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Abstract: Bycatch in demersal trawl fisheries challenges their sustainability despite the implemen-
tation of the various gear technical regulations. A step towards extended control over the catch pro-
cess can be established through a real-time catch monitoring tool that will allow fishers to react to 
unwanted catch compositions. In this study, for the first time in the commercial demersal trawl 
fishery sector, we introduce an automated catch description that leverages state-of-the-art region 
based convolutional neural network (Mask R-CNN) architecture and builds upon an in-trawl novel 
image acquisition system. The system is optimized for applications in Nephrops fishery and enables 
the classification and count of catch items during fishing operation. The detector robustness was 
improved with augmentation techniques applied during training on a custom high-resolution da-
taset obtained during extensive demersal trawling. The resulting algorithms were tested on video 
footage representing both the normal towing process and haul-back conditions. The algorithm ob-
tained an F-score of 0.79. The resulting automated catch description was compared with the manual 
catch count showing low absolute error during towing. Current practices in demersal trawl fisheries 
are carried out without any indications of catch composition nor whether the catch enters the fishing 
gear. Hence, the proposed solution provides a substantial technical contribution to making this type 
of fishery more targeted, paving the way to further optimization of fishing activities aiming at in-
creasing target catch while reducing unwanted bycatch. 

Keywords: deep learning; innovation in fisheries; digitized fishery; automated catch description 
 

1. Introduction 
Commercial demersal trawl fisheries are defined as mixed due to the high presence 

of co-habiting species in the catch, resulting in high catch rates of non-target sizes and 
individuals, referred to as bycatch [1]. In a quota-regulated management system, the com-
mercial species and sizes can also be considered a bycatch if the individual vessel does 
not have quota available for a given species. Thus, the actual bycatch definition depends 
on fishery type and the area of fishing [2]. To mitigate catch and subsequent discard of 
unwanted species and sizes, ambitious management plans such as the EU Common Fish-
eries Policy landing obligation have been implemented, forcing fishers to declare all 
catches of listed species and count them against their quota [3]. The management plans 
are combined with technical regulations aiming at improving the gears size and species 
selectivity through mesh size regulations, trawl modifications and bycatch reduction de-
vices. Despite these measures, catch of unwanted sizes and species still challenge these 
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fisheries [2,4]. Indeed, such catch-quota systems as the landing obligation provide an in-
centive and not a tool to minimize unwanted catches. Additionally, available technical 
measures are not able to provide information on the ongoing catch; hence, catch compo-
sition can only be discovered when the fishing gear is lifted on board the vessel [5].  

Recent developments in underwater imaging systems can help bring traditional de-
mersal trawl fisheries into the digital age by enabling catch monitoring during fishing 
operations. Such systems are indeed crucial to overcome the challenges the demersal trawl 
fisheries face. The possibility to monitor the catch inside the trawl during fishing can pro-
vide valuable information and act as a decision support tool for fishers [6]. In-trawl cam-
era systems are being introduced in pelagic fisheries [7–10] and demersal fisheries [6]; 
however, these systems have been, so far, used for scientific monitoring purpose only.  

The developed catch monitoring methods are associated with extensive storage and 
manual processing of video recordings. To become an efficient decision support tool, these 
systems require automated processing of the data. Recently, automated processing of the 
data obtained by video cameras has become more common in various industries, and fish-
eries are not an exception. Several studies describe automated fish detection and classifi-
cation commonly performed with the aid of deep learning models application [11–15]. 
These studies demonstrate that the deep learning models for objects detection and classi-
fication are efficient tools for processing the on-board as well as underwater collected re-
cordings of the catch. The deep learning ability to “learn” the object features given the 
annotated data makes it a powerful tool for solving complex image analysis tasks. The 
traditional computer vision approaches require preliminary object features engineering 
for each specific task, which limits these methods’ efficient application to the real-world 
data [16]. 

However, the underwater video recordings, especially, are always challenged by 
poor visibility conditions [12,17]. Additionally, in the specific application of catch moni-
toring system in demersal trawls, more prominent occlusion conditions can limit the cam-
era field of view due to sediment resuspension during gear towing [18,19]. Thus, acquisi-
tion of poor video recordings in bottom trawl applications can prevent quality data col-
lection and hence hamper automated processing. 

In this study, we demonstrate the successful automated processing of the catch based 
on the data collected during Nephrops-directed demersal trawling using a novel in-trawl 
image acquisition system, which helps to resolve the limitations caused by sediment mo-
bilization [20]. We hypothesize that the quality of the collected data using the novel sys-
tem is sufficient for developing an algorithm for automated catch description. With the 
described method, we aim at closing a gap in the demersal trawling operations non-trans-
parency and enable fishers to monitor and hence have a better control over the catch build-
ing process during fishing operations. To test the hypothesis, we fine-tune a pre-trained 
convolutional neural network (CNN), specifically, the region based CNN - Mask R-CNN 
model [21], with the aid of several augmentation techniques aiming at improving model 
robustness by increasing the variability in training data. The trained detector was then 
coupled with the tracking algorithm to count the detected objects. The known behavior 
aspects during trawling of fish and Nephrops (Nephrops norvegicus, Linnaeus, 1758) were 
considered while tuning the Simple Online and Realtime Tracking (SORT) algorithm [22]. 
The resulting composite algorithm was tested against two types of videos depicting nor-
mal towing conditions (having low object occlusion and stable observation section) and 
the haul-back phase when the camera’s occlusion rate is higher and the observation sec-
tion is less stable. We assessed the performances of the algorithm in classifying demersal 
trawl catches into four categories and against the total counts per category. Automated 
catch count was also compared with the actual catch count. The system shows good per-
formances and, when further developed, can help fishers to comply with present manage-
ment plans, preserving fisheries economic and ecological sustainability by enabling skip-
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pers to automatically monitor the catch during fishing operation and to react to the pres-
ence of unwanted catch by either interrupting the fishing operation or relocating to avoid 
the bycatch. 

