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Abstract

A common assumption in generative mod-
els is that the generator immerses the latent
space into a Euclidean ambient space. In-
stead, we consider the ambient space to be
a Riemannian manifold, which allows for en-
coding domain knowledge through the asso-
ciated Riemannian metric. Shortest paths
can then be defined accordingly in the la-
tent space to both follow the learned manifold
and respect the ambient geometry. Through
careful design of the ambient metric we can
ensure that shortest paths are well-behaved
even for deterministic generators that other-
wise would exhibit a misleading bias. Ex-
perimentally we show that our approach im-
proves the interpretability and the function-
ality of learned representations both using
stochastic and deterministic generators.

1 Introduction

Unsupervised representation learning has made
tremendous progress with generative models such
as variational autoencoders (VAEs) (Kingma and
Welling, 2014; Rezende et al., 2014) and generative
adversarial networks (GANs) (Goodfellow et al.,
2014). These, and similar, models provide a flexible
and efficient parametrization of the density of obser-
vations in an ambient space X through a typically
lower dimensional latent space Z.

While the latent space Z constitutes a compressed
representation of the data, it is by no means unique.
Like most other latent variable models, these genera-
tive models are subject to identifiability problems, such
that different representations can give rise to identical
densities (Bishop, 2006). This implies that straight
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Figure 1: The proposed shortest path ( ) favors the
smiling class, while the standard shortest path ( )
merely minimizes the distance on the data manifold.

lines in Z are not shortest paths in any meaningful
sense, and therefore do not constitute natural inter-
polants. To overcome this issue, it has been proposed
to endow the latent space with a Riemannian met-
ric such that curve lengths are measured in the ambi-
ent observation space X (Tosi et al., 2014; Arvanitidis
et al., 2018). In other words, this ensures that any
smooth invertible transformation of Z does not change
the distance between a pair of points, as long as the
ambient path in X remains the same. This approach
immediately solves the identifiability problem.

While distances in X are well-defined and give rise to
an identfiable latent representation, they need not be
particularly useful. We take inspiration from metric
learning (Weinberger et al., 2006; Arvanitidis et al.,
2016) and propose to equip the ambient observation
space X with a Riemannian metric and measure curve
lengths in latent space accordingly. With this ap-
proach it is straight-forward to steer shortest paths in
latent space to avoid low-density regions, but also to
incorporate higher level semantic information. For in-
stance, Fig. 1 shows a shortest path under an ambient
metric that favors images of smiling people. In such a
way, we can control, and potentially unbias, distance
based methods by utilizing domain knowledge, for ex-
ample in an individual fairness scenario. Hence, we
get both identifiable and useful latent representations.
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Figure 2: Examples of a tangent vector ( ) and a
shortest path ( ) on an embeddedM⊂ X (left) and
on an ambient X (right).

In summary, we consider the ambient space of a gen-
erative model as a Riemannian manifold, where the
metric can be defined by the user in order to encode
high level information about the problem of interest.
In such a way, the resulting shortest paths in the latent
space move optimally on the data manifold, while re-
specting the geometry of the ambient space. This can
be useful in scenarios where a domain expert wants
to control the shortest paths in an interpretable way.
In addition, we propose a simple method to construct
diagonal metrics in the ambient space, as well as an
architecture for the generator in order to extrapolate
meaningfully. We show how this enables us to prop-
erly capture the geometry of the data manifold in de-
terministic generators, which is otherwise infeasible.

2 Applied Riemannian geometry intro

We are interested in Riemannian manifolds (do Carmo,
1992), which constitute well-defined metric spaces,
where the inner product is defined only locally and
changes smoothly throughout space. In a nutshell,
these are smooth spaces where we can compute short-
est paths, which prefer regions where the magnitude of
the inner product is small. In this work, we show how
to use these geometric structures in machine learning,
where it is commonly assumed that data lie near a low
dimensional manifold in an ambient observation space.

Definition 1. A Riemannian manifold is a smooth
manifoldM, equipped with a positive definite Rieman-
nian metric M(x) ∀ x ∈ M, which changes smoothly
and defines a local inner product on the tangent space
TxM at each point x ∈ M as 〈v,u〉x = 〈v,M(x)u〉
with v,u ∈ TxM.

