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a b s t r a c t 

Magnetic resonance current density imaging (MRCDI) of the human brain aims to reconstruct the current density 

distribution caused by transcranial electric stimulation from MR-based measurements of the current-induced 

magnetic fields. So far, the MRCDI data acquisition achieves only a low signal-to-noise ratio, does not provide a full 

volume coverage and lacks data from the scalp and skull regions. In addition, it is only sensitive to the component 

of the current-induced magnetic field parallel to the scanner field. The reconstruction problem thus involves 

coping with noisy and incomplete data, which makes it mathematically challenging. Most existing reconstruction 

methods have been validated using simulation studies and measurements in phantoms with simplified geometries. 

Only one reconstruction method, the projected current density algorithm, has been applied to human in-vivo data 

so far, however resulting in blurred current density estimates even when applied to noise-free simulated data. 

We analyze the underlying causes for the limited performance of the projected current density algorithm when 

applied to human brain data. In addition, we compare it with an approach that relies on the optimization of the 

conductivities of a small number of tissue compartments of anatomically detailed head models reconstructed from 

structural MR data. Both for simulated ground truth data and human in-vivo MRCDI data, our results indicate 

that the estimation of current densities benefits more from using a personalized volume conductor model than 

from applying the projected current density algorithm. In particular, we introduce a hierarchical statistical testing 

approach as a principled way to test and compare the quality of reconstructed current density images that accounts 

for the limited signal-to-noise ratio of the human in-vivo MRCDI data and the fact that the ground truth of the 

current density is unknown for measured data. Our results indicate that the statistical testing approach constitutes 

a valuable framework for the further development of accurate volume conductor models of the head. Our findings 

also highlight the importance of tailoring the reconstruction approaches to the quality and specific properties of 

the available data. 

1

 

d  

a  

e  

f  

p  

H

(  

t  

(  

o  

T  

P  

u  

f  

h

R

A

1

(

. Introduction 

Knowledge of electrical current density ( 𝑱 ) and conductivity ( 𝜎)

istributions in the human brain is important in many neuroscience

pplications. It enables the control and optimization of the brain ar-

as targeted by transcranial brain stimulation (TBS) and is needed

or localizing neural sources from electro- and magnetoencephalogra-

hy data. Also, it might be useful for characterizing malignant tissue
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 Holdefer et al., 2006 ; Miranda et al., 2014 ; Nathan et al., 1993 ). TBS

echniques either inject weak electrical currents via scalp electrodes

transcranial direct or alternating current stimulation; tDCS, tACS)

r use electromagnetic induction (transcranial magnetic stimulation,

MS) to modulate neuronal activity ( Barker et al., 1985 ; Nitsche and

aulus, 2000 ). Stimulation targeting and dose control can be improved

sing electric field simulations in individualized head models constructed

rom structural magnetic resonance (MR) head scans of a subject (e.g.,
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hielscher et al., 2015 ). Ensuring the accuracy of the simulations is im-

ortant to prevent false conclusions about the applied stimulation pat-

ern and strength. However, this is a challenging problem that requires

easurements of the current density distribution in the human brain

o serve as ground truth, ideally using non-invasive measurement ap-

roaches that can be broadly applied both in healthy persons and pa-

ients. 

Magnetic resonance current density imaging (MRCDI) and magnetic

esonance electrical impedance tomography (MREIT) are two modali-

ies using transcranial current injections and MR imaging (MRI) to re-

onstruct current density and conductivity distributions in the brain

 Scott et al., 1991 ). In both methods, the currents are injected in syn-

hrony with an MRI pulse sequence to create a magnetic flux density dis-

ribution that changes the magnetic field of the MR scanner. As a result,

he phase of the measured MR signal is modulated by the z-component

f the current-induced magnetic flux density ( 𝐵 𝑧 ), i.e. the part that is

arallel to the static scanner field. The MR phase information thus can

e used to obtain cross-sectional images of the current-induced magnetic

ux density 𝐵 𝑧 . 

Several methods have been developed to reconstruct the current den-

ity distribution from the measured 𝐵 𝑧 images. Considering Ampere’s

aw, a unique and unambiguous reconstruction requires knowledge of

ll three components of the current-induced magnetic flux density. As

nly the 𝐵 𝑧 component parallel to the main magnetic field of the MRI

canner can be measured during an MRCDI experiment, accurate and

omplete current density mapping requires rotating the measured ob-

ect inside the scanner ( Eyübo ğlu, 2006 ; Scott et al., 1991 ; Woo and

eo, 2008 ), which is impractical for human in-vivo brain imaging. Al-

ernative methods thus aim to reconstruct the two components of the

lectrical current density that are orthogonal to the main scanner field

i.e., 𝐽 𝑥 and 𝐽 𝑦 ) from a single 𝐵 𝑧 image ( Ider et al., 2010 ; Jeong et al.,

014 ; Park et al., 2007 ). In particular, the “projected current density ”

ethod introduced by Jeong et al (2014) was used in recent studies on

n-vivo human brain MRCDI ( Chauhan et al., 2018 ; Göksu et al., 2018a ;

asinadhuni et al., 2017 ). Combined with data from diffusion tensor

maging, projected current densities estimated with this method for two

urrent injection directions (left-right and anterior-posterior) have also

een used to reconstruct the ohmic conductivity distribution in the hu-

an brain ( Chauhan et al., 2018 ). The accuracy of the reconstructed

urrent density distribution depends on both the quality of the 𝐵 𝑧 im-

ges and the properties of the reconstruction methods. Usually, their

erformances are good for simple phantoms with one or more conduc-

ivity inhomogeneities inside a homogenous background composed of

 saline solution or an agar gel with a conductivity value in the or-

er of 1 S/m ( Kwon et al., 2007 ; Oh et al., 2003 ; Park et al., 2007 ).

lso the reconstruction method used so far for in-vivo human brain

RCDI studies was validated in this way ( Jeong et al., 2014 ). How-

ver, this situation is strongly simplified compared to MRCDI measure-

ents of the human head, which has a complex anatomy and where

he brain is surrounded by the highly resistive skull and conductive

calp. 

In an earlier study ( Göksu et al., 2018b ), we observed that the re-

onstructed current densities were only coarse estimates of the cur-

ent flow in the brain even when applied to noise-free simulated data.

ere, we explore the underlying causes and reveal fundamental limita-

ions that occur when applying the projected current density method of

eong et al (2014) to 𝐵 𝑧 image of the human brain. We then explore

hether the method can be modified to achieve better reconstruction

erformance. We also test an alternative approach to estimate the cur-

ent density distribution that is based on the optimization of the con-

uctivities of an anatomically detailed head model to fit the measured

 𝑧 image. Using both simulated 𝐵 𝑧 data serving as ground truth and 𝐵 𝑧 

ata from human in-vivo measurements, we show that the alternative

pproach performs better than the projected current density method.

n particular, we advocate for systematic statistical evaluations of the

oodness of fit between measured and simulated 𝐵 𝑧 data as a principled
2 
ay to draw conclusions on the accuracy of simulations. A preprint of

his paper was published on biorxiv. 

. Material and methods 

.1. Human brain imaging 

Two healthy volunteers, who had no previous neurological and psy-

hiatric disorders, were included in this study. Written informed con-

ent was obtained from the participants prior to the scans and they

ere screened for contraindications to MRI and transcranial electric

timulation (TES). The study complied with the Helsinki declaration

n human experimentation and was approved by the Ethics Commit-

ee of the Capital Region of Denmark. We injected electrical current

ith ± 1 mA magnitude in the left-right (LR) and anterior-posterior

AP) directions via surface electrodes attached to the head. The cur-

ents were applied in synchrony with a multi-gradient-echo MR pulse

equence ( Göksu et al., 2018a ; Göksu et al., 2018b ) on a 3T MRI

canner equipped with a 64-channel head coil (Magnetom PRISMA,

iemens). We measured 𝐵 𝑧 distributions for a single slice covering the

ottom part of the brain by post processing the acquired MR phase im-

ges ( Göksu et al., 2018a ) and corrected unwanted effects of the mag-

etic stray field caused by the cable currents on the 𝐵 𝑧 measurements

 Göksu et al., 2019 ). The 𝐵 𝑧 measurements were only available for white

atter (WM), gray matter (GM), and cerebrospinal fluid (CSF) and lack

he data in the scalp and skull. The 𝐵 𝑧 measurements were denoised with

 Gaussian filter with a full width at half maximum (FWHM) value of

 pixels. 

We generated three dimensional (3D) individualized head models of

he subjects by utilizing prior structural T1- and T2-weighted measure-

ents ( Nielsen et al., 2018 ) to simulate the current density distribu-

ion in the head and the resulting magnetic field distribution caused by

he currents. As described in more detail below, we used different head

odels of increasing anatomical complexity (single compartment, three

ompartments, four compartments, five compartments, see Fig. 1 A) for

he simulations. 

