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ABSTRACT: The search for cheap and abundant alternatives to Pt for
the hydrogen evolution reaction (HER) has led to many efforts to develop
new catalysts. Although the discovery of promising catalysts is often
reported, none can compete with Pt in intrinsic activity. To enable true
progress, a rigorous assessment of intrinsic catalytic activity is needed, in
addition to minimizing mass-transport limitations and following best
practices for measurements. Herein, we underline the importance of
measuring intrinsic catalytic activities, e.g., turnover frequencies (TOFs).
Using mass-selected, identical Pt nanoparticles at a range of loadings, we
show the pervasive impact of mass-transport limitations on the observed
activity of Pt in acid. We present the highest TOF measured for Pt at
room temperature. Since our measurements are still limited by mass
transport, the true intrinsic HER activity for Pt in acid is still unknown.
Using a numerical diffusion model, we suggest that hysteresis in cyclic voltammograms arises from H2 oversaturation, which is
another indicator of mass-transport limitations.

Novel hydrogen evolution reaction (HER) catalysts are
often reported in the literature without regard for the
applied catalyst loading, intrinsic activities, or

possible mass-transport limitations. Much effort has been put
into achieving high geometric current densities by increasing
mass loading and the corresponding active surface area.1

However, the geometric current density, while important from
the applied perspective, does not reflect the intrinsic catalytic
activity that arises from tuning the electronic structure of the
catalyst. The only metric of intrinsic activity is the turnover
frequency (TOF), which is defined as the number of molecules
(e.g., H2) produced per second per site.2 Furthermore, there
are some common pitfalls which limit the quality and
usefulness of the reported measurements in the literature, for
instance: lacking potential scale calibration, lack of hydrogen
saturation when performing HER, poor choice of counter
electrode, and comparison to subpar measurements.1 Often,
catalysts are claimed to have record-breaking activities or to
surpass the performance of commercially available Pt/C. In
general, a closer inspection shows this not to be the case, due
to one or more of the aforementioned pitfalls.3−5

In this work, we study the influence of mass transport on the
intrinsic Pt HER activity with rotating disk electrode (RDE)
measurements and report benchmark values of the specific
activities. We investigate identical, mass-selected Pt nano-
particles at a range of Pt loading as well as commercial Pt/C
samples, which together spans 4 orders of magnitude in Pt
loading. We show that decreasing catalyst loading is effective in

mitigating mass-transport limitations of HER (and HOR, the
hydrogen oxidation reaction), but even at ultra-low loading,
HER/HOR is mass-transport-limited on Pt in acid, and the
resultant TOFs are only lower bounds on the intrinsic activity.
By varying deposition area (using a small and a large raster
pattern) of the mass-selected particles, we show that particle
dispersion also influences TOF. To our knowledge, the TOF
we report for the lowest Pt loading is the highest ever reported
at room temperature regardless of the measurement technique.
We furthermore find that the intrinsic activity of Pt exceeds
that of any existing earth-abundant HER catalyst by at least 3
orders of magnitude. We also observe hysteresis in the cyclic
voltammograms (CVs) at ultra-low Pt loadings, which we
investigate using a time-dependent coupled kinetic-transport
model. This model suggests that the displayed hysteresis is a
marker for mass-transport limitations, since it arises from H2
buildup.

■ WHY SITES MATTER
We emphasize, first, that turnover frequencies are the only
metric that ref lects the intrinsic activity of a catalyst. Figure 1
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shows the geometric current densities normalized by disk area
(jdisk) for a representative subset of samples of Pt loading from
13 to 105 ng cm−2. The overpotential (η10 mA cm−2) needed to
reach a geometric current density of 10 mA cm−2 is often
reported in literature without consideration for the catalyst
loading.5−8 From Figure 1, it is obvious that the overpotential
needed to reach a certain current density can be reduced
simply by increasing the catalyst loading and hence the number
of active sites. This is not equivalent to improved intrinsic
catalytic activity. Between the lowest loading and the highest
loading, 13 and 105 ng cm−2, respectively, η10 mA cm−2 varies
by more than 0.1 V, and it is therefore apparent why
considering the active site density is crucial for any meaningful
comparison of intrinsic activity.
The TOF should be reported whenever possible, as it is the

relevant scientific metric for comparing intrinsic activity.
Without the site density, jECSA (ECSA: electrochemically active
surface area) may be used as an approximation of the TOF. If

neither metric is available, the mass activity (jmass) can be used
as a stand-in metric for activity. While jmass is by default not
indicative of intrinsic activity, it can have some merit as a
techno-economic metric, since the catalyst material is priced by
mass. Considering this, it is only meaningful to replace
platinum with a high mass loading of a catalyst of lower mass
activity, if the catalyst price (e.g., $ mg−1) is correspondingly
lower than that of platinum. The HER mass activity of
platinum is several orders of magnitude higher than those of
phosphide-based catalysts reported in the literature.1 This may
significantly limit the feasibility of simply increasing mass
loading of abundant catalysts. As a benchmark for comparison
of mass activity, jmass versus η10 mA cm−2 is plotted for all
loadings considered in Figure S3 in the Supporting
Information (SI). Although jgeo can be useful from the practical
perspective of the activity of a large-scale electrolyzer or
photoelectochemical device, it is not useful in the comparison
of intrinsic catalytic activity from a scientific point of view.

