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Abstract. The engineer-to-order (ETO) industry's business environment 

constantly changes, which results in challenges related to project management, 

on-time delivery, quality, and market competition. Companies face pressure to 

optimize production while demand for personalized products, and accordingly 

the complexity level increases. To address these challenges, companies require 

to identify the most important complexity drivers to improve planning, get a 

better overview of the resource allocation, and improve internal processes. This 

study proposes a design-time estimation model based on the most important 

complexity drivers: 1) Functional requirement, 2) Number of technologies, 3) 

Level of connectivity, 4) Regulation and standards. This study presents key 

complexity drivers for assessing the expected hours to design a product in an 

ETO industry. Complexity drivers are explored qualitatively and quantitatively 

from (i) literature review; (ii) internal regular meetings and; (iii) data analysis. 

The gathered complexity drivers are weighted and combined in order to develop 

the mathematical design-time model. Finally, an IT-tool is prototyped to test the 

mathematical model at the case company. The application of the developed IT-

tool is also tested at the case company to prove the usability. 

Keywords: Design-time Estimation Model, Complexity Management, 

Engineering Design, Configurator, Optimization 

1 Introduction 

Designing the engineering processes is crucial in manufacturing companies. The design 

engineering tasks include many different perspectives as process modeling, design 

process, and product development [1]. The customer demands a more individualized 

product, which means that the manufacturer might need to increase its variety to keep 

the customer satisfied and retain/gain a competitive advantage in the market [2]. The 

challenges to be handled from the increasing variety are not always simple to identify 

and solve [3]. The design process can be rather complex, affecting the distribution, 

sales, and other general value chain processes. However, the increasing variety in 

products does not always create value or increase consumer quality [4].  

Several methods propose different approaches to control complexity in today's 

industry. Substitution and product standardization are commonly known approaches 

[5]. Other methods are directed towards single products and harmonizing production 
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and design to reduce setup costs [6] or dismantle the manufacturing system into 

subsystems, called modularization [6]. Using a configurator has also shown to be 

beneficial to standardize the process and reduce internal complexity [7], [8], [9]. 

Furthermore, linear regression proved to define complexity [10].    

This study investigates how a complexity management approach can help estimate 

design-time for an ETO company. The changes in design-time are results based on 

market demands. Moreover, we quantify the complexity drivers to support the research 

with reliable data. The design-time estimation model is based on multilinear regression 

(MLR). The paper demonstrates a configurator's development, based on the 

mathematical model and the quantified complexity drivers, to help the designers 

estimate the required time for a project through a practical IT solution.   

This paper extends the work on a design-time estimation model from 2014, which 

got published in 2019, where it showed how linear regression could estimate design-

time [11]. Based on high-quality data from the case company, the new approach using 

MLR can better estimate the required design-time.  

2 Research Method  

Conducting a literature study to invistigate the engineering design phase's complexity 

drivers, the four groups of complexity in this case company [12] are identified. The 

complexity driver groups are: (1) engine, (2) product, (3) process, and (4) organization. 

The best available data were identified on the product level, referred to as sub-functions 

(SF), which we utilized to prove this study's concept. The first criteria were the size of 

the datasets to ensure the strength and depth of the analysis. The second criteria were 

the selection of one department to ensure consistency in the data. We evaluate our 

model and configurator at the case company. This type of empirical inquiry investigates 

a contemporary phenomenon within its real-life context [12]. Case study research 

enables profound observation of the phenomenon under investigation, and for a given 

set of available resources, fewer cases allow for more profound observation [13]. The 

case company is one of the leading suppliers of turbo machines specialized in marine 

engines. The selected case study method ensured accurate representation and enabled 

triangulation of the findings between various sources, thereby improving validity. 

2.1 Data collection 

The enterprise resource planning (ERP) system contained the desirable data from 

previous design projects. Grouping the data in sub-functions (SFs) and using Power BI 

allowed us to visualize and identify the most feasible department and SFs based on data 

availability for the complexity drivers and the data consistency for the projects.  

