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We investigate vortex pair interactions at low Reynolds numbers. Our analysis is based
on the two-dimensional Q-criterion and we make use of a topological approach to describe
the qualitative changes of the vortex structure. In order to give a complete description
of vortex pair interactions we further develop a general bifurcation theory for Q-vortices
and prove that a threshold for vortex merging may occur when we allow two parameters
to vary. To limit the number of free parameters, we study the interactions with two
point vortices as initial condition and show that the threshold is a codimension two
bifurcation that appears as a cusp singularity on a bifurcation curve. We apply the
general theory to the analytically tractable core growth model and conclude that a
pair of co-rotating vortices merge only if their strength ratio, α = Γ1/Γ2 is less than
4.58. Below this threshold value, we observe two different regimes in which the merging
processes can be described with different sequences of bifurcations. By comparison with
Navies-Stokes simulations at different Reynolds numbers, we conclude that the merging
threshold varies only slightly for Reynolds numbers up to 100. Furthermore, we observe
an excellent agreement between the core growth model and the numerical simulations for
Reynolds numbers below 10. We therefore conclude that instead of solving the Navier-
Stokes equation numerically we can, for sufficiently small Reynolds numbers, apply the
core growth model as a simple, analytically-tractable model with a low dimension.

Key words: ...

1. Introduction

Studying the fundamental interactions of vortices helps us understand the behaviour
of complicated flows which can be encountered in nature. A simple example of an
interaction is two-dimensional vortex merging which is a well studied phenomenon in
fluid mechanics. For a general review of dynamics and instabilities of vortex pairs, see
e.g. Leweke et al. (2016). It is sometimes possible to observe vortex merging visually
in experiments and numerical simulations, but it can be difficult to give an accurate
mathematical description of the merging process. Early studies of vortex merging mainly
focus on merging in inviscid fluids where vortices are defined as vortex patches with
constant vorticity (Overman & Zabusky 1982; Dritschel 1985). The jump of vorticity
across vortex boundaries is advected by the velocity field and the problem effectively
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becomes one-dimensional. This approach, known as contour dynamics, was originally
proposed by Deem & Zabusky (1978). The conservation of vorticity ensures that the fluid
will be divided into regions of uniform vorticity for all time and, in principle, merging is
never possible. Dritschel (1986) overcomes this issue by applying contour surgery which
is an algorithm allowing two contours enclosing the same uniform vorticity to merge
into one if they are close enough together. In this study we will address the problem
rigorously in a viscous setting. We identify vortices by the widely used Q-criterion (Hunt
et al. 1988). In general, a positive Q-value implies that the local rotation dominates the
strain. In two dimensions Q simplifies to the determinant of the velocity gradient tensor
∇u and a vortex is therefore defined as a region where

Q(x, y) = det(∇u(x, y)) > 0. (1.1)

In this paper, we present a complete topological analysis of merging of Q-vortices in
the core growth model. The main result of our analysis is that the merging process can be
divided into three different regimes depending on the strength ratio of the vortices. For
sufficently high strength ratio, the weakest vortex is supressed by the strong vortex, and
no merging as such occurs. For lower strength ratios, there are two different bifurcation
sequences leading to merging. The core growth model has previously been used to study
vortex merging by Jing et al. (2012) and Andersen et al. (2019). In the following section
we review the model and show that it allows to write an analytical expression for Q
depending on two parameters, the strength ratio of the two vortices and the time.

We monitor the vortex interactions by looking for bifurcations of the curves bounding
the vortices, the level curves Q(x, y) = 0. Bifurcations occur when singular points appear
on these curves. An analysis of all possible perturbations of a given degenerate pattern
tells us what we might expect when a given number of parameters are allowed to vary.
When only a single parameter is varied, the bifurcations that occur in a robust way
are referred to as having codimension one. We have already formulated a complete
codimension one theory in earlier studies, see Nielsen et al. (2019) or the brief summary
in § 3. Our previous study includes an analysis of a single codimension two phenomenon,
but as the core growth model has two free parameters, it is necessary to extend the
existing theory with an analysis of another codimension two bifurcation. This further
development of the theory can be found in § 3.1. The core growth model has a built-in
symmetry that may lead to a special type of codimension two bifurcation; this case is
analysed in § 3.2. We compare the results for the core growth model with Navier-Stokes
simulations in § 4.1, and find good agreement for low values of the Reynolds number. An
analysis of the topological structure of vortex pairs is inextricably linked to the way we
choose to define vortices mathematically. There are many definitions of vortices available
in the literature, see Zhang et al. (2018) for a review. To our knowledge, this is the
first study to analyse vortex pair interactions based on the topology of the Q-criterion.
Andersen et al. (2019) have previously studied vortex merging from a topological point
of view with vortices defined as local extrema of vorticity. This method identifies a vortex
by a feature point that does not provide any information about the shape or size of the
vortex. Applying the Q-criterion might therefore provide some opportunities for a more
elaborate analysis. In § 5 we comment on the importance of the vortex criterion.

2. The core growth model

We consider an incompressible fluid in an unbounded two dimensional domain governed
by the Navier-Stokes equations. In terms of the vorticity, the Navier-Stokes equations can
be written as the vorticity transport equation,
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∂ω

∂t
= −u · ∇ω + ν∆ω, (2.1)

where ν is the kinematic viscosity and u is the fluid velocity. One of the very few known
analytic solutions to (2.1) is the Lamb-Oseen vortex (Saffman 1992),

ω(r, θ, t) =
Γ

πσ(t)2
e−r

2/σ(t)2 , uθ(r, θ, t) =
Γ

2πr

(
1− e−r

2/σ(t)2
)
, ur(r, θ, t) = 0,

(2.2)
with

σ(t) =
√

4νt. (2.3)

The Lamb-Oseen vortex is the solution corresponding to a single point vortex with
strength Γ as initial condition. The vorticity field ω is initially concentrated at the origin
and diffuses as a Gaussian distribution. For multiple point vortices as initial condition an
analytic solution is not available and one would generally refer to numerical simulations
of the vorticity transport equation. Instead we investigate the synthetic flow predicted by
the core growth model, also known as the multi Gaussian model (Jing et al. 2010; Kim
& Sohn 2012; Andersen et al. 2019). The model assumes that the vorticity of each initial
point vortex diffuses symmetrically as an isolated Lamb-Oseen vortex and the centers of
the Gaussian vortices move in the velocity field induced by the other diffusing vortices.
For two Gaussian vortices, initially centered at (−d, 0) and (d, 0), one can deduce (Kim
& Sohn 2012) that the distance between the centers of the two Gaussian vortices is
conserved and the vortices rotate around the a stationary center of vorticity

(xcv, ycv) =

(
d(Γ2 − Γ1)

Γ1 + Γ2
, 0

)
, (2.4)

with the same time-dependent angular velocity

dφ(t)

dt
=
Γ1 + Γ2

2π(2d)2

(
1− e−(2d)

2/σ2
)
. (2.5)

We notice that the angular velocity tends to zero as ν or t increases. By integrating
dφ(t)
dt in time we obtain the direction angle as a function of time

φ(t) =
Γ1 + Γ2

2π(2d)2ν

(
σ2

4
− σ2

4
e−(2d)

2/σ2

+ d2
∫ ∞

(2d)2/σ2

e−s

s
ds

)
. (2.6)

We notice that the angular velocity and the direction angle depend on the total of
vortex strength Γ1 +Γ2 and the distance between the vortices, not on the strength ratio.
The positions of the two Gaussian vortex centers (x1(t), y1(t)), (x2(t), y2(t)) are given by
(2.6), i.e.

