A High efficiency and High power density Asymmetrical Half-bridge Flyback Converter for Data Centers

Li, Mingxiao; Ouyang, Ziwei; Andersen, Michael A. E.

Published in:
Proceedings of IEEE 47th Annual Conference of IEEE Industrial Electronics

Link to article, DOI:
10.1109/IECON48115.2021.9589575

Publication date:
2021

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
A High efficiency and High power density
Asymmetrical Half-bridge Flyback Converter for Data Centers

Mingxiao Li, Student Member, IEEE, Ziwei Ouyang, Senior Member, IEEE and Michael A. E. Andersen, Member IEEE

Department of Electrical Engineering, Technical University of Denmark, Copenhagen, Denmark, zo@elektro.dtu.dk

Abstract—The power consumption in data centers continues increasing, thereby pushing the converter to achieve high efficiency and high power density. This paper presents an asymmetrical half-bridge flyback converter for data center applications. Compared with an active clamp flyback converter, it functions as an isolated buck converter, and is more preferable for voltage step-down applications. The operating principle and the design considerations are included in this paper. An interleaving winding layout with uniformed current distributions is used for the planar transformer design. The built prototype satisfies an industrial standard low-profile sixteenth brick requirement, and achieves 94.9% peak efficiency and 468W/inch³ power density.

Keywords—asymmetrical half-bridge flyback converter, active clamp flyback converter, planar transformer

I. INTRODUCTION

The ever-growing demand for cloud computing and data processing has consumed significant electric power in 2020, and is expected to continue increasing in the coming future, thereby pushing power converters to be more efficient and compact. The 48V bus distribution system proposed by Google has been gradually adopted to replace the conventional 12V bus. This architecture improves the system efficiency. However, it also poses a challenge to converters’ design.

The standard brick size is normally required in the industry. Conventional two-stage structures or converters with multi-stages are proposed and analyzed in many excellent papers. It is known to all that the efficiency of the two-stage converter is the product of the front stage and second stage, which also poses a penalty on system efficiency [1]-[3]. Converters with multi-stages have more functions than single-stage converters. Literature [4] proposes a sigma converter to transfer the majority of the input power through the LLC resonant converter as a DC transformer, while a small portion of power is regulated by the PWM converter to regulate the output. It improves the system efficiency by using the concept of partial power regulation. Another architecture with the functionality of the partial power regulation is proposed in [5]. Two LLCs are integrated into one magnetic core to improve the power density. However, these structures require many power devices or magnetic components, which are hard to realize the power density requirement.

This brings one to re-investigate the single-stage solutions. Switch-capacitor converters [6]-[8] are capable to achieve a significantly high efficiency within a tiny volume. However, gate driver circuits tend to be more complex when there are more power stages. Additionally, these converters are hard to regulate the output voltage and not isolated. A single LLC resonant converter with regulation capability demands a large resonant inductor, which increases the system volume. When the switching frequency swings away from the resonant frequency, the power losses greatly increase due to the circulating energy [9]-[11]. Conventional half-bridge converters and forward converters are usually used to achieve both the efficiency and the power density requirements.

This paper looks into the asymmetrical half-bridge(AHB) flyback converter. It functions as an isolated buck converter and is therefore preferable for voltage-step down applications. The operating principles and design considerations are presented in this paper. A larger resonant capacitor can reduce the primary and secondary RMS current, but increase the turn-off losses. Due to the high current at the secondary side, parallel conductors are used to share the high current. However, the current distributions are usually unbalanced. Three 4:1 interleaving winding layouts with primary conductors in series and secondary conductors in parallel are compared. The winding layout which has the minimum AC resistance is selected. Ansys 2D simulation shows that this winding layout has uniformly distributed current on parallel conductors. The built prototype shows better performance than the state-of-the-art. It achieves 94.9% peak efficiency and 468W/inch³ power density.

The remainder of this paper is organized as follows: Section II presents the operating principles of the AHB flyback converter. Subsequently, design considerations are given in Section III. Section IV shows the experiment results. Section V concludes this paper.