The complexity drivers were identified through literature and discussed in interviews 

to align them with the case company's experts' opinions. The interview process follows 

a systematic approach with six questions that proved to improve IT solutions [14]. All 

five interviewees are experts from the case department with 5-20 years of experience. 
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As mentioned, this case study followed up on previous research at this case company 

in 2014, where a paper was published in 2019 [11]. The previous study resulted in being 

cost-beneficial for the case company even with the limited amount of data. To follow-

up on the first research, communications with the case company were initiated, where 

the case company agreed on delivering new data to update the previous research and 

tool. A design-time estimation tool is developed based on the complexity drivers to 

manage the complexity to improve the engineering design departments' performance.  

3 Method and configurator demonstration at the case company  

We know that developing a value-adding configurator requires high quality data from 

the previous research at the case company. Hence, we conduct this research, and the 

details will be discussed in the sub-sections below. 

3.1 Identified complexity drivers 

Five relevant complexity drivers for the case company got identified. Literature 

research provides four of them, and the interviews resulted in fifth one. Complexity 

drivers vary in different settings and departments and depend on the product types, 

working style, culture, and strategy. The complexity drivers are listed below.   

(1) Functional requirement - The number of functional requirements demonstrates 

the number of functions one module can fulfill. Functional requirements can be 

weighted using a functional decomposition metric [15] and significantly influences the 

ETO industry [10].  

(2) Number of technologies - The number of highly complex modules in a product. 

The number of technologies could describe how many fuel types an engine runs on. If 

main modules change, it can create a significant influence on the design-time [10].  

(3) Level of connectivity - The connectivity level is the interdependencies between 

the modules in a product. The connectivity can have an influence on the design-time 

for a product [16]. The design of one SF proved to affect other SFs design, meaning 

small changes in one variant will lead to changes in other variants in that product. 

(4) Regulation and standards - The regulations and standards from the ETO 

company's environment affect the design-time [10]. These regulations depend on the 

product category.  

(5) Depth of change - Depth of change has a considerable influence on the design-

time. The first four complexity drivers, just described, have been shown to influence 

the product's depth of change. The change level will depend on the customer 

requirements and is considered a dynamic factor.   

3.2 Identifying the complexity drivers 

Having found the complexity drivers for design estimation, we  investigated the 

complexity drivers in the department. The experts responsible for the data were 

interviewed. The first round of interviews was to discuss the identified SFs, understand 
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the design process, and discuss literature's complexity drivers to identify relevant 

complexity drivers. Based on first interview round, seven complexity drivers and their 

values showed to influence the product complexity: 1) Registered hours (number of 

registered hours on a SF), 2) Stroke (G and S), 3) Fuel (fuel oil, methane gas, ethane 

gas, liquefied methanol, and petroleum gas), 4) Number of cylinders (5-11 cylinders), 

5) Technology (EGR and SGR – gas treatment system) , 6) Mark (generation of engine 

– 8.5, 9.5 , and 10.5), 7) and Depth of Change (percentage change 0-100%). Following 

the first round of interviews, follow-up e-mails were sent to the interviewees to gain 

data on the depth of change. Data for the six other complexity drivers were identified 

on a SF level from the Power BI linkage to the ERP system.   

Before the second round of interviews with the experts, the configurator was 

developed based on the mathematical model. From the second interview, minor 

changes were made to customize it to the needs of that department. However, no 

changes in the identified complexity drivers were deemed necessary.    

3.3 Design-estimation time model 

The identification of complexity drivers for the design-estimation model originates 

from literature and interviews with experts at the case company. The model includes 

the main complexity drivers, quantification of the complexity in the design process, the 

parts most affected by the complexity, and a design-time estimation tool at the case 

company.  

The complexity drivers Fuel, Technology, and Stroke were identified as text values. 

Transforming this data from letter-based parameters into numbers (integer) was 

necessary to use MLR. Translating the acronyms into numbers took place during 

interviews with the case company's experts on each parameter to identify the values. 