.2. Forward simulations 

Current densities were calculated using the Finite Element Method

FEM) implemented in SimNIBS 3.1.0 ( Thielscher et al., 2015 ). The ini-

ial part of the study relied on the head model ernie included in the ex-

mple dataset. This volume conductor model has a high resolution and

s composed of 4.58 × 10 6 tetrahedral elements with an average volume

f 1 mm 

3 . For the later part, individual head models of the subjects with

imilarly high resolutions were reconstructed from T1-weighted and T2-

eighted structural MR images. Detailed explanations on the construc-

ion of the head model are given in ( Nielsen et al., 2018 ). 

The full models with all tissue types include five compartments (5c).

he ohmic conductivities of the 5c models were assigned as 𝜎𝑠𝑐𝑎𝑙𝑝 =
 . 465 , 𝜎𝑠𝑘𝑢𝑙𝑙 = 0 . 01 , 𝜎𝑊 𝑀 

= 0 . 126 , 𝜎𝐺𝑀 

= 0 . 275 , and 𝜎𝐶𝑆𝐹 = 1 . 654 S/m

 Fig. 1 A) ( Thielscher et al., 2011 ). In addition, we simulated anatom-

cally simplified models by combining tissue types. A single compart-

ent (1c, i.e. homogenous) model was used by setting all conductivities

o 𝜎𝑜 = 1 S/m. A model with three compartments (3c) was created by

ssigning the same conductivity 𝜎𝑖𝑛𝑠𝑖𝑑𝑒 = 0 . 34 S/m to CSF, GM and WM

olumes in the 3D head model ( 𝜎𝑠𝑐𝑎𝑙𝑝 = 0 . 465 S/m, 𝜎𝑠𝑘𝑢𝑙𝑙 = 0 . 01 S/m).

he conductivity 𝜎𝑖𝑛𝑠𝑖𝑑𝑒 was calculated by taking the average conduc-

ivity of the region composed of WM, GM, and CSF volumes, weighted

ccording to their relative volumes, in the slice being imaged. Finally, a

odel with four compartments (4c) was created by combining GM and

M volumes in the 3D head model with a conductivity of 𝜎𝑏𝑟𝑎𝑖𝑛 = 0 . 18
/m that was determined as the average of 𝜎𝑊 𝑀 

and 𝜎𝐺𝑀 

in the im-

ged slice ( 𝜎𝑠𝑐𝑎𝑙𝑝 = 0 . 465 , 𝜎𝑠𝑘𝑢𝑙𝑙 = 0 . 01 S ∕m , 𝜎CSF = 1 . 654 ). In all models,

e injected electrical current with 1 mA magnitude in LR and AP direc-

ions to calculate 𝑱 distributions in the brain using FEM for numerically
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Fig. 1. Current density reconstruction for a LR current injection. (A) Volume conductor models of the head with different levels of anatomical detail (1c, 3c, 4c, and 

full models). The results are shown for an axial slice of these models. (B) The conductivity distribution 𝜎 of the full model used as ground truth and the corresponding 

simulated |𝑱 true 
xy 

| and 𝐵 𝑡𝑟𝑢𝑒 
𝑧 

distributions are shown in columns 1-3. The current density distribution |𝑱 rec 
xy 
| that was reconstructed from 𝐵 𝑡𝑟𝑢𝑒 

𝑧 
by the projected current 

density algorithm is shown in column 4. (C) Conductivity, current density and magnetic field distributions for the homogenous (1c) head model that was used in the 

projected current density algorithm. The current injection scheme is shown in column 4. The electrodes have a rectangular shape with a size of 4 × 7 mm 

2 and they 

are centered at positions C6 (right, visible in the image) and C5 (mirrored position to C6 on the left side) according to the EEG 10-20 system. (D) Visualization of 

the terms that are neglected and included, respectively, in the projected current density algorithm (see Eq. 3 ) for the 1c head model. 

s  

2  

c  

T  

t

𝐵

w  
olving the Laplace equation for the electric potential ( Saturnino et al.,

019a ). The current-induced 𝑩 distributions were determined from the

urrent density by applying the Biot–Savart law using the Fast Fourier

ransform ( Yazdanian et al., 2020 ). In particular, the z-component of

he current-induced magnetic flux density 𝐵 is given by 
𝑧 
h  

3 
 𝑧 ( 𝒑 ) = 

𝜇𝑜 

4 𝜋 ∫
𝑉 

𝐽 𝑥 
(
𝑦 − 𝑦 ’ 

)
− 𝐽 𝑦 

(
𝑥 − 𝑥 ’ 

)
||𝒑 − 𝒑 ’ ||3 𝑑 𝒑 ’ , (1) 

here 𝒑 = [ 𝑥, 𝑦, 𝑧 ] is the position at which 𝐵 𝑧 is evaluated, 𝑉 denotes the

ead model and 𝒑 ′ = [ 𝑥 ′, 𝑦 ′, 𝑧 ′] are positions inside 𝑉 . 𝑱 = [ 𝐽 𝑥 , 𝐽 𝑦 , 𝐽 𝑧 ] is
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m  
he current density in the head model and constant 𝜇𝑜 is the magnetic

ermeability of free space. For all models, we first calculated the 𝑱 and

 𝑧 distributions in the 3D head volumes, then we coregistrated them to

he imaged slice. 

In addition, we aimed to test how much the projected current density

 

rec , reconstructed in the imaging slice using the projected current den-

ity algorithm ( Eq. (2) below), changes the simulated current-induced

 𝑧 distributions. For that, we substituted the calculated 𝑱 distributions

y 𝑱 rec at the positions corresponding to CSF and brain in the imaging

lice before determining the current-induced 𝑩 distribution by using (1).

.3. Projected current density algorithm 

The projected current density algorithm introduced by

eong et al. (2014) reconstructs a current density distribution 𝑱 rec 

rom a 𝐵 𝑧 image 

 

rec = 𝑱 𝑜 + 

1 
𝜇𝑜 

[ 

𝜕 
(
𝐵 𝑧 − 𝐵 

𝑜 
𝑧 

)
𝜕𝑦 

, 
− 𝜕 

(
𝐵 𝑧 − 𝐵 

𝑜 
𝑧 

)
𝜕𝑥 

, 0 

] 

, (2) 

sing simulated current densities 𝑱 𝑜 = [ 𝐽 𝑜 
𝑥 
, 𝐽 𝑜 

𝑦 
, 𝐽 𝑜 

𝑧 
] and magnetic flux

ensities 𝐵 

𝑜 
𝑧 

that are based on a volume conductor model of the sub-

ect. In the original form of the algorithm, 𝑱 𝑜 and 𝐵 

𝑜 
𝑧 

are obtained for

 model with a homogeneous conductivity 𝜎𝑜 (1c) and the outer shape

f the imaged object ( Fig. 1 B). The reconstructed current density distri-

ution 𝑱 rec is then composed of a smooth and curl-free component 𝑱 𝑜 

hat is superimposed onto a high contrast component based on direc-

ional derivatives of 𝐵 𝑧 − 𝐵 

𝑜 
𝑧 
. The latter scales with the local difference

etween measured and simulated magnetic flux densities. 

The algorithm can be easily derived from Ampère’s law. The un-

nown true current density 𝑱 that gives rise to the magnetic field 𝑩 can

e written as: 

 = 𝑱 𝑜 + ( 𝑱 − 𝑱 𝑜 ) = 𝑱 𝑜 + 

1 
𝜇𝑜 

( ∇ × 𝑩 − ∇ × 𝑩 

𝑜 ) 

= 𝑱 𝑜 + 

1 
𝜇𝑜 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜕 ( 𝐵 𝑧 − 𝐵 𝑜 𝑧 ) 
𝜕𝑦 

− 

𝜕 

(
𝐵 𝑦 − 𝐵 𝑜 𝑦 

)
𝜕𝑧 

𝜕 ( 𝐵 𝑥 − 𝐵 𝑜 𝑥 ) 
𝜕𝑧 

− 

𝜕 ( 𝐵 𝑧 − 𝐵 𝑜 𝑧 ) 
𝜕𝑥 

𝜕 

(
𝐵 𝑦 − 𝐵 𝑜 𝑦 

)
𝜕𝑥 

− 

𝜕 ( 𝐵 𝑥 − 𝐵 𝑜 𝑥 ) 
𝜕𝑦 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (3) 

As we only measure 𝐵 𝑧 , our best possible assumption about the

patial derivatives of the two unknown components of 𝑩 are 𝜕 𝐵 𝑥 ∕ 𝜕𝑧 ≈
 𝐵 

𝑜 
𝑥 ∕ 𝜕𝑧 and 𝜕 𝐵 𝑦 ∕ 𝜕𝑧 ≈

𝜕 𝐵 

𝑜 
𝑦 ∕ 𝜕𝑧 . In this case, Eq. (3) simplifies to Eq. (2) .

or example, this assumption will approximately hold in phantoms that

s uniform along the z-direction and in which the z-component of the

njected current can be kept small. 

