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ABSTRACT: Different cellular processes that contribute to
protein production in Chinese hamster ovary (CHO) cells have
been previously investigated by proteomics. However, although the
classical secretory pathway (CSP) has been well documented as a
bottleneck during recombinant protein (RP) production, it has not
been well represented in previous proteomic studies. Hence, the
significance of this pathway for production of RP was assessed by
identifying its own proteins that were associated to changes in RP
production, through subcellular fractionation coupled to shot-gun
proteomics. Two CHO cell lines producing a monoclonal antibody
with different specific productivities were used as cellular models,
from which 4952 protein groups were identified, which represent a
coverage of 59% of the Chinese hamster proteome. Data are
available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as
differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic
reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity,
protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected
processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication,
transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the
molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for
RP production.

1. INTRODUCTION

Chinese hamster ovary (CHO) cells have been widely
employed for expression of recombinant proteins (RP), both
in research and biopharmaceutical industries. This expression
system has been used for production of 84% of approved
antibodies in 2015−2018 period, which represent over half of
all approvals during this time.1 The success of this cell line
relies on several advantages such as a safety viral profile,2

human compatible glycosylation,3 and availability of specific
culture media and supplements,4,5 sub-lines with different
capabilities,6 and improved expression vectors and selection
strategies.7 Therefore, given the importance of CHO cells, a
deeper knowledge of their biology through genomic, tran-
scriptomic, proteomic, and metabolomic studies has been
gained in the last few years.8−11 Transcriptomic and proteomic
profiles acquired under low temperature,12 butyrate addition,13

hyperosmotic pressure,14 cell engineering efforts,15 and
contrasting phenotypes of protein degradation,16 production
stability,17 and RP productivity,18−24 have led to the
identification of targets related to improving productivity.

Seven whole cell proteomic studies of phenotypes with
different specific productivity (qp) of fusion proteins,18,21

monoclonal antibodies (mAb),19,20,22,23 and antibody frag-
ments24 have been previously reported.
A myriad of cellular processes such as chromatin

organization, cell cycle, metabolism of nucleic acids, proteins,
fatty acids and carbon, cytoskeleton organization, response
against reactive oxygen species (ROS), and vesicle-mediated
transport have been linked to productivity in these
studies.18−24 However, because this information has been
obtained from whole cell extractions, highlighted categories
represent abundant proteins and have limited coverage of
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proteome from some organelles such as those from the
classical secretory pathway (CSP). Due to the central role of
this pathway in metabolism of proteins and lipids, organelle
biogenesis, cell cycle, apoptosis and proliferation, and to be
recognized as a bottleneck for protein secretion in mammalian
cells,25−27 its characterization through subcellular proteomics
represents a promising strategy for the identification of key
targets associated to protein expression.
One established experimental approach to study individual

organelles and especially the secretory pathway is the
subcellular fractionation. This technique coupled to proteo-
mics has been named subcellular proteomics,28,29 and its use
over classical proteomics has shown a 30% increase in
proteome coverage of pancreatic duct cells.30 Other advantages
of this approach include protein tracking, quantification of low
abundance of proteins, unraveling of organelle dynamics, and
comprehension of the function and regulation of little-known
proteins.31−33 Actually, subcellular proteomics has been
extensively used to study the protein composition of
organelles34,35 and protein dynamics36 and to explore new
proteins involved in the secretory pathway.37,38 This approach
has also been applied to characterize the subcellular
distribution of proteins in breast cancer cells by combining

isopycnic centrifugation, gel electrophoresis, and label-free
MS/MS, leading to the assignment of several cancer-related
proteins to multiple subcellular locations and to the
identification of targets related to various cellular processes
with critical roles in breast cancer development.39

Thus, in order to identify novel proteins from the secretory
pathway of CHO cells linked to changes in RP production, we
applied subcellular proteomics to two CHO cell lines
producing a mAb against human interleukin 8 (IL-8) at
different qp.
Here, we took advantage of a strategy that has been effective

to enrich the proteomic fractions of subcellular organelles
(Figure 1), which allowed the identification of 493 differ-
entially expressed proteins (DEPs) with statistical significance
between the higher (CRL-12445) and lower producer (CRL-
12444) CHO cells. These DEPs, and especially those from the
CSP, will expand the engineering strategies to increase the titer
and probably quality of RP. This proteomic analysis is a
powerful approach to identify potential biotechnological
targets that help to understand and improve RP bioprocesses.

Figure 1. Data processing and identification of DEPs. Cleaning, normalization, and imputation were applied to proteomic data prior to the
identification of targets with a statistical differential expression between CRL-12444 and CRL-12445 cells. Gene sets and proteins were identified,
mapped toM. musculus proteome, classified according to GO terms, and compared with previous reports. Proteins from the secretory pathway were
further assigned to several biological processes. ECM: extracellular matrix; ER: endoplasmic reticulum; and PTM: post-translational modifications.
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2. RESULTS

2.1. CRL-12445 and CRL-12444 Cells Differed in Their
Growth, Metabolism and Secretion Capacity. CRL-
12444 and CRL-12445 cells, which secrete a mAb against
human IL-8, were chosen as CHO cell models for differential
proteomic comparison of the CSP. Prior to the proteomic
analysis, these cells were characterized in terms of viable cell
concentration, viability, metabolites, and mAb production. The
growth curves and metabolite profiles are presented in Figure
2, while pH and ions profiles are shown in Figure S1. The
calculated kinetics parameters are presented in Table 1. The
lower producer CRL-12444 cells displayed a significantly
higher specific growth rate (μ) (p < 0.01), maximum cell
concentration (Xmax) (p < 0.05), and a lower doubling time
(tD) (p < 0.01) (Figure 2A and Table 1). In congruence with
this faster cell growth, this cell line showed a 16.5% (p < 0.05)
and 38.3% (p < 0.01) increment in glucose consumption (qGlc)
and lactate production (qLac), respectively, that translated to a
1.18 times higher lactate/glucose apparent yield (YLac/Glc′) (p <
0.001) (Table 1). For these same cells, production rates of
glutamate (qGlu) and ammonium (qNH4

+) were also increased
by 3.3 (p < 0.001) and 1.8 (p < 0.001) times, respectively
(Figure 2E−F and Table 1), and glutamine was almost
depleted at day 6, while a 3.29 mM concentration remained in
CRL-12445 cell supernatants at this time (Figure 2D).
Concentration of free glutamine was the net result of cellular
import of the dipeptide alanyl-glutamine, its cleavage by
peptidases, the incorporation of glutamine into cellular
reactions, and its secretion to the medium.40 Thus, given
that the biochemical analyzer only quantifies free glutamine,

specific alanyl-glutamine consumption rate could not be
determined and other techniques such as chemical derivatiza-
tion coupled to liquid chromatography should be used for this
purpose.41 Consumption or production rates of metabolites
were in full agreement with values reported for adherent and
suspension CHO cells, cultured in T-flasks, Erlenmeyer flasks,
and bioreactors, under batch, fed-batch, or chemostat
conditions.4,42−49 The 95% confidence interval of mean of
qGlc [−(2.02−4.33) μmol/106 cells*day)], qLac (2.54−7.18
μmol/106 cells*day), YLac/Glc′ (1.01−1.70 mol/mol), and qNH4

+

Figure 2. Growth kinetics and metabolite profiles. (A) Viable cell concentration (circles) and viability (squares) of CRL-12444 (filled) and CRL-
12445 (empty) cells were determined over time by the trypan blue dye exclusion method in a Neubauer chamber. Cells were collected for
proteomic analysis at time indicated by the arrow. Concentration of glucose (B), lactate (C), glutamine (D), glutamate (E), and ammonium (F)
were measured for CRL-12444 (filled circles) and CRL-12445 (open circles) cells. Standard deviation was calculated from three biological
replicates.