■ TRANSPORT LIMITATIONS ARE UBIQUITOUS IN
RDE MEASUREMENTS OF Pt IN ACID

Figure 2A shows the corresponding TOFs at −15 mV
overpotential for all samples. While the jdisk increases with
loading, the TOF decreases by 3 orders of magnitude. This
dramatic reduction in TOF with increasing loading indicates
that mass-transport limitations play a major role for all
samples, as will be discussed in the following. Akin to what is
observed for the mass activity, Figure 2A shows that highly
dispersed 3.8 nm nanoparticles (green) also perform slightly
better than their less dispersed counterparts (blue). It can be
ruled out that the effect stems solely from the less dispersed
samples suffering more from particle overlap and hence a loss
in ECSA, since the activity metric is normalized per site. It is
also worth noting that, although loss of ECSA at higher
loadings is to be expected, the effect is moderate even at 5000
ng cm−2 (see Figure S2 for further details).
RDE experiments offer enhanced mass transport compared

to electrodes submerged in an unstirred solution.10 Even so,
the kinetics of acidic HOR/HER on Pt are so facile that the
measured currents in RDEs with Pt disk electrodes are entirely
limited by mass transport of H2 to (HOR) or away from
(HER) the electrode.9,11−13 Under these conditions, the
intrinsic activity has no effect on the measured activity, and
the frequently reported Tafel slope of 30 mV/dec for HER is
just the apparent Tafel slope of the diffusion overpotential at
room temperature.9 From Figure 2A it is evident that, even in
the limit of ultra-low Pt loading, the mass-transport limitation
dominates, since no plateau for the TOF is reached. Similarly,
less active non-Pt catalysts might also be affected by slow mass
transport when loading is sufficiently high. Mass-transport
limitations therefore prevent a genuine comparison of intrinsic
activities. A common pitfall is to report and compare a catalyst
to a reference measurement (typically Pt/C) of significantly
higher loading.4 Given the mass-transport limitation of Pt, the
higher the loading applied, the lower the TOF (or jmass)
observed. The reported catalyst thus seems more active than

The intrinsic activity of Pt exceeds that
of any existing earth-abundant HER
catalyst by at least 3 orders of
magnitude.

Figure 1. Cathodic sweeps of HER cyclic voltammograms for a
representative set of Pt loadings exemplify how a lower
overpotential to reach a certain geometric current density can be
achieved by increasing catalyst loading. Blue lines correspond to
3.8 nm Pt nanoparticles deposited with the cluster source over a
small raster pattern, while red lines correspond to commercially
available Pt/C catalyst. Note that for 3.8 nm nanoparticles, jdisk is a
lower bound on the real geometric current density, since the raster
pattern area is smaller than the disk. (Inset) Anodic and cathodic
sweeps for the lowest- and highest-loading samples are shown.
Correct calibration ensures the CV passes (0,0) at low scan speeds
or with a negligible spread to each side at higher scan speeds. It is
necessary to calibrate the reference electrode vs RHE and maintain
a completely H2-saturated electrolyte throughout any HER/HOR
experiment used for measuring catalytic activity. Failing to do so
results in an ill-defined potential shift and consequently an invalid
activity measurement.9 CVs were recorded in H2-saturated 0.5 M
H2SO4 with a rotation rate of ω = 1600 rpm and are post-corrected
for 100% of the ohmic drop as measured by EIS. A potential scan
rate of ν = 50 mV s−1 was used for all samples except for the two
highest loadings (50 000 (not shown in Figure) and 100 000 ng
cm−2), in which case 10 mV s−1 was used to minimize the influence
of double-layer charging current arising from the relative high
roughness.

