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Travel restrictions have proven to be an effective
strategy to control the spread of the COVID-19
epidemics, in part because they help delay disease
propagation across territories. The question, however,
as to how different types of travel behaviour, from
commuting to holiday-related travel, contribute to
the spread of infectious diseases remains open.
Here, we address this issue by using factorization
techniques to decompose the temporal network
describing mobility flows throughout 2020 into
interpretable components. Our results are based
on two mobility datasets: the first is gathered
from Danish mobile network operators; the second
originates from the Facebook Data-For-Good project.
We find that mobility patterns can be described as the
aggregation of three mobility network components
roughly corresponding to travel during workdays,
weekends, and holidays, respectively. We show
that, across datasets, in periods of strict travel
restrictions the component corresponding to workday
travel decreases dramatically. Instead, the weekend
component, increases. Finally, we study how each
type of mobility (workday, weekend, and holiday)
contributes to epidemics spreading, by measuring
how the effective distance, which quantifies how
quickly a disease can travel between any two
municipalities, changes across network components.
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Introduction
Throughout the COVID-19 pandemic, governments world-wide have restricted individual
mobility for their citizens with the goal of reducing social contacts and thus limit spread of
the virus. Some of these interventions, e.g. travel bans within and across national borders and
home-isolation orders, target travel behavior specifically. Others, such as the closure of schools
and businesses, the cancellations of events and restrictions on gatherings, result in a reduction of
travel as an indirect consequence.

Analyses of call detail records and GPS trajectories extracted from mobile-phones are an
effective way to monitor and model the effect of population-scale interventions on behavior
and on the spread of the epidemics [1]. Studies based on phone data have shown that travel
restrictions can strongly limit (or fully contain) the spread of diseases [2–9], even though
restrictions have not proven equally effective everywhere. In low-income areas, for example,
people were not able to reduce their mobility as sharply [6,7,9,10], and tended to visit more
crowded point-of-interests [5]. Some of the mechanisms responsible for this observed disparity
may be rooted constraints affecting the ability to respond (e.g. capacity to work from home,
take paid or unpaid time off of work, and draw on savings to limit shopping trips to meet basic
needs). It has further been shown [9,11], that travel restrictions had stronger impact on long-range
distance trips [11]. However, the effect of restrictions on mobility behavior is not fully understood,
partly because, while traveling serves to different purposes, from daily commuting and errands
to going on holiday, it is unclear how restrictions have affected these various components of
travel behavior. Studies based on aggregated mobile-phone data have focused on general mobility
trends, and overall network effects [11], disregarding the role played by different aspects of
human travel. On the other hand, studies based on high resolution position cover individual
cities or regions, and thus describe only commuting and day-to-day mobility, or do not focus on
the connectivity between regions.

In this work, we study how non-pharmaceutical interventions have affected different
components of travel behaviour using two large-scale datasets collected from mobile-phones.
The first dataset consists of the daily number of trips within and between Danish municipalities
throughout 2020, estimated using data collected by Danish mobile network operators (see
Material and Methods) [12]. The second dataset consists of the number of trips within and
between provinces in France, Italy, and Spain estimated using data collected by Facebook [13].
We propose a new way to identify structural components in human mobility using factorization
techniques. We show that, across different datasets, mobility patterns are well described as the
combination of three components: the first mainly capturing commuting and work-day travel, the
second describing weekend trips, and the latter describing holiday. We show how these different
components contributed to the effective distance, which determines how long it takes for a disease
to diffuse across time and space.

Timeline of non-pharmaceutical interventions in Denmark. Travel patterns in Denmark
were strongly affected by mobility restrictions throughout the COVID-19 pandemic. Denmark
experienced two epidemic waves which prompted the government to introduce strict non-
pharmaceutical interventions across the country: the first between February and May 2020,
and the second between September 2020 and February 2021. In this work, we focus on travel
patterns in the period between February and December 2020, thus our focus will mostly be
on the first wave. Events unfolded as follows [14,15]. Not long after the discovery of the first
COVID-19 local case on February 27th, 2020, Denmark was the first country to impose country-
wide non-pharamaceutical interventions. Starting from March 16th, interventions included the
following: closure of borders, closure of schools, universities, and cultural institutions, bans on
social gatherings, closure of non-essential retail businesses, bars and restaurants. Between April
13th and May 27th 2020, restrictions were gradually released. Throughout the summer, with few
exceptions, such as discotheques and nightclubs remaining closed, activities in Denmark returned
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closer to normal. In September, the surge of new cases led the government to introduce new
nationwide restrictions, substantially milder than those introduced in the spring, including travel
bans to foreign countries, work-from-home orders for public sector employees, the closure of bars
and restaurants at midnight, the requirement to wear face masks, and bans on social gatherings.
In November, stricter local restrictions were imposed in the region of Northern Jutland due to the
concerns created by the surge of the mink variant of the virus. Starting from mid-December, with
the infections on the rise across the country, the government re-introduced stricter nationwide
restrictions, including the closure of non-essential businesses and schools. In the following, we
refer to periods of stringent travel restrictions as periods of ‘lockdown’. We identified periods of
‘lockdown’ using the stringency data released by the Oxford COVID-19 Government Response
Tracker (for further details see Supplementary Figure S6 and Supplementary Table S2) [16].