2. Methods and Materials 
2.1. Data Preparation 

To collect the video footage containing the common commercial species of the de-
mersal trawl fishery, such as Nephrops, cod (Gadus morhua, Linnaeus, 1758) and plaice 
(Pleuronectes platessa, Linnaeus, 1758), we performed 19 hauls, 1.5 h duration each, in Skag-
errak, onboard RV “Havfisken”. We used a low headline “Nephrops” demersal trawl with 
40 mm mesh size in codend to sample all population entering the gear. To collect data of 
sufficient quality to enable automated detection and counting of the catch items, we used 
an in-trawl image acquisition system developed and described in [20]. The essential parts 
of that system include a camera coupled with the lights placed inside a tarpaulin cylinder, 
with a defined optimal color in the aft part of the trawl and a sediment-suppressing sheet 
attached to the ground gear of the trawl (Figure 1) [20,23]. The system ensured stable ob-
servation conditions without obscuring sediment clouds during demersal trawling and 
allowed us to collect high-resolution (720 p) frames to train the deep learning model. The 
camera settings were: 2 ms exposure, which provides the control over shutter speed; 70 
gain, which is responsible for digital amplification of the signal from camera sensors; 4400 
K color temperature; 60 fps frame rate. 

 
Figure 1. Image acquisition system overview. (A) Camera prototype version 2020, Atlas Maridan; (B) an outside view of 
the in-trawl image acquisition system. 

To select the frames containing the objects of interest, the data was subsampled with 
the aid of a blob detector [23]. After this step, the dataset was further subsampled by a 
human supervisor, who selected the frames containing the target objects from the selected 
categories: Nephrops, round fish, flat fish and other (Figure 2). Nephrops class contained the 
frames depicting the target species of the demersal trawl fishery, namely Nephrops itself. 
Round fish class contained the frames with round fish species, such as cod, hake (Merluc-
cius merluccius, Linnaeus, 1758) and saithe (Pollachius virens, Linnaeus, 1758). Flat fish class 
was composed from the frames of all flat fish species, plaice and dab (Limanda limanda, 
Linnaeus, 1758), for example. The other class contained the frames of different organisms 
such as non-commercial fish species and invertebrates, for instance, crabs. 

The selected frames were manually annotated for the regions of interests and the re-
sulting labels contained the polygons of individual objects and class ID. The prepared 
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dataset consisted of 4385 images and was split in train and validation subsets as 88% and 
12%, respectively. 

 
Figure 2. The examples of the four categories used in a dataset: (A) Nephrops; (B) round fish; (C) flat fish; (D) other. 

2.2. Mask-RCNN Training 
The architecture of Mask R-CNN was chosen to perform automated detection and 

classification of the objects [21]. This deep neural network is well established in the com-
puter vision community and builds upon the previous CNN architecture (e.g., Faster R-
CNN [24]. It is a two-stage detector that uses a backbone network for input image features 
extraction and a region proposal network to output the regions of interest and propose 
the bounding boxes. We used the ResNet 101-feature pyramid network (FPN) [25] back-
bone architecture. ResNet 101 contains 101 convolutional layers and is responsible for the 
bottom-up pathway, producing feature maps at different scales. The FPN then utilizes 
lateral connections with the ResNet and is responsible for the top-down pathway, com-
bining the extracted features from different scales. 

The network heads output the refined bounding boxes of the objects and class prob-
abilities. In addition, as an extension of Faster R-CNN, a branch consisting of six convolu-
tional layers provides a pixel-wise mask for the detected objects. The mask area can be 
used to estimate the real size of the object, which opens up a possibility to automate the 
catch items’ size estimation during fishing. Therefore, we chose this architecture keeping 
in mind the scope of future work. During training, the polygons in the labeled dataset are 
converted to masks of the objects. We initialized the training routine with pre-trained 
ImageNet weights [26]. We trained the model using Tesla V100 16 GB RAM, CUDA 11.0, 
cudnn v8.0.5.39, and followed the Mask RCNN Keras implementation [27]. 

2.3. Data Augmentation 
To improve the model robustness and to avoid overfitting, we have used several im-

age augmentation techniques during the Mask R-CNN training routine. These are in-
stance-level transformations with Copy-Paste (CP) [28], geometric transformations, shifts 
in color and contrast, blur and introduction of artificial cloud-like structures [29]. To eval-
uate the contribution of each of the techniques, we trained a model without any augmen-
tations used during training and considered this model a baseline for further comparisons. 

CP augmentation is based on cropping instances from a source image, selecting only 
the pixels corresponding to the objects as indicated by their masks and pasting them on a 
destination image and thus substituting the original pixel values in the destination image 
for the ones cropped from the source. The source and destination images are subject to 
geometric transformations prior to CP so that the resulting image contains objects from 
both images with new transformations that are not present in the original dataset. The 
authors of CP suggest using random jitter (translation), horizontal flip and scaling. We 
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also add vertical flip and rotation (𝜃𝜃 = [−15°, … , 15°]). They show that large scale varia-
tion (10%, 200%), as opposed to standard scale variation (80%, 125%), improves the per-
formance in the COCO dataset with random weights initialization. However, we find that 
large scale variation generates objects with unrealistic sizes that are not expected to be 
found with our image acquisition setup. We find that a scale variation between 50% and 
150% works best with our dataset and network configuration. We have also explored the 
use of several source images and performed the training with two, three and five source 
images. If the number of objects in the source image is more than one, then the number of 
the objects to be copied and pasted is defined by a random number from one to number 
of objects in the source image. 