Table 1. Kinetic and Stoichiometric Parameters of CRL-
12444 and CRL-12445 Cells

Parameter CRL-12444 CRL-12445

μa (h−1)** 0.031 ± 0.002g 0.024 ± 0.001
tD
b (h)** 22.6 ± 1.1 28.5 ± 0.7

Xmax (10
6 cells/mL)c* 5.73 ± 0.57 4.65 ± 0.10

qGlc
d (μmol/106 cells*day)* −3.17 ± 0.26 −2.72 ± 0.05

qLac (μmol/106 cells*day)** 4.15 ± 0.32 3.00 ± 0.15
YLac/Glc′(mol/mol)e*** 1.31 ± 0.01 1.11 ± 0.04
qGlu (μmol/106 cells*day)*** 0.20 ± 0.01 0.06 ± 0.01
qNH4

+ (μmol/106 cells*day)*** 0.92 ± 0.06 0.50 ± 0.03

qCa2+ (nmol/106 cells*day)* −2.57 ± 0.18 −4.27 ± 0.72
qp
f*** 1.0 ± 0.11 25.6 ± 1.5

aSpecific growth rate. The asterisks indicate parameters that were
significantly different (*: p < 0.05, **: p < 0.01, and ***: p < 0.001; t-
test). bDoubling time. cMaximum cell concentration. dSpecific
consumption (−) or production (+) rate. eLactate/glucose apparent
yield. fRelative specific productivity. gStandard deviation from three
biological replicates.
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(0.17−1.88 μmol/106 cells*day) of all those reports comprises
the values obtained in this study. Glutamate can be consumed
or secreted in dependence on the medium and additives
employed.4,42,44,47,49 In our case, glutamate was exported to the
medium and its production rate (qGlu) was in accordance with
other CHO cell clones.4,44

No differences were observed in profiles of pH, sodium and
potassium, at any time point, while calcium was consumed by
both cells (Figure S1). Calcium consumption rate (qCa

2+) of
CRL-12445 cells was superior to that of CRL-12444 cells (p <
0.05) (Table 1). MAb qp of CRL-12445 (higher producer)
cells was 26 times higher in average than that of CRL-12444
(lower producer) cells (p < 0.001) (Table 1), allowing these
two cell populations to be used for differential subcellular
proteomics analysis in order to identify proteins and suggest
cellular processes linked to changes in RP productivity.
2.2. MAb from Both Cell Lines Showed a Similar

Biological Activity. To analyze whether a 26-fold difference
in qp between both cell lines would affect the biological activity
of secreted mAb, its binding to human IL-8 was assessed by
Western blot (WB). For this purpose, antibody was affinity-
purified to homogeneity, as confirmed by the presence of only
light and heavy chains on reducing SDS-PAGE (Figure S2A).
Non-reducing SDS-PAGE revealed four protein bands (Figure
S2B), probably corresponding to different assemblies of light
and heavy chains. Antibody from both cell lines strongly
recognized monomers (10−15 kDa), dimers (15−25 kDa),
and trimers (≈35 kDa) of recombinant IL-8 obtained in
Escherichia coli lysates (Figure S2C−E), as expected. These
results suggested that in spite of qp changes, the folding state
and antigen recognition of secreted mAb were not noticeably
different between both cell lines, which indicates that in this
case, productivity differences did not alter those structural
properties of mAb directly linked to antigen recognition.
2.3. Around 10% of All Identified Proteins Were

Differentially Expressed between Both Cell Lines. In
order to capture the CSP subproteome, subcellular organelles
from both cell lines were isolated by mechanical disruption
followed by their separation in sucrose gradients, from which
proteins were precipitated and subjected to shot-gun
proteomics (Tables S1−S2). After data processing, 4952
protein groups were identified covering about 59% of all
proteins reported from two CHO cell lines and seven tissues of
Chinese hamster.50 In addition to CHO cell proteins, the
concentration of mAb light chain in subcellular compartments
containing endoplasmic reticulum (ER) (C1, C3, and C9) was

also measured and used as an internal control of protein
expression levels between both cell lines. In agreement with
measured qp, intracellular mAb was higher in CRL-12445 cells
than in CRL-12444 cells in all cases, showing statistical
significance for C1 and C3 compartments (Figure S3, p <
0.05). Before proceeding with differential expression analysis, a
correlation test was done to assess the relationship between
each pair of biological replicates. As a result of analysis, all
replicates were significantly associated (p < 0.001), and the
Pearson’s coefficient (R2) was equal or superior to 0.79,
indicating a positive correlation and that the replicates behaved
very similarly. 80 and 70% of samples from CRL-12444 and
CRL-12445 cells, respectively, showed a R2 ≥ 0.90 (Figures
S4−S7).
In the higher producer CRL-12445 cells, SAM algorithm

identified 125 upregulated and 285 downregulated proteins in
comparison with the lower producer CRL-12444 cells, whereas
ROTS reported 66 upregulated and 71 downregulated ones,
accounting for a total of 493 DEPs that represent 10% of all
identified proteins (Table S3). A group of 21 upregulated and
25 downregulated proteins were simultaneously detected by
both algorithms (hereinafter shared upregulated or down-
regulated proteins). Besides the whole analysis of all DEPs, the
contribution of each subcellular compartment (C1−C10,
Figure 3A) to their identification was also examined (Figure
3B). Most DEPs came from compartments C3−C5 and C7,
which are mainly enriched in Golgi Apparatus, nuclei,
mitochondria, peroxisomes, and ER,51 showing an over-
representation of proteins from the CSP. Upregulated proteins
were positioned principally in an unidentifiable compartment
(C4) and trans-Golgi, while downregulated ones were highly
enriched in cis-Golgi.