Fuel is based on the design difficulty for the 5 different fuel types available, where they 

all were equally challenging to design except for the system running on oil. Technology 

is based on gas exhaust treatment. Two technologies included a gas treatment (SGR 

and EGR), where the last system did not include any gas treatment. Therefore, the 

system without any gas treatment was identified the easiest, and the remaining two were 

the same. Stroke is divided into two systems, S and G, where the system S showed to 

be the most complex given the highest value. However, Later on, the data got 

transformed into binary code, proving to be the optimal solution for this approach [10].  

 

The design-time estimation model works on MLR. MLR is based on the same theory 

of simple linear regression. However, instead of one regressor, there will be multiple.  

The goal of MLR is to minimize the residuals, which is the error between the data 

points and the plane, which is done by minimizing the residual sum of squares. To do 

so, a data frame including all parameters is created based on the complexity drivers in 

R Studio to identify design-time. First, the data is investigated using the histogram 

function in R Studio to identify if the data is skewed. If the data was skewed, it became 

logarithmically transformed to ensure more accurate data [17]. Next, we divide the data 

into a training set (80%) and a validation set (20%) to enable the possibility of a 

preliminary analysis. To analyze the data, the linear model function in R is used to fit a 
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plan on the data to identify the y-intercept and slope values (𝛽), which are used to 

identify the Adjusted R-squared value and p-value. Note that for MLR, the Adjusted R-

squared value is used instead of the R-squared value. The summary function is used to 

calculate and show the Adjusted R-squared and p-values, which are shown in Fig. 1 

and Fig. 2. This model uses backward elimination to remove non-significant values, 

which is executed in steps 1-3. The model runs on a SF-level and includes eight 

parameters: DSID Registered hours, Stroke, Fuel, Technology, Number of Cylinders, 

Mark, and Change. The summary function in R Studio allows us to identify the design-

times dependency of parameters for this SF, shown in Fig. 1 and Fig. 2. 

The results shown in Fig. 1 automatically runs through the following four steps. Step 

(1) considers the p-values for each parameter to see if any p-values are above 0.05. Step 

(2) removes the parameters with a p-value above 0.05. In this case, fuel is removed. 

Step (3) re-run the model to record how data responded to removing one or more 

parameters. The model repeats steps 1-3 until all the P-values for the model parameters 

are below 0.05, resulting in the optimal model shown in Fig. 2. 

The identified β-values shown in Fig. 2, column “Estimate”, are the ones used to 

estimate the design hours using equation 1. 

 

                           𝐷𝑒𝑠𝑖𝑔𝑛 ℎ𝑜𝑢𝑟𝑠 = 𝑒𝑥𝑝 (𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 … 𝛽𝑛 ∗ 𝑥𝑛)               (1) 
 

The x-values in the equation come from the complexity drivers, where the value is 

based on the requested engine design. The model has proven to explain up to 87.4% of 

the data's variance, which got identified based on the adjusted R-squared value. Step 

(4) highlights the model's test results with two separate plots in Fig. 3. The plot on the 

left shows the Residuals vs. Fitted values, and the plot on the right is an QQ-plot. The 

Residuals vs. Fitted plot model becomes unusable if a logical pattern occurs on the plot. 

Also, the plot shows if any data points might have an undue influence on the model fit. 

To identify the normal distribution pattern, an ideally straight line on a QQ-plot should 

show. However, some deviations are accepted for the QQ-plot. On the next page Fig 3 

shows the two different plots for one DSID.  

The plots in figure 3 visualize the data. It is essential to remove the data deviating to 

an extend where it damages the model rather than improving it. Removing any data, the 

model always re-runs steps 1-4. In this case, no data points were necessary to remove. 

This iterative process continues to the point that all nonacceptable data were 

eliminated.Evaluating the cleaned data for estimating the design-hours now happens by 

observing the deviation between the predicted and registered hours. The analysis shows 

that the more data available from the projects, the more accurate the model will be. 

