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Abstract

The technological progress of the last few decades has brought us the ability of

exploiting quantum e�ects to accomplish a variety of relevant tasks. Yet, quantum

phenomena are fragile, and with the ability to engineer quantum information pro-

tocols comes the problem of keeping such information safe from the detrimental

e�ects of noise and losses. In the present work we investigate continuous vari-

ables Gaussian quantum information in noisy environments, studying the e�ects

of various noise sources in the cases of a quantum metrological task, an error cor-

rection scheme and discord-type correlations. We engage each of the topics from a

theoretical point of view, successively delving into the details of the experimental

realizations and concluding with a survey of the results. In particular, we present

the experimental implementation of an ab initio, deterministic, real-time adaptive

phase estimation protocol in a realistic thermalized scenario, we investigate the

performance of an error correction scheme for elimination of correlated noise in a

quantum channel, and we study the robustness of discord-type quantum correla-

tions when subject to additive noise and attenuation.

Dansk resumé

Teknologiske fremskridt indenfor de seneste årtier har givet os mulighed for at ud-

nytte kvantee�ekter for at fuldføre en række relevante opgaver. På trods af dette

er kvantefænomener skrøbelige, og med evnen til at konstruere og anvende kvan-

teinformationsprotokoller følger der ganske naturligt udfordringen at holde denne

information intakt når den bliver udsat for støj og tab fra forskellige kilder. I denne

afhandling undersøger vi Gaussisk kvanteinformation med kontinuerte variable i

støjfyldte miljøer, vi studerer e�ekterne af forskellige støjkilder på kvantemetrol-

ogiske målinger, fejlrettende protokoller og korrelationer i tilstande med splid. Vi

angriber hvert emne fra et teoretisk synspunkt, hvorefter vi beskriver detaljerne i de

eksperimentelle realiseringer og konkluderer med en opsummering af resultaterne.

Mere speci�kt præsenterer vi en eksperimentel implementering af en ab initio,

deterministisk, real-tid adaptiv faseestimationsprotokol i et realistisk termaliseret

scenarie. Yderligere undersøger vi e�ektiviteten af en fejlrettende protokol der har

til formål at eliminere korreleret støj i en kvantekanal, og vi studerer robustheden

af kvantekorrelationer der opstår fra tilstande med splid når tilstandene er udsat

for additiv støj og dæmpning.
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Chapter 1

Introduction

Overview

Quantum information science has drawn the attention of the scienti�c community

in the last few decades thanks to its ability to exploit the quantum properties of

di�erent physical systems in order to either outperform existent classical protocols,

as in the case of quantum metrology [1, 2], computing [3] or error correction [4], or

to introduce novel protocols which have no classical counterpart, such as quantum

cryptography [5], teleportation [6] or dense coding [7].

An important drawback of all quantum protocols is their high sensitivity to noise.

Entanglement and squeezing, for instance, are very fragile when they propagate

through noisy and lossy channels. It is therefore of great interest to analyze the

performances of di�erent quantum information protocols in realistic environments

to understand how they are negatively a�ected by noise and losses and to engineer

new ways around such detrimental e�ects.

Quantum information can be encoded in either discrete (qubits) or continuous vari-

ables (CV) systems. While the former type constitute the fundamental theoretical

workbench for quantum information processing, the latter has the advantage of

being easier to manipulate, both from an experimental and a theoretical point of

view, as we will see in Chapter 2. As a consequence, in the present work we focus

on continuous-variables Gaussian systems [8, 9].

Among various physical �elds, quantum optics is commonly regarded as the one in

which the application of quantum information processes is mostly promising and

straightforward. In fact, optical methods play a key role in many implementations

of quantum information and quantum technology, since the generation of both
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fundamental (e.g. vacuum and Fock states) and highly correlated quantum sys-

tems (such as squeezed and Bell states) is becoming ordinary practice in quantum

optics laboratories.

Thesis structure

We start by recalling the mathematical description of CV Gaussian quantum sys-

tems in Chapter 2. We outline the theoretical framework used to describe CV

quantum optical systems, focusing on the symplectic representation of phase space

which is a powerful language for the description of Gaussian states and operations.

Among the di�erent �elds that constitute quantum information processing, quan-

tum metrology occupies a special place. Indeed, measurement of physical quan-

tities is a fundamental pillar of science and the experimental method, and it also

�nds countless applications in a vast number of �elds. In Chapter 3 we consider

the problem of quantum metrology in noisy environments. In particular, we focus

on the problem of phase estimation, which in a sense can be considered almost an

archetypal estimation problem in quantum physics, due to its fundamental nature

and vast applicability. Speci�cally, we examine an ab initio, deterministic, real-

time adaptive phase estimation protocol and we study how thermal noise a�ects

the achievable limit on the estimation variance from both the theoretical and the

experimental point of view.

Apart from the obvious problem of producing states capable of encoding high de-

grees of quantum information, another problem researchers in the �eld commonly

have to deal with is how to exchange such states between parties without losing

said information. Quantum states can be propagated through quantum channels,

which in realistic settings contain sources of noise and are prone to losses. These

e�ects are detrimental to the quality of the propagated information, and can be

fought in di�erent ways, for instance by encoding the quantum information in de-

grees of freedom that are not a�ected by the channel's speci�c noise sources, or by

devising error correction protocols that are able to restore the degraded informa-

tion. In Chapter 4 we consider the latter strategy by studying an error correction

scheme which eliminates the correlated noise introduced by a quantum channel.

One of the most fundamental properties of quantum states responsible for the

informational boost in quantum information processes is the presence of special,

quantum correlations. For example, protocols such as teleportation and quantum

metrology heavily rely on such correlations. Unfortunately, correlations come in

Adriano A. Berni 2



a variety of �avors and it is still not entirely clear what kind of correlations are

required for what kind of applications. In Chapter 5 we focus on discord-type

correlations, which the last decade has seen rising from strange theoretical dis-

crepancy to possible candidate in a number of information applications. More

speci�cally, we study the e�ect of noise on quantum discord to verify whether such

correlations might be more robust than entanglement for some applications and

to gain insight on its actual signi�cance.

Adriano A. Berni 3
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Chapter 2

Quantum optics formalism

In this chapter we introduce the notation and mathematical formalism used trough-

out the thesis. We will focus on physical systems based on continuous-spectrum

quantum variables (CV), in particular on the class of Gaussian states. Gaussian

states are a favourite class in CV quantum optical applications. They can be con-

veniently characterized and manipulated with simple analytical tools, and from an

experimental point of view they are readily available in most laboratory settings,

and their Gaussian properties are conserved by most linear optical transforma-

tions.

2.1 Continuous variables

We de�ne a continuous-variable (CV) system as a physical system which has an

in�nite-dimensional Hilbert space described by observables with continuous spec-

tra [8, 9]. A typical CV quantum system is composed ofN bosonic modes described

by �eld mode operators âi, i = 1, · · · , N , which satisfy the commutation relation

[âi, â
†
j] = δi,j. The Hilbert space associated to such modes is therefore the tensor

product H⊗N = ⊗Ni=1H(i), where the H(i) are in�nite-dimensional Fock spaces. For

non interacting modes, the dynamics of the system is described by the harmonic

oscillator free Hamiltonian H =
∑N

i=1(n̂i + 1
2
), with n̂i = â†i âi being the number

operator. The countable energy eigenbasis {|n〉i}n∈N is orthonormal and complete

and it can be used to conveniently span the H(i) space.

In case of a single mode system, using the Dirac formalism one can represent all

the information regarding a pure quantum state as the ket |ψ〉. The state-vector

5



2.1. CONTINUOUS VARIABLES

representation is only viable when the system is in a pure state, i.e. when we have

complete control over its preparation. The most general description of a quantum

state is instead obtained when we consider the state to be in a statistical mixture

in which to each possible pure state |ψs〉 is associated a statistical distribution ps.

In such a description, we can express the state as the convex combination of the

projectors over the basis {|ψs〉} weighted by the ps, i.e. as the density matrix

ρ̂ =
∑
s

ps|ψs〉〈ψs| . (2.1)

For the density matrix to represent a physical system, it is required that

Tr [ρ̂] = 1

ρ̂ = ρ̂† (2.2)

〈ψs| ρ̂ |ψs〉 ≥ 0 ∀ s .
In the same way, a general N-mode quantum state can be fully described by a

density matrix ρ̂(N) de�ned on the composite Hilbert space H⊗N . If the state

can be prepared by means of local operations on the subsystems and classical

communication between them (LOCC), then it is called separable and it may be

expressed as the product state

ρ̂(N)
sep

=
N⊗
i=1

∑
s

p(i)
s |ψs〉i〈ψs| =

N⊗
i=1

ρ̂(i) . (2.3)

In turn, if the state cannot be prepared by LOCC, it means that it either requires

non-local operations, or non-classical communication, or both. In such a scenario,

the N-mode quantum state contains quantum correlations and it cannot be ex-

pressed as a product state [10].

The density matrix of a multimode state ρ̂(N) ∈ H⊗N = HA ⊗ HB, Dim [HA] +

Dim [HB] = N , can be reduced to describe a subset of the whole system by tracing

out the degrees of freedom corresponding to the remaining modes:

ρ̂(A) = TrHB

[
ρ̂(N)

]
. (2.4)

Moreover, if Â is an operator acting on the subset HA ⊆ H⊗N of the system's

Hilbert space, the density matrix can be used to calculate the expectation value

for Â according to the trace rule

〈Â〉HA = TrH⊗N
[
ρ̂(N) Â

]
. (2.5)

Finally the density matrix can be used to compute the purity of a state as

µ(ρ̂) = Tr
[
ρ̂2
]
, (2.6)

in fact if the state is pure then it is a projector, ρ̂2 = ρ̂, and its purity is µ = 1.

Adriano A. Berni 6
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2.2. PHASE-SPACE REPRESENTATION

2.2 Phase-space representation

The bosonic �eld operators are not Hermitian, therefore they are not observables

of the system. A Cartesian decomposition of the bosonic �eld operators leads to

the de�nition of the generalized quadrature operator

q̂φi = âie
ıφ + â†ie

−ıφ, (2.7)

where we used the natural units convention by setting ~ = 2 and the variance of

the vacuum �uctuations (shot noise, SN) to unity. The generalized quadrature

can be used to de�ne a position-like operator and its conjugate momentum-like

operator, accordingly to the quantum harmonic oscillator treatment, as

q̂φ=0
i =: x̂i = âi + â†i , q̂

φ=π
2

i =: p̂i = ı(â†i − âi), (2.8)

which obey the commutation relation

[x̂i, p̂j] = 2ıδi,j , (2.9)

from which we obtain the Heisenberg uncertainty relation

Var [x̂i]Var [p̂i] ≥ 1 . (2.10)

By grouping together the quadrature operators as R̂ = (x̂1, p̂1, · · · , x̂N , p̂N)T,

Dim
[
R̂
]

= 2N , we can rewrite the commutation relation in a more compact

form as

[R̂i, R̂j] = 2ıΩi,j , (2.11)

where Ωi,j are elements of the 2N × 2N symplectic matrix

Ω =
N⊕
i=1

ω, ω =

(
0 1

−1 0

)
. (2.12)

Unlike âi and â
†
i , the two quadrature operators in Eq.(2.8) are Hermitian observ-

ables of the system with continuous spectra, and their eigenvalues can be used to

describe the N -modes bosonic system by introducing the phase-space representa-

tion. In particular, by introducing the Weyl displacement operator in terms of the

canonical operator vector R̂ and of a displacement vector ξ

D̂ξ = Exp
[
ıR̂TΩξ

]
, ξ ∈ R2N , (2.13)

Adriano A. Berni 7



2.2. PHASE-SPACE REPRESENTATION

the complete description of any N-mode state ρ̂(N) can be obtained through one

of the s-ordered characteristic functions [11]

χs[ρ̂
(N)](ξ) = Tr

[
ρ̂(N) D̂ξ

]
Exp

[
s||ξ||2/2

]
(2.14)

where the vector ξ belongs to the phase space Γ = (R2N ,Ω). It is noteworthy

that the tensor product structure of the Hilbert space associated with the N-mode

system is translated to a direct sum structure in the real symplectic phase space,

Γ =
⊕

i Γ
(i), with Γ(i) = (R2,ω) being the local phase space associated to the i-th

mode. A complex Fourier transform of each member of the s-ordered characteristic

functions class yields a quasi-probability distribution Ws

Ws[ρ̂
(N)](ξ) =

1

π2

∫
R2N

χs[ρ̂
(N)](ζ)eıζ

TΩξd2Nζ . (2.15)

The values s = −1 and s = 1 correspond respectively to the Husimi Q-function

W−1(ξ) (antinormal ordering of the operators) and the Glauber-Sudarshan P-

functionW+1(ξ) (normal order of the operators). Of greater interest for the present

work is the Wigner function, corresponding to the choice s = 0 (symmetrical order

of the operators). For such a choice the characteristic and the Wigner functions

read

χ[ρ̂(N)](ξ) = Tr
[
ρ̂(N) D̂ξ

]
,

W [ρ̂(N)](R) =
1

(2π)2N

∫
R2N

Exp [−ıRTΩξ]χ[ρ̂(N)](ξ)d2Nξ , (2.16)

where R ∈ R2N is the vector of the eigenvalues of the quadrature operators ar-

ranged in the previously de�ned R̂ operator-array. An equivalent de�nition of

the Wigner function which highlights its univocal correspondence with the density

matrix can be obtained by writing it in terms of the eigenvectors of the quadrature

operators as

W [ρ̂(N)](x,p) =
1

(2π)N

∫
RN
〈x+ y| ρ̂ |x− y〉Exp [2ıy · p] dNy. (2.17)

Although the Wigner function is in general non-positive, it is bounded and regular

and therefore it is a well behaved function for any quantum state. The Wigner

function representation of a quantum state results advantageous in that it allows

to compute expectation values and other important quantities as integrals in the

phase-space. For instance, the Wigner function's marginal distributions yield the

Adriano A. Berni 8
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2.3. GAUSSIAN STATES AND OPERATIONS

quadrature operators probability distributions:

P (x) =

∫
RN
W [ρ̂(N)](x,p)dNp

P (p) =

∫
RN
W [ρ̂(N)](x,p)dNx . (2.18)

Also the trace rule of Eq.(2.5) has an analogous formulation in the phase-space in

terms of Wigner functions as

Tr
[
ρ̂(N) Â

]
= (2π)2N

∫
R2N

W [ρ̂(N)](R)W [Â](R)d2NR . (2.19)

The advantage of this mathematical formulation will become obvious in the case

of Gaussian states, as explained in Sec.2.3.

Given a quantum state, both the characteristic and the Wigner function can be

expressed in terms of its statistical moments [12]. The �rst moment of the state,

also called displacement vector, is de�ned as the mean value of the �eld quadrature

array

δ = 〈R̂〉 = Tr
[
R̂ ρ̂

]
, (2.20)

while the second moment, known as covariance matrix, is composed of the matrix

elements

σij =
1

2
Tr
[
ρ̂{R̂i, R̂j}

]
− Tr

[
ρ̂ R̂j

]
Tr
[
ρ̂ R̂i

]
, (2.21)

where {·, ·} denotes the anticommutator. The covariance matrix is a 2N × 2N

real and symmetric matrix which contains the variances of the �eld quadratures in

its diagonal terms, the correlations between di�erent quadratures in the diagonal

block matrices and the correlations between modes in the antidiagonal block ma-

trices. The uncertainty relations for the canonical operators in Eq.(2.10) impose

a constraint on the covariance matrix in the form of the following inequality

σ̂+ıΩ ≥ 0 , (2.22)

which also expresses the requirement of positive-de�niteness of the density matrix

[13].

2.3 Gaussian states and operations

Gaussian states are commonly considered essentialfor CV quantum information

tasks, due to the fact that the fundamental vacuum state of the radiation �eld is

Adriano A. Berni 9
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2.3. GAUSSIAN STATES AND OPERATIONS

Gaussian itself. Moreover, most quantum transformations are de�ned by Hamil-

tonians at most bilinear in the �eld modes, which preserve the Gaussian character

of the quantum states undergoing such transformations. Finally, also partial trace

operations, used to compute expectation values as in Eq.(2.5) or reduced density

operators as in Eq.(2.4), preserve the Gaussianity of the state.

A Gaussian state is de�ned as any quantum state which can be expressed in terms

of Gaussian characteristic and Wigner functions [8]

χ[σ̂](ξ) = Exp

[
−1

2
ξT(Ω σ̂ΩT)ξ − ı(Ωδ)Tξ

]
,

W [σ̂](R) =
Exp

[
−1

2
(R− δ)T σ̂−1(R− δ)

]
(2π)N

√
Det [σ̂]

. (2.23)

Given that the �rst moment of a state can be arbitrarily changed by phase-space

translations, which are local unitary operations and therefore don't a�ect informa-

tional quantities such as entanglement or entropy, in the following we will consider

δ = 0, unless otherwise stated. This implies that the covariance matrix, despite

being �nite-dimensional, is enough to fully determine the state of a CV system

supported by an in�nite-dimensional Hilbert space.

A remarkable property of Gaussian states is found in the Hudson theorem [14],

which states a necessary and su�cient condition for a quantum state to be Gaus-

sian is that the state is pure and its Wigner function positive. Therefore all pure

states with a positive Wigner function are Gaussian states. This result was later

extended to mixed states in [15], where upper and lower bounds on the non-

Gaussianity of mixed states were found. It is easy to characterize the purity of

a Gaussian state by applying the trace rule in phase space of Eq.(2.19) to the

de�nition of state purity in Eq.(2.6):

µ(ρ̂) = (2π)2N

∫
R2N

W [σ̂]2(R)d2NR =
1√

Det [σ̂]
. (2.24)

Therefore a Gaussian state is pure if and only if Det [σ̂] = 1, always in the natural

units ~ = 2.

Let's now focus on quantum optical transformations that are commonly used in

CV Gaussian quantum information processing, i.e. linear optical transformations.

A quantum operation is a completely positive linear map E : ρ̂→ E(ρ̂) that is in

general trace-decreasing, 0 ≤ Tr [E(ρ̂)] ≤ 1. In the case in which the map is trace

preserving, Tr [E(ρ̂)] = 1, the operation is called a quantum channel. Moreover, if

such quantum channel is reversible, it can be represented by a unitary transfor-

mation ρ̂ → U ρ̂U †, with U−1 = U †. We de�ne Gaussian unitaries the reversible
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2.3. GAUSSIAN STATES AND OPERATIONS

quantum channels which transform Gaussian states in Gaussian states. In order

for a unitary transformation to preserve the Gaussian character of a quantum

state, the Hamiltonian that generates it is required to be at most quadratic in the

mode operators, therefore a�ecting only the �rst and second moments of the state

[12]. The most general N-mode Hamiltonian generating a Gaussian unitary can

therefore be written as

H =
N∑
i=1

g
(1)
i â†i +

N∑
i>j=1

g
(2)
ij â

†
i âj +

N∑
i,j=1

g
(3)
ij â

†
i â
†
j + h.c. . (2.25)

Mode transformations induced by such Hamiltonians are mapped to real symplec-

tic transformations on the �rst and second moments according to

R′ = ŜR+ δ

σ̂′ = Ŝ σ̂ ŜT , (2.26)

where Ŝ is a symplectic matrix, satisfying ŜΩŜ† = Ω, and δ is the displacement

vector. In turn, symplectic transformations of the form in Eq.2.26 are gener-

ated by unitary transformations imposed by Hamiltonian operators of the form in

Eq.(2.25) [16].

In the following, to study the Gaussian states and unitary transformations of in-

terest, we will consider only single-mode and two-mode states and transformations.

2.3.1 Single-mode states and operations

The fundamental quantum optical state is the ground state of the radiation �eld,

called vacuum state, usually indicated as |0〉 or with the density operator ρ̂0 =

|0〉〈0|. The vacuum state is the eigenstate of the annihilation operator, â|0〉 = 0,

and it is an eigenvector of the state energy, therefore it is part of the Fock basis.

Its mean energy and energy �uctuations are both zero

〈n̂〉0 = Tr [n̂ ρ̂0] = 0 ,

(∆n̂2)0 = Tr
[
n̂2 ρ̂0

]
− Tr [n̂ ρ̂0]

2 = 0 . (2.27)

In the phase space picture, the vacuum state is centered on the position and

momentum axes origin, in fact the mean value of both x̂ and p̂ are zero, while their

�uctuations are subject to the Heisenberg uncertainty of Eq.2.10, therefore

〈x̂〉0 = 〈p̂〉0 = 0 ,

(∆x̂2)0 = (∆p̂2)0 = 1 . (2.28)
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2.3. GAUSSIAN STATES AND OPERATIONS

Indeed, by setting ~ = 2 we �xed the vacuum �uctuations at unity, therefore

normalizing them at the Shot Noise level. As a consequence, the covariance matrix

of the single-mode vacuum state is simply the 2-dimensional identity matrix, σ̂0 =

I, expressing the idea that the vacuum state is a minimum uncertainty state.

Finally, the Wigner function is easily calculated as in Eq.(2.23) with δ = 0:

W [ρ̂0](x, p) =
1

2π
Exp

[
−x

2 + p2

2

]
. (2.29)

Another fundamental single mode state of the quantized optical �eld is the thermal

state, which is the state of the �eld emitted by an ideal black body at temperature

T . Its density matrix reads

ρ̂th =
∞∑
n=0

νn|n〉〈n| , νn =
nth

n

(nth +1)n+1
, (2.30)

where nth is the mean energy of the state, which is related to the black body

temperature T according to nth = (Exp
[

~ω
kBT

]
− 1)−1, whith ω being the frequency

of the radiation mode, and kB the Boltzmann's constant. The mean state energy

and its �uctuations are once again calculated using the trace rule:

〈n̂〉ρ̂th = Tr [n̂ ρ̂th] = nth ,

(∆n̂2)ρ̂th = Tr
[
n̂2 ρ̂th

]
− Tr [n̂ ρ̂0]

2 = nth + nth
2 . (2.31)

Just like a vacuum state, the thermal state in the phase space representation is

centered on the origin of the position and momentum axes, but the �uctuations of

the quadratures are not minimum anymore:

〈x̂〉ρ̂th = 〈p̂〉ρ̂th = 0 ,

(∆x̂2)ρ̂th = (∆p̂2)ρ̂th = 2 nth +1 , (2.32)

in fact thermalization can be regarded as an homogeneous expansion of the phase

space by a factor 2 nth +1. As a consequence, the covariance matrix of a thermal

state is simply the covariance matrix of the vacuum rescaled by the thermal vari-

ance, σ̂th = (2 nth +1) I. Finally, from the covariance matrix we can calculate the

Wigner function,

W [ρ̂th](x, p) =
1

2(2 nth +1)π
Exp

[
− x2 + p2

2(2 nth +1)

]
. (2.33)

The vacuum and the thermal states are the fundamental Gaussian states of the

optical �eld. By applying Gaussian unitaries imposed by the Eq.(2.25) Hamilto-

nian to such states we can build the whole class of Gaussian states.
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2.3. GAUSSIAN STATES AND OPERATIONS

Let's now study in detail the Gaussian unitaries de�ned by each component of the

Hamiltonian in Eq.(2.25) and the states that derive from them.

