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Summary
Cardiac arrhythmias comprise a large class of cardiovascular diseases (CVD). They
are associated with an increased risk of heart attack and stroke and are a leading
cause of global deaths. Atrial fibrillation (AF), a type of arrhythmia, alone affects
over 1% of the worldwide population. It costs €73–95 million in the annual healthcare
budget of Denmark and $26 billion in the USA. Electrocardiogram (ECG) analysis
is a cost-effective and non-invasive means for detecting heart arrhythmias. However,
due to their sporadic or paroxysmal nature, they often remain undetected in routine
in-hospital ECG examinations, and therefore require longitudinal monitoring in pa-
tients under free-living conditions. Although longitudinal arrhythmia screening under
free-living conditions can help in early diagnosis, it faces several challenges such as
sustained patient engagement, poor signal quality, recall bias in the patient-reported
symptoms diary or events, and a high false positive rate (FPR) in computer-aided
automatic arrhythmia detection algorithms. Furthermore, in free-living ambulatory
monitoring, motion artifacts often mimic arrhythmias and cause misdiagnosis. With-
out an understanding of the patient’s ambulatory context, it is difficult to ascertain
if the ECG morphology is due to artifacts or arrhythmias. The high FPR in longi-
tudinal screening increases the workload of clinicians (as it requires manual review)
and could also lead to over-diagnosis and patient anxiety.

This dissertation investigates the role of context-awareness obtained via mobile
and wearable devices to improve ambulatory arrhythmia analysis and reduce the FPR
under free-living conditions. In addition, we also address the issues of recall bias in
the patient-reported symptoms diary and events, and sustained patient engagement
in longitudinal arrhythmia screening.

First, we identified the context information relevant for improving ambulatory
arrhythmia screening under free-living conditions. After that, mCardia – a context-
aware ECG collection system – was designed for longitudinal arrhythmia screening.
We evaluated its usability and clinical feasibility in collecting contextualized ECGs for
longitudinal arrhythmia screening in patients under free-living ambulatory conditions.
Two clinical case studies from the collected contextualized data demonstrated the
usefulness of contextual data in improving the manual analysis of ECG.

Furthermore, to improve the automated arrhythmia detection algorithm, we first
investigated the influence of the patient’s ambulatory context on FPR in a state-of-
the-art arrhythmia detection algorithm. The investigation revealed that three specific
ambulatory contexts, namely change in body position, activity change, and sudden
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movement acceleration, caused a significant number (62%) of non-trivial small seg-
ments of false positives. Based on these findings, we proposed a hybrid arrhythmia
(AF) detection model named DeepAware. It employs deep learning and context-aware
heuristics that significantly reduce the FPR under free-living conditions. When used
in a clinical setting, DeepAware can significantly reduce cardiologists’ workload of
manual review of FPs, allowing them to focus more on treatment than diagnostics.

With the two clinical case studies and performance of the DeepAware model, this
PhD thesis demonstrated that contextual information could help in improving both
manual and automated arrhythmia detection under free-living ambulatory conditions.

In addition, this dissertation also contributed a 259-day-long contextualized single-
channel ECG arrhythmia dataset from patients under free-living ambulatory condi-
tions. This database will help the broader deep learning community in building and
evaluating the arrhythmia detection models that can realistically work under free-
living conditions. Furthermore, it will pave the way for making the deep learning-
based, end-to-end arrhythmia detection models more explainable and will help iden-
tify the source of algorithm errors that otherwise remain a black box.



Resumé (Danish)
Hjertearytmier omfatter en række forskellige typer af hjerte-kar-sygdomme. De er
forbundet med en øget risiko for hjerteanfald og slagtilfælde og er den primære årsag
til dødsfald globalt. Atrieflimren (AF), som er en form for arytmi, påvirker alene over
1% af verdens befolkning. Behandling af AF koster årligt i Danmark mere end 500 mil-
lioner kroner og mere end 26 milliarder dollars i USA. Analyse af elektrokardiogram
(EKG) er et omkostningseffektivt og ikke-invasiv metode til påvisning af hjertearyt-
mier. Men på grund af arytmiernes sporadiske eller paroxysmale natur, forbliver
de ofte uopdagede i rutinemæssige EKG-undersøgelser på et hospital. For at opdage
mulige hjertearytmier kræver det derfor ofte, at man overvåger patienten ambulant og
over en længere periode, oftest i deres dagligdag. Selvom ambulant screening af aryt-
mier kan hjælpe med tidlig diagnose, står teknologien overfor en række udfordringer,
herunder dårlig signalkvalitet, manglende eller forkert rapporteringer af symptomer
fra patienten, og en høj andel af falsk-positive ved computerstøttede algoritmer til au-
tomatisk arytmi-identifikation. Desuden ligner bevægelsesartefakter under naturlige
omgivelser arytmier og forårsager ofte en fejldiagnose. Uden forståelse for patientens
kontekst er det vanskeligt at fastslå, om EKG-morfologien skyldes artefakter eller
arytmier. Den høje andel af falsk positive øger klinikernes arbejdsbyrde (da disse
kræver manuel gennemgang), og kan føre til overdiagnosticering og patientangst.

Denne afhandling undersøger om indhentning af viden om patientens hverdagskon-
tekst via. mobile og bærbare enheder sammen med EKG mållinger har et potentiale
for at forbedre ambulant arytmi-analyse og reducere antallet af falsk positive. Afhan-
dlingen behandler også udfrodringerne omkring patientens erindring og rapportering
af symptomer samt hvordan man kan sikre et vedvarende engagement af patienten i
længerevarende arytmi screeninger.

Afhandlingen præsenterer fire hovedresultater. For det første identificerede den en
række kontektuelle parametre, som er relevante at indsamle for at forbedre ambulant
arytmi-screening. For det andet præsenterer den mCardia, som er en smartphone-
baseret teknologi til arytmi-screening til brug i patientens dagligdag. Gennem en
række patientstudier, demonstreres teknologiens brugermæssige og kliniske anvende-
lighed til indsamling af kontekstualiserede EKG data for ambulant arytmi-screening. I
to kliniske casestudier demonstreres nytten af at bruge kontekstuelle data til forbedring
af den manuelle analyse af EKG. For det tredje præsenteres en analyse, der viser at
hvis man anvender nuværende “state-of-art” maskinlæringsalgoritmer til automatisk
identifikation af AF på det indsamlede ambulante EKG data, resulterer dette i en
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meget høj rate (62%) af falske positive. Afhandlingen præsenterer en undersøgelse
af årsagen til dette og finder at dette ofte skyldes tre specifikke ambulante sammen-
hænge; nemlig; ændring i kropsposition, aktivitetsændring og pludselig bevægelsesac-
celeration. For det fjerde præsenterer afhandlingen en maskinlæringsmodel for au-
tomatisk identifikation af AF som bygger på disse fund. Denne model har fået
navnet DeepAware. Modellen anvender “deep learning” metoder kombineret med
heuristikker der anvender viden om patientens dagligdagskontekst. En nærmere anal-
yse viser, at DeepAware er i stand til at reducere antallet af falsk positive betydeligt.

Med udviklingen af mCardia og DeepAware modellen kombineret med de patient-
rettede studier, de kliniske casestudier, samt analysen af det indsamlede data har
denne afhandling vist, at kontekstuelle oplysninger kan hjælpe med at forbedre både
manuel og automatiseret arytmieidentifikation under ambulante forhold. Derudover
har afhandlingen bidraget med et arytmi-datasæt, som rummer 259 dages kontektuel
EKG data optaget ambulant fra 24 patienter. Datasættet vil kunne hjælpe forskere
og studerende med at opbygge og evaluere modeller for identifikation af arytmier, der
realistisk afspejler optagelser fra patientens dagligdag. Desuden vil det kunne bane
vejen for at gøre deep learning-baserede arytmi-identifikationsmodeller mere gennem-
sigtige og vil hjælpe med at identificere kilder til algoritmefejl, der ellers normalt
forbliver en ‘sort boks’.
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CHAPTER1
Introduction

“When you find someone that makes your heart skip a beat, stop the
search and take the risk.”— unknown. Beware! it could be arrhythmia in
disguise.

• • •

1.1 Context and motivation
The World Health Statistics report 2017 published by the World Health Organiza-
tion (WHO) listed cardiovascular diseases (CVD) as the number one cause of global
deaths [2]. In 2016 alone, nearly 17.9 million people died because of CVD, and roughly
85% of these deaths were attributed to heart attack and stroke [2]. Cardiac arrhyth-
mias comprise a large class of CVD, and are associated with an increased risk of heart
attack and stroke. Among all types of arrhythmias, atrial fibrillation (AF) is most
prevalent (affecting nearly 1% of the world’s population); patients with AF have a six-
fold higher chance of strokes, and their mortality rate is twice that of the patient in
normal sinus rhythm (NSR) [67, 84, 171, 204, 186]. In addition, the financial impact
of untreated arrhythmias leading to hospitalization is enormous. According to one
estimation, AF alone costs nearly $26 billion in US healthcare, and it is expected to
rise in the coming year as the population is growing older [91, 81, 125]. Similarly, in
Denmark, roughly €73–95 million in annual healthcare cost is attributed to AF [82].
Early diagnosis of arrhythmias holds the key to prevent heart attacks and further
complications [146, 41].

Electrocardiogram (ECG) analysis is one of the most economical, simple, and non-
invasive ways to detect arrhythmias [5, 57, 142]. However, due to their sporadic and
often asymptomatic nature, it is difficult to diagnose arrhythmias (in the early stages)
during routine hospital ECG examinations. Even with a week-long Holter monitoring,
nearly 30% of AF episodes remain undetected [94]; thus, more extended continuous
ECG monitoring in a patient’s free-living conditions is usually required [75, 155].

Traditional wired ECG Holter monitors limit the possibility of longitudinal mon-
itoring in the patient’s natural setting, as they are bulky and restrain the patient’s
movements [85, 159]. They are also restricted by low storage capacity and short bat-
tery life. However, recent advancements in mobile and wearable ECG technology has
opened a new frontier for preemptive arrhythmia diagnosis [151, 93, 41, 120] since
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such mobile and wearable ECG devices allow the collection of longitudinal ECG in
the patient’s natural settings [168].

Even though continuous monitoring can help in the early diagnosis of arrhyth-
mias, it produces several challenges. First, longitudinal self-monitoring in a patient’s
free-living conditions suffers from lack of sustained patient engagement [147], poor
signal quality [144, 147, 45], and recall bias in the patient’s self-reported symptoms
and activities diary [184, 142, 202]. During the ambulatory continuous Holter moni-
toring, patients are required to maintain a diary to note down unusual symptoms and
activities. The clinicians use the diary information to map the reported symptoms
with the ECG during the ECG examination. However, the process of keeping the
symptoms diary suffers from frequent non-compliance, which in turn further limits
the diagnostic value of the ambulatory Holter monitoring [202].

Second, inspecting and analyzing the enormous amount of data produced by con-
tinuous monitoring is tedious and resource-consuming [159]. To support the au-
tomatic detection of arrhythmias, numerous computer-aided algorithms have been
proposed [40, 136, 74]. These algorithms have evolved from traditional feature en-
gineering (FE)-based techniques which required signal pre-processing, handcrafted
feature extraction, and classification to more recent end-to-end deep learning (DL)-
based algorithms [40, 10, 136]. The DL-based arrhythmia detection algorithms in
particular have shown a high level of performance improvement in their diagnostic
capability [10, 141, 143, 48, 181, 65, 191, 111, 193, 29]. Despite these advancements,
bringing these algorithms to widespread adoption for a real-time diagnosis still re-
mains an open challenge [28, 40, 43].

Third, the majority of these algorithms have been trained and evaluated on open
access datasets from PhysioNet [59]. These public datasets are primarily collected
in the controlled clinical environment and are relatively clean [55]. When algorithms
trained and evaluated on these datasets are applied to patient-operated ECG from
ambulatory free-living conditions, they result in performance degradation, and a high
false positive rate (FPR) [64, 135, 46]. This is partly due to the low signal quality
of patient-operated ECG from ambulatory free-living conditions as compared to the
conventional ECG recordings [172, 64]. In addition, in ambulatory ECG under free-
living conditions, artifacts mimicking arrhythmias and causing misclassification are a
well-known challenge [116, 51, 114, 138].

Fourth, FPR, even if small, can lead to over-diagnosis and patient anxiety [28, 96].
Even in the clinical setting’s mixed screening mode where cardiologists manually ver-
ify the arrhythmia detection algorithm output, the high FPR in longitudinal screening
increases cardiologists’ workloads. It takes away their focus and time from treatment
to diagnostics. Therefore, for the mobile and wearable technology to enable contin-
uous screening of arrhythmias in patients’ natural settings, this FPR problem needs
to be addressed.

Fifth, for performance improvement so far, automated arrhythmia detection al-
gorithms have mainly relied on ECG morphology [74]. However, under free-living
conditions, contexts such as food intake, body posture changes, and physical ac-
tivity play a vital role, as ECG morphology changes with these contexts [178, 40].
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Computer-aided arrhythmia analysis without understanding the ambulatory context
is prone to misdiagnosis and high FPR [40, 43].

In this dissertation, we explore the use of context-awareness to improve the ar-
rhythmia analysis and reduce the FPR on longitudinal patient-operated continuous
ECG under free-living conditions. The concept of context and context awareness has
different notions in various areas of computer science [12]. However, in this thesis,
the term context refers to the information about one or more aspects of the patient’s
ambulatory environment, such as physical activities, body positions, whereabouts,
gender, age, food intake, lifestyle, mental state, and unusual symptoms/events. In
the dissertation, the terms AF and arrhythmia will be used interchangeably, while
among all types of arrhythmias, AF has been our primary focus.

1.2 Problem statement
For improving the performance of ambulatory arrhythmia detection, automated ar-
rhythmia detection algorithms have mainly relied on ECG morphology [40]. During
the manual review, it relies on the expertise of cardiologists to differentiate between
the ECG morphology change due to heart conditions and the confounding artifacts
due to movement/motion. However, such methods are prone to misclassification
and over-diagnosis [40, 11, 23]. Under free-living ambulatory conditions, cardiovas-
cular variability and ECG interpretation can vary according to the patient’s physical
contexts such as activities, stress, food intake, or clinical contexts (comorbidities
like diabetes, hypertension) [169, 178]. For instance, an ECG showing a heart rate
(HR)≥100 BPM at rest would be considered tachyarrhythmia [13], whereas, during
exercise or physical work, it would be considered normal.

Recent reviews of computer-aided arrhythmia detection techniques by Pudukotai
et al. [40] and Zahra et al. [43] highlight that, under free-living conditions, with-
out understanding the patient’s context in which the ECG was collected, automatic
arrhythmia analysis remains prone to misclassification [40, 43]. The importance of
incorporating the patient’s context in the ECG analysis algorithms is also highlighted
by Smulyan [169]. Even during a manual analysis of short in-hospital ECG, when-
ever cardiologists find the ECG snippet inconclusive, they rely on knowledge about
the patient’s extensive context or about arrhythmia epidemiology to make a better
assessment [65].

Prior studies have shown that even though the onset and offset of arrhythmia
like AF are random, they follow some temporal pattern (clustered in the morning
hours and the evening/late-night) and are associated with some external triggers
like stress level, food intake, and physical efforts [66, 179]. Such information about
the arrhythmia triggering and FPR-prone contexts can be combined to dynamically
fine-tune the algorithm’s sensitivity and specificity around those contexts.

As argued above, arrhythmia detection in ambulatory settings without taking
account of the patient’s ambulatory contexts is bound to result in a high FPR and
over-diagnosis, especially in longitudinal screening. The use of context-awareness in
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ambulatory cardiac condition monitoring has been widely discussed [133]. However,
its utility in improving arrhythmia diagnosis remains unexplored. In this thesis, we
investigate whether context-awareness can hold the key to reducing the FPR and
improving arrhythmia detection performance under free-living conditions. We define
the main research question of the dissertation as follows:

RQ: Can contextualized ECG data collected under free-living conditions
help improve ambulatory arrhythmia monitoring and diagnosis?

In our attempt to address this research question, we further identify a set of
sub-questions. First, we need to understand what context information about the
patient’s ambulatory setting is relevant for improving arrhythmia analysis under such
free-living conditions.

Secondly, as mentioned earlier, the longitudinal patient-operated ECG monitoring
for arrhythmia screening suffers from the lack of sustained patient engagement, the
recall bias in patient self-reported diary data, and poor quality ECG signals [147, 185,
202]. The poor quality ECG profoundly reduces the diagnostic quality during manual
and computer-aided automatic analysis [148, 126]. For collecting the contextualised
ECG, a few context-aware ECG collection systems have been introduced [164, 100,
109, 123]. However, the context collection in these systems is limited to activities
or locations. The traditional wired Holter monitors are inadequate for longitudinal
screening as they are bulky, and without any feedback to the patient, they remain a
black box [85, 159]. As an alternative, mobile and wearable-based ECG are gaining
traction for patient-operated ECG recordings under free-living conditions [162, 118].
Alongside the ECG, they are also adequate to collect the rich context information
under ambulatory free-living conditions [133].

To address the above-mentioned challenges in longitudinal arrhythmia screening
and to collect the contextualized ECG under free-living conditions, it is important to
understand the technical and user experience (UX) design and the clinical feasibility
of such a patient-operated mobile/wearable-based ambulatory contextualized ECG
collection system. Therefore, we define the RQ 1 as:

RQ 1: What contextual information is relevant to collect during ambula-
tory ECG monitoring for improving arrhythmia diagnosis, and what
is the design of mobile health technology for collecting such data
from patients under free-living conditions?

Furthermore, in general, it has been observed that ECG classification and ar-
rhythmia detection models that show excellent performance on public benchmark
datasets give more FPs when applied to ambulatory patient-operated single channel
ECG [55, 64, 46]. Although it is known that patient’s ambulatory contexts add high
noise and confounding motion artifacts and cause high FPR in arrhythmia detection
algorithms [46], whether any specific correlations exist between the patient’s different
ambulatory contexts and FP occurrences in the state-of-the-art arrhythmia detection



1.3 Research methods 5

algorithm is yet to be explored. For instance, it might be the case that a particular
type of activity, body position, time, place, or food intake induces more false positive
(FP)s in an arrhythmia detection algorithm. A preliminary study in this direction
was reported by Noh et al. [130]; they observed that a particular walking pattern
(walking on a slope) was inducing a higher FPR in heartbeat detection algorithms
than walking on flat surfaces or sitting. Similarly, if specific ambulatory contexts are
found to be inducing more FPs, in state-of-the-art arrhythmia detection algorithms,
such information can be used to dynamically fine-tune the algorithm’s sensitivity and
specificity on those FP-prone contexts. Therefore, to understand the influence of
ambulatory context on the FPR of a state-of-the-art arrhythmia detection algorithm,
we define the next research question as:

RQ 2: What is the impact of ambulatory contexts on FPR in a state-of-
the-art arrhythmia detection algorithm when applied to ECG data
collected under free-living conditions?