(
x1(t)
y1(t)

)
=
(
d− xcv

)(cosφ(t)
sinφ(t)

)
+

(
xcv
0

)
, (2.7)

(
x2(t)
y2(t)

)
= −

(
d+ xcv

)(cosφ(t)
sinφ(t)

)
+

(
xcv
0

)
. (2.8)

Since the core growth model evolves as a superposition of two Lamb-Oseen vortices,
the vorticity field is given as
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ω(x, y, t) =
Γ1

πσ2
e−d

2
1/σ

2

+
Γ2

πσ2
e−d

2
2/σ

2

, (2.9)

where

d21 = (x− x1(t))2 + (y − y1(t))2, (2.10)

d22 = (x− x2(t))2 + (y − y2(t))2. (2.11)

By solving the Poisson equation ω = −∆ψ we obtain the following streamfunction in the
core growth model

ψ(x, y, t) = −Γ1

4π

(
ln
(
d21
)

+

∫ ∞

d21/σ
2

e−s

s
ds

)
− Γ2

4π

(
ln
(
d22
)

+

∫ ∞

d22/σ
2

e−s

s
ds

)
. (2.12)

The core growth model is not an exact solution to the vorticity transport equation in
(2.1). However, by inserting the synthetic flow into the equation, we can evaluate the
error we make when using the core growth model. From (2.7), (2.8), (2.9) and (2.12)
all three terms in the vorticity transport equation can be expressed analytically and by
evaluating the limit as ν →∞ we obtain for a fixed t that

∂tω − ν∆ω + u · ∇ω =
(Γ 2

1 − Γ 2
2 )yd

32π2ν3t3
+O

(
1

ν4

)
as ν →∞, (2.13)

which implies that the core growth model will be accurate for the viscosity going to
infinity, i.e. for the Reynolds number going to zero. This will be confirmed by numerical
computations in § 4.3. The quality of the approximation will necessarily depend on the
value of the fixed t. For a smaller t value, a lower Reynolds number is required to achieve
the given accuracy. Part of the purpose of this study is to establish an upper limit of
the Reynolds number under which it is reasonable to use the core growth model instead
of numerically solving the Navier-Stokes equation. It is worth noting that Gallay (2011)
proved that on a fixed time interval the solution to the vorticity transport equation,
with point vortices as initial conditions, converges uniformly in time to a superposition
of Lamb-Oseen vortices as ν → 0. Since the core growth model has point vortices as the
initial condition, Gallay’s result indicates that the model will be relatively accurate also
in weakly viscous flow. The model has previously been studied for Re >> 1, see Jing
et al. (2012) for an example.

For simplicity the core growth model will be studied in a co-rotating frame, such
that the centers of the Gaussian vortices are fixed at the initial positions. For a given
time t, the transformation from the co-rotating to the initial frame is determined by a
rigid rotation with the angle φ(t) around the center of vorticity. This guarantees that
the topology of the vorticity field, the stream function and hence also the Q-field is
unchanged when studied in the co-rotating frame. To analyse the core growth model
for all possible combinations of vortex strengths and displacements we introduce the
following dimensionless variables (denoted with ∼), x̃ = x/d, ỹ = y/d, ω̃ = ωd2/Γ2,
σ̃ = σ/d, ψ̃ = ψd2/Γ2 and ψ̃ = ψ/Γ2. For simplicity, we are dropping the tildes from now
on. In the co-rotating coordinate system the dimensionless vorticity and streamfunction
for the core growth model become

ω(x, y, α, σ) =
α

πσ2
e−

(x+1)2+y2

σ2 +
1

πσ2
e−

(x−1)2+y2

σ2 , (2.14)

and
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ψ(x, y, α, σ) = − α

4π

(
ln
(
(x+ 1)2 + y2

)
+

∫ ∞
(x+1)2+y2

σ2

e−s

s
ds

)

− 1

4π

(
ln
(
(x− 1)2 + y2

)
+

∫ ∞
(x−1)2+y2

σ2

e−s

s
ds

)
,

(2.15)

where

α =
Γ1

Γ2
, σ2 =

4νt

d2
(2.16)

are the strength ratio of the two vortices and a dimensionless time variable, respectively.
As a result the Gaussian vortices are fixed at (−1, 0), (1, 0). As described in the introduc-
tion we will analyse the topological bifurcations of vortex pair interactions by applying
the Q criterion. Using (2.15) a closed analytical expression for Q in the co-rotating frame
can be directly computed from

Q(x, y, α, σ) =

(
∂2ψ

∂x2

)(
∂2ψ

∂y2

)
−
(
∂2ψ

∂x∂y

)2

. (2.17)

In § 4.1 we will analyse the zero level curves of this function in detail. We notice that the
model has a built-in symmetry. The x-axis is a line of symmetry in the stream function
and hence

Q(x,−y, α, σ) = Q(x, y, α, σ) (2.18)

for all values of x, y, α and σ. Furthermore, it follows from (2.15) that

Q(x, y, α, σ) = αQ(−x, y, 1

α
, σ), (2.19)

which makes it sufficient to investigate the topological bifurcations of the zero level curves
of Q for |α| > 1.

3. Bifurcation theory for Q-vortices

A general characterization of zero level curves ofQmay be applied to any flow situation,
regardless of whether it arises from the core growth model or the Navier-Stokes equations.
Nielsen et al. (2019) show that there are two types of robust one-parameter bifurcations
of the level curves Q = 0, the authors denoted these as a pinching and a punching
bifurcation, see figure 1. The bifurcations occur when

Q = 0, ∂xQ = 0, ∂yQ = 0, (3.1)

under the non-degeneracy conditions

∂tQ 6= 0 (3.2)

and

HQ =

(
∂xxQ ∂xyQ
∂xyQ ∂yyQ

)
is non-singular. (3.3)

Here t denotes a free parameter. A pinching (punching) bifurcation occurs when HQ is
indefinite (definite), and the direction of the bifurcation depends on the sign of ∂tQ.
A pinching bifurcation is the splitting or merging of two vortices while a punching
bifurcation is the creation or disappearance of a single vortex.
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(a)

(b)

Figure 1: Illustration of the local changes in the structure of the Q = 0 contour curves
during a (a) pinching and a (b) punching bifurcation. The bifurcation states are depicted
in red and green boxes. The dashed lines in (a) show an example of a possible global
structure during a pinching bifurcation. Note that the empty left panel in (b) illustrates
that there are no Q = 0 contour curves.

In general there is no simple connection between the vorticity ω and the Q-value. If we
consider an incompressible fluid at a point (x, y) with ω = 0, we notice, however, that

Q = ∂xu∂yv − ∂yu∂xv = −(∂xu)2 − (∂yu)2.