The �rst component of the Hamiltonian in Eq.(2.25), H ∝ g(1)â† + h.c., is lin-

ear in the �eld modes and it generates the unitary displacement operator, which

can be obtained from the Weyl displacement operator of Eq.(2.13) by setting ξ =

(Re [α] , Im [α]), with α ∈ C being the displacement's complex amplitude:

D̂(α) = Exp
[
αâ† − α∗â

]
. (2.34)

Such operator can be used to de�ne the important family of coherent states [17]

by displacing the vacuum state as in D̂(α)|0〉 = |α〉. Equivalently, coherent states
can be de�ned as the eigenstates of the annihilation operator, â|α〉 = α|α〉. The
displacement operator applied to the �eld modes gives the mode evolution

D̂(α)âD̂†(α) = â− α ,
D̂(α)â†D̂†(α) = â† − α∗ . (2.35)

The expansion in the number basis of a coherent states is given by

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 , (2.36)

and it can be used to easily compute the mean energy of the state and its �uctu-

ations:

〈n̂〉ρ̂α = Tr [n̂|α〉〈α|] = |α|2 ,
(∆n̂2)ρ̂α = Tr

[
n̂2|α〉〈α|

]
− Tr [n̂|α〉〈α|]2 = |α|2 , (2.37)

from which becomes apparent the Poissonian character of the photon number dis-

tribution. Coherent states are often called classical states due to their properties

which are similar to the ones of a classical harmonic oscillator. Indeed, since their

noise pro�le does not depend on their energy, a coherent state with a large ampli-

tude is a good approximation of a classical state, in which the noise is negligible

with respect to the amplitude. Since the Hamiltonian that generates the displace-

ment transformation is linear in the �eld modes it only a�ects the �rst moments of

the state, hence the corresponding symplectic form of D̂(α) is the identity matrix

D̂Γ
α = I2. As a consequence, coherent states preserve the minimum uncertainty

properties of the vacuum and are described by the same covariance matrix, the

2-dimensional identity matrix, while the mean values of the quadrature opera-

tors are related to the displacement amplitude as 〈x̂〉ρ̂α = α + α∗ = 2Re [α] and
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2.3. GAUSSIAN STATES AND OPERATIONS

〈p̂〉ρ̂α = i(α∗ − α) = 2Im [α]. Overall, such properties indicate that the Wigner

function of a coherent state is the Wigner function of a vacuum state displaced

by the complex value α, which can be obtained from Eq.(2.23) by setting the

displacement vector to δ = (〈x̂〉ρ̂α , 〈p̂〉ρ̂α)T:

W [ρ̂α](x, p) =
1

2π
Exp

[
−

(x− 〈x̂〉ρ̂α)2 + (p− 〈p̂〉ρ̂α)2

2

]
. (2.38)

A remarkable property of coherent states is that they constitute an overcom-

plete basis of the Hilbert space, i.e. they are a complete basis of non-orthogonal

states:

1

π

∫
C
|α〉〈α|d2α = 1 ,

〈α|β〉 = e−
1
2

(|α|2+|β|2−2α∗β) , (2.39)

therefore they can be used to expand density operators on the Hilbert space:

ρ̂ =

∫
C
P (α)|α〉〈α|d2α (2.40)

where P (α) is the Glauber-Sudarsahan P-function, obtained from Eq.(2.15) with

s = +1.

The second component of the Hamiltonian of Eq.(2.25), H ∝ g(2)â†b̂ + h.c., de-

scribes a free evolution of the modes when the mode operators â and b̂ refer both to

the same mode, i.e. , H ∝ g(2)â†â+ h.c.. Such Hamiltonian generates the unitary

phase-shift operator:

Û(φ) = Exp
[
−ıφâ†â

]
(2.41)

where φ is the phase parameter. The corresponding symplectic transformation in

the real basis is given by

ÛΓ
φ =

(
cos(φ) sin(φ)

− sin(φ) cos(φ)

)
. (2.42)

A more detailed description of the phase operator will be given in Sec.3.1.

Finally, the third component of the Eq.(2.25) Hamiltonian, H ∝ g(3)(â†)2 + h.c.,

represents the bilinear evolution of a single-mode �eld, corresponding to the dy-

namics of a degenerate parametric ampli�er, which is an active optical transforma-

tion. Such Hamiltonian generates the unitary single-mode squeezing operator

Ŝ(z) = Exp

[
1

2
(z∗(â)2 − z(â†)2)

]
, z = re2ıψ (2.43)
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2.3. GAUSSIAN STATES AND OPERATIONS

where r is the squeezing strength and ψ the squeezing phase. Applying the squeez-

ing operator to a vacuum state results in the squeezed vacuum state, which can be

expressed in the number basis as the superposition of even number states

Ŝ(z)|0〉 = |0, z〉 =
1√

cosh(r)

∞∑
n=0

√
(2n)!

n!

(
e2ıψ sinh(r)

2 cosh(r)

)n
|2n〉 . (2.44)

Squeezed states were introduced theoretically by Stoler in 1970 [18] as states in

which one of the quadratures presents sub-vacuum noise and the conjugate quadra-

ture has super-vacuum noise, the overall state being a minimum uncertainty state.

The mode evolution corresponding to the squeezing operator in Eq.(2.43) is given

by

Ŝ(z)âŜ†(z) = cosh(r)â+ e2ıψ sinh(r)â† ,

Ŝ(z)â†Ŝ†(z) = cosh(r)â† + e−2ıψ sinh(r)â , (2.45)

which can be used, together with the cyclic property of the trace, to calculate

squeezed vacuum energy and its �uctuations as

〈n̂〉ρ̂z = Tr
[
n̂Ŝ(z)|0〉〈0|Ŝ†(z)

]
= sinh2(r) ,

(∆n̂2)ρ̂z = Tr
[
n̂2Ŝ(z)|0〉〈0|Ŝ†(z)

]
− Tr

[
n̂Ŝ(z)|0〉〈0|Ŝ†(z)

]2

= (2.46)

= 2 cosh2(r) sinh2(r) ,

indicating a nonzero mean number of photons and a sub-Poissonian statistics. The

symplectic form of the squeezing operator reads

ŜΓ
z =

(
cosh(r)− cos(2ψ) sinh(r) sin(2ψ) sinh(r)

sin(2ψ) sinh(r) cosh(r) + cos(2ψ) sinh(r)

)
, (2.47)

and it can be used to calculate the squeezed vacuum covariance matrix using

the symplectic transformation in Eq.(2.26). Two cases are especially important,

namely amplitude-squeezing, for which the squeezed vacuum covariance matrix

reads (σ̂z)|ψ=0 = Diag [e−2r, e2r], and phase-squeezing, for which (σ̂z)|ψ=π/2 =

Diag [e2r, e−2r]. It is easy to see from both these cases that the product of the

quadrature variances are equal to the vacuum noise, which is the unity in natural

units, therefore saturating the Heisenberg uncertainty and thus classifying them-

selves as minimum uncertainty states. Using Eq.(2.23) makes possible to express

the Wigner function for an amplitude squeezed vacuum state as

W [ρ̂z](x, p) =
1

2π
Exp

[
−1

2

(
e−2rp2 + e2rx2

)]
, (2.48)
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2.3. GAUSSIAN STATES AND OPERATIONS

while for a phase squeezed state the exponential factors for x2 and p2 are swapped.

Fig.2.1 illustrates the density matrices and Wigner functions of the four above

mentioned Gaussian states.

2.3.2 Two-mode states and operations

One of the most essential passive linear optical element is the beam splitter (BS),

which is in general composed of glass prisms separated by a dielectric medium that

re�ects part of the incoming radiation and transmits the rest. The beam splitter

interaction is based on the linear mixing of two input optical modes, described by

the second component of the Eq.(2.25) Hamiltonian when we consider two modes

of the radiation, H ∝ g(2)â†b̂ + h.c.. It follows that in the quantum description

a beam splitter always has two input and two output modes. The unitary oper-

ator that de�nes the beam-splitter interaction of modes â and b̂ is given by (cfr.

Fig.2.2)

B̂κ = Exp
[
κâ†b̂− κ∗âb̂†

]
, κ = φeıθ ∈ C , (2.49)

where the coupling κ depends in general on the interaction time and the linear

susceptibility of the medium. It is quite informative to derive the evolution of the

two input modes, which can be obtained from the unitary operator of Eq.(2.49)

through the Baker-Campbell-Hausdor� formula [19] as(
â′

b̂′

)
= B̂κ

(
â

b̂

)
B̂†κ = B̂Hκ

(
â

b̂

)
B̂Hκ =

( √
τ eıθ

√
1− τ

−e−ıθ
√

1− τ
√
τ

)
, (2.50)

where B̂Hκ is the matrix that de�nes the transformation of the modes, and τ =

cos2(φ) is the transmittivity of the beam-splitter. In most applications one has

either θ = π/2 and τ = 1/2, which corresponds to a balanced beam splitter

where the re�ected beam has an additional π/2 phase. In the following we will

take θ = π/2 but we will keep the splitting ratio unde�ned, since non-balanced

beam splitters are extremely useful to model optical attenuation and in various

experimental applications.

The symplectic operation associated to a π/2 phase beam splitter reads:

B̂Γ
κ =


√
τ 0 0 −

√
1− τ

0
√
τ

√
1− τ 0

0 −
√

1− τ
√
τ 0√

1− τ 0 0
√
τ

 . (2.51)
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2.3. GAUSSIAN STATES AND OPERATIONS

Figure 2.1: Fundamental CV Gaussian quantum states. Density matrices (left column)

and Wigner functions (right column) of a vacuum state (top), thermal state (middle top) with

nth = 1, coherent state (middle bottom) with α = 1 + ı/2 and single-mode amplitude-squeezed

state (bottom) with r = 1 and ψ = 0. The density matrices elements are displayed in a truncated

�nite-dimensional Hilbert space in the number (Fock) basis. The Wigner functions are plotted in

the phase space, with the contour displayed underneath and the x and p marginal distributions

on the side faces.
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2.3. GAUSSIAN STATES AND OPERATIONS

Figure 2.2: Beam splitter. The quantum description of a beam splitter requires two input

modes â, b̂ and two output modes â′, b̂′.

Beam splitters may be polarization-dependent, in which case are called polarizing

beam splitters (PBS). Such devices transmit or re�ect the input modes depending

on their polarization state, therefore their description requires a four-mode formal-

ism, which takes into account the superposed vertical and horizontal polarization

modes in each of the spatial input modes. Since it depends on the ratio between

the amplitude of the vertical and horizontal polarization modes in the input modes,

a PBS's transmittivity can be tuned by a preceding wave-plate. In the same way,

half-wave plates (HWP) and quarter-wave plates (QWP) can be modeled in the

same way a PBS is modeled, but with only one spatial input mode. In particular,

a HWP is a PBS in which one input port is for the horizontal and the other (spa-

tially superposed) is for the vertical polarization, with the transmittivity being

set by the angle between the fast and the slow axis. A QWP is a HWP with an

additional phase di�erence between the two polarization modes.

Finally, we introduce a last two-mode transformation which is used to generate CV

entangled states, namely the two-mode squeezing transformation. Such operation

involves bilinear mixing of modes and it is generated by the third component of the

Eq.(2.25) Hamiltonian, H ∝ g(3)â†b̂† + h.c., corresponding to nondegenerate para-

metric ampli�er dynamics. The evolution operator for the two-mode squeezing

interaction reads

Ŝ2(z) = Exp
[
zâ†b̂† − z∗âb̂

]
, z = re2ıψ , (2.52)

Adriano A. Berni 18

rabda
Highlight

rabda
Highlight

rabda
Highlight



2.3. GAUSSIAN STATES AND OPERATIONS

where r and ψ bear the same meaning as in the single-mode squeezing case,

Eq.(2.43). When two-mode squeezing is applied to a two-mode vacuum state

|0〉|0〉 the resulting state is commonly known as two-mode squeezed vacuum, or

equivalently twin-beam state (TWB), which can be expressed in the two-mode

number basis as

Ŝ2(z)|0〉|0〉 =
1√

cosh(r)

∞∑
n=0

(
e2ıψ sinh(r)

cosh(r)

)n
|n〉|n〉 . (2.53)

Being two-mode squeezing an active operation, the photon number in the compos-
ite state is not conserved. Yet, it is possible to show that the TWB is an eigenstate
of the photon number di�erence in the tho modes, which is in turn a constant of
motion: 〈â†â− b̂†b̂〉ρ̂2z

= 〈â†â− b̂†b̂〉ρ̂0
, with ρ̂2z = Ŝ2(z) ρ̂0 Ŝ

†
2(z).

The entanglement properties of the TWB are easily deduced from its covariance
matrix. The symplectic form associated with the unitary operator of Eq.(2.52)
reads

ŜΓ
2,z =


cosh(r) 0 − cos(2ψ) sinh(r) sin(2ψ) sinh(r)

0 cosh(r) sin(2ψ) sinh(r) cos(2ψ) sinh(r)

− cos(2ψ) sinh(r) sin(2ψ) sinh(r) cosh(r) 0

sin(2ψ) sinh(r) cos(2ψ) sinh(r) 0 cosh(r)

 . (2.54)

By applying it to a vacuum covariance matrix as in Eq.(2.26) we obtain the two-

mode squeezed vacuum covariance matrix

σ̂2,z =


cosh(2r) 0 − sinh(2r) 0

0 cosh(2r) 0 sinh(2r)

− sinh(2r) 0 cosh(2r) 0

0 sinh(2r) 0 cosh(2r)

 . (2.55)

The presence of o�-diagonal elements suggests the presence of quantum correla-

tions between the two modes. A common property of entangled states is that even

though they are overall pure, their subsystems are mixed states when considered

separately. Indeed, if one computes the density matrix of the TWB and traces out

one of the two modes, the resulting state will be a thermal state with mean photon

number sinh2(r). This is due to the fact that rather than reducing/amplifying the

variance of each quadrature in each of the modes, the two-mode squeezer produces

a state in which the variance ampli�cation/reduction is applied to the quadrature

combinations x̂a ± x̂b and p̂a ± p̂b, where the pedices indicate the mode. More

speci�cally,

Var [x̂b ∓ x̂b] = Var [p̂b ± p̂b] = e∓2r . (2.56)

An operational interpretation of the two-mode squeezing operation can be obtained

[20] by considering a balanced beam splitter, described by the evolution operator in
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2.4. GENERALIZED MEASUREMENTS

Eq.(2.49) with κ = ıπ/4. Applying such transformation to the two-mode squeezed

operator leads to

B̂ıπ/4Ŝ
Γ
2 (z)B̂†ıπ/4 = Ŝ(

ıπ

2
z)⊗ Ŝ(− ıπ

2
z) , (2.57)

where the Ŝ(z) are single-mode squeezing operators acting on the output modes

of the beam splitter. What Eq.(2.57) implies is that a two-mode squeezed state

entering a balanced beam splitter is transformed in a factorized state of two single-

mode squeezed vacuum states with opposite squeezing phase, and viceversa, two

squeezed vacuum states with opposite squeezing phases can be mixed in a bal-

anced beam splitter to produce a TWB entangled state. Indeed, such operation is

commonly used to produce CV entanglement, as in [21] and [22].

2.4 Generalized measurements

In order to gain information about a quantum state ρ̂, one has to measure some

physical quantity that describes it. The most basic quantum mechanical mea-

surement approach is the so-called projective measurement (also known as Von

Neumann measurement), in which the physical quantity of interest is described by

an observable Ô, which is a Hermitian operator on the Hilbert space of the system

under study. The spectral decomposition of Ô reads

Ô =
∑
n

λnP̂n , (2.58)

where P̂n = |λn〉〈λn| is the projector on the eigenspace associated with the eigen-

value λn, which in turn represent the n-th possible outcome of the measurement.

The conditions a family of operators {P̂n} must satisfy to be de�ned as a projector

family are

P̂nP̂m = δnmP̂n ,∑
n

P̂n = I , (2.59)

P̂ †n = P̂n .

Such a family constitutes a projector valued measure (PVM), which maps the state

ρ̂ into the post-measurement state

ρ̂n =
P̂n ρ̂ P̂n

Tr
[
P̂n ρ̂ P̂n

] , (2.60)
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2.4. GENERALIZED MEASUREMENTS

associated to the outcome λn with probability given by the Born rule

P (λn) = Tr
[
P̂n ρ̂ P̂n

]
. (2.61)

A more general approach to the problem of measurement consists in expressing the

measurement not as a PVM, but as a Positive Operator Valued Measure (POVM)

[23, 24]. A POVM is a collection of Hilbert space operators {Π̂n} which satisfy

the less restrictive conditions ∑
n

Π̂n = I ,

Π̂n ≥ 0 . (2.62)

A POVM therefore is a map that associates an element of {Π̂n} to every possible

outcome of the measurement, just as in the PVM formalism one associates to each

eigenvalue of an Hermitian operator a projector on the eigenspace. Just like in

the PVM formalism, we can de�ne the probability of obtaining the outcome λn
as

P (λn) = Tr
[
ρ̂ Π̂n

]
. (2.63)

The relationship between PVMs and POVMs becomes clear through Neumark's

theorem [12], which states that a POVM can always be realized by extending the

Hilbert space to a larger space and performing a projective measurement on the

latter. While quantum mechanic postulates are valid as far as the system is iso-

lated, the projectors invoked in such postulates are de�ned on Hilbert spaces bigger

than those of the actual physical system, because they include the measurement

apparatus too. When we trace out the degrees of freedom of the measurement ap-

paratus, thus considering only its preparation, the mathematical object describing

the measurement statistics in therms of the physical state under measurement is

in general a POVM.
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Chapter 3

Quantum metrology

In this chapter we introduce the framework of quantum metrology, which is the

�eld of physics that studies how quantum technologies can be used to improve

the performances of classical metrological tasks [2]. We start by introducing the

problem of the phase operator, which is the reason one has to resort to estima-

tion strategies. We then move to the theory of quantum parameter estimation,

which provides the framework to design parameter estimation experiments which

are inherently optimal. Afterwards, we introduce a proposal for an ab initio, deter-

ministic, real-time adaptive phase estimation protocol based on squeezed probes,

homodyne detection and Bayesian estimation. We show how the optimality of

such protocol is reduced in the case of unavoidable thermal noise in the probe

states, and we derive the expected scaling of the estimation variance. We describe

the experimental implementation of the estimation protocol focusing on both the

experimental apparatus, the procedure and the data processing, concluding with

a survey of the results.

3.1 The quantum phase operator

Since the groundbreaking work of Dirac on quantum electrodynamics [25], the

measurement of a phase shift has been a widely debated subject in quantum me-

chanics. In the quantum world a phase measurement cannot be described properly,

as no proper quantum observable can be associated to the classical one. Indeed,

one might be tempted to just assume the existence of a phase observable φ̂ canoni-

cally conjugate to the number operator n̂. Unfortunately in such case the canonical

23



3.1. THE QUANTUM PHASE OPERATOR

commutation relation [n̂, φ̂] = ı~ would lead to a contradiction when expanded in

the Fock basis, as

〈n′|[n̂, φ̂]|n〉 = ı~δn,n′ ⇒ (n′ − n)〈n′|φ̂|n〉 = ı~δn,n′ , (3.1)

yielding ı~ = 0 when n = n′ [26]. The same line of argument could be applied to

position and momentum operators, but the di�erence here is that while the quadra-

ture operators have a continuous and unbounded spectrum, the phase angle has

a 2π periodicity and the number operator has a discrete and bounded-from-below

spectrum. These properties of the quantum phase and the number operator are

precisely the reason why it's not possible to de�ne an Hermitian phase operator

by simple translation from the classical world to the quantum domain [27, 28].

Since the seminal work of Dirac numerous attempts to rede�ne a phase operator

have been made. Among these, a special place is occupied by the exponential

phase operator proposed by Susskind and Glogower [29], which takes the form

êıφ =
∑∞

n=0 |n〉〈n + 1|. Such operator is not unitary, it doesn't explicitly involve

a phase operator φ̂, and the solution to the eigenvalue problem êıφ|φ〉 = eıφ|φ〉
leads to canonical phase distributions which don't represent a properly de�ned

probability for a phase observable. Nevertheless, such phase distributions can be

measured experimentally [30]. Another noteworthy approach is the one based on

the de�nition of an Hermitian phase operators by Barnett and Pegg, obtained

from Susskind and Glogower's exponential phase operator by extending the Fock

eigenbasis to negative, unphysical number states [31].

If it was possible to perform a canonical phase measurement, its sensitivity would

only be limited by the intrinsic quantum uncertainty of the phase [32], which is

non-zero for any quantum state of �nite energy. Given the absence of such a mea-

surement, the most commonly adopted strategy for extracting phase information

from a physical process is to consider the quantum phase an evolution parameter,

thereby separating the measurement operators from the estimator function, and

use the results provided by quantum estimation theory (QET, cfr. Sec.3.3) to de-

vise a proper estimation scheme depending on the probe states and the detection

strategy. This approach automatically adds another layer of uncertainty to the

intrinsic phase undeterminacy of the probe states, due to the �nite sensitivity of

the detection apparatus. Eventually, one last layer of uncertainty is introduced in

a realistic phase estimation strategy, in which the probe states and the detection

apparatus are subject to various noise sources.
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3.2. ESTIMATING THE QUANTUM PHASE

3.2 Estimating the quantum phase

The value of a phase shift is a relative quantity, i.e. it depends on a reference

phase. Depending on the range of variation of the phase with respect to the

reference two di�erent scenarios can be identi�ed: phase sensing and ab initio

phase estimation. Both problems are naturally associated with interferometric

devices. An interferometer accumulates a phase di�erence between its arms which

is related to one or more physical parameters of interest. At the classical level,

such accumulated phase can be deduced from the intensity fringes at the output

of the interferometer. The precision of such deduction is in general dependent

on the visibility of the interference fringes (i.e. contrast), which in turn depends

on the coherence properties and the matching (i.e. overlap) of the interfering

light modes, but from a purely classical point of view the light intensity can be

measured with arbitrary precision, therefore no fundamental uncertainty on the

phase estimate can be derived. To deduce fundamental limitations on the precision

of phase estimation one has to consider a semi-classical approach, in which the

detection process is quantized and the absorption of the individual photons in the

detector is described as a stochastic process depending on the noise properties

of detected photons. As showed in Eq.(2.37) coherent states follow a Poissonian

statistic, therefore they provide a phase uncertainty ∆φ ∝ ∆N/〈N〉 = 1/
√
N , or

equivalently an estimation variance

Var [φ] ∝ 1

N
, (3.2)

where N is the number of resources used in the estimation, or more generally the

number of interactions between the probe and the system to be measured. Such

scaling is known as the standard quantum limit (SQL) or shot noise limit (SN),

and it is the same scaling that one obtains when averaging the results of N inde-

pendent measurements as a consequence of the central limit theorem. Indeed, the

two scalings are deeply connected since they are both the result of classical statis-

tical correlations between the N resources. The SQL is also known as a classical

limit, i.e. , the minimum uncertainty scaling that is achievable using only classical

resources.