Results.

The components of Human Mobility.
Travel in Denmark was substantially affected by non-pharmaceutical interventions, with the
number of total trips decreasing by 27% following the introduction of the first ‘lockdown’ in
mid March 2020, and then a gradual increase as the ‘lockdown’ was released between mid April
and mid May (see Figure 1A, black line). While mobility encompasses a wide range of behaviors,
from traveling on holiday to commuting [17], the effect of restrictions on these different behaviors
has not been systematically investigated. The visual inspection of the number of trips over time
(see Figure 1A) reveals that the total amount of travel was subject to dramatic changes throughout
2020, but does not allow to understand further the impact of restrictions on travel. In this section,
focusing on travel patterns in Denmark, we use non-negative matrix factorization (NMF) as a
systematic way to investigate how different components of mobility have been affected by travel
restrictions.

Our dataset describes the total number of daily trips between any pair of Danish municipalities
over time (see also Data Description). We summarize the data in the mobility matrix A, with
dimensions N2 ×D, where N = 98 is the number of municipalities in Denmark and D= 300 is
the total number of days considered. Each entry Ai,t of the matrix corresponds to the normalized
number of trips between a pair of municipalities i on day t (see Material and Methods for details
on the normalization). A pair of municipalities is defined as i= (o, d), where o corresponds to
the origin and d to the destination of the trip. Note that there are N2 pairs, because, in general,
the number of trips between o and d on a given day differs from the number of trips between d
and o on the same day. When o= d, the data corresponds to the number of trips within the same
municipality. Each row Ai of the matrix is a vector of D elements, containing the number of trips
over time for a pair i= (o, d) of municipalities. Each column Aᵀ

t is a vector containing the number
of trips between any pair of municipalities in a particular day t, where Aᵀ denotes the transpose
of matrix A.

A natural way to identify components in travel behaviour is to use NMF, a widely used
technique for identifying interpretable structures in non-negative data [18]. Formally, we achieve
the decomposition by approximating the mobility matrix A as the product of two non-negative
matrices H and W, such that A≈WH, where the dimension K (i.e. the number of columns) of
the factorization matrices H and W is smaller than the dimensions of the data matrix (see Material
and Methods for further details). This implies that we can express each term of the mobility matrix
as

Ai,t ≈
K∑
k=0

Wi,kHk,t,

where Wik quantifies the membership of a given pair of municipalities i to a given component
k and Hkt quantifies the activity level of each component at time t. Hence, in the following,
we refer to the matrix W as the matrix of memberships, and to the matrix H as the matrix of
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loadings. This interpretation of the two matrices comes directly from the factorization, due to the
dimensions of the W and H matrices, because W has dimensionsN2 ×K and H has dimensions
K ×D. Furthermore, understanding the matrix W as the matrix of memberships is standard in
the literature on non-negative matrix factorization applied to networks [19,20]. In order to find the
matrices H and W, we performed matrix factorization, thus numerically minimizing the distance

‖A−WH‖2F ,

where ‖X‖F is the Frobenius norm of matrix X (see Material and Methods for further details).
Note that NMF was used successfully to detect structural components in a wide range of objects
of interest, including networks [21], images [18], and textual data [22].