A smooth manifold is a topological space, which lo-
cally is homeomorphic to a Euclidean space. An intu-
itive way to think of a d-dimensional smooth manifold
is as an embedded non-intersecting surface M in an
ambient space X for example RD with D > d (see
Fig. 2 left). In this case, the tangent space TxM is
a d-dimensional vector space tangential to M at the

point x ∈M. Hence, v ∈ TxM is a vector v ∈ RD and
actually the Riemannian metric is MX :M→ RD×D�0 .
Thus, the simplest approach is to assume that X is
equipped with the Euclidean metric MX (x) = ID and
its restriction is utilized as the Riemannian metric on
TxM. Since the choice of MX (·) has a direct impact
onM, we can utilize other metrics designed to encode
high-level semantic information (see Sec. 3).

Another view is to consider as smooth manifold the
whole ambient space X = RD. Hence, the TxX = RD
is centered at x ∈ RD and again the simplest Rieman-
nian metric is the Euclidean MX (x) = ID. However,
we are able to use other suitable metrics that simply
change the way we measure distances in X (see Sec. 3).
For instance, given a set of points in X we can con-
struct a metric with small magnitude near the data to
pull the shortest paths towards them (see Fig. 2 right).

For a d-dimensional embedded manifoldM⊂ X , a col-
lection of chart maps φi : Ui ⊂M→ Rd is used to as-
sign local intrinsic coordinates to neighborhoods Ui ⊂
M, and for simplicity, we assume that a global chart
map φ(·) exists. By definition, whenM is smooth the
φ(·) and its inverse φ−1 : φ(M) ⊂ Rd →M⊂ X exist
and are smooth maps. Thus, a vx ∈ TxM can be ex-
pressed as vx = Jφ−1(z)vz, where z = φ(x) ∈ Rd and
vz ∈ Rd are the representations in the intrinsic coor-
dinates. Also, the Jacobian Jφ−1(z) ∈ RD×d defines a
basis that spans the TxM, and thus, we represent the
ambient metric MX (·) in the intrinsic coordinates as

〈vx,vx〉x = 〈vz,Jφ−1(z)ᵀMX (φ−1(z))Jφ−1(z)vz〉
= 〈vz,M(z)vz〉 = 〈vz,vz〉z, (1)

with M(z) = Jφ−1(z)ᵀMX (φ−1(z))Jφ−1(z) ∈ Rd×d�0
being smooth. As we discuss below, we should be able
to evaluate the intrinsic M(z) in order to find length
minimizing curves on M. However, when M is em-
bedded the chart maps are usually unknown, as well
as a global chart rarely exists. In contrast, for ambient
like manifolds the global chart is φ(x) = x, which is
convenient to use in practice.

In general, one of the main utilities of a Riemannian
manifold M ⊆ X is to enable us compute short-
est paths therein. Intuitively, the norm

√
〈dx, dx〉x

represents how the infinitesimal displacement vector
dx ≈ x′ − x on M is locally scaled. Thus, for a curve
γ : [0, 1]→M that connects two points x = γ(0) and
y = γ(1), the length on M or equivalently in φ(M)
using that γ(t) = φ−1(c(t)) and Eq. 1 is measured as

length[γ(t)] =

∫ 1

0

√
〈γ̇(t), γ̇(t)〉γ(t)dt (2)

=

∫ 1

0

√
〈ċ(t),M(c(t))ċ(t)〉dt = length[c(t)],
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where γ̇(t) = ∂tγ(t) ∈ Tγ(t)M is the velocity of the
curve and accordingly ċ(t) ∈ Tc(t)φ(M). The minimiz-
ers of this functional are the shortest paths, also known
as geodesics. We find them by solving a system of 2nd

order nonlinear ordinary differential equations (ODEs)
defined in the intrinsic coordinates. Notably, for am-
bient like manifolds the trivial chart map enables us to
compute the shortest paths in practice by solving the
ODEs system. In a certain sense, the behavior of the
shortest paths is to avoid high measure

√
|M(c(t))| re-

gions. For general manifolds, the analytical solution is
intractable, so we rely on approximate solutions (Hen-
nig and Hauberg, 2014; Yang et al., 2018; Arvanitidis
et al., 2019). For further information on Riemannian
geometry and the ODE system see Appendix 1.