Such limit can be achieved in phase sensing applications by performing an inten-

sity measurement on coherent states locked mid-fringe (i.e. where the intensity

curve is steepest), since that corresponds to measuring on the high sensitivity re-

gion. If the expected phase shift is small the resulting estimation sensitivity will

be limited by the standard quantum limit. In order to beat such scaling one might
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3.2. ESTIMATING THE QUANTUM PHASE

consider using probe states characterized by Sub-Poissonian statistics, as is the

case of single-mode squeezed states, as we showed in Eq.(2.46). As initially pro-

posed by Caves [33], when single-mode squeezed vacuum states are used at one of

the input port of a Mach-Zehnder interferometer in juction with coherent states

on the other input port, one might beat the SQL and achieve a sub-SQL scaling of

the order ∆φ ∝ 1/N2/3. This kind of strategy is used, for instance, in the LIGO

gravitational wave detector [34, 35]. Scalings of the order ∆φ ∝ 1/N3/4 [36], or

even ∆φ ∝ 1/N [37] (the so-called Heisenberg limit, HL) are also possible using

the same probe states but optimizing the measurement strategy and the chosen

estimator. Another common approach for sub-SQL sensitivity in phase sensing

calls for the use of entangled states [38, 39], ranging from the exotic NOON states

[40, 41] which may allow Heisenberg scaling, to two-mode squeezed states [42].

The achievability of the above mentioned scalings however is often conditioned on

the detection scheme and to the actual value of the parameter to be estimated.

Ab initio phase estimation can be considered as a general problem of which phase

sensing is a special case. Indeed, if no assumptions can be made on the deviation

of the phase from the reference, measuring with optimal sensitivity is not possi-

ble. Dyne techniques are historically considered the standard strategies in this

case [11]. Dyne techniques are based on either double-quadrature (heterodyne)

or single-quadrature (homodyne) measurement. In particular heterodyning [43]

occupies a special place in phase detection and the so called heterodyne limit has

been traditionally considered the standard benchmark for ab initio phase estima-

tion. However, while heterodyne sensitivity does not depend on the value of the

phase [44], thus not requiring a priori knowledge of the magnitude of the phase

shift, it does su�er from the additional noise introduced by the joint measurement

of the conjugate quadratures [45]. On the other hand, homodyning is known for

its ability to approach the standard quantum limit for pure states [46] when used

in an adaptive fashion. As a matter of fact, a feedback strategy is conceptually

required when using homodyne detection, since its sensitivity depends on the ac-

tual value of the phase [47, 48, 49, 50].

As we will see in Sec.3.3, quantum estimation theory provides the means to calcu-

late quantitative ultimate bounds on the precision of phase estimation which are

completely general and only depend on the probing resource, while no assumptions

are required on the detection strategy or the required estimator.

Adriano A. Berni 26

rabda
Highlight

rabda
Highlight

rabda
Highlight

rabda
Highlight



3.3. QUANTUM ESTIMATION THEORY

Figure 3.1: Schematic representation of an estimation procedure. Top: generic parameter

estimation procedure. Bottom: application to a interferometric strategy for the estimation of a

phase shift.

3.3 Quantum estimation theory

Some times direct measurement of a physical quantity is not possible, either be-

cause of experimental issues or because of theoretical restrictions, as is the case

with the amplitude of an electromagnetic �eld or with the quantum phase. Let's

suppose, for instance, that we need to know the value ϑ of a quantity that describes

a physical system or a dynamical process S, but we have no means of measuring

it directly. In such case we shall �nd another quantity, this time accessible for

direct measurement, that depends on the value of our parameter of interest, let's

say X(ϑ). This allows us to estimate the value ϑ from measurement of X. Any

estimation process can be divided in four distinct stages (see Fig.3.1): a probe

is prepared in a known state ρ̂0; the probe evolves into ρ̂ϑ through interaction

with the system S; the quantity X(ϑ) is measured on the evolved probe, yielding

the outcome xϑ; the value of the parameter ϑ is inferred through an estimator

Θ̂[{xϑ}]. In general such process is a�icted by statistical or systematic errors, and

the common strategy to reduce the former is to repeat the measurement on a large

number M of independent probe states. An estimator is de�ned as a mapping

Θ̂ = Θ̂[{xϑ}M] from the space of measurement outcomes into the space of parame-

ters (possible values of ϑ). An estimator is called unbiased if its expectation values
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3.3. QUANTUM ESTIMATION THEORY

satis�es

Eϑ[Θ̂] =

∫
Θ̂(x)P (x|ϑ)dx = ϑ , (3.3)

where P (x|ϑ) is the conditional probability of �nding the outcome x when the value

of the parameter is ϑ. An example of unbiased estimator is the mean value of a

distribution, while the mode of a distribution is an example of a biased estimator.

An important result of classical estimation theory [51] is the so-called Cramér-Rao

inequality (CCR), which poses a lower bound on the variance of any unbiased

estimator as

Var
[
Θ̂
]
≥ 1

MF (ϑ)
, (3.4)

where F (ϑ) is the Fisher Information (FI), de�ned as

F (ϑ) =

∫
P (x|ϑ)

(
∂log [P (x|ϑ)]

∂ϑ

)2

. (3.5)

The fact that the FI depends on the value of the parameter itself can be under-

stood in terms of the signal-to-noise ratio (SNR), in that a FI not dependent on

ϑ would require a detection strategy in which the signal to noise ratio is constant.

In order to obtain a quantum version of the Cramér-Rao bound and of the Fisher

information, let us consider a family of quantum states ρ̂ϑ labeled by a parameter

ϑ we need to estimate. From the postulates of quantum mechanics we know that

the Born rule holds, P (x|ϑ) = Tr
[
ρ̂ϑ Π̂x

]
, where Π̂x are the elements of a general

POVM describing the measurement of ρ̂ϑ. We introduce the Symmetric Logarith-

mic Derivative (SLD), a noncommutative self-adjoint operator de�ned by

1

2

(
Λ̂ϑ ρ̂ϑ + ρ̂ϑ Λ̂ϑ

)
= ∂ϑ ρ̂ϑ . (3.6)

Using the SLD and the Born rule we can rewrite the FI in Eq.(3.5) as

F (ϑ) =

∫ Re
[
Tr
[
ρ̂ϑ Π̂xΛ̂ϑ

]]2

Tr
[
ρ̂ϑ Π̂x

] dx . (3.7)

It can be shown [52] that the following chain of inequalities holds:

F (ϑ) ≤
∫ ∣∣∣∣∣∣∣∣

Tr
[
ρ̂ϑ Π̂xΛ̂ϑ

]
√
Tr
[
ρ̂ϑ Π̂x

]
∣∣∣∣∣∣∣∣
2

dx ≤
∫

Tr
[
Π̂xΛ̂ϑ ρ̂ϑ Λ̂ϑ

]
dx = (3.8)

= Tr
[
ρ̂ϑ Λ̂2

ϑ

]
= H(ϑ) , (3.9)
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USING REAL-TIME FEEDBACK

resulting in a bound for the Fisher information of any quantum measurement,

de�ned by the quantum Fisher information (QFI)

H(ϑ) = Tr
[
ρ̂ϑ Λ̂2

ϑ

]
. (3.10)

A comparison of the de�nition of the QFI with the FI suggests the important

di�erence between the two quantities: while the latter quanti�es the amount of

information on ϑ that one can extract from the state ρ̂ϑ by means of a certain

POVM, the former represents the overall amount of information on ϑ carried by

ρ̂ϑ, regardless of the measurement strategy we adopt to extract such informa-

tion. The QFI allows to derive a stricter bound on the variance of an unbiased

estimator,

Var
[
Θ̂
]
≥ 1

MH(ϑ)
, (3.11)

known as the quantum Cramér-Rao bound (QCR), which provides the ultimate

limit imposed by quantum mechanics on the variance of any unbiased estimator.

It's worth noting that the QCR holds for all possible POVMs and it only depends

on the measured quantum state, i.e. on the geometrical structure of the quantum

statistical model of the physical system under study. Moreover, in the asymptotic

limit of a large number of independent probe states M � 1, the QCR bound is

always achievable by means of local measurements and adaptive estimators, which

means LOCC strategies are enough and one doesn't need entanglement at the

measurement stage [53].

We will deal with the application of the Cramér-Rao bounds and the Fisher

information formalism to the speci�c case of phase estimation in Sec.3.4.1 and

Sec.3.4.2.

3.4 Deterministic squeezing-enhanced phase esti-

mation using real-time feedback

In this section we present our experimental investigation of an adaptive phase es-

timation protocol which delivers a real-time, ab initio, deterministic estimation of

a phase shift under the realistic assumption of thermalization of the probe states.

The protocol we refer to [46, 54] uses squeezed vacuum probes and adaptive ho-

modyne detection with Bayesian inference to estimate an unknown phase in the

[0, π/2) range. A proposal to extend the available estimation range to [0, π) will be

given with the concluding remarks. The estimation scheme is tailored to saturate
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USING REAL-TIME FEEDBACK

the Cramér-Rao and the quantum Cramér-Rao bounds, therefore the achievable

estimation variance is fully and quantitatively determined.

3.4.1 Pure state scenario

As explained in Sec.3.3, any estimation scheme revolves around four main stages:

the preparation of a probe state, its interaction with the system, the measure-

ment, and �nally the estimation. As we will show in the following, each one of

these stages can be optimized in order to saturate the Cramér-Rao bounds, apart

from the interaction stage, which is somewhat �xed once we choose an measuring

device. We start by following the line of argument found in references [46, 54],

where the authors devise a phase estimation scheme that uses pure squeezed states,

homodyne detection and Bayesian inference to achieve the quantum Cramér-Rao

limit. Afterwards, we will drop the assumption of purity of the probe states to

consider a realistic implementation where we assume unavoidable thermalization

of the probe states.

We start by reprising the Cramér-Rao chain of inequalities, Eq.(3.4) and Eq.(3.11),

which we will update as we proceed with the optimization procedure

Var
[
φ̂
] CCR
≥ 1

MF (φ)

QCR

≥ 1

MH
. (3.12)

As a �rst step, we restrict our search for the optimal probe state in the class

of Gaussian states. As we brie�y mentioned in Sec.2.3, Gaussian states are a

favourite class in quantum optical applications due to their simple generation and

handling, their relative robustness against noise and their simple mathematical

description. The squeezing angle doesn't play much of a role in the following,

since it can always be changed by applying another unitary phase transformation.

To keep the treatment simple, in the following we will consider amplitude-squeezed

states, therefore setting ψ = 0. The most general pure Gaussian state is a displaced

squeezed state, described by the density matrix ρ̂α,z = D̂(α)Ŝ(z)|0〉〈0|Ŝ(z)†D̂(α)†,

where D̂(α) is the displacement operator from Eq.(2.34) and Ŝ(z) is the squeezing

operator, Eq.(2.43). For a pure state evolving under a unitary transformation in a

closed system, the quantum Fisher information can be explicitly calculated as [55]

(cfr. Appendix A)

Hpure = 4∆Ĝ2 , (3.13)
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where G is the generator of the unitary transformation and ∆G2 = 〈G2〉 − 〈G〉2
its �uctuations. In the speci�c case of a displaced, squeezed state undergoing a

unitary phase shift described by the generator G = n̂ we obtain

Hα,z = 4
(
|α|2(µ2 + |ν|2) + α2µν∗ + α∗2µν + 2µ2|ν|2

)
, (3.14)

where µ = cosh(r) and ν = e2ıψ sinh(r). The probe state that can carry the most

phase information is the one with maximum QFI, for which the quantum Cramér-

Rao bound is minimized. The QFI could be maximized by just increasing the

displacement or the squeezing parameter at will, but the most e�cient approach

here is to use a Lagrange multipliers technique to maximixe the QFI for varying

displacement and squeezing strength with the constraint of constant probe state

energy, which in the case of a displaced, squeezed state is 〈n̂〉α,z = |α|2 + sinh2(r).

In this way we �nd which resource gives the highest probe energy to �uctuations

ratio, �nding that the optimal probe state is a squeezed vacuum for which the QFI

reads

H0,z = 2 sinh2(2r) = 8〈n〉0,z + 8〈n〉20,z , (3.15)

where 〈n〉0,z = sinh2(r) is the mean number of squeezed photons in a squeezed

vacuum state, as in Eq.(2.46). The Cramér-Rao inequalities of Eq.(3.12) now

read

Var
[
φ̂
] CCR
≥ 1

MF (φ)

QCR

≥ 1

MH0,z

. (3.16)

As a second step in the optimization we may choose a detection strategy. Among

all detection schemes aiming at phase estimation, homodyne detection has been

shown to achieve the Cramér-Rao bound using coherent states [56] and to achieve

the quantum Cramér-Rao bound using squeezed vacuum probes [46]. Homodyn-

ing on a certain quadrature in phase space yields samples distributed according to

the state's Wigner function marginal distribution along the same direction. In the

case of a pure, phase shifted amplitude-squeezed state, the homodyne probability

distribution for the x quadrature can be calculated by integrating the Wigner func-

tion along the p direction. The Wigner function can be calculated from Eq.(2.23)

using the covariance matrix of a general phase shifted amplitude-squeezed vacuum

state

W [ρ̂0,z](x, p) =
1

2π
e

1
2 [−(x2+p2) cosh(2r)+((p2−x2) cos(2φ)+2px sin(2φ)) sinh(2r)] , (3.17)
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where φ is the applied phase shift. The probability distribution for homodyning

along the x direction on such state is therefore

P (x|φ) =

∫
R
W
[
ρ̂0,z

]
(x, p)dp =

=
1

2π
Exp

[
−1

2
(cos(2φ) sinh(2r) + cosh(2r))x2

]
·

·
∫
R
Exp

[
1

2
(cos(2φ) sinh(2r)− cosh(2r))p2 + px sin(2φ) sinh(2r)

]
dp =

=
1√

2πσ0,z
Exp

[
− x2

2σ0,z

]
, (3.18)

where σ0,z =
(
e−2r cos2(φ) + e2r sin2(φ)

)
is the �rst diagonal element of the state's

covariance matrix. It is noteworthy that the marginal distribution for a squeezed

vacuum state have a π periodicity and are symmetric around φ = π/2. As a

consequence, homodyne detection of squeezed vacuum states cannot discriminate

between the four quadrants in phase space. For this reason we have to restrict the

range of input phases in the [0, π/2) window.

Calculation of the Fisher information for homodyne detection on squeezed vacuum

probes can be performed explicitly (see Appendix B), yielding the expression

F0,z(φ) =
2 sinh2(2r) sin2(2φ)(

e−2r cos2(φ) + e2r sin2(φ)
)2 . (3.19)

Since the FI represents the amount of phase information we can extract from

our squeezed vacuum probes by means of homodyning, the optimization of the

detection strategy can be accomplished by maximizing the FI. This procedure

leads to two equivalent expressions:

φth

opt
=

1

2
arccos(tanh(2r)) , (3.20)

rth
opt

= −1

2
log [tan(φ)] .

Remarkably, such optimality curves not only de�ne the maximum Fisher informa-

tion, but actually de�ne the values of r and φ that solve the equation F0,z(φ) =

H0,z, therefore saturating the quantum Cramér-Rao inequality (see Fig.3.2). The

fact that we may be able to maximize the homodyning sensitivity upon a speci�c

choice of the squeezing strength (dependent on the value of the phase to be es-

timated) or of the phase to be estimated (dependent on the squeezing strength)

suggest that an adaptive strategy may be implemented. Both approaches would
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require a �rst, rough homodyning in order to either tune the homodyning phase

or the squeezing strength to match the �rst or the second expression in Eq.(3.20),

respectively. As a matter of fact, tuning the squeezing strength in an real-time

fashion might be a challenging task, therefore we will focus on the �rst approach.

The Cramér-Rao inequalities of Eq.(3.16) therefore become

Var
[
φ̂
] CCR
≥ 1

MF0,z(φth
opt

)

QCR
=

1

MH0,z

, (3.21)

where the last inequality is now saturated, provided a successful implementation

of the aforementioned adaptive detection strategy.

We are now left with the task of saturating the �rst Cramér-Rao inequality by

choosing an appropriate estimator. Among the possible choices, the maximum

likelihood and the Bayes estimators occupy a special place due to their asymptotic

properties [24]. In particular, we focus on the Bayes estimator, that has been shown

to asymptotically saturate the Cramér-Rao inequality in Eq.(3.4) [57]. Bayesian

estimation exploits the Bayes theorem to infer the value of a quantity from the

probability that such value is obtained, conditioned to the measured data set

[24]. In the case of interest, in which we want to infer the value of a phase

shift φ given the measured homodyne data, the Bayes theorem can be used to

derive an expression for the posterior probability distribution (PPD) of the phase

φ conditioned to the observed data set {x}M :

P ({x}M|φ)P (φ) = P (φ|{x}M)P ({x}M)→ P (φ|{x}M) =
1

N

M∏
k=1

P (xk|φ) , (3.22)

where the assumption of no a priori information on the value of φ was made, thus

setting P (φ) = 2/π, and N =
∫ π/2

0
P (φ|{x}M)dφ is a normalization factor. Substi-

tution of the conditional probability in the above expression with the homodyne

probability distribution in Eq.(3.18), and the assumption of a large number of

samples, M � 1 [54], lead to the �nal expression (detailed calculation is provided

in Appendix C):

P (φ|{x}M) =
1

N
1

(2πσ0,z(φ))M/2
Exp

[
−Mσ0,z(φ

∗)

2σ0,z(φ)

]
, (3.23)

where σ0,z(φ) is the variance of the x̂ quadrature for a squeezed vacuum state, de-

rived from the application of the phase shift symplectic transformation of Eq.(2.42)

to the amplitude-squeezed vacuum covariance matrix, and φ∗ is the actual, un-

known value of the phase shift. As it is apparent from Fig.3.3, where we simulate
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Figure 3.2: Maximizing the Fisher information. Left: Here we show the FI (blue) and

the QFI (red) surfaces versus the input phase and the squeezing parameter for a pure squeezed

vacuum state. The region in which H0,z = F0,z is highligthed as a red curve which is de�ned

by the optimal values in Eq.(3.20). Right: Here we plot the optimal phase of Eq.(3.20) as

a function of the squeezing parameter (red curve). It is noteworthy that, as the squeezing

parameter decreases, the optimal phase loses signi�cance, an e�ect exempli�ed by the expansion

of the shaded area (which represents H0,z − F0,z ≤ 10−3) to cover the whole phase domain as r

goes to 0.
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Figure 3.3: Posterior probability distributions. Here we show PPDs for di�erent input

phases and di�erent number of homodyne samples. The homodyne samples are simulated by

drawingM samples from a normal distribution centered on 0 (since we are dealing with squeezed

vacuum/thermal probes) and with variance given by the �rst diagonal element of the squeezed

thermal state covariance matrix, Eq.(3.36).

Left: pure probe scenario, with the original squeezing parameter r′ = 1 and no losses, τ = 1

(therefore r = 1 and nth = 0). Right: thermal scenario, with the original state described by a

squeezing parameter r′ = 1 and beam splitter transmissivity τ = 0.8, which imply a probe state

with an e�cient squeezing strength r ' 0.75 and thermalization nth ' 0.041 (see Sec.3.4.2).

In both scenarios we simulate the homodyne samples around three input phases: the optimal

phase φ∗ = φthopt (red), φ
∗ = π/6 (green) and φ∗ = π/3 (blue).

Two e�ects can be noticed: the PPDs obtained with small numbers of samples are fairly asym-

metric, therefore the estimation may be obtained as their mode. As the number of samples

increases, the resulting PPDs become more peaked, with the mode converging to the mean

value, as expected in a Gaussian distribution. As a second e�ect we can notice that as the input

phase goes further away from the optimal phase, the resulting PPDs become less and less peaked,

as expected from the fact that the range of validity of the Gaussian approximation decreases as

the distance between φ∗ and φthopt increases [54]. Thermalization (losses) in the probe state also

contibutes to the decrease of the PPD variances and the validity of the Gaussian approximation.
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posterior probability distributions for di�erent values of M , r and φ∗, for small

values of M the distributions are highly asymmetric, therefore the most e�ective

estimator for φ∗ may be given by the maximum of the PPDs, i.e. their mode.

Nevertheless, as the number of measurement increases, the mode converges to

the mean value, and we can approximate Eq.(3.23) with a Gaussian distribution

centered on φ∗ and with a variance that, remarkably, takes the form [58]

σG =
1

MF0,z(φ∗)
, (3.24)

which is exactly the Cramér-Rao variance of Eq.(3.4). The asymptotic normality

of the PPD [59] therefore guarantees that the Bayes estimator is asymptotically

unbiased and e�cient, therefore saturating the �rst Cramér-Rao inequality.

In conclusion, the choice of squeezed vacuum states ensures that the maximum

phase information is encoded into the probe states (maximum QFI, H0,z), adap-

tive homodyne detection provides the highest homodyning sensitivity (maximum

FI, F0,z(φ
th
opt

)), and Bayesian estimation guarantees a �nal PPD that delivers the

estimation of the true phase φ∗ with Cramér-Rao variance. Overall, the Cramér-

Rao inequalities chain becomes

Var
[
φ̂
]
CCR
=

1

MF0,z(φth
opt

)

QCR
=

1

MH0,z

, (3.25)

where we can see that the ultimate limit on the variance of the estimation is

achieved.

3.4.2 Thermal state scenario

We may now proceed by dropping the assumption of purity of the probe states.

