. Usually sensor companies will try to avoid

installing flow sensors in pipes with a lot of sediments, but

sedimentation is a dynamic process that may change after

the installation of the sensor.
General reasons for deviations between observed and
simulated flows (negative and positive residuals,
Equation (5))

Erroneous smart meters, data transmission or data handling.

Deviations may occur due to erroneous smart meter obser-

vations. In general, individual meter errors are not likely

to have a noticeable impact on the simulated results since

each consumer only uses a minor fraction of the water in

each sub-catchment, and suspicious individual meter

errors would due to the high water price in Denmark be

noticed during the billing process. A general bias of the
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smart meters could, however, impact the results. Depending

on whether this bias is proportional or additive, it may both

result in a diurnal pattern or a constant deviation. Further-

more, poor transmission conditions can result in even

larger uncertainties, and wrong mappings of the geographi-

cal location of the smart meters will also cause errors.

Wrong conceptualisation of the sewer system. The conceptu-

alisation of the urban drainage system layout is essential to

make the correct coupling between the smart meter data

and in-sewer sensors. If one or more catchments are falsely

connected to the sewer system upstream of the in-sewer sen-

sors, the simulated flow would be larger than the observed.

Contrarily, missing connections in the asset database would

lead to a smaller simulated than observed flow. This devi-

ation would follow a diurnal pattern.

Erroneous in-sewer observations. In-sewer observations of

wastewater velocity, level and flows may be erroneous due

to turbulence, presence of solids, aggressive environment

(Hager ), low water depth (Larrarte et al. ), or

poor maintenance and calibration. The residuals may both

follow a diurnal pattern or be a constant offset. Normally,

flow observations are assumed to have uncertainties up to

20% (Bertrand-Krajewski et al. ), leading to a diurnal

residual pattern.
RESULTS AND DISCUSSION

Here, we (1) assess if smart meter data can be used to esti-

mate the wastewater component of DWF, (2) identify
Figure 2 | Hourly outflow data from the four waterworks and water tower (Qobs,WW) compared

three time periods. Note that measured outflow data for October are incomplete.
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anomalies, i.e. other sources to the DWF and erroneous

data, by comparing the simulated wastewater component

with the observed in-sewer flow, and (3) discuss the added

value from using a hydrodynamic 1D model.

Assessment of smart meter data for the estimation of

wastewater flow

The smart meter data can be used to estimate the wastewater

component of the DWF if the smart meter data set is

trustworthy.

Figure 2 compares the total outflow from the waterworks

and water tower, Qobs,WW, to the aggregated smart meter data

from the whole of Elsinore, QSM,Elsinore. First, it is noticed that

the consumed water exceeds the total outflow from the water-

works for a short period in October. Data about the outflow

were missing for this time period, and the period can thus

not be used to assess the validity of the smart meter data.

Looking at the other two time periods, the smart meters

registered on average 14–17 L/s (15–17.5%) less water than

Qobs,WW. This deviation could be due to leakage in the water

distribution network, errors in the waterworks’ flow sensor

(higher than the <5% reported uncertainty, potentially due

to the partial estimation of the total waterwork outflow) or

errors in the smart meter data set. The smart meter data set

may be erroneous due to meter errors (higher than the 5%

reported uncertainty), data transmission errors, faults in the

data handling or missing consumers. The latter is, however,

not assumed to be an issue, since all consumers are metered

and less than 0.1% of the consumers still have manually

read meters. The data in Figure 2 thus do not give a clear indi-

cation of the validity of the smart meter data.
with summed smart meter data (QSM,Elsinore) for the whole of Elsinore for single days in the
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We further evaluated the completeness and quality of

the smart meter data set by comparing the daily inflow to

the WWTP, Qobs,WWTP, with the simulated inflow to the

WWTP, Qsim,WWTP, using all smart meters in the WWTP

catchment (Figure 3). The model was here used as an easy

way to include the flow only from smart meters within the

WWTP catchment. Since Figure 3 shows daily values and

the model does not affect the time dynamics on this time

scale, the results for the summed smart meters would be

almost the same as the simulated (apart from insignificant

differences due to numerical issues). Qsim,WWTP is around

1.5 times that of Qobs,WWTP in October and November.