Since Q 6 0 we conclude that a point with zero vorticity will always be located outside
or on the boundary of a Q-vortex. By continuity it is therefore impossible to have points
with opposite signs of vorticity in the interior of a single vortex. Hence, two vortices can
only merge in a pinching bifurcation if they have the same sign of vorticity in the interior.

3.1. Theoretical description of codimension two bifurcation

A flow may often depend on several parameters, such as the Reynolds number or
a parameter that determines the initial geometry. In this section we consider a flow
described as a smooth system depending on two parameters, t and r. In this setting the
two generic types of one-parameter bifurcations occur when crossing a one dimensional
bifurcation curve in the (t, r) parameter space. A codimension two point on one of these
bifurcation curves is a point where both parameters are required to take on particular
values, so that one of the non-degeneracy conditions in (3.2) or (3.3) is violated. The
codimension two bifurcation where ∂tQ = 0 is analysed in detail in previous studies
(Nielsen et al. 2019). In this section we will analyse the other bifurcation phenomenon
that occur when HQ is singular with 0 as a simple eigenvalue. For simplicity we choose
a coordinate system such that the bifurcation point is located at (x, y, t, r) = (0, 0, 0, 0)
and the HQ is a diagonal matrix. We consider a bifurcation point characterized by the
following set of degeneracy conditions

Q0 = 0, ∂xQ0 = 0, ∂yQ0 = 0 (3.4)

and

HQ
0 =

(
∂xxQ0 ∂xyQ0

∂xyQ0 ∂yyQ0

)
=

(
0 0
0 λ

)
, (3.5)

where subscript 0 is used to denote an evaluation at the bifurcation point (x, y, t, r) =
(0, 0, 0, 0) and λ is a nonzero parameter. To characterize the structure of the bifurcation
curves at the bifurcation point we assume some regularity in the form of the following
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set of non-degeneracy conditions

∂tQ0 6= 0, ∂rQ0 6= 0, ∂xxxQ0 6= 0, (3.6)

and that (
∂xtQ0 ∂xrQ0

∂tQ0 ∂rQ0

)
is non-singular. (3.7)

Based on the above assumptions, we will now analyse the structure of the bifurcation
curves in a neighbourhood of the codimension two point. First we consider the following
Jacobian

J =
∂(∂yQ, ∂xQ,Q)

∂(y, t, r)
=



∂yyQ ∂ytQ ∂yrQ
∂xyQ ∂xtQ ∂xrQ
∂yQ ∂tQ ∂rQ


 , (3.8)

which simplifies to

J0 =



λ ∂ytQ0 ∂yrQ0

0 ∂xtQ0 ∂xrQ0

0 ∂tQ0 ∂rQ0


 (3.9)

when it is evaluated at the bifurcation point. Since λ 6= 0 it follows by the non-degeneracy
condition (3.7) that J0 is non-singular. Hence, we can apply the implicit function theorem
to conclude that there exist unique local functions y = Y (x), t = T (x), r = R(x) satisfying

Y (0) = 0, T (0) = 0, R(0) = 0, (3.10)

and

∂yQ(x, Y (x), T (x), R(x)) = 0,

∂xQ(x, Y (x), T (x), R(x)) = 0,

Q(x, Y (x), T (x), R(x)) = 0.

(3.11)

The functions T and R give a parametric representation of the bifurcation curve in the
(t, r) parameter space. The shape of the bifurcation curve is given by the derivatives of
T and R at the bifurcation point x = 0. We now set out to compute these derivatives.
By implicit differentiation of the equations in (3.11), we obtain that

J



Y ′(x)
T ′(x)
R′(x)


 = −



∂xyQ
∂xxQ
∂xQ


 , (3.12)

which evaluated in x = 0, gives us



Y ′(0)
T ′(0)
R′(0)


 = −J−10



∂xyQ0

∂xxQ0

∂xQ0


 =




0
0
0


 . (3.13)

Since (T ′(0), R′(0)) = (0, 0), we have a non-regular point on the bifurcation curve. To
classify the singularity we compute the second order derivatives, which are found by
implicit differentiating (3.12) and evaluating the derivatives in x = 0:



Y ′′(0)
T ′′(0)
R′′(0)


 = −J−10





∂xxyQ0

∂xxxQ0

∂xxQ0


+ 2J ′0



Y ′(0)
T ′(0)
R′(0)




 = −J−10



∂xxyQ0

∂xxxQ0

0


 ,
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t

r

(t, r) = (T (x), R(x))

Figure 2: Illustration of a bifurcation curve with a cusp singularity at the codimension two
bifurcation point (t, r) = (0, 0) satisfying the assumptions in (3.4)-(3.7). The topological
structure of the Q = 0 contour curves are shown in the figure and the bifurcation states
are depicted in red and green boxes.

where

J ′0 =

(
∂J

∂x
+
∂J

∂y
Y ′(x) +

∂J

∂t
T ′(x) +

∂J

∂r
R′(x)

)

0

=
∂J

∂x

∣∣∣∣
0

.

Hence, it follows that

T ′′(0) = − ∂rQ0∂xxxQ0

∂xtQ0∂rQ0 − ∂tQ0∂xrQ0
, (3.14)

R′′(0) =
∂tQ0∂xxxQ0

∂xtQ0∂rQ0 − ∂tQ0∂xrQ0
. (3.15)

From the non-degeneracy conditions (3.6) and (3.7) it is clear that T ′′(0) and R′′(0)
are both well-defined and non-zero and hence we have a quadratic cusp at (r, t) = (0, 0)
(see e.g. Rutter (2000)). To determine the order n of the cusp we must find the first
derivatives of order n > 2, such that

T (n)(0)

R(n)(0)
6= T ′′(0)

R′′(0)
= −∂rQ0

∂tQ0
. (3.16)

We will show that this holds already for n = 3, which makes the cusp singularity an
ordinary cusp. By implicitly differentiating (3.12) again we get that



Y ′′′(0)
T ′′′(0)
R′′′(0)


 = −J−10


3J ′0



Y ′′(0)
T ′′(0)
R′′(0)


+



∂xxxyQ0

∂xxxxQ0

∂xxxQ0




 .
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Hence, it follows that

T ′′′(0) =
−∂rQ0A+ ∂xrQ0B

∂xtQ0∂rQ0 − ∂tQ0∂xrQ0
, (3.17)

R′′′(0) =
∂tQ0A− ∂xtQ0B

∂xtQ0∂rQ0 − ∂tQ0∂xrQ0
, (3.18)

where

A = 3∂xxrQ0R
′′(0) + 3∂xxtQ0T

′′(0) + 3∂xxyQ0Y
′′(0) + ∂xxxxQ0,

B = 3∂xrQ0R
′′(0) + 3∂xtQ0T

′′(0) + ∂xxxQ0 = −2∂xxxQ0.