II. OPERATING PRINCIPLE OF THE ASYMMETRICAL HALF-BRIDGE FLYBACK CONVERTER

Compared with an active clamp flyback (ACF) converter, the asymmetrical half-bridge (AHB) flyback converter is more preferable for voltage step-down applications. Two configurations of the AHB flyback converter are presented in Fig.1. TABLE I summarizes the voltage stress comparison between these two converters. All active components of the AHB flyback converter have smaller voltage stress compared with the ACF converter. Furthermore, from the voltage transfer ratio of \(V_o/V_{in} \), the AHB flyback converter can be regarded as an isolated buck converter, while the ACF converter is an isolated buck-boost converter. Therefore, the former is more suitable for voltage step-down applications.
The operating principles of these two configurations are identical. Only the configuration shown in Fig. 1(a) is analyzed. Fig. 2 presents the main current and voltage waveforms of the circuit shown in Fig. 1(a). The steady-state operating principles are given as follows:

Stage 1 ($t_0 < t < t_1$): At t_0, switch Q_2 turns on, and switch Q_1 is clamped by the input voltage V_{in}. The magnetizing current i_{Lm} and the resonant current i_{Lr} are increasing linearly and follow:

$$
i_{Lm}(t) = i_{Lr}(t) = i_{Lr}(t_1) + \frac{V_{in} - V_{cr}}{L_m + L_{in}} t$$

where L_r is the resonant inductor and L_m is the magnetizing inductor.

In this time interval, the secondary rectifier SR is blocked and the energy is stored in the transformer (or coupled inductor). The voltage applied to the primary winding V_p is

$$V_p = \frac{V_{in} - V_{cr}}{L_r + L_m} L_m$$

Stage 2 ($t_1 < t < t_2$): There is a current dip on the resonant current during this ZVS transition where switch Q_2 is off. This phenomenon has been analyzed in [12], which is primarily due to the current shared by the primary and secondary parasitic capacitances, C_{oss} and C_{ij}. In this time interval, the resonant current discharges the output capacitance of switch Q_1 and charges the output capacitance of switch Q_2. SR is also discharging by the secondary current. This stage ends when switch Q_2 is fully discharged by the resonant current.

Stage 3 ($t_2 < t < t_3$): Switch Q_2 achieves the ZVS turn on at t_3. Secondary rectifier SR starts to conduct. The resonant capacitor C_r and the resonant inductor L_r join in the resonance. The resonant current i_{Lr} satisfies:

$$i_{Lr}(t) = i_{Lr}(t_3) \cos(w_r t) + \frac{(nV_{in} - V_{cr}(t_3))}{Z_r} \sin(w_r t)$$

where

$$w_r = 1/\sqrt{L_r C_r}, Z_r = \frac{L_r}{C_r}$$

The voltage applied to the primary winding V_p is

$$V_p = -\frac{V_{cr}}{L_r + L_m} L_m$$

Assume $L_r \ll L_m$. The magnetizing inductor follows the voltage-second-balance, which is given by

$$D(V_{in} - V_{cr}) = V_{cr}(1 - D)$$

where D is the duty cycle of the switch Q_2. V_{cr} is the average voltage on the resonant capacitor. It can be solved by

$$V_{cr} = V_{in} D$$

This time interval ends when switch Q_1 turns off.

Stage 4 ($t_3 < t < t_4$): The current dip also occurs in this ZVS transition. Detailed analysis can be found in [12]. The resonant current discharges switch Q_2 and charges switch Q_1. SR is charging by the secondary current.

III. CONVERTER DESIGN
The design specification is presented in TABLE I. The input voltage changes from 32~75V and the nominal input is 48V. The leakage inductance of the transformer is utilized as the resonant inductance. The leakage inductance usually has limited energy to realize the ZVS for all devices. The converter is therefore designed to operate at discontinues conduction mode (DCM). The magnetizing current i_{Lm} joins in the charge and the discharge of the parasitic capacitances of all active devices. In this section, the design of circuit parameters for the AHB flyback converter will be introduced.