2.4. Gene Ontology Analysis, Modified Pathways,
and Enrichment of Gene Groups from DEPs. DEPs were
classified according to gene ontology (GO) enrichment
analysis through PANTHER, DAVID, and KEGG tools to
determine which categories were over- or under-represented in
the higher producer CRL-12445 cell line. By using PANTHER
gene list analysis, shared upregulated (Figure S8A,C,E,G,I) and
downregulated (Figure S8B,D,F,H,J) proteins pointed out to
differences in metabolism, organization, location, or biogenesis
of cellular components, and other cellular processes (Figure
S8A,B), that were tracked to cells and protein-containing
complexes and organelles (Figure S8C,D). Membrane proteins
were upregulated while those from supramolecular complexes
and extracellular regions were downregulated. Although central

Figure 3. Proteins with differential expression by cellular compartment. (A) Subcellular compartments (C1−C10) obtained by differential and
isopycnic centrifugation from cell homogenates. (B) Number of DEPs identified for each compartment by SAM and ROTS algorithms, which were
upregulated or downregulated in the higher producer CRL-12445 cells.
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carbon pathways (glycolysis and pyruvate metabolism) were
disturbed in both cells, the enrichment of tricarboxylic cycle
indicated an improved oxidative metabolism in the higher
producer cells52 (Figure S8G). Other reduced categories in
CRL-12445 cells were proline biosynthesis, signaling mole-
cules, and calcium-binding proteins (Figure S8H,J). Vesicle
transport (Figure S9E,F), protein quality control by
proteasome, and synthesis of DNA precursors (Figure S9G)
were other functions positively associated to the higher
producer cells, while cytoskeleton regulation by Rho GTPase

and formyltetrahydroformate biosynthesis were negatively
linked to this phenotype (Figure S9H). In addition to the
gene list analysis of PANTHER, the over-representation test
indicated that CRL-12445 cells increased protein translation
and ER-to-i anterograde transport, while protein representa-
tion of ribonucleoprotein-associated processes and fatty acid
oxidation was reduced (Tables S4−S13).
In agreement with an active oxidative metabolism and

cytoskeleton rearrangement, the NAD metabolism (Figure
S10A) and Rac GTPase-binding (Figure S10E) were new

Figure 4. Mapping of all DEPs to the CSP. Upregulated (red) and downregulated (green) proteins were mapped to organelles by using GO terms
from Uniprot and DAVID and by matching with mouse database from COMPARTMENT. COPI/II: coat complex protein I/II vesicle, ER:
endoplasmic reticulum, ERGIC: ER−Golgi intermediate compartment, SV: secretion vesicle, and PM: plasma membrane.
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categories found, as upregulated in CRL-12445 cells by
DAVID analysis. Conforming to the DAVID functional
annotation tool, transport, secretion, endocytosis, lipid storage,
actin polymerization, synthesis of ribose phosphate and
ascorbic acid, proteasome, autophagosome, lysosomes, and
endosomes were also upregulated (Table S14), while calcium
transport, RNA splicing, and peroxisomes were downregulated
(Table S15).
Besides GO terms, the differences in cellular pathways were

explored through KEGG (Figure S11). A closer inspection to
these reconstructed pathways exposed that pentose phosphate
pathway, aminoacyl-tRNAs, RNA degradation, ABC trans-
porter, actin cytoskeleton, and cholesterol metabolism were
positively associated to higher producer cells, while oxidative
phosphorylation, fatty acid degradation, nucleotide metabo-
lism, transcription, ribosomes, ER folding, and cell adhesion
were repressed (Table S16).
GSEA analysis revealed that gene sets corresponding to

metabolism and transport of amino acids, cell growth, DNA
repair, endocytosis, extracellular matrix (ECM) organization,
glycosylation, vesicle-mediated transport, purine metabolism,
and response to ROS were highlighted in the higher producer
cells. On the contrary, transcription, processing, and splicing of
RNAs, ribosome biogenesis, and response to ER stress were
diminished (Tables S17−S19).
In line with our results, earlier omics studies suggest that

during RP synthesis, CHO cells activate vesicle transport and
DNA protection and modify their metabolism of carbohy-
drates, lipids, and amino acids, to increase protein secretion
and energy availability and to avoid ROS-induced dam-
age.15,18−24,53,54 The increment of productivity appears to be
mediated by a higher transcription, chromatin remodeling,
translation, and protein catabolism.15,19,24,53 In general, higher
producer cells tend to diminish proteins participating in cell
proliferation, and their cytoskeleton undergoes a rearrange-
ment. Frequently, the abundance of cytoskeleton regulatory
proteins changes, causing the restructuring of the filaments and
microtubules that could promote vesicle-mediated trans-
port.15,22,24 The regulation of intracellular calcium and
calcium-dependent responses,20,24,54 annexin-dependent re-
sponses,21 and activity of MAP kinases,20,53 Ras,53 insulin,55

G proteins, Rho GTPases, phosphatases, and nuclear
receptors24 has been associated with an enhancement of RP
production, as discussed in the Supporting Information.
2.5. Relevant New DEPs Involved in RP Production

Were Identified by the Subcellular Fractionation
Strategy Compared to Previous Whole CHO Cell
Proteomics. The DEPs were compared with those reported
in previous studies where qp was used as a differentiation
criterion between various cell lines (Tables S20−S21),18−24 in
order to identify common targets relevant for RP production
and to compare the detection capabilities between the
subcellular fractionation strategy and the classical whole cell
proteomics approaches. Only 33% of upregulated proteins
were present in previous reports, whereas this percentage was
even lower (17%) for the downregulated ones. The large
number of unmatched proteins with preceding reports draws
attention to the high percentage of new targets provided in this
study, which are possibly related to the improvement of RP
productivity in CHO cells. In this sense, subcellular proteomics
strategy can be considered as an alternative to classical
proteomics to explore the molecular traits of CHO cells, which
are associated to a higher production phenotype.

2.6. One-Third of DEPs Belonged to the CSP. Given
that the CSP has been recognized as a bottleneck for protein
production in mammalian cells,56−58 all DEPs were mapped to
organelles of this cellular route, to elucidate which molecular
processes taking place along the secretory pathway could
contribute to differences in qp between both cell lines (Figure
4). Mapping of mouse orthologues was based on manual
search in the literature, Uniprot, DAVID, and GeneCards
resources and by matching with the mouse database from
COMPARTMENT (Tables S22−S25).59 Interestingly, on
average one-third of all DEPs were assigned to the secretory
pathway, of which 21% were upregulated and 79% were
downregulated, and most of them have not been identified in
previous whole cell proteomic studies18−24 (68% from
upregulated and 87% from downregulated targets). These
proteins were mainly located to ER (74% upregulated and 67%
downregulated) and Golgi apparatus (59% upregulated and
54% downregulated). About 23% of all DEPs from the
microsomal gradient belonged to the secretory pathway, and
around 27% of all DEPs mapped to this pathway came from
the microsomes. The changes in cellular levels of this subset of
DEPs could positively impact translation, folding, traffic, and
modifications of RP along the secretory pathway and will shed
light on processes from this pathway related to RP expression.