The last non-degeneracy condition in (3.6) then implies that B is non-zero, and hence
it follows from (3.7) that at least one of the quantities T ′′′(0) and R′′′(0) must be non-zero
as well. Assume now that R′′′(0) 6= 0 and consider the ratio

T ′′′(0)

R′′′(0)
=
−∂rQ0A+ ∂xrQ0B

∂tQ0A− ∂xtQ0B
. (3.19)

The following argument is completely identical in the case where T ′′′(0) 6= 0 and the
reciprocal (3.19) is considered. We now assume that

T ′′′(0)

R′′′(0)
=
T ′′(0)

R′′(0)
. (3.20)

However, this implies that

∂xrQ0∂rQ0B − ∂tQ0∂xtQ0B = 0, (3.21)

and since B 6= 0 this expression violates the non-degeneracy condition (3.7) and we can
conclude that

T ′′′(0)

R′′′(0)
6= T ′′(0)

R′′(0)
. (3.22)

This argument concludes the proof that we have an ordinary cusp singularity on a
bifurcation curve in the (t, r) parameter space. Since ∂xxxQ0 6= 0, it also follows for
any x sufficiently close to zero that the Hessian HQ is definite when x has one sign,
and indefinite when x has the opposite sign. Hence, the two branches that meet at the
cusp singularity are respectively a punching bifurcation curve and a pinching bifurcation
curve. A sketch of the bifurcation diagram close to the bifurcation point is shown in figure
2. The orientation of the cusp and the type of bifurcation on each of the two branches
will depend on the signs of the non-degenerate quantities in (3.6) and (3.7).

3.2. Codimension two bifurcation in models with symmetry

As discussed in § 2 the core growth model has the x-axis as a line of symmetry, i.e.
Q(x, y, r, t) = Q(x,−y, r, t). This symmetry may lead to a special type of codimension
two bifurcation which only occurs in such models. The reason is that the symmetry
implies, for any set of non-negative integers k, l,m and n, that

∂kx∂
l
y∂

m
t ∂

n
rQ(x, 0, t, r) = 0 if l is an odd number. (3.23)

If we consider a bifurcation point satisfying the degeneracy and non-degeneracy condi-
tions described in § 3.1, it would in general not affect the bifurcation phenomenon if we
make the analysis in a coordinate system where the x- and y-coordinates are interchanged.
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r

t

t = T (0, r)

(t, r) = (T̃ (µ), R̃(µ))

Figure 3: Illustration of a bifurcation diagram in the neighbourhood of a codimension two
point satisfying the symmetry condition (3.23). The solid and dashed curves are sketches
of the two bifurcation curves meeting with a common tangent line at (t, r) = (0, 0). The
topological structure of the Q = 0 contour curves are illustrated in the figure and the
bifurcation states are depicted in red and green boxes. See appendix A for further details
on T, T̃ and R̃.

The symmetry in the core growth model implies, however, that ∂yyyQ, ∂ytQ and ∂yrQ
are all zero at any point on the line of symmetry. The non-degeneracy conditions in (3.6)
and (3.7) will therefore be violated if the codimension two point is located at the line of
symmetry. In Appendix A we analyse this case in detail. The non-degeneracy conditions

∂tQ0 6= 0, ∂rQ0 6= 0 (3.24)

are kept, and other conditions are imposed to ensure a certain regularity (A 5), (A 6). The
analysis in Appendix A shows that two distinct branches of bifurcation curves meet with
a common tangent line at the codimension two point and separates the parameter space
into three different regions. An example of a bifurcation diagram close to the codimension
two point (t, r) = (0, 0) is shown in figure 3. The orientation of the curves and the type of
bifurcation on each part of the branches will depend on the signs of the non-degenerate
quantities.

4. Application to vortex pair interactions

4.1. Topological bifurcations in the core growth model

Elsas & Moriconi (2017) showed that a Gaussian vorticity field has a positive Q-value
in a circular region with radius r ≈ σ/0.89. As described in § 2 the core growth model
evolves as a superposition of two Gaussian vortices, but since Q does not depend linearly
on the flow field bifurcations in the vortex structure can occur. These bifurcations can
be tracked by solving the degeneracy conditions (3.1) with Q is given by the analytical
expression in (2.17). In the case where α > 1, we obtain the bifurcation diagram shown in
figure 4 when the solution is projected onto the (σ, α) parameter plane. The bifurcation
curves separate the parameter plane into four distinct regions. The vortex structure in
each region is illustrated with an example of a Q = 0 contour curve. The color of a
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Figure 4: Bifurcation diagram of the merging process in the core growth model for α > 1.
The bifurcation curves separate the (σ, α) parameter plane into four distinct regions with
different vortex topologies. Crossing a green (red) part of the bifurcation curve results in
a punching (pinching) bifurcation.

bifurcation curve indicates whether a pinching or a punching bifurcation occur when
crossing the curve. The three points (σA, αA) ≈ (1.12, 4.58), (σB , αB) ≈ (0.98, 3.37),
and (σC , αC) ≈ (0.72, 1) mark the places where two bifurcation curves collide. These
points divide the flow into three different α-regimes in which the vortex interactions
occur through different robust processes. The temporal evolution of the merging process
within each of the three regimes are illustrated by the examples in figure 5b,c,d. The
figure also includes the symmetric case where α = 1. The bifurcation states depicted in
the red and green boxes correspond to the vortex structures on the bifurcation curves
in figure 4. The top-down symmetry (2.18) implies that any bifurcations away from the
line of symmetry occur simultaneously in pairs. For all values of α the initial and final
vortex structure are topologically identical but the temporal evolution is quite different.
In the low α-regime, 1 6 α < αA, figure 5a,b, the merging process proceeds in two steps:
first a single vortex with a hole is formed by two simultaneous pinching bifurcations.
Subsequently the hole disappears in a punching bifurcation. In the intermediate α regime,
αB < α < αA, figure 5c, the two vortices merge in a single pinching bifurcation. In the
high α regime, α > αA, figure 5d, no merging as such occurs, but the weakest vortex is
suppressed by the strongest in a punching bifurcation.

When we turn our attention to the common initial vortex structure, we observe two
zero level curves of Q located around the Gaussian vortex centers. In addition we notice
two smaller vortices that were not immediately expected and grow very slowly in size.
For the sake of simplicity, we will only examine them, in the case where α = 1. Due to
the rotational symmetry in this case, they have a fixed location around (x, y) = (0,±1)
and the analytical expression of the Q-field can easily be evaluated

Q(0,±1, 1, σ) =
e−4/σ

2

π2σ2
. (4.1)

It is clear that (x, y) = (0,±1) are singular points of Q in the initial state where σ = 0.
Furthermore, Q(±1, 0, 1, σ) has a positive value for any σ > 0 and therefore the small
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(a) α = 1

(b) α = 2

(c) α = 4

(d) α = 6

σ = 0.65 σ = 0.72 σ = 0.82 σ = 0.89 σ = 1.10

σ = 0.55 σ = 0.57 σ = 0.60 σ = 0.87 σ = 0.89

σ = 0.35 σ = 0.36 σ = 0.60 σ = 0.87 σ = 1.10

σ = 0.42 σ = 0.43 σ = 0.60 σ = 1.04 σ = 1.10

σ = 0.92 σ = 1.10

Figure 5: Evolution of the vortex structure at selected values of α > 1. For each value
of α, all the observed topologies of the Q = 0 contour curves are shown in the order
of evolution. The structurally unstable bifurcation states are depicted in red and green
boxes.

vortices are indeed present from the beginning. Furthermore, we see that the value of Q
increases slower than any power of σ. From the examples in figure 5 we see that the small
vortices merge with the weakest of the two main vortices in two simultaneous pinching
bifurcations that occur when crossing the far left the bifurcation curve in figure 4.