This corresponds to, on average, more than 1,500 m3/day,

which seems an unlikely amount of exfiltration or an unrea-

listic volume of consumed water not ending up in the urban

drainage system. In February, however, Qsim,WWTP and Qobs,

WWTP are very similar. Qsim,WWTP is in the same range as in

October and November, but Qobs,WWTP has increased nota-

bly. This cannot be explained by the calibration of the

WWTP inlet sensor since this was last calibrated in March

2018. Neither can it be explained by an increase in the out-

flow from the area with in-sewer observations shown in

Figure 3 (sensor location WD). Here, the average daily

observed flow is actually larger in October and November

than in February, and this is not explained by the smart

meter data. The sensed area, however, only partially

covers the WWTP catchment (see Figure 1). The deviation

may thus instead be due to increased groundwater infiltra-

tion in February (winter) in the unsensed part of the

WWTP catchment, but it may also be due to erroneous

WWTP inlet observations above the reported uncertainty

(Table 1).
Figure 3 | Observed and simulated flows at the WWTP inlet (Qobs,WWTP vs. Qsim,WWTP) and at t
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Since the 2012 consumption data are independent from

the smart meter data, we assume that the completeness and

quality of the smart meter data set can be assessed by com-

paring these with this data (see Figure 4). We have added the

declared uncertainty as error bars to the figure. For the

water consumption from 2012, we have furthermore

adjusted this uncertainty to reflect the annual and seasonal

variations. From 2012 to 2018, there was a total decrease

in the outflow from the waterworks and water tower of

8%, which fits well with a general decrease in water con-

sumption both in Elsinore and in Denmark in general

(DANVA ; Elsinore Municipality ), and the error

bars are thus shifted downwards with 8% of the registered

consumption value. This means that the error bars reflect

the 2012 data’s expected ability to predict the 2018 con-

ditions. Furthermore, the monthly average outflow from

the waterworks and water tower ranged between �10 to

þ11% compared with the mean outflow in 2018 and 2019.

In October, November and February, the water consump-

tion was specifically 2, 4 and 10% higher than the mean.

We have therefore conservatively added a 10% uncertainty

to all three time periods on top of the declared uncertainty

of 2%. We have not added error bars to the simulated waste-

water flow, �Qsim, since this is simply a post-processing of the

smart meter data, �QSM. These two differ from each other due

to water generated in empty pipes of the model for the sake

of numerical stability and because �Qsim is affected by the

routing time in the sewer system. Overall, the smart meter

data and the consumption data from 2012 match well,

taking the uncertainties into account. Figure 4 also shows

a large difference between the 2012 water consumption

data and �Qobs, which is larger than the declared
he sensor location West Downstream (WD) (Qobs,WD vs. Qsim,WD) in the three time periods.



Figure 4 | Average observed flow to the WWTP (�Qobs), summed smart meter data (�QSM) and simulated flow (�Qsim) (Equation (2)) over the three time periods for each sub-catchment

compared with the average consumption measured independently in 2012 (�Qconsumption,2012). The error bars of �Qobs and �QSM indicate the declared uncertainties (Table 1) and are

calculated as �Q± �Q�uncertainty. The error bars of �Qconsumption,2012 likewise indicate the declared uncertainty (Table 1) as well as the seasonal variation (±10%) and has

furthermore been shifted downwards to reflect a decrease in water consumption between 2012 and 2018 of 8%.