Data collection was undertaken using a stable image acquisition system with a tightly 
attached camera and an artificial light source; the illumination was not always consistent 
in the images due to trawl movements as well as occasional catch and sediment occlusions 
of the camera field of view and the light source. To make the model more robust against 
these changes, we used color space augmentation (referred to as “Color” augmentation) 
by inducing variations in hue, saturation and brightness. Specifically, the shifts were ap-
plied sequentially, starting from hue value variations (−5, 7), followed by saturation shifts 
(−10, 10) and, finally, the brightness changes (−20, 20). These values were derived experi-
mentally to indicate the typical variation of color and contrast in the dataset (Figure 3). 

 
Figure 3. Examples of the applied augmentation techniques during training. (A) Original example 
images; (B) applied Copy-Paste and geometric transformations with the minimum values (left col-
umn) and maximum values (right column); (C) resulting augmentations with Copy-Paste + geomet-
ric transformations + color + blur + cloud with minimum (left) and maximum (right) values. 

Notwithstanding the high frame rate and the optimized ratio between exposure and 
gain, a degree of blur was present in the dataset. The common blur sources are the high 
speed of the objects’ passage through the camera field of view and the light scattering 
from the sediments that can partially occlude the objects. To make the model robust 
against these variations, we have sequentially implemented Gaussian blur with varying 
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sigma (0.0, 3.0) and Motion blur with a ranging kernel size (5, 15). We refer to this type of 
tested augmentation as “Blur”. 

In addition to the mentioned sources of variations in images, the occasional presence 
of sediment creates a set of shapes and patterns that may not be present in the training 
dataset and can cause false positive detections. To account for this, we explored the use of 
cloud augmentation (“Cloud”), which introduced random clumps of cloud-like patterns 
with varying sizes and colors that resembled the sediment shapes found during trawling. 
We set the color range by specifying the color temperature, which was set to vary from 
2000 to 6000 k, corresponding to hues ranging from white to orange, approximating the 
real sediment colors. This type of augmentation produces an overlay, which is blended 
with the original image, locally changing the color of the objects lying behind the clumps 
and globally introducing the cloud-like patterns. Prior to “Color”, “Blur” and “Cloud” 
augmentations, we applied CP and geometric transformations during training. 

The final model contained all the augmentation techniques applied to the images 
during training. The CP augmentation was applied to every training frame and the aug-
mentations from imgaug library [29] were applied sequentially with the 40% likelihood 
of occurrence for each training frame. The order of augmentations applied to the image 
during training follows the sequence of the described augmentation techniques above. 

2.4. Tracking and Counting 
To track the detected objects and obtain the total automatic count of each category, 

we use an adaptation of the tracking algorithm SORT [22]. It relies on the Kalman filter to 
update the tracks’ locations and assumes a constant velocity model that corresponds to 
the general motion of the target species (Nephrops) during trawling [30]. However, the 
round fish species are able to swim together with the towed gear and are able to escape 
the camera field of view and re-enter it again, which typically happens when those species 
travel forwards towards the trawl mouth [31]. These events result in the track to disappear 
in the upper part of the frame; therefore, to solve this, we implement a filter in the top 
band of the image. In case the track disappears in the filter area, corresponding to top fifth 
of the image, the total count of the category does not increase. 

We use the Mahalanobis distance between the tracks and detections centroids as the 
cost for the assignment problem, which is solved by the Hungarian algorithm [22]. We 
use a short probationary period, requiring only two consecutive assigned frames for a 
track to be considered valid. The tracks are terminated after 15 consecutive frames without 
being assigned any detection. Finally, we use the matching cascade algorithm proposed 
in [32], giving priority in the assignment problem to tracks that have been lost for fewer 
frames. 

Our tracking problem deals with multiple classes as opposed to SORT. Often during 
the first few frames of an object coming into the field of view, it presents fewer distinctive 
features and the model is not able to assign the correct class. To address this, we allow 
each track to initially consider all classes before assigning a definitive one. We enable this 
by introducing an additional attribute to each track which consists of a vector of length 
equal to the number of classes. We first define the probability vector, �̅�𝑝i (Equation (1)), as 
the output from the softmax layer of the network consisting of the likelihoods that object 
i belongs to each of C classes. An important property of the softmax function is that the 
sum of the probabilities for �̅�𝑝i will be equal to 1. 