2.1 Unifying the two manifold perspectives

In all related works, the ambient space X is considered
as a Euclidean space. Instead, we propose to consider
X as a Riemannian manifold. This allows us to encode
high-level information through the associated metric,
which constitutes an interpretable way to control the
shortest paths. In order to find such a path on an
embeddedM⊂ X , we have to solve a system of ODEs
defined in the intrinsic coordinates. However, whenM
is embedded the chart maps are commonly unknown.
Hence, the usual trick is to utilize another manifold
Z that has a trivial chart map and to represent the
geometry ofM therein. Thus, we find the curve in Z,
which corresponds to the actual shortest path on M.

In particular, assume an embedded d-dimensional
manifold M ⊂ X within a Riemannian manifold
X = RD with metric MX (·), a Euclidean space
Z = RdZ called as latent space and a smooth function
g : Z → X called as generator. Since g(·) is smooth,
MZ = g(Z) ⊂ X is an immersed dZ -dimensional
smooth (sub)manifold1. In general, we assume that
dZ = d and also that g(·) approximates closely the
true embedded MZ ≈ M, while if dZ < d then g(·)
can only approximate a submanifold on M. Conse-
quently, the Jacobian matrix Jg(z) ∈ RD×dZ is a basis
that spans the Tx=g(z)MZ , and maps a tangent vector
vz ∈ TzZ to a tangent vector vx ∈ Tx=g(z)MZ . Thus,
as before the restriction of MX (·) on TxMZ induces a
metric in the latent space Z as

〈vx,vx〉x = 〈vz,Jg(z)ᵀMX (g(z))Jg(z)vz〉. (3)

The induced Riemannian metric in the latent space

1A function g : Z →M ⊂ X is an immersion if the Jg :
TzZ → Tg(z)M is injective (full rank) ∀z ∈ Z. Intuitively,
M is a dim(Z)-dimensional surface and intersections are
allowed. While g(·) is an embedding if it is an injective
function, which means that interections are not allowed.
An immersion locally is an embedding.

M(z) = Jg(z)ᵀMX (g(z))Jg(z) is known as the pull-
back metric. Essentially, it captures the intrinsic ge-
ometry of the immersed MZ , while taking into ac-
count the geometry of X . Therefore, the space Z
together with M(z) constitutes a Riemannian mani-
fold, but since Z = RdZ the chart map and the TzZ
are trivial. Consequently, we can evaluate the met-
ric M(z) in intrinsic coordinates, which enables us to
compute shortest paths on Z by solving the ODEs sys-
tem. Intuitively, these paths in Z move optimally on
MZ , while simultaneously respecting the geometry of
the ambient space X . Also, note that g(·) is not a
chart map, and hence, it is easier to learn. Moreover,
if the data manifold has a special topology, we have to
choose the latent space accordingly (Davidson et al.,
2018; Mathieu et al., 2019). For further discussion and
the theoretical properties of g(·) see Appendix 2.

3 Data learned Riemannian manifolds

We discuss previous approaches that apply differential
geometry, which largely inspire our work. Briefly, we
present two related Riemannian metric learning meth-
ods, and then, we propose a simple technique to con-
struct similar metrics in the ambient space X . This
constitutes a principled and interpretable way to en-
code high-level information as domain knowledge in
our models. Also, we present the related work where
the structure of an embedded data manifold is properly
captured in the latent space of stochastic generators.

3.1 Riemannian metrics in ambient space

Assume that a set of points {xn}Nn=1 in X = RD is
given. The Riemannian metric learning task is to learn
a positive definite metric tensor MX : X → RD×D�0
that changes smoothly across the space. The actual
behavior of the metric depends on the problem that we
want to model. For example, if we want the shortest
paths to stay on the data manifold (see Fig. 2 right) the
meaningful behavior for the metric is that the measure√
|MX (·)| should be small near the data and large as

we move away. Similarly, in Fig. 1 the ambient metric
is designed such that its measure is small near the
data points with smiling face, and thus, the shortest
paths tend to follow this semantic constraint. In such a
way, we can regulate the inductive bias of a model, by
including high-level information through the ambient
metric and controlling the shortest paths accordingly.