The algorithm is straightforward to implement and can be applied to

ingle cross-sectional simulated 𝐵 𝑧 images in case of limited volume cov-

rage. In contrast to the original projected current density method that

mploys a second-order Laplacian operator ( Park et al., 2007 ), the mod-

fied variant proposed by Jeong et al. (2014) relies only on first-order

patial derivatives of the 𝐵 𝑧 image data. This reduces the amplification

f high-frequency noise by the derivative operations and potentially im-

roves the quality of the reconstructed current density images from 𝐵 𝑧 

ata with lower signal-to-noise ratios (SNR). In addition, the method in-

roduced by Jeong et al. (2014) only requires local derivative operations,

aking it applicable to data from objects that contain large regions with

ow or no signal such as the human head with the skull and air cavities.

n the downside, an error analysis by Jeong et al. (2014) suggests that

he simplified method will likely suffer from higher reconstruction errors

or high SNR 𝐵 𝑧 images compared to the original approach suggested in

 Park et al., 2007 ). 

.4. Error metrics 

We evaluated the difference between a current density 𝑱 xy and a

eference current density 𝑱 
ref 
xy using the relative root mean square (RMS)
4 
ifferences: 

𝐽𝑥𝑦 = 

√ √ √ √ √ √ √ 

∑𝑁 

𝑖 =1 

[ (
𝐽 𝑥 ( 𝑖 ) − 𝐽 

𝑟𝑒𝑓 
𝑥 ( 𝑖 ) 

)2 
+ 

(
𝐽 𝑦 ( 𝑖 ) − 𝐽 

𝑟𝑒𝑓 
𝑦 ( 𝑖 ) 

)2 
] 

∑𝑁 

𝑖 =1 

(
𝐽 
𝑟𝑒𝑓 
𝑥 ( 𝑖 ) 2 + 𝐽 

𝑟𝑒𝑓 
𝑦 ( 𝑖 ) 2 

) × 100% (4)

Here, 𝑖 is the pixel index and 𝑁 is the number of pixels inside the

easured region composed of WM, GM and CSF. Please note that we re-

tricted the comparison to the x- and y-components of the current flow,

s only those influence the z-component of the magnetic flux density

 𝑧 measured by MRI and as only the x- and y-components of the cur-

ent density are changed by the projected current density algorithm.

or completeness, we also evaluated the difference between 𝐽 𝑧 and the

-component of a reference current density 𝐽 
𝑟𝑒𝑓 
𝑧 in selected cases as 

𝐽𝑧 = 

√ √ √ √ √ √ √ 

Σ𝑁 

𝑖 =1 

(
𝐽 𝑧 ( 𝑖 ) − 𝐽 

𝑟𝑒𝑓 
𝑧 ( 𝑖 ) 

)2 

Σ𝑁 

𝑖 =1 

(
𝐽 
𝑟𝑒𝑓 
𝑧 ( 𝑖 ) 

)2 × 100% . (5)

In addition, we quantified the differences between the z-component

f the current induced magnetic flux density 𝐵 𝑧 and a reference case

 

𝑟𝑒𝑓 
𝑧 as 

𝐵 𝑧 
= 

√ √ √ √ √ √ √ 

Σ𝑁 

𝑖 =1 

(
𝐵 𝑧 ( 𝑖 ) − 𝐵 

𝑟𝑒𝑓 
𝑧 ( 𝑖 ) 

)2 

Σ𝑁 

𝑖 =1 

(
𝐵 

𝑟𝑒𝑓 
𝑧 ( 𝑖 ) 

)2 × 100% . (6)

Finally, we calculated relative noise floors ( 𝑛𝑓 , the inverse SNR) for

he experimentally measured current-induced 𝐵 𝑧 images as 

𝑓 = 

√ √ √ √ √ 

Σ𝑁 

𝑖 =1 
(
𝐵 

𝑚 @0 𝑚𝐴 
𝑧 

( 𝑖 ) 
)2 

Σ𝑁 

𝑖 =1 
(
𝐵 

𝑚 
𝑧 
( 𝑖 ) 
)2 × 100% , (7)

here 𝐵 

𝑚 
𝑧 

and 𝐵 

𝑚 @0 𝑚𝐴 
𝑧 

are the measured 𝐵 𝑧 fields with and without

urrent injection, respectively. 

.5. Optimization of conductivities 

As alternative approach for estimating current densities from mag-

etic flux densities, we tested optimizing the tissue-specific conductivi-

ies 𝝈 = [ 𝜎WM 

, 𝜎GM 

, 𝜎CSF , 𝜎scalp , 𝜎skull ] with the goal to minimize the error

𝐵 𝑧 
between the simulated magnetic flux density 𝐵 𝑧 given by the head

odels and the reference 𝐵 

𝑟𝑒𝑓 
𝑧 . We formulated a constrained optimiza-

ion problem as 

ini mize 𝛿𝐵 𝑧 = 

√ √ √ √ √ 

Σ𝑁 
𝑖 =1 

(
𝐵 𝑧 ( 𝝈, 𝑖 ) − 𝐵 

ref 
𝑧 ( 𝑖 ) 

)2 
Σ𝑁 
𝑖 =1 

(
𝐵 

ref 
𝑧 ( 𝑖 ) 

)2 × 100% 

subj ect to 

𝝈low < 𝝈 < 𝝈high 

, (8) 

here vectors 𝝈low and 𝝈high contain the lower and higher bounds for the

o-be-optimized tissue conductivities. The choices of these bounds are

etailed below. We solved (8) for 𝝈 using the sequential least squares

rogramming (SLSQP) algorithm ( Kraft, 1988 ), implemented in the opti-

ize module of SciPy v1.7.0 ( Virtanen et al., 2020 ). SLSQP is an iterative

lgorithm for solving non-linear constrained optimization problems. At

ach iteration of the algorithm, a quadratic approximation of the cost

unction is derived with respect to a linear approximation of the con-

traints. The approximated sub-problem is solved for an updated search

irection and the optimal step-size is found by substituting the updated

earch direction in a quadratic search method. The parameters of the

ost function are updated by using the optimized step-size and search

irections. 

Initially, we used the simulated magnetic flux density of the full

odel with all tissue types as reference to confirm the stability of the
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ptimization approach. Subsequently, measured 𝐵 𝑧 images from the hu-

an imaging data served as reference. We implemented constraints on

he conducitivities to reduce the likelihood of overfitting that could

ccur, e.g. in case of systematic differences of the volume conductor

odels to the true head anatomy. For the 3c model, we constrained

𝑠𝑐𝑎𝑙𝑝 , 𝜎𝑠𝑘𝑢𝑙𝑙 and 𝜎𝑖𝑛𝑠𝑖𝑑𝑒 to the ranges [ 0 . 2 < 𝜎𝑠𝑐𝑎𝑙𝑝 < 1, 0 . 003 < 𝜎𝑠𝑘𝑢𝑙𝑙 <

 . 03 , 0 . 2 < 𝜎𝑖𝑛𝑠𝑖𝑑𝑒 < 0 . 95 ] S/m. For the 4c model, we used the ranges

 0 . 2 < 𝜎𝑠𝑐𝑎𝑙𝑝 < 1 , 0 . 003 < 𝜎𝑠𝑘𝑢𝑙𝑙 < 0 . 03 , 1 . 2 < 𝜎𝐶𝑆𝐹 < 1 . 9 , 0 . 05 < 𝜎𝑏𝑟𝑎𝑖𝑛 <

 . 95 ] S/m. We also fitted the full model with five conductivities (5c)

o human imaging data by using the ranges [ 0 . 2 < 𝜎𝑠𝑐𝑎𝑙𝑝 < 1 , 0 . 003 <
𝑠𝑘𝑢𝑙𝑙 < 0 . 03 , 1 . 2 < 𝜎𝐶𝑆𝐹 < 1 . 9 , 0 . 05 < 𝜎𝑊 𝑀 

< 0 . 95 , 0 . 05 < 𝜎𝐺𝑀 

< 0 . 95 ]
/m. For the 5c model, we imposed 𝜎𝐺𝑀 

> 𝜎𝑊 𝑀 

as an additional con-

traint. For the 5c model, the ranges were chosen to well include the

onductivities reported in studies that measured relatively fresh or live

issue, preferably human at low frequencies (0–100 kHz) near body tem-

erature (Table 1 in Saturnino et al., 2019b ). The ranges of the combined

issue regions of the 3c and 4c models were chosen correspondingly us-

ng volume-weighted averages of the ranges for the tissues of the 5c

odel. We initialized the optimization algorithm with [ 𝜎𝑠𝑐𝑎𝑙𝑝 = 0 . 465 ,
𝑠𝑘𝑢𝑙𝑙 = 0 . 01 , 𝜎𝑖𝑛𝑠𝑖𝑑𝑒 = 0 . 34 ] S/m for the 3c model and [ 𝜎𝑠𝑐𝑎𝑙𝑝 = 0 . 465 ,
𝑠𝑘𝑢𝑙𝑙 = 0 . 01 , 𝜎𝑏𝑟𝑎𝑖𝑛 = 0 . 18 ] S/m for the 4c model and [ 𝜎𝑠𝑐𝑎𝑙𝑝 = 0 . 465 ,
𝑠𝑘𝑢𝑙𝑙 = 0 . 01 , 𝜎𝐶𝑆𝐹 = 1 . 654 , 𝜎𝑊 𝑀 

= 0 . 126 , 𝜎𝐺𝑀 

= 0 . 275 ] S/m for the 5c

odel. 