�̅�𝑝𝑖𝑖 = �𝑝𝑝1, … , 𝑝𝑝𝐶𝐶�
𝑇𝑇 ∈ ℝ𝐶𝐶  (1) 

We then define the evidence vector for track i,�̅�𝑣𝑖𝑖, as the cumulative summation of prob-
ability vectors across each timestep k (Equation (2)): 

�̅�𝑣𝑖𝑖,𝑘𝑘 = �̅�𝑣𝑖𝑖,𝑘𝑘−1 + �̅�𝑝𝑖𝑖,𝑘𝑘|�̅�𝑣𝑖𝑖,0 = �̅�𝑝𝑖𝑖,0 (2) 
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Once the track is completed (at timestep k = K), the final confidence score and class 
assigned to the track are computed (Equations (3) and (4)): 

𝑠𝑠𝑖𝑖 = max 
�̅�𝑣𝑖𝑖,𝐾𝐾
𝐾𝐾

 (3) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑖𝑖 = arg max �̅�𝑣𝑖𝑖,𝐾𝐾 (4) 

We also use the evidence vector to assist the assignment problem as well as to filter 
unlikely matches. In the assignment problem, an additional cost is added to the total cost, 
which we refer to as the 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (Equation (5)): 

𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ��̅�𝑣𝑖𝑖,𝑘𝑘−1,𝑛𝑛

𝐶𝐶

𝑛𝑛=1

| 𝑛𝑛 ≠ arg max �̅�𝑝𝑗𝑗,𝑘𝑘 (5) 

where j is the jth object considered for assignment to track i. For a given detection-track 
pair, it is computed as the sum of the track’s evidence vector entries belonging to classes 
different than the object’s class. In the filtering stage of the matching cascade, we introduce 
an additional gate that forbids any assignment that has a class cost higher than a pre-
established threshold. 

2.5. Algorithm Evaluation 
To evaluate the algorithm performance, we have selected two test videos. One with 

the average catch rate corresponding to typical conditions during towing (1339 s from the 
haul start), referred to as “Towing”, and the other with the higher occlusion rate and less 
stable observation conditions due to trawl movements in the end of the fishing operation 
(4100 s from the haul start), referred to as “Haul-back”. The first video is a typical example 
of the data quality and observation conditions during regular demersal trawling, whereas 
the second video is a stress test of the algorithm. The evaluation sample size is 27,000 and 
23,100 frames corresponding to the lengths of the two test videos. The total number of test 
frames containing Nephrops was 2082, round fish—19,840, flat fish—3221 and other—6113. 

The algorithm outputs a set of predicted tracks that we wish to evaluate against a set 
of ground truth tracks. The ground truth tracks are defined by the frame index where the 
track first appears in the video and the frame index where the track last appears in the 
video (start and end indices). 

To compare the predicted track against the ground truth start and end indices, we 
construct a binary vector for each ground truth (Equation (6)), 

𝑐𝑐�𝑖𝑖 ∈ ℕ𝑚𝑚|𝑐𝑐�𝑖𝑖 ∈ [0,1] (6) 

where m is the number of frames between the start index of the first track and the end 
index of the last track present in the video and i is the ground truth index. We set the 
elements of 𝑐𝑐�𝑖𝑖 to be 1 between the start and end indices of the corresponding ground 
truth. The rest are set to 0. We construct a similar vector for the predictions, 𝑏𝑏�𝑗𝑗 ∈ ℤ𝑛𝑛|𝑏𝑏�𝑗𝑗 ∈
[0,1], where n is the number of predicted tracks. 

We then calculate the Intersection over Union (IoU) for each pair of 𝑐𝑐�𝑖𝑖  and 𝑏𝑏�𝑗𝑗 
(Equation (7)): 

𝐼𝐼𝐼𝐼𝑈𝑈𝑖𝑖𝑗𝑗 =
𝑐𝑐�𝑖𝑖 ∩ 𝑏𝑏�𝑗𝑗
𝑐𝑐�𝑖𝑖 ∪ 𝑏𝑏�𝑗𝑗

 (7) 

We are interested in solving the assignments between ground truths G and predic-
tions P via maximizing the summed IoU, so we formulate the general assignment problem 
as a linear program (Equations (8)–(13)): 

maximise � 𝐽𝐽𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗
(𝑖𝑖,𝑗𝑗)𝐺𝐺×𝑃𝑃

 (8) 
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s.t. �𝑥𝑥𝑖𝑖𝑗𝑗 = 1
𝑗𝑗∈𝑃𝑃

 for 𝑖𝑖 ∈ 𝐺𝐺 (9) 

� 𝑥𝑥𝑖𝑖𝑗𝑗 = 1
𝑖𝑖∈𝐺𝐺.𝑇𝑇.

for 𝑗𝑗 ∈ 𝑃𝑃 (10) 

0 ≤ 𝑥𝑥𝑖𝑖𝑗𝑗 ≤ 1 for 𝑖𝑖, 𝑗𝑗 ∈ 𝐺𝐺,𝑃𝑃 (11) 

𝑥𝑥𝑖𝑖𝑗𝑗 ∈ ℤ for 𝑖𝑖, 𝑗𝑗 ∈ 𝐺𝐺,𝑃𝑃 (12) 

𝐽𝐽𝑖𝑖𝑗𝑗 = �
−1 if 𝐼𝐼𝐼𝐼𝑈𝑈𝑖𝑖𝑗𝑗 ≤ 𝜅𝜅
𝐼𝐼𝐼𝐼𝑈𝑈𝑖𝑖𝑗𝑗  if > 𝜅𝜅  , (13)  

where the final definition of IoU enforces a penalty for assigning tracks that have an IoU 
that is less than or equal to some threshold value 𝜅𝜅 (𝜅𝜅 = 0). The solution to Equation (8) 
yields optimal matches between ground truth and predictions. The solver implementation 
used the GNU Linear Programming Kit (GLPK) simplex method [33]. (The matched 
ground truth tracks and the predicted tracks are treated as True Positives (TP), unmatched 
ground truth tracks correspond to False Negatives (FN) and the unmatched predicted 
tracks corresponds to False Positives (FP)). The number of TP, FN and FP were used to 
calculate Precision, Recall and the F-score of the algorithm. 