If RQ 2 identifies that specific ambulatory contexts are found to influence FPR, can
such contextual information be used to improve arrhythmia detection performance
and reduce the FPR under free-living conditions? To explore this, we defined the
final research question as:

RQ 3: How can arrhythmia detection algorithms be improved by using
contextual information obtained under free-living conditions?

1.3 Research methods
Following the recommendations from Bardram’s ‘Fish Model’ [14], this dissertation’s
research methods were a combination of both empirical and theoretical works. Mackay
and Fayard’s [113] ‘Triangulation Model’ was used to categorise the variety of activ-
ities in each task. An overview of the activities performed at the level of theory,
design, and observation is presented in Figure 1.1.

Methods to answer RQ 1: First, a literature review and interviews with the car-
diologists were conducted to understand which patient contextual information during
the ambulatory screening period could be relevant for improving arrhythmia diagnosis.
Thereafter, to design a system for collecting such contextualized ECG, we followed a
user-centered design (UCD) approach [63] and applied the patient-clinician-designer
(PCD) framework [115]. The UCD method attempts to find a suitable design trade-
off by examining diverse and seldom contrasting interests from the perspectives of
all three stakeholders, namely the patient, the clinician, and the designer. The PCD
framework gives a structured means for reconciling co-design activities to find proper
design solutions. The co-design activities spanned 16 months (from April 2018 to
July 2019) and involved six patients, and four clinicians. The proposed contextual-
ized ECG collection system is named mCardia.
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Figure 1.1: An outline of the dissertation. The color-coding separates the activities
performed at each level: Theory, Design, and Observation. Each activity in the
rectangle is annotated with the article number in which it is described. UCD: User-
centered design, LRW: Literature review.

After completing the design process, the next task was to identify a suitable
framework that could help build the mCardia system. In recent years many generic
mobile and wearable sensing frameworks have been developed for assisting in building
new mobile health (mHealth) sensing applications without reinventing the wheel. To
identify a suitable framework for building the mCardia system, a systematic review
of mobile and wearable sensing frameworks was conducted. The review revealed
that most generic mobile and wearable sensing frameworks were not maintained and
adequately documented after the initial releases. More importantly, they did not
support a single language code-base for building a cross-platform (iOS and Android)
application. Therefore, we opted to use our in-house CARP Mobile Sensing (CAMS)
framework [17, 18] and the Research Package framework [73] for implementing the
proposed mCardia system. The further implementation and architectural details of
mCardia are described in chapter 3.

Thereafter, a study was conducted to evaluate the usability and clinical feasibility
of the mCardia system under free-living conditions. We recruited 33 patients al-
ready diagnosed with or suspected of having arrhythmia in both India and Denmark.
Patients used the mCardia system for a minimum of two weeks in their free-living
conditions. A mixed-methods research [83] approach was employed for analyzing the
feasibility study’s data. The quantitative analysis consisted of analyzing usage pat-
terns, system yield, and signal quality analysis of collected ECG data. The qualitative
analysis consisted of analyzing the end of study semi-structured interviews and re-
sponses of the CACHET Unified Methodology for Assessment of Clinical Feasibility
(CUMACF) [16, 19] usability questionnaires. The comprehensive HCI-based evalua-
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tion gave us insights into usage patterns, the perceived usefulness of such technology
for longitudinal arrhythmia screening, the system’s technical feasibility in the wild,
and the associated challenges [153]. Two clinical case studies were conducted to in-
vestigate the clinical usefulness of collected contextualized ECG in the arrhythmia
screening process. The case studies demonstrated how and where contextual data
helped the cardiologist make better assessments of patient-reported symptoms dur-
ing the manual examination of the ECG. Further details of the feasibility study are
described in chapter 3.

Methods to answer RQ 2: Through RQ 2, we were interested in identifying
if any correlations existed between the patient’s ambulatory contexts and FPR oc-
currences. If specific user contexts might be inducing more FPs in a state-of-the-art
DL-based AF detection algorithm under free-living conditions, then such informa-
tion might be used to dynamically fine-tune the algorithm’s sensitivity and specificity
on those FP-prone contexts. To address RQ 2, both quantitative and observational
research methods are applied. First, a state-of-the-art, end-to-end, DL-based AF de-
tection model is built and tested on public benchmark datasets. Standard metrics,
namely sensitivity (Se), specificity (Sp), accuracy (Acc), and FPR, were used for eval-
uation and comparison of its performance on benchmark arrhythmia datasets. They
are defined as follows:

Se = TP

TP + FN
, (1.1)

Sp = TN

TN + FP
, (1.2)

Acc = TP + TN

TP + TN + FP + FN
, (1.3)

FPR = FP

FP + TN
, (1.4)

where TP , FN , and TN stand for true positives, false negatives, and true negatives,
respectively. After ensuring that the model has state-of-the-art performance on the
public benchmark datasets, it was then applied to contextualized ECG data from
free-living conditions. Further details of the DL-based AF detection model used in
this investigation are described in chapter 5. A total of 215 days of data from 21
arrhythmia patients (collected during the mCardia’s feasibility study in RQ 1) was
used. The model’s output was manually examined. A mobile ECG annotation tool
was designed to facilitate the manual annotations process. First, a biomedical engi-
neer annotated the out rightly noisy or NSR segments. All the ambiguous segments
were sent to two cardiologists for annotations via the mobile ECG annotation tool.
After obtaining the ground truth via the manual annotation process, the true posi-
tive (TP) and FP segments marked by the arrhythmia detection model were plotted
against the patient context, such as activity, body position, movement acceleration,
and stress. Through the visual inspection of each 24 hour-long data section, the
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correlations between the patient’s ambulatory contexts and TP/FP marked by the
DL-model were ascertained.

The ECG data collected during the mCardia’s feasibility study and the manual
ECG annotations process culminated in the design and development of a 259-day-
long contextualized arrhythmia database from free-living conditions. The database
is named CACHET Contextualised Arrhythmia Database (CACHET-CADB). Fig-
ure 1.2 shows the procedure followed in the design and development of the dataset.
The DataAnalyzer Tool [58] was used for processing the 3D accelerometer, rotation
rate, and pressure sensor data from the collected ECG data. At first, AF detection
models classified and labeled the rhythms, which were then manually annotated by
two independent cardiologists using the ECG annotation tool. We followed a 100%
inter-rater agreement policy between the two cardiologists. Samples with diverting
annotations were discarded. Also, a cross-correlation-based signal quality assessment
was done to ascertain the amount of noisy data in the database. Further details for
CACHET-CADB’s design and development are presented in chapter 6 and article
[A.4].

Contextualised ECG
collected during the

feasibility study in T2 

Anonymization
and data
trimming

DL models based
AF detection 

Manual annotation
by two

cardiologists  

CACHET-CADB

Patient-entered context data 
Process  3D Accelerometer, rotation
rate sensor, pressure  sensor  for
driving context information

Figure 1.2: Major tasks performed to design and develop CACHET-CADB

Methods to answer RQ 3: For performance improvements a post-processing
heuristics approach has been previously suggested in the literature [149, 137, 65]. In
the investigation of RQ 2, we found that three specific ambulatory contexts: change
in body position, activity change, and sudden movement acceleration, induced 62%
of non-trivial FPs in a state-of-the-art AF classification algorithm when applied on
contextualized ECG collected under free-living conditions. These findings were used
to build a context-aware-heuristics module that checks if context change has been
detected in a given or the previous input window to adjust the final output of the
model dynamically. This context-aware-heuristics module was combined with two
other DL-based models in the post-processing stage. The combined hybrid model for
AF detection is named DeepAware. The CACHET-CADB was used for testing the
context-aware-heuristics module and the overall performance of the combined model.

The standard metrics of Se, Sp, Acc, FPR, and CM were used for evaluating the
performance of the proposed model. Its generality was tested on five datasets (three
public and two private). To compare the performance of DeepAware with the state-
of-the-art DL models on public datasets, we also conducted a literature review of
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DL-based AF detection models. The comparison with the public arrhythmia dataset
was made by disabling the context-aware-heuristics module as they do not contain
context data. The same standard metrics of Se, Sp, Acc, FPR, and CM were used
for performance comparison. Further details of methods are described in chapter 7
and the article [A.5].

1.4 Research contribution
The research contributions of this thesis are as follows:

1. A systematic review of mobile and wearable sensing frameworks: To
find a suitable framework for building mCardia, a systematic review of available
mobile and wearable sensing frameworks was performed. The review provides
an overview of the state-of-the-art in mHealth sensing frameworks and proposes
new features and functionality needed in future generic mHealth sensing frame-
works. The review can help researchers and developers identify which framework
is appropriate for building mHealth applications.

2. Design, implementation, and evaluation of a contextualized ECG col-
lection system for longitudinal arrhythmia screening: We identified the
challenges in longitudinal arrhythmia screening and the relevant contextual in-
formation under free-living conditions that could help improve ambulatory ar-
rhythmia diagnosis. A contextualized ECG collection system, mCardia, for lon-
gitudinal arrhythmia screening under free-living conditions has been proposed.
Through its device-independent plugin-based software architecture, it allows
integration with any new ECG devices without modifying the application. Fur-
thermore, a study was conducted to evaluate mCardia’s technical robustness,
usability, and clinical feasibility via two field deployments, and over 8000 hours
of contextualized ECG data has been collected. Two clinical case studies were
conducted to assess the clinical usefulness of the collected contextualized ECG
data. These studies demonstrated how and where the collected contextual data
helped cardiologists make a better assessment during the manual analysis of
ambulatory ECG.

3. Investigation into the contextual and temporal distribution of false
positives in a deep learning-based atrial fibrillation detection algo-
rithm: An experiment was conducted to understand the impact of ambulatory
contexts on FPR in a state-of-the-art AF detection algorithm under free-living
conditions. We identified the free-living ambulatory contexts that induced the
non-trivial FPs in an AF detection algorithm, which otherwise has an excellent
performance on benchmark arrhythmia datasets. The information about these
FP-inducing contexts in free-living ambulatory settings can help dynamically
fine-tune the algorithm’s sensitivity and specificity around those FP-prone con-
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texts. Based on these findings, we provide the design implication for future DL
models to improve the FPR under free-living conditions.

4. Design and development of a contextualized wearable ECG dataset
for arrhythmia classification under free-living conditions: A contextu-
alized ECG database named CACHET-CADB was developed and made pub-
licly available. It contains 259 days of contextualized ECG recordings from
arrhythmia patients in free-living conditions. It provides 1602 ten-second-long
manually annotated samples of ECG belonging to AF, normal sinus rhythm
(NSR), Noise, and ‘Other’ (all other) rhythm types. Compared to existing
public datasets, CACHET-CADB contains the patients’ ambulatory contex-
tual information, which, if incorporated in arrhythmia detection model designs,
can improve their performance for free-living conditions. CACHET-CADB can
help the medical research and ML-community to build and evaluate arrhythmia
detection models that can work in patient-operated mobile and wearable ECG
devices under free-living conditions.

5. Design and development of DeepAware–a hybrid algorithm for AF de-
tection using deep learning and context-aware heuristics: We designed,
developed, and evaluated DeepAware, which is a hybrid algorithm for AF detec-
tion using deep learning and context-aware heuristics. The proposed DeepAware
algorithm is more generalized and beats the state-of-the-art on multiple pub-
lic benchmark arrhythmia datasets. It also demonstrates how the information
about the patient’s ambulatory contexts under their free-living conditions can
significantly reduce the non-trivial FPs.

1.5 Scientific publications in thesis
In Figure 1.1, different activities that constitute this thesis are annotated with their
corresponding scientific publications. This section briefly outlines these key publica-
tions.

Mobile and Wearable Sensing Frameworks for
mHealth Studies and Applications: A System-
atic Review. In: ACM Transactions on Com-
puting for Healthcare 2 (1), 1-28, 2020

[A.1]

A review of generic mobile and wearable sensing frameworks was conducted to find
a suitable framework for building a contextualized ECG collection system. This article
presents the results of that systematic literature review. It provides a comprehensive
analysis of functional and non-functional features supported by existing frameworks,
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the stakeholders they support, and the type of health studies in which they were used.
It also offers new recommendations for future generic mHealth sensing frameworks.

mCardia: An Ambulatory Context-Aware
ECG Collection System for Arrhythmia
Screening In:[Accepted] ACM Transactions on
Computing for Healthcare, 2021

[A.2]

The paper on the mCardia system explains its design, development, usability,
and clinical feasibility via a field deployment study. The feasibility evaluation was a
mixture of qualitative and quantitative results.

Contextual and Temporal Distribution of
False Positives in a Deep Learning Based
Atrial Fibrillation Detection Algorithm: An
Investigation. In: [Submitted] Expert Systems
with Applications, 2021

[A.3]

This article investigates the contextual and temporal distribution of false positives
in a deep learning-based AF detection algorithm. The algorithm was first trained and
tested on public datasets and showed state-of-the-art performance on training and
other public datasets. After that, an investigation was done to find the user contexts
responsible for inducing more FPR when applied to ECG from free-living conditions.

ACHET-CADB: A Contextualized Ambula-
tory Electrocardiography Arrhythmia Dataset
In:[Submitted] Scientific Data - Nature, 2021

[A.4]

The paper explained the design, development, and validation process of CACHET-
CADB, an ambulatory ECG database from arrhythmia patients under free-living con-
ditions. The database contains 262 days of contextualized ECG and 1602 10 second
manually annotated ECG segments of AF, NSR, Noise, and ‘Other’ rhythm types.
This database is a rich source for validating the AF detection model’s performance
on patient-operated ECG from free-living conditions. Contextualized understanding
of the arrhythmia detection algorithms’ output can make them more transparent and
help identify the error source in end-to-end classification algorithms.
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DeepAware: A Hybrid Deep Learning and
Context-Aware Heuristics Based Model for
Atrial Fibrillation Detection. In: [Manuscript
in preparation]

[A.5]

This paper on DeepAware presents the design, development, and evaluation of a hy-
brid AF detection model using deep learning and context-aware heuristics. It achieves
state-of-the-art performance on public datasets and also significantly reduces the FPR
(while maintaining high sensitivity) on ECG data under free-living conditions.

1.6 Thesis overview
The outline of the thesis is as follows. Chapter 2 provides background information
on the cardiac physiology associated with heart arrhythmias, contextualized ECG
collection systems, and the public databases used for training and evaluating arrhyth-
mia detection algorithms. After that, it summarizes the state-of-the-art, DL-based
arrhythmia detection models. This background and related work chapter ends with
a description of research gaps. Chapter 3 presents the technical and UX design
and implementation of mCardia–a contextualised ECG collection system. Thereafter,
chapter 4 presents mCardia’s usability and clinical feasibility study in two field deploy-
ments. Both of these chapters are based on article [A.2]. Chapter 5 investigates how
the patient’s free-living ambulatory contexts influence the FPR in a state-of-the-art
AF detection algorithm. Chapter 6 presents the design, development, and validation
of the proposed contextualized arrhythmia database CACHET-CADB. Chapter 7
describes the design development and evaluation of the proposed DeepAware model
and demonstrates how combining context-aware heuristics with DL can significantly
reduce the FPR under free-living conditions. In chapter 8, we discuss this research’s
findings in light of the main research questions (RQs). This chapter also outlines
some of the core limitations of the present research and suggests pointers for future
work.



CHAPTER2
Background and

Related Work
This chapter first describes the necessary medical background to understand this the-
sis. After that, the current state-of-the-art in ambulatory ECG monitoring, bench-
mark arrhythmia datasets, and DL-based arrhythmia detection algorithms are de-
scribed. Towards the end, we summarize the research gaps and provide an overview
of how these gaps are addressed in this thesis.

2.1 Medical background
In this section we present the brief medical background of arrhythmia and its associ-
ated terminologies.

Sinoatrial (SA) Node
Heart's electric signal generator

Right
Ventricle

Left
Ventricle

Right
Atrium

Left
Atrium

Atrioventricular 
(AV) node

Heart's electric 
wiring  system 

Figure 2.1: Cardiac conduction system of the heart
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2.1.1 Electricity of the heart
Figure 2.1 shows an overview of the cardiac conduction system of the heart. The
human heart is a muscular pump that supplies the blood flow in the body. An
electrical impulse regulates this pumping mechanism. It starts in the sinus atrial (SA)
node and then propagates to the left and right atria via atrial myocardial cells [86].
These electrical impulses of the heart can be recorded by putting electrodes on the
chest. The recorded impulses of the heart are called an electrocardiogram (ECG).
Any hindrance in the heart’s electrical pathways can create an abnormality in its
natural pumping mechanism/rhythms.

2.1.2 What are arrhythmias and how are they diagnosed?
Arrhythmia refers to a group of conditions associated with heart rhythm where the
heartbeat becomes irregular due to a change in the normal sequence of electrical im-
pulses of the heart [1]. Based on the type of effect they have on the heart rate/rhythm,
they are categorized into several types, such as bradycardia (heart rate too slow),
tachycardia (too fast) and atrial fibrillation (upper heart chambers contract irreg-
ularly) [1]. Also, according to their origin in the heart (i.e., ventricular or atrial),
they can be classified as ventricular arrhythmias or supraventricular arrhythmias.
Among the different types of arrhythmias, atrial fibrillation (AF) is the most preva-
lent and the leading cause of stroke in elderly patients [21, 167]. Early detection
of such arrhythmias can help physicians effectively manage them with anticoagulant
medications and so reduce the risk of further complications [71].

The electrocardiogram (ECG) analysis is the easiest, most economical, and non-
invasive way of detecting arrythmias and other cardiac problems [150, 40]. However,
early diagnosis of arrhythmias using ECG is challenging in many ways, since many
arrhythmias remain asymptomatic and might not show up during the routine, short,
in-hospital ECG. In such cases, it requires long-term monitoring ambulatory ECG for
24 hours or longer using Holter monitors.

2.1.3 The ECG and its different components
The ECG is a time series signal representing the heart’s electrical activity, with a few
millivolts amplitude and a frequency range of 0.01–250 Hz [182, 110]. As shown in
Fig 2.2, the ECG corresponding to a single cardiac cycle contains 5-major components:
P, Q, R, S, and T. They originate in different part of the heart and they are indicative
of the heart’s functioning. In the single heartbeat, the origin of each of these five
components is as follows [199, 40, 24, 38].