TABLE I

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{in}</td>
<td>Input voltage</td>
<td>32~75V</td>
</tr>
<tr>
<td>V_{n}</td>
<td>Nominal input</td>
<td>48V</td>
</tr>
<tr>
<td>V_o</td>
<td>Output voltage</td>
<td>5V</td>
</tr>
<tr>
<td>P_o</td>
<td>Output power</td>
<td>100W</td>
</tr>
</tbody>
</table>

A. Transformer

Similar with an active clamp flyback converter, the AHB flyback converter can achieve higher efficiency with an interleaving winding layout. Fig.3 presents the current waveforms in the transformer, resonant current i_{Lr}, magnetizing current i_{Lm}, and secondary winding current i_s. It can be observed that there is negative conduction of the resonant current. This phenomenon can be explained by the current-second balance of the resonant capacitor C_r. The shaded area II is identical with the other shaded area I. The negative resonant current helps reduce the proximity effect, because i_{Lr} and i_s are in the opposite directions. The AC resistance can be therefore reduced by employing the interleaved winding layout.

This design deals with a high current at the secondary side. Parallel connections are necessary for secondary windings to share the high current. Three interleaving winding layouts with secondary conductors connected in parallel, shown in Fig.4, are analyzed and compared. TABLE II documents winding details. They are 4:1 planar windings with primary conductors in series and secondary conductors in parallel. The insulation thickness is assumed to be identical for each layer. AC resistances of these three cases simulated by Ansys 2D are presented in Fig.5. Case I and Case III cross each other at 830kHz. Case III has the smallest AC resistance when the frequency is below the crossing point, while Case I shows the minimum AC resistance when the frequency is higher than the crossing point. From this comparison, depending on the frequency, the optimal winding layouts can be selected accordingly.

TABLE II

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper thickness (h)</td>
<td>70μm</td>
</tr>
<tr>
<td>Turn ratio ($n:1$)</td>
<td>4:1</td>
</tr>
<tr>
<td>Insulation thickness (t)</td>
<td>0.3mm</td>
</tr>
<tr>
<td>Window width (b)</td>
<td>5mm</td>
</tr>
<tr>
<td>Resistivity (ρ)</td>
<td>1.71×10^{-8} Ωm</td>
</tr>
<tr>
<td>Air permeability(μ_o)</td>
<td>$4\pi \times 10^{-7}$ H/m</td>
</tr>
<tr>
<td>Magnetic core ($E_{18/4}$)</td>
<td></td>
</tr>
<tr>
<td>Relative permeability of the core(μ_r)</td>
<td>900</td>
</tr>
</tbody>
</table>

Fig.3. Currents waveforms in the transformer

Fig.4 Three winding parallel schemes of a turn ratio 4:1 planar windings with primary series connected and secondary layers parallel connected

Fig.5. AC resistances of three winding layouts as functions of frequency
Current distributions of secondary conductors are analyzed by Ansys 2D. Each primary conductor is excited by 1A peak sinusoidal current. The secondary peak current on each conductor is measured and shown in Fig. 6. It can be seen that each conductor in Case III has the same current across the whole swept frequency from 10kHz to 1MHz. This winding layout has uniformly distributed current, which the others have unbalanced current distributions. In this design, the switching frequency is below 830kHz. The winding layout is therefore selected for the transformer design.

B. Magnetizing inductance

To realize the ZVS for all active devices, the magnetizing inductance should be carefully designed. According to the charge balance during the ZVS transition, it satisfies

$$I_{Lm_{-min}} = 2C_{ox}V_{in} + C_{ps}V_{in} \quad (7)$$

Where $I_{Lm_{-min}}$ is the minimum magnetizing current. It is given by

$$I_{Lm_{-min}} = I_{Lm_{-avg}} = \frac{nVc'(1-D)(T_{s} - t_{d})}{2L_{m}} \quad (8)$$

$$I_{Lm_{-avg}} = I_{Lm_{-avg}} + I_{s_{-avg}} = I_{s} \quad (9)$$

$I_{Lm_{-avg}}$ is the average current of the magnetizing current. It is the sum of the $I_{Lm_{-avg}}$ and $I_{s_{-avg}}$, which are the average i_{Lr} and i_{s}, respectively. The average i_{Lr} is zero because of the current-second balance of C_r. $I_{Lm_{-avg}}$ is therefore equivalent to the referred secondary average current $I_{s_{-avg}}$. Combining (7), (8), and (9), the magnetizing inductance L_{m} can be solved by

$$L_{m} = \frac{nVc'(1-D)(T_{s} - t_{d})t_{d}}{4nC_{ox} + 2C_{ps}V_{in} + 2L_{m}t_{d}} \quad (10)$$