Since most sources of noise in quantum optical experiments can be cast in terms of

linear losses, we can model our mixed squeezed probes as the transmitted output

of a beam splitter of transmissivity τ whose inputs are a squeezed vacuum and a

vacuum state. Such state can be described by the density matrix transformation

ρ̂0,z′ ⊗ ρ̂0 → B̂Hκ ρ̂0,z′ ⊗ ρ̂0 B̂
H†
κ , where the beam splitter transformation was given

in Eq.(2.50). Equivalently, in the symplectic formalism the output modes of the
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beam splitter are described by the covariance matrix:

σ̂τ,z′ = B̂Γ
κ σ̂0,z′ ⊕ σ̂0 B̂

ΓT
κ =

=


τe−2r′+ρ 0 0 −2

√
τρ sinh(r′)e−r

′

0 τe2r
′
+ρ

√
τρ(1−e2r

′
) 0

0
√
τρ(1−e2r

′
) ρe2r

′
+τ 0

−2
√
τρ sinh(r′)e−r

′
0 0 ρe−2r′+τ

 , (3.26)

where τ is the beam splitter's transmissivity, ρ = 1 − τ its re�ectivity and the

symplectic form of the beam splitter transformation was given in Eq.(2.51). We

may now trace out the re�ected mode, obtaining our model covariance matrix for

the lossy squeezed vacuum probe:

σ̂loss,z′ =

(
τe−2r′ + ρ 0

0 τe2r′ + ρ

)
. (3.27)

In turn, such state can be remodeled as a thermal squeezed state de�ned by the

parameters:

nth =

√
τ 2 + 2τρ cosh 2r′ + ρ2 − 1

2

r =
1

4
log

[
e2r′τ + ρ

e−2r′τ + ρ

]
. (3.28)

Therefore we will proceed in the treatment assuming our probe states as phase

shifted thermal squeezed states, described by the density matrix

ρ̂th,z,α =
∑
n

νnÛ(φ)Ŝ(z)|n〉〈n|Ŝ(z)†Û(φ)† (3.29)

or, equivalently by the covariance matrix

σ̂th,z,φ = ÛΓ
φ Ŝ

Γ
z σ̂th(Ŝ

Γ
z )T (ÛΓ

φ )T =

= (2 nth +1)

(
e−2r cos2(φ) + e2r sin2(φ) sin(2φ) sinh(2r)

sin(2φ) sinh(2r) e2r cos2(φ) + e−2r sin2(φ)

)
. (3.30)

Since such state is mixed, we cannot use the result in Eq.(3.13) to obtain an

expression for the quantum Fisher information, which has to be calculated from

the de�nition in Eq.(3.10). The derivation of the QFI (the complete derivation

can be found in Appendix A) yields

Hth,z(r, nth) =
(2 nth +1)2

2 nth(nth +1) + 1
2 sinh2(2r) , (3.31)
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while for the Fisher information (the derivation can be found in Appendix B) we

obtain

Fth,z(φ, r, nth) =
2 sin2(2φ) sinh2(2r)(

e−2r cos2(φ) + e2r sin2(φ)
)2 . (3.32)

Curiously, it appears that Fth,z(φ) = F0,z(φ). This is due to the coupling of r

and nth in the thermal form. It is convenient here to rewrite both expressions

in the beam splitter model form, by replacing r and nth with the expressions in

Eq.(3.28):

Hth,z(r
′, τ) =

e−2r′(e4r′ − 1)2τ 2(2τρ(cosh(r′)− 1)− 1)

2(e2r′ρ+ τ)(e2r′τ + ρ)(τρ(cosh(r′)− 1)− 1)
(3.33)

Fth,z(φ, r
′, τ) =

(e4r′ − 1)2τ 2 sin2(2φ)

2
(
e2r′ρ+ e2r′τ(e−2r′ cos2(φ) + e2r′ sin2(φ))

)2 . (3.34)

As shown in Fig.3.4 and Fig.3.5, in the thermal case the Fisher information is

still maximized by the expressions in Eq.(3.20), but such maximization does not

saturate the quantum Cramér-Rao bound anymore [60]. It's noteworthy that for

increasing transmissivity, that is for decreasing losses, the distance between the

QFI and the FI increases up to a certain point, after which the two become closer

until τ = 1, for which there are no losses and the pure case is recovered, as shown

in the Fig.3.5 (left).

In conclusion, losses in the squeezed vacuum probes cause an unequal variation of

the Fisher and the quantum Fisher information, which prevent the achievement

of their equality and in turn push the quantum Cramér-Rao bound beyond at-

tainability. However, the optimal phase of Eq.(3.20) still maximizes the Fisher

infrormation, therefore the implementation of an adaptive phase estimation pro-

tocol is still possible, but the expected bound on the variance will be suboptimal,

as apparent from the chain of Cramér-Rao inequalities in the thermal case:

Var
[
φ̂
]
CCR
=

1

MFth,z(φth
opt

)

QCR

≥ 1

MHth,z

, (3.35)

which is the ultimate bound on the variance that we expect to achieve in the

experimental testing of the estimation protocol. We de�ne such bound the optimal

Cramér-Rao bound (OCR). A summary of the optimization steps is shown in

Fig.3.6.
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Figure 3.4: Thermal Fisher and quantum Fisher information. FI (blue) and QFI (red)

surfaces in the lossy (thermal) case versus the input phase and the original squeezing parameter,

with the loss modeled by a beam splitter with transmissivity τ = 0.5. In this case the two

surfaces have no contact anymore, i.e. there are no solutions to Hth,z = Fth,z. Highligthed as a

red curve is the optimal phase of Eq.(3.20), which still identi�es the maximum of the FI.
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Figure 3.5: Thermal Fisher and quantum Fisher information. Right: FI (solid curves)

and QFI (dashed lines) versus the input phase for di�erent for di�erent transmissivities of the loss

beam splitter. Each of the curves is calculated from an original squeezed vacuum characterized

by a squeezing parameter r′ = 0.5. After the introduction of losses through the beam splitter, the

resulting squeezed thermal state is de�ned by a new squeezing strength r and a thermalization

nth. Speci�cally: τ = 1, r = 0.5, nth = 0 (pure case, blue); τ = 0.9, r = 0.444, nth = 0.006

(green); τ = 0.6, r = 0.296, nth = 0.015 (red); τ = 0.3, r = 0.157, nth = 0.013 (black). Left:

Di�erence between the QFI and the FI, calculated at the maximum of the Fisher information,

i.e. in Fth,z(φthopt), versus the transmissivity of the beam splitter.
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Figure 3.6: Estimation scheme engineering. Here we show the sequence of optimizations

that, starting from the most general chain of Cramér-Rao inequalities (top), lead through the

choice of a probe state, an estimator, a detection strategy. On the left (blue shade) the pure

probe case, on the right (red shade) the thermal case. In each step is shown the expected variance

bound.
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Figure 3.7: Working principle of the phase estimation protocol. (a): Phase space repre-

sentation. The protocol starts with state preparation (green), in which a known squeezed thermal

state goes through an unknown phase shift φ∗ in the (0, π/2] range. A �rst detection stage (red)

consists of MR homodyne samples which are used to obtain a rough estimation of the phase shift

via Bayesian inference, φR. The rough estimation result is used to compute the matching phase

shift, ∆, which is applied to the local oscillator to change the relative phase to the theoretical

optimal phase φthopt (yellow). A second detection stage follows, in which MF � MR homodyne

samples are collected to obtain the �nal estimation Est [φ∗] (blue). (b): Experimental signals.

The picture shows how the FPGA trigger (black) is tailored on the protocol stages sequence.

The demodulated homodyne AC samples are shown.

3.5 Experimental implementation

In this Section we present the experimental implementation of the adaptive phase

estimation protocol previously introduced. The experiment was carried out at

the Max Plack Institute for gravitational physics, in the Leibnitz University of

Hannover (Germany). We start with a description of the working principle of

the adaptive scheme. Afterwards, we focus on the sources of the squeezed light

and local oscillator. We then present some details of the optical and electronical

experimental setup. Afterwards we explain the implementation of the real-time

feedback strategy. We proceed giving some details on the experimental procedure,

focusing on the calibrations required for an e�ective implementation of the protocol

and on the data processing. We �nally present the results of the experiment and

give some concluding remarks.
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3.5.1 Working principle

The working principle of the adaptive phase estimation scheme is illustrated in

Fig.3.7 and Fig.3.8. It is composed of four steps: state preparation, rough estima-

tion, adaptive feedback and �nal estimation.

During the �rst stage we prepare the input state locking it to an input phase shift

φ∗, to be estimated.

The second stage is the rough estimation, which is necessary to compute the feed-

back signal required to shift the relative phase between the LO and the probe state

towards the theoretical optimal phase, φth
opt
, permitting the �nal estimation to be

performed with enhanced sensitivity. The rough homodyning produces a list ofMR

quadrature data samples, each of which are associated with a marginal probability

distribution, as in Eq.3.37. The resulting MR marginals are used to compute the

rough posterior probability distribution, according to Eq.(3.22). The maximum of

such distribution gives the rough estimate of the input phase, φR = φ∗ + δφR with

an estimation error δφR given by its width.

The estimation is carried out in real-time with a �eld-programmable-gate-array

(FPGA) during the third stage, and the result is used by the FPGA to com-

pute the matching phase shift ∆ = φR − φth
opt
, which is applied to the local os-

cillator using a fast waveguide phase modulator, thereby shifting the phase to

φ∗ −→ φ∗ −∆ = φth
opt
− δφR = φexp

opt
. It is important to observe that the feedback

phase shift ∆ calculation is based on the rough estimation, but is applied on the

actual input phase φ∗, thereby imposing a di�erence between the theoretical opti-

mal phase and the measured one (which we call experimental optimal phase, φexp
opt
).

In the fourth and �nal stage the �nal homodyning is performed, which delivers

MF � MR quadrature data samples to obtain an estimation of the experimental

optimal phase φopt = φexp
opt

+ δφF = φth
opt
− δφR + δφF. Thanks to the larger number

of samples in the �nal homodyning and the enhanced homodyne sensitivity due

to the proximity of the optimal phase, we get δφF � δφR. To obtain the �nal

estimate we shift φopt by an amount ∆: Est [φ∗] = φopt + ∆ = φ∗ + δφF, where φ
∗

constitute the �nal phase estimate with an error δφF.

3.5.2 Probe states generation and control

Our light source was a telecom laser which emitted 1 W at 1550 nm. The output

light was prepared by an impedance-matched triangular ring mode-cleaning cavity

with a �nesse of ∼ 300, which �ltered the TEM00 spatial mode and low-passed

high frequency noise. A digital synthesizer was used to generate the 115 MHz
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Figure 3.8: Working principle of the phase estimation protocol. Example of an instance

of computation of the posterior probability distributions. Each homodyne sample xi collected

during the estimation stages is used to compute a marginal phase distribution P (φ|xi). The

marginal distributions are multiplied according to Eq.(3.38) to obtain the posterior probability

distribution P (φ| {x}
M

) for the rough (left) and the �nal (right) estimation. The input phase

φ∗, rough estimation φR, theoretical optimal phase φthopt and experimental optimal phase φexpopt are

shown. We show the resulting PPDs versus phase for a single application of the protocol.
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Figure 3.9: Squeezing generation setup. We used a PPKTP crystal for degenerate parametric

down-conversion in a linear cavity. The cavity was kept on resonance using a PDH locking scheme.

The generation of amplitude squeezing was ensured by locking the relative phase between the

pump and the control beam. A single sideband locking scheme was used to set the squeezing

phase relative to the local oscillator, for the experiment state preparation. EOM: Electro Optical

Modulator. AOM: Acousto Optical Modulator. FR: Faraday Rotator. SSB: Single Sideband.

PID: servo controller. PD: Resonant Photo Detector. STS: Squeezed Thermal States. DBS:

Dichroic Beam Splitter. BS: 50 50 Beam Splitter.
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local oscillator used to drive an electro optical modulator for PDH locking [61]

of the mode-cleaning cavity on resonance. The signal produced by detecting the

light re�ected o� the mode cleaner's incoupling mirror with a resonant photo

detector was demodulated using the electronic local oscillator, generating an error

signal that a servo controller used to drive a piezo mounted mirror in the mode-

cleaning cavity [62]. The light was then split using wave plates and polarizing

beam splitters to reach di�erent parts of the optical table as a local oscillator for

homodyne detection, as a pump for second harmonic generation, and as a control

beam for the generation of squeezed light.

To generate the pump beam to drive the squeezer we used a second harmonic

generation (SHG) setup, in which a nonlinear periodically poled potassium titanyl

phosphate (PPKTP) crystal was used for parametric up conversion of the 1550

nm light �eld to 775 nm. The PPKTP crystal was 9.3 mm long with a curved

face (radius: 12 mm) coated for high re�ectivity at both the fundamental and the

up-converted wavelengths. The plane face of the crystal was in turn anti-re�ective

coated for both wavelengths. A piezo-mounted curved coupling mirror with 25

mm radius of curvature, 90% re�ective coating for 1550 nm and a small residual

re�ectivity for 775 nm faced the plane side of the crystal, forming, together with

the curved end of the crystal, a linear cavity to enhance the conversion e�ciency

to 85%. Phase matching conditions in the linear cavity were ensured by careful

tuning and stabilization of the crystal's temperature, actuated by a Peltier element.

Again, a PDH scheme was implemented to keep the cavity on resonance. The

output light at 775 nm was then split from the input 1550 nm pump by a dichroic

beam splitter and sent to the squeezer cavity as a pump beam. For a detailed

description of the mode-cleaning and SHG setups, see [63].

Squeezed light was produced by degenerate parametric down-conversion in a linear

cavity similar to the one used for the SHG process, the only di�erences being the

coupling mirror re�ectivity which was 90% for the fundamental harmonic (1550

nm) and 20% for the pump beam (775 nm), see Fig.3.9 for reference. A control

beam, phase modulated at 35.5 MHz, entered the cavity from the curved face

of the PPKTP crystal. The re�ected light went back into a PBS and Faraday

rotator system which diverted it into a resonant photo detector. The signal from

this detector was demodulated with an electronic local oscillator and fed into a

servo controller to drive the piezo mounted coupling mirror and to lock the cavity

on resonance. The pump beam was coupled into the cavity through the piezo

mounted coupling mirror. The relative phase between the pump and the control

beam was locked by mixing the signal from the resonant photo detector with a π/2
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shifted electronic local oscillator and feeding the resulting error signal to a servo

which controlled a piezo mounted mirror used for directing the pump beam on the

cavity coupling mirror. The pump beam was locked on amplitude squeezing, thus

deamplifying the amplitude noise in the control beam.

The relative phase between the probe states and the local oscillator was set using

a single sideband locking scheme: the single sideband (SSB) was generated by

an acousto-optical modulator (AOM) at 82 MHz. The SSB was mixed with the

squeezer's control beam at a 50 50 beam splitter, and the output was detected

by a resonant photo detector. The signal was then demodulated and used as

an error signal for locking the relative phase between the SSB and the control

beam. Another Faraday rotator in the path of the SSB prevented the build-up of

parasitic cavities. This locking scheme allowed us to set the probe states to any

phase between squeezing and anti-squeezing for the experiment state preparation.

The squeezed light output and the SSB were separated from the pump beam by

a dichroic beam splitter and directed to the phase estimation setup, described in

the next section.

3.5.3 Experimental setup

The experimental setup is shown in Fig.3.10. The experiment required the prepa-

ration of an initial state as a phase shifted squeezed thermal state (STS), with the

phase in the range [0, π/2) which is the parameter we wanted to estimate. State

preparation was accomplished by using the single sideband lock to set the relative

phase between the LO and the probe STS, as explained in Sec.3.5.2. The LO,

coming from the mode-cleaning cavity, went through a waveguide phase modula-

tor (WGM) which was used to actuate the feedback, matching the optimal phase.

The LO and the STS interfered on a 50 50 beam splitter and the output ports

were detected in a balanced homodyning setup with visibility 90% and quantum

e�ciency of 99%. The SSB light provided the modulation for locking the homo-

dyning phase.

The homodyne AC signal was split in two parts, one of which was used for the

SSB lock. The other homodyne AC part, used for carrying the phase information,

was mixed down to DC using a double balanced mixer, with mixing frequency 9

MHz. After the mixer the signal was low-pass �ltered at 1.9 MHz, before reaching

a preampli�er set to low-pass �lter at 300 kHz, with a roll-o� of 12 dB per octave

and gain 100. The preampli�er output was once again attenuated by a variable

attenuator, and was then fed in a custom o�set ampli�er which was set to gain 3
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Figure 3.10: Experimental setup. We performed balanced homodyne detection on the

squeezed thermal probe states. The AC output of the homodyne detector was split in two

parts: one was used for locking the homodyning phase using the SSB modulation, and the sec-

ond part was demodulated at 9 MHz, low-pass �ltered, ampli�ed and used as analog input for

the FPGA. The FPGA computed the variance of the AC input and used the result to drive a

waveguide modulator into matching the optimal relative phase between STS and LO. The other

outputs of the FPGA and part of the homodyne AC signal were sampled by an oscilloscope and

saved for data processing. LO: Local Oscillator. WGM: Waveguide Modulator. PIEZO: Piezo-

electric mounted mirror. STS: Squeezed Thermal States. SSB: Single Sideband. PID: servo

controller. PA: Pre-Ampli�er. OA: O�set Ampli�er. FPGA: Fast Programmable Gate Array.

ATT: Attenuator. VATT: Variable Attenuator. LPF: Low-Pass Filter. PD: Photo Detector.

BS: Beam Splitter. S&H: Sample and Hold circuit. The oscilloscope inputs: HDAC: Demodu-

lated Homodyne AC. TRIG1: Protocol Trigger. ESTIM: Estimation output. TRIG2: Sampling

Trigger. WGM: Feedback signal.
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and also added a 875 mV DC o�set to match the middle of the FPGA (Fast Pro-

grammable Gate Array, a Xilinx Spartan 3E) analog input range. A �nal low-pass

�lter set the input state's bandwidth at 100 kHz. Afterwards, this signal was split,

with one part being again low-pass �ltered at 50 kHz and sampled at 100 kHz by

an oscilloscope, and the other end feeding the analog input of the FPGA with a

sampling rate of 57 kHz.

The WGM was operated by one of the FPGA analog outputs, which was atten-

uated by 5 dB to match the WGM half-wave voltage. Before attenuation, the

FPGA output feedback signal was split, and part of it was sent to the oscilloscope

for control. A second analog output of the FPGA containing the estimation result

was sampled by the oscilloscope as well.

Four digital outputs of the FPGA were used as triggers for di�erent processes: a

�rst trigger de�ning the protocol sequence (cfr. Fig.3.7) was sampled by the os-

cilloscope as a reference trigger for the data processing (cfr. Sec.3.5.7). A second

digital output was used to trigger the oscilloscope sampling. Finally, the last two

digital outputs were used to trigger two sample and hold circuits (S&H) which

were added to the input and the output of the SSB lock servo controller to prevent

it from correcting the feedback action of the WGM. In particular, the input S&H

was used to hold the input error signal on the last locking point (initial phase) and

the output S&H to hold the actuation signal from the servo to keep the piezo in

position. Both S&Hs were activated just before the feedback action of the WGM

and turned o� right after the WGM went back at the reference level, at the end

of the �nal estimation.

3.5.4 FPGA operations

The main purpose of the FPGA is to compute a real-time rough estimation of the

input phase from the data gathered in the �rst homodyning stage, and derive the

required matching phase shift ∆ to drive the WGM. As explained in Sec.3.5.1,

the estimation on the input phase is derived from the posterior probability dis-

tribution. The PPD itself is computed using the sampled homodyne data, and

the estimation of the input phase is found as the mode of the distribution, which

converges to the mean value as the number of homodyne samples increases, as

explained in Sec.3.4.1. The PPD formalism relies on the assumption that an uni-

vocal correspondence between the sampled variance Σ2 and the input phase φ can

be constructed from the probe state covariance matrix of Eq.3.30, in particular
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from the �rst diagonal element for amplitude-squeezing, as

Σ2 ↔ σ2 ↔ φ ,

σ2 = (σ̂th,z)1,1 = (2 nth +1)
[
e−2r cos2(φ) + e2r sin2(φ)

]
. (3.36)

This allows us to de�ne the phase-space probability distribution as the Gaussian

distribution

p(φ|q) =
1√

2πσ2
Exp

[
− q2

2σ2

]
, (3.37)

which in turn de�nes the phase marginal distribution when a sampled quadrature

is given. The PPD is obtained as a normalization of the product of all the marginal

distributions built using the M sampled quadratures {x}
M
, as in Eq.(3.22),

P (φ| {x}) =
1

N

∏
i

p(xi|φ), (3.38)

where N is a normalization factor. The phase estimate is then found as the maxi-

mum the PPD, that is, by �nding the most likely phase given the observed quadra-

ture set {x}
M
.

In the context of a real-time feedback, the computation of the PPD for the rough es-

timation is time consuming and requires advanced mathematical operations which

can't be e�ciently implemented within the FPGA architecture, therefore we need

to resort to a di�erent strategy. A simpler way of estimating the phase from the

observed quadrature set would be to solve the inverse of the phase-variance relation

of Eq.(3.36) as Φ(Σ2) = [σ2]−1(Σ2). Since the phase range is limited to [0, π/2),

the associated theoretical variance range is similarly restricted in [σ2(0), σ2(π/2)).

This means that when the sampled variance exceeds the theoretical variance do-

main boundaries no solution can be found with the latter approach. The PPD

formalism solves this problem by clamping the distribution on the phase domain

edges whenever the sampled variance exceeds the theoretical variance domain, and

we can model this property by rede�ning the inverse phase-variance relation to deal

with the extra-domain sampled variances

Φ(Σ2) =


π/2 ∀ Σ2 ≥ σ2(π/2)

[σ2]
−1

(Σ2) ∀ σ2(0) ≤ Σ2 ≤ σ2(π/2)

0 ∀ Σ2 ≤ σ2(0)

(3.39)

Such expression represents an equivalent formulation of the PPD formalism, as

shown in Fig.3.11, and the most convenient way to implement it on the FPGA is

by using a lookup table (LUT) generated by means of a proper calibration, which
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Figure 3.11: Univocal correspondence between the sampled variance and the esti-

mated phase. We simulate a probe state with original squeezing strength r′ = 2.787 and losses

determined by a beam splitter of transmissivity τ = 0.7, which corresponds to a squeezed thermal

probe with r = 1.6 and nth = 0.5. We generate 1000 homodyne data points for 9 di�erent initial

phases. We compute the variance of the samples and the PPD for each of the 9 sets. We extract

the mean value and the mode from each PPD, and we recover the estimated phase from the

inverse variance-phase relation given by Eq.(3.39). We repeat the process 10 times. It is worth

noticing how the σ2(φ) function (black curve) is not de�ned beyond the true variance domain

boundary (the white background region), therefore if the sampled variance exceeds the
[
σ2
]−1

domain, no solutions can be found and the estimation fails. Instead in the same regions both the

PPD mode (purple dots) and the extended Φ(Σ2) function (light blue dots) successfully deliver

a phase estimation. We also show the mean value of the PPD (green dots), which deviates from

its mode as the Gaussian approximation fails, i.e. as the input phase moves further away from

the optimal phase.
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will be explained thoroughly in Sec.3.5.5.

Since the estimation protocol we tested relied on real-time feedback, the variance

of the homodyne signal in the FPGA had to be calculated in an online fashion.