One of the first approaches to learn such a Riemannian
metric was presented by Hauberg et al. (2012), where
MX (x) is the convex combination of a predefined set
of metrics, using a smooth weighting function. In par-
ticular, at first K metrics are estimated {Mk}Kk=1 ∈
RD×D�0 centered at the locations {ck}Kk=1 ∈ RD. Then,
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we can evaluate the metric at a new point as

MX (x) =

K∑
k=1

wk(x)Mk, wk(x) =
w̃k(x)∑K
j=1 w̃j(x)

, (4)

where the kernel w̃k(x) = exp
(
−‖x−ck‖22

2σ2

)
with band-

width σ ∈ R>0 is a smooth function, and thus, the
metric is smooth as a linear combination of smooth
functions. A practical example for the base metrics
Mk is the local Linear Discriminant Analysis (LDA),
where local metrics are learned using labeled data such
that to separate well the classes locally (Hastie and
Tibshirani, 1994). In a similar spirit, a related ap-
proach is the Large Margin Nearest Neighbor (LMNN)
classifier (Weinberger et al., 2006). Note that the do-
main of metric learning provides a huge list of options
that can be considered (Suárez et al., 2018).

Similarly, in an unsupervised setting Arvanitidis et al.
(2016) proposed to construct the Riemannian metric
in a non-parametric fashion as the the inverse of the
local diagonal covariance. In particular, for a given
point set {xn}Nn=1 at a point x the diagonal elements
of the metric MX (·) are equal to

MXdd
(x) =

(
N∑
n=1

wn(x)(xnd − xd)2 + ε

)−1
, (5)

with wn(x) = exp
(
−‖xn−x‖22

2σ2

)
, where the parameter

σ ∈ R>0 controls the curvature of the Riemannian
manifold i.e., how fast the metric changes, and ε > 0
is a small scalar to upper bound the metric. Although
these are quite flexible and intuitive metrics, select-
ing the parameter σ is a challenging task (Arvanitidis
et al., 2017), especially due to the curse of dimension-
ality (Bishop, 2006) and the sample size N due to the
non-parametric regime.

The proposed Riemannian metrics. Inspired by
the approaches described above and Peyré et al.
(2010), we propose a general and simple technique to
easily construct metrics in X , which allows to encode
information depending on the problem of interest. An
unsupervised diagonal metric can be defined as

MX (x) = (α · h(x) + ε)−1 · ID, (6)

where ID is the identity matrix with dimension D, the
function h(x) : RD → R>0 with behavior h(x) → 1
when x is near the data manifold, otherwise h(x)→ 0,
and α, ε ∈ R>0 are scaling factors to lower and up-
per bound the metric, respectively. One simple but
very effective approach is to use a positive Radial Ba-
sis Function (RBF) network (Que and Belkin, 2016)
as h(x) = wᵀφ(x) with weights w ∈ RK>0 and φk(x) =

exp(−0.5 · λk · ‖x− xk‖22) with bandwidth λk ∈ R>0.
Also, h(x) can be the probability density function of
the given data. Usually, the true density function is
unknown and difficult to learn, however, we can ap-
proximate it roughly by utilizing a simple model as
the Gaussian Mixture Model (GMM) (Bishop, 2006).
Such a Riemannian metric pulls the shortest paths to-
wards areas of X with high h(x) (see Fig. 2 right).

In a similar context, a supervised version can be de-
fined where the function h(x) represents cost, while in
Eq. 6 we do not use the inversion. In this way, shortest
paths will tend to avoid regions of the ambient space
X where the cost function is high. For instance, in
Fig. 1 we can think of a cost function that is high over
all the non-smiling data points. Of course, such a cost
function can be learned as an independent regression
or classification problem, while in other cases can even
be given by the problem or a domain expert. Further
details about all the metrics above in Appendix 3.

3.2 Riemannian metrics in latent space

As discussed in Sec. 2.1, we can capture the geom-
etry of the given embedded data manifold M ⊂ X
by learning a smooth generator g : Z → MZ ⊂ X
such that MZ ≈ M. In previous works has been
shown how to learn in practice such a function g(·),
and also, the mild conditions it has to follow so that
the induced Riemannian metric to capture properly
the structure of M. In the latent space Z = Rd
we call as latent codes or representations the points
{zn ∈ Z | xn = g(zn), n = 1, . . . , N}.

First Tosi et al. (2014) considered the Gaussian Pro-
cess Latent Variable Model (GP-LVM) (Lawrence,
2005), where g(·) is a stochastic function defined as a
multi-output Gaussian process g ∼ GP(m(z), k(z, z′)).
This stochastic generator induces a random Rieman-
nian metric in Z and the expected metric is used for
computing shortest paths. The advantage of such a
stochastic generator is that the metric magnitude in-
creases analogous to the uncertainty of g(·), which hap-
pens in regions of Z where there are no latent codes.
Apart from this desired behavior, this metric is not
very practical due to the GPs computational cost.