It is worth noting that without additional knowledge of the total

esistance between the two stimulation electrodes, the tissue conductiv-

ties are only determined up to a common scaling factor. That is, for

 head model with N tissue compartments, only N-1 conductivity ra-

ios are uniquely determined via the optimization algorithm. We could

ave directly optimized N-1 conductivity ratios instead. However, this

ould have required the choice of an arbitrary “reference ” tissue and

ould have made the use of biologically plausible conductivity ranges

s constraints in the optimization difficult. 

Applying the optimization algorithm requires the repeated evalua-

ion of 𝐵 𝑧 for varying conductivities of the head models. This is compu-

ationally expensive when it is based on FEM simulations for obtaining

he current densitiy 𝑱 and subsequent solving of the Biot–Savart law us-

ng the Fast-Fourier Transform. Therefore, we employed a non-intrusive

eneralized polynomial chaos (gPC) expansion for the fast evaluation

f 𝐵 𝑧 as a function of the conductivities (scalp, skull, CSF, GM, WM)

 Codecasa et al., 2015 ; Ghanem et al., 2017 ; Saturnino et al., 2019b ;

iener, 1938 ). For the gPC expansions, we used a Jacobian polynomial

asis set with a maximum order of 10 and sampled the conductivities by

sing uniform probability density functions. We selected the conductiv-

ty ranges of the gPC expansions slightly larger than the corresponding

ounds of the optimization algorithm in order to ensure sufficient ac-

uracy of the 𝐵 𝑧 fields across the tested conductivity range. We used K-

old cross validation with 𝐾 = 10 for the evaluation of the relative error

etween the 𝐵 𝑧 fields obtained from the forward simulations and gPC

xpansions, and set the relative error of the gPC method to 1%. Training

f the gPC converged after ∼250 FEM simulations. Using the gPC model,

e were then able to reevaluate the 𝐵 𝑧 fields in the complete head model

s a function of the conductivity parameters with a computation time

n the order of a few seconds. The relative error of 1% that was ensured

y the training procedure using cross validation corresponds well to the

ctual error when applying the gPC later on to reevaluate 𝐵 𝑧 (Fig. S11

xemplarily compares the results obtained with the gPC expansion ver-

us the forward simulations using FEM and Biot Savart Law for a few

elected conductivity combinations). For further details on our gPC im-

lementation, please refer to ( Saturnino et al., 2019b ). 

.6. Statistical testing 

Taking the measured current-induced 𝐵 𝑧 images from the human

maging data as reference, we assessed the differences 𝛿𝐵 𝑧 ( Eq. 6 ) be-

ween the simulated and measured 𝐵 𝑧 data as an indication of the qual-

ty of the simulations. First, we evaluated the quality of models with
5 
xed pre-determined conductivities. For that, we compared two simu-

ations obtained from a simple and a more complex model (e.g., 1c and

c) by calculating Δ𝛿𝐵 𝑧 
= 𝛿

𝐵 1 𝑧 
− 𝛿

𝐵 2 𝑧 
, where 𝛿

𝐵 1 𝑧 
denotes the error of the

impler model and 𝛿
𝐵 2 𝑧 

denotes the error of the more complex model.

ur hypothesis was that the simpler model has a higher error compared

o the more complex model, i.e., that the difference Δ𝛿𝐵 𝑧 
is positive.

o test this hypothesis formally, we first generated a null distribution

 𝑜 of error differences that could occur by random chance (i.e., if there

as no systematic difference between the errors of simpler and more

omplex models) and then compared our observed error difference to

hat distribution. This null distribution 𝐻 𝑜 was generated by taking the

wo simulated 𝐵 𝑧 images, one from the simpler and one from the more

omplex model, switching voxels in between the two randomly, and

alculating the error difference Δ𝛿𝐵 𝑧 
. The random switching of voxels

stablishes the difference between the errors we would observe if we

ssumed that the simpler and more complex models can reconstruct the

ata equally well. We repeated the random switching of voxels between

he two simulated 𝐵 𝑧 images 10,000 times which generates 10,000 sam-

les of the error difference Δ𝛿𝐵 𝑧 
. As we hypothesized that the error dif-

erence should be positive, we then calculated a one-sided p -value (right

ail) by computing the fraction of the random samples where the differ-

nce was greater than the observed true difference between the errors.

ignificance was then assessed at 𝑝 = 0 . 01 , Bonferroni corrected for mul-

iple comparisons. 

Furthermore, in order to also systematically compare head mod-

ls with optimized conductivities, we adapted the statistical approach

lightly. Fitting the conductivities requires the measurement data so that

he error defined in Eq. (8) can be minimized. To perform unbiased test-

ng, we split the data randomly to training (80%) and testing (20%)

arts. We again repeated this random splitting 10,000 times, and for

ach split first optimized the conductivities on 80% of the data and then

alculated 𝛿𝐵 𝑧 on the remaining 20%. This gave us 10,000 𝛿𝐵 𝑧 values for

he simpler and more complex models, from which we calculated the er-

or differences Δ𝛿𝐵 𝑧 
= 𝛿

𝐵 1 𝑧 
− 𝛿

𝐵 2 𝑧 
. Here we again hypothesized that the

impler model would have a higher error compared to more complex

ne, as the more complex model has more degrees-of-freedom to fit the

ata. Thus, similar to the strategy outlined in the previous paragraph,

e calculated a one-sided (left tail) p -value by assessing the proportion

f the samples where the difference was smaller than zero and tested for

ignificance at 𝑝 = 0 . 01 , Bonferroni corrected for multiple comparisons.

e used the same procedure to compare the conductivity-optimized 3c

ead model with the 1c head model, however keeping the conductivity

f the 1c model fixed and only repeatedly optimizing the 3c model. 

.7. Data and code availability 

The original MR data cannot be made publicly available due to pri-

acy restrictions. The largest part of the methods is publicly available

ia our project homepage www.simnibs.org . This includes the methods

or building the head volume conductors from structural MR images,

orward simulations of the current densities and current-induced mag-

etic fields and non-intrusive generalized polynomial chaos expansions

or fast re-evaluation of the current-induced magnetic fields in case of

hanging conductivities. The scripts for statistical testing were devel-

ped to address our immediate research needs, but not as easy-to-use

oftware for dissemination and will therefore not be made publicly avail-

ble at the current time point. 

. Results 

In the following, we start by characterizing the performance of the

standard ” projected current density algorithm, using simulated ground

ruth data as reference. We then assess whether the reconstruction ac-

uracy of the algorithm can be improved by using more realistic vol-

me conductor models, and test how sensitive the reconstructed current

ensity is to errors of the head models when the latter become more

http://www.simnibs.org
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etailed. We continue by evaluating the performance of an alternative

pproach to estimate the current density that is based on optimizing the

onductivities of detailed volume conductor models to maximize the fit

f the simulated and the reference 𝐵 𝑧 data. Complementing our initial

ssessments based on simulated data, we test the two approaches for 𝐵 𝑧 

ata obtained from MR imaging of the human brain. In particular, we

ntroduce a hierarchical statistical testing approach as a principled way

o test and compare the quality of reconstructed current density images

hat accounts for the limited signal-to-noise ratio of measured 𝐵 𝑧 data

nd the fact that the ground truth of the current density is unknown in

eality. 