The key to understanding the complete picture of the vortex pair interactions are
the singular points, A, B, C, on the bifurcation curves in figure 4. At these points we
observe bifurcations with higher codimension and the corresponding vortex topologies
are depicted in black boxes. At A there is a critical point on the zero level curve of
Q at (xA, yA) ≈ (0.94, 0). By evaluating HQ precisely at this point, we find that the
degeneracy condition (3.5) is satisfied and we can employ our codimension two theory
in § 3.1. The two parameters t and r are in this case interpreted as t = σ − σA and
r = α − αA. Based on theory, we conclude that the singular point at A is an ordinary
cusp singularity on the bifurcation curve and the two branches that meet at the cusp
singularity are respectively a punching bifurcation curve and a pinching bifurcation curve.
This analysis is completely consistent with the result in figure 4 and leads to the same
conclusion: a pair of co-rotating vortices merge only if their strength ratio α = Γ1/Γ2

is less than αA = 4.58. At B there is a critical point on the zero level curve of Q at
(xB , yB) ≈ (3.91, 0). Since this critical point is located at the line of symmetry and HQ

B

satisfy the degeneracy condition (A 2), we can employ our codimension two theory in
Appendix A. Based on theory, we conclude that two distinct branches of bifurcation
curves meet with a common tangent at the singular point B. Therefore, the point marks
the transition between two regimes where merging proceeds as two different sequences of
bifurcations exactly as shown in figure 4. The last singular point at C is solely due to the
rotational symmetry of order 2 when α = 1 and the point represents a global bifurcation
where four distinct bifurcations are restricted to occur simultaneously.

The bifurcation diagram in figure 4 gives us a complete picture of vortex pair inter-
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Figure 6: Bifurcation diagram of the merging process in the core growth model for α <
−1. The green bifurcation curve separates the (σ, α) parameter plane into two distinct
regions with different vortex topologies. The topological structures are illustrated with
an example of a Q = 0 contour curve within each region. On the bifurcation curve one
of the vortices disappears in a punching bifurcation.

actions when considering two co-rotating vortices. Since it is only possible to show the
diagram for a finite range of α, the upper limit of α = 6 is an arbitrary limit. However,
by increasing α significantly, we conclude that the qualitative picture is the same for
α > 6. The limit where α is increased to infinity corresponds to a single Lamb-Oseen
vortex, and therefore we expect both bifurcation curves to approach σ = 0 for α → ∞.
For all values of α there is only a single vortex left for σ > 1.12. As proven by Gallay &
Wayne (2005) the Lamb-Oseen vortex is an attracting solution for any integrable initial
vorticity field. Therefore, we expect that the final vortex region converges to a circular
region when σ is further increased.

For α < 0 the vortices have opposite signs of vorticity, and as discussed in § 3 they
cannot merge in a pinching bifurcation. This is confirmed by the bifurcation diagram for
α < −1 in figure 6. For all values of α, the only event is the disappearance of the weakest
vortex in a punching bifurcation. When α approaches −1, the time for the punching
bifurcation goes to infinity.

4.2. Navier-Stokes simulations of vortex pair interactions

We want to compare the results of the analytical core growth model with Navier-
Stokes simulations subject to the same initial condition. This is done by solving the
vorticity transport equation (2.1) numerically. Following Andersen et al. (2019) we do
not reparameterize the vorticity transport equation, but control the Reynolds number
directly through the kinematic viscosity, ν. In this study we define the Reynolds number
as an average of the individual vortex Reynolds numbers

Re =
|Γ1|+ |Γ2|

2ν
, (4.2)

which is consistent with earlier studies by Andersen et al. (2019), Meunier et al. (2002)
and Jing et al. (2010). Since our system is isolated the total absolute vorticity
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∫ ∫
|ω|dxdy = |Γ1|+ |Γ2| (4.3)

must be conserved. Therefore, we fix |Γ1| + |Γ2| = 10 in all simulations and control the
Reynolds number by varying ν. The conservation of the total absolute vorticity is also
monitored as a check of the numerical scheme.

As discussed in § 2 we are primarily interested in comparing the models at low values
of Reynolds numbers and we choose to make simulations only for Re 6 100. We restrict
the computational domain to the region where (x, y) ∈ [−9, 9]× [−9, 9]. Since Re 6 100
and we have a simple square domain a finite difference method with an explicit Euler
integrator scheme suffices (Andersen et al. 2019; E & Liu 1996a,b). If the field variable
with index ij is the value at grid point (i, j) we have the iterative scheme

ωn+1
ij (∆tn) = ωnij −

(
unij · (∇ωnij)− ν∇2ωnij

)
∆tn,

∇2ψn+1
ij = −ωn+1

ij , un+1
ij =

∂ψn+1
ij

∂y
, vn+1

ij = −
∂ψn+1

ij

∂x
, (4.4)

where n is the integrator iteration index and ∆tn the time step used by the scheme at
index n. We apply an adaptive time step method, where the error estimator is given by
the supremum of the absolute differences in the vorticity field using ∆tn and ∆tn/2, i.e.
err = sup{|ωnij(∆tn)−ωnij(∆tn/2)|}; the relative maximum tolerance is set to 0.1 %, and

with maximum time step of 10−3 in simulation time units. The spatial derivatives are
approximated by central differences using a 300 × 300 grid with grid spacing ∆x = 0.06,
and we apply periodic boundary conditions. The Poisson problem is solved using the
direct method described in Hansen (2011). We note that this simple scheme has been
tested against higher order schemes as well as for finite size effects etc. (Andersen et al.
2019).

The initial condition for the core growth model is two Dirac-delta distributions located
at (x, y) = (±1, 0). Such an initial condition can not be handled by our mesh-based
method. Therefore, we consider an initial condition with two slightly diffused Gaussian
peaks,

ω0
ij =

α

πσ2
0

e
−

(xi+1)2+y2j

σ20 +
1

πσ2
0

e
−

(xi−1)2+y2j

σ20 , (4.5)

where σ0 = ∆x. From the ω0
ij the stream function ψ0

ij can be found, which also gives the
initial velocity field.