Another set of approaches known as deep generative
models, parameterizes g(·) as a deep neural network
(DNN). On the one hand we have the explicit density
models, where the marginal likelihood can be com-
puted, with main representatives the VAE (Kingma
and Welling, 2014; Rezende et al., 2014) and the nor-
malizing flow models (Dinh et al., 2016; Rezende and
Mohamed, 2015). On the other hand we have the im-
plicit density models for which the marginal likelihood
is intractable, as is the GAN (Goodfellow et al., 2014).
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Recently, Arvanitidis et al. (2018) showed that we are
able to properly capture the structure of the embed-
ded data manifold M ⊂ X in the latent space Z of
a VAE under the condition of having meaningful un-
certainty quantification for the generative process. In
particular, the standard VAE assumes a Gaussian like-
lihood p(x | z) = N (x | µ(z), ID · σ2(z)) with a prior
p(z) = N (0, Id). Hence, the generator can be written
as g(z) = µ(z)+diag(ε) ·σ(z) where ε ∼ N (0, ID) and
µ : Z → X , σ : Z → RD>0 are usually parametrized
with DNNs. However, simply parametrizing σ(·) with
a DNN does not directly imply meaningful uncertainty
quantification, because in general the DNN extrapo-
lates arbitrarily to regions of Z with no latent codes.
Thus, the proposed solution in Arvanitidis et al. (2018)
is to model the inverse variance β(z) = (σ2(z))−1 with
a positive Radial Basis Function (RBF) network (Que
and Belkin, 2016), which implies that moving further
from the latent codes increases the uncertainty. Un-
der this stochastic generator, the expected Rieman-
nian metric in Z can be written as

M(z) = Ep(ε)[Jgε(z)ᵀJgε(z)]

= Jµ(z)ᵀJµ(z) + Jσ(z)ᵀJσ(z), (7)

where gε(·) implies that ε is kept fixed ∀ z ∈ Z, which
ensures a smooth mapping, and hence, differentiabil-
ity (Eklund and Hauberg, 2019). Here, we observe
that the metric increases when the generator becomes
uncertain due to the second term. This constitutes
a desired behavior, as the metric informs us to avoid
regions of Z where there are no latent codes, which
directly implies that these regions do not correspond
to parts of the data manifold in X . In some sense, we
model the topology of M as well (Hauberg, 2018). In
contrast, this is not the case when the uncertainty of
g(·) is not taken into account, since then, the behav-
ior of the metric is arbitrary as moving away from the
latent codes (Chen et al., 2018; Shao et al., 2017)

Consequently, deterministic generators as the Auto-
Encoder (AE) and the GAN capture poorly the struc-
ture of M in Z because the second term in Eq. 7
does not exist. The reason is that these models are
trained with likelihood p(x | z) = δ(x − g(z)) and
the uncertainty is not quantified. Of course, for the
AE one potential heuristic solution is to use the la-
tent codes of the training data to fit post-hoc a mean-
ingful variance estimator under the Gaussian likeli-
hood and the maximum likelihood principle as θ∗ =
argmaxθ

∏N
n=1N (xn | g(e(xn)), ID · σ2

θ(e(xn))), with
encoder e : X → Z. In principle, we could follow the
same procedure for the GAN by learning an encoder
(Donahue et al., 2016; Dumoulin et al., 2016). How-
ever, it is still unclear if the encoder for a GAN learns
meaningful representations or if the powerful generator
ignores the inferred latent codes (Arora et al., 2018).

Therefore, to properly capture the structure ofM in Z
we mainly rely on stochastic generators with increasing
uncertainty as we move further from the latent codes.
Even if the RBF based approach is a meaningful way to
get the desired behavior, in general, uncertainty quan-
tification with parametric models is still considered as
an open problem (MacKay, 1992; Gal and Ghahra-
mani, 2015; Lakshminarayanan et al., 2017; Detlefsen
et al., 2019; Arvanitidis et al., 2018). Nevertheless,
Eklund and Hauberg (2019) showed that the expected
Riemannian metric in Eq. 7 is a reasonable approxi-
mation to use in practice. Obviously, when g(·) is de-
terministic, like the GAN, the second term in Eq. 7
disappears, since these models do not quantify the
uncertainty of the generative process. This directly
means that deterministic generators are not able, by
construction, to properly capture the geometric struc-
ture of M in the latent space, and hence, exhibit a
misleading bias (Hauberg, 2018).