• P-wave: The P-wave is produced during the depolarization of the left and
right atria. It represents the time required for an electrical vector from the
sino-atrial node (SAN) to spread throughout the atrial musculature. During
this process, an electrical vector originating in the SAN spreads throughout the



2.1 Medical background 15

PR Interval

PR Segment

QRS Complex

ST Segment

RR Interval

ST Interval

Figure 2.2: Various components of an ECG signal

atrial musculature. The normal P-wave is usually ≤2.5 mm tall and ≤120 ms
in width.

• QRS complex: The QRS complex comprises the Q-wave, R-wave, and S-wave
and indicates the right and left ventricles’ rapid depolarization. The Q-wave
is the first portion of the ventricular depolarization if it is negative, whereas
the first upright deflection is the R-wave. The subsequent negative deflection
is the S-wave. The QRS complex has a much larger amplitude than the P and
T-waves.

• T component: The T-wave is a positive deflection after every QRS complex
and represents the ventricles’ repolarization phase. The ST segment is measured
from the end of QRS to the start of the T-wave and represents the interval
between ventricular depolarization and repolarization.

These morphological characteristics (e.g., the amplitudes, inter- and intra-heartbeat
intervals of each of these five waves) of the ECG signal are the standard features used
to detect arrhythmias. For instance, the RR intervals (shown in Fig 2.2) between the
consecutive heartbeats can indicate the type of heart rhythm (i.e, regular or irregular).
In the presence of arrhythmias like AF or sinus arrhythmia, this RR interval between
heartbeats becomes irregular. Similarly, the PR segment being ≥0.20 s indicates the
first-degree heart block [150].

2.1.4 Atrial fibrillation and ECG morphology during atrial fibrillation
As mentioned earlier, of all other types of arrhythmias, AF is the most prevalent,
hazardous, and commonly under-diagnosed [56, 154]. More importantly, it is single
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handedly causing an immense economic burden on health care [82] and therefore AF
will remain the primary focus of this thesis.

Figure 2.3: ECG morphology during the AF: (1) missing P-waves, (2) and irregular
RR intervals.

AF characteristics: As shown in Figure 2.3, ECG morphology during the AF
has two main characteristics:

• Heartbeat irregularity (the distance between the consecutive R-peaks)

• Absence of the P-waves

Four different types of AF conditions exist, namely (1) paroxysmal AF, (2) persis-
tent AF, (3) long-standing persistent AF, and (4) permanent AF [32]. Among them,
persistent and permanent AF conditions are easy to diagnose during an in-hospital
ECG. However, the paroxysmal AF can be brief, infrequent, and asymptomatic at
times and it therefore remains undetected in the routine in-hospital ECG.

2.2 ECG monitoring for arrhythmia detection
The ECG monitoring devices range from single-lead to 12-lead ECGs [160]. Based
on the ECG monitoring setting, the ECG collection systems for arrhythmia analysis
can be categorized into two broad categories:

• Hospital setting

• Ambulatory or free-living conditions

The in-hospital ECG monitoring systems are further divided into two: ICU types and
those for non-ICU settings [26, 197, 6, 42, 176, 160]. The hospital-based arrhythmia
monitoring systems are very standardized. Also, as mentioned earlier, due to their
paroxysmal nature, arrhythmias are difficult to detect during routine in-hospital ECG
in their early stages. Therefore, we will further focus only on the continuous ambula-
tory ECG monitoring systems.
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2.2.1 ECG monitoring under ambulatory free-living conditions

Holter monitors Patch monitors Implantable loop
recorders Event recorders

Ambulatory ECG  for arrhythmia screening 

Continuous
recording  

Intermittent
recording  

Smart watches
and handheld

devices

Figure 2.4: Ambulatory ECG systems based on monitoring scheme

Based on the recording scheme, ambulatory ECG monitoring systems can be cat-
egorized as continuous recorder or intermittent recorder(Figure 2.4). For continuous
recording, Holter monitors and adhesive patch monitors are common. Holter moni-
tors can usually record 2–4 channels of ECG for 24–48 hours and are therefore most
suitable for patients experiencing some unusual symptoms/episodes on a daily ba-
sis [142, 54]. Traditional Holter monitors are bulky in size and, without any feedback,
remain a black box for the patient [85, 159]. On the other hand, the adhesive patch
monitors are usually single channel and can continuously record multiple weeks of
ECG [142].

The intermittent monitoring systems include event recorders, smartwatches/hand-
held devices, and implantable loop recorders [142, 54, 202]. The event recorders
record ECG data for a short programmable fixed amount of time (typically 1–4 min-
utes) when a patient experiences some unusual symptom and presses a recording but-
ton [202]. Similarly, the smartwatches and handheld devices such as AliveCor [78],
Apple watch [79], and Zenicor-ECG [173] are also used for recording short (usually 30
second–1 min) ECGs. The implantable loop recorders are invasive and can record a
single channel ECG for up to a year [202]. They are mostly used when the frequency
of unusual symptoms is very low (e.g., once in two months) [54, 142, 124]. Compared
to other monitoring devices, their cost is also significantly higher [202].

Out of the two monitoring schemes, continuous long-term monitoring is more
desirable as intermittent ECG might miss asymptomatic arrhythmias [54].

2.2.2 Other modality of ambulatory arrhythmia monitoring
Apart from standard ECG-based systems, in recent years photoplethysmography
(PPG) has also gained traction for ambulatory arrhythmia detection [28, 163, 101, 9,
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161]. The PPG base arrhythmia detection systems collect PPG data from two sources:
(1) wrist-worn wearable smart-watches or fitness trackers, (2) smartphone cameras.
Due to their form factor and easy-to-use nature, the wrist-worn PPG wearables such
as health trackers and watches are much more suitable for long-term arrhythmia moni-
toring [20, 44]. However, as reported by Dörr et.al [41], the PPG data from wrist-worn
wearables is very noisy, and significant parts of the recordings are not usable for ar-
rhythmia analysis due to low signal quality. The quantity of unusable data increases
even more when used under free-living conditions due to more confounding movement
artifacts. In smartphone camera-based PPG, the pulsatile time-series recordings are
obtained by placing a fingertip on the phone’s camera. McManus et al. [120] built a
pulse waveform analysis algorithm to detect arrhythmias and claimed to have achieved
an accuracy of 95.1% for AF detection. Similarly, Cardiio Rhythm [27] also reported
a sensitivity of 92.9%.

It is important to note that PPG-based arrhythmia detections system are still in
the exploratory phase, and ECG still remains the standard for arrhythmia diagnosis
in clinical settings. Therefore in this thesis, we are especially interested in continuous
ambulatory ECG.

2.2.3 Challenges in longitudinal arrhythmia screening under
free-living conditions

Figure 2.5 shows the workflow of the traditional outpatient arrhythmia screening
process. During this screening period, patients are advised to keep a diary to note
down any unusual symptoms they might experience [142, 202]. A cardiologist uses
these notes of unusual symptoms during the manual analysis to check if the occurrence
of those symptoms correlates with the patient’s ECG. After the recording period, the
ECG data is manually extracted from the Holter device, and the symptoms diary
is handed over for examination. This approach of arrhythmia screening faces the
following challenges:

• Arrhythmia mimicking artifacts: The ECG recording under free-living
conditions gets contaminated by various motion artifacts and anomalies. These
artifacts often mimic arrhythmias and other cardiac events [114, 116, 119, 138],
resulting in false diagnosis. In the manual analysis, without having any infor-
mation about the patient’s ambulatory context, clinicians rely solely on their
experience to decide whether the ECG morphology changes were due to ar-
rhythmias or confounding motion artifacts. Therefore, the ambulatory ECG
analysis (manual or computer-aided) independent of the patient’s physical con-
dition and context remains prone to misinterpretation and misclassification of
arrhythmias [43, 40], especially in the younger population with low arrhythmia
prevalence.

• Lack of user engagement in longitudinal ECG collection: The longitu-
dinal self-monitoring in a patient’s natural setting suffers from lack of sustained
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patient engagement [147]. The traditional wired Holter monitors used for am-
bulatory ECG collection are not very efficient due to their bulky size [85] and
do not provide any feedback to the patient. Even the ECG patch devices used
for long-term monitoring (up to two weeks) are not very engaging and remain
a black box for the patient. The lack of user engagement often leads to fre-
quent noncompliance in the patient-reported symptoms diary, which patients
are required to maintain during the monitoring period [202].

• Poor signal quality: In ambulatory ECG monitoring, electrodes often become
non-adhesive and result in poor ECG signals. Although some Holter monitors
have alarms to notify the patient of the poor signal quality, patients cannot
always identify and take corrective measures to fix or change the electrodes. In
addition, the ECG signal quality is also affected due to various user activities
under free-living conditions [144]. Without active user engagement/feedback,
the quality of the collected ECG data suffers, and often a large part of the
ambulatory data remains unusable for analysis [147, 45].

• Recall bias on patient’s self-reported symptoms and events: In clin-
ical settings, the quality and reliability of patient-generated data without an
understanding of the patient’s context is a matter of concern [185]. As shown
in Figure 2.5, during the ambulatory morning, patients report the unusual
systems (e.g., dizziness, palpitation, shortness of breath) via a paper-based di-
ary [142]. A cardiologist or Holter nurse uses this information during the ECG
analysis to map the symptoms reported in the diary with the ECG. Completion
of the paper-based diary is often based on the patient’s recall as the patients
do not always carry it with them. During analysis, the lack of synchroniza-
tion in the timestamp and frequent noncompliance [202] makes it challenging
for the cardiologist or nurse to map the symptoms to the corresponding ECG.
In long-term ECG under free-living conditions, this challenge of recall bias on
patient-reported symptoms is multiplied manyfold.

2.3 Systems for collecting contextualised mobile ECG
With the advancement of mobile and wearable technology, the self-monitoring mobile
ECG for diagnosing cardiac arrhythmia has gained traction in the last decade [117].
To deal with some of the aforementioned challenges with longitudinal ECG collection
under free-living conditions and to improve the diagnostic value of self-monitored
continuous mobile ECG, many context-aware ECG collection systems have been pro-
posed in literature [123, 109, 164, 170]. Along with the ambulatory ECG, they also
collect various types of user context information, either actively by engaging the user
or passively through the sensors.

In the earliest work in this direction, Shirazi et al. [164] introduced CardioViz
for long-term context-aware ECG monitoring. CardioViz used a phone camera and
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Figure 2.5: The workflow of the outpatient arrhythmia screening process (image from
[A.2]).

an external GPS sensor for collecting context information and showing it together
with the ECG. The system’s objective was to capture the context that can hint and
remind users about the situation related to a particular period in the ECG. Like-
wise, Belgacem et al. [22] built a mobile ECG collection system that also collected
the patient location. In contrast to the above two systems in which contextual in-
formation collected during the ECG monitoring was limited to GPS location and
photography, the iMote2-based system by Spadini et al. [170] collected accelerometer
and environmental data such as temperature, humidity, and light intensity.

The mobile ECG monitoring system by Li et al. [109] focused on active context
collection by engaging the user. Whenever any change in the ECG or heart rate
was detected, it prompted an interface that asked the patient to enter the activity
they were performing at that point in time. Similarly, a wearable context-aware ECG
monitoring system by Miao et al. [123] also collected the user’s activity; however,
unlike that of Li et al. [109] it employed built-in smartphone sensors for activity
recognition. They also demonstrated the usefulness of physical activity recognition
to improve the arrhythmia diagnosis accuracy and identify the frequent irregular ECG
patterns under different activities.

The context-aware cardiac monitoring systems by Forkan et al. [52] aimed to re-
duce false alerts by utilizing the context-awareness of the collected ECG data. In
[53] they also introduced a context-aware system for monitoring elderly cardiac pa-
tients under free-living conditions and integrated it with social networking services
for distant help and tracking by family and doctors.

Although the aforementioned systems have advanced the research in context-aware
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ECG collection, the use of contextualized ECG for improving arrhythmia detection is
still in infancy and needs significant improvements [133]. The existing context-aware
mobile ECG collection systems have the following limitations. First, in these systems,
the collected contextual data is limited; and they do not address the issue of lack of
user engagement that is prevalent in longitudinal self self-monitoring [147]. Further-
more, their usability and clinical feasibility in longitudinal contextualized ECG collec-
tion under free-living conditions have not been explored. Second, they are primarily
focused on passive context collection and do not collect the user-reported subjective
contextual data (e.g., symptoms diary [142, 202]), which is essential during ambula-
tory arrhythmia monitoring.

2.4 ECG database for evaluation of arrhythmia
detection algorithms

Table 2.1 provides a statistical overview of various publicly available benchmark
datasets used in the evaluation of arrhythmia detection algorithms. These datasets
are available on PhysioNet [59]. A detailed description of these databases is as follows:

MIT-BIH Arrhythmia Database (MITDB): The MITDB comprises 24.7-
hour-long two-channel ambulatory ECG recordings collected from 47 unique partic-
ipants. The ECG was recorded with an 11-bit resolution at a sampling frequency
of 360 Hz. The database contains approximately 110,000 beat-by-beat annotations
provided by multiple independent cardiologists. It contains 15 different types/classes
of arrhythmias, of which approximately 2.16 hrs (8.16%) is AF. Every recording in-
cludes an annotation file that contains information about the arrhythmia type, its
onset, R-peak location, and the type of each beat [59, 127].

MIT-BIH AF Database (AFDB): The AFDB is the most used database for
developing AF detection models [40, 47, 136]. It contains 25 long-term two-channel
ECG recordings of 10 hours each from patients with mostly paroxysmal atrial fibrilla-
tion. Recording took place in an in-hospital setting at Boston’s Beth Israel Hospital.
The ECG is digitized at a sampling rate of 250 Hz and a 12-bit resolution. The
database contains four main rhythm annotation classes: (1) atrial fibrillation, (2)
atrial flutter, (3) AV junctional rhythm, and (4) others. In the annotation files,
these four classes are marked as AF, AFL, J, and N, respectively. Like MITDB, it
also provides the beat-by-beat annotation, QRS complex, and R-peak locations. An
automated detector was used to perform the beat annotation.

Open-Access Arrhythmia Database (OA-ADB): The OA-ADB [162] con-
sists of 2000 30-second samples of sinus, atrial and ventricular arrhythmias from over
200 patients. The ECG was collected using a 6-channel wireless Holter monitor at
a sampling rate of 420 Hz and 12-bit resolution. The length of the ECG recordings
varied from 24 hours to 72 hours and, unlike others, it contains data from patients of
a wide age range (18–85 years). The initial annotations were done by an automated
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algorithm and subsequently verified by two cardiologists who manually verified the
labels.

DeepQ Arrhythmia Database (DeepQ): The DeepQ [187] is another large-
scale arrhythmia database that contains 897 annotated single-lead ECG recordings
from 299 unique patients. Unlike MITDB and AFDB, DeepQ database only contains
15 minutes of ECG recording per patient. Each recording was done while the par-
ticipant was performing three types of activity (5 minutes each): lying down, sitting,
and walking. The ECG was collected using a single-lead ECG patch worn in the lead
II configuration with a sampling rate of 250 Hz and 12-bit resolution. Along with
the beat-by-beat annotation, it also contains rhythm episodes and heartbeat fiducial
points. The annotations were done by cardiographic technicians and subsequently
verified by a cardiologist. The inter-rater reliability scores are, however, not reported.
Compared with existing public arrhythmia datasets from PhysioNet [59], DeepQ is
more diverse and larger. DeepQ tries to mimic ECG under free-living conditions by
including some common contexts such as lying down, sitting, and walking; they were
collected in a controlled environment where the subjects performed these activities for
5 minutes each. In a free-living condition, user-context and confounding artifacts are
not limited to just these three activities and, therefore, it does not represent patients’
ECG morphologies under a truly free-living scenario.

Computing in Cardiology Challenge 2017 Dataset (CinCDB): The
CinCDB [31] has 8,528 single-channel ECG samples of different lengths from 9 sec-
onds to over 60 seconds. The data is collected using AliveCor’s handheld ECG device
(equivalent to lead I) and stored at 300 Hz with a 16-bit resolution. Unlike the other
databases discussed above, recordings in CinCDB are not from continuous ambula-
tory monitoring. The handheld device usually records short ECG recordings up to
an average of 30 seconds. During the recording, patients were advised to sit in a
comfortable position without making any hand movements to avoid motion artifacts.
Dataset annotation contains four types of classifications, namely NSR (59.5%), AF
(8.9 %), other (28.3%), and noisy (3.3%).

MIT-BIH NSR Database (NSRDB): The MIT-BIH NSR Database (NSRDB)
is an ambulatory database from 18 subjects in NSR without any arrhythmias. It
is primarily used for testing the generality and FPR in the arrhythmia detection
algorithms. It can provide a good estimation of a model’s robustness, especially in
the population with a low arrhythmia prevalence.

Others: Other databases such as CU Ventricular Tachyarrhythmia Database
(CUDB) [131], MIT-BIH Noise Stress Test Database (NSTDB) [129] and the MIT-
BIH Malignant Ventricular Arrhythmia Database (MVFDB) [61] also feature in ar-
rhythmia detection literature; however, their usage was limited. The MVFDB con-
tains 22 half-hour recordings, whereas CUDB contains 35 eight-minute ECG record-
ings. The annotations in both of these databases include ventricular flutter, ven-
tricular tachycardia, and ventricular fibrillation types. NSTDB contains 15 half-hour
ECG recordings, of which 3 have noise similar to that in ambulatory ECG recordings.
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Table 2.1: Specifications and ECG annotations statistics of publicly available arrhythmia databases. Ch: Number of
ECG channels, Freq (Hz): sampling frequency.

