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Background: Head and brain anatomy have been related to e-field strength induced by transcranial
electrical stimulation (tES). Individualization based on anatomic factors require high-quality structural
magnetic resonance images, which are not always available. Head circumference (HC) can serve as an
alternative means, but its linkage to electric field strength has not yet been established.
Methods: We simulated electric fields induced by tES based on individual T1w- and T2w-images of 47
healthy adults, for four conventional (“standard”) and four corresponding focal (”4x1”) electrode mon-
tages. Associations of electric field strength with individual HC were calculated using linear mixed
models.
Results: Larger HC was associated with lower electric field strength across montages. We provide
mathematical equations to estimate individual electric field strength based on the HC.
Conclusion: HC can be used as an alternative to estimate interindividual differences of the tES-induced
electric field strength and to prospectively individualize stimulation dose, e.g., in the clinical context.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Transcranial electric stimulation (tES) is used to alter cognitive
and motor functions in healthy and diseased human subjects by
modulating intrinsic brain activity [1,2]. However, increasing
number of studies reporting high variability of the effects call for
the identification of factors causing variability and individualiza-
tion of tES parameters [3e5].

Head and brain anatomy has been identified as one factor pro-
ducing variability in e-fields, which may contribute to the vari-
ability in tES-induced effects on neural and behavioral levels
[6e11]. In order to estimate e-fields, computational modeling ap-
proaches have been established that allow accurate head
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reconstruction and subsequent simulation of current distributions
[12,13]. However, these models require the acquisition of high-
quality magnetic resonance (MR) structural images that in addi-
tion should be optimized for modeling purposes to ensure accurate
automatic segmentation of the head tissues [14]. This is not always
possible in larger studies due to limited scanner access, computa-
tional expertise, as well as high costs, and will therefore obstruct
the wide-spread implementation of such individualized tES pa-
rameters, e.g., in the clinical routine.

In the current study, we therefore evaluated for the first time the
use of head circumference as an easy to implement and low cost
surrogate to account for variability of the e-field caused by different
head sizes. For this aim, we investigated the linkage between head
circumference and e-fields induced by different tES montages. We
used T1w- and T2w-images of 47 subjects acquired in two previous
studies to simulate four conventional (i.e., “standard”) and four
focal (i.e., “4x1”) electrode configurations, covering spatial target-
ing of frontal, central and parietal brain sites. We show that head
circumference captures a practically relevant amount of the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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interindividual variability of the e-field, and provide equations to
estimate electric field strength based on knowledge of head
circumference only.

Material and methods

Participants

Data from two studies were used for the current analysis [15,16].
The studies were approved by the ethics committee of the Greifs-
wald University Medicine and conducted in accordance with the
Helsinki Declaration. Of 55 available datasets, 47 were included (29
females, mean/SD age: 24.8/3.9) after quality control of segmen-
tation and head reconstruction (see below).

MR imaging

High-resolution T1- (1 x 1� 1mm3, TR¼ 2300ms, TE¼ 2.96ms,
TI ¼ 900 ms, flip angle ¼ 9�; using selective water excitation for fat
suppression) and T2-weighted images (1 x 1 � 1 mm3,
TR ¼ 12,770 ms, TE ¼ 86 ms, flip angle ¼ 111�) were recorded.

Simulations

The software SimNIBS (version 3) was used to calculate the
electric field induced by tES, based on the finite element method
and individualized tetrahedral head meshes generated from the
structural T1-and T2-weighted images of the participant (http://
simnibs.org) [12,14,17]. Electric field simulations were computed
for four conventional bipolar tES montages with two round elec-
trodes (5 cm diameter) as well as four focal tES montages with five
to ten round electrodes (1 cm diameter) arranged in one or two 1x4
configurations (see Fig. 1). Procedures for head reconstruction, for
electrode placement and for determining the head circumference
are described in the Supplementary Methods that also list the
stimulation parameters and the standard conductivity values of
SimNIBS which were used for all tissues.

To calculate average field distributions, simulation results were
transformed into fsaverage space. Average e-fields were calculated
on a surface following the middle of the grey matter sheet (i.e.,
placed at 50% of the gray matter thickness). The electric field
strength was extracted from the individual surface output for each
tES montage. E-field strength was quantified as follows: For con-
ventional montages, we chose the average e-field strength in the
target regions-of-interest (ROI). ROI were defined using the
Fig. 1. Electrode configurations included in the analysis (upper row: conventional “standard
over participants.
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Desikan-Killiany atlas [18]: left middle frontal gyrus for frontal
montages, left precentral for central montages, left and right pari-
etal for posterior montages. For focal montages, e-fields were
indexed by the 99th percentile of the fieldmagnitudes as this better
captured field strength in the “target” region (please see Supple-
mentary Methods and Supplementary Fig. S1 for further
information).

Statistical analysis

R was used for statistical analysis [19]. Separate linear mixed
model analyses were computed for conventional and focal mon-
tages with the independent variable head circumference (given in
mm ) and montage as repeated measure (referred to as “specific
model”). In order to obtain average equations for the estimation of
electric field strength under a given head circumference, models
were also computed without inclusion of the repeated measures
factor (referred to as “mean model”). For the analyses of focal
montages, an interaction term for head circumference andmontage
was included. A two-sided significance level of a ¼ 0.05 was used.

Results

Association of e-field strength with head circumference

Averaged distributions of electric fields for each montage are
depicted in Fig. 1. For conventional montages, maximum field
strengths were observed between and below the electrodes
whereas in focal montages, the highest field strengths were
centered below the electrodes. Higher head circumference was
associated with lower electric field strengths (conventional: F(1,
45) ¼ 18.54, p < 0.001, focal: F(1, 45) ¼ 10.84, p ¼ 0.002), Fig. 2.
Models explained 28% (for conventional) and 24% (for focal) of the
variance in e-field strength, see Supplementary Tables S1 and S2.
Changing the electrode shape from round to rectangular did not
affect this relationship (see Supplementary Fig. S2). In addition, the
field component perpendicular to the cortical sheet (indicating
current in- and outflow) exhibits a similar association (see
Supplementary Fig. S3).