806 N. S. V. Lund et al. | Using smart meter data and in-sewer flows for sewer system analysis Journal of Hydroinformatics | 23.4 | 2021

Downloaded fr
by DANMARK 
on 27 October 
uncertainties. Consumers that have private wells will neither

be in the 2012 consumption database nor have smart meters

installed. However, there are no private or commercial wells

from where the water is subsequently discharged to the

sewer system in the area upstream of the in-sewer flow sen-

sors (Elsinore Municipality ; Pratt, A. 2019, Personal

Communication, Elsinore Municipality). Overall, the com-

parison with the 2012 water consumption data indicates

that the amount of unaccounted for consumers and uncer-

tainty related to the smart meters, data transmission and

data handling (Table 2) is limited, meaning that the smart

meter data set is complete and sufficiently correct to rep-

resent the wastewater component of the DWF.

Assessment of anomalies, including other DWF

components and erroneous data

Figures 3 and 4 show that there is a discrepancy between the

smart meter-based wastewater flows, Qsim and QSM, and the

observed in-sewer flow, Qobs, which is so big that it exceeds
Figure 5 | Mass balances for each sub-catchment (Equation (3)) and the relative size of the ch
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the combined, declared uncertainty of the smart meter and

in-sewer sensors (Table 1).

To assess possible anomalies, we look at the mass bal-

ances for the five sub-catchments for the three time

periods (Equation (3)). From Figure 5, it is evident that

there are no clear patterns in which catchments are losing

or gaining water in the three periods. Trusting the obser-

vations, almost 2,000 m3 more water leaves ‘ED’ than

enters it during October (negative mass balance), which

could indicate a large external water inflow such as, for

example, infiltration. From the percentage (Equation (4))

shown in Figure 5, it is clear that this possible external

inflow would be the main contributor of the outflow stem-

ming from the sub-catchment. This trend corresponds

poorly with the results for November and February that

show a small positive mass balance for ‘ED’. The natural

variations in groundwater levels and soil moisture that

could explain month-to-month variations in infiltration

would give the opposite pattern, since the summer of 2018

was very dry followed by a wet winter. ‘CD’ displays some
ange in volume compared with the outflow (Equation (4)) for the three time periods.
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of this expected behaviour, but it would be premature to

draw any conclusions from this considering the large unex-

plainable variation for the remaining sub-catchments.

Figure 6 shows the time dynamics of Qsim, QSM and

Qobs, and is arranged to resemble the flow through the

sewer system as conceptualised in Figure 1. The flow is natu-

rally smallest in ‘WU’, since this is the smallest of the five

sub-catchments and does not receive water from any further

upstream catchments. The axis for this plot is thus scaled dif-

ferently than for the remaining plots. The flow increases

through the system as more water aggregates. Most of the

outflow from the most downstream catchment (WD) is gen-

erated in the most upstream catchment, EU, which also has

by far the most consumers. The residuals between Qobs and

Qsim (Equation (5)) are shown in the upper left corner of

Figure 6 for all five sub-catchments.

Figure 6 shows that the flows in WUmatch well in Octo-

ber and November. There are negative discrepancies

between Qobs and the smart meter-based flows (QSM and

Qsim) in EU in October and in WU in February, and many

time periods and sub-catchments with positive residuals.

In the following, we use Table 2 (besides unaccounted for

consumers and uncertainty related to the smart meters,

data transmission and data handling, which were previously

deemed valid) and Figure 6 to deduct what could be plaus-

ible causes for the observed discrepancies between the

flow results from various data sources.

The negative diurnal residuals likely do not stem from

exfiltration from the sewer system since Qres,EU exhibits a

clear diurnal pattern in October while exfiltration is expected

to vary according to the season. Furthermore, a net exfiltra-

tion is not expected to occur in February (where the

groundwater level generally is higher) without also occurring

in October and November. Neither do the negative residuals

stem from consumed water not discharged to the sewer

system since residential areas like ‘EU’ and ‘WU’ should dis-

charge at least 86% of the used water to the sewer system,

whereas the observed differences on average are 60 and

40% in EU (October) and WU (February), respectively. Fur-

thermore, the smart meters in Elsinore are located inside

the houses, which means that it is fair to assume that leakage

on the consumers’ side of the smart meters is minimal and

can be disregarded. It is not likely that the positive diurnal

residuals stem from pumping of groundwater to the sewer
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system because this will not lead to diurnal residuals. Fur-