3. DISCUSSION
The present study used subcellular proteomics to analyze the
differential expression of proteins from the CSP of two cell
lines with a 26-fold difference in their mAb qp, in order to
identify possible bottlenecks for protein production in CHO
cells, with special attention to the secretory pathway, which has
been identified as one of the principal barriers during RP
production in mammalian cells.25−27,56−58 Despite differences
in qp, the lower (CRL-12444) and higher (CRL-12445)
producer cells showed a comparable biological activity of mAb,
assessed by antigen recognition in a WB assay (Figure S2),
indicating that the differences in qp did not alter mAb-binding
capacity in these CHO cell clones. Unfortunately, experiments
that analyze the influence of qp on mAb binding are scarce or
non-existent.
Though lack of correlation between μ and qp has been

reported for a panel of recombinant mAb expressing CHO
subclones,60 other studies have documented an inverse
relationship between these variables on batch and chemostat
cultures,61−63 which is coincident with our work (Table 1). It
could be suggested that at higher growth rates, there is an
increasing demand for energy and biomolecule precursors for
biomass synthesis, which compromises the cellular resources
for RP production. In line with this explanation, a higher Xmax
(p < 0.05) was reached by the lower producer and faster
growing CRL-12444 cells in comparison to CRL-12445 cells,
similar to what has been reported for a ht-PA producing cell
line.63 On the contrary, at lower μ values, a greater proportion
of resources can be used for mAb production in CRL-12445
cells, resulting in a significantly higher qp (p < 0.001).
In order to capture the cellular processes from the CSP that

could be limiting for protein production, a subcellular
fractionation protocol was applied to cells collected during
the exponential growth phase,51 from which 10 subcellular
compartments were isolated and their proteins submitted to
shot-gun proteomics. This subcellular proteomics strategy led
to the identification of 493 DEPs, of which around 80% have
not been described as relevant for protein production,
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providing hundreds of new targets that can be modified in
CHO cells. This high number of new targets reflects the
potential of subcellular proteomics over classical approaches to
increase proteome coverage and the identification of low
abundance cellular proteins.30,31,33 Actually, the 59% proteome
coverage of this study exceeds that achieved in other
differential proteomic studies (5−31%)18,20−22 which reinfor-
ces the importance of subcellular fractionation prior to
proteomics to allow enrichment of low abundance of proteins,
such as those from the CSP and mitochondria.30,51 The fact
that one-third of all DEPs were assigned to the CSP (Figure 4)
supports the use of this technique and highlights the large
number of molecular processes from the secretory pathway
that can be considered as a limiting factor for RP production in
these cells. It is noteworthy that a quarter of all DEPs came
from the microsomal gradient (Figure 3), demonstrating the
potential of this novel sucrose gradient to study the CSP of
mammalian cells.51

To comprehensively understand the biological processes
associated to a higher producer phenotype, the DEPs from the
CSP were grouped into eight different categories according to
their known functions in protein production in this pathway
(21 downregulated and 13 upregulated proteins). Additional
discussion about metabolism of carbon, nitrogen, nucleic acids,

proteins, cofactors, vitamins, cytoskeleton organization, and
cell signaling is provided in the Supporting Information.

3.1. ER Stress and Unfolded Protein Response. ER
stress and unfolded protein response (UPR) comprise eight
(CLCC1, DNAJC3, EMC7, OS9, MINPP1, TMED4, UFC1,
and PRKCD) and two (PITPNM1 and SURF4) proteins
directly or indirectly involved in these processes, respectively
(Figure 5). CLCC1 is a chloride permeable channel with low
expression in CHO cells64 whose loss increases sensitivity to
ER stress and triggers an UPR.65 Its decrease in the higher
producer cells could be a consequence of the absence of ER
stress and UPR, and of a higher folding capacity of this cell
line, explanation that could also be applied to the down-
regulation of DNAJC3, EMC7, OS9, and UFC1. The UPR
increases the amount of DNAJC3 in ER lumen,66−68 where it
functions as a co-chaperone with HSP40 and HSC70.69

Another UPR-induced chaperone is EMC7, a subunit of the
EMC complex that participates in ER-mitochondria tethering,
folding of transmembrane proteins,70−72 and disposal of
misfolded proteins by interaction with ER-associated degrada-
tion (ERAD) machinery.73 OS9 expression has also been
increased after an UPR,74,75 which favors the degradation of
glycosylated and retention of non-glycosylated sub-
strates,74,76,77 stabilizes the ERAD SEL1/HRD1 complex77

and functions in complex with BiP and GRP94 chaperones

Figure 5. Homeostasis and stress of ER and UPR. Downregulated (green) and upregulated (red) proteins belonging to this category inhibited or
activated various molecular processes that could lead to, suppress, or be triggered by ER stress. ER: endoplasmic reticulum, ERAD: ER-associated
degradation, and TM: transmembrane.
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during protein folding.76 UFC1 mediates ufmylation of various
cellular targets and, although the biological function of this
post-translational modification (PTM) is poorly under-
stood,78−80 its known that ER stress increases the formation
of ufmylation complex and, congruently, blocking ufmylation
leads to ER stress.81

In the case of PRKCD, this protein kinase is recruited to ER
membranes and stress fibers upon activation, where it is
required for a full development of UPR and apoptosis.82−85

MINPP1 and TMED4 are involved in maintaining a functional
apoptosome, and their cellular amounts increase as a result of
ER stress.86,87 As a consequence of this same stress, PITPNM1
assembles into a phosphorylated PYK2/PITPNM1 complex
that plays a role in calcium- and phosphoinositide-dependent
signaling pathways,88 and SURF4 initiates or maintains UPR
by preventing calcium from entering the cell.89 The down-
regulation of all proteins from this category supports the
hypothesis that the higher producer cells have not develop an
ER stress, UPR, or stress-dependent apoptosis, probably
because their maximum folding capacity has not been reached
yet. Among the preceding omics comparing CHO cell
populations with different RP production, only one tran-
scriptomic study suggested the upregulation of UPR and
ERAD,54 which was not subsequently confirmed by the
proteomic study of these same cells,15 similar to our results.
It should be noted that in particular cell lines, the combination

of intrinsic physicochemical properties of an IgG and a
deficient ER export machinery can activate a full UPR.25

3.2. Homeostasis of ER and Golgi Apparatus. Seven
downregulated proteins were implicated in this group
(CLCC1, EMC7, UFC1, PITPNM1, TMF1, GOLPH3L, and
GOLGA5). The functions of CLCC1, EMC7, and UFC1 in
organelle homeostasis are linked to their role in protein
folding, ER stress, and UPR, while the changes in the
remaining four proteins affect the Golgi structure (Figures 5
and 6). PITPNM1, a phosphatidylinositol (PI)-transfer
protein, maintains the Golgi morphology by regulating
diacylglycerol homeostasis,90 and the depletion of golgin and
Rab interacting protein TMF191,92 leads to changes in stacking
of Golgi cisternae.91,93 GOLPH3L overexpression induces
Golgi compaction, while its depletion has opposite effects,
demonstrating its function in the Golgi morphology.94 The
golgin GOLGA5 affects dramatically Golgi morphology,
probably as a side effect of its functions in vesicle transport.95

Its downregulation leads to fragmentation95 or dramatic loss96

of Golgi membranes, while its overexpression could stabilize
Golgi structure97 or induce Golgi ribbon fragmentation.96

On the other hand, five upregulated members (DDHD2,
RHBDD1, SCFD1, STX17, and FKBP1A) were also classified
in this category (Figures 5 and 6). SCFD1 and STX17 function
in maintaining the Golgi apparatus structure by their role in
protein traffic,98,99 with knockdown of STX17 causing