2.6. Automated and Manual Catch Comparison 
The two best performing algorithms were used to predict the total count of the catch 

items in the two selected test videos to diagnose automated count progress in relation to 
video frames. We then applied both algorithms to the other nine videos containing the 
catch monitoring during the whole fishing operation (haul). Predicted count for the whole 
haul was then compared with the manual count of the catch captured by the in-trawl im-
age acquisition system and the actual catch count performed onboard the vessel. We have 
calculated an absolute error (𝐸𝐸) (Equation (14)) of the predicted catch count to evaluate 
the algorithm performance in catch description of the entire haul. 

𝐸𝐸 = 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖, (14) 
where 𝑥𝑥𝑖𝑖 denotes the ground truth count and 𝑥𝑥𝑗𝑗 corresponds to the predicted by the al-
gorithm count per class.  

All Nephrops were identified and counted onboard the vessel. Only the commercial 
species were counted onboard among the other three classes. Thus, cod and hake were 
counted onboard in the round fish category; plaice, lemon sole (Microstomus kitt, Wal-
baum, 1792) and witch flounder (Glyptocephalus cynoglossus, Linnaeus, 1758) were counted 
corresponding to the flat fish class; and squid (Loligo vulgaris, Lamarck, 1798) was counted 
for the other class. 

3. Results 
3.1. Training 

The selected values for the learning rate varied from 0.0003 to 0.0005 (Table 1). The 
specific values were chosen to prevent exploding gradient resulting in backpropagation 
failure. The ‘ReduceOnPlateau’ Keras function has been implemented to drop the learning 
rate by half if the validation loss has stopped decreasing during 12 epochs. The lowest 
bound for the learning rate was set to 0.0001. The small value for the learning rate required 
more iterations of training; therefore, the number of epochs for the best performing mod-
els were above 60 epochs with a maximum of 100 epochs. We have explored the use of 
one and two images per batch and, in general, the model performance was observed to be 
higher with the use of two images per batch, excepting the model trained with the blur 
augmentation. We have also experimented with the number of source images providing 
the instances to be pasted to the destination training image. The number of source images 
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varied from two to five, which provided similar model performance; however, the use of 
three source images provided the highest scores. 

Table 1. Tuned hyperparameter values for each of the augmentation techniques derived from experiments. CP—Copy-
Paste augmentation. 

Hyperparameters 
Types of Augmentation 

Learning Rate 
Number of 

Epochs 
Steps per Epoch Batch Size 

Source Images 
for CP 

Baseline (none) 0.0005 60 

1000 

2 

3 

CP and Geometric transformations 0.0005 76 2 
Blur  0.0005 80 1 

Color  0.0003 100 2 
Cloud  0.0004 84 2 

All augmentations 0.0005 76 2 

3.2. Evaluation 
As we are interested in the total catch automated description, we have averaged the 

resulting F-scores among the four categories and used it as a major indicator of the algo-
rithms’ performance (Figure 4). The first pattern that can be captured from the first glance 
at Figure 4 is the algorithms’ difference in performance while applied to the two test vid-
eos. Overall, the algorithms’ F-score applied to the “Haul-back” video case showed lower 
values compared to the “Towing” video. In case of the baseline model, the F-score was 
15% lower while tested on the “Haul-back” video compared to the trawling scenario. 

 
Figure 4. Effect of the augmentations applied during training on the resulting F-scores of the algo-
rithm applied to the two test videos. 

Among all the studied detectors, testing of the algorithm with the baseline model 
expectedly showed the lowest F-scores in both video test cases. The highest F-score of 0.79 
was reached with the algorithm utilizing Mask R-CNN trained with all augmentations 
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applied to the “Towing” case video. In the case of the “Haul-back” video case, the algo-
rithm with Mask R-CNN trained with CP, geometric transformations and cloud augmen-
tation showed a slightly higher F-score than that of the algorithm with the detection based 
on the model trained with all augmentations. 

The explicit table (Table A1) containing the values of the calculated Precision, Recall 
and F-score for all four categories in the two case videos are presented in Appendix A. 
The detection examples obtained with using the Mask R-CNN trained with all augmenta-
tions as a detector on the “Towing” and “Haul-back” video frames are presented in Figure 
5. 

 
Figure 5. Multi object detection examples obtained from the model trained with all tested augmentations and applied to: 
(A) “Towing” test video and (B) “Haul-back” test video with the higher rate of occlusions and conditions variation. 

3.3. Comparison of Automated and Manual Catch Descriptions 
Automated count estimated per frame of the test videos was closer to the ground 

truth count in the case of the “Towing” test video (Figure 6), supporting the algorithms’ 
higher F-scores (Figure 4). During the “Haul-back”, the automated count of Nephrops had 
a tendency towards underestimation by both algorithms, whereas in the case of round 
fish and flat fish classes an opposite trend of overestimation was observed. In the case of 
the other class, the algorithm based on training with “Cloud” augmentations approxi-
mated the real count better compared to the algorithm output with all test augmentations 
implemented during training. 
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Figure 6. Automated count dynamics per frames of the two test case videos—“Towing” and “Haul-
back”. All—the algorithm based on Mask R-CNN trained with application of all test augmentations 
to the images, Cloud—the algorithm based on Mask R-CNN trained with application of Cloud aug-
mentation applied to the images during training, Ground truth—the per frame ground truth count 
of objects in the test videos. 