.1. Projected current density algorithm based on a homogenous (1c) head 

odel 

Fig. 1 B shows the conductivity distribution 𝜎 in an axial slice through

 realistic head model (first column) and the simulated current den-

ity distribution |𝑱 true 
xy | for a left-to-right (LR) current injection (second

olumn). The z-component 𝐵 

𝑡𝑟𝑢𝑒 
𝑧 

of the magnetic field arising from the

njected current flow is shown in the third column. In practice, MRI

easures 𝐵 𝑧 only inside CSF and the brain, which is considered here by

pplying a corresponding mask. Applying the standard projected cur-

ent density algorithm to the 𝐵 𝑧 distribution results in the reconstructed

urrent distribution |𝑱 rec xy | shown in the fourth column of Fig. 1 B. It

s obvious that the reconstructed current density differs strongly from

he true simulated current density distribution inside the cranial cav-

ty both in terms of its spatial pattern and average strength (R 

2 = 0.22

etween |𝑱 true 
xy | and |𝑱 rec xy |; average strengths: |𝑱 true 

xy | 0.039 A/m 

2 , |𝑱 rec xy |
.058 A/m 

2 ). In particular, |𝑱 rec xy | fails to capture the spatial details of

he current flow, even those that originate from large anatomical struc-

ures such as the ventricles. In contrast, the spatial pattern of |𝑱 rec xy | is

ore similar to the current flow |𝑱 𝑜 xy | inside a homogeneous conduc-

or ( Fig. 1 C, second column; R 

2 = 0.68 between |𝑱 𝑜 xy | and |𝑱 rec xy |, average

trength of |𝑱 𝑜 xy |: 0.068 A/m 

2 ). This shows that the results of the pro-

ected current density algorithm are dominated by the simulated current

ensity 𝑱 𝑜 ( Eq. 2 ), and are less influenced by the actually measured

 𝑧 data. The reason for this low performance gets apparent when vi-

ualizing the terms that are neglected in the projected current density

lgorithm (see Eq. 3 ) as they involve the non-measurable 𝐵 𝑥 and 𝐵 𝑦 

omponents of the magnetic field (first and second column of Fig. 1 D).

or the simulated head anatomy, the neglected terms are as strong and

ven stronger than the included terms that depend on the measured 𝐵 𝑧 

omponent (third and fourth column of Fig. 1 D), which prevents a rea-

onable reconstruction of the true current density distribution. 

The projected current density algorithm shows similar performance

or an anterior-to-posterior (AP) current direction (rows one and two

f Fig. S1A). Very similar results were also obtained when using a

ead model as ground truth that incorporated anisotropic brain con-

uctivity, derived from diffusion MR data (Fig. S2A-C). These control

esults confirm the limited applicability of the algorithm for realistic

ead anatomies. In contrast, the algorithm performs better for a volume

onductor that is uniform along the z-axis, as the neglected terms are

lose to zero in this case (row three in Fig. S3). For this simplified “head ”

odel, |𝑱 rec xy | captures the spatial details of |𝑱 true 
xy |, especially through-

ut the ventricles ( R 

2 = 0.63 between |𝑱 true 
xy | and |𝑱 rec xy |; average strengths:

𝑱 true 
xy | 0.035 A/m 

2 , |𝑱 rec xy | 0.032 A/m 

2 ). The remaining differences show

ostly up as blurring, caused by a limited numerical accuracy of the

radient calculations in Eq. (2) . This effect has also been observed in

revious studies using simplified phantoms ( Sajib et al., 2012 ). 

.2. Projected current density algorithm based on inhomogeneous head 

odels 

Using more realistic volume conductor models of the head can help

o make the simulated 𝑱 𝑜 more similar to the true current density. By
6 
hat, the strength of the terms that are neglected in the projected cur-

ent density algorithm will also be reduced. In the following, we tested

hether this helps to improve the performance of the algorithm. For

hat, the reconstructed current densities were compared when using

hree different head models to calculate 𝑱 𝑜 : 1) A model with a single

ompartment (1c) as used in the original algorithm. 2) A model with

hree compartments corresponding to scalp, skull and the cranial cavity

3c in Fig. 2 B). 3) A model with four compartments corresponding to

calp, skull, CSF and the brain (4c in Fig. 2 B). Please see the Methods

ection for the choice of the conductivities for the 3c and 4c models. 

Expectedly, the reconstructed current density (4 th column in Fig. 2 B)

pproaches the true current density distribution ( Fig. 2 A) when the head

odels get closer to the full model used as reference. For example, the

urrent density in the brain is clearly overestimated close to the elec-

rodes when using the 1c model that does not account for the “shield-

ng ” effects of the low-conductive skull. This effect is mostly corrected

y using the 3c model, but only the 4c model also achieves a reasonable

stimation of the current density around the ventricles and in the sulci.

valuation of the RMS errors 𝛿𝐽𝑥𝑦 ( Eq. 4 ) for the 1c, 3c and 4c models

 Fig. 3 A) reveals that most of the improvement resulted from the better

odels used to calculate 𝑱 𝑜 , while the projected current density algo-

ithm causes only little additional improvement. The underlying reason

s that the neglected terms are still very strong even for the more de-

ailed models ( Fig. 2 C shows all terms for the 3c model as example).

or the 3c model, the algorithm reconstructs some of the details of the

urrent flow in the brain that are missing in the underlying 𝑱 𝑜 xy distri-

ution (second row of Fig. 2 B). However, this results only in a small

verall improvement in 𝛿𝐽𝑥𝑦 ( Fig. 3 A). A visual inspection of the spatial

istribution of the reconstruction error revealed that the projected cur-

ent density algorithm decreased the error in many parts of the brain,

ut also resulted in localized increases at several positions, in partic-

lar around the sulci (data not shown). For confirmation, an anterior-

o-posterior current direction was also tested (Figs. S1 and S4), giving

imilar results. 

While using more realistic head models seems straightforward to re-

uce the reconstruction error, it is important to note that these models

till include errors, e.g. due to inaccurate segmentations of the structural

R images or incorrectly chosen ohmic tissue conductivities which de-

iate from their unknown ground truth. That is, more detailed head

odels will result in current density distributions appearing realistic

ith more spatial high frequency content, but which are not necessar-

ly closer to the real current density distribution. In the following, it

s therefore tested how robustly improvements can be obtained when

he head model for the 𝑱 𝑜 simulations differs from the real volume con-

uctor and whether the projected current density algorithm is helpful

o correct errors introduced by deviations of the head models from the

round truth. 

Fig. 3 A shows the RMS errors 𝛿𝐽𝑥𝑦 for selected variations of the

natomy of the 4c model, namely overall thinner and thicker skulls (af-

ecting the amount of current entering the cranial cavity) and opened

nd closed sulci (affecting the amount of well-conductive CSF in the

ulci and by that the local current flow distribution). While varying the

kull thickness changed the current flow only little, modifying the sulci

ncreased the error almost to the level of the 3c model (Fig. S5 shows the

orresponding |𝑱 𝑜 xy | and |𝑱 rec xy |). Fig. 3 B depicts the RMS errors for the

omogenous, 3c and 4c models when varying selected conductivities

f the full model that was used as ground truth. The scalp conductiv-

ty of the full model was set to half and double of the standard value,

nd the conductivities of GM and WM were halved and doubled. In all

ases, the 3c and 4c models maintained a better performance than the

c model. Both for the tested variations of anatomy and conductivity,

he projected current density algorithm achieved no or only moderate

mprovements. In particular, changing to anatomically more accurate

ead models resulted in stronger improvements than those that could

e obtained by using the algorithm. It is also worth noting that the dif-

erences between the results of the 1c, 3c and 4c models were larger
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Fig. 2. Current density reconstructions based on different head models for a LR current injection. (A) The conductivity distribution 𝜎 of the full model used as ground 

truth and the corresponding simulated |𝑱 true 
xy 

| and 𝐵 𝑡𝑟𝑢𝑒 
𝑧 

distributions. (B) Results for the 1c, 3c and 4c head models. Columns 1-3 show the conductivity distributions 

and the simulated |𝑱 𝑜 
xy 
| and 𝐵 𝑜 

𝑧 
distributions. Column 4 depicts the current densities |𝑱 rec 

xy 
| that were reconstructed by the projected current density algorithm with 

the corresponding head model. (C) Visualization of the terms that are neglected and included, respectively, in the projected current density algorithm based on the 

3c head model. 
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han the effects caused by modeling brain conductivity as anisotropic

s isotropic (Fig. S2D). Thus, isotropic conductivities were used for all

issue compartments. 

.3. Optimization of the tissue conductivities of the inhomogeneous head 

odels 

The above results indicate that the fit between the estimated and

rue current densities can be improved more by choosing an appropriate
7 
olume conductor model than by applying the projected current density

lgorithm. A straightforward approach to estimate the current density

istribution is thus to use the measured 𝐵 𝑧 data to optimize the tis-

ue conductivities of anatomically detailed volume conductor models

hat are determined via the segmentation of structural MR data. The

ollowing section provides a basic proof-of-concept that this optimiza-

ion approach can successfully account for conductivity changes of the

ull model used as ground truth. The performance for volume conduc-

or models that differ in the amount of anatomical detail is also tested
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Fig. 3. RMS errors 𝛿𝐽𝑥𝑦 of different head models for a LR current injection, with and without applying the projected current density algorithm. Solid and dashed 

lines represent the 𝛿𝐽𝑥𝑦 values for the 𝑱 𝑜 
xy 

and 𝑱 rec 
xy 

distributions, respectively. (A) Dependence of 𝛿𝐽𝑥𝑦 on the anatomical level of detail of the head model (1c, 3c and 

4c models) and on segmentation errors of the 4c model. (B) Dependence of 𝛿𝐽𝑥𝑦 on variations of the conductivity of the full model that was used as ground truth. 
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nd it is assessed how the presence of inaccurate segmentations impacts

econstruction performance. 