4.3. Topological bifurcations in Navier-Stokes simulations

In figure 7 and figure 8 the topological vortex structure is shown for selected simulations
with Re = 10 and Re = 100, respectively. It is important to make clear that the
simulations are not performed in a co-rotating frame and we therefore expect the two
vortices to rotate relative to each other. In both figures we observe evolution patterns
that are qualitatively similar to the ones observed in the core growth model. For α = 1,
the vortex structure still has a rotational symmetry of order two and for increasing values
of α we observe three different sequences of topological structures describing the merging
process. For the smallest values of α, the process involves forming a vortex with a hole
in it. For intermediate values of α, merging occur as a single pinching bifurcation and
no merging is observed for large values of α where the weakest vortex is suppressed
in a punching bifurcation. Although there are qualitative similarities, it is clear that
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α = 2

σ = 0.55 σ = 0.56 σ = 0.57 σ = 0.86 σ = 0.88 σ = 0.92

α = 4

σ = 0.42 σ = 0.43 σ = 0.44 σ = 1.02

α = 1

σ = 0.65 σ = 0.71 σ = 0.72 σ = 0.89

α = 6

σ = 0.34 σ = 0.35 σ = 0.37 σ = 0.87

Figure 7: Navier-Stokes simulations at Re = 10. The evolution of the vortex structure
is shown at selected values of α > 1. For each value of α, all the structurally stable
topologies of the Q = 0 contour curve are shown in the order of evolution.

the quantitative picture changes with increasing Reynolds numbers. For both values of
Reynolds number there is no line of symmetry in the topological vortex structure. The
bifurcations that occur simultaneously in the core growth model are here observed at
two distinct values of σ. We notice that the symmetry is only slightly broken in the case
of a low Reynolds number.

For each of the two selected Reynolds numbers, we have performed simulations with
more than 30 different values of 1 6 α 6 6. From each simulation, we have marked the
observed bifurcation points in the (σ, α) parameter plane and constructed the bifurcation
curves shown as the solid lines in figure 9a,b. The color of the bifurcation curves again
indicates the type of bifurcation. For the purpose of comparison the bifurcation curves in
the core growth are drawn as dashed lines in the background of the bifurcation diagrams.
In both cases, we observe that the codimension two point at B has disappeared. However,
this was expected as we do not have a line of symmetry in the Navier-Stokes simulations.
With the disappearance of B, a new codimension two point D has arisen in both cases.
Since a pinching and a punching bifurcation curve meet at D they must form another cusp
singularity. The break of symmetry causes the global bifurcation point at C to separate
into two singular points C1, C2 where rotational symmetry of order 2 is preserved. The
codimension two point at A is preserved as a cusp singularity but the exact location
varies slightly. By recalling that the cusp singularity represents the merging threshold,
we conclude that for Re = 100 vortex merging is only observed if the strength ratio,
α = Γ1/Γ2 is less than αA = 4.05.

Overall, we observe the same topological structures as seen in the core growth model.
Only the bifurcations that were restricted by the built-in symmetry are qualitatively
changed. The codimension two points still divide the flow into three different α regimes:



16 A. R. Nielsen, M. Andersen, J.S. Hansen and M. Brøns

α = 1.2

σ = 0.59 σ = 0.62 σ = 0.65 σ = 0.68 σ = 0.69 σ = 0.79

α = 3

σ = 0.43 σ = 0.48 σ = 0.51 σ = 0.82

α = 1

σ = 0.58 σ = 0.64 σ = 0.67 σ = 0.78

α = 5

σ = 0.35 σ = 0.37 σ = 0.40 σ = 0.85

Figure 8: Navier-Stokes simulations at Re = 100. The evolution of the vortex structure
is shown at selected values of α > 1. For each value of α, all the structurally stable
topologies of the Q = 0 contour curve are shown in the order of evolution.

1 6 α < αD, αD 6 α < αA and α > αA. The examples in figure 7 and 8 are chosen to
illustrate the temporal evolution of the merging process within each of the three regimes.

We notice that the small vortices growing around the infinitely degenerate critical
points are also present in the Navier-Stokes simulations. Therefore, we conclude that
they are not just mathematical artifacts that exist in the core growth model due to a
forced symmetry. They, on the other hand, have a significant impact on the observed
topological structures. When the small vortices merge with the weaker of the two main
vortices, its structure is deformed in a manner that enables the subsequent formation
of the interesting vortex structure with a hole inside it. One could argue that the small
vortices are artifacts due to the Q-criterion. In practice it is common to choose a non-
zero threshold to identify the vortex boundaries. The threshold is ideally chosen such that
strong vortices are captured while small spurious vortices are ignored. Unfortunately, it
is very difficult, if not impossible, to determine a suitable threshold value a priori because
the optimal threshold value tends to be problem dependent (see Chen et al. (2015) and
Chakraborty et al. (2005)). From the present study it is also clear that the infinitely
degenerate critical points out of which the small vortices grow have an effect on the
shape of the vortices and we have therefore chosen to stick with the original Q-criterion
as it is defined in (1.1).

5. Discussion

With a topological approach, we revisited the vortex merger problem. The final state
of an interacting pair of vortices is known (Gallay & Wayne 2005) to be a single Lamb-
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(b) Re = 100.

Figure 9: Bifurcation diagrams of the merging process in Navier-Stokes simulations with
(a) Re = 10 and (b) Re = 100. The solid curves are the bifurcation curves in the Navier-
Stokes simulations. The bifurcation curves in the core growth model are drawn as dashed
lines for comparison.

Oseen solution. The focus of our studies has therefore been to elucidate the dynamics
that take place as the system evolves into the Lamb-Oseen solution. Based on the Q-
criterion, we have completed a mathematical description that tells us which topological
bifurcations we can expect when two parameters are allowed to vary. It has proven to be
useful to identify the codimension two points as they organize the bifurcation diagram
and divide it into different regimes where different sequences of bifurcations form the
merging process. The possible types of bifurcations found from theory also serve as a
template that facilitate the construction of a bifurcation diagram for a specific value of
Reynolds number. As an example, we know that a pinching and a punching bifurcation
curve form a cusp singularity where they meet. Therefore, it is possible to accurately
construct the bifurcation curves in figure 9 based on a finite number of Navier-Stokes
simulations.

One of the main objectives in this study was to investigate vortex pair interactions
using the core growth model. The major advantage of the model is the possibility to
determine an analytical expression for Q in the co-rotating frame. With this expression
the topology of the Q = 0 contour curves was easily studied with a precision that made
it possible to depict the structurally unstable bifurcation states in figure 5. The utility
of the model was examined by comparing it with Navier-Stokes simulations. Except
for the bifurcations that were restricted by the built-in symmetry in the core growth
model, we observe the same topological structures in the Navier-Stokes simulations. For
Reynolds numbers up to at least 100, the qualitative picture was the same. Furthermore,
we observe an excellent quantitative agreement with simulations for Reynolds numbers
below 10. Thus, depending on the purpose, there are good opportunities to use core
growth model instead of solving the Navier-Stokes equation with low Reynolds numbers.

Most previous studies have focused on symmetric merging of two identical vortices or,
to a lesser extent, asymmetric merging with a few examples of different strength ratios,
see, among others, Melander et al. (1988), Meunier et al. (2002), Dritschel (1995). In
two recent studies by Jalali & Dritschel (2018, 2020) the general inviscid interactions of
vortex patches is studied with many examples over a wide parameter space including
ratio of sizes and vorticity. Our study is not the first that attempts to describe all
interaction scenarios in terms of different flow regimes. Dritschel & Waugh (1992) identify
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five different flow regimes to characterize the inviscid interaction of two differently sized
vortex patches with equal uniform vorticity. These different flow regimes were based
on the “efficiency” of the vortex interactions, which was quantified by computing the
ratio of the final to initial circulation for each of the vortices. Trieling et al. (2005)
show that similar flow regimes can be used to characterize the inviscid interactions of
two-dimensional vortices with a continuous vorticity distributions. They notice, however,
that the regime boundaries are highly sensitive to the vorticity profile.