Manual catch count onboard deviates from the ground truth count in the videos due 
to the catch items avoiding the camera field of view and due to the variations in class 
assignment criteria (Table 2). All captured Nephrops, both in the resulting catch and cap-
tured by an in-trawl image acquisition system, were counted. In case of the round fish and 
flat fish classes, only the commercial species were counted onboard. The criteria of assign-
ing catch items to round fish and flat fish classes for the automated detection and count 
purpose was based on the object aspect ratio assumption. Thus, in addition to the com-
mercial species counted onboard, a number of non-commercial species contribute to the 
manual count in the videos. The reason for the mismatch in the manual count of the other 
class onboard and in the videos is similar. Only one species is considered commercial in 
this class and hence counted onboard. 
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Table 2. Automated (predicted) and manual catch count results per class. 

Class 
Types of Augmentation 

Nephrops Round Fish Flat Fish Other 

Manual catch count (onboard) 323 464 556 9 

Manual catch count (videos) 235 530 755 897 
Baseline (none) 302 869 1439 1383 

CP and Geometric 
transformations 

282 819 1078 1114 

Blur  272 889 1179 1027 
Color  262 691 1174 1256 
Cloud  249 808 1064 1082 

All augmentations 302 785 1084 1058 

We can conclude that 73% of Nephrops are being recorded by an in-trawl image ac-
quisition system. The algorithm based on Mask R-CNN training with “Cloud” augmen-
tations applied outputs the closest to the manual count. An average F-score of this algo-
rithm is 0.73, estimated for the two test videos (Table A1). All of the algorithms tend to 
overestimate the count of the other three classes. Figure 7 reveals the time interval of the 
fishing operation that corresponds to the largest automated count bias occurrence. 

The largest absolute error of the predicted automated count output by the two best 
performing algorithms was observed in the video depicting the initialization of the catch 
process. This time stamp corresponds to the phase of the fishing operation when the trawl 
gets in contact with the seabed which causes increased sediment resuspension, the pres-
ence of which contributes to the count bias towards false positive detections. During tow-
ing, the absolute error in the automated count produced by both algorithms remains low. 
The video recordings of the catch monitoring during the entire trawling are available as 
the data supporting the reported results [34]. 

 
Figure 7. Absolute error estimation of the automated catch count output by the two best performing algorithms applied 
to all consecutive videos of the whole haul duration. All—detector based on Mask R-CNN with all types of test augmen-
tations applied to the images during training; Cloud—detector based on Mask R-CNN with “Cloud” augmentation ap-
plied to the images during training. 
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4. Discussion 
In this study, we have described the automated video processing solution for catch 

description during commercial demersal trawling. The algorithm is tuned for a dataset 
collected in the Nephrops-directed mixed species fishery, which is obtained with the aid of 
the in-trawl observation section enabling sediment-free video footage during demersal 
trawling. The use of augmentations during training boosted the algorithm performance 
for both the towing and haul-back phase of the trawling operation. Based on the absolute 
error estimation of the automated count, we can conclude that the algorithm’s perfor-
mance is challenged in the demersal trawling initialization phase. However, the error in 
the automated count remained low during towing, corresponding to the core of the de-
mersal trawling. These results indicate readiness of the proposed solution for at-sea ap-
plication. Considering today’s conditions for the demersal trawling practice, which is to-
day more or less a blind process, the system has the potential to transform the traditional 
demersal trawl fishery to a more informed, targeted and efficient process. 

4.1. Towards Precision Fishing 
The concept of precision fishing implies advanced analytics for big data collected by 

ubiquitous perception devices [35]. The resulting analysis of the videos collected on-board 
can provide detailed catch statistics. Today, such on-board monitoring systems are pri-
marily used by managers and scientists to establish and update the regulations in a reac-
tive manner. The demonstrated approach presents the possibility for fishers to utilize this 
information directly during the fishing process, which is an assertive management tool 
rather than reactive. The system application on a commercial scale offers a win-win solu-
tion for both fishers and managers. Using the obtained information regarding the catch 
composition and amount, fishers can react immediately to the presence of bycatch and 
thereby make their process more targeted and efficient, which will align ecological and 
economic sustainability. 

The system is developed for commercial trawl fisheries, using the Nephrops-directed 
trawl fishery as a case study. The amount of bycatch in the mixed demersal trawl fishery 
targeting Nephrops is higher compared to the mixed fishery targeting fish species [2]. Thus, 
the proposed solution is expected to have a higher impact while applied to this fishery. 
Nephrops-directed fisheries operate with low headline demersal trawls [5] where the im-
plementation of monitoring devices is challenged by the smaller gear dimensions and the 
proximity to the seabed. We have demonstrated that the developed in-trawl observation 
system and the automated catch description approach is effective in this fishery. Demersal 
trawl fisheries that are targeting other species also experience similar challenges as the 
Nephrops fishery [1] so we expect that the proposed optical monitoring tool can be adapted 
for the majority of the demersal trawl fisheries, following further acquisition of species-
specific data and labelling. With an increasing demand for seafood, the introduction of 
the novel technology that can improve extraction patterns in the commercial fisheries is 
crucial for sustainable use of limited natural resources [35]. 