thermore, the Capital Region of Denmark, who stores

records of such pumping sites, confirmed that no such pump-

ing of groundwater to the sewer is taking place in the area of

Elsinore where the in-sewer sensors are placed (Vormbak,

F. 2019, Personal Communication, the Capital Region of

Denmark). Even though it rained 1, 5 and 2 days before the

three analysed time periods, respectively, the positive diurnal

residuals do not stem from rainwater harvesting because this

would have led to a systematic increase in the in-sewer flows

within each sub-catchment across the three time periods. The

positive diurnal residuals also do not stem from snow melt-

ing, since there was no snow in Elsinore in any of the three

considered time periods. Neither rain-induced infiltration

nor infiltration from pumped groundwater exhibit diurnal

patterns. The deviation between the waterwork outlet and

consumed water is more or less constant over the three

time periods (Figure 2), but the gap between, for example,

Qobs,ED and Qsim,ED varies heavily and is on average 14, 7

and 1.5 L/s in October, November and February, respect-

ively, which indicates that the positive diurnal residuals are

not likely to stem mainly from infiltration from a leaking

water distribution system. This is supported by the fact

that leakages in the water distribution system were actually

recorded by the utility in EU in October and March (after

the investigated periods), but Figure 6 shows signs of outflow-

ing, not inflowing, water in October.

The constant positive residuals for WD are not likely to

stem from a constant infiltration from groundwater since

infiltration is expected to be larger in February than in Octo-

ber, whereas the observed offset is around 20 L/s in October

and November and 10 L/s in February. No repair work was

carried out for the sewer pipes in WD between November

and February to explain this drop in infiltration. The pipe

in which the WD flow sensor was located is heavily influ-

enced by sedimentation, which could result in the constant

offset from zero. The sediment was, however, not removed

between November and February to explain the drop in

the offset level, and it is therefore not expected that the

offset is due to sedimentation. However, there is a chance

that the amount of sediment may have been affected by

the storm water flow in the sewer system.

Neither the positive nor negative residuals likely stem

from a wrong conceptualisation of the sewer system,



Figure 6 | Summed smart meter data (QSM) and simulated (Qsim) and observed (Qobs) sewage flows in October (top panel, Mon–Sat), November (middle panel, Mon–Sun) and February

(lower panel, Sat–Fri) (Equation (1)). All data are in local time. For Qsim and Qobs, a 30 min moving average filter has been applied for better readability. Notice the different scales

used for Residuals, WU and the four remaining plots. Due to the small flow in WU, the residuals appear constant in the Residuals plot.
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since this would lead to similar residuals within each sub-

catchment in all three time periods.

Erroneous in-sewer observations thus remain the only

likely explanation for the deviations between Qobs and

Qsim. The observed flow changes greatly from time period

to time period; for example, Qobs,CD is much larger than

Qsim,CD in October and February, but fits well in the inter-

vening period in November. Looking at October, there is

only one day where Qobs,ED and Qsim,ED match; however,

this is according to Contractor 4 due to faulty velocity obser-

vations. Contrarily, the water consumption, as expected,

more or less follows the same diurnal pattern throughout

October, November and February. Additionally, the

assumed erroneousness of in-sewer observations is sup-

ported by the fact that Qobs out of WD, on average, is 21

and 25 L/s larger than Qsim in October and November,

respectively. Adding this amount on top of Qsim,WWTP

would only exacerbate the difference to Qobs,WWTP

(Figure 3). We therefore expect that the in-sewer sensor

measurements are the main contribution to the deviation

between simulated and observed sewage flows. These devi-

ations are larger than the declared uncertainty of 12% (as

supported by Figure 4) and often also larger than what, as

stated earlier, is generally considered ‘normal’ deviations

of up to 20%.