Figure 6. Affected targets involved in protein synthesis, translocation into ER lumen, and vesicle-mediated traffic throughout the secretory pathway.
Upregulated (red) and downregulated (green) targets were shown. Arrows indicated the direction of the transport. PM: plasma membrane, ER:
endoplasmic reticulum, TM: transmembrane, mAb: monoclonal antibody, ERES: ER exit sites, and ERGIC: ER−Golgi intermediate compartment.
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disruption of the ER−Golgi intermediate compartment
(ERGIC), fragmentation of Golgi apparatus, and a disturbed
COPI vesicle localization.98 The role of DDHD2 in the
structure and functions of the secretory pathway remains
controversial, insomuch as its knockdown does not affect the
Golgi structure,100 but its overexpression can result in Golgi
dispersion and aggregation of ER and ERGIC101,102 or no
morphological changes at all.103 RHBDD1 preserves ER
homeostasis by aiding at disposal of misfolded transmembrane
proteins,104 and FKBP1A, a cytosolic isomerase, by stabilizing
RyR and IP3R calcium receptors,105,106 preventing in this way
calcium leakage from ER lumen. The adjustment in the cellular
concentration of proteins of this category suggests the presence
of morphological changes in the CSP that are associated with
differences in qp between both cell lines, while maintaining at
the same a proper CSP structure for synthesis, traffic, and
modifications of recombinant and self-proteins.
3.3. Anterograde and Retrograde Transport. This

category comprises seven downregulated proteins (PITPNM1,
ZFPL1, GOLGB1, GOLGA5, PACS-1, TMF1, and COPG1)
that participate in different transport routes (Figure 6).
Downregulation of PITPNM1 inhibits export of plasma
membrane (PM) proteins and glycosaminoglycans from the
trans-Golgi network (TGN).90 ZFPL1 mediates ERGIC to cis-
Golgi transport of cell surface proteins, probably by acting as a
tethering factor.107 GOLGB1, with an analogous function to
ZFPL1, mediates retrograde transport,108 maintenance of
Golgi resident proteins,109,110 and anterograde transport of
ECM components111 and PM proteins.112 GOLGA5, another
tethering factor95,113 and a RAB1 effector,96,97 participates in
intra-Golgi retrograde transport95,113 and functions partially in
anterograde transport of cell surface proteins.96,113 TMF1 also
functions in intra-Golgi retrograde transport92 and has been
involved in endosomes to TGN transport.93 PACS-1 mediates
transport from endosomes114,115 and PM115,116 to TGN, and
probably works in other post-Golgi transport routes,115

through connection of cargoes and adaptor proteins (Figure
6). The downregulation of COPG1 is challenging to explain
due to the wide range of transport processes in which COPI
vesicles could participate.117−119 Since these vesicles are
heterogeneous in their composition of γ and ζ subunits,
coatamer populations that carry γ1 or γ2 subunits coexist at the
same time in mammalian cells and, therefore, the deficiency of
γ1 subunit (COPG1) could be rectified by γ2 in the higher
producer cells.120,121 Additionally, only receptor tyrosine
kinase nuclear signaling or specific transport routes in the
higher producer clone could be affected by COPG1 down-
regulation.117,118

Regarding upregulated targets, eight members (ARF3,
DDHD2, PDCD6, RAB32, RHBDD1, SCFD1, TRAPPC9,
and STX17) were also included in this transport category
(Figure 6). ARF3 is an ADP-ribosylation factor that supports
COPI vesicle biogenesis,122,123 mediates transport from ER to
endolysosomes,124 endosome to PM, ERGIC to cis-Golgi, cis-
Golgi to ER,125,126 and TGN to PM,127 and is required for the
integrity of recycling endosomes.125 The role of DDHD2 in
the early secretory pathway is controversial, being necessary for
Golgi to PM100 or Golgi to ER103 transport. PDCD6 is a
calcium-binding protein recruited to ER exit sites (ERES) that
participates in formation and trafficking of COPII vesicles by
enhancing outer coat recruitment,128 loading of cargo and
other required proteins, functioning as a cargo receptor for
certain substrates,129 and recruiting other proteins to

ERES.130,131 Its reported upregulation in recombinant CHO
cells in comparison to non-producer cells23 validates this
protein as a relevant target for RP expression. RAB32
participates in protein traffic in the late secretory pathway,
where it targets LRRK2 to transport vesicles and recycling
endosomes,132 mediates traffic from endosomes to TGN,133

and maintains CI-MPR in endosomes.133 RHBDD1 is an ER
resident trans-membrane protease that negatively regulates
exosome secretion134 or facilitates protein secretion in
microvesicles by mediating their ER to Golgi transport.135

TRAPPC9 is a non-essential subunit of the TRAPP complex
that allows shedding of the inner coat from COPII vesicles to
facilitate tethering, docking, and fusion of these vesicles with
their target membranes. Its binding to p150Glued links vesicle
movement along microtubules with tethering, printing a
suitable directionality to this movement.136 The SNARE
STX17 recycles between ER and ERGIC and has demon-
strated to be essential for an adequate secretion of proteins137

and maintenance of ERGIC and Golgi compartments.98

SCFD1 cooperates with SNARE complexes in membrane
fusion events,138−140 is required for correct targeting of PM
and lysosomal proteins,139,141 and its overexpression has
increased the qp of RP in yeasts142,143 and mammalian
cells.58 It also functions in Golgi to ER traffic99,138 and certain
intra-Golgi transport steps.99

In summary, the transport between ER and Golgi apparatus
is highly enhanced in the higher producer cells, while some
intra-Golgi transport routes are downregulated for specific and
non-mAb-related cargoes. Transport from and to the late
secretory pathway seems to be profoundly remodeled to the
detriment of PM and ECM proteins, cargoes that could be
dispensable during a higher production of a mAb. Endosomes-
related transport and anterograde fusion events also appear to
be highly stimulated during a higher RP production.
Omics data have been shown that an increase of qp in

different CHO cell lines leads to a rearrangement of
intracellular traffic. An accumulation of adapter proteins
(AP2 and AP3), molecular motors (kinesin and myosin),
coat subunits (COPA, COPG2, and COPB1), small GTPases
(RABs, SAR1A, and ARFs), and proteins related to vesicle
formation (PDCD6) and membrane fusion (recognition and
anchoring factors, NSF, SNAREs) has been ob-
served.20,22−24,53,54 In common with our results, information
suggests an increase in biogenesis, transport, recognition, and
fusion of vesicles that could contribute to a higher productivity.

3.4. Production of ECM Components and Secretory
Cargoes. Downregulated GOLGB1, SURF4, MINPP1,
TMED4, FKBP14, GOLM1, PRKCD, PITPNM1, and
MCFD2 (Figures 4 and 6) were classified in this category by
their positive effect on ECM production. The knockout/
knockdown of GOLGB1 has shown a negative impact on
secretion of proteoglycans and proteins involved in their
synthesis, collagens, ECM proteins, and glycosaminogly-
cans.109,111,144 This golgin also co-localizes with dymeclin,
another protein involved in collagen secretion.145 PRKCD and
FKBP14 are also directly linked to collagen secretion as the
depletion of the former substantially decreases the tran-
scription, transport, and secretion of collagens,146,147 while the
latter binds to and participates in the refolding of hydroxylated
states of collagens.148,149 PITPNM1 favors glycosaminoglycans
transport from TGN to PM by controlling diacylglycerol
accumulation in Golgi apparatus,90 and MINPP1 is tightly
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linked to ECM production during the proliferation150 or
maturation151,152 of chondrocytes.
Others targets involved in the secretion of soluble cargoes