It can be exemplarily seen in Fig. 2 A and B that the similarity of the

stimated and true current density distributions 𝑱 𝑜 xy and 𝑱 true 
xy co-vary

ith the similarity between 𝐵 

𝑜 
𝑧 

and 𝐵 

𝑡𝑟𝑢𝑒 
𝑧 

when changing between the 1c,

c and 4c models. This is also revealed in the corresponding co-variation

etween the RMS errors 𝛿𝐽𝑥𝑦 and 𝛿𝐵 𝑧 in Fig. 4 A and C (solid lines – 1c, 3c

nd 4c). In addition, when varying the conductivities of the full model

hat serves as ground truth (solid lines in Fig. 4 B and D), both errors

how similar dependences on the conductivity and the model (R 

2 = 0.86

etween 𝛿𝐽𝑥𝑦 and 𝛿𝐵 𝑧 for the non-optimized cases). That is, the errors

n 𝑱 xy relative to its ground truth are well reflected in the errors in 𝐵 𝑧 .

his favorable behavior of 𝐵 𝑧 occurs as, by the Biot-Savart law, 𝐵 𝑧 is

ully determined by the three-dimensional distribution of 𝑱 xy , with the

mpact of the current density scaling with distance to the measured 𝐵 𝑧 

 Eq. 1 ). It is interesting to note that, by Ampère’s law, 𝑱 xy is determined

y the spatial changes of all components of the magnetic field rather

han only 𝐵 𝑧 ( Eq. 3 ). This explains why the projected current density

lgorithm can have low performance despite a close relation between

 xy and 𝐵 𝑧 . 

The demonstrated relation between 𝛿𝐽𝑥𝑦 and 𝛿𝐵 𝑧 suggests that min-

mizing the RMS errors for 𝐵 𝑧 by optimizing the conductivities of the

ead models might be a useful approach to improve the similarity be-

ween the simulated 𝑱 xy and the ground truth. Indeed, optimizing the

issue conductivities of the 3c and 4c models to minimize 𝛿𝐵 𝑧 consis-

ently improves the fit for 𝑱 xy (dashed lines in Fig. 4 B and D, R 

2 = 0.86

etween 𝛿𝐽𝑥𝑦 and 𝛿𝐵 𝑧 for the optimized cases). Expectedly, the achiev-

ble improvement scales with the level of detail of the head model.

ather trivially, the errors approach zero when the full head model is

sed for the optimizations (data not shown). In general, optimization

educes 𝛿𝐵 𝑧 more than 𝛿𝐽𝑥𝑦 when compared to the RMS errors of the

on-optimized cases. Still, also after optimization, the remaining 𝛿𝐵 𝑧 re-

ect well the relative differences between the 𝛿𝐽𝑥𝑦 of the different head

odels, making the former a useful parameter for model comparison. 

Optimizing the tissue conductivities in the presence of anatomical

naccuracies hardly changes 𝛿𝐽𝑥𝑦 (dashed line in Fig. 4 A) although it

educes 𝛿𝐵 for all cases (R 

2 = 0.61 between 𝛿𝐽𝑥𝑦 and 𝛿𝐵 for the op-

𝑧 𝑧 

8 
imized cases). This indicates that constraining the optimization to a

ew conductivities which affect the current flow globally reduces the

isk of overfitting. However, it also shows that accurate segmentation

f the brain anatomy from the MR images is required to ensure accurate

stimations of local details of the current density distribution via this

pproach. In particular, also for the non-optimized cases, changing the

ulcal structure of the 4c model affects 𝑱 xy , but hardly changes 𝐵 𝑧 (solid

ines in Fig. 4 A and C). This indicates that 𝐵 𝑧 is not a sensitive marker

f localized errors in the estimated current density distribution. 

For confirmation, an anterior-to-posterior current direction was also

ested (Fig. S6), giving similar results. The error for 𝐽 𝑧 is shown in Fig. 4 E

nd F for completeness. Even though the relationship between 𝐽 𝑧 and

 𝑧 is only indirect, it follows the same general dependence on the head

odel and conductivities as observed for 𝑱 xy and 𝐵 𝑧 . As an alternative

o optimizing the model conductivities, Kwon and colleagues (2016) in-

roduced an iterative version of the projected current density algorithm

hat, combined with an anatomically detailed head model, achieved

ood reconstruction accuracy for simulated ground truth data. How-

ver, our initial tests suggest that stable convergence depends on the

vailability of 𝐵 𝑧 data for the complete head volume including scalp

nd skull (Supplementary Material B). 

.4. Hierarchical model selection based on statistical testing 

The results so far indicate that the tested projected current density

lgorithm has limited capabilities to reconstruct the current density dis-

ribution for the complex anatomy of the human head. Instead, a bet-

er estimation of the true current density distribution is achievable by

sing detailed volume conductor models that are reconstructed from

tructural MR scans and optimizing their conductivities based on the

easured 𝐵 𝑧 data. In contrast to the above tests that used simulated 𝐵 𝑧 

ata also as ground truth, measured 𝐵 𝑧 data contains noise. Therefore,

he difference between the simulated and measured 𝐵 𝑧 fields would not

ully disappear even if the head model was perfect. In order to quantify

he quality of current density distributions calculated via head models

n practice, the difference between the simulated and measured 𝐵 𝑧 field

hus has to be compared to the expected noise level of the 𝐵 mea-
𝑧 
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Fig. 4. RMS errors 𝛿𝐽𝑥𝑦 , 𝛿𝐵𝑧 and 𝛿𝐽𝑧 of different head models for a LR current injection, with and without optimized conductivities. Solid and dashed lines correspond 

to the error values obtained for the models with literature and optimized conductivities, respectively. The first column (A, C & E) shows the dependence of 𝛿𝐽𝑥𝑦 , 𝛿𝐵𝑧 

and 𝛿𝐽𝑧 on the anatomical level of detail of the head model (1c, 3c and 4c models) and on segmentation errors of the 4c model. The second column (B, D & F) shows 

the dependence of 𝛿𝐽𝑥𝑦 , 𝛿𝐵𝑧 and 𝛿𝐽𝑧 on variations of the conductivity of the full model that was used as ground truth. 
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urements, for example obtained in independent control measurements

ithout current injection. Specifically, when optimizing model parame-

ers such as the conductivity values, this comparison can help to identify

ases of overfitting in which the remaining difference can be lower than

he expected noise level. This is particularly relevant for models with

any free parameters. Finally, as the ground truth with regards to the

onductivity distribution is unknown, it is important to demonstrate that

he current density distribution calculated via a detailed volume conduc-

or model results in 𝐵 𝑧 data that is closer to the measured 𝐵 𝑧 data when

ompared to the current density distribution obtained for an anatomi-

ally simpler model. This ensures that increasing the complexity of the

ead model indeed helps to improve the approximation of the unknown

rue current density distribution. 

In the following, rigorous statistical testing is employed to assess the

uality of current density estimates for measured 𝐵 𝑧 data for two current

njection directions in two participants. Initially focusing on the current

ensity estimates obtained for head models with pre-defined conduc-

ivities taken from literature, permutation testing is used to assess the

ifference between the models (see the Methods section for details).

ig. 5 A shows the measured 𝐵 𝑧 data of two electrode montages (LR and

P) for one participant, and Fig. 5 B and 5 C depict the simulated data and

he remaining difference. The results also confirm that the current den-

ity estimated via the 4c model explains the measured 𝐵 𝑧 significantly

etter than that of simpler models ( Fig. 5 D) ( Δ = 77 . 0 % and Δ = 10 . 7 % 

etween 4c and 3c models for LR and AP , 𝑝 ≤ 0 . 01 corrected). This also

olds for the current density estimated via the standard projected cur-

ent density algorithm ( “1c + rec. ” in Fig. 5 ), which achieves moderate

mprovements in 𝛿𝐵 𝑧 compared to the 1c head model ( 𝛿 = 25 . 3 % and 𝛿 =
 . 8 % for LR and AP, 𝑝 ≤ 0 . 01 corrected ). As the projected current den-

ity algorithm changes the current density only within the brain and

SF area of the imaged slice, the moderate differences in 𝛿𝐵 𝑧 are partly

aused by the need to use 𝑱 𝑜 of the 1c model in the remaining parts of

he head volume for calculating 𝐵 𝑧 . In order to ensure a fair comparison

o the 3c model, we use the same approach when determining 𝐵 𝑧 of the

c model (indicated by the squares in Fig. 5 D), still revealing statistically

ignificant differences of 11 . 8 % and 3 . 1 % for the LR and AP injections,

espectively. The results also show that the current density estimated us-

ng the 5c model explains the measured 𝐵 𝑧 significantly better than the

c model for the LR injection ( 𝛿 = 14 . 6 % , 𝑝 ≤ 0 . 01 corrected ), whereas

e do not observe a statistically significant difference for the AP in-

ection ( Fig. 5 D). For the AP montage, the impact of the ventricles on

he 𝐵 𝑧 distribution in the image center are visible in both the measured

 𝑧 data and the results of the 4c and 5c models, but are absent for the

impler models. However, even for the 4c and 5c models, the remain-

ng differences are above the expected noise floor seen for the control

easurement for 0 mA. In addition, they exhibit clear spatial patterns,

uggesting that the 4c and 5c models do not fully explain all aspects of

he underlying current density distribution. 