It is beyond the scope of this work to study the immediate change in the circulation
within the zero level curves of Q during a merging process. A comparison between the
initial and long term asymptotic state is, however, possible. We recall that a Gaussian
vorticity field has a positive Q-value in a circular region with radius r ≈ σ/0.89 (Elsas &
Moriconi 2017). The circulation within the Q = 0 level curve of a Gaussian vortex can
therefore be directly computed as

∫ σ/0.89

0

ω(r)2πrdr =

∫ σ/0.89

0

Γ

πσ2
e−r

2/σ2

2πrdr ≈ 0.72Γ, (5.1)

where Γ is the total circulation. Thus, the Q = 0 curve expands at a rate that makes the
circulation constant within the Q-vortex. For sufficiently small values of σ the vorticity
field of each of our two initial vortices can be assumed to be Gaussian distributed.
Therefore, before any interaction, the circulation of each of the vortices must equal 0.72Γ1

and 0.72Γ2, respectively. Since the long time asymptotic state of interacting vortices is
a single Gaussian vortex with total circulation Γ1 + Γ2, no matter how the transient
dynamics evolve, the circulation of the final vortex must equal 0.72(Γ1 +Γ2). Hence, the
circulation of the initial vortices is completely transferred to the final surviving vortex.
Therefore, merging of viscous Q-vortices is always completely efficient, and is complete
merging in the sense of Dritschel & Waugh (1992).

Brandt & Nomura (2010) use some of the same terms as Dritschel & Waugh (1992)
to describe the flow regimes in a viscous setting at Re = 5000. All viscous interactions
between vortices will eventually result in a single vortex, and therefore only three of the
inviscid regimes are considered to occur: complete merger, partial merger and straining
out. Brandt & Nomura (2010) specify three times that are important in the merging
process, tcr,1, tcr,2 and tde,2. For vortex i, tcr,i indicates the time where the vortex no
longer diffuses as a single Gaussian vortex, i.e., the time where the square of the core
radius no longer grows linearly. tde,2 is the time characterizing the destruction of the
weaker vortex 2. The weaker vortex is considered to be destroyed when its core vorticity
no longer dominates the imposed strain rate field. This is the case when the Q-value is
very small at the maximum point of vorticity for the weaker vortex.

Brandt & Nomura (2010) distinguish between two main regimes, depending on the
order of tcr,2 and tde,2. For large values of α, the weak vortex disappears before it gets
close to the strong vortex. This is denoted straining-out by Brandt & Nomura (2010)
and characterized by tde,2 < tcr,2. In our setting, this corresponds to the weakest vortex
disappearing in a punching bifurcation. If tcr,2 < tde,2 the two vortices interact before the
weak one disappears. This is denoted merging, and occurs when α is close to 1. We detect
merging in this sense when the two Q = 0 curves merge in a pinching bifurcation. In both
classifications the latter regime is further subdivided. If tcr,2 ≈ tcr,1 (complete merger)
Brandt & Nomura (2010) find detrainment of vorticity from both vortices and mutual
entrainment of the core into a single vortex. If tcr,2 < tcr,1 (partial merger) there is
detrainment from both vortices, but the weaker vortex is destroyed. In our classification,
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there is a regime where a hole is created inside the merged vortex, and one where there
is not.

Hence, there are many similarities between the classification by Brandt & Nomura
(2010) and the one we propose on the basis of Q alone, even if the flows are studied at very
different Reynolds numbers. In the present study the physics is dominated by diffusion,
and convection plays a very small role. In particular, there is no significant filamentation
of vorticity (Andersen et al. 2019), and denoting the high α regime where the weak vortex
disappears in a punching bifurcation straining-out does not reflect the actual dynamics.
However, for higher Reynolds numbers, filamentation will also be detected by the shape
of the Q = 0 contours. A first indication is visible for α = 3 in figure 8. The transition to
regimes with straining-out and detrainment as Reynolds number is increased can possibly
be characterized by further bifurcations in the Q = 0 contours. From figure 9 we see that
the point D moves to lower values of α as Re is increased. We expect that the regime
with a vortex with an inner hole may be very small or disappear completely for higher
values of Re.

The approach that is common to the studies of Dritschel & Waugh (1992), Trieling et al.
(2005) and Brandt & Nomura (2010) provides no information about the topological vortex
structure during the merging process and it does not define merging as a bifurcation that
occurs at a specific time. With our approach, we have the opportunity to connect the
process to a rigorous mathematical theory and we avoid a number of choices, such as to
define what the core radius is. By using the core growth model we have mapped out all
vortex pair interactions with a bifurcation diagram being valid for any choice of vortex
strengths with a ratio |α| = |Γ1/Γ2| 6 6. To our knowledge, a similar bifurcation diagram
has only been established once before in a recent study by Andersen et al. (2019). Their
results are based on vortices being defined as local extrema of vorticity. Both studies
agree that the core growth model matches well with Navier-Stokes simulations for low
Reynolds numbers. It is, however, clear that the choice of vortex criterion is crucial to the
analysis. While the Q-criterion provides information on the physical extent of a vortex,
the vorticity criterion only tells us whether or not a feature point for the vortex exists.
With the vorticity criterion, it is impossible to distinguish between vortex merging and
what we see in this study as suppression of the weakest vortex. Therefore, the threshold
for merging and the observed vortex structure with a hole inside are both completely
new results that have provided new insights into the intermediate evolution of vortex
merging.

Our study has only focused on mapping out all vortex pair interactions with point
vortices as initial condition. Inspired by Folz & Nomura (2017) it would be an obvious
continuation of our study to consider two Gaussian vortices with different sizes as
initial condition and analyse the effect of differing the vortex area versus the vorticity
amplitude. By introducing yet another parameter, the possibility of bifurcations with a
higher codimension also arises. It is therefore possible that such a study will require new
theoretical considerations.
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Appendix A. A theoretical description of codimension two
phenomena in a symmetric model

In this appendix we analyse the codimension two bifurcation which is briefly discussed
in § 3.2. We consider a flow with symmetry such that Q(x, y, r, t) = Q(x,−y, r, t). For
any set of non-negative integers k, l,m and n it then follows that

∂kx∂
l
y∂

m
t ∂

n
rQ(x, 0, t, r) = 0 if l is an odd number. (A 1)

The special codimension two bifurcation will only occur on the line of symmetry,
y = 0, since the conditions in (A 1) only applies at the line of symmetry. For simplicity
we analyse the phenomenon in a coordinate system where the bifurcation point is located
at (x, y, t, r) = (0, 0, 0, 0) and, as before, we use subscript 0 to denote evaluation at the
bifurcation point. We consider a bifurcation point that is characterized by the following
set of degeneracy conditions

Q0 = 0, ∂xQ0 = 0, ∂yQ0 = 0, (A 2)

combined with the non-degeneracy condition in (3.3) being violated such that

HQ
0 =

(
∂xxQ0 ∂xyQ0

∂xyQ0 ∂yyQ0

)
=

(
λ 0
0 0

)
, (A 3)

for some λ 6= 0. In this section we prove that if the bifurcation point also satisfies the
following non-degeneracy conditions

∂tQ0 6= 0, ∂rQ0 6= 0, (A 4)

∂xyyQ0
∂xtQ0∂rQ0 − ∂xrQ0∂tQ0

∂xxQ0∂tQ0
− ∂yytQ0

∂rQ0

∂tQ0
+ ∂yyrQ0 6= 0 (A 5)

and

−3
(∂xyyQ0)2

∂xxQ0
+ ∂yyyyQ0 6= 0, (A 6)

then two distinct branches of bifurcation curves meet tangentially at (t, r) = (0, 0), as
illustrated in figure 3.