In order to calculate individual e-field strength (|E| in V/m), we
extracted equations from the linear mixed model analysis based on
the intercept and beta weights for each montage. For the conven-
tional montage “C3”, e.g., the individually induced e-field strength
can be calculated using formula 0.560-0.664*HC/1000 (where HC is
the head circumference in mm). As an example:With a HC of 60 cm
”; lower row: focal “4x1” montages) and mean e-field strengths (|E| in V/m) averaged

http://simnibs.org
http://simnibs.org


Fig. 2. Association of head circumference with electric field strengths (upper row: conventional “standard” montages, ROI average values; lower row: focal “4x1” montages, 99th
percentile values of field magnitudes). Scatterplots and boxplots show distribution of individual data. Regression lines (including 95% CIs) and equations derived from linear mixed
models (including a random intercept for each participants) with montage as repeated measures factor (equations above each scatterplot) and without (“mean models” equation on
the left).
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(¼ 600 mm), one will have an estimated e-field of
0.560e0.664*0.6 ¼ 0.162 V/m.

Calculation of individual tDCS dose

The equations from the linear mixed model analysis could be
used to individualize the dose for a given participant based on the
known head circumference (using a rule of three). With regard to
the example of conventional montage “C3”, the equation to derive
the individualized tDCS current intensity is:

Individualized current intensity in

mA ¼ Applied tDCS intensity in mA * Optimal jEj in V=m
0:56þð�0:664*HC in mm

=

1000Þ
For example, if the participant had an HC of 60 cm (600mm) and

the optimal |E| was assumed to be 0.185 V/m (corresponding here
to themean e-field strength in the target ROI, i.e., the left precentral
gyrus), the individualized tDCS intensity should be 1 * 0.185/
(0.56e0.664*0.6) ¼ 1.14 mA. If the applied montage is not one of
the above, using the “mean model” formula would result here in an
individualized intensity of 1.17 mA (see Supplementary Fig. S4 and
Supplementary Table S3 for individual doses based on calculations
using model-based equations for each montage).

Using individualized tDCS intensity to simulate e-fields

Compared to a fixed stimulation intensity, using this approach
to estimate individual stimulation intensities reduces the vari-
ability between individuals in the simulated e-fields in large parts
of the cortex, see Supplementary Figs. S5 and S6.
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Discussion

We here propose to use head circumference as a surrogate
measure for estimating the inter-individual variability in induced e-
field strength due to variations in head size. Our data shows a robust
negative linear relationship between individual head circumference
and e-field strength that is stable across different montages.

We observed a slightly stronger relationship for “standard”
compared to “4x1” electrode configurations, indicating that this
general index of head size may be a better predictor of e-fields
induced by conventional montages where fields are distributed
over the cortex. For focal montages, it is conceivable that regional
parameters such as volume of the brain region or thickness of skin,
skull, CSF underneath the electrodes have stronger impact on
induced fields. Importantly, however, these sources of variability
are not captured by measuring head circumference and it is not
clear yet which aspect of head size (including scalp thickness, skull
thickness, greater scalp-to-cortex distance etc.) would be most
expected to influence the electric field. We provide simple math-
ematical equations that are straight-forward to implement either
for prospective dose planning or during post-hoc analysis in a
context where MR data or resources to perform computational
modeling analyses are not available.

Using a reverse-calculation modeling approach [4], we calcu-
lated individual current intensities based on our regression-derived
equations (using the information about head circumference of a
particular participant) under the assumption that an optimal
“target” intensity may lay around our “observed” e-field strength
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averaged for a given montage over a group of participants [5]. This
approach was able to reduce inter-individual e-field variability in
large parts of the cortex by up to 40%.

Our finding based on regression analyses for a given dataset. It is
possible that in other datasets (based on different groups of par-
ticipants varying in their age, sex, etc.), the magnitude of associa-
tion between anatomical parameters and e-field strength may be
different [16]. To be able to draw firm conclusions, the relationship
would benefit from being replicated in independent datasets.
Future studies still need to show how much variability in the
estimated e-field is linked to inter-individual variability in specific
behavioral or neurophysiological responses (when compared to a
“fixed” intensity applied over a group of participants), as the latter
are influenced by several other factors, such as endogenous brain
activity during stimulation. Here, head circumference can be
valuable in post-hoc analyses, filling a knowledge gap in studies
which did not include MR scans. In terms of establishing its value
for prospective dose control, a next step could be to individually
adjust current intensity based on head circumference in first
empirical pilot studies. In this regard, the suggested approach has
the advantage of being easily implementable also in large-scale
clinical studies.

Likely, the observed relation between field and head circum-
ference will be weaker in stroke patients with large lesions [20]. It
will also be weaker if the aim is to stimulate highly localized and
functionally specific regions, as our approach does not account for
inter-individual variations in their cortical location.

Conclusions

We introduce an approach to compute individual electric field
strength based on the individual head circumference which may
open up the possibility to prospectively individualize tES intensity
in empirical studies, e.g., in the clinical context. Head circumference
is an easy-to-implement surrogate for head size and may provide a
proxy for variability in e-fields, e.g., in post-hoc analyses of studies
where no MR data were available. Empirical studies could examine
whether head circumference explains variance in tES-induced
behavioral and neurophysiological effects, and whether it can be
used to lower the variability in the tES responses across
participants.
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Supplementary data to this article can be found online at
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