Database Ch Freq
(Hz)

Number
samples

Sample
length

Rhythm
classes

Number
subjects Context Remark

AFDB [127] 2 250 23 10 h 4 25 7 continuous, controlled
MITDB [128] 2 360 48 30 min 15 47 7 continuous, controlled

NSRDB [59] 2 128 18 24 h 1 18 7
continuous, ambulatory,

controlled

DeepQ [187] 1 250 897 5 min 8 299 7
intermittent,

controlled environment

OA-ADB [162] 6 400 2000 30 s 15 200 7
continuous, ambulatory,

patient-operated

CinC2017 [31] 1 300 8528 9 s to 60 s 4 - 7
intermittent,

patient-operated
MVFDB [61, 59] 2 250 22 30 min 3 - 7 -
NSTDB [129] 2 250 15 30 min 1 - 7 -
CUDB [131, 59] 1 35 250 8 min 3 - 7 -
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2.4.1 Limitation of existing public arrhythmia dataset:
Although the public benchmark arrhythmia datasets described above have helped
immensely to advance research into automatic arrhythmia detection, they face the
following challenges:

• They are mostly collected under clinical supervision; thus, they are relatively
clean and have high signal quality compared with patient-operated ECG from
free-living conditions [55]. Patient-operated ECG from wearable devices is gain-
ing traction for arrhythmia screening [162]. To enable arrhythmia detection
under free-living conditions, models need to be built and evaluated on such
patient-operated ECG from wearable devices rather than on clinical-grade hand-
picked clean ECG (as in the case of public datasets), on which models tends to
show a high performance.

• They do not provide the patient’s context information during the ECG col-
lection period; therefore, they are not suitable for context-aware analysis of
classification models.

• Even though some of the databases are ambulatory, they are limited to a few
hours or days. Therefore, they do not contain all the ECG morphological
changes and the arrhythmia-mimicking confounding artifacts that are expected
in longitudinal ambulatory free-living conditions. When classification models
trained on them are applied on ECG from free-living ambulatory conditions,
they show performance degradation [55].

2.5 Computer aided arrhythmia diagnosis
Although wearable Holters and ECG collection methods discussed above can help in
collecting ambulatory ECG data under free-living conditions, inspecting and analyz-
ing multi-day/week data is a resource- and time-consuming task. Over the years, nu-
merous computer-aided algorithms have been developed to assist in the auto-detection
of onset and duration of arrhythmic episodes [104, 46, 77, 191, 111, 103, 65, 33, 181,
39, 48, 193, 200]. These algorithms could facilitate and expedite the AF screening pro-
cess and help in achieving early-stage diagnosis. These computer-aided arrhythmia
detection algorithms can be classified into two broad categories:

1. Algorithms based on feature engineering (FE).

2. Algorithms based on end-to-end deep learning.

Each of these techniques are discussed in detail in the following sections.
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Figure 2.6: Traditional feature engineering-based approach of arrhythmia detection.

2.5.1 Algorithms based on feature engineering
Figure 2.6 shows the traditional FE-based approach of arrhythmia detection. These
algorithms involve following three steps: (1) preprocessing, (2) manual feature extrac-
tion, and (3) classification. The feature extraction process uses either domain experts
or conventional feature extraction algorithms. The extracted features are then fed
into the classifier, such as support vector machines (SVMs) and hidden Markov mod-
els (HMMs), to produce the final ECG classification [143, 156, 203, 39, 89]. The
extracted feature quality directly influences the classification performance and ro-
bustness of such algorithms. The hand-crafted feature extractions based on domain
knowledge are (1) labor-intensive, (2) influenced by the expert’s bias, and thus prone
to errors, and (3) less robust to adaptation in the presence of any variations and
noise in heterogeneous data [165, 143]. The use of conventional feature extraction al-
gorithms such as the discrete wavelet transform, cosine transform, and discrete Fourier
transform has also been explored in several articles for extracting time and frequency
domain features from ECG [88, 90, 143, 158]. Numerous FE-based algorithms just on
the RR intervals features have been developed in the past [37, 112, 87, 77]. Kennedy
et al. [87] used RR interval features on random forests and k-nearest neighbor for AF
identification. Similarly, Dash et al. [37] and Linker et al. [112] attempted to combine
the atrial activity and RR intervals with AF detection.

A brief summary of traditional approaches to arrhythmia detection follows [40]:

• Among arrhythmia detectors based on frequency- or time-domain analysis, frequency-
domain analysis is more powerful; however, it is computationally more expensive
than time-domain.

• Traditional FE-based approaches lack stability and are susceptible to noise and
confounding artifacts.

• They are widely used to detect limited (single or few) arrhythmia types, imply-
ing that they are not suitable for making a generic arrhythmia detector.
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• The manual feature extraction needed in this approach is laborious and depen-
dent on domain experts.

• The classification performances achieved by some of the automatic feature ex-
traction approaches like filtering and auto-correlation are poor and can lead to
a faulty diagnosis and health consequences.

2.5.2 Algorithms based on end-to-end deep learning
The field of deep learning (DL) has achieved remarkable success in areas like image
recognition, and natural language processing [68, 34, 166, 107]. Its ability to ex-
tract complex features and recognize patterns directly from time-series data without
expert intervention has gained many researchers’ interest in applying them in the
domain of ECG analysis and arrhythmia detection. In the last five years, deep learn-
ing for arrhythmia detection has gained significant momentum [43, 136, 40, 118]. Six
deep learning architectures, namely Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN), Multilayer Perceptron (MLP), Long-Short Term Memory
(LSTM), Gated Recurrent Units (GRU), Deep Belief Network (DBN), or their com-
binations, are frequently used for arrhythmia detection [43, 136]. A brief overview of
these deep learning architectures is provided in section 2.5.3.

Advantages of deep learning-based arrhythmia detection algorithms
over the FE-based algorithms:

1. They remove the need for manual feature extraction (see Fig 2.7) and can
achieve end-to-end classification with more robust and abstract feature ex-
traction [10, 143].

2. Unlike FE-based algorithms, they are more robust in the presence of noise/ar-
tifacts and adapt very well to heterogeneous data [143, 40].

Raw ECG or Low-
level processed

ECG

Feature extraction 
+

Classification 

Class 1
Class 2.

.

.
Class 3

Deep  Learning 

Figure 2.7: Deep learning-based end-to-end arrhythmia classification.
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Figure 2.8: (a) Most frequent deep learning architectures used for arrhythmia classi-
fication in literature (image data source [43]).

2.5.3 Overview of deep learning architectures used in ECG
classifications

This section provides an overview of the six popular DL-architectures (in Figure 2.8)
used in ECG classifications.

Convolution1 Convolution2 

Max-Pool1
Max-Pool2

Hidden4

Output

Input

Figure 2.9: Architecture of the CNN.

Convolution neural network: The CNN [134] is a type of artificial neural
network with some specialization for picking out or detecting patterns and making
sense of them. A typical CNN model contains single or multiple convolution layers,
rectified linear unit (ReLU), non-linearity layer, and pooling layers followed by a fully
connected layer or softmax for classification. The convolution layers are the heart of
the CNN. Unlike convolutional layers and fully connected layers, the non-linearity
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and pooling layers do not have parameters [8].
Recurrent neural network: RNN is a type of neural network with a feedback

loop that enables information to be stored and reused within the network for sequen-
tial decisions. It uses the output from the preceding element of an input sequence to
inform future elements [121, 157]. This ability of RNNs makes them attractive for
modeling sequential time series data like ECG. Figure 2.10 depicts the architecture
of the RNN.

Figure 2.10: Architecture of the RNN.

Long-short-term memory: The LSTM networks [72, 60] are RNNs that can
preserve information in the memory cell for a more extended period. The standard
RNN architectures suffer from vanishing and exploding gradient problems and cannot
hold memory for long. Using a gate control mechanism (for input and forget gates
of the memory cell), LSTM can retain sequential memory for a much longer period.
Among LSTM networks, bidirectional LSTM (Figure 2.11) is more popular as its
memory cells can retain information from both past and future.

Deep belief network: The DBN is a DL architecture used to solve the problem
of low velocity, the over-fitting phenomenon in the deep layers, and training dataset
requirement [195, 7]. Figure 2.12 shows the architecture of DBN. It comprises multiple
layers of ‘Boltzmann Machines’ and each one of them is restricted to a single visible
and hidden layer [7].

Multilayer perceptron: MLP is an artificial neural network (ANN) composed
of one or more layers of neurons with only forward connections to units in subsequent
layers [76]. In MLP, the input layer passes the inputs to hidden layers. The nodes in
the input and output layers have linear activation functions, whereas nodes in hidden
layers have nonlinear activation functions with thresholds. Figure 2.13 shows the
network structure of the MLP.

Gated recurrent units: GRUs are modifications to RNN’s hidden layers that
help it capture long-range connections and overcome the vanishing gradient problems
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Figure 2.11: Structure of the bidirectional LSTM.
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Figure 2.12: Deep Belief Network.

by using an update and a reset gate [30]. Figure 2.14 shows the architecture of Gated
Recurrent Units (GRU).
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Figure 2.13: Network structure of Multilayer Perceptron with N inputs, C outputs
and L Hidden layers.
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Figure 2.14: Gated Recurrent Unit. r: reset gate, z: update gates, h: activation h̃:
candidate activation.

2.5.3.1 State-of-the-art deep learning-based algorithms for arrhythmia
detection

Table 2.2 shows the performance of various DL algorithms. The majority of these
models have been trained and evaluated on datasets from PhysioNet [59]. Based on
the DL approach used, feature selections, and the main emphasis of the algorithms,
we have categorized the existing arrhythmia detection algorithms into the following
categories.
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Multi-Model approach: In a multi-model approach, one or more DL architec-
tures were combined to achieve better classification results [10, 35, 183]. Andersen et
al. [10] combined CNN and RNN to achieve an end-to-end AF detection algorithm.
On five-fold cross-validation on AFDB, it achieved a sensitivity of 98.98% and a speci-
ficity of 96.95%. The generality of the model was tested on MITDB and NSRDB. The
model resulted in more FPR (13.96% and 4.99%) on both of these datasets, indicating
that models trained on RRI features suffer in the presence of confounding arrhyth-
mias that resembled AF in terms of RR irregularities and ambulatory noise (in case
of NSRDB). Similarly, Xiaoling et al. [183] coupled a recurrence complex network
(RCN) and CNN with a majority voting methodology and achieved an accuracy of
94.59% on AFDB. In some algorithms, each sub-model was trained on different input
features (e.g., RRI, raw ECG). For instance, Dang et al. [35] used CNN and a Bidirec-
tional Long-Short Term Memory (BLSTM) based model for AF detection using RRI
and heartbeat sequences (P-QRS-T waves). It comprises two BLSTM layers and two
fully connected layers and achieved an accuracy of 96.59%, a sensitivity of 99.93%,
and a specificity of 97.03% on AFDB.

In another multi-model approach, Salem et al. [152] proposed an algorithm based
on transfer learning for arrhythmia detection by combining a densely connected
CNN (DenseNet) with support vector machine (SVM). In ten-fold cross-validation
on AFDB, NSRDB, MVFDB, and ESTDB, they achieved an overall accuracy of
97.23%. Furthermore, Yao et al. [193] proposed multi-scale convolutional neural net-
works (MCNN) trained on an instant heart rate sequence as input and achieved an
overall accuracy of 98.18% on AFBD.

Multi-class classification: Amulti-class approach endeavors to classify multiple
classes of arrhythmias using a single classifier [65, 201, 80, 25]. Multi-class arrhythmia
detection is more challenging than binary classification as the feature characteristics
of many arrhythmias have a close resemblance. Hannun et al. [65] developed a DNN
with 33 convolutional layers to classify 12 different types of arrhythmias from a single
lead non-ambulatory ECG. The model was trained and evaluated on a single channel
non-ambulatory private ECG dataset of 53,549 unique subjects. It achieved an aver-
age F1 score of 0.837. Similarly, Cao et al. [25] applied multi-scale decomposition on
the residual convolutional neural network (MSResNet) on the short segment (9 sec-
onds) ECG for classifying four types of rhythms. The derived wavelet frame (DWF)
decomposition was used as input to three fast down-sampling residual convolutional
neural networks (FDResNets). These FDResNets were then combined to form the
final MSResNet via transfer learning. On CinCDB, the model achieved an overall
accuracy of 87.12% and an average F1 score of 85.29%.

Zihlmann et al. [201] achieved an F1 scope of 82.1% on CinCDB by employing a
combination of CNN and LSTM on the logarithmic spectrogram features. The one-
sided spectrogram was computed from the time-domain ECG signal, and subsequently,
a logarithmic transform was applied to achieve the final logarithmic spectrogram. In
contrast, spectrogram features in [201], [80] was trained on RRI features and achieved
an average accuracy of 88.28% for classifying NSR, AF, and AFL on a private dataset
in a 10-fold validation.
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R-peak/P-wave independent short segment classification: The algorithms
using the RRI features usually require an input of 30–50 seconds or longer for correct
assessments. However, such systems may miss out on short episodes of arrhythmia.
To overcome this, several algorithms have been proposed for classifying arrhythmia
from even short segments of ECG [194, 3, 189]. These algorithms usually do not
rely on RRI features or a need for P-wave detection. Yıldırım et al. [194] proposed a
1D CNN-based model that takes 10 seconds of raw ECG fragment as input. It claimed
to have achieved an overall accuracy of 91.33% in classifying 17 different rhythm
classes from MITDB. Similarly, Wu et al. [188] used CNN with continuous wavelet
transform (CWT) features of 10 seconds of ECG and achieved an overall accuracy of
97.56% on five datasets from PhysioNet [59]. Of the three wavelet transforms used,
Mexh wavelet, Morl wavelet, and Cmor wavelet, Morl wavelet achieved the highest
performance.

Xia et al. [189] built an AF detection algorithm by using 2D CNN on short-term
Fourier transform (STFT), and stationary wavelet transform (SWT) features. This
could detect AF even in a small 5-second ECG segment, whereas other RRI-based
models usually require a long input window. The model was trained and tested on
AFDB, and like others, its generality was also not reported. Acharya et al. [3] also
built an 11-layer CNN-based arrhythmia detection model for detecting AF, atrial
flutter, and ventricular fibrillation (VF). Similar to the methods of Xia et al. [189]
they also permed analysis on 2-second and 5-second segments of ECG in which the
accuracy on the 5-second inputs (94.9%) was slightly higher than on the 2-second
(92.50%) inputs.

Person-specific classification: To make generic arrhythmia detection algo-
rithms that can work despite all inter or intra-personal differences in the ECG, many
patient-specific arrhythmia classification algorithms have been explored [69, 198].
Zhao et.al [198] used an adaptive ResNet [69] model on MITDB and achieved an
overall accuracy of 98.6% for classifying five types of heartbeats. Similarly, Kiranyaz
et al. [92] presented adaptive 1D CNN where CNN was first trained on common data
and then on 5 minutes of patient-specific data on MITDB.



2.5
C
om

puteraided
arrhythm

ia
diagnosis

33
Table 2.2: R-class: No of rhythm/arrhythmias classified, STFT: Short-term Fourier transform, SWT: Stationary wavelet
transform, AFL: Atrial flutter, SR: sinus rhythm, DWF: Derived wavelet frames, LS: Logarithmic spectrogram, IHR:
Instant heart rate sequence.

Models Features Performance Database R-class Ref
F1-score Se Sp Acc

LSTM,
CNN RRI - 98.98% 96.95% 97.80% AFDB, MITDB,

NSRDB AF [10]

LSTM RRI - 98.32% 98.67% 98.51% AFDB AF [49]
CNN STFT, SWT - 98.79% 97.87% 98.63% AFDB AF [189]

CNN Raw ECG - 98.09-
99.13%

81.44-
93.13%

92.5-
94.9%

AFDB, MITDB,
CUDB

AF, VF
AFL [3]

1D CNN Raw ECG - 64.4-
95.9%

98.1-
99.5%

96.6-
99% MITDB 5 [92]

CNN Raw ECG - 95.32% 91.04% 93.18% MITDB, MVFDB,
CUDB VT,VF [4]

DNN Raw ECG 83.7% - - - Private 12 [65]
2D CNN CWT - 99.41% 98.91% 99.23% AFDB AF [70]

CNN, BLSTM
RRI,

Heartbeat
sequences

- 99.93% 97.03% 96.59% AFDB AF [35]

CNN MFSWT - 74.96% 86.41% 81.07% AFDB AF [192]
LSTM,
CNN RRI - - - 88.28 % Private AF, AFL, NSR [80]

CNN RRI - - - 93.6% MITDB 7 [145]

MSResNet DWF 85.29% - - 87.12% CinCDB AF, NSR,
Noise, Other [25]

CNN CWT - 97.56% 99.19% 97.56%
MITDB, AFDB,
MVFDB, NSRDB
NSTDB, LTAFDB

AF, NSR,
Noise, Other [188]
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MultiFusionNet Raw ECG, RRI 80% - - - CinCDB AF, NSR,
Noise, Other [177]

CNN,
LSTM LS 82.1% - - CinCDB AF, NSR,

Noise, Other [201]

CNN,
RNN Raw ECG 82% - - - CinCDB AF, NSR,

Noise, Other [190]

DNN Raw ECG 83.7% - - - Private 12 [65]
1D-CNN Raw ECG - - - 91.33% MITDB 17 [194]

CNN, SVM spectrograms - - - 97.23% AFDB,NSRDB,
MVFDB, ESTDB 4 [152]

ResNet Raw ECG - - - 98.6% MITDB 5 [198]
MCNN IHR - 98.22% 98.11% 98.18% AFDB AF, Other [193]

*CUDB—CU Ventricular Tachyarrhythmia Database (CUDB).
*MITDB—MIT-BIH Arrhythmia Database.
*VFDB MIT-BIH malignant ventricular arrhythmia database.
*MSResNet multi-scale decomposition enhanced residual convolutional neural network.
*ESTDB-European ST-T Database [174].
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2.6 Research gaps
Based on the aforementioned description, the number of research gaps can be sum-
marised as follows.

1. The ambulatory ECG collection systems for longitudinal arrhythmia collections
suffer from sustained patient engagement and compliance [147, 202]. They
do not provide adequate feedback to keep patients motivated for longitudinal
monitoring. The traditional wired Holter monitors are bulky and restrain the
patients’ movements [85, 159]. The mobile-based context-aware ECG collection
systems (discussed in section 2.3) offer limited context collection, and they
too do not address the issue of lack of user engagement. Furthermore, their
usability, feasibility, and clinical usefulness of contextualized ECG in improving
arrhythmia screening remain unexplored.

2. Like any other patient-generated data, the paper-based diary [142] used for re-
porting the symptoms/events (e.g., dizziness, palpitation, shortness of breath)
encountered during the recording period suffers from recall bias and noncom-
pliance [202, 184] as patients do not always carry it with them. The mismatch
in timestamps of the reported symptoms with ECG is challenging during the
analysis and limits the diagnostic value of ambulatory Holter monitoring [202].