Fig. 1 Output with all parameters Fig. 2 Output, only relevant parameters 
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Small projects with few hours will deviate fast percentage-wise compared to large 

projects. Hence, small projects do not benefit the model's accuracy. This showed from 

analyzing all projects percentage-wise, so only bigger projects got included, resulting 

in better results looking at the correlations and deviation in hours shown in Table 2. 

 

 

Analyzing the differences in hours for the SFs, the correlation between estimated and 

registered hours is examined by creating a training and validation set. The training set 

has 80% of the observations and helps the model to learn. The remaining 20% of the 

observations are the validation set, predefining observations to compare them with the 

training set. Table 3 shows the correlations for the training data and validation data. If 

the training and validation values are close enough, the model is valid for the given SF. 

Not applicable (NA) means that the dataset is insufficient for the model to run it. Given 

the data accessibility, the demonstrated results are positive and validate this method. 

3.4 Configurator  

The configurator represents the mathematical model as a practical and user-friendly 

solution for the case company's engineers. The model's simplicity is essential to 

increase understanding and usage of the configurator [18], and therefore the minimum 

number of required inputs was included. Hence, no unnecessary parameters after 

selecting a SF appear in the configurator. This configurator is designed in Excel, where 

the available variables for each parameter are based on the inputs. The configurator 

runs on equation 1, where the β-values are identified for each parameter based on the 

mathematical model for the chosen SF. The x-values are added manually to the 

configurator using a dropdown list for each parameter, where the engine specification 

is selected. It is believed that the configurator will improve over time as data improves. 

Fig. 4 demonstrates the user interface of the configurator, where the design-time is 

calculated for a SF.   

 SF1 SF2 SF3 SF4 

Mean hours 

off 
13 28 7 14 

Mean 

percent off 
89 16 62 46 

 SF1 SF2 SF3 SF4 

Training 

data 
0.88 0.73 0.96 0.96 

Validation 

data 
0.86 NA 0.90 0.72 

Table 3 – Correlation for the training 

and validation data in hours 
Table 2 - Difference in hours 

 

Fig.  3 Plot of the residuals vs. fitted values (left) and the QQ-plot (right) 
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4 Discussion and conclusion 

This paper developed a mathematical model and 

a configurator to estimate the design-time based 

on MLR using complexity drivers. This paper 

demonstrates the identification of the complexity 

drivers for the engineering design phase for a 

highly complex engineered product. The 

importance of having two types of complexity 

drivers, static and dynamic got shown by A. 

Griffen [19]. Static complexity drivers are stable 

for the SFs data, while experts will decide about 

the dynamic drivers, such as depth of change. 

Hence, the dynamic drivers are more subjective. 

Data availability scoped the project, which led 

us to a proof of concept. More data can help to 

determine new complexity drivers. Implementing new parameters in the model is easy. 

This study focused on identifying complexity drivers based on the various parameters, 

where the product level had the best data available between the four complexity groups.  

The study showed that external complexity drivers highly influence the company 

through regulations shown in the parameters. The company strategy results in a wide 

variety of products trying to meet demands in the market. Hence, the focus of the 

research is on the internal complexity drivers. We identified the complexity drivers in 

the engineering process and developed a mathematical model to develop the 

configurator. The configurator for the case company is a fast and easy solution to 

estimate the design-time for a specific SF, as all the complexity drivers are stable and 

known for all SFs. However, there are limitations to this configurator. Firstly, the depth 

of change will be subjective based on the expert's knowledge. Secondly, the inputs 

require manual work. For the configurator to automatically collect data for each SF, it 

would require unique ID-numbers for the SFs.  

In conclusion, the configurator can be used as an effective solution, but further work 

is recommended when higher quality data is available. With good data, the configurator 

can estimate design-time on engine level. Knowing the design-time of every engine 

will improve the accuracy of capacity planning. Currently, the configurator helps the 

top management to understand the workload on a SF level. This research extends the 

existing study by developing a new method based on MLR instead of linear regression. 

Moreover, this paper identified internal complexity drivers at a case company.  
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