4 Enriching the latent space with
geometric information

Here, we unify the approaches presented in Sec. 3.1
and Sec. 3.2, in order to provide additional geomet-
ric structure in the latent space of a generative model.
This is the first time that these two fundamentally
different Riemannian views are combined. Their main
difference is that the metric induced by g(·) merely
tries to capture the intrinsic geometry of the given
data manifold M, while MX (·) allows to directly en-
code high-level information in X based for instance
on domain knowledge. Moreover, we provide in the
stochastic case a relaxation for efficient computation of
the expected metric. While in the deterministic case,
we combine a carefully designed ambient metric with a
new architecture for g(·) to extrapolate meaningfully,
which is one way to ensure well-behaved shortest paths
that respect the structure of the data manifold M.

Stochastic generators. Assuming that an ambi-
ent MX (·) is given (see Sec. 3.1), we learn a VAE
with Gaussian likelihood, so the stochastic mapping
is g(z) = µ(z) + diag(ε) · σ(z), while using a positive
RBF for meaningful quantification of the uncertainty
σ(·). Therefore, we can apply Eq. 3 to derive the new
stochastic more informative pull-back metric in the la-
tent space Z, which is equal to

Mε(z) = Jgε(z)ᵀMX (µ(z) + diag(ε) · σ(z))Jgε(z)

with Jgε(z) = Jµ(z) + diag(ε) · Jσ(z). (8)

This is a random quantity and we can compute its ex-
pectation directly by sampling ε ∼ N (0, ID), so that
M(z) = Eε∼p(ε)[Mε(z)]. However, in practice this ex-
pectation will increase dramatically the computational
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cost, especially, since we need to evaluate the expected
metric many times when computing a shortest path.
For this reason, we relax the problem and consider
only the Eε∼p(ε)[gε(z)] = µ(z) for the evaluation of
the ambient metric MX (·) in Eq. 8, which simplifies
the corresponding expected Riemannian metric to

M(z) , Jµ(z)ᵀMX (µ(z)) Jµ(z)

+ Jσ(z)ᵀMX (µ(z)) Jσ(z). (9)

Essentially, the realistic underlying assumption is that
near the latent codes σ(z)→ 0 so g(z)→ µ(z) and the
first term dominates. But, as we move in regions of Z
with no codes the σ(z) � 0, and for this reason, we
need the second term in the equation. In particular,
Jσ(·) dominates when moving further from the latent
codes, and hence, the behavior of MX (·) will be less
important there. Thus, we are allowed to consider
this relaxation, for which the meaningful uncertainty
estimation is still necessary. We further analyze and
check empirically this relaxation in Appendix 4.

Deterministic generators. For deterministic g(·),
we propose one simple yet efficient way to ensure well-
behaved shortest paths, which respect the structure of
the given data manifold M. First, we learn an ambi-
ent Riemannian metric MX (·) in X that only roughly
represents the structure of M, for instance, by using
an RBF or a GMM (Eq. 6). Thus, this metric informs
us how close the generatedMZ is to the data. Hence,
we additionally need g(·) to extrapolate meaningfully.
Therefore, g(·) should learn to generate well the given
data from a prior p(z), but as we move further from
the support of p(z), the generated MZ should also
move further from the given data in X . Consequently,
since MX (·) is designed to increase far from the given
data, the induced Riemannian metric in Z captures
properly the structure of the data manifold.

One of the simplest deterministic generators with this
desirable behavior is the probabilistic Principal Com-
ponent Analysis (pPCA) (Tipping and Bishop, 1999).
This basic model has a Gaussian prior p(z) = N (0, Id)
and a generator that is simply a linear map. The gen-
erator is constructed by the top d eigenvectors of the
empirical covariance matrix, scaled by their eigenval-
ues. Inspired by this simple model, we propose for the
deterministic generator the following architecture

g(z) = f(z) + U · diag([
√
λ1, . . . ,

√
λd]) · z + b, (10)

where f : Z → X is a deep neural network, U ∈ RD×d
the top d eigenvectors with their corresponding eigen-
values λd computed from the empirical data covari-
ance, and b ∈ RD is the data mean. This interpretable
model can be seen as a residual network (ResNet) (He
et al., 2015). In particular, the desired behavior is

LANDs GMM

Figure 3: Using the samples in Z generated from the
proposed q(z) we fit a mixture of LANDs and a GMM.
Thus, we can capture the true underlying structure of
the data manifold in the latent space of a GAN.

that as we move further from the support of p(z) the
linear part of Eq. 10 becomes the dominant one, espe-
cially, when bounded activation functions are utilized
for f(·). Hence, the MZ will extrapolate meaning-
fully as we move further from the support of the prior.
However, we also need the generatedMZ to be a valid
immersion. For further discussion see Appendix 2.