Figure 7 shows the relationship between the deviation

between Qobs and Qsim and the time since the last cali-

bration of the in-sewer sensors for the three time periods.

No clear correlation exists, either within each time period

or when comparing each location across the three time

periods. This indicates that the differences are not due to

slowly drifting sensors.
Figure 7 | Days since last calibration of in-sewer sensors compared with the difference betwee

the three time periods.
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Since the sensors were installed as duplicate sensors, it

might at first seem unlikely that these observations are as

uncertain as indicated by this study. It is, however, worth

noting that the duplicate sensors are not truly independent

since they are installed at the same location and use the

same sensing technology. This means that they are likely

to produce the same systemic errors when exposed to the

same conditions and thereby confirm each other’s miscon-

ception of the flow. This could, for example, be the case if

there is sedimentation or dislocation of pipes close to

where a sensor pair is installed. Truly independent data

sources are thus key to anomaly detection and data vali-

dation. To fully understand the anomalies detected in this

study, it would be necessary to perform further independent

measurements, for example:
- Independent and reliable flow observations at the five

sensor locations to validate that the in-sewer flow obser-

vations indeed caused the deviation to the smart meter-

simulated wastewater flow.

- CCTV (Closed Circuit Television) footage and ground-

water-level observations to estimate the reason for the

constant positive residuals for WD and whether these

could stem, at least partly, from groundwater infiltration,

sedimentation or dislocated pipes.
These issues could not be investigated in the present

study as the measurement campaign in the urban drainage

system was terminated in June 2019 but should be con-

sidered in future studies focusing directly on closing the

urban water balance.
n observed flow (Qobs) and simulated flow (Qsim) calculated as the mean absolute error for
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Added value from using a hydrodynamic 1D model

A hydrodynamic 1D model poses an easy way of coupling

smart meter data and in-sewer observations, since the

model automatically ensures that only wastewater from the

consumers upstream from an in-sewer sensor contributes

to the flow at the sensor location. Furthermore, it is possible

to include infiltration/exfiltration dynamics and thus make a

better comparison between the simulated and observed

data, which will not be possible when simply summing the

smart meter data.

Figure 8 showsQobs,CD,QSM,CD andQsim,CD for 3 days in

each of the considered time periods. The timing of the

observed flow is considered reliable, despite the magnitude

of the wastewater flow being off as a result of the likely erro-

neous in-sewer observations. It is clear that the routing of the

smart meter data through the MIKE URBAN model catches

the timing of the observed peaks and low flows much better

than simply aggregating the smart meter data. The model

can thus be used to capture the time dynamics of the

system in dry weather in the five sensor locations without

further calibration (however, the model may still need to be

calibrated for rain situations). The dynamics shown in

Figure 8 are representative of the entire dataset for all five

flow observation locations. The difference in time between

the summed smart meter data and the simulated flow will

naturally be more pronounced the longer the water has tra-

velled in the system and thus depends on the size of the

catchment upstream of the flow observations.

Outlook

Sewer system analysis will likely never be the sole reason for

installation of smart meters, which are typically installed for
Figure 8 | Observed sewage flow (Qobs) compared with simulated flow (Qsim) and summed sm

om http://iwaponline.com/jh/article-pdf/23/4/795/910089/jh0230795.pdf
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better operation and management of the water distribution

system. The urban drainage sector can, however, still take

advantage of this data, which is increasingly collected in

the future anyway. This study shows that water supply

smart meter data can potentially be used to estimate the

wastewater flow. The fact that smart meters thus become

multi-purposed will likely make their operation more

robust. Furthermore, the robustness of the approach also

stems from the sheer amount of smart meters, where a fail-

ure of a single meter will have much smaller consequences

regarding the information level than the failure of a

sewage flow sensor.