3. Public benchmark arrhythmia datasets (described in Table 2.1) are collected
in a controlled clinical environment with clinical-grade ECG Holter monitors
and are therefore relatively clean [55]. In addition, they are manually corrected
(e.g., manual correction of R-Peaks) and do not represent the poor signal quality
and confounding artifacts expected in patient-operated wearable ECG monitors
under free-living conditions. Therefore, they are not adequate for training and
evaluating arrhythmia classification models, which are expected to work on
wearable ECG under free-living conditions. Most importantly, existing public
databases do not provide information about the patient’s ambulatory context
(e.g., physical conditions, lifestyle), in the absence of which ambulatory ECG
analysis remains prone to misclassification [40, 43].

4. The majority of the state-of-the-art DL-based arrhythmia detection algorithms
in Table 2.2 are evaluated on the public open-access arrhythmia databases listed
in Table 2.1. They tend to give high performance on these datasets. Their gen-
erality is a major concern [40, 43]. Usually, applying the arrhythmia detection
algorithms trained on these public datasets to patient-operated ECG recordings
from free-living ambulatory conditions result in non-trivial FPs detection and
displays general performance degradation [64, 135]. These algorithms do not
factor in the patients’ free-living ambulatory context [40, 43], in the absence
of which the noises/artifacts mimicking arrhythmias [116] could easily lead to
the wrong diagnosis [45, 40]. The FPR (even if small) in longitudinal moni-
toring could lead to over-diagnosis and patient anxiety [28, 96]. Furthermore,
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in the clinical setting where cardiologists manually verify the arrhythmia de-
tection algorithms’ output, the high FPR in longitudinal screening increases
cardiologists’ workload. Therefore, to enable mobile- and wearable-based lon-
gitudinal arrhythmia screening under free-living conditions, the problem of the
FPR needs to be addressed.

To address the problem of lack of patient engagement, recall bias in the patient-
reported symptoms/events diary, and availability of patient’s free-living ambulatory
contexts, in this thesis we designed, developed, and evaluated mCardia – a contextual-
ized ECG collection for longitudinal arrhythmia screening [A.2]. To address the limi-
tation of public databases, we designed and developed CACHET-CADB [A.4]. It pro-
vides a 259-day contextualized ambulatory electrocardiography arrhythmia dataset
from a patient-operated ECG under free-living conditions. To address the problem
of FPR under free-living ambulatory conditions, we investigated the patient’s am-
bulatory contexts that induce the non-trivial FPR in a state-of-the-art arrhythmia
detection algorithm [A.3]. Thereafter, based on those findings, we proposed Deep-
Aware – a new hybrid AF detection model that combined DL with context-aware
heuristics. By using context-awareness, DeepAware significantly improves the AF
under free-living conditions and lowers the FPR [A.5].



CHAPTER3
Technology for

Collecting
Contextualized ECG

for Arrhythmia
Screening under

Free-Living Conditions
This chapter addresses RQ 1. The content presented here is from the article [A.2],
which details the design and development of a contextualized ECG collection system
for arrhythmia screening in patients’ free-living ambulatory conditions. The proposed
system is named as mCardia. The outline of the chapter is as follows. First, section 3.1
describes the motivation behind designing the mCardia system. After that, section 3.2
presents the research methodology used in designing the mCardia system. The details
of its user interface and software architecture and implementation are described in
section 3.2.3 and section 3.3, respectively. Finally, section 3.4 summarizes the chapter.

• • •
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3.1 Motivation
To investigate the main RQ, first, we need to understand what contextual information
about the patient’s ambulatory setting is relevant for improving arrhythmia analysis
under such free-living conditions. Secondly, as mentioned in chapter 2, the longitudi-
nal patient-operated ECGmonitoring for arrhythmia screening suffers from the lack of
sustained patient engagement, recall bias in patient self-reported diary data, and poor
quality ECG signals [147, 185, 202]. The poor quality ECG profoundly reduces the
diagnostic quality during manual and computer-aided automatic analysis [148, 126].

For collecting the contextualised ECG, a few context-aware ECG collection sys-
tems have been introduced [164, 100, 109, 123]. However, the context collection in
these systems is limited to activities or location. The traditional wired Holter mon-
itors are inadequate for longitudinal screening as they are bulky, and without any
feedback to the patient, they remain a black box [85, 159]. To overcome these limi-
tations in longitudinal arrhythmia screening under free-living conditions and collect
the relevant ambulatory contexts that can help improve the arrhythmia diagnosis,
the task of designing the mCardia system was undertaken. Figure 3.1 shows the
schematic diagram of mCardia. Through the design of mCardia, we aim to:

• Identify the relevant contextual information that can help in improving arrhyth-
mia diagnosis under free-living ambulatory conditions.

• Build a Holter independent, plug-in based system that integrates with any new
ECG Holter and other devices (e.g., blood pressure monitor) without modifica-
tion in the core functionality.

• Overcome the problem of recall bias in patient-reported event-diary and lack of
patient engagement in longitudinal arrhythmia screening.

• Facilitate doctor and patient communication in a chronic care model.

3.2 Research methods
This section describes a brief overview of the research methodology used for designing
the mCardia system. For further details of design process and each task, please refer
to the article [A.2].

The mCardia system design involved a user-centered design (UCD) approach [63]
and applied the patient-clinician-designer (PCD) framework [115]. The UCD is an
iterative design process used by developers and designers in software product develop-
ment. It ensures that the product (1) meets the end-users needs, (2) understandable
and usable, (3) fulfills the desired task, and (4) provides a positive and enjoyable user
experience [132]. The mCardia design was done in collaboration with clinicians and
patients affiliated with the cardiology department at Bispebjerg and Frederiksberg
Hospitals in Copenhagen. It involved six patients, four clinicians (one Holter nurse
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Figure 3.1: Schematic diagram of mCardia system. The contextual and physiological
data collected from ECG Holter and phone are transmitted from the phone to a
cloud-based data management system (image from [A.2]).

and three cardiologists). The timeline of the design process and its main tasks are
illustrated in Figure 3.2. The tasks included: identifying the system’s context of use,
requirements specification, and two iterative design and evaluation steps.

3.2.1 Identifying the context of use
Many design meetings and workshops involving a cardiologist, a nurse, and three
patients were conducted. The focus of these meetings and workshops was on designing
the following three key aspects of the mCardia system:

• What physiological and contextual data needs to be collected?

• The user experience design of entering the subjective contextual data, data
visualization, and app navigation.

• Understanding how the contextual and self-reported data can be used in clinical
practice to improve arrhythmia screening.

Alongside the design meetings and workshops, an observational field study was carried
out at the Bispebjerg and Frederiksberg hospitals’ outpatient arrhythmia clinic to
understand the current Holter monitoring process (Figure 2.5). The three-step process
of (1) preparing and setting up a patient for Holter monitoring, (2) introducing and
mounting Holter on patients, and (3) receiving the Holter and data back from the
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Figure 3.2: Timeline of the UCD process. SR: Specify Requirements (image from
[A.2]).

patient were observed from both clinician and patient perspectives. The field study
also reviewed current software systems used for processing and analyzing the ECG
and patients’ self-reported paper-based diaries. Throughout this field observatory
study, detailed notes were taken.

Three patients who had prior experience of using traditional Holter monitors were
interviewed to understand their requirements and the context of using the system.
The open-ended interview inquired about their experience of using the Holter. During
these interviews, detailed notes were taken.

3.2.2 Requirements specification
Following the design interviews, workshops, and field study of the traditional Holter
process, the requirements specification were finalized as follows:

User engagement in data collection: In terms of user experience and en-
gagement, both patients’ and clinicians’ were interested in collecting and mapping
self-reported symptoms and activities. In the traditional Holter monitoring process,
self-reported symptoms and activities are collected using a paper-based diary. Dur-
ing the ECG analysis, clinicians need to map this to the ECG recordings. Clinicians
pointed out that the process of manual mapping of symptoms and activity diary with
ECG was cumbersome. Often data was not valid as the paper-based event diaries suf-
fered from several flaws, including recall bias, missing and incomplete data. Patients
do not carry the paper diary and pen with them at all times. Details were often filled
based on recall memory, leading to a mismatch of reported symptoms and their re-
flection in the ECG. For instance, we observed that P1, who took the Holter test and
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participated in our design process, only entered activities such as cycling and running
at the end of the day and often forgot to enter details; P2 did not record anything at
all. P3 shared that she usually noted down things on her phone and manually added
them to the paper diary at the end of the day. They also described that it was often
difficult to push the event marker button on the Holter device for registering the
events as it was difficult to locate it beneath clothes. Therefore, to improve the user
experience and engagement for collecting self-reported symptoms and automatically
mapping them with the timeline of the ECG recording, a better method was required.
A smartphone-based alternative for event capturing was discussed and brainstormed
during the workshop. All the patients unanimously agreed that recording the symp-
toms and activities in a smartphone app would be much easier than a paper diary,
as they always carry their smartphones with them.

Collecting contextual information relevant for arrhythmia screening:
From the literature review of common arrhythmia triggering factors [66, 62] and clin-
icians’ interview list of relevant contextual information was prepared. It included
physical activities (e.g., walking, running), body movements/positions of the patient
(standing, sitting, laying down, turning side in the bed), self-reported symptoms,
symptom duration, patients’ activity during the symptom, location, step counts,
stress level, sleep, food intake (e.g., light, heavy), and surrounding environment (e.g.,
temperature, noise level). The process of collecting this broad set of contextual infor-
mation would involve implementing the ecologically momentary assessment (EMA)
approach and automatic context collection from the on-board sensors of the ECG
device and the smartphone.

System feedback: To ensure quality data collection, keeping patients engaged in
the data collection process is essential and requires providing patients some feedback
during the ECG collection period. The clinicians were against the idea of providing
visual feedback on physiological data to the patient. They argued that given the
complex nature of the ECG data, it might not be meaningful for the patient, and it
could cause unnecessary concerns and anxiety. On the other hand, all the patients
were very interested in seeing their ECG data and welcomed the idea of getting
any feedback that the system can provide about their heart condition. Employing
the PCD approach, we found a trade-off among these conflicting requirements. We
finalized that the mCardia should not provide any system-generated feedback that
might cause anxiety for the patients (such as automatic detection of AF), and at
the same time, provide an overall visualization of selected data items to keep them
engaged.

3.2.3 Iterative system design and mCardia user interface
Based on the aforementioned requirements specification, a Minimum Viable Product
(MVP) was outlined. The Movisens ‘EcgMove4’ ECG device was chosen for the MVP
due to its availability, data collection features, and its open application programmer
interface (API). The system was designed and implemented in two major iterations.
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For the details of each iteration of system design, we direct the reader to article A.2.
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Figure 3.3: Home screen of mCardia (final design). The ‘wheel’ is the main UI element
which presents the detailed recordings of HR, HRV, and MET-level in a 24-hour clock
(images from [A.2]).

mCardia’s Final User Interface: Figure 3.3 and 3.4 show the screenshots of
the final mCardia mobile application. A brief overview of the different menus is as
follows. Figure 3.3 is the home screen, and the ‘wheel’ is its main component which
presents the detailed recordings of heart rate (HR), heart rate variability (HRV), the
user entered unusual events, and Metabolic Equivalent for Task (MET)-level in a 24-
hour clock. The inner and outer range of the circle is between 40 to 100, starting from
the middle. With the black plus sign, the user can create a new event (Figure 3.4a),
and that will appear on the inner 24-hour clock. Figure 3.4b shows all created events
and their status as the “filled/unfilled” or “partially filled” events. Figure 3.4c, on
the other hand, shows the screen for collecting daily information such as self-assessed
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stress level, sleep quality, sleep timing, and food intakes, including meal timings and
types (light, moderate or heavy).

(a) (b) (c)

Figure 3.4: The user interface design of the mCardia mobile app. (a) Event details,
(b) List of events filled or created by the patient, (c) Daily Info (image from [A.2]).

3.3 Architecture and implementation
To choose a proper framework for implementing mCardia, we searched the existing
generic mobile and wearable sensing frameworks that allow building high-frequency
contextualized data collection applications. Specifically, we were interested in a frame-
work that (i) supports cross-platform (both Android and iOS) and preferably written
in a single programming language, (ii) is up-to-date and maintained with proper plug-
in/API/architecture documentation, (iii) can handle high-frequency data and provide
seamless support of data synchronization with the cloud, (vi) supports a plug-in ar-
chitecture for adding any new ECG Holter as plug-and-play. A systematic review
of the different mobile and wearable sensing frameworks was carried out – further
details which are presented in the article [A.1].
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Excluding a few (e.g., Aware [50]), most frameworks in the review were either
not up to date or lacked documentation. Even up-to-date or documented once did
not meet our requirement of supporting multi-platform with a single programming
language. Therefore, we decided to use our newly developed frameworks, CARP
Mobile Sensing (CAMS) [18] and the Research Package [73] for building mCardia.
They are built on Google’s cross-platform development toolkit called as Flutter and
written in Dart programming language. CAMS offers support for building cross-
platform and extensible mobile sensing apps and can seamlessly handle high frequency
data collection, data anonymization, data upload, and power (battery) optimization.
The Research Package framework supports the GDPR complied informed consent
handling and delivering ecological momentary assessment (EMA) questionnaires.

Figure 3.5 shows the software architecture of mCardia. Each of these frameworks
comprises several sub-components (marked green in Figure 3.5). The mCardia’s data
sampling is configured as a ‘Study’ script in CAMS. The sampling packages are regis-
tered with the study controllers, which encapsulated access to the operating system
(OS) sensors and are responsible for handling the data sampling. Any new plug-in can
be integrated with CAMS via registering its sampling package. For integrating the
ECG Holter (Movisens EcgMove4 in this prototype), we implemented MovisensSam-
pling Package [97]. It usages a Movisens Flutter plug-in [98] to access the native
Movisens application programmer interface (API) via Bluetooth low energy (BTLE)
(marked in purple in Figure 3.5). Please note that due to its modular and plug-
in based architecture, any new ECG Holter can easily be integrated with mCardia
simply by registering its sampling package without making any changes to the appli-
cation. The implemented mCardia system was published on the Google Play store1

in December 2019.
For further implementation details of individual components of mCardia, we direct

the reader to the article [A.2].

3.4 Summary
In this chapter, a brief overview of user research, design, development, and technical
aspects of the mCardia system were presented. The mCardia is designed for collect-
ing context-aware ECG for arrhythmia screening in patients’ free-living conditions.
The plug-in based architecture of mCardia will allow it to be integrated with any
new ECG Holter without making any changes in the core application. Compared to
the traditional ECG monitoring Holters and existing context-aware ECG collection
systems, mCardia facilitates collecting a wide range of contextual data. The relevant
contextual information for improving ambulatory arrhythmia diagnosis includes pa-
tient’s activities, movement acceleration, body position (sleeping left/right/supine),
self-assessed sleep quality, stress level, self-reported unusual events (e.g., dizziness,
palpitation), and food intakes. These contextual data are synchronized with the raw

1https://play.google.com/store/apps/details?id=com.cachet.reafelapp

https://play.google.com/store/apps/details?id=com.cachet.reafelapp
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ECG timestamp. The phone-based event diary will solve the problem of recall bias
and non-synchronization of patient-reported symptoms/event diary with the ECG,
which significantly limited the diagnostic value of collected ECG in traditional Hold-
ers [202]. To keep patients engaged and motivated for longitudinal use, it provides
patients a contextual overview of HR, HRV, activeness levels, and unusual symptom-
s/events. In a chronic care model, it can also enhance doctor and patient communi-
cation.

In the next chapter, we will evaluate the usability and clinical feasibility of the
mCardia system through a field deployment study.
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CHAPTER4
Usability and Clinical

Feasibility Study of
mCardia

The content of this chapter is based on mCardia’s feasibility study reported in article
[A.2]. It addresses RQ 1 by assessing the usability and clinical feasibility of the mCar-
dia system in collecting contextualized ECG under ambulatory free-living conditions
through field study. The outline of the chapter is as follows. Section 4.1 describes the
design of the usability and clinical feasibility study. Thereafter section 4.2 presents
the study results. Finally, section 4.3 summarises the chapter and lists the lessons
learned during the feasibility study.

4.1 Study design
It is argued that, in the early stage of novel health technology, the “how and why of
a system used by its target users” needs to be evaluated [95]. Therefore, following
the design research’s best practices, a single-arm feasibility study was planned to
assess mCardia’s usability and feasibility under free-living conditions. In a patient’s
natural setting, sustained engagement and collecting quality ECG data is a challenge;
therefore, the following aspects remained the main focus of the mCardia’s feasibility
study.

1. The usability evaluation–which included perceived user engagement, usefulness,
and usability of mCardia in longitudinal ECG data collection.

2. Technical robustness and feasibility of mCardia in collecting and managing the
contextual and physiological data.

3. Clinical usefulness of collected contextual data in the arrhythmia screening pro-
cess.
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The feasibility study was conducted in India and Denmark. The research protocol
for the mCardia’s feasibility study was reviewed by Danish Research Ethical Com-
mittee and exempted from ethical approval as the study did not involve any clinical
intervention or treatment (File # H-19071015). Similarly, in India, the study approval
was obtained from the institutional ethical committee of the Mahatma Gandhi Uni-
versity of Medical Sciences & Technology (MGUMST), Jaipur. The patients signed
the informed consent and allowed their anonymized data to be used for any research
and analysis purposes.

4.1.1 Patients recruitment
Table 4.1 lists the inclusion and exclusion criteria used for assessing the patients’
eligibility for the study. Patients were recruited during their outpatient arrhythmia
clinic visit via a general announcement to participate in the study. The patients were
informed that study data would not be used for their ongoing treatment or diagnosis.

Inclusion Exclusion

Previously undiagnosed, however, were at high risk or suspected of
having arrhythmias

Age below 18

Patients already diagnosed with AF but interested in tracking AF symp-
toms

Hospitalized/bedridden
or in critical health
conditions

Comfortable in using smartphone apps and wearables or have a care-
taker/family member who can help them in using mCardia
Willing to use mCardia for a minimum of two week

Table 4.1: An overview of the inclusion and exclusion criteria for the study.

4.1.2 Study procedure
A detailed description of the feasibility study procedure is provided in the article [A.2].
Figure 4.1 gives an overview of the study procedure. Figure 4.2 shows patients using
mCardia system in their free-living conditions.

4.2 Results
For a thorough exposition of the feasibility study’s results and reflection, we direct
the reader to article [A.2]. However, the key findings are summarised below.