The turnover frequency should be
reported whenever possible, as it is the
relevant scientific metric for comparing
intrinsic activity.
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the reference measurement, leading to a false conclusion (see
Figure S4 as an example).
Figure 2B compares the TOF for the lowest-loading sample

in this study (i.e., 13 ng cm−2) with the TOFs reported for
other Pt samples using fast mass-transport techniques (i.e., H2-
pump method14 and floating electrodes15). Note that our
lowest-loading sample, along with the floating electrode
technique of the Kucernak group,15 gives the highest HER
activity reported for Pt at room temperature. This result, along
with the trend shown in Figure 2A, shows that decreasing the
loading is a general strategy to evaluate and mitigate the impact
of mass-transport effects in electrochemical reactions. How-
ever, since the TOF does not reach an obvious upper limit with
decreasing loading, the lowest-loading sample gives a lower
bound on HER activity. Therefore, the HER measurements
using fast mass-transport techniques are most likely also
limited by mass transport and thus do not display the true
intrinsic activity. We find, from the micropolarization region,
an apparent exchange current density of j0 = 140 mA cmPt

−2 at
room temperature (see section 5.2 in the SI), almost twice the
value (j0 = 75 mA cmPt

−2) reported from H2-pump
measurements.14

Over the past decade, metal sulfides16−19 and, more recently,
metal phosphides20−22 have proven to be active HER catalysts.
The development of these classes of catalysts has been inspired
by biomimicry and known catalysts for the hydrodesulfuriza-
tion (HDS) process.16,17 The hydrogen adsorption free energy
(ΔGH) has proven to be a good descriptor for rationalizing the
measured activities of these catalysts,16,23 which follow a
volcano-like trend where ΔGH ≈ 0 corresponds to the highest
activity. Apart from Pt, metal sulfides and phosphides are
located at the top of the volcano. However, as shown in Figure

2B, their intrinsic activities are at least 3 orders of magnitude
lower for comparable room-temperature measurements. Thus,
ΔGH ≈ 0 is not a sufficient predictor for intrinsic catalytic
activity. Kinetic barriers or coverage effects could be at play;
these effects should be explored if alternative catalysts, which
can compete with platinum on intrinsic activity, are to be
developed.22,24

■ HYSTERESIS IN POLARIZATION CURVES ARISES
FROM H2 BUILDUP

Apart from the variation in specific activity with the loading,
another indication that the measured currents are limited by
mass transport is the presence of hysteresis in the HER branch.
As shown in Figure 3A, the activity is higher in the cathodic
scan than in the subsequent anodic-going scan (see also Figure
S5). We evaluate this effect using a time-dependent numerical
model that couples reaction kinetics and diffusion of H+ and
H2, as detailed in section 5 in the SI. To validate the model, we
benchmarked it against the data in ref 9, where the polarization
curves for HOR/HER on a full-sized Pt disk in 0.1 M HClO4
at different rotation rates (i.e., ranging from 100 to 3600 rpm)
were reported to have varying degrees of hysteresis. As shown
in Figure S9, simulated and experimental polarization curves
are in nearly quantitative agreement. We furthermore include a
parametric study in section 5.4 in the SI, which shows that the
degree of hysteresis depends on the relative rate of mass
transport determined by the rotation rate, the diffusion
coefficients, and the scan rate.
The conditions of the present study are slightly more

complex. The same scan rate (i.e., 50 mV s−1) and rotation rate
(i.e., 1600 rpm) are used to record the CVs. However, the
loading is varied, and the low-loading samples are scanned to
more negative potentials and present lower geometric current
densities and more hysteresis. This trend may seem contra-
dictory to the reaction being completely mass-transport-
controlled and can be attributed to a slowdown in the effective
diffusion coefficients in the HER branch at the lowest loadings,
as shown in Figure 3B,C. Assuming uniform diffusion
coefficients for all samples (i.e., valid in dilute solutions), the

Figure 2. (A) TOF at η = −15 mV vs Pt loading for all samples in the present study. Blue and green dots correspond to 3.8 nm Pt
nanoparticles deposited over a glassy carbon disk using small and large raster areas, respectively, while red dots correspond to commercially
available Pt/C catalyst. The turnover frequency is calculated using the CO-strip charge of each sample, and all error bars are within the size
of the markers except for the three lowest loadings (13, 17, and 19 ng cm−2) as displayed. (B) TOFs corresponding to the cathodic scans for
the lowest-loading sample in this study (solid blue line) and other Pt/C samples using fast mass-transport techniques: floating electrode
(dotted light blue line) and H2-pump (dotted purple line) taken from refs 15 and,14, respectively. A selection of transition metal sulfides and
phosphides are added for comparison: MoP|S,25 CoP,26 MoS2 (edge),

17,26 and (MoS2, SV-MoS2).
27 See section 4 in the SI for further details.