C. Resonant capacitor

From Fig. 7, a smaller resonant capacitor shows almost zero turn-off current for switch Q_1 and secondary rectifier SR, while a larger resonant capacitor presents a higher turn-off current. However, a larger resonant capacitor yields smaller primary and secondary RMS current, but higher turn-off loss, as presented in Fig. 8. Thus, a trade-off has to be made between the turn-off loss and conduction loss. In this design, the AHB flyback converter is dealing with high current for both primary and secondary sides, where conduction power loss dominates. A larger resonant capacitor is therefore more preferable to reduce the conduction loss.
The circuit parameters are documented in TABLE III. The magnetic core is ER 18/3.2/10 from Hitachi. A larger resonant capacitor is selected to reduce the primary and secondary RMS current. Fig.9 shows the top view and bottom view of the prototype. It satisfies the standard 1/16 brick size and achieves the power density of 468W/inch³. Two SRs are connected in parallel to share the high current. As mentioned in the previous section, the winding layout show in Case III, an 8-layer PCB, is selected for the planar transformer design. However, this prototype is only built with two 4-layer PCBs to reduce the cost. The detailed configuration is shown in Fig.10. One SR is placed on the PCB together with other primary devices. The other SR is located on the other PCB which only has planar windings and gate drivers. These two PCBs are soldered together to have the parallel connections of the secondary windings, SRs and the series connections of the primary windings. Although the spacing between PCB1 and PCB2 is normally larger than the insulation between each conduction, it does not affect the parallel current distribution.

Table III: Circuit Parameters

<table>
<thead>
<tr>
<th>Circuit parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_1 \sim Q_2)</td>
<td>BSZ075N08NS5</td>
</tr>
<tr>
<td>SR</td>
<td>BSC009NE2LS5</td>
</tr>
<tr>
<td>Magnetizing inductance (L_m)</td>
<td>2.2uH</td>
</tr>
<tr>
<td>Leakage inductance (L_r)</td>
<td>53nH</td>
</tr>
<tr>
<td>Resonant capacitance (C_r)</td>
<td>3.3uF</td>
</tr>
<tr>
<td>Turn ratio</td>
<td>4:1</td>
</tr>
<tr>
<td>Magnetic core</td>
<td>ER18/3.2/10 ML91S</td>
</tr>
</tbody>
</table>
The comparison with the state-of-the-art is presented in TABLE IV. The built prototype achieves both the highest efficiency and power density.

TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Peak efficiency</th>
<th>Power density (W/inch³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V48SC05020</td>
<td>36-75V</td>
<td>5V/20A</td>
<td>91%</td>
</tr>
<tr>
<td>MYBE00520AZT</td>
<td>36-75V</td>
<td>5V/20A</td>
<td>93% at Vout=8V</td>
</tr>
<tr>
<td>PKU4105CPI</td>
<td>36-75V</td>
<td>5V/20A</td>
<td>93.6% at Vout=8V</td>
</tr>
<tr>
<td>AHB flyback</td>
<td>32-75V</td>
<td>5V/20A</td>
<td>94.8% at Vout=8V</td>
</tr>
</tbody>
</table>

V. CONCLUSION

This paper presents the operating principle and design considerations of the asymmetrical half-bridge (AHB) flyback converter. The impact of the resonant capacitor is analyzed. A larger resonant capacitor tends to induce larger turn-off losses but lower primary and secondary RMS current. This converter also benefits from the interleaving winding layout. A 4:1 interleaving winding structure with balanced current distributions on secondary parallel conductors is selected. The prototype achieves 94.9% peak efficiency and 468W/inch³ power density.

REFERENCES