5 Experiments

5.1 Deterministic generators

Synthetic data. Usually, in GANs the g(·) is a con-
tinuous function, so we expect some generated points
to fall off the given data support. Mainly, when the
data lie near a disconnected M and irrespective of
training optimallity. This is known as the distribution
mismatch problem. We generate a synthetic dataset
(Fig. 4) and we train a Wasserstein GAN (WGAN)
(Arjovsky et al., 2017) with a latent space Z = R2

and p(z) = N (0, I2). For the ambient metric we used
a positive RBF (Eq. 6). Further details in Appendix 5.

Then, we define a density function in Z using the
induced Riemannian metric as q(z) ∝ p̃r(z) · (1 +√
|M(z)|)−1 (Lebanon, 2002; Le and Cuturi, 2015),

where p̃r(z) is a uniform density within a ball of radius
r. The behavior of q(z) is interpretable, since the den-
sity is high wherever M(·) is small and that happens
only in the regions of Z that g(·) learns to map near
the given data manifold in X . Also, the p̃(z) simply
ensures that the support of q(z) is within the region
where the g(·) is trained. Intuitively, we can think
of q(z) as an approximate aggregated posterior, but
without training an encoder. Thus, we compare sam-
ples generated from q(z) using Markov Chain Monte
Carlo (MCMC) and the prior p(z). We clearly see in
Fig. 4 that our samples align better with the given data
manifold. Furthermore, we used the precision and re-
call metrics (Kynkäänniemi et al., 2019) with K=10,
which shows that we generate more accurate samples
(high precision), while our coverage is sufficiently good
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Standard measure Our measure The proposed q(z) Our samples

Precision: 0.92, Recall: 0.27

Prior samples

Precision: 0.66, Recall: 0.28

Figure 4: Our measure shows that the ambient metric helps to properly capture the data manifold structure in
the latent space. Also, we generate more accurate samples using the proposed q(z) compared to the prior p(z).

Precision: 0.93, Recall: 0.91 Precision: 0.90, Recall: 0.92 Precision: 0.88, Recall: 0.98

Figure 5: Top panels: Samples from q(z) using the MX ′(·) are more accurate (left), even if the ambient metric
(middle) is not used, compared to the samples from p(z) (right). Bottom panels: our shortest path (top) respects
the data manifold structure avoiding off-the-manifold “shortcuts” (middle), while the linear (bottom) is arbitrary.
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Figure 6: Classification of the paths in X over time.
Clearly, we see that only our shortest paths ( ) re-
spect the ambient geometry, while both the straight
line ( ) and the naive shortest path ( ), traverse
regions which are classified as blond.

(high recall). Moreover, using the sampled latent rep-
resentations we fit a mixture of LANDs (Fig. 3), which
are adaptive normal distributions on Riemannian man-
ifolds (Arvanitidis et al., 2016). Hence, we can sample
from each component individually, without training a
conditional GAN (Mirza and Osindero, 2014).

MNIST data. Similarly, we perform an experiment
with the MNIST digits 0,1,2 and Z = R5. This is
a high dimensional dataset so the RBF used for the
MX (·) fits poorly. Also, the Euclidean distance for
images is not meaningful. Thus, after training the
WGAN, we use PCA to project linearly the data in
a d′-dimensional subspace D > d′ > d with d′ = 10,
where we construct the ambient MX ′(·). This removes
the non-informative dimensions from the data, while

the global structure of the data manifold is approx-
imately preserved. The results in Fig. 5 show that,
indeed, the MX ′(·) improves the sampling since we
achieve higher precision, but lower recall, while our
path traverse better the data manifold. We discuss the
linear projection step in Appendix 2, and provide fur-
ther implementation details and results in Appendix 5.