A total of 33 patients were recruited, of which 9 dropped out and could not
complete the minimum 2-week study period. The study results are based on the
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Study setup at the outpatient
arrhythmia clinic 

1. mCardia App installation 
2. Consent singing            
3. Demographic Interview
4. Demo of ECG Holter
mounting, charging and electrode 
replacement 
5. Demo of event registration and
annotation in mCardia

Day1 Day5

Minimum 2 Weeks 

Semi-structured 
Interview

CUMACF

mCardia 

Figure 4.1: An outline of the mCardia’s feasibility study procedure. Each pink box
denotes a single day in the study duration. CUMACF: CACHET Unified Methodol-
ogy for Assessment of Clinical Feasibility [16, 15]. The CUMACF questionnaires are
available in Appendix B.

Number of patients 24
Gender – Female / Male 8 / 16
Age – Mean (SD) 58.79 (10.11)
Prior ECG Holter experience 10
Assisted by caregivers 9

Table 4.2: Demographics of the patients (Table from [A.2]).

quantitative and qualitative data analysis of the remaining 24 patients. Table 4.2
shows the demographics of the patients.

4.2.1 User experience
Perceived usefulness and usability: Figure 4.3 shows the result of mCardia’s
usability and perceived usefulness as obtained through post-study CUMACF (CA-
CHET Unified Methodology for Assessment of Clinical Feasibility) questionnaires.
The overall response for mCardia’s interface and usability was positive from 96% of
the patients, and it was perceived as unobtrusive and non-interfering in their every-
day activity (Q1). Approximately 95% of the patients answered that keeping track of
daily activity and unusual symptoms (as done in mCardia) could help in giving a bet-
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(a) (b)

(c) (d)

Figure 4.2: Patients using mCardia system in their free-living conditions.

ter understanding of their symptoms and overall health (Q5). Nearly 78% opined that
mCardia could help them better communicate with their doctor (Q3). The prospec-
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Figure 4.3: The CUMACF [16] based perceived usability and usefulness scores of
mCardia system. The questionnaires (Q1–Q19) are provided in the Appendix B
(image from [A.2]).

tive of reducing the recall bias (Q4) in reporting events/symptoms in home-based
longitudinal ECG monitoring was especially liked by the patients who previously un-
derwent the home-based Holter monitoring with traditional wired Holters. During
the post-study interview, one of such patients commented that:

“The big wired Holter monitor was just a black box for me, and it was not
very comfortable to sleep or work while wearing it. Also, I was not strict
about keeping the symptoms diary, as I would not keep the diary and a
pen with me at all times.” [P23]

Engagement as time spent on mCardia: Although mCardia was designed
for brief sporadic use, the screen time is a good indication of user engagement with
mobile apps. We looked at the amount of time spent by the patients and found that,
on average, patients spent daily 21 minutes actively interacting with mCardia. The
daily information such as food intake, sleep, stress was mostly entered at once in the
evening. The interactions were more common in the morning (to get an overview of
night heart rate) and after any physical activity/exercise.

Unusual events recording and phone-based context annotation Fig-
ure 4.4 shows the number of unusual events annotated or registered (and deleted)
over 300 days of the study period. Out of 235 total registered events, nearly 60%
were partially or fully annotated–the rest 40% remained either un-annotated or were
deleted as they were registered due to accidental tapping of ECG Holter. The events
registered (and deleted) due to accidental taps on the ECG Holter were higher in
the initial days. However, after that, it significantly dropped as patients became
accustomed to mCardia.
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Figure 4.4: Per participant number of annotated or deleted/unfilled events (image
data from [A.2]).

4.2.2 Performance of data collection
Data quality: Over 8064 hours long contextualized ECG was collected, of which
89% was found suitable for arrhythmia analysis. The percentage of unusable/noisy
data was more among the patients assisted by the family/caretaker during the record-
ing period. In the post-study interview, we found that when electrodes become nonad-
hesive in such patients, they would not realize it as they themselves were not viewing
the mCardia. Although mCardia shows a gap in data when electrodes are nonadhe-
sive, caretakers would not realize it and ask the patient to replace ECG electrodes
until they opened the mCardia on the patient’s phone. As a caretaker explained:

“I would usually check and change the electrodes only when I found gaps
in the HR or HRV data in the mCardia app’s circular wheel.” [P3]

Yield: The yield of a system is defined as:

“The fraction of the expected samples to the actual number of samples
collected by the system” [108].

It has been argued that for determining engagement and user compliance, yield can
serve as a proxy [108]. Figure 4.5 shows the yield of various physiological and contex-
tual data types collected in mCardia.
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Figure 4.5: Data collection yield of various physiological and contextual data (image
data from [A.2]).

4.2.3 Qualitative analysis of post-study interview
An inductive approach [175] was used for analyzing the post-study interview and the
patient’s response to CUMACF questionnaires. The following themes were in focus;
(i) issues encountered, (ii) task suitability, and (iii) perceived usefulness.

Issues encountered: Table 4.3 lists the issues identified and their relative dis-
tribution among study patients. Accidental tapping on the Holter device resulting in
false events was one of the main issues. As recalled by a patient:

“For the first two days, when I pushed the ECG device hard in order to fit
it into the charging tray, it added some events. When I saw these empty
events later in the app, I was confused as I didn’t recall tapping on the
device.” [P10]

Task suitability: Task suitability was focused on understanding the suitability of
phone-based events and other manual contextual data collections. The phone-based
annotation of unusual symptoms and events was most appreciated by patients (N=10)
who previously have had the experience of traditional home-based Holter monitoring
and writing paper-based event diaries. As described by P20:
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Figure 4.6: Clinical case #1 demonstrating the usefulness of context information in
ECG interpretation. Although both ECG snippets from the same participant have
HR>130, the context information (sleeping or running) helps in distinguishing that
(b) is a case of Supraventricular Tachycardia (SVT), whereas (a) is normal (image
from [A.2]).

Issue Identified patient(%)
Electrodes becoming non-adhesive 26%
Skin irritability due to continuous use of wet ECG electrodes 20%
Accidental tapping on ECG device causing false event registration 38%
ECG device battery discharged 20%

Table 4.3: Issues identified and their relative distribution (Table from [A.2]).

“It is easier to note the symptoms on the mobile phone, since I carry it all
the time. I do not have to remember and write it down in my [paper-based]
event diary–especially, if I have to do it for many days or months.” [P20]

Perceived Usefulness:
The patients and their caretakers described that they considered mCardia could

be helpful in two ways; (i) in better communicating their symptoms to clinician, and
(ii) to keep them aware of any unusual symptoms/events and the context in which
they appear. For example, as explained by P2:

“I think this clock overview is nice. I can see how my heartbeat changes
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when I am doing different activities. On two Fridays–when I had been
playing basketball–I felt palpitations during the night and registered these
events. It makes it easy to show them to the cardiologist and ask what
happened at that time, and if it is related to playing sports.” [P2]

4.2.4 Clinical usefulness of the contextual data
Figure 4.6 and 4.7 demonstrate two clinical cases where contextual information helped
cardiologist in making better interpretation of ambulatory ECG during the manual
analysis.

Clinical case #1: The resting HR above 100 BPM in adults is defined as Tachy-
cardia [13]. As shown in Figure 4.6, although both ECG snippets from the same
participant have HR>130, the contextual information (sleeping or running) aids in
identifying that (b) is a case of Supraventricular Tachycardia (SVT), whereas (a)
is normal. This case illustrates that depending on the patient’s ambulatory context,
ECG segments and HR can have a different interpretation, and evaluation in isolation
could potentially cause misdiagnosis.

Clinical case #2: Clinical case in Figure 4.7 shows the advantage of context-
awareness in medication prescription for the arrhythmia patient. The patient was
evaluated for annoying palpitations and had known permanent AF. Figure 4.7 (a)
shows the subject tapped on the device and registered an event of palpitations during
sleep that lasted 30 minutes. It also reveals cases of mild rate changes, whereas the
accelerometer data below shows that the patient is just turning in bed. At this point,
his doctor may hesitate to increase rate-lowering medications as the patient also
reported dizziness while changing from laying down to a standing position. In this
context, Figure 4.7 (b) aids in determining an adequate medicine adjustment as it is
reassuring that there is a sufficient chronotropic response when switching from laying
in bed to walking. It suggests a problem with orthostatic blood pressure changes.
Moreover, there are no cases of severe low rates. Therefore, the choice could be made
for a rate-lowering medicine without a blood-pressure-lowering effect. This analysis
demonstrates that besides helping in arrhythmia diagnosis, ambulatory contextual
information can also help in determining correct medication prescription.

4.3 Summary
The outcome of the feasibility study was as expected. It has achieved high perceived
usefulness and usability scores. The mCardia system was engaging for the patients
and capable of collecting quality ECG data (as reflected in 89% of the usable data
for arrhythmia analysis) under free-living conditions. The practice of reporting and
annotating the symptomatic events on the phone rather than a paper-based diary was
especially liked by those patients who earlier had undergone home-based ambulatory
Holter monitoring using the traditional Holters. In partial answer to main RQ, the
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Figure 4.7: Clinical case #2 demonstrating the usefulness of contextual information
in medication prescription. (a) Subject tapped on device and registered an event. (b)
Subject gets up from the bed and starts walking (image from [A.2]).

two clinical case studies of manual arrhythmia analysis reflected how contextual infor-
mation helped in making a better assessment of the ECG from free-living ambulatory
conditions.

From the perspective of further answering the main RQ and RQ 2 (in particular)
via the mCardia system development and its feasibility study, we were also interested
in collecting a contextualized ECG arrhythmia dataset. In the next chapter, this
dataset will be used to answer RQ 2. We will investigate the temporal and contextual
distribution of FPR in a state-of-the-art DL-based AF detection algorithm when it is
applied to patient operated ECG from free-living ambulatory conditions.



CHAPTER5
Impact of Ambulatory

Contexts on
False-Positive Rate: An

Investigation
The content of this chapter is from the article [A.3]. It addresses RQ 2 by investi-
gating the impact of ambulatory contexts on FPR in a state-of-the-art AF detection
algorithm when applied to ECG data collected under free-living conditions. The out-
line of this chapter is as follows. Section 5.1 describes the motivation behind the
investigation. Thereafter, section 5.2 provides an overview of the experimental setup.
Finally, the results and summary of the findings are described in section 5.3, and
section 5.4, respectively.

5.1 Motivation
As mentioned in the introduction, to facilitate the automatic analysis of longitudi-
nal ECG, many computer-aided arrhythmia detection algorithms have been devel-
oped. These algorithms have evolved from the traditional feature engineering-based
approach (described in chapter 2) to the most recent machine learning techniques
such as deep learning. The FE-based approach required manual handcraft feature
extraction by a domain expert and is less adaptive to ECG morphology outside of
manually extracted features. The DL-based techniques, on the other hand, can enable
end-to-end classification without manual feature extractions or domain expert’s
intervention. For this reason, in recent years, the use of DL for AF and other types
of arrhythmia detection have gained momentum and have achieved a high level of
performance [10, 141, 143, 48, 181, 65, 191, 111, 193].

Despite improvements in the DL algorithms’ AF detection capabilities, bringing
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them into widespread adoption under free-living conditions remains challenging [40].
The majority of these algorithms are trained and evaluated on public datasets (de-
scribed in Table 2.1), which contain high-quality ECG collected under controlled clin-
ical environments. These algorithms show high performance on these public datasets.
However, when exposed to patient-operated ECG collected under free-living ambu-
latory conditions, their performance tends to deteriorate and bring on a significant
increase in FPs detection [55, 64, 46]. In longitudinal arrhythmia screening, the false
positive rate (even as low as 1%) can cause over-diagnosis and patient anxiety [28, 96],
particularly in low AF burden population.

For performance improvement, the researchers so far have mainly focused on ECG
signal characteristics. However, as pointed out in [43, 40], without understanding the
patients’ context in which the ECG was collected, ambulatory arrhythmia analysis
still remains prone to misclassification. Although it is known that patient’s ambu-
latory contexts add confounding motion artifacts and cause high FPs in arrhythmia
detection algorithms [46], it remains unexplored whether there exist any specific cor-
relations between the patient’s ambulatory contexts and FP occurrences in a state-of-
the-art AF detection algorithm. For instance, there might be the case that a particular
type of activity, body position, time, place, or food intake is inducing more FPs in an
arrhythmia detection algorithm. A preliminary study in this direction was reported
by Noh et al. [130]; they observed that a particular walking pattern (walking on slop)
was inducing more FPs in a heartbeat detection algorithm compared to walking on
a flat surface or sitting. In our experiment, we want to investigate it more broadly
and examine the impact of ambulatory contexts on FPR in a state-of-the-art AF
detection algorithm under free-living ambulatory conditions. If specific ambulatory
contexts are found to be inducing more FPs, then such information can be used to
dynamically fine-tune the algorithm’s sensitivity and specificity on those FP-prone
contexts. Therefore, understanding the temporal and contextual distributions of FPs
in free-living condition can:

• Help in designing DL algorithms that incorporate context-induced AF mimick-
ing artifacts into their design.

• Make end-to-end FPR classification algorithm more transparent, which other-
wise remains a black box.

• Identify the sources of the algorithm’s mistakes and reduce the FPR by context-
specific dynamic adjustment of sensitivity and specificity under free-living am-
bulatory conditions.

5.2 Research method
A brief description of the research methods is provided here; for details, we direct the
reader to the article [A.3]. Figure 5.1 shows the procedure used to investigate the
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Figure 5.1: Experimental workflow for investigating the influence of ambulatory con-
texts on FPR. CACHET-CADB is the contextualized ECG dataset collected during
the mCardia’s clinical feasibility study (image from [A.3]).

contextual and temporal distributions of FPs in a DL-based AF detection algorithm
when applied to patient-operated ambulatory ECG from free-living conditions.

• Step 1: An end-to-end DL algorithm for AF detection was trained on a public
dataset (AFDB), and we ensured that it had a state-of-the-art performance on
other publicly available ECG datasets (MITDB and NSRDB). Figure 5.2 shows
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the architecture of that DL algorithm. It is a combination of CNN and RNN
and trained on RR-interval (RRI) features for the single-channel ECG.
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Figure 5.2: The network consisted of 2 convolutional layers, followed by a pooling
layer. Features extracted in the convolution are fed into the LSTM layer, which
consists of 100 hidden units. Finally, the sigmoid layer gives the binary output of the
entire 30 RRIs long window. The network takes 30 RRIs (calculated from raw ECG)
data as input and outputs a binary classification of AF or non-AF class (image from
[A.3]).

• Step 2: The trained algorithm from the previous step, which has state-of-the-
art performance on three public datasets, is then tested on a contextualized
ECG dataset collected from AF patients under free-living ambulatory condi-
tions. Please note that the contextualized ECG dataset used here is part of
data collected during the clinical feasibility study of mCardia in chapter 4. The
dataset is named CACHET Contextualised Arrhythmia Database (CACHET-
CADB). The AF onset and offset segments detected by the algorithms were
mapped back from the RRI sequences to the raw ECG timestamps (as depicted
in Figure 5.3) and stored in CSV files.

• Step 3: In this step, a biomedical engineer and two independent cardiologists
manually examined and annotated the AF onset and offset detected by the
DL algorithm. A mobile application explicitly designed for ECG annotation
was used by the cardiologists. This step produced the ground truth, and each
segment were labeled as TP or FP.
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• Step 4: Finally, after obtaining the ground truth in the previous step, the FP
and TP detected by the algorithm were plotted (see Figure 5.5) against the
patient’s ambulatory contexts (e.g., activities, body positions) for examining
their co-relations.

24 Hrs Raw ECG

 Windows  of 30 RRIs  Windows  of 30 RRIs

.............................................

0 0 1 1 11 1 .......... 1 0 1 1 1
Model
Output1 .................

AF Onset AF Offset
110 Sec  segment  AF Onset AF Offset

70 Sec
segment

Figure 5.3: Mapping DL-based AF detection algorithm’s output to raw ECG times-
tamp for 24 hours (image from [A.3]).

5.3 Results
In this section, we summarise some of the important results from the above experi-
ment. For details, we direct the reader to article [A.3].

Algorithm’s performance on public datasets: The performance of the algo-
rithm on three public datasets from PhysioNet [59] is listed in Table 5.1. On training
dataset AFDB, in 5-fold cross-validation, it achieved an accuracy of 97.04% and FPR
of 1.7%. Both MITDB and NSRDB are unseen databases for the algorithm and were
used only for evaluating the algorithm’s generalization. As expected, the FPR on
these previously unseen databases was much higher (13.06% and 5.56%, respectively).
The NSRDB is an ambulatory ECG dataset from the healthy subjects without any
AF, but it still received 5.56% FPR. However, please note that this performance is
still at par with other state-of-the-art DL algorithms on these public datasets.
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Table 5.1: Performance of the used algorithm on public datasets and its comparison with other state-of-the-art algorithms.
Ch: number of ECG channels (Table from [A.3]).

Algorithms Ch AFDB MITDB NSRDB
Se
(%)

Sp
(%)

Acc
(%)

FPR
(%)

Se
(%)

Sp
(%)

Acc
(%)

FPR
(%)

Se
(%)

Sp
(%)

Acc
(%)

FPR
(%)

[189] 1 98.79 97.87 98.63 - - - - - - - - -
[105] 1 97.4 97.2 97.3 - - - - - - - - -
[183] 2 94.28 94.91 94.59 - - - - - - - - -
[193] 2 98.22 98.11 98.18 - - - - - - - - -
[35] 2 99.93 97.03 96.59 - - - - - - - - -
[10] 2 98.17 96.29 97.10 3.71 98.96 86.04 87.40 13.96 - 95.01 - 4.99
This work 1 96.06 98.29 97.04 1.7 96.87 86.94 87.98 13.06 - 94.44 - 5.56
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Analyzing false positives in the contextualised ECG data under free liv-
ing conditions: From the CACHET-CADB, a total of 215 days single-channel ECG
data of 21 subjects were analyzed using the trained DL algorithm. Four subjects were
found to remain in persistent AF during the manual analysis and were excluded from
further analysis (see Figure 5.1). Table 5.2 lists the number of AF episodes labeled
by the DL algorithm and the length of these episodes for each patient. Figure 5.4
shows the annotation process summary after manual examination of the algorithm’s
output.

Total number of onset/offset 
segments  labelled as AF 

by DL model 
(41648)

     
Screened by bio-

medical  engineer  
(25990) 

Screened by bio-
medical  engineer

(15658)

FP 
(25670)

segments < 50Secsegments >50Sec

Potential  AF

FP
 (14271)

3201387

Screened  by two
cardiologists 

(1707) 

TP
 (747)

FP 
(960)

Figure 5.4: Annotations summary after manual examination (image from [A.3]).