Fig. 7 A shows the corresponding current density estimates for the

ifferent models. At the SNR of the measured 𝐵 𝑧 , the projected current

ensity algorithm (1c model) does not recover details of the inhomoge-

eous current flow pattern that are expected to occur due to the different

onductivities between the brain and CSF. Also, the 3c model does not

econstruct any details of the inhomogeneous current flow pattern, but

till explains the measured 𝐵 𝑧 field better because it corrects for the im-

act of the low-conductive skull on the average strength of the current

ow in the cranial cavity. The 4c and 5c models improve the fit to the

easured 𝐵 𝑧 field by accounting for the spatially varying conductivities

n the cranial cavity. The results for the second subject are shown in

igs. S7 and S9A, confirming the above observations. 

.5. Hierarchical model selection for models with optimized conductivities 

The 𝐵 𝑧 fields of the 3c, 4c and 5c models with optimized conduc-

ivities are shown in Fig. 6 B for the first subject, and the remaining

ifferences to the measured fields are shown in Fig. 6 C. Compared to
10 
he models using literature values for the conductivities, optimization

educed the average strength of the simulated 𝐵 𝑧 fields. This decrease

s a main cause of the largely improved 𝛿𝐵𝑧 of the 3c, 4c and 5c models

ompared to the 1c case ( Fig. 6 D vs 5D), and is correspondingly reflected

n the on average lower current densities of the optimized 3c, 4c and 5c

odels in Fig. 7 B compared to their counterparts in Fig. 7 A. In addition,

he optimized 𝐵 𝑧 fields in Fig. 6 B also better reflect the measured spatial

ariations of the simulated 𝐵 𝑧 fields close to the electrodes in particular

or the LR injections. 

The improvement of 𝛿𝐵𝑧 for the 4c versus 3c model is statistically

ignificant for both LR and AP injections. Increasing the level of de-

ail of the model further from 4c to 5c results in statistically significant

mprovements for the LR injection, but not in case of the AP injection

 Fig. 6 D). The 𝐵 𝑧 fields obtained for the 3c, 4c and 5c models result

n residuals with similar spatial patterns ( Fig. 6 C). However, visual in-

pection of the 4c and 5c models with the 3c model for the AP injection

eveals localized variations of the simulated 𝐵 𝑧 fields in the middle of

he brain due to the CSF-filled ventricles. The peak absolute differences

n this region are in the order of 0.3 nT, which is similar to the differ-

nces of the simulated 𝐵 𝑧 field of the 3c model and the measured 𝐵 𝑧 field

n that region. These findings indicate the minimal measurement sensi-

ivity that is required to reliably resolve 𝐵 𝑧 variations caused by large

rain structures for a current injection of 1 mA baseline-to-peak. Similar

ffects of the CSF-filled ventricles are also visible for the AP injection

or the second subject in Fig. S8B (Fig. S9B shows the corresponding

urrent densities). 

While optimization strongly reduces the differences between simu-

ated and measured 𝐵 𝑧 fields, the remaining differences still show spa-

ial patterns that are above the strength of the noise floor for the 0 mA

esults. This indicates that also the 4c and 5c models with optimized

onductivities do not account for all aspects of the measured 𝐵 𝑧 field.

he optimized conductivities are shown in Fig. S10 for completeness. 

. Discussion 

Using simulated and measured data, we demonstrated that the tested

ariant of the projected current density algorithm ( Jeong et al., 2014 )

chieves only coarse reconstructions of the current density distribution

n the human brain, while working as expected for artificial geometries

hat are uniform along the z-direction. The algorithm neglects the com-

onents of Ampère’s law ( Eq. 3 ) that depend on the 𝐵 𝑥 and 𝐵 𝑦 com-

onents of the current-induced magnetic field. These components are

eak in geometries that are uniform along the z-direction, but can be

ominant in case of the human head. This might also explain why the

rojected current density algorithm achieved little additional improve-

ents when we tested it in combination with more detailed head mod-

ls instead of a single compartment model. In contrast, increasing the

natomical detail of the head model alone already had a large effect on

he accuracy of the estimated current densities. In our tests with sim-

lated ground truth data, this still held when the head model suffered

rom uncertainties of the ohmic tissue conductivities or had a limited

egmentation accuracy. We confirmed that these conclusions derived

rom simulated ground truth data also apply to measured data: Current

ensities calculated with a 3-compartment model and tissue conductiv-

ties taken from literature explained measured 𝐵 𝑧 images significantly

etter than current densities reconstructed using the standard projected

urrent density algorithm. 

Our results demonstrate the importance of formal statistical testing

or systematic comparisons of volume conductor models that have dif-

erent levels of anatomical detail. Statistical testing within a hierarchical

odel selection framework ensured that more detailed models did in-

eed provide more accurate estimations of the unknown true current

ensity. Expanding the framework beyond models with fixed conduc-

ivities, we also demonstrated that the framework allows for the sys-

ematic assessment of current density estimates derived from volume

onductor models that use optimized tissue conductivities based on the
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Fig. 5. Experimental 𝐵 𝑧 measurements and 

the corresponding simulated 𝐵 𝑧 distributions 

for the first subject. The conductivity values of 

the 3c, 4c and 5c models were chosen from lit- 

erature values, using the procedure described 

in Methods section. (A) Measured 𝐵 𝑧 distri- 

butions with and without 1 mA current injec- 

tions in LR and AP directions. (B) Simulated 

𝐵 𝑧 distributions obtained for the 1c, 3c, 4c 

and 5c models and for the projected current 

density reconstruction based on the 1c model 

(1c + rec.). For the latter, 𝐵 𝑧 was calculated by 

using the reconstructed current density 𝑱 rec in 

the imaged slice and 𝑱 𝑜 of the homogenous 

head model in the rest of the head volume. (C) 

Differences between the measured and simu- 

lated 𝐵 𝑧 distributions. (D) Dependence of 𝛿𝐵𝑧 

on the model. Asterisks ( ∗ ) indicate significant 

differences between the models at 𝑝 ≤ 0 . 01 , 
Bonferroni corrected for 8 comparisons. The 

squares ( □) represent 𝛿𝐵𝑧 values obtained for 

𝐵 𝑧 distributions reconstructed using 𝑱 𝑜 of the 

3c model in the imaged slice and 𝑱 𝑜 of the ho- 

mogenous model in the rest of the head vol- 

ume. This was done for a fair comparison of 

the 1c + rec. results with the 3c model, as the 

reconstructed current density algorithm only 

changes the current distribution in the imaged 

slice and the change in 𝐵 𝑧 is correspondingly 

lower. The dashed green and purple lines rep- 

resent the noise floors nf ( Eq. 7 ). The 𝛿𝐵𝑧 dif- 

ference between the 4c and 5c models of the 

AP case is non-significant (ns). 
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easured 𝐵 𝑧 images. Complemented by results for simulated ground

ruth data that showed a stable convergence towards the true current

ensities with varying tissue conductivities for the employed optimiza-

ion approach, these findings suggest that using the measured 𝐵 𝑧 images

o fit the tissue conductivities of personalized volume conductor models
11 
ight be a valuable approach in order to estimate the unknown true

urrent density. 