We apply the NMF decomposition described above, setting K = 3 using a method based on
cross-validation [23] (see Material and Methods and Supplementary Material Figure S3). Our
hypothesis is that the structural components of mobility identified by NMF can be interpreted
[18] as corresponding to different types of mobility behaviors, such as commuting, traveling for
leisure, and trips related to going on holiday. We test this hypothesis by quantifying how active
the different components are during specific periods: namely weekends, workdays, holidays,
and epidemic waves. Formally, we introduce four vectors. The first three are binary vectors
and represent workday, weekend, and holiday, where each element correspond to a day. The non-
zero elements in each of the three vectors respectively correspond to workdays, weekends, and
holidays (see Supplementary Material for the full list of holidays Table S1). Finally, in order to
study how the components of mobility relate to the unfolding of the epidemics, we introduce the
covid-19 cases vector, containing the daily deaths numbers by COVID-19 in Denmark shifted by
13 days [24] to represent the proportion of infected people at any given day (the COVID-19 cases
dataset is downloaded from the website Our World in Data [25] using the Python API [26]). Here
we use the number of deaths over time rather than infections, as the latter is strongly affected
by the testing capacity, and we apply the square root to the covid-19 cases vector, because the
same transformation is applied to the mobility data (see Material and Methods). Finally, for
each component of mobility detected by NMF, i.e. for each value of k ∈ {1, 2, 3}, we compute
the correlation between the loadings over time, Hk, and each of the four vectors defined above.
Note that, when computing the correlation between the components and the weekend and workday
vectors, we first de-trend the components by subtracting a moving average over a window of
seven days, since we are interested in understanding weekly patterns. Further, we remark that
the order of the three components is arbitrary and does not carry any meaning.

Interestingly, we find that the NMF components are highly correlated with the vectors defined
above, confirming the hypothesis that the NMF identifies structures that relate to different types
of mobility behavior (see also Supplementary Material Figure S4). The first component, for
k= 1, correlates positively with the holiday and weekend vectors, and negatively with the workday
and covid-19 cases vectors suggesting it captures leisure trips. The second component, for k= 2,
correlates positively with the weekend and the covid-19 cases vectors, and correlates negatively with
the others. We note that the correlation with the weekend vector is much higher compared to the
correlation with the covid-19 cases vector. The third component, for k= 3, correlates positively with
the workdays vector, and negatively with the other vectors, implying it captures commuting trips
(see Table 1). In light of these observations, it is reasonable to conclude that each NMF component
roughly describes an aspect of mobility behavior. Thus, we name each component after the
vector with the highest correlation: we refer to the first component as the holiday component,
to the second component as the weekend component and to the third component as the workday
component. Interestingly, the correlation analysis for the covid-19 vector (see Table 1) suggests that,
in periods of high epidemic activity, holiday and workday travel were reduced while weekend
travel patterns increased. As expected, the total number of trips over time (see last line in the
Table 1 and Figure 1A) correlates positively with the workday vector, and negatively with the
weekend and covid-19 cases vectors.
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Weekends Workdays Covid-19 cases Holiday
k=1 0.52 -0.52 -0.38 0.64
k=2 0.87 -0.87 0.32 -0.19
k=3 -0.92 0.92 -0.09 (ns) -0.37

total trips -0.49 0.49 -0.42 -0.04 (ns)

Table 1: Pearson correlation between each NMF component (for k ∈ {1, 2, 3}) and the total trips
(see table rows), with the weekend, workday, holiday and covid-19 cases vectors (see table columns).
Unless stated in the table as non-significant (ns), correlations are significant at α= 0.05.

In Figure 1B, we show the evolution of the three components Hk over time. The findings
presented in Table 1 can be clearly observed in the figure, with the weekend and workday
components following weekly patterns, and the holiday component following the Danish holiday
calendar. We observe that, during the ‘lockdown’ period, the loading of the weekend component
increases, moving from 0.15, on average, before lockdown to 0.26, on average, during lockdown,
implying an increase of 69%. The workday component, instead, decreased from 0.31 before
lockdown, to 0.11 during the lockdown, implying a decrease of 64%.

The decomposition obtained via NMF can be naturally used to define three networks, where
nodes are municipalities and weighted links connect origin-destination pairs, with weights
corresponding to the memberships to the weekend, workday and holiday component, respectively.
More formally, for each component k, the vector Wᵀ

k , corresponds to the weighted adjacency
list [27] defining the weighted network. We visualize the networks on the Danish map in
Figure 1C). We observe that links with large membership to the holiday component connect
smaller Danish islands (which are typical holiday destinations, see also Supplementary Material
Figure S5). Further, such links have in general longer distance compared to links that are member
of the weekend and workday components. In fact, the average geographical distance, weighted by
membership, between connected pairs of municipalities in the three networks is 80.1km± 67 for
the holiday component, 59km± 55 for the weekend component, and 56.1km± 54 for the workday
component.