Table 5.2 reveals that nearly 62% of the total AF segments detected by the al-
gorithm are of a length less than 50-seconds, and based on annotation results in
Figure 5.4 it is apparent that 99.9% of them are FP. Visual inspection of the records
revealed that these short segments (≤ 50-seconds) are mostly associated with a change
in activity, body position (specially during night), or sudden movement acceleration.

Figure 5.5 presents the AF segments detected by the DL algorithm, the ground
truth (i.e., the true labels obtained after manual annotation by the cardiologists), and
their correlations with the patient’s contexts (activities, body position, and movement
acceleration) for 24 hours of ECG. It can be observed that whenever there is a sud-
den peak in the movement acceleration, and if the segment gets classified as AF, it
is mostly FP if it is ≤ 50-seconds. The true positive segments were observed in the
morning and late evening hours. Also, more FPR was observed on female subjects
than male. It could be attributed to (1) the male/female data asymmetry in the train-
ing dataset or/and (2) the relatively more confounding motion artifacts in females
due to breast movements in a chest-mounted ECG Holter.

Design recommendation: This investigation’s finding indicate the influence of
the patient’s ambulatory contexts on the the state-of-the-art AF detection algorithm’s
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FPR. Since 99.9% of the short segments (of length ≤ 50-seconds) are around change in
activity, body position change, or movement acceleration, a context-aware heuristics
module can be built to adjust the sigmoid function’s probability dynamically. If an
AF episode is detected on context change, then subsequent windows can be observed
to check whether it lasts more than 50-seconds before making the final decision.

(a)

(b)

(e)

(c)

(d)

(e)

Figure 5.5: User context and false positive occurrences in a 24 hour ECG: (a) shows
the AF detected by the DL-algorithm in 24 hours ECG, and (b) shows the ground
truth of AF episodes after manual annotation. The short segments (≤ 50-seconds) of
FP detected by the DL algorithm in (a) are associated with movement accelerations
peaks in Figure (c) and the body position and activity change in Figure (d) and
Figure (e) (image from [A.3]).
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Table 5.2: Statistics of DL algorithm’s performance on CACHET-CADB. AF-DL:
number of segments detected as AF by DL algorithm (Table from [A.3]).

Subject AF-DL Days Avg/day Seg≤50s Seg≥400s
S1 1991 12 166 1348 68
S2 2826 5 565 1857 25
S3 3419 16 214 1705 317
S4 3712 10 371 1711 107
S5 2308 11 209 1381 166
S6 3198 12 266 1877 65
S7 1702 12 141 1374 32
S8 3058 8 382 2132 153
S9 2415 12 201 1646 55
S10 4290 16 268 2835 71
S11 1236 19 65 883 37
S12 2470 12 205 1707 116
S13 1453 14 103 764 283
S14 787 5 157 614 8
S15 2075 4 518 1152 46
S16 2742 8 342 1569 97
S17 1966 7 280 1435 10

5.4 Summary
This chapter is summarised as follows:

• First, we showed that an algorithm that gives state-of-the-art AF detection
performance on public benchmark arrhythmia datasets results in a large number
of non-trivial FPs when applied to patient-operated ambulatory ECG under
free-living conditions.

• Second, we investigated the impact of ambulatory contexts on FPR in a state-
of-the-art AF detection algorithm when applied to ECG from free-living condi-
tions. After testing the algorithm on 215 days of patient-operated ECG from
free-living ambulatory conditions, we found that nearly 62% of the total seg-
ments marked as AF by the DL algorithm were of ≤ 50-seconds, and 99.9% of
them were FPs. These 62% of non-trivial FPs segments were mainly associated
with three specific user contexts (1) change in activities, (2) change in body
positions (especially at night), and (3) sudden movement acceleration. Besides,
we found that the TPs were clustered around the early morning and late evening
hours. These findings answered RQ 2 and revealed how three specific ambula-
tory contexts alone induced 62% of non-trivial FPs under free-living conditions.
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• Third, based on these findings, we suggest the implication of context-awareness
for the design of future DL-based AF detection algorithms. A context-aware
heuristics module could be built around these three specific ambulatory contexts.
When an AF episode is detected on context change, then subsequent windows
should be observed to check whether it lasts for more than 50-seconds. In
this way, by dynamically adjusting the sensitivity and specificity around these
three FP-prone contexts in free-living conditions, the FPR can be significantly
reduced.



CHAPTER6
CACHET-CADB:

Contextualized ECG
Database for

Arrhythmia Screening
• • •

The content in this chapter is from article [A.4]. It describes the design, develop-
ment, and validation of CACHET Contextualised Arrhythmia Database (CACHET-
CADB). The data collected during the usability and clinical feasibility study of mCar-
dia in chapter 4 is used for building CACHET-CADB. The outline of the chapter is
as follows. First, section 6.1 describes the motivation behind developing CACHET-
CADB. Thereafter, database design, annotation process, and crowd-sourcing tool
used for ECG annotation are described in section 6.2. Finally, section 6.3 summarises
the statistics of CACHET-CADB and its reuse potential.

6.1 Motivation
In recent years, there has been a significant advancement in the use of machine
learning and deep learning (DL) in the field of arrhythmia analysis [40]. The DL
models can provide end-to-end arrhythmia detection without requiring manual feature
extraction. However, to achieve that, they need to be trained on large ECG datasets.
Over the years, many databases such as AFDB [127], MITDB [128], PTB-LX [180],
DeepQ [187], CinCDB [31], and OA-ADB [162] have been developed to support this
endeavor. The databases such as AFDB and MITDB are some of the oldest and
have been extensively used as a gold standard for building and evaluating arrhythmia
detection algorithms.
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Although the datasets mentioned above have helped move forward the research
in computer-aided automatic arrhythmia detection, bringing the models built and
evaluated on these datasets into widespread use remains an open challenge for the
following reasons:

• The public databases are mostly collected under a clinical controlled environ-
ment; therefore, they are relatively clean and have good signal quality [55].
They do not contain all the confounding variations in the signal quality and ar-
rhythmia mimicking artifacts expected in a continuous patient-operated ECG
under free-living conditions. The arrhythmia classification models might show
high accuracy when trained and tested on the same datasets or other similar
clean datasets. However, as shown in the previous chapter, they would result
in a large number of non-trivial FP when applied to a patient-operated ECG
from free-living conditions.

• ECG signal has significant variations from person to person and is influenced
by age, gender, physical conditions, and lifestyle [178, 106, 40]. The existing
public datasets are of small size and lack diversity. They are either collected
from a single site or a particular type of ECG device. Without having a diverse
and multi-site dataset, it is challenging to build a generic arrhythmia detection
framework.

• As pointed out in [40, 43], without an understanding of the patient’s ambula-
tory context in which the ECG has been collected, arrhythmia analysis under
the free-living conditions remain prone to misclassification. Even in manual
analysis of ECG, whenever an ECG segment is inconclusive, physicians usually
look for the bigger context or take help from the knowledge of arrhythmia epi-
demiology [65]. The existing datasets do not provide the patient’s ambulatory
contextual information during the ECG recording period.

To address the need for contextualized datasets, DeepQ [187] provides the ECG
data under three activity types: sitting, walking, and lying down. It was prepared
under clinical supervision where participants performed each activity for five minutes
while recording the ECG. However, as mentioned earlier, the dataset collected under
a controlled environment does not truly reflect the signal quality and confounding
artifacts present in the continuous patient-operated ECG under free-living conditions.

Moreover, with the rapid improvement in mobile and wearable technology, wear-
able ECG devices are becoming more accessible and widespread for longitudinal self-
monitoring in patient’s natural settings. Thus to train the arrhythmia detection mod-
els which can work under free-living conditions, they need to be built and evaluated
on ECG data from similar conditions.

To complement existing public arrhythmia databases and address some of the
above-mentioned challenges, in this article, we present the design and development
of the CACHET Contextualised Arrhythmia Database (CACHET-CADB), a single
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channel wearable Holter-based contextualized ECG database. In contrast to exist-
ing public arrhythmia databases, CACHET-CADB provides following three unique
features:

1. It contains longitudinal continuous ECG data from arrhythmia patients under
their free-living ambulatory conditions, therefore is most fit for training and
evaluating algorithms aimed at enabling real-time ambulatory arrhythmia mon-
itoring in patient-operated ECG.

2. Along with the ECG, it also provides patient’s contextual information like move-
ment accelerations, activities, sleep, body positions, subjective event (i.e., un-
usual symptoms experienced during the recording period), and stress levels.
This contextual information can make the end-to-end DL-based arrhythmia de-
tection models more explainable (which otherwise remains a black box) and
help reduce the false positive detection in free-living conditions.

3. It is multi-site and diverse (collected in Denmark and India).

6.2 Design, development, and validation
The details of CACHET-CADB’s design and development process, including ethical
consideration, data collection method, data anonymization, ECG annotation process,
technical validation, and tools for public use are described in the article [A.4].

Patient's Activity

# time in [s]0 1 2 3 4 5 6 7 8 9 10

Index=15/140, Last saved at = 10

Figure 6.1: ECG annotation tool (image from [A.4]).
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6.2.1 ECG annotation tool
Figure 6.2 and 6.1 shows the schematic diagram and UI of the ECG annotation tool
used by the cardiologists in manual annotation process. It is built using cross-platform
Flutter1 SDK 1.22.0 and Google Firestore2 back-end. It presents 10-second sliding
window of ECG segments and associated user activities. The annotated data is stored
in the cloud Firestore3. This tool will be made open-source for crowd-sourcing the
manual ECG annotation.

ECG
database

Record 
Management 

Individual
cardiologists
annotations 

Inter rater
agreement 

Final
annotations 

annotations

Disagreements

Google Firestore

Cardiologists  with mobile ECG
annotation app

Figure 6.2: Schematic diagram of ECG annotation platform

Table 6.1: ECG annotation statistics in CACHET-CADB. Rhythm class code (1: AF,
2: NSR, 3: Noise, 4: Any other rhythm) (Table from [A.4] )

Annotation Class Number of sample Rhythm class code
AF 747 1
NSR 615 2
Noise 221 3
Others 19 4

6.3 Contributions and summary
This chapter presented the design and development of the CACHET-CADB, a multi-
site, longitudinal, and contextualized ECG database collected under patients’ free-

1https://flutter.dev/
2https://cloud.google.com/firestore
3https://firebase.google.com/docs/firestore

https://firebase.google.com/docs/firestore
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living conditions. The CACHET-CADB contains 259 days of contextualized ECG
data from 24 patients with an average age of 58.83 years. Further, it includes 1602
10-second long manually annotated samples of AF, NSR, Noise, and “Other” (all
other) rhythm classes. The statistics of these four rhythm classes are presented in
Table 6.1. The CACHET-CADB is made available for download at the DTU Data
figshare repository [99] at the Technical University of Denmark. We also designed
and developed a mobile-based ECG annotation tool for crowd-sourcing the manual
annotation process. The software tools4 for the reuse and analysis of CACHET-CADB
are also made publicly available.

This dataset is particularly important for searchers working on developing reliable
and real-time AF detection models, which can work in natural settings irrespective
of ambulatory noises and other confounding artifacts. As mHealth based patient-
operated monitoring of arrhythmias in a natural setting is gaining traction [162, 28],
CACHET-CADB will help in evaluating the models that can work on patient-operated
ECG. Additionally, analyzing the output of classification models in context (using
CACHET-CADB’s contextual data) can make the DL-based end-to-end classification
models more explainable and help identify the source of algorithm’s error. As no
public arrhythmia datasets with contextualized ECG are available, CACHET-CADB
could also pave the way for in-depth studies exploring the role of context-aware in
personalizing the arrhythmia detection models.

From the perspective of investigating the research question RQ 3 of this disserta-
tion, CACHET-CADB will be used to test if the FP inducing user-contexts found in
chapter 5 can be utilized for improving the FPR in an AF detection model. In the
next chapter, we introduce DeepAware, a hybrid model that combines the DL with
a context-aware heuristic model for improving the AF detection under free-living
conditions.

4https://github.com/cph-cachet/cachet-ecg-db

https://github.com/cph-cachet/cachet-ecg-db
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CHAPTER7
DeepAware: Deep

Learning and
Context-Aware

Heuristic base Hybrid
Model for AF

Detection
The content in this chapter is from article [A.5]. It addresses the RQ 3 by showing how
the awareness of the specific context responsible for inducing the false positives in AF
detection algorithm can be utilized to improve the FPR under free-living conditions.
The outline of the chapter is as follows. Section 7.1 describes the motivation and de-
sign rationale behind building the proposed DeepAware model. Thereafter, section 7.2
gives an overview of the architecture and the implementation of the proposed model.
Section 7.3 lists the datasets used for building and evaluating the DeepAware model
and section 7.4 presents the classification results. Finally, section 7.5 summarises the
chapter.

7.1 Motivation
Despite good performance on public datasets, bringing DL-based AF detection mod-
els in widespread adoption under free-living conditions is challenging due to the high
FPR [46]. It was evident in chapter 5 that even though the AF classification model
trained on the RR-interval (RRI) features achieved high accuracy (97.6%) and speci-
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ficity (89.24%) on AFDB, it resulted in a significant number of non-trivial FPs on
single channel ECG from free-living ambulatory conditions. It also resulted in high
FPR (13.04%) on MITDB, which has non-AF arrhythmia, and premature ventricular
contractions (PVC) beats. They exhibit characteristics of irregular RRIs, similar to
that of AF. In addition, the analysis of temporal and contextual distribution of FPs
in AF detection algorithm revealed the influence of patient’s ambulatory contexts on
FPs under free-living conditions.

Based on the recommendations in chapter 5, a new hybrid AF detection model
DeepAware is proposed to improve the AF detection performance and reduce the
FPR on single channel ECG under free-living conditions. To address the non-trivial
FP problem caused by patients’ contexts (activity change, change in body position,
and sudden movement acceleration), DeepAware incorporates a new model called
context-aware heuristics (CAH) that keeps track of the change in patients’ context.
Likewise, to reduce the FPR caused by confounding non-AF arrhythmias exhibiting
the RRI irregularities similar to AF, the RRI feature-based model (named RR-Net in
Figure 7.1) is combined with a DL-based ECG delineation model DENS-ECG [139].
As the P-waves, which represent the atrial depolarization, are absent during AF, the
DENS-ECG is used to check the P-waves presence.

By combining RR-Net model with the DENS-ECG model and context-aware
heuristics model, DeepAware is aimed to reduce the FPR in single channel patient-
operated ambulatory ECG. The two main contributions of DeepAware over the exist-
ing models are its ability to reduce the FPR:

1. In the presence of non-AF arrhythmias exhibiting the characteristics of rhythm
irregularity similar to AF.

2. In continuous ECG under the free-living conditions where patient’s ambulatory
contexts change causes non-trivial FPs.

7.2 Architecture and implementation
Figure 7.1 presents the architecture of the DeepAware model. Here a brief description
of the architecture components is provided. For details, we direct the reader to the ar-
ticle [A.5]. DeepAware comprises of the following six sub-modules: (1) Pre-processing,
(2) Segmentation, (3) RR-Net, (4) DENS-ECG, (5) Context-Aware Heuristics (CAH),
and (6) Decision box.
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Figure 7.1: The architecture of the proposed DeepAware model consists of the following six sub-components: (1) ECG
data preprocessing, (2) segmentation, (3) the RR-Net, which take inputs of the RR interval series, (4) the DENS-ECG,
which takes the raw ECG inputs and gives P-wave count, (5) and a CAH model, which takes user context in a case of
ambulatory ECG for dynamically fine-tuning the final output, and (6) Decision box for final binary output (image from
[A.5]).
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RR-Net: The RR-Net is a combination of a CNN followed by RNN. The CNN
is responsible for extracting the features from the RRIs in the convolutional layers.
It takes the window of 30 RRIs as input and passes it onto the convolutional layer,
which extracts the features. The features extracted by CNN are passed to RNN (a
bidirectional LSTM). Thereafter, the sigmoid function finally predicts the irregularity
for the i’th RRIs segment, and its probability threshold is set to 0.5. The sigmoid
function’s probabilities are converted to a binary output of the RR-Net model as
follows:

RR-Net(i) =

{
1, if p(yi = irregular| xi, RR-Net) ≥ 0.5,

0, otherwise,
(7.1)

where RR-Net(i) is the predicted irregularity in the i’th RRIs segment.
DENS-ECG model: DENS-ECG [139] is a deep learning model that combines

a CNN and bidirectional LSTM model for ECG delineation to detect onset, peak, and
offset of four different components of heartbeat waveforms, namely, the P-waves, QRS
complexes, T-waves, and no waves. It is trained separately on QTDB [102]. After
the ECG delineation for a window of ECG equivalent to 30 RRI using DENS-ECG,
the total number of P-wave are counted, and the binary output for the whole i’th
window is defined as per Equation 7.2.

DENS-ECG(i) =
{

1, If Pcounts ≤ 15 for 31 heartbeats (30 RRIs),
0, otherwise,

(7.2)

Context-Aware Heuristics: The context-aware heuristics model is based on the
findings of RQ 2 in chapter 5. As it was observed that in an RRI features-based AF
detection model (RR-Net here), three specific user contexts, namely change on change
in body position, activity change, and sudden movement acceleration, contributed
to 62% of the non-trivial FP. The context-aware heuristics module keeps track of
context changes in current and previous windows of input RRIs and gives output as
per equation 7.3.

CAH(i) =

{
0, if context change detected,

1, otherwise,
(7.3)

where CAH(i) is the prediction for the context change detection in the i’th RRIs
segment window.

Decision box: The output of the above three models RR-Net, DENS-ECG, and
CAH is passed to the decision box, which produces the final classification as per
equation 7.4.

D̂(i) =
{

RR-Net(i) ∧ DENS-ECG(i), if context not available,

RR-Net(i) ∧ DENS-ECG(i) ∧ CAH(i), otherwise,
(7.4)

Where D̂(i) is the output for the ith window of input.
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7.3 Datasets
The technical specification of databases used for building and evaluating the Deep-
Aware model are presented in Table I of article [A.5]. The generality of the DeepAware
has been tested on four datasets – two public and two private. The private datasets
are CACHET-CADB (developed in the previous chapter) and CACHET Contextu-
alised Normal Sinus Rhythm Database (CACHET-NSRDB). The CACHET-NSRDB
in particular consist of 10 records, each of 24-hours from healthy individuals in NSR.
Please note that in DeepAware model, the context-aware heuristics module is only
enabled/evaluated for CACHET-CADB and CACHET-NSRDB as the other three
public datasets do not have patients’ contextual data during the ECG recordings.