were also downregulated in the higher producer cells. GOLM1
has been positively correlated with secretion of matrix
metalloproteinases MMP-1, 2, 9, and 13153−155 and partic-
ipates directly in traffic and secretion of MMP-2 and the
extracellular chaperone clusterin.156 TMED4 possibly func-
tions in transport of the hormone precursor proopiomelano-
cortin (POMC) in the intermediate pituitary melanotrope cells
of Xenopus laevis.157 MCFD2 forms a cargo receptor together
with LMAN1 to transport coagulation factors V and VIII from
ER to ERGIC and probably alpha1-antitrypsin.158−160 SURF4
is implicated in the secretion of a broad range of cargoes that
include glycoproteins,161 LPP,162 and enamel ECM proteins,
hormones, and proteases.163 Since cargoes carried by SURF4
from ER to Golgi apparatus contain an ER-ESCAPE motif163

that it is not present in the light or heavy chains of anti-IL8
mAb,164 its lower abundance is unlikely to affect antibody
secretion. The downregulation of all these nonessential
proteins suggests that the release of cellular resources and
their redirecting to the production of RP are common
strategies of the higher producer cells, which could be applied
during cell line development through the knockdown or
knockout of these extracellular proteins and those related to
their production. Indeed, the disruption of up to 14 genes
coding for extracellular proteins has been shown to improve
cell density, viability, and transient mAb productivity.165

3.5. Glycosylation. Glycosylation was represented by four
downregulated members in CRL-12445 cells (GOLGB1,
ZFPL1, GOLGA5, and TMF1). While GOLGA5 is required
for a mature glycosylation pattern of lysosomal and PM
proteins,95 its relevance for secreted cargoes remains unex-
plored. GOLGB1 knockdown decreases protein concentration
and induces mislocalization of many glycosyltransferases, such
as B4GALT1, MGAT1, and ST6GAL1,109 and shifts N-glycans
toward a high-mannose type in cancer cell lines.110 The O-
glycosylation appears to be disturbed as well given that TMF1
maintains Golgi localization of GalNAc-T293 and knockdown
of ZFPL1 decreases O-linked N-acetylglucosamine.166 In this
context, a carbohydrate analysis of mAb is necessary to confirm
a disturbed glycosylation in detriment to O-glycan and
complex N-glycan patterns in the higher producer cells. MAb
N-glycosylation occurs mainly at Asn297 in the Fc region,
modulating antibody effector functions through binding to Fcγ
receptors and complement activation, whereas O-glycosylation
occurs at serine and threonine residues without a consensus
sequence.167 Therefore, since the Fab portion and not the Fc
region of mAb binds to the antigen, these possible changes in
glycosylation patterns of antibodies between both cell lines are
not expected to impact IL-8 binding, as demonstrated by WB
(Figure S2D,E). On the contrary, these plausible glycosylation
changes are expected to alter mAb effector functions.
3.6. Autophagy. Autophagy could be activated in the

higher producer CRL-12445 cells through downregulation of
PRKCD and ZFPL1 and upregulation of RAB32, SCFD1, and
STX17. Loss of PRKCD and ZFPL1 triggers autophagy in rat
proximal tubular cells168,169 and human gastric carcinoma cell
lines.166 On the other hand, overexpression of RAB32
increases the number of autophagosomes, whereas its knock-
down leads to autophagy blockade.170,171 SCFD1 is required
for transport of lysosomal enzymes from ER to Golgi apparatus
and, although its knockdown triggers induction of autophago-

somes as a consequence of ER stress and UPR, autophagy does
not occur in its absence because of the lack of lysosomal
enzymatic activities.141 The SNARE STX17 is recruited to
autophagosomes upon autophagic stimuli,172,173 where it binds
to other SNAREs,174 mediates the recruitment of protein
complexes required for maturation or fusion of autophago-
somes,175,176 and participates in autophagosome−lysosome
fusion.172,174,176 Furthermore, STX17 could increase the
transcription of proteins involved in lysosomal functions and
autophagy.177

Autophagy has been described as a survival mechanism of
eukaryotic cells to protect themselves from stressful conditions,
provide the necessary energy and biomolecule precursors, and
remove damaged organelles.178 In the case of CHO cells, this
process can be activated by nutrient depletion, hyperosmotic
stress, and sodium butyrate addition,178,179 conditions that are
absent from the exponentially growing cells sampled in this
study. Besides a positive impact of autophagy on viability and
longevity of cell cultures,180,181 its chemical induction by 3-
MA179,182,183 or rapamycin180 on CHO cells has been
associated with an increase of qp or product titer. After all, a
profound study is becoming mandatory to elucidate the
relationship between basal autophagy and qp in recombinant
CHO cells during the exponential growth phase.

3.7. Proteasomal Activity. The upregulation of two
critical chaperones, PSMG1 and POMP, that participate
coordinately in the assembly and maturation of protea-
somes,184−187 proposes that the proteasomal activity could
be enhanced in the higher producer cells. PSMG1 participates
in α-ring assembly of proteasomes, prevents premature nuclear
translocation of their intermediates, and favors an adequate
folding for further interactions.184−186 Subsequently, POMP
recruits this α-ring and the β subunits to ER membranes for
formation and dimerization of hemi-proteasomes and mediates
maturation of 20S proteasomes.185,186,188 In view of the fact
that PSMG1 and POMP are continuously degraded during
maturation of 20S proteasomes,185,187 increased levels of these
proteins are required to sustain or increase the proteasomal
activity. Their role in maintaining active proteasomes has been
essential to sustain cell proliferation, signaling, and anti-oxidant
defenses, avoid apoptosis, and support ER homeostasis.188−191

3.8. Protein Synthesis and Translocation into ER
Lumen. The two upregulated members of this group (SRP72
and SRPA) act coordinately during the synthesis of proteins
and their translocation into ER lumen, which indicates a high
upregulation of this pathway in the higher producer cells
(Figure 6). SRP72 is a member of the signal recognition
particle (SRP), a complex that mediates mRNA-ribosome
targeting to Sec61 translocon and favors signal peptide
removing.192−194 SRP72 is also required for nuclear export,
stability, and function of SRP.192,194−196 SRPA, the α-subunit
of SRP receptor (SRPR),197,198 is a peripheral membrane
protein that targets SPR ribosomes to ER membranes through
its binding to the β-subunit of SRPR.197,199 Immediately after
targeting, GTP is incorporated into the complex, mRNA-
ribosome cargo is transferred to Sec61 for the subsequent
translocation of nascent polypeptide into ER lumen, and the
SRP−SRPR complex is dissociated.197−199 SRPA also favors
the SRP pathway for protein translocation by displacing Sec62
from Sec61−Sec62 complexes and making Sec61 available for
SRP.200 In CHO cells, endogenous levels of SRPA have
demonstrated to positively correlate with an increase in
productivity of therapeutic mAbs.20 Actually, the over-
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expression of most components from the SRP pathway,
including SRPA, has substantially increased the qp of CHO cell
clones producing trastuzumab and infliximab,201 which is in
accordance with the upregulation of proteins from this
pathway found in our study.