Consistency across datasets.
Having argued that mobility patterns between Danish municipalities can be decomposed using
NMF into three interpretable components, it is natural to wonder if similar results apply to
other datasets describing mobility within and across cities. In this section, we use Facebook data
released by the Data-for-Good initiative [13] to study travel patterns in three European countries:
France, Italy and Spain throughout 2020 (see Material and Methods). We selected these three
countries among those covered by the Facebook data, because they included periods preceding
the first epidemic wave. The data describes the daily number of trips between spatial units at
the second administrative level, where trips are computed across time windows of eight hours
(see Material and Methods). In Denmark, the second administrative subdivision corresponds to
the 98 municipalities analyzed in the previous section, in France to 101 ‘départements’, in Spain
to 33 ‘comarcas’, and in Italy to 107 ‘province’. Note that, while both describing travel patterns,
the Facebook data and the mobile-phone data analyzed in the previous section are constructed in
different ways (see Material and Methods), and a priori it is not trivial that the two dataset would
capture the same aspects of travel behavior. In particular, the Facebook data does not capture
trips within areas. Entries of the mobility matrix such that the origin and destination areas are
the same correspond to the number of individuals that did not leave the area where they reside
across two consecutive time windows. This includes both individuals who traveled within their
area of residence and individuals who did not leave their home location. Further, the Facebook
data has much more limited coverage compared to the Danish mobile-phone data. The estimated
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Figure 1: Mobility patterns in Denmark can be decomposed into three interpretable
components. (A) Estimated number of trips per person over time. (B) The loadings Hk of the
three components of mobility identified by NMF over time: the holiday component (blue, for
k= 1), the weekend component (orange, for k= 2) and the workday component (green, for k= 3).
The red area indicates the period of ‘lockdown’ (see Supplementary Information Figure S6).
(C) The memberships Wᵀ

k of links representing the number of trips between cities to the three
components holiday, weekend and workday (from left to right). Links are represented on cartograms
[28] displaying the map of Denmark (see Material and Methods). For visualization purposes, the
link widths are proportional to the x1.5, where x is the membership to the component.

user base is around 4.9% for France, 5.3% for Italy and 4.1% for Spain (see Material and Methods
for further elaboration). With these caveats, we now explore the Facebook data.

As above, we identify structural components in the mobility matrices describing movements
in France, Spain and Italy by applying NMF. For consistency with the previous section, we
set the number of components K = 3. Then, we test the correlations between the identified
components and the holiday, weekend, workday, and covid-19 cases vectors (see Table 2). Holidays
include national holidays and summer vacations (see Supplementary Material Table S1). For
Italy and Spain, the results are remarkably similar to those obtained for Denmark, with the first
component (k= 1) correlating positively only with the weekend and holiday vectors; the second
component (k= 2) correlating positively only with the weekend and covid-19 cases vectors; and the
third component (k= 3) correlating positively only with the workday vector. In France, results are
consistent with those obtained for the Spain and Italy with a small difference. The first component
correlates positively with the holiday and workday vectors (see also Figure 2, top panel). This
difference may be explained by the limited coverage of the French Facebook data. Importantly,
results are consistent with those obtained in the previous section overall, implying that, across
the two datasets, the three spatio-temporal components of mobility patterns identified by NMF
have similar interpretations. As in the previous section, we name each component by the vector
with highest correlation. We refer to the first component as the holiday component, the second as
the weekend component and the third as the workday component.

We visualize the three components in the three countries in Figure 2. Interestingly, through
the decomposition into components, we observe that ‘lockdown’ periods have a similar effect
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Weekends Workdays Covid-19 cases Holiday
France k=1 -0.72 0.72 -0.62 0.70

k=2 0.86 -0.86 0.38 0.04(ns)
k=3 -0.87 0.87 -0.19 -0.34

Italy k=1 0.51 -0.51 -0.65 0.72
k=2 0.86 -0.86 0.40 -0.21
k=3 -0.91 0.91 -0.15 -0.08(ns)

Spain k=1 0.60 -0.60 -0.41 0.79
k=2 0.91 -0.91 0.17 -0.05(ns)
k=3 -0.93 0.93 -0.06(ns) -0.15

Table 2: Pearson correlations between the three components found by NMF on mobility data
collected by the Facebook Data-For-Good initiative (k ∈ {1, 2, 3}, see table rows), and the vectors
describing weekends, workdays, holidays and covid-19 cases (see table columns). Results are shown
for France, Italy, and Spain. Unless stated in the table (ns), the correlations are significant at α=

0.05.

