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Abstract

The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either

identical or non-identical ones are coupled by means of two linear resistors Rk . The hyperchaotic output signal vðtÞ is a
linear combination, specifically the mean of the individual chaotic signals, vðtÞ ¼ ðv1 þ v2Þ=2. The corresponding dif-

ferential equations have been derived. The results of both, numerical simulations and hardware experiments are pre-

sented. The coupling coefficient k / 1=Rk should be small to avoid mutual synchronisation of the individual oscillators.

The spectrum of the Lyapunov exponents (LE) have been calculated versus the coefficient k. For weakly coupled os-

cillators there are two positive LE indicating hyperchaotic behaviour of the overall system.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The classical Colpitts oscillator with special parameter settings exhibits chaotic behaviour [1,2], thus can be used to

generate noise-like broadband signals. The oscillator is very flexible––the fundamental frequency can be tuned from

several kilohertz to several gigahertz, i.e. to the microwave range. The complexity of chaotic oscillations is characterized

by the number of positive Lyapunov exponents (LE), i.e. the number of directions in the phase space along which the

phase trajectories are unstable. Chaotic Colpitts oscillator has only one positive LE. Meanwhile for chaos based

communications more complicated oscillators, characterized by multiple positive LE are needed [3,4]. Dynamical

systems having more than one positive LE are called hyperchaotic ones.

The first hyperchaotic electronic circuit has been suggested by Matsumoto et al. [5]. During the past five years a large

number of various hyperchaotic oscillators have been proposed by several authors, e.g. [6–25]. Among them are the

fourth and higher order circuits composed of non-linearly coupled second order linear oscillators [6,7,10,12,13,15],

high-order high-pass filter based oscillators [11,14], the sixth and higher order arrays of coupled third order non-linear

chaotic oscillators [16–19], also the so-called ‘‘infinite’’ dimensional, delay line based oscillators [22–25], operating at

kilohertz frequencies [22,23], as well as in the microwave range [24,25]. Some of the early hyperchaotic oscillators are

described in the review papers [8,9]. Possible applications of hyperchaotic circuits to communications, specifically to

secure communications are discussed and illustrated in [17,18,20,21].

In the present paper we suggest a simple solution of building a hyperchaotic Colpitts circuit. Two chaotic Colpitts

oscillators, either identical or non-identical ones are coupled by means of linear resistors. The output hyperchaotic

signal is a linear combination, specifically the mean of the individual chaotic signals.
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2. Chaotic Colpitts oscillator

Dynamics of the Colpitts oscillator (Fig. 1, left) can be described by the following differential equations:

_xx ¼ y � aF ðzÞ;
_yy ¼ c� x� by � z;
e_zz ¼ y � dz;

F ðzÞ ¼ e� 1� z; z < e� 1;
0; zP e� 1:

�
ð1Þ

Here

x ¼ VC1
V � ; y ¼ qIL

V � ; z ¼ VC2
V � ; # ¼ t

s
; _uu � du

d#
; q ¼

ffiffiffiffiffiffi
L
C1

r
; s ¼

ffiffiffiffiffiffiffiffi
LC1

p
; e ¼ C2

C1

; a ¼ q
r
;

b ¼ R
q
; c ¼ V0

V � ; d ¼ q
Re

; e ¼ R2

R1 þ R2

c: ð2Þ

Typical phase portrait is presented in Fig. 1 (right), while power spectra are illustrated in Fig. 2.

3. Coupled Colpitts oscillators

Two Colpitts oscillators, Colp1 and Colp2, specifically the collector nodes, are coupled to each other by two linear

resistors Rk (Fig. 3). The output signal vðtÞ is simply the mean of the collector voltages ðxi þ ziÞ of the individual os-

cillators:

Fig. 1. The Colpitts oscillator: circuit diagram (left) and phase portrait (right). e ¼ 1, a ¼ 30, b ¼ 0:8, c ¼ 20, d ¼ 0:08, e ¼ 10.

Fig. 2. Power spectra from the Colpitts oscillator: numerical (left) and experimental (right). e ¼ 1, a ¼ 30, b ¼ 0:8, c ¼ 20, d ¼ 0:08,

e ¼ 10, Q – 2N3904, L ¼ 850 lH, C1 ¼ C2 ¼ 470 nF, C0 ¼ 47 lF, R ¼ 36 X, Re ¼ 510 X, R1 ¼ R2 ¼ 3 kX, V0 ¼ 15 V.

Fig. 3. Two coupled Colpitts oscillators.
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v ¼ ðx1 þ z1Þ þ ðx2 þ z2Þ
2

: ð3Þ

The coupled system is given by

_xx1 ¼ ½y1 � aF ðz1Þ þ kðv� x1 � z1Þ
x1; _xx2 ¼ ½y2 � aF ðz2Þ þ kðv� x2 � z2Þ
x2;

_yy1 ¼ ½c� x1 � by1 � z1
x1; _yy2 ¼ ½c� x2 � by2 � z2
x2; e_zz1 ¼ ½y1 � dz1 þ kðv� x1 � z1Þ
x1;

e_zz2 ¼ ½y2 � dz2 þ kðv� x2 � z2Þ
x2: ð4Þ

Here k ¼ q=Rk is the coupling coefficient, x1 and x2 are the reduced cyclic frequencies of the oscillators.