4. CONCLUSIONS

In the present study, a subcellular proteomics strategy was
applied to two CHO cell lines producing a mAb, with a 26-fold
difference in their qp, to identify targets from the secretory
pathway associated with RP production. Metabolic analysis
showed that an efficient consumption of glucose and
glutamine, lower production of harmful metabolites, and an
improved oxidative metabolism could be used as high
productivity markers during clonal selection. Approximately,
80% of 493 DEPs were recognized as new targets, of which a
third was assigned to the secretory pathway, demonstrating a
greater capacity of subcellular proteomics to identify low
abundance of proteins compared to classical proteomic
strategies. Differential proteomic comparison indicated that
an overexpression of proteins involved in protein synthesis and
translocation into ER lumen, autophagy, proteasomal activity,
and vesicular trafficking, and a downregulation of those related
to the production of ECM and secretory cargoes, represent
viable strategies to increase product titer during cell culture
bioprocesses. On the other hand, increased ER stress, UPR,
and ERAD were associated with a lower productivity,
suggesting that cells showing these traits should be discarded
during clone isolation. Restructuring of intra-Golgi transport,
morphological changes of secretory pathway, and mAb PTMs
need further studies for their validation and understanding.
The approach applied in the present work allowed the
identification of hundreds of new protein targets that will
help to understand the biological processes associated with
protein productivity and provided the basis to design new sub-
lines with novel gene modifications and stronger capabilities
for RP production. The cellular concentration of those proteins
identified in this and previous classical proteomic studies as
differentially expressed should be manipulated in future by
genetic approaches in recombinant CHO cells producing
mAbs or other RPs, in order to confirm which of them might
impact productivity. Future subcellular proteomics will allow
to increase the number of targets related to qp, in comparison
to the classical approaches performed until now. This strategy
proved to be an effective tool to gain a deeper insight into the
molecular processes related to protein production in CHO
cells.

5. EXPERIMENTAL PROCEDURES

5.1. Cell Lines and Culture Conditions. Cell lines CHO
DP-12 clone #1933 CRL-12444 and clone#1934 CRL-12445,
which secrete a mAb against human IL-8, were acquired from
American Type Culture Collection (ATCC) and adapted to
growth in CDM4CHO medium. Cells were seeded at 0.50 ×
106 cells/ml in 250 mL Erlenmeyer flasks with a filling volume
of 20% in CDM4CHO medium (Hyclone, Logan, UT, USA)
supplemented with 6 mM stable glutamine (L-alanyl-L-
glutamine dipeptide, Biowest LLC, Kansas City, MO, USA),
0.002 mg/mL Humulin N (Eli Lilly, Indianapolis, IN, USA),
and 200 nM methotrexate (Pfizer, New York, NY, USA), at 60
rpm, 37 °C in a 5% CO2 atmosphere in a humidified incubator.
Cell concentration and viability were recorded every 24 h by

cell counting in a Neubauer chamber using the trypan blue dye
exclusion method.
Each biological replicate represents a different frozen vial

from a working cell bank. Biological triplicates were used for
the kinetic and metabolic characterization of cultures. Two
biological replicates, collected during the exponential growth
phase (72 h) from each cell line, were processed for the
subcellular proteomic analysis, where each replicate was a pool
of nine Erlenmeyer flasks, in order to collect enough cells.

5.2. Quantification of Metabolites, Ions, and pH.
Concentration of glucose, lactate, glutamine, glutamate,
ammonium, sodium, potassium, and calcium, and pH were
measured in supernatants every 24 h by using BioProfile
FLEX2 Automated Cell Culture Analyzer (Nova Biomedical,
Waltham, MA, USA). Specific consumption or production
rates were calculated from the exponential growth phase as the
ratio between the net concentration of analyte and integral
viable cell concentration (IVCD), determined as area under
curve by trapezium rule using GraphPad Prism Software v5.01
(GraphPad Software, San Diego, CA, USA).

5.3. Quantification of qp. MAb concentration was
measured in supernatants every 24 h by using Human IgG
ELISA Quantitation Set (E80-104, Bethyl Laboratories, Inc.,
TX, USA), according to manufacturer’s protocol. SigmaFast
OPD substrate (Sigma-Aldrich, Merck KGaA, Darmstadt,
Germany) was prepared according to manufacturer’s recom-
mendations and incubated at room temperature for 15 min.
The reaction was stopped with 10% (v/v) HCl, and the
absorbance was recorded at 490 nm. qp was calculated from the
exponential growth phase as the ratio between the net product
titer and IVCD.

5.4. MAb Purification. MAb purification was carried out
under native conditions to preserve its biological activity. The
mAb was purified by Protein A-Agarose affinity chromatog-
raphy (MabSelect SuRe, GE Healthcare Bio-Sciences, USA)
from two culture replicates of each cell line. The supernatant
was centrifuged, diluted two-fold in equilibrium buffer (150
mM NaCl, 20 mM sodium phosphate, pH 7.2), 0.2 μm
filtered, and loaded into a 5 mL column at a flow rate of 2 mL/
min. After washing the column with equilibrium buffer until
absorbance has reached the baseline, antibody was eluted with
0.1 M sodium citrate (pH 3.0), neutralized with 5% (v/v) 1 M
Tris−HCl (pH 9.0), and extensively dialyzed against
phosphate buffer (pH 7.4) (137 mM NaCl, 2.7 mM KCl,
8.1 mM Na2HPO4, 1.8 mM KH2PO4) at 4 °C.

5.5. Human IL-8 Expression in E. coli. BL21(DE3) cells
were transformed with IL-8-pMCSG7 plasmid (DNASU
Plasmid Repository, Arizona State University, AZ, USA)202

and cultured in ampicillin-supplemented LB medium, at 37 °C
and 150 rpm. Expression of human IL-8 was induced with 1
mM IPTG for 4 h. Next, cells were centrifuged at 8161g for 10
min and disrupted by sonication (Soniprep 150, MSE,
Heathfield, East Sussex, UK) in lysis buffer (100 mM NaCl,
1 mM EDTA, 50 mM Tris−HCl pH 8.0). Homogenates were
solubilized in isoelectric focusing (IEF) buffer [7 M urea, 2 M
thiourea, 2% (w/v) CHAPS, 40 mM DTT], clarified by
centrifugation, precipitated by acetone, and solubilized again in
IEF buffer. Proteins were quantified and subjected to reducing
SDS-PAGE.

5.6. Determination of Protein Concentration. Protein
concentration was determined by the Bradford method in 96-
well microplates using Dye Reagent Concentrate (Bio-Rad,
Hercules, CA, USA), and bovine serum albumin (GE
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Healthcare Bio-Sciences, USA) was used as standard,
according to manufacturer’s recommendations. The samples
stored in IEF buffer were diluted 5 times in MilliQ water
before quantification.
5.7. SDS-PAGE for Analysis of Affinity-Purified mAb

and Human IL-8. Laemmli buffer was added to samples at a
final composition of 60 mM Tris−HCl pH 6.6, supplemented
with 10% (v/v) glycerol, 70 mM sodium dodecyl sulfate
(SDS), and 0.2 mM bromophenol blue, with (reducing
conditions) or without (non-reducing conditions) 2.5% (v/
v) 2-mercaptoethanol. Next, these samples were boiled at 95
°C for 5 min, with the exception of those stored in IEF buffer,
centrifuged at 8161g for 5 min, and applied to 7.5, 12, or 15%
SDS-polyacrylamide gels. Page Ruler Prestained Protein
Ladder (ThermoFisher Scientific) was selected as the
molecular weight (MW) marker. Samples were resolved in a
SE260 Mighty Small II Deluxe Mini Vertical Protein
Electrophoresis System (Hoefer, Holliston, USA) at 60 mA,
using Tris-Glycine pH 8.3 [25 mM Tris, 192 mM Glycine,
0.1% (w/v) SDS] as running buffer. Gels were stained with
Coomassie Brilliant Blue R250 (Sigma-Aldrich, Merck KGaA,
Darmstadt, Germany) and destained in 5% (v/v) methanol
and 7.5% (v/v) acetic acid.
5.8. Protein Precipitation. Proteins from E. coli