0.00

0.05

France Holiday Weekend Workday

0.0

0.1

Lo
ad

in
gs

Italy

2020-03 2020-06 2020-09 2020-12
0.0

0.1
Spain

Figure 2: The components of mobility from Facebook data. The loadings Hk of the three
components of mobility identified by NMF over time in France (top), Italy (middle) and Spain
(bottom). The holiday component (blue, for k= 1), the weekend component (orange, for k= 2) and
the workday component (green, for k= 3). The red areas indicates the periods of ’lockdown’ for
each country.

on mobility patterns across countries. In particular, in all the studied countries, the periods of
‘lockdown’ results in a substantial decrease of commuting patterns, as captured by the workday
component, but in an increase of leisure weekend patterns, as captured by the weekend component.
On average, in comparison to other periods, the loading of the workday component during
lockdown is 23% lower in Italy, 27% lower in France and 19% lower in Spain. Instead, the loading
of the weekend components increased during periods of ‘lockdown’, by 25% in Italy, by 28% in
France and by 17% in Spain.
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The components of mobility and the effective distance between cities.
How did the structure of the networks of flows capturing the different components of mobility
change throughout the unfolding of the epidemics? In this section, focusing on the Danish
data, we address this question by measuring the effective distance [29](see Material and Methods)
between cities across the three components of mobility. The effective distance between two cities
o and d is a quantity defined for networks representing flows of travelers between cities which
measures how likely a traveler that leaves from node o will pass by node d. The effective distance
is relevant to the study of epidemics spreading because it correlates with the arrival time of an
emergent infectious disease [29]: it takes longer for a disease to spread to areas that are at a large
effective distance from the origin of an outbreak compared to those that are at a short effective
distance, irrespectively of their position in space.

We now define the effective distance. Take a directed network of cities, where links between
any pair of cities are weighted based on the number of travelers between the two. For pairs of
nodes i= (o, d) connected with a link, the effective distance is computed as di = (1− logPi),
where Pi is the fraction of travelers going to the destination d among all the travelers leaving
the origin o. In general, the effective distance Di for an arbitrary pair of nodes i= (o, d), where
the two are not necessarily connected, is defined as the length of the shortest path from o to d,
where links along the path are weighted based on the effective distance defined above for pairs
of connected nodes [29]. The effective distance does not correlate to the geographical distance
between the two cities and is invariant to the amount of travel in a network.

Next we assess how the weekend, workday and holiday components of mobility contribute to the
effective distance between cities. In order to understand the contribution of each component k ∈
{weekend,workday, holiday}, and each day t, we consider a partial network of flows, that includes
the trips of all components excluding k. The partial networks of flows are defined as follows. First,
for each k, we compute the partial mobility matrix Pk = W̃kH̃k, where W̃k is the membership
matrix W without the column corresponding to component k, and H̃k is the matrix of loadings
H without the row corresponding to component k. Just as the original mobility matrix A, Pk has
dimensions N2 ×D. Each entry P ki,t of the matrix corresponds to the normalized number of trips
between a pair of municipalities i= (o, d) on day t, excluding trips attributable to component k.
For each day t, the partial mobility matrix Pk naturally defines a network, where nodes are cities
and weighted links correspond to all trips, excluding those related to a particular travel behavior:
either weekend, workday or holiday mobility. We use this procedure, instead of considering each
mobility component individually, because that produces sparse networks. Finally, we compute
the effective distance on the partial mobility networks of flows over time. Note that we have removed
all links that, due to the way data is collected and anonymized, have median effective distance
over time equal to zero (e.g. no travelers between them). This procedure resulted in the removal
of 2592 out of 9604 links.

With these definitions in place, we can now study the evolution of the effective distance in
the partial mobility networks over the course of 2020 (see Figure 3). As expected, we observe
that the mean effective distance across origin-destination pairs is approximately stable in time,
because the effective distance is invariant to the amount of travel in a network. More interestingly,
other properties of the distributions change over time. Let us first consider the variance of the
distributions. Considering the partial networks of flows that include weekend and workday trips
(see Figure 3, left), the variance appears to be stable over time. This reveals that, overall, when
considering all trips, the structure of the network remains relatively stable in time, despite
the substantial reduction of trips. This finding is in line with previous results [11], showing
that during periods of ‘lockdown’, the structure of the mobility network changes mostly due
to the reduction of long-distance trips. Instead, when excluding weekend and workday trips
(see Figure 3, middle and right subplots, respectively), we observe that the variance of the
distribution of effective distance was substantially larger during the ‘lockdown‘ period (between
March and May). The variance of the distribution changed from 1.19± 0.02 during lockdown to
1.08± 0.03 after lockdown when excluding weekend trips and from 1.22± 0.005 during lockdown
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to 1.03± 0.02 after lockdown when excluding workday trips. This finding reveals that, during
periods of ‘lockdown‘, there are more heterogeneity in the effective distance between cities, as it is
more unlikely to travel to holiday destinations, and more likely to travel to close-by destinations.
Overall, we observe that the lockdown has a substantial impact on the network structure only if
holiday trips are included.