4.2. Algorithm Performance 
The tested algorithms performed worse on the “Haul-back” video compared to 

“Towing” video (Figure 4; Table A1). This observation is expected as changing hydrody-
namic conditions alter the background panel position, which may contribute to FP detec-
tions of the background as an object due to reflection of light and irregular curvatures. 
Besides, some fish species hold in front of the observation section for longer periods of 
time during the towing phase and first fall through haul-back is initiated, causing a heavy 
increase in occlusion due to crowding. However, such conditions are present when the 
trawl is hauled back; thus, at that point, the decision to terminate the fishing operation 
has already been made. Our findings indicate that the algorithms are suitable for serving 
as an automated processing tool of the video stream and work as a decision support tool 
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for the fishers to avoid manual analysis of the videos. The system efficiency as a decision 
support tool relies on the algorithm performance accuracy, provided it is high. In this 
study, we have demonstrated the maximum of 0.79 F-score via improving the accuracy of 
detection (Appendices A and B) and by extending the SORT algorithm with implementing 
evidence vector for more accurate class-to-track assignment as well as cascade matching 
to reduce the erroneous detection to track assignment between overlapping objects. The 
duplicate counts of the objects escaping from the top band of the frame were accounted 
for by introducing a filter in the top fifth rows of the frame. 

Mask RCNN showed to be an efficient tool in the related studies of the catch regis-
tration on the conveyer belt as well as the in-trawl catch monitoring in pelagic fishery [13–
15]. To our knowledge, we present the first solution for automated catch description for 
the commercial demersal trawl fishery. It is made possible by using a systematic approach 
for ensuring the data quality during towing and fine-tuning the algorithm to the collected 
data. We foresee the necessity in additional fine-tuning of the algorithm to be effectively 
used in different conditions. Under the system implementation by the end users, we ex-
pect the detection accuracy improvement as more data will be collected and used to up-
date the existing one [36]. 

4.3. Algorithm Real-World Application 
To implement an effective decision support tool for fishers, the automated data pro-

cessing needs to be close to real time. The proposed algorithm needs approximately 6000 
s to process the “Towing” and “Haul-back” videos, which are of 450 s and 385 s, respec-
tively. Our proposed solution can be optimized to leverage the inference speed of Mask 
R-CNN via NVIDIA TensorRT™. Another option is to consider another model architec-
ture, such as single-stage detectors, which do not provide the pixel-wise mask infor-
mation, essential for precise size estimation, but are much faster. At the data acquisition 
level, the input video stream can be subsampled to process every 𝑛𝑛𝑐𝑐ℎ frame of the input 
video, and the SORT component of the algorithm must be tuned for the resulting reduc-
tion in update rate. 

Automated and manual catch count comparison indicated the difference in absolute 
error peaking in trawling initialization phase (Figure 7). This phase corresponds to 11% 
of the total fishing operation duration. It is a routine procedure, therefore, the time re-
quired to initialize trawling will be similar among the operations. Thus, this percentage 
will be reduced with longer trawling and hence cause a lower impact on the resulting 
count accuracy. Additionally, during this phase, the trawl is not fully operational as, dur-
ing this time interval, the trawl geometry is unstable as the gear is in the process of settling 
at the seabed, which may result in the reduced number of catch items entering the gear. 

4.4. Prospective Applications 
The application of the Mask R-CNN architecture in combination with the use of ste-

reo camera also allows obtaining automated size estimations of the catch. The automated 
length estimations of fish with aid of Mask R-CNN showed to be efficient and the ap-
proaches are demonstrated by extrapolating the estimated fish head length to the total 
length via a modelled ratio [37]. Another study by Yu et al. [38] demonstrates the meas-
urements of the body and caudal peduncle lengths and widths, eye and pupil diameters 
of the target fish species. These studies suggest that the total fish size estimation can be 
derived from the sizes of the specific features of animals. Considering Nephrops, the size 
of which are initially estimated from the carapace length [39] and the fact that most of the 
individuals have the carapace visible in the camera field of view, there is an opportunity 
to register the size measurements automatically as well. 
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5. Conclusions 
The proposed solution is a part of a catch monitoring tool developed for the commer-

cial demersal trawl fishery and has the potential to transform these fisheries from a blind 
to an informed process where the fisher can automatically obtain the composition and 
number of species in the catch. The algorithm showed the high performance during the 
towing conditions and, therefore, can be applied for automated data processing and act 
as a decision support tool for fishers, provided the adjustments towards near real-time 
performance. The future work includes embedding the algorithm on a portable hardware 
for practical use and exploring the possibilities for automated catch measurements. 
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Appendix A 

Table A1. Precision, Recall and F-score metrics calculated for each of the models trained with the four test augmentation 
techniques. The performance was evaluated on the video with the average catch rate and lower presence of occlusions 
(“Towing”) and on a stress test video with less stable observation conditions and higher occlusion rate (“Haul-back”). The 
values are listed in columns for the four classes: Nephrops, round fish, flat fish, other. 

Type of Augmentation 
Precision Recall F-Score 

Towing Haul-Back Towing Haul-Back Towing Haul-Back 

Baseline (none) 

0.694 0.650 0.829 0.743 0.756 0.693 
0.504 0.409 0.546 0.785 0.524 0.538 
0.534 0.437 0.886 0.909 0.667 0.590 
0.693 0.381 0.884 0.750 0.777 0.506 

Average 0.606 0.469 0.786 0.797 0.681 0.582 

Copy-Paste and Geometric 
transformations 

0.661 0.800 0.902 0.800 0.763 0.800 
0.642 0.480 0.731 0.849 0.684 0.613 
0.795 0.588 0.879 0.879 0.835 0.704 
0.821 0.423 0.865 0.683 0.842 0.522 

Average 0.730 0.573 0.844 0.803 0.781 0.660 

Blur  

0.745 0.867 0.854 0.743 0.796 0.800 
0.677 0.461 0.602 0.791 0.637 0.582 
0.663 0.515 0.864 0.869 0.750 0.647 
0.814 0.458 0.783 0.633 0.798 0.531 