It is worth noting that the possibility to distinguish between the qual-

ty of different volume conductor models using measured 𝐵 𝑧 data and

tatistical testing also scales with the measurement SNR. Specifically,
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Fig. 6. Results for the 3c, 4c and 5c models with optimized conductivities for the first subject, determined by minimizing the difference to the measured 𝐵 𝑧 
distributions. (A) Measured 𝐵 𝑧 distributions with and without 1 mA current injections. (B) Optimized 𝐵 𝑧 distributions for the 3c, 4c and 5c models, corresponding 

to the median 𝛿𝐵𝑧 shown in D. (C) Difference between the measured and optimized 𝐵 𝑧 distributions. (D) Dependence of 𝛿𝐵𝑧 on the model. The red lines indicate the 

median, the boxes mark the 25th and 75th percentiles and the whisker lengths is set to 1.5 times the interquartile range. Values outside that range are marked as 

outliers. Blue asterisks ( ∗ ) indicate significant differences between the models at 𝑝 ≤ 0 . 01 , Bonferroni corrected for 6 comparisons. The dashed green lines indicate 

the noise floors. 
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Fig. 7. Estimated current density distributions |𝑱 xy | for the first subject. (A) Re- 

sults for the 1c, 3c, 4c and 5c models based on literature conductivities. Also, the 

results for the projected current density reconstruction based on the 1c model 

are shown (1c + rec.). The corresponding 𝐵 𝑧 fields are shown in Fig. 5 . (B) Results 

for the 3c, 4c and 5c models based on optimized conductivities. The correspond- 

ing 𝐵 𝑧 fields are shown in Fig. 6 . 
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13 
ifferences between models will occur as non-significant when the cor-

esponding changes of the 𝐵 𝑧 data are below the noise levels. While a

ystematic evaluation of the required SNR levels is outside the scope of

his study, our results indicate that a sensitivity of around 0.3 nT is re-

uired for a current injection of 1 mA in order to reveal the conductivity

ontrast caused between the ventricles and surrounding brain areas. 

Increasing the accuracy of the anatomical model, both in terms of

patial accuracy and better conductivity estimates, will directly impact

n transcranial electrical stimulation approaches by providing better in-

ividualized targeting and dose control. Measuring the current-induced

 𝑧 fields for specific stimulation montages can serve as an important val-

dation step. In particular, it might provide helpful information for iden-

ifying the reasons behind inaccurate model predictions in cases where

he measurements and simulations do not match. 

.1. Relation to prior studies 

Our findings show that the blurriness and lack of detail of current

ensity reconstructions for human in-vivo data do not merely result from

 low SNR of the 𝐵 𝑧 images ( Chauhan et al., 2018 ; Göksu et al., 2018b ;

asinadhuni et al., 2017 ) and a lack of accounting for the magnetic stray

elds cause by the electrode cables in two of the studies ( Göksu et al.,

019 ). Rather, they are also due to a limited applicability of the recon-

truction algorithm to the human head anatomy. As the reconstructed

urrent density is biased towards the smooth current flow occurring in

 volume conductor with homogenous conductivity ( Fig. 1 A&B), it is

ikely that the similarity between the current density distributions re-

onstructed from measured 𝐵 𝑧 data of different persons will be arti-

cially increased, camouflaging interindividual differences. This effect

lso explains why in our prior study the fit between current densities

econstructed from simulated and measured 𝐵 𝑧 data were consistently

etter than the fit between the simulated and measured 𝐵 𝑧 data itself

 Göksu et al., 2018a ). It is likely that also the performance of methods

uch as DT-MREIT ( Jeong et al., 2017 ), which uses the reconstructed

urrent densities in combination with diffusion tensor images for es-

imating the conductivities of brain tissues, will be markedly affected

y the low accuracy of the spatial patterns and strengths of the recon-

tructed current densities, leading to biased conductivity estimates. We

nly assessed a specific variant of the projected current density method

 Jeong et al., 2014 ) so that our findings will not necessarily generalize to

ther current density or conductivity reconstruction methods. However,

hey point towards the need to carefully ensure the desired behavior of

econstruction algorithms when applying them to 𝐵 𝑧 data of the human

ead. The lacking uniformity along the z-direction and the lack of data

rom the scalp and skull regions render the reconstruction problem fun-

amentally more difficult than for typical MREIT phantoms. 

Kwon and colleagues (2016) introduced a method that combines

n anatomically detailed head model with an iterative updating proce-

ure to improve the accuracy of the reconstructed current densities by

inimizing the difference between calculated and measured 𝐵 𝑧 data. It

howed promising performance on a simulated case in which 𝐵 𝑧 data

ere available for the complete head volume. However, our initial tests

ndicate that it requires further development to be applicable to mea-

ured 𝐵 𝑧 data with limited volume coverage and lack of data from the

calp and skull (Supplementary Material B). 

Our approach to optimize conductivities shares similarities with the

lgorithm proposed in ( Gao et al., 2006 ). Both methods optimize the

onductivity values of a few tissue types instead of aiming at a voxel-

ise conductivity reconstruction, and both methods use polynomial ex-

ansions (here: generalized polynomial chaos expansion; Gao et al.: re-

ponse surface method) for representing the functional dependence be-

ween simulated 𝐵 𝑧 and conductivity in order to avoid the costly re-

valuation of the forward model during conductivity optimization. They

iffer in the level of detail of the head models and the optimized cost

unctions. While we chose to minimize the relative root mean square

ifferences between measured and simulated 𝐵 , Gao and colleagues
𝑧 
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hoose a more complex cost function that additionally incorporates the

orrelation coefficient. While beyond the scope of this study, the impact

f the choice of the cost function on the stability and accuracy of the

ptimization procedure for low-SNR 𝐵 𝑧 data might be a relevant topic

o develop the overall approach further. The largest difference concerns

ur use of statistical testing for model selection in order to ensure the

uality of the estimated current density distribution despite the lack of

 ground truth in case of measured 𝐵 𝑧 data. 

.2. Limitations and future steps 

We used the optimization of model conductivities as a means to es-

imate the current density distribution, and systematically ensured the

uality of the calculated current density distribution by statistical test-

ng. However, this does not imply that the optimized conductivities (or

heir ratios) are necessarily robust and trustworthy, as conductivity vari-

tions of different tissues can have quite similar effects on the current

ow patterns and the measured current-induced magnetic fields. For

xample, increasing scalp conductivity and decreasing skull conductiv-

ty both have the same main effect of increasing the amount of current

hunted through the scalp and decreasing the current that enters the in-

racranial cavity. Alternatively, also decreasing the overall conductivity

f the intracranial tissues will have a similar impact on the current flow

attern. In other words, various combinations of the tissue conductivi-

ies can give similar current flow patterns, rendering a stable estimation

f the conductivities in the presence of measurement noise challeng-

ng. This limitation does not affect the stability of the estimated current

ow distributions. The conductivities are fitted to best explain the mag-

etic field in the imaged slice that is strongly depending on the current

ow in the surrounding region. The simulated current flows in distant

egions are thus not necessarily more accurate than simulations based

n standard conductivities taken from literature. Similarly, they do not

ecessarily generalize to other electrode positions, which becomes ob-

ious when comparing the scalp conductivities for the LR and AP in-

ections (Fig. S10). Interestingly, both skull thickness and composition

nderneath the electrode positions are different for the two injection

chemes, which might be reflected in the change of the conductivities. 

The main aims of this study were to analyze how well the projected

urrent density algorithm can be applied to in-vivo 𝐵 𝑧 data from the hu-

an intracranial region and to compare it with an approach that relies

n the optimization of a low number of parameters (the compartmen-

al tissue conductivities) of anatomically detailed head models. While

oxel-wise reconstructions of the current densities or conductivities re-

ain the ultimate aim of MREIT and MRCDI, our findings highlight the

mportance of tailoring the reconstruction approaches to the quality and

pecific properties of the measurements. We based our conclusions also

n hierarchical statistical testing and in-vivo 𝐵 𝑧 data, as we feel that this

est ensured the validity of our findings. In contrast, for pure simulation

tudies, it is more challenging to ensure transferability of the results to

he envisioned application and to properly account for factors such as

eviations of the noise floor from spatially independent and identically

istributed Gaussian noise. 

Our results suggest that MRCDI data might be very valuable for the

urther development of personalized volume conductor models of the

ead. A relevant question to address would be to examine which as-

ects of the head modeling need to be improved to ensure that the same

onductivity values for the modelled tissue compartments are reached

ndependent of electrode montage. Considering that the residuals still

ontain spatial patterns above the noise floor also for the 4c and 5c

ead models with optimized conductivities, it seems promising to test

he impact of new segmentation methods ( Puonti et al., 2020 ) on data

rom a larger group of subjects. In addition, as the simulations assume

omogenous conductivities of the brain tissues, it might be interesting

o explore whether localized changes of the tissue conductivities due

o pathologies such as tumors are detectable as outlier regions in the

esidual images. This effect would be similar to the local increases in
14 
he residual images around the ventricles for 3c models and the AP in-

ections seen here. Increased coverage of the imaged region beyond a

ingle slice would be beneficial for these developments. However, this

equires a careful tradeoff against maintaining and further increasing

he SNR and robustness to physiological noise. 
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