Let us then consider the shape of the distributions. Interestingly, by comparing the
distributions across components, we observe substantial differences. We observe that, when
including holiday and weekend trips, the distributions display a bimodal shape (see Figure 3, right
plot). A possible explanation for the observed bimodality lies in the fact that, when it comes to
holiday and weekend travel, certain cities act as travel bridges, because they are located along
major travel roads, and connect travellers from their home locations to their travel destinations,
while other cities act as origins or destinations of the trip. In the former, the distribution of
effective distances is extremely unbalanced, because trips occur mostly along one preferential
travel axis. In the latter, the distribution of effective distances is more even. Instead, when
including holiday and workday trips (see Figure 3, middle plot), the distributions are mostly
unimodal. This may be due to the inherent structure of commuting trips, which dominate
this network. In fact, commuting flows from a given origin are relatively evenly distributed,
because the chance to commute at a given distance decreases with the distance [30]. Finally,
the distributions including holiday and workday trips (see Figure 3, left plot) are bimodal, even
though the bimodality is less pronounced compared to the case when weekend trips are included.
Importantly, we observe that the ‘lockdown’ does not affect the characteristic shapes of the
distributions substantially. Finally, we note that the effective distance between pairs of cities, in
the different networks considered, is partly explained by the geographical distance between them
(see Supplementary Information Figure S7).

2 4 6 8 10 12
Effective distance

Without Holiday component

Feb
Apr
Jun

Aug
Oct

2 4 6 8 10 12
Effective distance

Without Weekend component

2 4 6 8 10 12
Effective distance

Without Workday component

Figure 3: Effective distance over time in the partial networks of flows. Probability distributions
of the effective distances over time in the three partial networks of flows. The partial networks
are computed excluding the holiday (left plot), weekend (middle plot) and workday (right plot)
components, respectively. The blue lines correspond to the medians of each distribution, and
the green lines to the 25th and 75th quantiles. Each distribution is computed considering all trips
over a window of 20 days.

Discussion
In this work, we investigated the effect of the restrictions imposed to contrast the spread of
COVID-19 on mobility behavior in four European countries. We used two mobility datasets
describing daily trips between spatial units at the second administrative level throughout 2020,
one collected by major Danish mobile-phone operators and the other collected by Facebook
in Spain, France and Italy. Using non-negative matrix factorization techniques, we argued
that mobility patterns can be naturally decomposed into three travel components, describing
weekend, workday and holiday mobility behavior, respectively.
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In line with previous results [2–9,11], we found that periods characterized by stringent
restrictions, e.g. ‘lockdown’, resulted in a drastic reduction of overall travel. However, periods
of ‘lockdown’ did not affect all components of travel equally. In particular, we found that, while
the component capturing workday travel experienced a dramatic reduction during lockdown, the
component describing weekend behavior experienced an increase in the same periods. This result
is consistent across all countries under study, suggesting that individuals’ travel behavior during
periods of lockdown was more similar to their behaviour during weekends in periods without
restrictions. However, due to differences in data collection between the mobile-phone and the
Facebook datasets, the finding has to be interpreted in different ways across the countries under
study. The data collected by the Danish mobile-phone operators records all trips, including those
within the same city. Thus, in Denmark, the data reliably describe travel behaviour, revealing that,
during lockdown, people would travel mostly for leisure (e.g. walks, jogs, and trips to weekend
travel destinations). This observation is in line with the fact that, in Denmark, visits to parks
increased during periods of lockdown according to mobility data made available by the Google
Mobility Reports [31]. Denmark, in fact, experienced less stringent travel restrictions compared to
the other European countries under study: ’stay-at-home’ orders were never applied, and travel
between different cities and regions remained always allowed [14]. Despite the surge in visits to
parks and the increase of weekend-like mobility patterns during the first Danish lockdown, the
containment strategies were effective. This results suggest that the correlations between mobility
and social behaviour are non-trivial, implying that containment strategies aiming at reducing
mobility do not necessarily target social behavior.

Due to the way it is pre-processed, the data released by Facebook does not account for within-
city trips. Further, the Facebook data does not allow to distinguish two different situations:
individuals staying home versus individuals traveling within their home city. For this reason,
the results obtained using the Facebook data may be partially explained by the fact that, during
’lockdown’ individuals spent more time at home, just as they would do during weekends.
In France, Italy and Spain the restrictions were in fact more stringent compared to Denmark,
especially during the first epidemic wave. With ’stay-at-home’ orders in place, people were only
allowed to walk in the vicinity of their home location.