This was possible using the following iterative algorithm:

Var [{x}M ] =⇒


δi = xi − 〈x〉i−1

〈x〉i = 〈x〉i−1 + δi
i
·N1

m2
i = m2

i−1 + δi · (xi − 〈x〉i) ·N2

Var
[
{xψ}1···i

]
= m2

i

(3.40)

where xi is the i -th homodyne sample digitized into a 14 bit value and N1 and

N2 are binary normalization factors whose purpose is to prevent overshooting, in

other words to make sure the �nal digital value of the estimated variance is inside

the digital range [0, 214].

3.5.5 Calibrations and lookup tables

In the following section we describe the calibrations that are required for e�ective

implementation of the estimation protocol. We test the protocol for four di�erent

total number of homodyne samples to test the scaling of the estimation variance

against the Cramér-Rao benchmarks of Eq.(3.35). Some calibrations are required

before each of the four tests, while others need to be performed only once.

System parameters estimation

Estimation of the squeezing strength r and the mean number of thermal photons

nth in the probe states was needed beforehand to compute the optimal phase and

the state energy. We extracted an estimation for such parameters from a squeezing

trace measurement. We indicate amplitude and phase variances respectively with

Σsqz and Σasqz. They can be expressed as the �rst and second diagonal elements

of the state's covariance matrix of Eq.(3.30), with φ = 0 (because we generate

amplitude-squeezing): {
Σsqz = (2 nth +1)e−2r ,

Σasqz = (2 nth +1)e2r .
(3.41)

Adriano A. Berni 52



3.5. EXPERIMENTAL IMPLEMENTATION

Solving the system above straightforwardly leads to the expressions we need to

estimate r and nth from the homodyne measurement: r = 1
2
log

[
Σasqz√

ΣsqzΣasqz

]
,

nth =

√
ΣsqzΣasqz−1

2
.

(3.42)

The measurement of Σsqz and Σasqz was performed by homodyning the squeezed

and antisqueezed quadratures with a zero-span measurement at 9 MHz of the

homodyne AC traces with a spectrum analyzer set to a resolution bandwidth

of 300 kHz, a video bandwidth 100 Hz and a sweeping time 200 ms. We also

needed to measure the relative noise of the vacuum in our probe states for the data

processing, which was easily obtained within the same measurement by blocking

the pump beam to the squeezer. An example of such a measurement is illustrated

in Fig.3.12, while the results are summarized in Table 3.1. We conducted the

parameter estimation before each of the four tests of the protocol (each one relative

to a di�erent Mtot), since a variation in the squeezing strength leads to a variation

in the optimal phase that had to be taken into account in the FPGA feedback

calibration.

FPGA digital-to-analog converter calibration

The WGM rotates the local oscillator phase according to the feedback signal that

it receives from the FPGA. The feedback signal itself is generated in the FPGA

during the third stage of the protocol as a binary value in the range [0, 4096) ≡
[0, 212). The digital signal is converted to an analog voltage in the range [0, 3.3)

V. We expected this calibration function to be linear, and indeed we veri�ed that

by programming the FPGA to hold a number of speci�c digital outputs equally

spaced in the digital output range, and measuring the corresponding analog output

(see Fig.3.13). We could then �t the data to a function that converted from output

bit value to output voltage. Since this calibration only depended on the FPGA

digital-to-analog converter (DAC), we only needed to perform it once.

Variance estimation calibration

The purpose of this calibration procedure was dual: In primis, we needed cal-

ibration functions to convert from input homodyne AC variance to estimation

output voltage and vice versa. These functions were then used for the feedback
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Figure 3.12: System parameters estimation. Noise traces on the spectrum analyzer during the

system parameters estimation. The black line is our vacuum state, while the red and blue traces

correspond to the squeezing and antisqueezing levels respectively. The results are relative to all

the four instances of the experiments.

Adriano A. Berni 54



3.5. EXPERIMENTAL IMPLEMENTATION

0 1000 2000 3000 4000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 3.13: FPGA digital-to-analog converter calibration. We set the FPGA to hold four

digital outputs equally spaced in the [0, 4096) range. We then measured the voltage outputs of

the digital-to-analog converter (black dots) and we �tted the results (red line). The �t function

is provided in the top left corner (red). The minimum and maximum voltage outputs are also

indicated.
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calibration as well as for the data processing. The calibration procedure required

the WGM to be o�ine, and it was performed by feeding the FPGA analog input

with the demodulated homodyne AC relative to several di�erent input phases and

measuring the correspondent voltage output level in the rough and in the �nal esti-

mation. This was accomplished by locking the STS probe state to several relative

phases between 0 (squeezing sampled variance) and π/2 (anti-squeezing sampled

variance). For each one of these initial states we performed a repeated run of

the protocol (with no feedback), registering the homodyne AC signal as well as

the rough estimation output, the �nal estimation output, and the protocol trigger

from the FPGA. We used the homodyne AC data to compute the input variance,

and we �tted it to the estimation output voltage.

Since the rough estimation is required to estimate initial phases in the whole

[0, π/2) radians range, all the sampled variances between the squeezing and the

anti-squeezing variance were used to compute the rough estimation calibration

function (CalREst). On the other hand, the �nal estimation is designed to esti-

mate phases in the proximity of the optimal phase, which corresponds to an input

variance lying between the squeezing and the vacuum ones. Therefore only the

input variances between squeezing and vacuum were needed to compute the �nal

estimation calibration function (CalFEst). Fig.3.14 shows the result of one such

calibration.

As a second purpose, this procedure was useful for setting the value of the scaling

factor which de�nes the rescaling of the digital estimation result to e�ciently use

the whole FPGA analog output range. The values of r and nth imply a minimum

and a maximum variance of the homodyne AC signal as (2 nth +1)e−2r·Var [vacuum]

and (2 nth +1)e+2r ·Var [vacuum], respectively. This de�nes a minimum and a max-

imum estimation output voltage, according to the FPGA DAC calibration. To use

the analog output range e�ciently we de�ned a scaling factor for the rough esti-

mation stage and one for the �nal estimation stage, and since these factors depend

on the r and nth parameters, this calibration procedure had to be repeated before

each of the four experimental tests.

Calibration of waveguide phase modulator

The waveguide modulator applies a phase shift to the local oscillator to match the

optimal phase. Depending on the actual value of the true phase, such phase shift

varies between a minimum ∆min (applied when the true phase is φ∗ = 0) and a

maximum ∆max (applied when the true phase is φ∗ = π/2). The purpose of this
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Figure 3.14: Variance estimation calibration function. For the rough estimation calibration

function (red) we measured a number of input variances between the squeezing and the anti-

squeezing variance, corresponding to input phases in the whole [0, π/2) [rad] range. For the �nal

estimation calibration function (blue) we measured a number of input variances between the

squeezing and the vacuum variance, corresponding to input phases in proximity of the optimal

phase.
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calibration was to �nd a ∆(V ) voltage-to-phase shift relation to drive the WGM

in the whole needed phase range [∆min,∆max]. Moreover, we wanted the WGM to

apply a vanishing phase shift when the feedback voltage was 0 V.

To calibrate the WGM response we performed homodyne detection on a bright

�eld while scanning the WGM. We detected the homodyne DC signal and we �t-

ted its amplitude to the scan amplitude, using a cosine function as initial guess

for the �t function: DC (V ) = A cos (ω1V + ω0) + B. This �t function converts

from input voltage to homodyne DC amplitude, as shown in Fig.3.15. We needed

to convert the homodyne DC amplitude into a phase shift, to obtain the WGM

input voltage to phase shift calibration function. To do this, we can simply build

the phase function as the argument of the cosine: ∆ (V ) = ω1V + ω0.

The initial phase is in the range [0, π/2) radians, while the optimal phase only

depends on the squeezing parameter according to Eq.(3.20). Since in the course

of the four experimental tests we kept an approximately constant squeezing level

corresponding to r ' 1, that is ∼ −6 dB of relative noise in the squeezing quadra-

ture, we had φth
opt
' 0.13 radians, or ' 7.6 degrees. Therefore we needed the WGM

to apply a maximum positive phase shift of π/2 − φth
opt
' 1.4385 radians, or ' 82

degrees, and a minimum negative phase shift of 0−φth
opt
' −0.13 radians, or ' −7.6

degrees. To encompass the whole needed phase range, we de�ned the maximum

and minimum phase shifts as ∆max = +90 deg and ∆min = −10 deg.

Once the WGM calibration was complete, we could use the calibration functions

to build a LUT to convert from the rough phase estimate to the necessary feed-

back voltage required to apply the correct matching phase shift, ∆ = φ̄R − φth
opt
.

Since the feedback lookup table required the de�nition of a scaling factor which

depended on the system parameters r and nth, the generation of a new calibrated

lookup table was required before each of the four experimental tests to address the

small changes in the squeezing strength.

3.5.6 Experimental procedure

We wanted to study the scaling of the estimation variance as a function of the

total number of homodyne samples used for a single protocol run, while also inves-

tigating the performances of the estimation protocol for �xed number of samples

and varying initial phase. To do this, we selected four total numbers of homo-

dyne samples Mtot = MR + MF to be investigated. For each of the four Mtot we

selected a few initial phases to estimate, and we repeated the estimation protocol

on each of these input phases 80 times to give the results statistical signi�cance.
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Figure 3.15: Waveguide modulator calibration. Left vertical axis: Homodyne DC signal �t

versus WGM scan amplitude. The homodyne DC signal (red) was �tted to the scan amplitude

(blue line, rescaled) in a calibration function (black curve, superposed to the DC signal). The

�t function DC(V ) is provided. Right vertical axis: normalized optical phase shift versus WGM

scan amplitude. The calibration functions from WGM scan amplitude to phase (∆(V )) and vice

versa (V (∆)) are plotted (green line) and their expression provided in the top right corner. The

shaded green region identi�es the voltage range [−0.22,+1.98] V required to apply a phase shift

in the needed range [−10,+90] deg.
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This measurements gave us information on the protocol performances for varying

initial phase, while averaging all such results over the input phases gave us four

data points to verify the scaling of the estimation variance versus Mtot.

The �rst operations we needed to perform were the FPGA digital-to-analog cal-

ibration and the WGM response calibration described in the previous Section,

which only had to be done once. Before each of the four experimental tests we

�xed the number of homodyne samples Mtot and the power of the pump beam

at 105 mW. We then set the optical power of the LO at the reference value of

8.6 mW, locked the system and proceeded with the system parameters estimation.

This provided an estimation of the squeezing strength r, of the thermalization nth,

and the variance of the vacuum.

Successively, we proceeded with the variance estimation calibration. From this

calibration we obtained the calibration functions CalREst and CalFEst, which,

together with the system parameters, the FPGA calibration function, and the

WGM response calibration function, were used to generate the feedback LUT.

Once the feedback LUT was loaded in the FPGA we started with the experimental

test, which was performed in a very similar fashion to the operations performed

during the variance estimation calibration, the only di�erence being that in the

latter the WGM was kept o�ine, while in the former it was used for the feedback

to the optimal phase. We locked the probe state on an initial phase between the

squeezing and the anti-squeezing phases, and performed a 10 seconds measurement

with the oscilloscope, which included a number of repetitions of the estimation pro-

tocol, as illustrated in Fig.3.16. We repeated the experiment on a number of initial

phases in the range [0, π/2) radians.

Once enough initial phases were measured the experiment was complete. We then

�xed a new Mtot and started again with the system parameter estimations, the

variance estimation and feedback calibrations. Details on the parameters charac-

terizing each experiment are given in Table 3.1.

3.5.7 Data processing

The data processing was performed using Wolfram Mathematica V.10. The data

provided by a single run of the estimation protocol (see Fig.3.16) was structured

as follows: each of the four oscilloscope channels were used during the data acqui-

sition, as previously mentioned in Sec.3.5.3. The signal registered by each channel

had to be processed di�erently, also depending on the time position of the data

points with respect to the FPGA trigger.
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1 2 3 4

Figure 3.16: Oscilloscope outputs. Top: an example of a short section of a measurement in

which a single input phase is being estimated. The estimation protocol (trigger up) is repeated

on the same input phase (state preparation identi�ed by the trigger down) to give the �nal results

statistical signi�cance. The demodulated homodyne AC data (HDAC) is also shown (green).

Bottom: example of the oscilloscope signals during a single protocol run. The FPGA trigger

(black) identi�es the di�erent protocol stages, which are also indexed by numbers at the very

bottom. (1) state preparation: both the estimation voltage output and the WGM feedback are

at reference level. The probe state is locked on φ∗ and the lock is let stabilize (note the spikes in

the HDAC data at the beginning of the stage). Part of the HDAC data is discarded because the

lock hasn't stabilized yet. (2) rough estimation: The WGM is still at reference level, while the

estimation output starts to increase as more and more HDAC data is sampled. (3) feedback: the

FPGA sends the WGM the feedback signal, shifting the probe's phase on φexpopt . The feedback has

a duration of 10 µs, but this stage was designed to be longer for control during the experiment,

and to easily verify the rough estimation scaling factor (see variance calibration subsection).(4)

�nal estimaton: this stage is completely equivalent to the rough estimation stage, the only

di�erence being that now the relative phase between the state and the homodyning quadrature

is φexpopt .
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The WGM feedback signal data was used for control during the measurements.

The signal voltage could be converted to a phase shift using the WGM response

calibration function. In particular, only the data within the third and fourth proto-

col stages was used for this purpose, since the feedback signal was on the reference

level in all other stages.

The demodulated homodyne AC signal was low-pass �ltered at 50 kHz before

being sampled by the oscilloscope at 100 kHz. This signal was divided in a state

preparation section, included in the �rst two protocol stages, and an optimal phase

section, included in the third and fourth stages. As for the state preparation, since

it took a few milliseconds for the lock to stabilize, we discarded the �rst part of the

signal, while the rest contained the information on φ∗. In fact, by computing the

variance of such signal we could recover the initial phase by solving Eq.(3.39) for

Var [HDAC]. Using the same approach we could verify that the phase measured

in the second homodyning stage was indeed the optimal phase. The main purpose

of the HDAC signal, however, was the computation of the PPD, which was of

fundamental importance for verifying the estimation variance scaling.

The estimation output data was mainly used for control during the estimation

calibrations to test for overshoots and tune the variance scaling factors. The data

within the state preparation stage was not used at all, since it only contained

the reference level voltage. The estimation voltage output data found in the out-

put hold (third stage and right after the end of the �nal estimation) stages was

corrected for eventual remaining overshoots in the preceding iterative variance

computation, then converted back to input variance using the inverted CalREst

and CalFEst calibration functions, and �nally converted to an estimated phase

by solving the aforementioned homodyne variance expression. This was useful for

testing the correct functioning of the protocol.

The FPGA trigger data was fundamental for data processing since it was used

to distinguish between the di�erent stages of the protocol. All the previously

described dissections of the signals relied on the FPGA trigger level and edge dis-

tances.

As previously mentioned, we wanted to study the scaling of the estimation vari-

ance versus the energy of the probe state. Since the estimation output signal only

gave information about the input phase estimate, we needed to recover its variance

via post-processing computation of the PPD. To compute a PPD which was com-

patible with the results of the estimation, we needed to choose the right number

of homodyne AC data points to use. The demodulated homodyne AC signal was

low-pass �ltered at 100 kHz before being sampled by the FPGA at 57 kHz to avoid

correlations in the data.
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Since the feedback to the optimal phase relied entirely on the FPGA operations

and it depended on the result of the rough estimation, for the rough PPD we

extracted from the HDAC data in the rough estimation stage a number of data

points equal to the number of samples the FPGA used. However, the HDAC data

was sampled by the scope, which sampled at twice the bandwidth with respect to

the input state bandwidth. That was not the case for the FPGA, which sampled

at slightly more than half the bandwidth. This means that the oscilloscope data

contained more data points than the number used by the FPGA. We compensated

by randomly selecting the correct number of samples among the larger set of data

points sampled by the oscilloscope. We then used these points to calculate the

rough PPD.

In turn, we calculated the �nal PPD using all the available HDAC data points in

the �nal estimation section, which were more than the data points sampled by the

FPGA to compute the �nal estimation. Moreover, to make use of all the informa-

tion in the rough PPD, we rigidly shifted it, centering it on the estimated optimal

phase, and then we multiplied it by the �nal PPD (which was centered on the

optimal phase by construction) before normalizing it. This operation ensured that

the variance of the �nal PPD was derived using the whole number of homodyne

samples Mtot, instead of just the ones sampled during the �nal estimation.

We performed the data processing on 80 repetitions of the protocol for each input

phase, and we �nally averaged the resulting estimations and estimation variances.

In this way we obtained a mean estimation and a mean estimation variance per

input phase for �xed Mtot. By considering all the results for the same Mtot we

studied the estimation variance curve as a function of the input phase. Else, we

could average the results over all the initial phases, thus obtaining data that could

be used to investigate the scaling of the estimation variance as a function of the

number of samples.

3.6 Results

The results of the estimation variance for varying input phase are shown in Fig.3.17,

where we plot the results from the calculation of the �nal PPDs variances, averaged

over the 80 repetitions on each input phase. We compare the experimental results

with simulated curves, obtained by generating homodyne data characterized by the

same experimental parameters r, nth,MR andMF. In the same �gure is also shown

the expected benchmark, i.e. the optimal Cramér-Rao bound (OCR) of Eq.(3.35),

(MtotF (φth
opt

))−1, and the classical Cramér-Rao (CCR) bound (MtotF (φ))−1.
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Experiment 1 2 3 4

Experiment details

MR [samples] 68 96 136 192

MF [samples] 891 1783 3569 7141

No. of Input phases 7 6 7 6 (double)

System parameters

Squeezing strength [nat] 1.012 1.003 1.005 1.014

Squeezing [dB] −5.747 −5.709 −5.588 −5.715

Antisqueezing [dB] 11.829 11.709 11.869 11.907

Thermalization [nat] 0.507 0.498 0.530 0.520

Relevant phases

Squeezing [rad] 0 0 0 0

Optimal [rad] 0.131 0.1342 0.133 0.131

Vacuum [rad] 0.223 0.226 0.221 0.221

Antisqueezing [rad] π/2 π/2 π/2 π/2

Table 3.1: Experimental parameters during the four tests. Each of the four experimental

tests (columns) was conducted for a di�erent total number of homodyne samples Mtot and it

included 80 repeated measurements on each one of a number of di�erent input phases. The state

parameters, r and nth were kept approximately constant during the experiment.
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As expected, the non-adpative protocol follows the CCR, therefore is only optimal

when the input phase is in near proximity of the optimal phase. The experimental

results show a deviation from the OCR as the input phase is further away from

the optimal phase. This is due to the fact that as |φ∗ − φth
opt
| grows larger, the

homodyining sensitivity decreases, therefore the error on the rough estimation in-

creases. In turn this causes an increasing error on the experimental optimal phase,

φexp
opt

= φth
opt
− δφR, which means that the �nal estimation is performed in a subop-

timal homodyne sensitivity region.

To provide an additional benchmark we also compare the results with the QCR

bound for a pure and a thermal coherent state characterized by the same probe

energy as our squeezed thermal states. Since the quantum Fisher information only

depends on the state's properties, and not on the detection strategy, such bench-

marks indicate the ultimate bound on the estimation variance for any coherent

state based phase estimation protocol. It is apparent from Fig.3.17 that our pro-

tocol outperforms such limit, especially for increasing number of samples.

Such behavior is even clearer when we average the results of each of the four tests

over the corresponding input phases to study the scaling of the variance versus

the total number of homodyne samples. The resulting scaling, shown in Fig.3.18,

shows the expected behavior of the variance, that tends to the optimal Cramér-

Rao for increasingly large number of samples. While the thermal coherent states

perform de�nitely worse than our estimation protocol, in the pure coherent case we

observe a similar scaling, especially for small numbers of samples. This is due to

the fact that for small number of samples, the rough estimation is performed with

very few homodyne samples. This causes a larger error on the rough estimation,

which in turn determines a larger deviation of the experimental optimal phase from

the theoretical one, an e�ect analogous to the one observed for input phases that

are far from the optimal phase. The two e�ects compound, thus determining the

suboptimal scaling observed in the low Mtot regime. However, as Mtot increases,

the former e�ect is reduced, and we can see the experimental results progressively

deviating from the pure coherent quantum Cramér-Rao bound.

3.6.1 Conclusions

In summary, we considered ab adaptive phase estimation protocol designed to

asymptotically saturate the quantum Cramér-Rao limit, and we experimentally

veri�ed the suboptimal scaling due to the thermal noise in a realistic laboratory

setting. However, the observed scaling still outperforms the results obtained with

both pure and thermalized coherent states, demonstrating the sub-SQL perfor-
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Figure 3.17: Estimation variance versus input phase for �xed number of samples. Each

of the four �gures corresponds to an experiment performed with a �xed number of samples (stated

in the middle-top of each). The experimental results (blue dots) are shown, the shaded region

corresponding to the standard deviation over the 80 repetitions and the horizontal error bars

given by the standard deviation over the slightly varying input phases over the 80 repetitions.

The results are compared with simulations for both an adaptive (green) and a non adaptive

(gray dots) protocol with the same experimental parameters as the experiment. The classical

Cramér-Rao bound (CCR, purple) and the optimal Cramér-Rao bound (OCR, azure) are shown.

The quantum Cramér-Rao bound for a thermal (yellow) and a pure (orange) coherent states

with same mean energy as our probe states are also shown. The optimal phase is indicated with

a dashed vertical line.
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Figure 3.18: Estimation variance versus the total number of homodyne samples. The

experimental results (blue dots) are obtained by averaging the results of each experiment over all

the tested input phases. The error bars are given by the statistical error over the 80 repetitions

per input phase, averaged over all the input phases in each experimental instance. We compare

the results with our benchmark, the optimal Cramér-Rao bound (OCR, azure), and with a

simulated experiment in which we use the same parameters that characterize the experimental

test. The quantum Cramér-Rao bound for a thermal (yellow) and a pure (orange) coherent states

with same mean energy as our probe states are also shown.
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mance regime of the proposed phase estimation protocol. To the best of our

knowledge, this is the �rst experimental demonstration of a phase estimation pro-

tocol which is ab initio and deterministic. This estimation strategy could be ap-

plied to a number of quantum metrological tasks, especially considering the recent

advances in the generation of highly squeezed light. It is left to investigate how the

protocol could be extended to the whole (0, π] phase range. This could be accom-

plished by implementing an ulterior step to the protocol in which a small phase

modulation is imposed on the state to discriminate between the two subranges

(0, π/2) , (π/2, π).
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Chapter 4

Gaussian error correction in a

correlated noisy channel

In this chapter we study noisy quantum channels, their detrimental e�ects on the

transmission of quantum states, and ways around it. In particular, we propose an

encoding/decoding strategy based on linear optical transformations which can pro-

tect arbitrary Gaussian states from Gaussian noise in correlated quantum channels

[64]. We start by introducing the topic of quantum communication and motivat-

ing our investigation. Afterwards we give a general description of the problem of

correction of correlated noise acting on Gaussian states, followed by its application

to the case of interest. We then study two incoherent error correction strategies to

use as benchmarks for the evaluation of our error correction protocol performance.