3.1. Identical oscillators

The phase portraits of the system composed of identical oscillators ðx1 ¼ x2Þ are shown in Fig. 4. Experimentally

observed phase portraits correspond very well to the numerical ones.

The fine diagonal in Fig. 4d indicates full synchronisation of the individual oscillators at larger coupling coefficients.

Obviously, the system of synchronized chaotic oscillators is not a hyperchaotic one. Visual inspection of the phase

portraits at smaller coupling coefficients does not allow one to distinguish between simple chaotic and hyperchaotic

states. This can be done by direct calculation of the LE (Fig. 5). At k ¼ 0 there are two positive LE, as expected.

Meanwhile at k > 0 the situation is rather complicated. There are certain parameter windows (Fig. 5, right) where the

oscillations are either weakly chaotic (k � 0:02; low value single positive LE) or even periodic (k � 0:03; the largest LE
is zero!).

3.2. Non-identical oscillators

The system of non-identical oscillators (x1 6¼ x2) has an advantage in the sense, that full synchronisation is im-

possible in this case. Moreover, no chaotic and periodic windows have been detected at small coupling coefficients (Fig.

6). The systems remains hyperchaotic with two positive LE up to k ¼ 0:12.
In addition, it is worth to note, that weak coupling of non-identical oscillators, e.g. k ¼ 0:05 enables one to reduce

the unevenness of the power spectrum (Fig. 7, middle).

The hardware experiments do confirm the numerical result of smoothing the power spectra by means of weak

coupling of the oscillators (Fig. 8, middle).

Fig. 4. Phase portraits of two coupled identical Colpitts oscillators at different coupling coefficients: (a) k ¼ 0, (b) k ¼ 0:1, (c) k ¼ 0:3,

(d) k ¼ 1:0. In the top row the x1 þ z1 and x2 þ z2 is proportional to the collector voltage of the Colp1 and the Colp2 oscillator, re-

spectively. In the bottom row the v is the mean collector voltage given by Eq. (3) and u is simulated from an auxiliary linear differential

equation: _uu ¼ v� u.
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4. Conclusions

Two weakly coupled Colpitts oscillators exhibit hyperchaotic behaviour characterized by two positive LE. In the

case of identical oscillators there are undesirable regions of coupling coefficient where weakly chaotic (small single LE)

and even periodic oscillations are observed. Meanwhile, non-identical Colpitts oscillators with different fundamental

frequencies have an advantage. The system oscillates hyperchaotically over sufficiently wide range of coupling without

Fig. 5. Three largest LE, k1, k2, k3 from Eqs. (3) and (4). Panorama view (left), detailed view (right). Identical oscillators, w1 ¼ w2 ¼ 1,

e ¼ 1, a ¼ 30, b ¼ 0:8, c ¼ 20, d ¼ 0:08, e ¼ 10.

Fig. 6. Three largest LE, k1, k2, k3 from Eqs. (3) and (4). Panorama view (left), detailed view (right). Non-identical oscillators, w1 ¼ 1,

w2 ¼ 1:6, e ¼ 1, a ¼ 30, b ¼ 0:8, c ¼ 20, d ¼ 0:08, e ¼ 10.

Fig. 7. Power spectra of non-identical oscillators (w1 ¼ 1, w2 ¼ 1:6) at different coupling coefficients: k ¼ 0 (left), k ¼ 0:05 (middle),

k ¼ 0:1 (right). e ¼ 1, a ¼ 30, b ¼ 0:8, c ¼ 20, d ¼ 0:08, e ¼ 10.

Fig. 8. Experimental power spectra of non-identical oscillators (f1 � 11 kHz, f2 � 17 kHz) at different coupling resistors: Rk ¼ 5:1 kX
(left), Rk ¼ 1:1 kX (middle), Rk ¼ 750 X (right). Q – 2N3904, C0 ¼ 47 lF, R ¼ 36 X, Re ¼ 510 X, R1 ¼ R2 ¼ 3 kX, V0 ¼ 15 V. The LC

tank parameters are as follows: L ¼ 850 lH, C1 ¼ C2 ¼ 470 nF (in Colp1) and L ¼ 530 lH, C1 ¼ C2 ¼ 300 nF (in Colp2).
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any chaotic or periodic windows. In addition, certain carefully chosen coupling of non-identical oscillators provide

relatively smooth power spectrum of the overall system. We expect that coupling of a larger number of chaotic Colpitts

oscillators can produce hyperchaotic systems with multiple positive LE and rather smooth power spectra.
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