Decreasing the loading is a general
strategy to evaluate and mitigate the
impact of mass-transport effects in
electrochemical reactions.
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model predicts CVs for the different samples to all follow the
concentration overpotential curve (black dashed line; discussed
in section 6 in the SI). This curve corresponds to the
Nernstian limit where the intrinsic kinetics play no role in the
current density. However, the model reproduces qualitatively
the experimental trends if the diffusion coefficients of H2 and
H+ for low-loading samples in the HER branch are scaled by a
factor 0 ≤ 1, as shown in Figure 3C.
We hypothesize the drastic reduction in the rate of mass

transport at the interface to arise from a large, local H2 buildup
at the lowest loadings. The inset in Figure 3B suggests that the
H2 oversaturation in the HER branch can be larger than 400
mmol L−1 in the lowest-loading samples that are swept to the
most negative potentials (more details in section 6 in the SI
and Figure S16). This corresponds to an increase of up to 3
orders of magnitude with respect to saturation concentration at
room temperature (i.e., 0.59 mmol L−1).28 For the lowest-
loading samples, we expect this buildup to be more localized
than suggested by the present mean-field model, since they
operate at a much higher TOF and have a much lower active
area (Figure 2A). This high buildup of evolved H2 might lead
to partial hindrance of incoming H+ and outgoing H2 species,
as well as to the formation of H2 microbubbles9,13,29 that
remain located on the catalyst surface, blocking active sites;
both of these effects could lead to a reduction in the diffusion
rate. We note that the formation of microbubbles at geometric
current densities higher than 2−4 mA cm−2 has been
suggested,13,29 and as shown in Figure 3A, the geometric
current densities recorded in this study for low-loading samples
can reach 100 mA cm−2. Our simple scaling approach does not
account for the changes in diffusion coefficient with the
changes in the concentration of H2 buildup as the potential is
swept; to our knowledge, there is no established relationship
between diffusion coefficient and H2 concentration. This is
presumably why the experimental CVs show a smoother
transition as the potential is swept, whereas the simulations
have the down-scaled diffusion constant artificially imposed
from the onset. The present scaling factors serve to
heuristically illustrate the impact of a change in diffusion
coefficient on the degree of hysteresis. Using a power-law
function to describe the variation of the diffusion coefficients
with H2 concentration leads to a better agreement with the
experimental CVs, albeit sacrificing simplicity (see Figure S12).

■ OPPORTUNITIES AND CHALLENGES
In summary, the mass-transport limitations of HER in acid
make the assessment of true intrinsic activity of Pt an open
challenge. Since we observe mass-transport limitations even at
ultra-low Pt loading, but with an activity which is on par with
fast mass-transport techniques, we conclude that the intrinsic
activity of Pt is still underestimated. The presented activity
may well be the highest ever reported at room temperature,
but it remains only a lower bound estimate.

We suggest that decreasing loading is a general strategy to
evaluate and mitigate the influence of mass-transport effects in
electrochemical reactions. For highly active catalysts, the
combination of fast mass-transport techniques and ultra-low
catalyst loading might be particularly useful. By combining
experiments and numerical modeling, we illustrate that the
presence of hysteresis in HER CVs at ultra-low catalyst loading
is a further marker of mass-transport limitations. Observing
similar phenomena in other setups and reactions could
possibly help to identify relevant mass-transport limitations.
So is there anything better than Pt for HER? To our

knowledge, no earth-abundant catalyst material comes even
close to Pt in terms of intrinsic activity. Any claim of making a
better catalyst should be supported by a rigorous character-
ization of intrinsic activity (TOF), with careful consideration
of the impact of mass-transport limitations.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsenergylett.1c00246.

Description of electrochemical methods, sample prep-
aration (nanoparticle deposition and drop casting),
general experimental procedures, additional experimen-
tal results, characterization (STEM and ISS), description
of numerical simulation model, benchmarking of model,
parametric study, and further discussion, including
Figures S1−S16 and Tables S1−S13 (PDF)

Figure 3. (A) iR-corrected polarization curves for HOR/HER on 3.8 nm Pt nanoparticles in H2-saturated 0.5 M H2SO4 at a scan rate of 50
mV s−1, a rotation rate of 1600 rpm, and different loadings: 13 ng cm−2 (blue), 48 ng cm−2 (orange), 100 ng cm−2 (green), 498 ng cm−2

(red), and 5000 ng cm−2 (purple). (B) Simulated polarization curves using bulk diffusion coefficient values, Di
bulk. The inset shows the

average surface concentration of H2 as a function of time during the simulation (traces a−e correspond to 13, 48, 100, 498, and 5000 ng
cm−2, respectively). (C) Simulated polarization curves (solid lines) using scaled diffusion coefficients aDi

bulk with a ≤ 1. Dashed lines are the
concentration overpotential curves for scaled diffusion coefficients, and a = 1 (purple) corresponds to bulk diffusion coefficients.

The intrinsic activity of Pt is still
underestimated.
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