Pre-trained generator. We use for g(·) a pre-
trained Progressive GAN on the CelebA dataset (Kar-
ras et al., 2018). We also train a classifier that distin-
guishes the blond people. As before, we use a linear
projection to d′ = 1000, where we define a cost based
ambient metric MX ′(·) using a positive RBF (Eq. 6).
This metric is designed to penalize regions in X that
correspond to blonds. Our goal is to avoid these re-
gions when interpolating in Z. As discussed in Sec. 3,
it is not guaranteed that this deterministic g(·) prop-
erly captures the structure of the data manifold in Z,
but even so, we test our ability to control the paths.

As we observe in Fig. 7 only our path that utilizes the
informative MX ′(·) successfully avoids crossing regions
with blond hair. In particular, it corresponds to the
optimal path on the generated manifold, while taking
into account the high-level semantic information. In
contrast, the shortest path without the MX ′(·) passes
through the high cost region in X , as it merely mini-
mizes the distance on the manifold and does not utilize
the additional information. Also, we show in Fig. 6 the
classifier prediction along several interpolants. For fur-
ther details and interpolation results see Appendix 5.
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Figure 7: Our interpolant (top) successfully avoids the high cost regions on the data manifold (blond hair), since
it utilizes the high-level semantic information that is encoded into the ambient metric. The standard shortest
path (middle) provides a smoother interpolation than the linear case (bottom).

Figure 8: Comparing interpolants in the latent space under different ambient metrics and their generated images.
We can control effectively the shortest paths to follow high-level information incorporated in MX ′(·).

× +

Figure 9: Compare means using the standard shortest
path (+) and our approach (◦) that respects high-level
information i.e. it avoids the area around (×) in X ′.

5.2 Stochastic Generators

Controlling Shortest Paths. In Fig. 8 we compare
the effect of several interpretable ambient metrics on
the shortest paths in the latent space of a VAE trained
with Z = R2 on the MNIST digits 0,1,2,3. As before,
we project linearly the data in d′ = 10 to construct
there the MX ′(·). Under the Euclidean metric in X the
path ( ) merely follows the structure of the generated
MZ since it avoids regions with no data. At first, we
construct an LDA metric in X ′ (Eq. 4) by considering
the digits 0,1,3 to be in the same class. Hence, the re-
sulting path ( ) avoids crossing the regions in Z that
correspond to digit 2, while simultaneously respects
the geometry of MZ . Also, we select 3 data points
(×) and using their 100 nearest neighbors in X ′ we
construct the local covariance based metric (Eq. 5), so
that the path ( ) moves closer to the selected points.

Moreover, we linearly combine these two metrics to en-
force the path ( ) to pass through 0,1,3 while moving

Shortest path Linear distance

Figure 10: The KDE using the shortest path and the
straight line as distance measure.

closer to the selected points (×). Finally, we include
to this linear combination a cost related metric (Eq. 6)
based on a positive RBF that increases near the points
(×) in X ′. Therefore, the resulting path ( ) avoids
these neighborhoods, while respecting the other ambi-
ent metrics and the geometry of MZ .

Compare means. In Fig. 9 we compute the mean
values for three sets of points ( ), comparing the stan-
dard shortest path (+) with our approach (◦) using
a cost based MX ′(·) relying on a positive RBF with
centers (×) in X ′. Our method allows to use domain
knowledge to get prototypes that respect some desired
properties. In such a way, we can use generative mod-
els for applications as in natural sciences, where do-
main experts provide information through the metric.

Density Estimation. We show in Fig. 10 the kernel
density estimation (KDE) in Z comparing the straight
line to the shortest path, under the same bandwidth.
For MX ′(·) we linearly combine an LDA metric, where
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each digit is a separate class, and a cost based metric
with centers (×) in X ′. The M(·) distinguishes better
the classes due to the LDA metric, while the density is
reduced near the high cost regions. Further discussion
for all the experiments can be found in Appendix 5.

6 Conclusion

We considered the ambient space of generative models
as a Riemannian manifold. This allows to encode high-
level information through the metric and we proposed
an easy way to construct suitable metrics. In order
to capture the geometry into the latent space, proper
uncertainty estimation is essential in stochastic genera-
tors, while in the deterministic case one way is through
the proposed meaningful extrapolation. Thus, we get
interpretable shortest paths that respect the ambient
space geometry, while moving optimally on the learned
manifold. In the future, it will be interesting to investi-
gate if and how we can use the ambient space geometry
during the learning phase of a generative model.
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