We begin the proof by considering the following Jacobian

J =
∂(∂xQ,Q)

∂(x, t)
=

(
∂xxQ ∂xtQ
∂xQ ∂tQ

)
, (A 7)

which simplifies to

J0 =

(
λ ∂xtQ0

0 ∂tQ0

)
(A 8)

when it is evaluated at the bifurcation point. Since λ 6= 0 it follows from the non-
degeneracy condition (A 4) that J0 is non-singular. Hence, we can apply the implicit
function theorem to conclude that there exist unique local functions x = X(y, r), t =
T (y, r) satisfying

X(0, 0) = 0, T (0, 0) = 0 (A 9)

and

∂xQ(X(y, r), y, T (y, r), r) = 0, Q(X(y, r), y, T (y, r), r) = 0. (A 10)

Since Q, and hence also ∂xQ, are symmetric functions in y, it follows that
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∂xQ(X(−y, r),−y, T (−y, r), r) = ∂xQ(X(−y, r), y, T (−y, r), r) = 0,

Q(X(−y, r),−y, T (−y, r), r) = Q(X(−y, r), y, T (−y, r), r) = 0.
(A 11)

By comparing the expressions in (A 10) and (A 11) and based on the uniqueness of X and
T we can conclude thatX and T are also symmetric functions in y, i.e.X(−y, r) = X(y, r)
and T (−y, r) = T (y, r). In order to give a parametric representation of the bifurcation
curves we must solve the equation

∂yQ(X(y, r), y, T (y, r), r) = 0 (A 12)

for y in terms of r. It follows from (A 1) that

∂yQ(X(0, r), 0, T (0, r), r) = 0, (A 13)

for any r. It follows that there exists a branch of bifurcation points which will remain on
the line of symmetry y = 0. The curve, t = T (0, r), gives us a parametric representation of
this branch in the (t, r) parameter space. Since T is a continuously differentiable function
the slope of the tangent at r = 0 can be determined by implicit differentiating (A 10),
yielding

∂rT0 = −∂rQ0

∂tQ0
. (A 14)

In figure 3 this branch of bifurcation points is illustrated by the dashed green curve.
We expect, however, that there are other solutions of (A 12), where the bifurcation points
are leaving the line of symmetry. Since Q is a symmetric function in y, ∂yQ must be an
antisymmetric function in y. Hence, a Taylor expansion of the left hand side of (A 12)
based at (y, r) = (0, 0) has the form

∂yQ(X(y, r), y, T (y, r), r) = Ayr +By3 + Cyr2 +O(4), (A 15)

where the terms of order 4 (or higher) contains only odd powers of y. The coefficients A,B
and C can be expressed solely in terms of derivatives of Q evaluated at the bifurcation
point. Only A and B will play a role and are given in (A 16) and (A 17). We assume they
are non-zero, and that is exactly the non-degeneracy conditions in (A 5) and (A 6).

A = ∂xyyQ0
∂xtQ0∂rQ0 − ∂xrQ0∂tQ0

∂xxQ0∂tQ0
− ∂yytQ0

∂rQ0

∂tQ0
+ ∂yyrQ0 6= 0, (A 16)

and

B = −3
(∂xyyQ0)2

∂xxQ0
+ ∂yyyyQ0 6= 0. (A 17)

To obtain a parametric representation of the second branch of the bifurcation curve, we
put r = µy and define

F (y, µ) =
∂yQ(X(y, µy), y, T (y, µy), µy)

y2
. (A 18)

From this definition we notice that F (−y,−µ) = −F (y, µ). Therefore, F has the following
Taylor expansion based at (y, r) = (0, 0),

F (y, µ) = Aµ+By +O(3). (A 19)
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Since F (0, 0) = 0 and ∂yF (0, 0) = B 6= 0, the implicit function theorem establishes the
existence of a unique solution y = Y (µ) satisfying that Y (0) = 0,

F (Y (µ), µ) = 0, (A 20)

and hence

F (−Y (−µ), µ) = −F (Y (−µ),−µ) = 0. (A 21)

By comparing the expressions in (A 20) and (A 21) and based on the uniqueness of
Y we conclude that Y is an odd function. From the definition of Y it is clear that
(y, r) = (Y (µ), µY (µ)) is a solution to the equation in (A 12). A second branch of
bifurcation points in the (t, r) parameter space can therefore be determined by the
parametric equations

t = T̃ (µ) = T (Y (µ), µY (µ)), (A 22)

r = R̃(µ) = µY (µ). (A 23)

It follows from the definitions of T and Y that T̃ (0) = 0 and R̃(0) = 0. Furthermore, we
see that

T̃ (−µ) = T (Y (−µ),−µY (−µ)) = T (−Y (µ), µY (µ)) = T (Y (µ), µY (µ)) = T̃ (µ) (A 24)

and

R̃(−µ) = −µY (−µ) = µY (µ) = R̃(µ). (A 25)

Since both T̃ and R̃ are even functions, it follows that R̃′(0) = T̃ ′(0) = 0 and it is clear
that (t, r) = (0, 0) must be a singular point on the curve. The parameter values µ > 0

and µ < 0 correspond to the two branches on either side of the singular point. Since T̃
and R̃ are even functions it is clear that the two branches must coincide and (t, r) = (0, 0)
is in fact an endpoint of the parametric curve as illustrated in figure 3. The tangent to
the curve is not well-defined at the endpoint but we notice that the limiting tangent
direction can be computed as

lim
µ→0

(
T̃ ′(µ)

R̃′(µ)

)
=
T̃ ′′(0)

R̃′′(0)
(A 26)

if R̃′′(0) 6= 0. Thus, we must compute the second order derivatives of T̃ and R̃ at µ = 0.
By implicit differentiating (A 20) we obtain

Y ′(0) = −A
B
6= 0, (A 27)

implying that

T̃ ′′(0) = 2Y ′(0)∂rT0 = −2A∂rQ0

B∂tQ0
6= 0, (A 28)

R̃′′(0) = 2Y ′(0) = −2A

B
6= 0. (A 29)

Summing up we get that

lim
µ→0

(
T̃ ′(µ)

R̃′(µ)

)
=

2A∂rQ0

B∂tQ0

−2A

B

= −∂rQ0

∂tQ0
, (A 30)
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which implies that both branches of the bifurcation curve share a common tangent line
in (t, r) = (0, 0) as illustrated in figure 3. The orientation of the bifurcation curves and
the type of bifurcation on each part of the branches will depend on the signs of the
non-degenerate quantities.
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