Sustainability 2021, 13, 12362 16 of 19 
 

Average 0.725 0.575 0.776 0.759 0.745 0.640 

Color 

0.761 0.813 0.854 0.743 0.805 0.776 
0.735 0.500 0.565 0.802 0.639 0.616 
0.728 0.558 0.932 0.919 0.817 0.695 
0.785 0.386 0.865 0.733 0.823 0.506 

Average 0.752 0.564 0.804 0.799 0.771 0.648 

Cloud  

0.773 0.844 0.829 0.771 0.800 0.806 
0.652 0.482 0.676 0.860 0.664 0.618 
0.788 0.506 0.902 0.838 0.841 0.631 
0.845 0.551 0.845 0.717 0.845 0.623 

Average 0.765 0.596 0.813 0.797 0.788 0.670 

All augmentations 

0.696 0.763 0.951 0.829 0.804 0.795  
0.658 0.482 0.694 0.837 0.676 0.612 
0.805 0.481 0.909 0.889 0.854 0.624 
0.842 0.597 0.826 0.667 0.834 0.630 

Average 0.751 0.581 0.845 0.806 0.792 0.665 

Appendix B. Augmentations Effect 
Generalizability of deep learning models is defined by the difference in model per-

formance on the training and validation (test) datasets. The large difference signals about 
the model overfitting to the training data. The desired scenario in training a useful deep 
learning model is to achieve the simultaneous decrease in both training and validation 
(test) losses [36]. Data augmentation is an effective technique not only to prevent overfit-
ting via introducing additional variance in the dataset but also to inflate the data with 
synthetic examples, which is helpful in cases where raw data is limited [11,36,40]. 

The geometric augmentations are easy to apply and help to tackle the problem of 
positional biases associated with target objects occurring in the same area of the training 
images [36]. Numerous studies report the positive effect of applying these augmentations 
during training on the resulting performance, typically object classification [11,28,40,41]. 
Following the recommendations in the original study, we apply a set of geometric aug-
mentations with the CP augmentation in our case. 

The application of geometric transformations followed by CP during training gave 
the largest leap in F-score value compared to the baseline. In the case of the “Towing” 
video, the F-score increased by 13% compared to the baseline and, in the case of the “Haul-
back”, the increase was similar and constituted 12%. The boost in performance is likely to 
be associated with the training data inflation with additional instances in training exam-
ples. In our training dataset, 42% of the images depicted a single object. The maximum 
number of objects present in the frame reached 13, however, was present in only two 
training images. 

The objective of photometric augmentations is to make a CNN invariant to change in 
lighting and color [41]. Application of kernel-based augmentations, such as blurring, tar-
get the model to become insensitive to motion blur in the testing dataset [36]. We have 
tested both techniques in combination with the CP augmentation. The resulting F-score, 
however, showed a slight decrease compared to the algorithm performance based on the 
CP-only trained detector test. The augmented color change, in the case of AddToHue and 
AddToSaturation, implies the image conversion to the HSV color space and subsequent 
modification of the hue and saturation values. In case of AddToBrightness, the image is 
randomly converted to the color space containing brightness-related channel which gets 
altered with the stated values [29]. In both cases, the image is then converted back to RGB 
which may introduce extra biases associated with the color space conversion, resulting in 
artificial output not typical for the variation in the raw dataset. 
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The application of the blur augmentation, which decreased the F-score by 3% com-
pared to the CP-only augmentation in the case of “Haul-back” and by 4% in the case of 
“Towing”, indicates that the use of this augmentation type does not fully replicate the blur 
rate of the dataset. However, the sequential application of all test augmentations during 
training resulted in the highest F-score when applied to the “Towing” video. 

Another augmentation technique from imgaug library, “Cloud” in combination with 
CP, resulted in an increase by 1% in the case of the “Towing” video and by 1.5% in the 
case of the “Haul-back” video. In the case of the latter, the “Cloud” augmentation with 
CP even resulted in an F-score surpassing the one of the detector based on the use of all 
applied augmentations during training. However, the application of detector based on CP 
and “Cloud” only augmentations during training led to the F-score yield to the all-tested 
augmentations-based detector in the case of the “Towing” video. 

Overall, the major contribution to the detector performance improvement was 
achieved through the CP augmentation, which resulted in the higher presence of the in-
stances per training image. The approach of using the synthetic images for training is 
common while training the deep learning models for real-world applications, such as bio-
medical fields. For instance, Frid-Adar et al. [40] used the synthetic images generated by 
Generative Adversarial Networks (GANs). The authors explored two types of GANs to 
synthesize the artificial images for liver disease classifications. Additionally, the authors 
observed a positive trend in the resulting performance of the classifier while using the 
combination of geometric transformations and the synthetic data. 

In the fisheries world, Allken et al. [11] observed a similar trend while creating a 
synthetic dataset from the raw images of pelagic fish species, taking the background only 
image as a destination and cropped fully visible fish instances from the source images. 
Before pasting, the fish instances were subject to flip, rotation and scale. Inception3 pre-
trained on ImageNet dataset was then used for a classification task and showed the high-
est accuracy in three fish species after being trained on a 15,000 synthetized dataset gen-
erated with the aid of 70 source images. One of the significant differences of our approach 
to synthesize the data using CP is that the instances are cropped and pasted of each image 
simultaneously during training instead of using the static generated images for training. 
This feature adds the extra variability in the training set. 
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