The use and comparison of data across the water supply,

urban drainage and wastewater sectors and the subsequent

anomaly analysis performed in this study is a tedious pro-

cess due to the many aspects affecting both the water

distribution and urban drainage networks. Furthermore, it

is laborious to systematically gain access to and compare

all relevant data sources. This was further complicated by

the fact that not one single person could access all the

models and data as they were managed and stored in differ-

ent silos both within the utility and by different contractors.

To get the most value out of data, we need to break down

these silos in the future and aim for more open standards

for data exchange. Many utilities are currently taking the

first steps towards using data in new and more integrated

ways. This study shows that digitalisation is not easy, and

sometimes the data quality remains unknown until the

data are used and compared with other data sources.

More integrated data analysis and systematic uncertainty

assessments are clearly needed to bring this field further

ahead. The process of actually using data will provide impor-

tant learnings regarding good practices within sensing and
art meter data (QSM) for 3 days in each of the three time periods for the ‘CD’ catchment.
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data accessibility, and enable the utility and their contrac-

tors to further refine their work processes.

The coupling between smart meter data and urban drai-

nage models can be done offline for post-analysis of data and

systemperformance (as done in this study). If themodel is trust-

worthy, this coupling could also be done, and the sewer model

run in real time, to get an up-to-date picture of the system state.

This would open up enhanced real-time data validation as well

as entirely new ways of operating sewage infrastructure during

dry weather, for example, for improved heat recovery from

sewage systems or better sewer system control.
CONCLUSIONS

The current study aimed at using smart meter water con-

sumption data to simulate the wastewater flow and to

combine this information with in-sewer observations to

detect system and data anomalies, such as infiltration, exfil-

tration and sensor errors.

Smart meter data were validated with data from other

independent sources, including data from the waterworks’

outflow, WWTP inflows and households’ annual water con-

sumption audits for a period prior to the installation of the

smart meters. Subsequently, we illustrated the feasibility of

using the smart meter data as input to a 1D hydrodynamic

sewer model to simulate the wastewater component of the

DWF. An estimate of the wastewater flow was thus obtained

with a high spatial and temporal resolution. Even though

there is still uncertainty related to this estimation, we

believe that having this data-based approach to estimate

the wastewater flow directly from its source (the water con-

sumption) is an important step towards closing the water

balance in urban drainage systems.

Themain difference in the results from simply summing the

smart meter data and using an urban drainage model is the

effect of the routing time in the sewer system. If time dynamics

are insignificant, a simple summation may be sufficient. Time

dynamics are, however, important when comparing data on a

fine time resolution as done in this study. Our comparisons

and analysis of observed in-sewer DWF with both smart

meter-simulated wastewater flow and WWTP inflow data

suggest that the in-sewer flow observations used here may be

subject to unrecognised uncertainties at times exceeding the
://iwaponline.com/jh/article-pdf/23/4/795/910089/jh0230795.pdf
ICAL  UNIVERSITY (DTU) user
expected 10–20%. These specific in-sewer observations are

thus unsuitable as a realistic estimate of the DWF and thus

also for decomposition of the DWF into wastewater flow and

other input and output sources (such as infiltration and exfiltra-

tion). The in-sewer flow sensors were here installed in a very

thorough way with two identical flow sensors at each location

for validation, but it cannot be excluded that both sensors

were influenced by the same error sources under the same

conditions. This underlines the necessity of using truly inde-

pendent data sources from different measuring techniques

for future data quality assessments.

The main take-away messages from this study are:

1. Using smart meter data as input to hydrodynamic urban

drainage models is feasible and promising as a means of

estimating the wastewater flow directly from water con-

sumption data. This is an important step towards

closing the water balance in urban drainage systems.

2. Installing multiple in-sewer flow sensors of the same type

at the same location is not enough to assess the data qual-

ity. Including independent data sources using different

sensor types in future investigations is paramount.

3. It is a tedious task to compare and analyse data from mul-

tiple sources. However, the only way to start breaking

down data silos and realise the real quality of collected

data is to start using it in integrated studies as exemplified

in the case study.
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