We conclude with a description of our experimental test and the results we ob-

tained for two classes of states most commonly used for quantum communication

applications, i.e. coherent and entangled states.

4.1 Quantum communication

A communication channel is any media through which a party (a sender, com-

monly called Alice) can propagate physical states corresponding to predetermined

symbols to a second party (the receiver, commonly called Bob). The complete

set of symbols is usually referred to as an alphabet, and it allows for information

transfer from one party to another over the communication channel. If the com-

munication channel is suitable for supporting transmission of quantum states, then

69



4.2. GENERAL TREATMENT OF GAUSSIAN MULTI-CHANNEL ERROR

CORRECTION FOR CORRELATED NOISE

it is called a quantum communication channel, and it can be used in junction with

the quantum alphabet itself to enhance the information transfer between the com-

municating parties. Such enhancement can be for example the ability to securely

transmit classical information from a sender to a receiver, a well known quantum

information protocol known as quantum key distribution (QKD) [5]. A quantum

communication channel might even be part of a larger quantum network [65], in

which several channels connect di�erent nodes which could be used for distributed

quantum computing, or for teleporting quantum states between the nodes [66]. A

quantum channel therefore allows for both direct communication by using classical

coherent states, and teleportation-based communication by using entangled states.

All real life implementations of quantum communication schemes need to deal with

decoherence e�ects that arise due to the noise in the quantum channel. Noise is in

general detrimental to the performance of quantum information protocols, leading

to lower key rates in quantum key distribution and errors in the transmission of

quantum states. Moreover, di�erent noise sources will a�ect the transmission in

di�erent ways, and the combination of several strategies might be needed in order

to e�ectively minimize decoherence in the channel. Examples of noise-reducing

schemes range from noise-robust QKD protocols [67, 68, 69], to entanglement pu-

ri�cation [70], to error correcting protocols [71, 4, 72, 73].

In particular, the protection of quantum states in a correlated noisy environment

is of practical relevance. One imporant example is the non-Markovian noise in-

troduced by a standard optical �ber as a result of guided acoustic wave Brillouin

scattering (GAWBS) [74]. In such a scenario, the time scale of the noise is deter-

mined by the size of the �ber core, resulting commonly in a bandwidth around 1

GHz. In this case, for communication rates exceeding 1 GHz, consecutive pulses

will contain correlated noise, which can be canceled using the error correction

protocol we'll introduce in the next sections.

4.2 General treatment of Gaussian multi-channel

error correction for correlated noise

While for non-Gaussian error models such as random attenuation or phase di�usion

simple Gaussian operations are enough to perform error correction [75, 76, 77] or

entanglement distillation [78] in CV systems, in the case of additive Gaussian noise

acting on Gaussian states, it can be shown that neither entanglement distillation

nor error correcting codes can be implemented by means of Gaussian operations

[79, 80, 81]. In such case therefore non-Gaussian operations are required for en-
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Figure 4.1: Schematic representation of a set of N Gaussian channels. The input

modes for the i-th channel âi are subject to uncorrelated noise ε̂i, to correlated noise ξ̂i and

to classical interaction with correlated environmental modes Ĉi, which is modeled as a beam

splitter interaction that includes both additive environmental noise and losses in the channel.

abling fault-tolerant quantum communication [82, 83]. Interestingly, the no-go

theorem that prevents Gaussian error correction of Gaussian noise, does not apply

when the noise is correlated, an inevitable feature of most contemporary commu-

nication channels [84, 85]. Recent theoretical studies address correlated noise in

bosonic channels using the decoherence-free-subspace framework [86, 87, 88].

We start by deriving a su�cient condition for the complete elimination of corre-

lated Gaussian noise, which in turn does nott a�ect uncorrelated noise and atten-

uation in the channels.

Let us consider a set of N Gaussian phase-insensitive lossy channels connecting two

communicating parties (cfr. Fig.4.1). To emphasize the universality of the error

correcting scheme, we conduct the following derivation in the Heisenberg picture.

In lossy and noisy Gaussian channels, the output annihilation operator b̂i of the

i-th channel is obtained as

b̂i =
∑
j

Gij âj + ε̂i + ξ̂i, (4.1)

where âj is the input annihilation operator for the j-th channel and Gij is a ma-

trix describing the channel transmittances and the crosstalk between the channels.

The ε̂i are operators representing completely uncorrelated noise in the i-th channel,

which can be characterized by the mean values 〈ε̂†i ε̂i〉. The ξ̂i are operators repre-
senting the ideally correlated noise of the channels. The mixture of correlated and

uncorrelated noise corresponds to a partial correlation of environmental noise. The
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channels are passively coupled to a collection of correlated environmental modes,

Ci, and the transmittances of this coupling are included into Gij. Coupling of the

channels with the environmental modes can be modeled as a beam splitter inter-

action. If the environmental mode Ci is in the vacuum state, then the particular

channel introduces only loss and uncorrelated noise. Any Gaussian multi-mode

correlated classical noise can be written as ξ̂i =
∑

k Cikξ̂
0
k, where Cik represents a

matrix of both orthogonal and symplectic transformations and ξ̂0
k are the operators

of uncorrelated noise in the factorized vacuum modes C0
i . A mixture of the con-

tributions of both the completely uncorrelated and ideally correlated noise models

can be used to describe a variety of realistic Gaussian lossy and noisy channels.

As an example, we can take the �rst channel b̂1 = G11â1 + ε̂1 + ξ̂0
1 as the one

with least uncorrelated noise. We want to eliminate the correlated noise with-

out changing the transmission G11 and without increasing the uncorrelated noise

contribution. We start by de�ning two unitary Gaussian multi-mode operations

Û and V̂ , acting on the channel's input and output modes, respectively. These

operations may be described by the linear transformations

âi =
∑
k

Uikâk ,

b̂i =
∑
k

Vikb̂k . (4.2)

After the application of Û and V̂ the transformation of Eq.(4.1) reads

b̂i =
∑
j,k,l

VijGjkUklâl +
∑
j

Vij ε̂j +
∑
j,m

VijCjmξ̂
0
m . (4.3)

We notice that we can eliminate the correlated noise by setting the Gaussian

transformation V̂ as Vij = C−1
jm. Indeed, applying such transformation to the �rst

channel leads to

b̂1 =
∑
j,k,l

C−1
1j GjkUklâl +

∑
j

C−1
1j ε̂j + ξ̂0

1 , (4.4)

where the correlation process is noticeably fully reversed. Ideally, the remaining

contribution from ξ̂0
1 only compensates a loss caused by the coupling to the en-

vironmental modes Cj. However, the transformation C−1
1j mixes the channels in

the �rst term and it also combines the operators ε̂j of uncorrelated noise in the

second term. Both mixing e�ects can be detrimental and thus the resulting chan-

nel might actually be more noisy than the original one. Nevertheless, we can �nd

a su�cient condition on the type of multi-mode channel for which both negative

mixing e�ects do not occur. If the crosstalk is solely introduced by the unitary
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Gaussian transformation, by optimizing Ukl to ful�ll
∑

j,k C
−1
1j GjkUk1 = G11 we can

eliminate both the unitary crosstalk and the correlated noise. For identical lossy

channels without crosstalk, the transmittances are Gjk = Gδkj, where 0 ≤ G ≤ 1

and 〈ε̂†k ε̂j〉 = 〈ε̂†ε̂〉δkj. In this case, by the setting Ukl = Ckl for the input uni-

tary encoding, we reach
∑

j,k C
−1
ij (Gδjk)Ukl = Gδil and the transmissions are not

changed by the error correcting scheme. On the other hand, to eliminate the neg-

ative contribution from the second term, we set conditions on the structure of the

correlated noise described by the matrix Cjm. If Cjm corresponds to a common

passive beam splitter type interaction of the environmental vacuum mode C0
j , it

satis�es
∑

iC
−1∗
si C−1

im = δsm. In this case, the correlated noise produced by the

channels is fully classical and it can be represented by a classical mixture of coher-

ent states. It is a common case, since nonclassical states are not likely to survive

in the environment. Since
∑

s,i,m〈ε̂†sC
−1∗
si C−1

im ε̂m〉 =
∑

m〈ε̂†mε̂m〉 for any mode m,

where C−1∗
si is the Hermitian conjugate of C−1

si , the amount of uncorrelated noise

remains unchanged.

In summary, if all the couplings in the identical lossy and noisy Gaussian channels

are of the unitary, passive beam-splitter type, it is possible to completely eliminate

the correlated noise (including crosstalk) and thus reach the optimal single mode

channel by the coherent error correction scheme.

4.2.1 Two-channel protocol

We may now apply the results of the previous section to a system composed of two

identical channels with partially correlated noise, and show that such a system is

su�cient for the complete elimination of the correlated noise without degradation

of the transmitted quantum state. Applying Eq.(4.1) to this scenario yields(
b̂1

b̂2

)
=

( √
η1â1+
√
η1N(1−η1)v̂1+

√
(1−η1)(1−η1N)(√gv̂c−

√
1−gv̂0)

√
η2â2+
√
η2N(1−η2)v̂2+

√
(1−η2)(1−η2N)(

√
1−gv̂c+

√
gv̂0)

)
. (4.5)

Here the attenuation in each channel is modeled by the channel transmissions

ηi ∈ [0, 1], which form a diagonal matrixGij = Diag [η1, η2]. The uncorrelated noise

operators ε̂1 and ε̂2 are explicitly expressed in the second terms as
√
ηiN(1− ηi)v̂i.

Finally, the third terms are explicit forms of the operators ξ̂1 and ξ̂2 associated with

the perfectly correlated noise contributions, with the annihilation operator v̂c cor-

responding to an environmental mode causing perfectly correlated noise between

the two channels, and the annihilation operator v̂0 corresponding to a vacuum

mode.
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Following our general approach from the previous section, for symmetric attenua-

tion η1 = η2, symmetric uncorrelated noise η1N = η2N and 〈v̂†1v̂1〉 = 〈v̂†2v̂2〉, we can
easily prove that the mode C (representing a source of correlated noise) can be

completely eliminated by our method and only residual attenuation arising from

the coupling to operators v̂0 of the vacuum mode 0 remains. In the experiment

we assume a practical limit of weak symmetric coupling of strong correlated noise,

which means η1N = η2N → 1, implemented experimentally with a 99 : 1 beam

splitter. Moreover, the Gaussian noise in mode C is assumed to be large com-

pared to the vacuum noise in mode 0. Under such assumptions, the input-output

relations approach two channels with purely additive classical noise(
b̂1

b̂2

)
=

( √
η1â1 +

√
1− η1v̂1 +

√
g1vc√

η2â2 +
√

1− η2v̂2 +
√
g2vc

)
. (4.6)

Here, the second terms
√

1− ηiv̂i are simpli�ed forms of the noise operators asso-

ciated with the uncorrelated noise, while the third terms
√
givc are explicit forms

of the complex random variables of classical additive noise associated with the

perfectly correlated noise, whose magnitudes are given by the positive factors g1

and g2. The noise correction stategy we apply is depicted in Fig.4.2. The channel

input modes are prepared by mixing the input signal âin with an auxiliary vacuum

state âaux on the encoding beam splitter, characterized by a transmissivity Te. The

mixing is followed by a relative π phase shift between the two output modes. The

encoding transformation can thus be written as(
â1

â2

)
=

( √
Teâin −

√
1− Teâaux

−
√

1− Teâin −
√
Teâaux

)
. (4.7)

In turn, the decoding transformation is the reverse of the encoding one(
b̂out
b̂aux

)
=

( √
Tdb̂1 −

√
1− Tdb̂2

−
√

1− Tdb̂1 −
√
Tdb̂2

)
. (4.8)

Now we can put together Eq.(4.8), Eq.(4.6) and Eq.(4.7) to obtain the overall

input-output relation for contructive interference of the signal channel

b̂out =
(√

TdTeη1 +
√

(1− Td)(1− Te)η2

)
âin+

+
(√

(1− Td)Teη2 −
√
Td(1− Te)η1

)
âaux+

+
√
Td(1− η1)v̂1 −

√
(1− Td)(1− η2)v̂2+

+
(√

Tdg1 −
√

(1− Td)g2

)
vc . (4.9)
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Now to completely eliminate the correlated noise we may set Td = g2/(g1 + g2),

and to avoid the noise impact from the operator âaux introduced by the encoding,

we set Te = η1g2/(η1g2 + η2g1). The resulting input-output relation therefore

becomes

b̂out =

√
η1g2 + η2g1

g1 + g2

âin +

√
g2(1− η1)

g1 + g2

v̂1 −

√
g1(1− η2)

g1 + g2

v̂2 , (4.10)

where the transmission G′ = (η1g2 + η2g1)/(g1 + g2) satis�es min[η1, η2] ≤ G′ ≤
max[η1, η2] and, together with the mean number of photons of the uncorrelated

noise

〈ε̂
′†
1 ε̂
′
1〉 =

g2

g1 + g2

(1− η1)〈v̂†1v̂1〉+
g1

g1 + g2

(1− η2)〈v̂†2v2〉 , (4.11)

determines the quality of the output channel: b̂out =
√
G′âin + ε̂′1.

We emphasize that for purely lossy channels with 〈ε̂†i ε̂i〉 = 0 (i = 1, 2), the error

correcting scheme does not add any excess noise to the state, regardless of the

values of η1 and η2. On the other hand for noisy channels, i.e. 〈ε̂†i ε̂i〉 6= 0 (i = 1, 2),

two identical channels with η1 = η2 = η and 〈ε̂†1ε̂1〉 = 〈ε̂†2ε̂2〉 = 〈ε̂†ε̂〉 are su�cient to

obtain a perfectly corrected channel with a complete elimination of the correlated

noise, una�ected transmission (that is G′ = η) and una�ected uncorrelated noise.

The coherent encoding and decoding scheme is thus fully capable of correcting for

all correlated noise of the channels.

It is important to note that such an error correction protocol is universal, i.e. it

is valid for any input quantum state and for any statistics of the correlated noise.

4.3 Incoherent error-correction strategies

In order to verify the performance of our error correction protocol, we compare

it to a fully incoherent protocol where one of the channels is directly measured

and subsequently used to correct the other channel [89]. Such a strategy does not

use coherent interactions at the encoding and decoding stations but instead uses

a direct measurement of a probe state to detect the correlated noise and apply

the gained information to correct the signal (cfr Fig.4.3). In the simplest case of

two identical lossless (η1 = η2 = 1) additive channels, we obtain for the output

modes (
b̂1

b̂2

)
=

(
â1 +

√
g1vc

â2 +
√
g2vc

)
, (4.12)
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Figure 4.2: Schematic representation of the error correction protocol. The protocol is

divided in three main stages associated with encoding, noisy transmission and decoding. The

insets illustrate the working principle of the correction scheme applied on a coherent state. From

top left to top right: a coherent state is mixed with an auxiliary mode on a balanced beam

splitter; A π phase shift is imposed on one of the beam splitter output modes before they enter

the noisy channel; The two modes are transmitted through the noisy channel, where they are

polluted by correlated Gaussian excess noise; another π phase shift is applied on the same mode;

a second mixing of the two modes on a beam splitter provides separation of the excess noise from

the signal.

Figure 4.3: Schematic representation of the incoherent strategy. Here â1 represent the

signal, while â2 is the probe. The measurement of b̂2 by heterodyne detection results in a number

β which is used to displace b̂1.
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where â1 is the signal and â2 is the auxiliary probe, which does not contain in-

formation. Performing an optimal heterodyne measurement on the second mode

b̂2 results in the outcome β = b̂2 + v̂†0, where v̂
†
0 is the heterodyne vacuum noise

contribution. β is used for the feed-forward correction of the remaining mode

as

â1 → ĉ1 = b̂1 −
√
gβ = â1 −

√
gâ2 + (

√
g1 −

√
gg2)vc −

√
gv̂†0 . (4.13)

By chosing a proper value of the feedforward gain g, it is possible to reduce the noise

added to the signal mode. In the following, we consider two di�erent strategies

for incoherent error correction: a �rst approach requiring the constraint that g

should be independent on the amount of added correlated noise, and a second one

in which such constraint is relaxed.

The �rst approach is straightforward from Eq.(4.13): the correlated noise can be

universally eliminated by setting g = g1/g2. The price to pay is the addition

of the uncorrelated additive noise from mode 2 associated with the heterodyne

measurement

ĉ1 = â1 −
√
g1

g2

(â2 + v̂†0) = â1 − ε̂′1 . (4.14)

Clearly, it is better to measure the channel with the larger noise amplitude and

correct the channel with the smaller noise amplitude, a choice that leads to g1 < g2

and the least amount of added uncorrelated noise. We can quantify the mean

photon number of the remaining noise in the ĉ1 mode as 〈ε̂
′†
1 ε̂
′
1〉 = g1/g2, and

observe that this is negligible only for very asymmetrical channels with g1 � g2.

Equivalently, the added noise can be quanti�ed in terms of the variance

∆Vuni = 〈∆X̂2〉 = 2
g1

g2

. (4.15)

For the worst case of symmetric channels (g1 = g2) the classical benchmark is given

by two units of vacuum noise, ∆Vuni = 2, one unit stemming from the probe mode

and the second unit due to the noise penalty in estimating conjugate quadratures

in the heterodyne detector.

As a second approach we relax the universality condition, thereby further reduc-

ing the added noise of the signal mode. By optimizing the feed-forward gain to

minimize the additive noise contribution, we �nd g = (g1g2V
2
c )/(2 + g2Vc)

2 which

depends on the added noise Vc = 〈∆X2
c 〉. The resulting minimized quadrature

variance of the added noise therefore reads

∆Vopt =
2g1VC

2 + g2VC
, (4.16)

which is in general lower than ∆Vuni, in particular for small Vc. However, even

for very small Vc, the optimized threshold ∆Vopt < g1Vc does not vanish for any
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Vc > 0. For large g2Vc � 2, the classical benchmark ∆Vopt approaches ∆Vuni.

Therefore, even with perfectly correlated noise and optimized classical strategy, it

is not possible to completely error correct the state using the incoherent strategy.

Optimal error correction in a correlated noisy channel can only be performed by the

collective encoding and decoding operations. As our coherent protocol is universal

(i.e. it does not depend on the amount of added noise Vc), the universal incoherent

strategy in Eq.(4.15) will serve as the incoherent benchmark in the analysis of the

correction protocol performance.

In the following we introduce the experimental realization of the protocol, which

was used to test the protocol's performance for coherent and CV entangled input

states in a correlated Gaussian noisy environment.

4.4 Experiment

A diagram of our error correction protocol is shown in Fig.4.2 for the case of two

partially correlated channels with classical noise. Such scenario could represent

either two spatially separated channels with spatial correlations or two consecu-

tive uses of the same channel with temporal correlations (non-Markovian channel).

The experimental setup is shown in Fig.4.4 and consists of four di�erent stages:

encoding of the signal states; transmission of the signal through a noisy channel;

separation of the noise from the signal; veri�cation of the signals. Our light source

was a continuous-wave Nd:YAG laser, which produced horizontally polarized light

at 1064 nm. An internal second harmonic generator provided green light at 532

nm. Spatial and spectral quality of both the IR and the green light were enforced

by mode cleaning cavities locked to the respective resonant frequencies by means

of Pound-Drever-Hall (PDH) locking schemes [61]. All our states were generated

at a sideband frequency of 4.9 MHz.

The noisy channel was simulated as a beam splitter interaction in which the signal

was mixed with a thermal state generated using amplitude and phase modula-

tors. The quantum interference at the beam splitter was characterized to have a

visibility of 98%. We drove the modulators using two function generators which

provided white noise with a bandwidth much larger than our states bandwidth. A

wide range of modulation amplitudes allowed us to study the correction e�ciency

of the protocol with noise variances ranging from from 0 to more than 100 shot

noise units.

We realized the two channels in two orthogonal polarization modes, thereby sim-

ulating correlated polarization noise. The protocol was implemented as follows:
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�rst of all the states were sent on a balanced beam splitter, which sended one of

the outputs to homodyne detector 1 for control, while the other was transmitted

through a half wave plate (HWP1), which was set to −22.5◦ with respect to the

horizontal polarization of our laser. The polarization state of the signal beam

was therefore rotated from horizontal to anti-diagonal (−45◦), with the vertical

component's phase delayed of π with respect to the horizontal

âH →
1√
2

(âH − âV ) , (4.17)

where â is the mode operator of the signal state and the subscripts H and V

indicate the polarization state. The beam then entered a 99/1 beam splitter where

it was mixed with the thermal state, simulating the transmission through a noisy

channel. In order to add the noise on both the polarization modes of the signal,

the thermal state was itself rotated from horizontal to diagonal (+45◦) polarization

by a half wave plate (HWP2) placed before the 99/1 beam splitter, with the fast

axis set to +22.5◦ with respect to the horizontal

b̂H →
1√
2

(
b̂H + b̂V

)
, (4.18)

where b̂ is the thermal state mode operator. By detecting directly the beam split-

ter output beams we could verify that the noise was added to the signal. By

changing the position of HWP2 we could set the noise correlation from completely

correlated to asymmetrically correlated.

After the beam splitter simulating the noise channel, another half wave plate

(HWP3) was placed, which was set to +22.5◦ with respect to the horizontal. This

rotated the signal to the horizontal and the noise to the vertical polarization ac-

cording to
1√
2

(
âH − âV + b̂H + b̂V

)
→ âH + b̂V . (4.19)

The actual separation of the signal from the noise, which now were in orthogo-

nal polarization modes, was easily performed by a polarizing beam splitter which

transmitted the horizontally polarized signal and re�ected the vertically polarized

noise. The two outputs �nally reached homodyne stations 2 and 3, in which they

were detected and the error correction veri�ed.

We used six broadband ampli�ed InGaAs pin-diode detectors to set up three ho-

modyne detectors. The respective total detection e�ciencies of the homodyne

detectors were 90% ± 2%, 90% ± 2% and 85% ± 2%. The visibility was more

than 98% on each detector and we had 18 dB of clearance between shot noise

and electronic noise. The detectors' AC outputs were subtracted two-by-two and
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Figure 4.4: Schematic of the experimental setup. SH pump: second harmonic pump; IR

seed: infrared seed; OPA: optical parametric ampli�er; AM/PM: amplitude/phase modulator;

50/50: balanced beam splitter; 99/1: non balanced beam splitter; HWP: half wave plate; PBS:

polarizing beam splitter; LO: local oscillator; DAQ/SP: data acquisition/signal processing.

then mixed down using a 4.9 MHz electronic local oscillator with a bandwidth of

100 kHz before being digitized by a data acquisition card with 14 bit resolution

at 5 × 105 samples/sec. Since our states were Gaussian and were only subject to

Gaussian operations, post processing of the data mainly consisted of normalization

to shot noise and extraction of the variances from the time traces, which were used

to characterize the performance of the protocol.