Our analysis shed light on how the identified travel components contribute to the structural
property of the network describing travel flows between pairs of cities. In particular, we studied
the effective distance [29], a network measure that quantifies the probability of traveling between
two cities and correlates with the time it takes for a disease to travel between them. In line
with previous findings [11], we found that, during periods of lockdown, the network describing
flows of travelers experienced dramatic structural changes. We observed that, during periods
of lockdown, there was larger heterogeneity in the effective distance between pairs of cities.
Compared to periods without lockdown, it was much more likely to travel to specific cities, and
much less likely to others. We found that this structural changes are explained, to a large extent, by
what we identified as the holiday component. Thus, the decrease in holiday-related travel resulted
in a more heterogeneous distribution of the effective distance between cities. This result is in
line with the finding that changes in the structural properties of the network during lockdown
are mostly due to the reduction in long distance trips [11]. Interestingly, it was shown that these
structural changes have a considerable effect on epidemic spreading processes by delaying the
spread to geographically distant regions [11]. Instead, we found that, despite the changes with
respect to the amount of travel, the structure of the networks describing weekend and weekday
mobility have remained substantially stable throughout the year.

Overall, our work shed light on how travel restrictions aiming at contrasting the spread of
COVID-19 affected different aspects of travel behavior, from commuting to going on vacation,
and contributed structural changes of the travel flow network. Our work contributes to the
stream of literature which focuses on the interplay between mobility behavior and the spread of
diseases. Understanding the effects of travel restrictions on behavior and the spread of diseases
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is paramount to design effective policies for mitigating the ongoing COVID-19 pandemic and
prepare for future epidemics.

Material and Methods

Data description and pre-processing

Danish Telecommunication data.

Analyses are based on aggregated mobility flows between municipalities estimated by mobile
devices in the period between the 1st of February 2020 and the 6th of December 2020. The data
is gathered from major mobile-phone network operators. It consists of the number of daily trips
between and within municipalities and has been released to help Statens Serum Institut (SSI)
to model the spread of COVID-19 and understand population behavior in response to various
lockdown/mitigation measures. The dataset was officially requested by SSI and the legality of
its use was ensured by the danish Ministry of Industry, Business, and Financial Affairs. We have
added a 5% noise to each data point to ensure the origin of the data is confidential. Data points
consisting of less than 10 trips are removed to preserve anonymity. We further removed 9 days
of data due to issues related with data release (see Suppementary Material Figure S1). The data
consists of a matrix with dimensions 9604× 300, where 9604 is the number of pairs of cities, and
300 is the number of days considered.

Facebook data.

We use so-called ‘Movement Maps’ at the second administrative level released by the Facebook’s
Data for Good initiative [13]. Movement maps report the number of users that travel between
areas, for three different eight hour time windows each day (00-8, 8-16, 16-00). Specifically,
for each pair of areas i= (o, d), and each given time window t, the data reports the number
of individuals that, during window t spent most of their time in d, and during the window
t− 1 preceding t spent most of their time in o. Note that the two areas o and d are not
necessarily different, because individuals can spend most of their time in the same area in
two consecutive windows (for more information see https://covid19.compute.dtu.dk/data-
description/movement_maps/). We selected data for France, Spain, and Italy among the
countries covered by the Facebook Data-For-Good Initiative, because in these countries the data
included periods preceding the first epidemic wave. We estimated that the data includes 4.9% of
France’ population, 5.3% of Italy’s population and 4.1% of Spain’s population. These numbers are
estimated by computing the number of individuals in each time window, then averaging across
all time windows, then dividing by the population in each country.

Data pre-processing

We pre-processed the data as follows. First, for each day t, we normalized the mobility flows
from a given origin o to a given destination d, dividing by the population of the origin city o. This
transformation ensures that our description captures the number of trips per individual, and it
is not strongly biased towards large cities. In fact, non-negative matrix factorization techniques
are very sensitive to outliers. In line with previous literature [32,33], we transformed the data to
reduce heterogeneity and limit the effect of outliers. By comparing the log-transformation and
the square-root transformation (see Supplementary Figure S2), we found the results of the two
are comparable, but the latter yielded the most interpretable results. Thus, for any given day t,
and any pair of cities i= (o, d), we pre-processed the data as follows:

Ai,t =

√
f(o, d, t)

pop(o)
, (1)

https://covid19.compute.dtu.dk/data-description/movement_maps/
https://covid19.compute.dtu.dk/data-description/movement_maps/
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where Ai,t are entries of the final matrix used for the analysis, f(o, d, t) is the raw data describing
the number of travelers between o and d on day t, and pop(o) is the population of o.