homogenates and sucrose gradients were precipitated by
acetone, as described by Crowell et al.203 and Peŕez-Rodriguez
et al.204 Briefly, NaCl was added at a final concentration of 100
mM, followed by addition of 4 volumes of cold 80% (v/v)
acetone and overnight incubation at −20 °C. After
centrifugation at 16,000g for 25 min, the protein precipitate
was washed twice with 4 volumes of cold 80% (v/v) acetone
and air-dried.
5.9. MAb Binding to Human IL-8 by WB. Activated

polyvinylidene fluoride membranes and reduced 15% SDS-
PAGE gels, with 30 μg of proteins by lane from chemically
induced E. coli homogenates, were soaked in transfer buffer [20
mM Tris, 154 mM glycine, 0.08% (w/v) SDS, 20% (v/v)
methanol] for 5 min. Protein transfer was carried out in a
Trans-Blot SD Semi-dry Transfer Cell (Bio-Rad, Hercules, CA,
USA) at 20 V for 60 min and verified by Ponceau staining
[0.5% (w/v) Ponceau S, 1% (v/v) acetic acid]. Membranes
were blocked in 3% (w/v) skimmed milk and 0.05% (v/v)
Tween-20 in phosphate buffer for 1 h and incubated with 5
μg/mL of purified anti IL-8 antibodies for 2 h. HRP-
conjugated anti-human antibody was diluted 1200-fold and
incubated with membranes for 1 h. Membranes were revealed
with 0.05% (m/v) 3,3′-diaminobenzidine and 0.001% of 30%
H2O2 solution in phosphate buffer.
5.10. Subcellular Fractionation. All protocols for

subcellular fractionation comprising cellular disruption and
differential and isopycnic centrifugation have been described
previously51 and are available at dx.doi.org/10.17504/proto-
cols.io.bf9sjr6e and dx.doi.org/10.17504/protocols.io.bgc4j-
syw. In brief, cells were suspended in HEPES buffer (1 mM
EDTA, 10 mM HEPES, pH 7.4), incubated on ice for 30 min,
and broken up with 25 strokes in a Dounce homogenizer. Cold
sucrose was added to restore osmolarity at 0.25 M, and
nuclear, mitochondrial, and microsomal pellets were collected
at 3000g for 10 min, 9000g for 15 min, and 100,000g for 1 h at
4 °C, respectively. Supernatant from the last centrifugation
step was named cytosol. Pellets were diluted in 0.25 M sucrose
and separated in sucrose gradients at 154,693g for 3 h at 4 °C
(Beckman Coulter, IN, USA). 30−60 and 10−60% sucrose

gradients were employed for nuclear and mitochondrial
suspensions and for microsomal preparations, respectively.
Proteins from all isolated subcellular fractions were acetone-
precipitated and used for MS/MS analysis.

5.11. Mass Spectrometry Analysis. 200 μg of
precipitated proteins were solubilized in 50 μL of guanidine
hydrochloride (GuHCl) buffer [6 M GuHCl, 5 mM Tris (2-
carboxyethyl) phosphine, 10 mM chloracetamide, 100 mM
Tris−HCl, pH 8.5] and incubated at 99 °C for 10 min. Of
these, 100 μg was digested with trypsin for 12 h, after which
trifluoroacetic acid was added at 0.5% (v/v), and 20 μg of
digested peptides were stage tipped according to Rappsilber et
al.205

Liquid chromatography was developed on a capillary-flow
UltiMate 3000 RSLCnano system with a capLC system
(Thermo Fisher Scientific, Waltham, MA, USA) coupled to a
15 cm C18 easy spray column 50 μm × 150 mm, 2 μm
Acclaim PepMap C18 column at 1.2 μL/min (Thermo Fisher
Scientific, Waltham, MA, USA). Using a stepped 3−45%
acetonitrile gradient for 120 min, the samples were sprayed
into a Q-Exactive HF-X mass spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) operated in the Top 12 Data-
dependent acquisition mode. First of a full scan was collected
at 60,000 resolution, maximum injection time 50 ms, AGC
Target 3.0 × 106, followed by up to 12 MS2 scans at 15,000
resolution with maximum injection time 30 ms, dynamic
exclusion set to 25 s, and higher-energy collisional dissociation
(HCD) collision energy at 28%. Data were analyzed using
MaxQuant software, carbamidomethyl and oxidation of
methionine residues were established as fixed and variable
modifications, respectively, one missed cleavage was allowed,
and false discovery rate (FDR) was fixed at 1%. Data were
searched against the CHO proteome from Uniprot
(UP000001075) while including a list of known contaminants.
The concentration of mAb light chain in intracellular
compartments containing ER was measured and used as an
internal control of cellular protein expression levels. MAb light
chain sequence was added to the search database.164 Tolerance
of 20 ppm was set for the first search mass and MS/MS. The
mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE206 partner
repository with the data set identifier PXD021014.

5.12. Processing, Comparison, and Classification of
Proteomic Data. A flow diagram that represents data
processing, identification of DEPs and gene groups, and their
classification into GO categories is depicted in Figure 1.
Contaminants and groups identified in reverse database or by
PTM were discarded, and protein groups were reduced to one
member. All subsequent analyses for each subcellular compart-
ment were carried out in R language.207 The two best-
performing normalization methods from Normalyzer v1.1.1208

were selected for all further analyses. Missing values from each
group were imputed by using the quantile regression
imputation of left-censored data (QRILC) method.209

Protein expression was compared by using SAM210 and
ROTS211 algorithms. A cut-off of two-fold change and FDR
≤0.05 were used in SAM package, while B = 1000, K = 2000,
and FDR ≤0.05 were used for ROTS. DEPs were aligned
against Mus musculus proteome (UP000000589) using BLAST
+ v2.2.24 and mapped and classified by BlastKOALA from
KEGG,212 PANTHER v14.0,213 and DAVID v6.8 (EASE <
0.05).214
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Defined sets of genes were statistically compared using the
javaGSEA desktop application.215 M. musculus GSEA GO
terms were obtained from prebuilt gene sets of GO2MSIG.216

Collapse data set to gene symbols and metric for ranking genes
were set to “false” and “diff of classes,” respectively. FDR <0.25
and p < 0.05 were selected as the cut-off value for statistically
significant gene sets.215

5.13. Statistical Analysis. Pearson’s correlation test was
carried out between each pair of biological replicates by using
ggpubr R package,217 to evaluate their relationship. The
concentration of mAb light chain in subcellular compartments
containing ER and growth and metabolic parameters were
compared between both cell lines by using Student’s t-test in
GraphPad Prism Software v5.01 (GraphPad Software, San
Diego, CA, USA).
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