4.5 Results

Testing the protocol with coherent states required the output of OPA1 to be blockes

and OPA2 to be o�ine while its seed was coherently modulated with an amplitude

and a phase modulator to generate the signal. A quantitative study of the can-

cellation of excess noise is presented in Fig.4.5 for coherent states, where we plot
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Figure 4.5: Demonstration of error correction on a choerent state in an extremely

noisy environment. The relative noise variance of the quantum state, normalized to shot noise,

is plotted against the channel excess noise for the case of slightly asymmetrically correlated noise,

with a ratio g1/g2 = 0.61. Amplitude and phase quadrature measurements are represented by

open and closed circles, respectively. The results before (red) and after (blue) correction are

shown, where the non-corrected quantum states were measured with the transmittance of the

decoding beam spplitter set to Td = 1 (no decoding) and the corrected ones were measured with

Td = 0.36. Dashed black lines represent the theoretical predictions, and include a 1% mismatch

of the modes at the decoding beam splitter. The solid and dotted green lines correspond to the

two incoherent strategies. In particular, the solid green line represents our benchmark, since in

that case the a priori channel information is similar to that needed for implementing the coherent

strategy. The shaded region indicates where the classical strategy is beaten by our protocol. The

statistical error bars are smaller than the dots.

the measured quadrature noise for both x̂ and p̂ versus the added noise with and

without correction protocol. Clearly, application of the error correction scheme

results in the elimination of most of the added noise for both quadratures. More-

over, it is apparent that both incoherent correction strategies are outperformed by

our proposed scheme, for all the values of the added noise. As shown in Fig.4.6,

also the �delity of the input signal with the corrected output is consistently higher

than the one obtained without error correction. To test the error correction in the

context of a teleportation channel we used continuous variable entangled states,

i.e. , two-mode squeezed states. In this scenario both OPAs were online, and their

single mode-squeezing outputs were interfered at a balanced beam splitter with

orthogonal squeezing quadratures. One of the beam splitter output modes was

directly measured at the homodyning station 1, while the other output mode was

sent to the encoding station, where it was mixed with the auxiliary mode, there-
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Figure 4.6: Fidelity between the input coherent state and the output corrected and

non-corrected states. Dashed lines represent the theoretical predictions, while the solid and

dotted green lines correspond to the two incoherent strategies. The shaded region indicates where

the classical strategy is beaten by our protocol. The statistical error bars are smaller than the

dots.

fore simulating the correlated noise channel (see Fig.4.4). With this setup it was

possible to compute the correlations between mode A and mode B in terms of the

variances of the joint quadratures 〈(x̂A− x̂B)2〉 and 〈(p̂A+ p̂B)2〉, which we could use

to verify the presence of entanglement. Speci�cally, according to the inseparability

criterion [90, 91], entanglement is present if 〈(x̂A − x̂B)2〉 + 〈(p̂A + p̂B)2〉 < 2. We

show the results of such measurements in Fig.4.7, where the computed insepara-

bility of modes A and B is plotted against the added noise. In the plot, a vertical

dashed line represents the entanglement breaking point, which is the amount of

added noise (2 SNU) for which a channel can no longer be used for entanglement

distribution. As clearly showed in the plot, our proposed error correction protocol

allows us to use the dual channel for deterministic entanglement distribution for

up to ∼ 35 SNU of excess noise. In addition to proving the channel's capability

of transmitting entangled states, the results also indicate that our scheme is uni-

versal: since a CV entangled state can be used to prepare an arbitrary state via

state projection, the survival of entanglement unambiguously proves the faithful

transmission of a generalized state.
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Figure 4.7: Error correction of CV entangled states in an extremely noisy and sym-

metric channel. Here we show the inseparability versus the added noise, normalized to shot

noise (black solid line). The vertical red dashed line represents the entanglement breaking noise

in absence of error correction, while the shaded region indicates presence of entanglement. The

theoretical prediction is displayed as a dashed black curve, and it takes into account a 1% mode

mismatch at the decoding beam splitter, which is the reason why the two-mode squeezing vari-

ance increases with the added noise. The statistical error bars are smaller than the dots.

4.6 Conclusions

We proposed a universal scheme for protection of arbitrary quantum states in

a noisy non-Markovian environment. We implemented experimentally the error

correction scheme using both coherent and entangled states to test its performance

in both direct and teleportation-based communication, demonstrating near-ideal

recovery of pure quantum states from a highly noisy environment. The main error

source in the experiment was the imperfect mode matching at the encoding beam

splitter, where the signals were mixed to the auxiliary modes. Such mismatch of

the modes implies the presence of residual excess noise which was not corrected,

as apparent from Fig.4.5, Fig.4.6 and Fig.4.7. Despite such imperfection in the

experimental implementation of the correction scheme, we still show transmission

of quantum states to a degree that allows for the generation of a secure key and

the implementation of quantum teleportation.
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Chapter 5

Quantum discord in an open

system

In this chapter we discuss the concept of quantum correlations and we present ex-

perimental results aimed at investigating the robustness of a relatively novel quan-

ti�er for purely quantum correlations, namely the quantum discord, when subject

to dissipative dynamics. We start introducing the framework and mathematical

tools used to quantify the physical information encoded in quantum systems, in-

troducing the notion of quantum discord. Then we move on to describe how the

discord content of a quantum state, for which is in general di�cult to obtain closed

expressions, can be analytically calculated provided that the state is Gaussian and

it undergoes Gaussian transformations and measurements. Finally, we introduce

the experiment and describe the results we obtained.

5.1 Measuring information

The most common way to measure the information content of a quantum system

derives from the entropic measure de�ned by Shannon in [92]. Indeed, being

entropy itself a measure of the disorder of a system, it quanti�es the degree of

our uncertainty about the system's state. When we measure the system we gain

information about its state, and such information gain corresponds to the decrease

of entropy of the system.

Let's consider a system described by a random variable A whose values {a} are
distributed according to the classical probability distribution pA(a). The Shannon
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entropy is de�ned as

H(A) = −
∑
a

pA(a)log [pA(a)] , (5.1)

where the base of the logarithm de�nes the entropy unit. The most common

units are the bit, corresponding to base 2, and the nat, corresponding to base e.

The Shannon entropy can be interpreted as the amount of information needed to

predict that a measurement of the variable A on the system will yeld the result

a. If we now consider a second system, described by a classical variable B with

values {b} distributed according to pB(b), the bipartite system can be described

by the joint probability distribution pA,B(a, b) and its information content by the

joint entropy H(A,B) = −
∑

a,b pA,B(a, b)log [pA,B(a, b)]. As pictorially represented

in Fig.5.1, the joint entropy is in general smaller than the sum of entropies of

the two subsystems, being equal to the sum only when A and B are independent

(subadditivity of the Shannon entropy). This prompts us to de�ne the mutual

information as the di�erence

I(A : B) = H(A) +H(B)−H(A,B) , (5.2)

which expresses the total amount of correlations between A and B, i.e. their shared

information. For a classical probability distribution the mutual information is

equivalent to another expression, [93]:

I(A : B) = H(A)−H(A|B) ≡ H(B)−H(B|A) , (5.3)

where the conditional entropy H(A|B) = −
∑

a,b pA,B(a, b)log [pA|B(a|b)] quanti�es
the amount of information B is missing in order to have complete knowledge of A.

The following properties of the Shannon entropy are worth noting [23]:

H(A,B) = H(B,A) and H(A : B) = H(B : A) ,

0 ≤ H(A|B) ≤ H(A) ,

0 ≤ I(A : B) ≤ H(A) , (5.4)

H(A,B) ≤ H(A) +H(B) ,

H(A,B,C) +H(B) ≤ H(A,B) +H(B,C) ,

where the last property takes the name of strong subadditivity, which also implies

the positivity of the mutual information.

The quantum analog of the Shannon entropy is the Von Neumann entropy, which

quanti�es the information content of a system A as

S(A) = −Tr [ρ̂A log [ρ̂A]] = −
∑
i

λilog [λi] , (5.5)
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where the λi are the eigenvalues of the density matrix obtained via its diagonal-

ization ρ̂A =
∑

i λi|i〉〈i|. From its de�nition is implied that the Von Neumann

entropy is minimum for pure states, S(|ψA〉〈ψA|) = 0, and is maximum for the

maximally mixed state, S(I /d) = log [d], with d being the dimension of the sys-

tem's Hilbert state. Moreover, the Von Neumann entropy of a multipartite system

might be lower than the sum of the entropies of each subsystem, as in the case

of an entangled state which is pure when considered as a whole but each of its

subsystems are mixed states if considered separately. For such a state therefore

S(A,B) = 0 < S(A) = S(B) > 0.

Let's now consider two quantum systems A and B. We can establish the de�nition

of mutual information in the quantum scenario for the composite system by simply

replacing the Shannon entropy with the Von Neumann's, obtaining a measure that

quanti�es the total amount of correlations in the system:

I(A : B) = S(A) + S(B)− S(A,B) , (5.6)

where S(A,B) = −Tr [ρ̂AB log [ρ̂AB]] is the joint Von Neumann entropy of the sys-

tem. However, if we apply the same approach to the mutual information of Eq.(5.3)

we quickly realize that it leads to an ambiguous quantity, involving the conditional

state of a subsystem after a measurement is performed on the other subsystem.

As a consequence, the mutual information derived from Eq.(5.3) will be in general

di�erent from Eq.(5.6), and it will depend on which subsystem was measured, and

on the measurement strategy. Without loss of generality we assume that a mea-

surement described by the POVM Π̂k is performed on subsystem B, leading to the

observation of the outcome k. After such measurement the conditional state of

subsystem A will be

ρ̂A|k =
1

pB(k)
TrB

[
ρ̂AB I⊗Π̂k

]
, pB(k) = Tr

[
ρ̂AB I⊗Π̂k

]
. (5.7)

Using this conditional density operator we can de�ne the quantum analog of

Eq.(5.3) as

JA(A : B) = S(A)−
∑
k

pB(k)S(A|k) , (5.8)

where S(A|k) is the conditional Von Neumann entropy associated to the state in

Eq.(5.7). Eq.(5.8) can be interpreted as the information gain about subsystem

A when the measurement Π̂k is performed on subsystem B [94]. Maximization

of this quantity over all possible measurements on B corresponds to �nding the

measurement that disturbs least the overall quantum state while at the same time

providing the most information about A. The result of the maximization is the
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Figure 5.1: Individual, joint and conditional Shannon entropies for the correlated

subsystems A and B. The total mutual information is shown as well.

upper bound

CA = sup
{Π̂k}
JA(A : B) = S(A)− inf

{Π̂k}

∑
k

pB(k)S(A|k) , (5.9)

which is commonly interpreted as a measure of purely classical correlations in the

system. Finally, the di�erence of the total correlations in Eq.(5.6) and the purely

classical correlations of Eq.(5.9) gives the amount of purely quantum correlations

in the system

DA(ρ̂A,B) = I(A : B)− CA = S(B)− S(A,B) + inf
{Π̂k}

∑
k

pB(k)S(A|k) , (5.10)

�rst introduced in [94] and in [95] with the name of quantum A discord. One could

also derive the quantum B discord by considering a measurement on subsystem

A, and in general this would produce a di�erent result, DA(ρ̂ab) 6= DB(ρ̂ab). It is

worth noting that the quantum discord is a non-negative quantity [96], as a result

of the strong subadditivity of the Von Neumann entropy.

While explicit calculation of the quantum discord (QD) is feasible for speci�c fam-

ilies of discrete-variables quantum systems, like 2-qubits states [97], it is in general

a challenging task due to the maximization in Eq.(5.9), especially for CV states

[98, 99, 100]. Still, thanks to the power of the symplectic formalism introduced in

Ch.2.2, the explicit derivation of the QD becomes simpler provided that we restrict

the system to Gaussian states and operations [99, 100], as we will show in the next

Section.
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5.2 Gaussian quantum discord

In the following we restrict to two-mode Gaussian states and Gaussian operations,

therefore full characterization of the system is provided by the covariance matrices

of the states. In particular, the generic covariance matrix for a bipartite system of

single mode Gaussian states ρ̂AB can be written as [101]

σ̂AB =

(
α γ

γT β

)
, (5.11)

where α and β are the covariance matrices associated with the subsystems A and

B, while γ contains the correlations between A and B. Let's now consider a generic

local unitary transformation on the two modes associated with the symplectic

operation ŜΓ
A
⊕ ŜΓ

B
: its action on the covariance matrix, given by Eq.(2.26), results

in the following transformations on the submatrices:

α→ ŜΓ
A
α(ŜΓ

A
)T

β → ŜΓ
B
β(ŜΓ

B
)T (5.12)

γ → ŜΓ
A
γ(ŜΓ

B
)T .

From these follows that the determinants of all three submatrices, Iα = Det [α],

Iβ = Det [β] and Iγ = Det [γ], as well as the determinant of the covariance matrix

itself IAB = Det [σ̂AB], are local symplectic invariants with respect to the operation

ŜΓ
A
⊕ ŜΓ

B
. We can always �nd ŜΓ

A
and ŜΓ

B
such that the submatrices of Eq.(5.11)

be α = Diag [a, a], β = Diag [b, b] and γ = Diag [c, d]. In turn, this allows us to

express the symplectic invariants of the state in terms of the covariance matrix

elements:

Iα = a2 , Iβ = b2 , Iγ = cd ,

IAB = (ab− c2)(ab− d2) . (5.13)

Interestingly, a condition [91] on the symplectic invariants for the physicality of

ρ̂AB follows from Eq.(2.22) as

Iα + Iβ + 2Iγ ≤
1

2
+ 2IAB . (5.14)

Another important consequence of the Williamson's theorem is that it is possible to

express the eigenvalues of a generic covariance matrix, also known as the symplectic

eigenvalues, in terms of the symplectic invariants as [102]

ν2
± =

∆±
√

∆2 − 4IAB
2

, (5.15)
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where ∆ = Iα + Iβ + 2Iγ. As a �nal observation, as we pointed out in Sec.2.3,

informationally relevant quantities such as the entropy and the entanglement of a

system are invariant under local unitary transformations, therefore the quantum

discord also shares this property, being de�ned through entropic quantities. We

can express the Von Neumann entropy in terms of the symplectic eigenvalues as

[102, 103]

S(σ̂) = f(ν+) + f(ν−) , (5.16)

with f(ν) = (ν+1
2

)log
[
ν+1

2

]
− (ν−1

2
)log

[
ν−1

2

]
, and it follows that we can derive a

closed formula for the quantum discord of a generic two-mode Gaussian state from

its standard form covariance matrix, which allows us to experimentally measure it

through homodyning. From Eq.(5.19) we can see that the quantum A discord for

a generic two-mode Gaussian state depends on the Von Neumann entropies of its

measured subsystem B and of the whole system, and on the conditional entropy

of subsystem A when B is measured. The Von Neumann entropy associated with

subsystem B is easily found, as well as the Von Neumann entropy of the com-

plete system, by applying Eq.(5.16) to β and σ̂AB respectively. Calculation of the

Von Neumann entropy for the conditional state of subsystem A of Eq.(5.7) can be

obtained once we recall that we are considering only Gaussian states and Gaus-

sian operations, thus the conditional entropy is restricted to generalized Gaussian

POVMs on B. Any such measurement can be written as the POVM [104]

Π̂k =
1

π
D̂(αk) ρ̂0 D̂

†(αk) , (5.17)

where D̂(αk) is the displacement operator previously de�ned in Eq.(2.34) and ρ̂0

is the density matrix of a generally mixed single-mode Gaussian state. Once the

measurement on B is performed, the conditional state of subsystem A in Eq.(5.7)

is associated with a covariance matrix given by the Shur complement [105]

ε = α− γ(β + σ̂0)−1γ† , (5.18)

where σ̂0 is the covariance matrix associated to ρ̂0, which does not depend on the

measurement outcome k [106]. The general expression for the Gaussian quantum

A discord therefore can be derived as

DA(ρ̂ab) = f(
√
Iβ)− f(ν−)− f(ν+) + inf

σ̂0

f(
√
Det [ε]) . (5.19)

The minimization in the above expression is easily achieved as [100]

Det [ε] =


2I2γ+(Iβ−1)(IAB−Iα)+2|Iγ |

√
I2γ+(Iβ−1)(IAB−Iα)

(Iβ−1)2
(a)

IαIβ−I3γ+IAB−
√
I4γ+(IAB−IαIβ)2−I−γ2(IAB−IαIβ)

2Iβ
(b)

(5.20)
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where (a) applies if (IAB − IαIβ)2 ≤ I2
γ(Iβ + 1)(IAB + Iα) and (b) applies other-

wise.

5.3 Experiment

We may now introduce our experimental investigation of the evolution of quantum

discord in an open system [107]. We start by giving some motivations for such

study, followed by the description of the experimental setup. We �nally present

the results obtained in the cases of two-mode squeezed states and of mixtures of

coherent states.

5.3.1 Motivation

Quantum correlations play a key role as the fundamental resource required for

overcoming the classical limits on the performances of many information tasks, as

in the case of quantum metrology [2]. In some cases quantum correlations even

provide the means of performing tasks which have no classical counterpart at all,

as for teleportation [6] and quantum cryptography [5]. Traditionally entanglement

has been regarded as the only form of quantum correlations, yet it has been shown

that some quantum information tasks which require quantum correlations can in

fact be carried out using separable states, which do not contain any entanglement.

Examples range from single-qubit quantum computation [108, 109] to quantum key

distribution [110]. This raises the question whether quantum correlations in mixed

states are to be considered as the fundamental resource for quantum information

processing, and which kind of tasks require what type of quantum correlations.

As shown in the previous sections, a measure of non-classical correlations that

goes beyond entanglement in the class of separable states is the quantum discord.

Since its introduction in 2001 [94, 95], the quantum discord has been extensively

studied in order to verify whether it might be the actual source of the quantum

enhancement in mixed-state quantum information [111, 112, 113], and it has been

shown that almost all quantum states carry some discord-type correlations [114].

While entanglement is a very fragile resource, it has been shown, both in discrete

[115, 116, 117] and in continuous variable settings [118], that the quantum discord

of some states is instead robust against Markovian decoherence and in fact it can

even increase under dissipation. Along these lines, we experimentally characterize

the Gaussian discord of two-mode squeezed states and separable two-mode mix-
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Figure 5.2: Experimental setup. IR: infrared (1064 nm); SH: second harmonic (532 nm);

PM/AM: phase/amplitude electro-optical modulator; OPA: optical parametric ampli�er; BS:

beam splitter; LO: local oscillator; DAQ/SP: data acquisition/signal processing.

tures of coherent states. We analyze the evolution of the Gaussian discord in an

open quantum system described by local Markovian decoherence in the form of

Gaussian noise addition corresponding to a classical noise channel and pure atten-

uation, showing that while the discord of the two-mode squeezed states is degraded

by dissipative dynamics, in the separable state scenario the opposite behaviour is

observed.

5.3.2 Experimental setup

A schematic diagram of the experimental setup is shown in Fig.5.2. A pair of op-

tical parametric amplifers (OPAs) based on type I quasi-phase-matched PPKTP

(periodically poled potassium titanyl phosphate) cystals placed inside bow-tie cav-

ities were used to generate two independent amplitude-squeezed beams at 1064 nm.

The OPAs were weakly seeded at 1064 nm to lock the cavities and provide a refer-

ence phase for the experiment. Both OPA outputs had 3.2± 0.2 dB of squeezing

and 6.7±0.2 dB of anti-squeezing, which was measured using a homodyne detector
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Figure 5.3: Mutual information for the two-mode squeezed state. The circles repre-

sent the total correlations I (blue) and the purely classical correlations J . The solid lines are

theoretical curves �tted to the �rst data point.

with a total e�ciency of 85± 5% and electronic noise contribution of −20 dB rel-

ative to shot noise. The measurements were performed at the sideband frequency

of 4.9 MHz with a bandwidth of 90 kHz. To generate correlations in addition to

those produced in the OPAs, one of the seed beams was symmetrically modulated

with two electro-optic modulators (EOM), speci�cally an amplitude and a phase

modulator, that were driven by independent electronic noise generators. The two

OPA output beams were interfered on a balanced beam splitter and locked to a

π/2 relative squeezing phase between each other to produce a pair of quadrature

entangled beams at the beam splitter outputs. While one of the beam splitter's

output modes (mode A) was sent directly to the homodyning stage A, the other

(mode B) propagated through a dissipative channel implemented with a variable

transmissivity beam splitter (i.e. a polarizing beam splitter preceded by a half

wave plate), before entering the homodyning stage B. With such setup we could

therefore generate and investigate a variety of two-mode Gaussian states.
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Figure 5.4: Discord and entanglement for the two-mode squeezed state. a) Here is

shown the Gaussian discord versus the B mode's attenuation. b) Logarithmic negativity versus

the B mode's attenuation. The circles represent experimental data, while the solid lines are

theoretical curves obtained from the �rst data point. The error bars indicate the statistical

error.

5.3.3 Discord of two-mode squeezed states

As pointed out in section 5.2, when a bipartite Gaussian state is subject to

Gaussian operations and Gaussian measurements, its discord is easily obtainable

through the elements of its covariance matrix as in Eq.(5.19) and Eq.(5.20). By

homodyning on modes A and B we could directly measure the state's covariance

matrix elements, and use them to compute the Gaussian discord of the two-mode

squeezed state. We obtained the values for the Gaussian discord for di�erent atten-

uations of mode B, by increasing the re�ectivity of the variable beam splitter in its

path. The results are shown in Fig.5.3, where we plot the total correlations I and

purely classical correlations J versus the attenuation of mode B, and in Fig.5.4,

where we plot the Gaussian discord and logarithmic negativity versus the attenu-

ation of mode B. As expected, we observe a monotonic decrease of all quantities

[119]: As the dissipation of mode B increases, the bipartite state loses both purely

classical correlations and purely quantum correlations, resulting in the monotonic

decrease of the total correlations I. Since two-mode squeezed states are pure, they

contain entanglement-type quantum correlations, which we can quantify using the

logarithmic negativity [120]. As shown in Fig.(5.4) (b), attenuation of one of the

modes is detrimental to the entanglement content of the state. We can conclude

that dissipation a�ects negatively both the entanglement and the Gaussian discord

of two-mode squeezed states.

Adriano A. Berni 94



5.3. EXPERIMENT

5.3.4 Discord of mixtures of coherent states

As previously pointed out, the quantum discord is a measure of quantum corre-

lations that goes beyond entanglement, deep into the class of separable states.