Non-negative Matrix Factorization
Given a data matrix X∈Rn×m, the NMF is mathematically defined as:

min
W,H

F (W,H) = min
W,H

1

2
‖X−WH‖2F W ∈Rn×k+ H∈Rm×k

+ k ∈N, (2)

where k is the hyper parameter specifying the inter-dimension between W and H. NMF was
popularized by [18] who introduced a simple algorithm to solve Equation 2. In this definition, the
Frobenius norm is used as the distance measure between the matrices. By solving Equation 2 the
solution to the factorization of X is found to be:

X≈WH. (3)

The constraint of non-negativity assumes that the data, X, is non-negative. The hyper parameter
k defines how many components one wants to find. NMF is a topic extraction tool that generates
k sets of non-negative components that represent the weighted set of co-occurring features. To
compute the NMF we used the scikit-learn Python package, version 0.23.2 [34] with
random initialization and a maximum of 100 000 iterations. We used the ‘Coordinate descent’
solver [35]. We set the other parameters to the default values by scikit-learn.

Selection of k

We selected the number of components k using the method proposed in ref. [23]. The method
estimates k by cross-validation. First, for each choice k, we computed the stability of the NMF
solution using cross-validation. Then, we plotted the stability of the solution against the number
of components k, and selected the best k using the elbow method (see Supplementary Figure S3).
The cross-validation routine for a matrix A consists of six steps.

(i) Define an holdout set of size n by setting a row holdout set Il ⊂ {1, ..., n}, and a column
holdout set Ij ⊂ {1, ..., n}.

(ii) Find the NMF solution (W̃, H̃) = arg minW,H≥0
∑
t ‖A−Il,−Ij −WH‖2F , where

A−Il,−Ij is the original matrix without the rows and columns forming the holdout set.
(iii) Find the NMF solution W̌ = arg minW≥0

∑
t ‖AIl,−Ij −WH̃‖2F , where AIl,−Ij is the

original matrix without the columns in the column holdout set.
(iv) Set Ȟ = arg minH≥0

∑
t ‖A−Il,Ij − W̃H‖2F , where A−Il,Ij is the original matrix

without the rows in the row holdout set.
(v) Set Â = W̌Ȟ

(vi) Compute the test error: Test Error =
∑
t ‖A− Â‖2F

We computed the average test error, across choices of k, by cross-validation. We set the size of
the test set n= 40. Finally, we plotted the test error against k. Using the ‘elbow method‘ [36] (see
Supplementary Material Figure S3), we found the best choice of k to be k= 3.

Measures we use to quantify the differences in the networks

Effective distance

The effective distance is a network metric introduced in ref. [29]. Given a network of flows
between origin-destination pairs, and a given origin destination pair i= (o, d), where o and d
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are connected via a link, the effective distance is defined as:

di = (1− logPi)≤ 1, (4)

where Pi is the fraction of trips going from o to d relative to all trips leaving node o. Notice
that the measure is generally asymmetric as Pi=(o,d) 6= Pi=(d,o), reflecting the asymmetry of real
world travel. Note also that di is dimensionless and unaffected by the magnitude of the mobility
flow.

More in general, to account for the fact that not all pairs of cities are connected via a link,
the authors of ref. [29] defined the effective distance between any pairs of network nodes
as follows. Assume Γ = {n1, n2, ..nL} is an ordered path from any two nodes n1 to nL and
W (Γ ) =

∏L−1
i−1 Pni+1ni , then the distance of that path is defined as:

λ(Γ ) =L− logW (Γ ). (5)

The effective distance, Di=(o,d), is then the path that minimizes the distance:

Dnm = min
Γ

λ(Γ ), (6)

which is equivalent to computing the shortest path in a network with weights computed from the
effective distance (Equation 4) plus one.

Cartograms
We display the maps of Denmark in Figure 1 as cartograms [28]. We computed the cartograms
as follows. First, we considered the spatial polygons describing the area covered by each Danish
municipality. Then, we altered the size of each polygon to ensure that the area covered by each
polygon in the map is proportional to the population of the corresponding municipality. We used
the iterative flow-based algorithm developed by [28] to compute the cartograms and ensure that
the structural connections between polygons is preserved.
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https://github.com/Udneowi/Covid19_mobility_NMF. Data from the Danish mobile-phone operators can
not be shared due to the agreement with the companies. All code necessary to reproduce results is available
at:
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