We tested what the e�ect of dissipation is on separable mixed states, which indeed

contain a certain degree of purely quantum correlations, as we will promptly show.

In order to generate mixtures of coherent states we set both OPAs o�ine by turn-

ing o� the pumps, generating therefore vacuum states as their output. We applied

white noise amplitude and phase modulations on the seed beam of OPA1 to gen-

erate a thermal state, while we kept a vacuum as the output of OPA2. The output

modes of the OPAs were then mixed on a balanced beam splitter, whose output

was therefore a bipartite mixture of coherent states with correlations between the

amplitude and the phase quadratures. Before testing the attenuating channel on

mode B, we computed the total correlations, purely classical correlations and the

discord for increasing modulation depth (average number of thermal photons).

As shown in Fig.5.5, the discord of our mixed states was expected to increase

monotonically with the modulation depth, eventually reaching saturation for large

modulations. Instead, the experimental results followed the theoretical expecta-

tion for small modulation depths, reaching a maximum and then decreasing, thus

deviating from the predicted behavior. Such discrepancy was due to the �nite

common mode rejection ratio (CMR) between the detectors, which we measured

being 27 dB. Finite CMR results in the measurement of uncorrelated events which

simulate a classically noisy channel, where the noise intensity scales with the mod-

ulation depth. To simulate the e�ect of such classical noise channel on the discord

of our coherent mixtures, we measured the total correlations I and purely classical

correlations J for a reduced CMR of 15 dB. We observed (Fig.5.6) the transition

from a quantum regime with non-zero discord to a classical regime with near zero

discord characterized by having a high energy but �nite signal to noise ratio in the

correlations.

To study the e�ect of dissipation on the coherent state mixtures we used the

same method as in the two-mode squeezing scenario, setting the variable beam

splitter to di�erent transmissivities to simulate various dissipation levels. We per-

formed such measurement for di�erent �xed increasing modulation depths, corre-

sponding to increasing classical noise addition. From the results, shown in Fig.5.7

and Fig.5.8, we observe a decrease of the overall discord content as a function of
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Figure 5.5: Quantum discord of a mixture of coherent states as a function of the

modulation depth. Experimental data (circles) are shown for 27 dB (green) and 15 dB (blue)

of common mode rejection ratio (CMR) between homodyne detectors A and B. The solid line is

the ideal curve for in�nite CMR, while the dotted and dashed lines are theoretical curves for 27

and 15 dB CMR, respectively. The error bars indicate the statistical error.
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Figure 5.6: Total correlations I and purely classical correlations J versus the mod-

ulation depth. Solid lines represent the theoretical curves for in�nite CMR, while the circles

indicate experimental data for I (blue) and J (red), with 15 dB CMR. The dashed lines are

theoretical curves for the experimental CMR of 15 dB. The error bars indicate the statistical

error.
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Figure 5.7: Discord for di�erent modulation depths of the coherent mixture, and for

increasing attenuation of mode B. The experimental data are represented by circles, while

the solid lines represent the theoretical predictions obtained by �tting the �rst data point (zero

attenuation). Error bars indicate the statistical uncertainty. b)Mutual information I (blue) and
one-way classical information J (red) corresponding to the di�erent modulation depths. The

circles represent experimental data, while solid curves are theoretical �ts to the �rst data point

(no attenuation). Error bars indicate the statistical error.

the uncorrelated classical noise addition. yet, increasing attenuation corresponds

to an increase of the discord content which gets steeper as the modulation depth

increases. This suggests a high robustness of the discord of separable mixed states

under dissipative dynamics, in contrast with entanglement, which cannot increase

under any local transformation, let it be unitary or not [121]. The revival of the

discord under dissipative dynamics is due to two separate e�ects. For starters,

attenuation results in the attenuation of uncorrelated classical noise in mode B,

which is responsible for the near death of discord, as shown in Fig.5.5. A second

factor contributing to the discord revival is the relatively higher amplitude of mode

A, which makes the noise contribution of a measurement on mode B more signi�-

cant, thus increasing the di�erence between the information that can be obtained

through classical and quantum means.
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Figure 5.8: Mutual and one way information for coherent states mixtures. Mutual

information I (blue) and one-way classical information J (red) corresponding to the di�erent

modulation depths. The circles represent experimental data, while solid curves are theoretical

�ts to the �rst data point (no attenuation). Error bars indicate the statistical error.
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Figure 5.9: Theoretical prediction for the evolution of the Gaussian discord. Here are

shown theoretical prediction for the evolution of the Gaussian discord in the two-mode squeezed

(TWB) and the coherent mixture scenarios in an attenuating channel.

5.3.5 Conclusions

From the results of the previous section is apparent that the discord of separable

mixtures of coherent states is more robust than the one of two-mode squeezed

states when undergoing losses. It is worth noting though that the latter will ex-

hibit the highest amount of discord for any amount of Markovian loss if we consider

same probe energy scenarios, as shown in the simulations in Fig.5.9. Of course, as

the number of photons in the bipartite state increase, the pure entangled states

become more and more di�cult to produce, while the separable states only require

a higher modulation depth, which is easy to accomplish with electro-optical mod-

ulators.

In conclusion, we experimentally generated two sets of bipartite states containing

quantum correlations: a two-mode squeezed state containing entanglement and

quantum discord, and a separable mixture of coherent states containing quantum

discord but not entanglement. We showed that the discord contained in the entan-

gled state had no robustness at all when one of the modes was subject to dissipative

dynamics, while the opposite was true for the discord of the separable state, which

instead increased with the attenuation reaching a maximum after which it rapidly

vanished. We also showed that the discord of the separable states was reduced

as a consequence of uncorrelated noise addition, and that the overall content of

discord-type correlations was higher in the entangled state.
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Appendix A

Calculation of the Quantum Fisher

information

Here we derive an expression for the quantum Fisher information of a pure, phase-

shifted squeezed vacuum state (Eq.3.15). Afterwards, we extend the result to the

thermal scenario (Eq.3.31).

Let us consider a general state ρ̂ undergoing a unitary phase transformation as

de�ned in Eq.2.41

ρ̂φ = Û(φ) ρ̂ Û †(φ) , Û(φ) = Exp [−ıφn̂] .

In the following we will indicate the transformation simply as Û . In the pure

state scenario we have ρ̂φ = ρ̂2
φ because the phase transformation is unitary. As a

consequence,

∂φ
(
ρ̂2
φ

)
=
(
∂φ ρ̂φ

)
ρ̂φ + ρ̂φ

(
∂φ ρ̂φ

)
= ∂φ ρ̂φ .

Comparing this expression with the de�nition of the symmetric logarithmic deriva-

tive (Eq.3.6) allows us to retrieve an explicit form for the SLD{
∂φ ρ̂φ =

(
∂φ ρ̂φ

)
ρ̂φ + ρ̂φ

(
∂φ ρ̂φ

)
∂φ ρ̂φ = 1

2
Λ̂φ ρ̂φ +1

2
ρ̂φ Λ̂φ

⇒ Λ̂φ = 2∂φ ρ̂φ .

We may now observe that

2∂φ ρ̂φ = 2∂φ

(
Û ρ̂ Û †

)
= 2

(
(∂φÛ) ρ̂ Û † + Û(∂φ ρ̂)Û † + Û ρ̂(∂φÛ

†)
)

=

= 2
(
−ın̂Û ρ̂ Û † + ıÛ ρ̂ n̂Û †

)
= 2ı

(
ρ̂φ n̂− n̂ ρ̂φ

)
.
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Simple substitution in the de�nition of the quantum Fisher information, Eq.3.10,

leads to

H = Tr
[
ρ̂φ Λ2

φ

]
= Tr

[
Û ρ̂ Û †Û Λ̂φÛ

†Û Λ̂φÛ
†
]

=

= Tr
[
ρ̂ Λ̂2

]
= Tr

[
ρ̂ (2ı (ρ̂ n̂− n̂ ρ̂))2] =

= 4
(
〈n̂2〉ρ̂ − 〈n̂〉2ρ̂

)
= 4(∆n̂2)ρ̂ .

where we used Λ̂φ = Û Λ̂Û †, the purity of the state ρ̂φ = ρ̂2
φ and the cyclic property

of the trace. Now we can simply substitute the energy �uctuations (∆n̂2)ρ̂ for the

case of interest, i.e. a squeezed vacuum state, from Eq.2.46

H0,z = 8 cosh2(r) sinh2(r) = 2 sinh2(2r) .

In the general mixed scenario we start by expanding the state on an eigenvector

basis {|ψi〉} as

ρ̂φ =
∑
i

piÛ(φ)|ψi〉〈ψi|Û †(φ) =
∑
i

pi|ψ̃i〉〈ψ̃i| ,

where we de�ned the transformed basis |ψ̃i〉 := Û(φ)|ψi〉. Now we consider the

de�nition of the symmetric logarithmic derivative in Eq.3.6

∂φ ρ̂φ =
1

2
(Λ̂φ ρ̂φ + ρ̂φ Λ̂φ) .

Replacing the expansion of ρ̂φ in the left and right side of the above expression we

obtain respectively

∂φ ρ̂φ = ∂φ

(∑
i

piÛ(φ)|ψi〉〈ψi|Û †(φ)

)
=

= ı
∑
i,j

〈ψi|n̂|ψj〉(pi − pj)|ψ̃i〉〈ψ̃j| ,

1

2
(Λ̂φ ρ̂φ + ρ̂φ Λ̂φ) =

1

2

∑
i

pi

(
Λ̂φ|ψ̃i〉〈ψ̃i| + |ψ̃i〉〈ψ̃i|Λ̂φ

)
.

The matrix elements in the transformed basis of the SLD de�nition therefore

read

〈ψ̃h|∂φ ρ̂φ |ψ̃k〉= 1
2
〈ψ̃h|(Λ̂φ ρ̂φ + ρ̂φ Λ̂φ)|ψ̃k〉 ,

ı
∑

i,j nij(pi − pj)〈ψ̃h|ψ̃i〉〈ψ̃j|ψ̃k〉= 1
2

∑
i pi

(
〈ψ̃h|Λ̂φ|ψ̃i〉〈ψ̃i|ψ̃k〉 + 〈ψ̃h|ψ̃i〉〈ψ̃i|Λ̂φ|ψ̃k〉

)
,
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where we de�ned nij := 〈ψi|n̂|ψj〉. We can now perform the sums in the above

expression, taking advantage of the Kronecker deltas

ınhk(ph − pk) =
1

2
〈ψ̃h|Λ̂φ|ψ̃k〉(ph + pk) .

Since Λ̂φ = Û(φ)Λ̂Û †(φ), the above result yields

〈ψ̃h|Λ̂φ|ψ̃k〉 = 〈ψh|Λ̂|ψk〉 = 2ınhk
ph − pk
ph + pk

.

At this point we can explicitly calculate the quantum Fisher information as de�ned

in Eq.3.10

H(φ) = Tr
[
ρ̂φ Λ̂2

φ

]
= Tr

[
ρ̂ Λ̂2

]
=

=
∑
i,j

〈ψi|pj|ψj〉〈ψj|Λ̂2|ψi〉 =
∑
i,j,k

pjδij〈ψj|Λ̂|ψk〉〈ψk|Λ̂|ψi〉 =

=
∑
i,j,k

pjδij(2ı)
2njk

pj − pk
pj + pk

nki
pk − pi
pk + pi

= 4
∑
i,k

pi|nik|2
(
pi − pk
pi + pk

)2

,

where we used nij = n∗j,i.

In our speci�c case we deal with a squeezed thermal state, therefore we have

pi = νi =
nth

i

(nth +1)i+1
, nik = 〈i|Ŝn̂Ŝ†|k〉 ,

where we expanded the initial state in the Fock basis. We have

H = 4
∑
i,k

νi

(
νi − νk
νi + νk

)2 ∣∣∣〈i|Ŝn̂Ŝ†|k〉∣∣∣2 .
Since Ŝ is unitary, we can insert Ŝ†Ŝ = I between the creation and the annihilation

operators in n̂, so that we can take advantage of the relations in Eq.2.45 with

µ := cosh(r) and ν := eıψ sinh(r)

H = 4
∑
i,k

νi

(
νi − νk
νi + νk

)2 ∣∣∣〈i|Ŝâ†Ŝ†ŜâŜ†|k〉∣∣∣2 =

= 4
∑
i,k

νi

(
νi − νk
νi + νk

)2 ∣∣∣〈i|(µâ† + ν∗â)(µâ+ νâ†)|k〉
∣∣∣2 =

= 4
∑
i,k

νi

(
νi − νk
νi + νk

)2 [ (
µ2k + |ν|2(k + 1)

)2
δi,k +

+ k(k − 1)µ2|ν|2δi,k−2+

+ (k + 1)(k + 2)µ2|ν|2δi,k+2

]
,
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Now, thanks to the thermal factor, the terms with δi,k vanish, and we are left

with

H = 4µ2|ν|2
∑
k

νk

(
νk−2 − νk
νk−2 + νk

)2

k(k − 1)+

+ 4µ2|ν|2
∑
k

νk

(
νk+2 − νk
νk+2 + νk

)2

(k + 1)(k + 2) =

=
8(nth +1)3(2 nth +1)µ2|ν|2

nth(2 nth
2 +2 nth +1)

− 8 nth
2(2 nth +1)µ2|ν|2

2 nth
2 +2 nth +1

.

We may now replace µ and ν to obtain the �nal expression

H = 2 sinh2(2r)
(2 nth +1)2

2 nth
2 +2 nth +1
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Appendix B

Calculation of the Fisher

information

Here we calculate the classical Fisher information for homodyne detection of a

pure, squeezed vacuum state (Eq.3.19). Afterwards, we extend the result to the

thermal scenario (Eq.3.32).

We start with the de�nition of the Fisher information (Eq.3.5) applied to the case

of a unitary phase transformation

F (φ) =

∫
R
dxP (x|φ) [∂φlog [P (x|φ)]]2

where P (x|φ) is the homodyne probability distribution for the x quadrature.

In the pure state scenario the P (x|φ) is given by Eq.3.18. By replacing it in the

above expression we �nd

F (φ) =

∫
R

Exp
[
− x2

2σ0,z

]
√

2πσ0,z

∂φlog
Exp

[
− x2

2σ0,z

]
√

2πσ0,z

2

dx =

=

∫
R

Exp
[
− x2

2σ0,z

]
√

2πσ0,z

(
∂φ

(
−1

2
log [2πσ0,z]−

x2

2σ0,z

))2

dx =

=

∫
R

Exp
[
− x2

2σ0,z

]
√

2πσ0,z

(
−x

2

2
∂φ

1

σ0,z
− 1

2
∂φlog [σ0,z]

)2

dx .
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The two derivatives are easyly calculated

∂φ
1

σ0,z
= −2 sinh(2r) sin(2φ)

(σ0,z)2
,

∂φlog [σ0,z] =
2 sinh(2r) sin(2φ)

σ0,z
,

therefore we have

F (φ) =
1√

2πσ0,z

∫
R
Exp

[
− x2

2σ0,z

]
sinh2(2r) sin2(2φ)

(σ0,z)2

(
x2

σ0,z
− 1

)2

dx =

=
sinh2(2r) sin2(2φ)

(σ0,z)2
√

2πσ0,z

∫
R
Exp

[
− x2

2σ0,z

](
x4

(σ0,z)2
− 2x2

σ0,z
+ 1

)2

dx =

=
sinh2(2r) sin2(2φ)√

2π(σ0,z)5/2

(
1

(σ0,z)2

∫
R
x4e
− x2

2σ0,z dx− 2

σ0,z

∫
R
x2e
− x2

2σ0,z dx+

∫
R

e
− x2

2σ0,z dx

)
.

Calculation of the three Gaussian integrals leads to∫
R
x4e
− x2

2σ0,z dx = 3
√

2π(σ0,z)
5
2 ,∫

R
x2e
− x2

2σ0,z dx =
√

2π(σ0,z)
3
2 ,∫

R
e
− x2

2σ0,z dx =
√

2πσ0,z ,

therefore the �nal expression for the Fisher information of homodyne detection on

a phase shifted amplitude-squeezed vacuum state reads

F (φ) =
sinh2(2r) sin2(2φ)

(σ0,z)5/2

(
3
√
σ0,z − 2

√
σ0,z +

√
σ0,z
)

=
2 sinh2(2r) sin2(2φ)

(σ0,z)2
.

In the thermal scenario the covariance matrix of the phase shifted squeezed thermal

state in Eq.3.30 has the same form as in the pure case, rescaled by the thermal

factor (2 nth +1). In this case the homodyne probability distribution for the x

quadrature reads

P (x|φ) =
1√

2πσth,z
Exp

[
− x2

2σth,z

]
,

where σth,z = (2 nth +1)σ0,z. By simply applying the variable change

u =
x√

2 nth +1
−→ du =

1√
2 nth +1

dx
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the problem is reduced to the calculation of

F (φ) =

∫
R

Exp
[
− u2

2σ0,z

]
√

2πσ0,z

∂φlog
 Exp

[
− u2

2σ0,z

]
√

2π(2 nth +1)σ0,z

2

du .

Reminding the procedure for the calculation of F (φ) in the pure case, we notice

that the last remaining thermal factor in the above expression (at the denominator

in the logarithm) vanishes when we expand and derive the logarithm. As a result,

the calculation proceeds in exactly the same way as in the pure case, leading to

the same result.
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Appendix C

Calculation of posterior probability

distribution

In this section we calculate the posterior probability distribution for homodyne

detection of a squeezed thermal state.

We start from the Bayes rule, P (x|φ)P (φ) = P (φ|x)P (x), where P (φ) = 2
π
corre-

sponds to the assumption of no prior knowledge about φ and P (x) is the overall

probability of observing x. To simplify the discussion we include P (φ) and P (x)

in the normalization factor N =
∫ π/2

0
P (φ| {x}

M
)dφ. We start inverting the Bayes

rule to explicit the posterior probability distribution:

P (φ|x) =
1

N
P (x|φ) .

After M independent measurements we collect the data set {x}
M
, and the PPD

writes:

P (φ| {x}
M

) =
1

N

M∏
k=1

P (xk|φ) .

In the limit of a large number of samples, M � 1, we can write the number

of occurrences of x as MP (x|φ∗), where φ∗ is the actual (unknown) value of the
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parameter:

P (φ| {x}
M

)
M�1' 1

N
∏
x

P (x|φ)MP (x|φ∗) =
1

N
Exp

[
log

[∏
x

P (x|φ)MP (x|φ∗)

]]
=

=
1

N
Exp

[∑
x

log
[
P (x|φ)MP (x|φ∗)]] =

=
1

N
Exp

[
M
∑
x

P (x|φ∗)log [P (x|φ)]

]
M�1'

M�1' 1

N
Exp

[
M

∫ +∞

−∞
dx P (x|φ∗)log [P (x|φ)]

]
We may now substitute the homodyne probability distribution P (x|φ), 3.18:

P (φ| {x}M) =
1

N
Exp

M ∫
dx

1√
2πδ2

φ∗

e
− x2

2δ2
φ∗ log

 1√
2πδ2

φ

e
− x2

2δ2
φ

 =

=
1

N
Exp

 M√
2πδ2

φ∗

(
−1

2
log
[
2πδ2

φ

] ∫
dx e

− x2

2δ2
φ∗ − 1

2δ2
φ

∫
dx x2e

− x2

2δ2
φ∗

) =

=
1

N
Exp

−M log
[
2πδ2

φ

]
2
√

2πδ2
φ∗

∫
dx e

− x2

2δ2
φ∗

Exp
− M

2δ2
φ

√
2πδ2

φ∗

∫
dx x2e

− x2

2δ2
φ∗

 =

=
1

N
Exp

[
log
[
(2πδ2

φ)−M/2
]]
Exp

[
−
Mδ2

φ∗

2δ2
φ

]
=

1

N
1

(2πδ2
φ)M/2

e
−
Mδ2

φ∗
2δ2
φ

where we used the Gaussian integrals∫ +∞

−∞
dx e

− x2

2δ2
φ∗ =

√
2πδ2

φ∗∫ +∞

−∞
dx x2e

− x2

2δ2
φ∗ =

1

2

√
π(2δ2

φ∗)
3
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Appendix D

Bow-tie cavity

To produce squeezed light for the experiments described in Chapter 4 and Chapter

5 we use the nonlinear interaction generated in a 10 mm long PPKTP crystal de-

signed for type I parametric down-conversion (see Fig.D.1). The crystal is pumped

with a 532 nm pump beam and generates squeezed light at 1064 nm. The crystal

is characterized by a surface re�ectivity of 0.2% to reduce losses due to back-

re�ection. To enhance the down-conversion e�ciency the crystal is placed in a

0.25 m long bow-tie cavity designed to be resonant at 1064 nm. The phase match-

ing condition for the down-conversion process is ensured by a Peltier element which

keeps the crystal at optimal temperature (' 30 degrees). The incoupling mirror

is HR-coated for a re�ectivity of 0.998, while the outcoupling mirror has a lower

re�ectivity of 0.92. The cavity is characterized by ∼ 0.5% of intracavity losses, a

�nesse of ∼ 73, a bandwidth of ∼ 16 MHz and a free spectral range of ∼ 1.2 GHz.

The outcoupling e�ciency is ∼ 95%.

Three beams of light enter the cavity: a pump beam at 532 nm modulated at 12

MHz; a seed beam at 1064 nm in a TEM00 mode; a lock beam at 1064 nm in a

frequency-shifted TEM01 mode with a 25 MHz modulation.

Locking of the cavity on resonance is achieved using an AC lock. The lock beam

counter-propagates in the cavity with respect to the seed beam, and it is de-

tected by a resonant photodetector after the cavity. In order to avoid interference

between the lock beam and the seed, the lock beam is kept in a TEM01 mode

and frequency-shifted by an acousto-optical modulator to match the resonant fre-

quency of the cavity. Once the lock beam is detected, an error signal is produced

by mixing down the photodetector signal with the 25 MHz electronic oscillator.

The resulting error signal is fed to a proportional-integral controller that drives a

piezoelectric element situated on the back of the outcoupling mirror.
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PID

PID

Figure D.1: Bow-tie cavity for the generation of squeezed light. PID: proportional-

integral-derivative controller; PPKTP: periodically poled potassium titanyl phosphate; OC: out-

put coupler; IC: input coupler.
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The seed beam provides a reference for locking the squeezing phase. Locking of

the squeezing phase is accomplished via AC-lock. After the cavity the output

seed beam enters a 99/1 beam splitter, where a fraction of the light is diverted

into a resonant photodetector. The signal from such detector is mixed down with

the 12 MHz electronic oscillator that modulates the pump beam. The resulting

error signal is fed to a PI controller which drives a piezoelectric element on the

pump beam path. In this way the squeezing phase is set as the relative phase

between the pump beam and the seed in either an amplitude or a phase squeezing

con�guration.
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