7.4 Results
Table 7.1 shows classification results of the proposed DeepAware algorithms on pub-
lic datasets (AFDB, MITDB, and NSRDB) and its comparison with other state-
of-the-art models from literature. In 10-fold cross-validation on training dataset
AFDB, DeepAware achieved specificity, sensitivity, and accuracy of 98.27%, 98.84%,
and 98.62%, respectively. The generality of DeepAware was tested on MITDB and
NSRDB. Compared to [10], DeepAware improves accuracy by 4.42% and reduces
FPR by 5.63% at the cost of a slight reduction in the sensitivity. Similarly, Table
7.2 shows that compared to just RR-Net (which is trained on RRI features), Deep-
Aware improved the accuracy by 3.6% and reduced the FPR by 4.57%. This indicates
the importance of incorporating P-wave count via the DENS-ECG model. It helps
distinguish AF from other confounding non-AF arrhythmias and ectopic beats, which
are falsely detected as AF in models relying only on RRI features. Performance on
NSRDB, which has no significant arrhythmias, reveals the expected FPR in healthy
individuals with low AF burden. Compared to [10] which is the state-of-the-art model
on the NSRDB, DeepAware has achieved 3.46% lower FPR.

Performance on CACHET-CADB and CACHET-NSRDB under free
living conditions: Table 7.3 shows the DeepAware’s performance on CACHET-
CADB and Figure 7.4 shows the Confusion Matrix on CACHET-CADB. Compared
to RR-Net, DeepAware reduces the FPR by 8.07% and improves the specificity at
the cost of a slight reduction (1.69%) in the sensitivity. Similarly, DeepAware’s per-
formance on CACHET-NSRDB in Table 7.4, which only has NSR recordings from
healthy subjects, gives a fair assessment of the expected FPR in healthy subjects
under free-living ambulatory patient-operated ECG. The comparisons between the
results of RR-Net and DeepAware in Table 7.4 demonstrate that the Context-Aware
Heuristics model in DeepAware was able to significantly reduce the FPR that were
induced by the change in patient’s ambulatory contexts.
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Table 7.1: Performance of the DeepAware model on public datasets and its comparison with other state-of-the-art models.
Ch: Number of ECG channel (Table from [A.5]).

Algo Model Features Ch AFDB MITDB NSRDB
Se
(%)

Sp
(%)

Acc
(%)

FPR
(%)

Se
(%)

Sp
(%)

Acc
(%)

FPR
(%)

Sp
(%)

FPR
(%)

[35] CNN,
BLSTM

RRI,
Heartbeat
Sequences

1 99.93 97.03 96.59 - - - - - - -

[192] CNN MFSWT 1 74.96 86.41 81.07 - - - - - - -

[189] CNN SWT,
STFT 1 98.79 97.87 98.63 - - - - - - -

[105] CNN

RRI,
F-wave

frequency
spectrum

1 97.4 96.2 97.3 - - - - - - -

[183] CNN,
RCN Raw ECG 2 94.28 94.91 94.59 - - - - - - -

[193] MCNN IHR 2 98.22 98.11 98.18 - - - - - - -

[10] CNN,
BLSTM RRI 2 98.17 96.29 97.1 3.71 98.96 86.04 87.4 13.96 95.01 4.99

DeepAware CNN,
BLSTM

RRI,
Raw EEG,
Context

1 98.27 98.84 98.62 1.16 93.05 91.67 91.82 8.33 98.47 1.53

MFSWT–Modified Frequency Slice Wavelet Transform.
MCNN–Multi-Scale CNN.
IHR–Instant Heart Rate Sequence.
RCN–Recurrence Complex Network.
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Table 7.2: Performance comparison between RR-Net and DeepAware on MITDB and
NSRDB datasets (Table from [A.5]).

MITDB NSRDB
Measure RR-Net DeepAware RR-Net DeepAware
Se [%] 97.74 93.06 - -
Sp [%] 87.10 91.67 95.53 98.47
Acc [%] 88.22 91.82 - -
FPR [%] 12.90 8.33 4.47 1.53

Figure 7.2: Confusion Matrix on
AFDB (image from [A.5]).

Figure 7.3: Confusion Matrix on
MITDB (image from [A.5]).

Figure 7.4: Confusion Matrix
on CACHET-CADB (image from
[A.5]).
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Table 7.3: Performance of DeepAware on CACHET-CADB (Table from [A.5]).

CACHET-CADB
Measure RR-Net DeepAware
Se[%] 99.63 97.94
Sp[%] 90.32 98.39
Acc[%] 97.22 98.06
FPR[%] 9.68 1.61

Table 7.4: Performance of DeepAware on CACHET-NSRDB. Each record comprising
of 24 hours long contextualised ECG under free living ambulatory conditions. Inputs
No: Number of (30x1) input windows. (Table from [A.5]).

RR-Net DeepAware
Record Input No. r-peaks Sp FPR Sp FPR
1 5714 114319 89.1 10.9 98.41 1.59
2 5906 118156 88.52 11.47 95.54 4.45
3 3998 80037 89.37 10.63 99.39 0.61
4 3535 70733 91.85 8.15 99.8 0.2
5 1429 28634 97.06 2.93 99.02 0.8
6 4123 82565 82.77 17.23 98.16 1.84
7 5388 108046 95.36 4.64 96.82 3.18
8 5959 119276 80.86 19.13 96.29 3.71
9 4600 92173 94.043 5.95 99.54 0.46
10 5017 100396 95.25 4.7 99.36 0.76

7.5 Summary
In this chapter, DeepAware – a hybrid model using the DL and context-aware-heuristics,
has been developed and evaluated for AF detection. DeepAware beats the state-of-
the-art on public datasets. Its generality has been tested on 4 datasets and has shown
encouraging results. The use of the P-wave delineation model (DENS-ECG) helped
improve the FPR in the presence of confounding arrhythmias that have irregular RRI
characteristics similar to AF. Also, on the single-channel ECG from free-living condi-
tions, the effective use of ambulatory context information via context-aware heuris-
tics model has significantly improved the FPR as compared to RR-Net model. Its
performance on CACHET-CADB and CACHET-NSRDB show that DeepAware can
perform real-time AF detection on patient-operated ECG under free-living conditions
with relatively lower FPR while keeping the high sensitivity. Through DeepAware,
we demonstrated the effective use of context-awareness for lowering the FPR and
improved the classification accuracy in patients-operated single-channel ECG from
free-living conditions. These findings addressed RQ 3 and partially the main RQ.



CHAPTER8
Discussion

This dissertation was motivated by the potential of using mobile and wearable ECG
technology coupled with automated arrhythmia detection algorithms for early diagno-
sis of arrhythmia under free-living ambulatory settings [140]. From the literature we
know that early detection of arrhythmias, and AF in particular, can significantly re-
duce the massive cost burden on health care and prevent mortalities [82, 140]. Despite
the increased capacities of mobile and wearable ECG devices to collect longitudinal
ECG and improvements in automatic arrhythmia classification algorithms through
techniques such as machine learning and deep learning, their widespread adoption for
real-time arrhythmia detection remains an open challenge [140, 40]. Due to the low
signal quality of ambulatory ECG, many state-of-the-art automatic algorithms that
show excellent performance in clinically recorded datasets result in high FPR when
applied to patient-operated single channel ECG from ambulatory free-living condi-
tions [64, 46]. The poor specificity and high FPR in these algorithms could cause
over-diagnosis and patient anxiety [28, 96, 140].

Until now, automated arrhythmia detection algorithms have mainly relied on ECG
morphology [40, 74] for performance improvement. However, in free-living conditions,
context plays a vital role, since ECG morphology changes with the patient’s ambu-
latory contexts [178, 40]. In the absence of patients’ ambulatory contexts during
continuous ECG, it is difficult at times to ascertain if the ECG morphology changes
are due to motion artifacts (i.e., artifacts mimicking arrythmias [116, 51, 114, 138])
or because of a problem with the cardiac conduction system. This adds to the mis-
classification and over-diagnosis, especially in longitudinal screening. Unlike earlier
systems, it is now possible to continuously capture patients’ ambulatory context in-
formation [133] with mobile and wearable-based ECG devices.

With this background, this dissertation explores whether collecting a patient’s
ambulatory context information can help improve ambulatory arrhythmia monitoring
and diagnosis under free-living conditions:

RQ: Can contextualized ECG data collected under free-living conditions
help improve ambulatory arrhythmia monitoring and diagnosis?

This question has been addressed in two ways. First, the two clinical cases (see
section 4.2.4) demonstrated how and where contextualized ECG helped cardiologists
better assess ambulatory ECG. In case 1, the patient’s contextual information (sleep-
ing or running) helped in distinguishing SVT from normal heart rhythm, although
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both have similar characteristics of heart rate > 100 BPM. Furthermore, in case 2,
analysis of the patient’s reported event of annoying palpitations in their context (in
bed and walking) showed that it could even help understand the patient’s symptoms
better and assist in making medication adjustments for the arrhythmia patients.

Second, with the DeepAware model (see chapter 7), we showed how applying
context-aware heuristics helped lower the FPR in an end-to-end, DL-based AF de-
tection algorithm under free-living conditions. The investigation to answer RQ 2 (in
chapter 5) revealed that upon applying a state-of-the-art DL-based AF detection al-
gorithm on patient-operated ECG under free-living ambulatory conditions, 62% of all
the segments detected as AF by the algorithm were of length ≤ 50 seconds, and over
99% (Figure 5.4) of them were FPs. These short segments of FPs were associated
with three specific ambulatory contexts: change in activity, body position change,
and sudden movement acceleration. This information was used in the DeepAware
model to build a context-aware heuristics model around these three FPs-prone am-
bulatory contexts. DeepAware’s result on CACHET-CADB and CACHET-NSRDB
(Table 7.3 and Table 7.4) demonstrated that combining the RR-Net model with the
context-aware heuristics model (in Figure 7.1) improved the model’s performance and
lowered the FPR on ambulatory ECG from free-living conditions.

Together, these findings demonstrate the usefulness of contextual information in
improving ambulatory arrhythmia diagnosis in manual analysis and computer-aided
arrhythmia detection algorithms. To address this overall research question, we also
addressed three sub-questions. In the following sections, we will discuss our findings
and implications for future work for each of these sub-questions.

8.1 Relevant contexts and designing tool for
longitudinal arrhythmia screening

RQ 1: What contextual information is relevant to collect during ambulatory
ECG monitoring for improving arrhythmia diagnosis, and what is the
design of mobile health technology for collecting such data from patients
under free-living conditions?

With respect to the first part of RQ 1, the list of relevant contextual information
included an events and symptoms diary, physical activities, and body position, move-
ment acceleration, sleep quality, stress levels, and food intake (see Table 1 in article
[A.2]). Factors such as sleep quality, stress levels, and food intake are known for
triggering AF in patients [66, 62]. Others, such as physical activities and movements
represent contexts that generate noise that mimics AF and other arrhythmias. Please
note that these context information categories were elicited based on a thorough lit-
erature review and interviews with cardiologists. However, during our analysis and
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investigation of the impact of context on false positive rate (FPR), we found some
context information was more useful than others. We will further elaborate on this
below when discussing RQ 2.

To address the second part of RQ 1, the mCardia system was designed for collect-
ing contextualized ECG. The two core challenges in longitudinal arrhythmia screen-
ing under free-living conditions are (1) recall bias and frequent non-compliance of the
patient-reported symptoms diary, and (2) lack of patient engagement leading to poor
signal quality. These core challenges in ambulatory ECG monitoring were addressed
in the design of mCardia. The feasibility study results reported in chapter [4] and
article [A.2] show that the mCardia system met its objective of collecting rich contex-
tualized ECG of high signal quality (89% data usable for arrhythmia analysis) while
keeping the patients actively engaged in the ECG collection process.

More specifically, mCardia improved event reporting practice and reduced recall
bias. The ability to report the symptom and event diary through the phone rather
than traditional paper-based diary was especially appreciated by the study partici-
pants who had previously undergone 1–2 days of ambulatory Holter monitoring at
home. As explained by P5,

“It was much easier to remember that I had tapped the device and had
unusual symptoms by looking at the unfilled event log in the mCardia app.
In my previous home Holter test, I rarely maintained the event diary, and
even when I did the entries, it was with an approximate time.”

As demonstrated in clinical use case 2 (chapter 4), accurate mapping of these
patient-reported events helped the cardiologist to better understand the symptoms
and events during ECG analysis. If reporting of these events relies on recall memory
and approximate timestamps, symptoms might not be reflected in the corresponding
ECG signal during the analysis, which causes ambiguity during analysis.

8.2 Impact of ambulatory contexts on FPR
The second question (RQ 2) in this thesis was intended to investigate the impact
of ambulatory contexts on FPR in a state-of-the-art arrhythmia detection algorithm
when applied to ECG data collected under free-living conditions.

RQ 2: What is the impact of ambulatory contexts on FPR in a state-of-
the-art arrhythmia detection algorithm when applied to ECG data
collected under free-living conditions?

After collecting the contextualized ECG dataset through the feasibility study of
the mCardia system (in chapter 4), the dataset was used to check the contextual
and temporal distribution of false positives when it was applied on a state-of-the-
art AF detection algorithm (chapter 5 and [A.3]). The results of the investigation
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showed the influence of the patient’s contexts on the algorithm’s FPR. Specifically,
we found that three ambulatory contexts – change in body position, activity change,
and sudden movement acceleration – caused nearly 62% of non-trivial FP segments of
length < 50 seconds. Surprisingly, it was not the contexts but the change in context
(e.g., from sitting to walking/running or sudden movement acceleration) that induced
most of these non-trivial short segments of FPR. These relationships may partly be
explained by the fact that context change results in irregular RRIs (as illustrated in
Figure 6 of the article [A.3]) similar to the those found during AF. However, such RRI
irregularities on context change are either heart’s natural response to change or due to
motion artifacts. For instance, in the transition between sitting to running or walking,
there will be a window of RRIs, which has natural variability from the heart. Such
natural variability of sinus arrhythmias also falsely gets classified as AF if models rely
on only RRI features for AF detection. To overcome such misclassification of sinus
arrhythmias as AF, inclusion of atrial activity features is necessary, as employed in
DeepAware. This will be discussed further below.

The true positive segments in three paroxysmal AF patients were clustered around
morning and late evening which corroborate the finding of Hansson et al. [66]. Also,
the FPR was slightly higher for female participants than male participants. A pos-
sible explanation for this might be that the public datasets AFDB used for training
the DL model have an uneven distribution of gender. Also, the breast movements on
the chest-mounted Holter might be adding more confounding noisy data for females.
As the ECG is known to have significant differences with age and sex [106], the in-
ference from this is that a future model should include more female subjects’ data.
Taking sex-related ECG differences into account in AF detection algorithms was also
recommended by Laureanti et al. [106]. Furthermore, rather than adding more data
indiscriminately, future models using the AFDB for detecting AF in free-living condi-
tions should include more data specific to these three context changes in the training
set.

Finally, among all the different types of collected context information, only change
in body position, activity change and sudden movement acceleration showed strong
correlations with FPR. We did not find a strong correlation with other context data
such as food, stress-level, location, etc. A possible explanation could be the relatively
small recording period (two weeks) or the limited number of participants.

8.3 Contextual information for improving automatic
arrhythmia detection algorithm

The third question in this thesis was

RQ 3: How can arrhythmia detection algorithms be improved by using
contextual information obtained under free-living conditions?
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To explore the utility of the contextual information in improving the arrhythmia
detection algorithms’ performance, there are two possible approaches: (1) using the
context information as direct features in the deep learning models, or (2) using them
for post-processing heuristics. In DeepAware, we have used the context information
in the post-processing stage, which aligns with previous recommendations in the
literature [149, 137, 65]. Three ambulatory contexts – activity change, changes in
body position, and movement acceleration – that influenced the FPR were used to
build a context-aware heuristic model. As explained above, in continuous ambulatory
ECG, these context changes mimicked the RRI irregularities, similar to AF. For a
given input window, if an AF is detected by sub-models of DeepAware (RR-Net and
DENS-ECG), then the context-aware-heuristics model checked if there was a change
in context in the current or previous input window. If the detected AF does not last
more than 50 seconds, that is, two consecutive windows, then DeepAware changes
the final output to non-AF, as it is likely to be a non-trivial FP caused by a change
in context. DeepAware’s performance on CACHET-CADB and CACHET-NSRDB
(Table 7.3, and Table 7.4, respectively) clearly demonstrated that using context-aware
heuristics significantly improved the accuracy and reduced the FPR when compared
to RR-Net alone on continuous ECG from free-living ambulatory conditions.

Within the scope of this thesis, we have not been able to explore the use of
context features as direct input to the deep learning model. However, this could
be an interesting line of research to explore given the variety of ambulatory context
information that is now available in CACHET-CADB.

8.4 CACHET-CADB for explainable deep learning
models

The CACHET-CADB developed in this dissertation complements the existing ar-
rhythmia datasets and provides the additional ambulatory context information dur-
ing the ECG recording that is lacking in the current public benchmark arrhythmia
datasets. In particular, the CACHET-CADB is a valuable resource for the researcher
working on developing and validating arrhythmia detection models that can realisti-
cally work under free-living conditions on patient-operated wearable ECG.

Although the DL-based models provide the feasibility to build end-to-end ar-
rhythmia classification models, they bring with them the problem of lack of trans-
parency [122]. In the classical feature engineering approach, the clinicians manually
selected the features; therefore, it was easy to understand and verify the source of the
error in an algorithm. In the case of end-to-end models, features are directly learned
by the models themselves; therefore, they remain a black box for the clinicians [122].
As illustrated in Figure 7 in article [A.4], the contextual information of CACHET-
CADB can make the end-to-end DL-model output more transparent and explainable,
and help identify the source of algorithm error in context.
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8.5 Challenges in context-aware arrhythmia
monitoring

As demonstrated in this thesis, contextual information has the potential to improve
arrhythmia detection under free-living conditions; however, such context-awareness
arrhythmia screening brings many other challenges. First, in contextualized ECG
collection systems, the patient’s privacy and security may be a concern due to the
possibility of the misuse of sensitive contextual information [133]. Although our pro-
posed mCardia system has security and privacy preservation mechanisms in place, by
nature, the continuous collection of mobile context data may give the user a percep-
tion of being watched all the time [196]. Second, the continuous context collection
drains the battery in mobile and wearable ECG devices. And although the battery
capacity of mobile and wearable ECG devices has increased significantly with the im-
provements in technology, it is still a limitation for context-aware applications that
require continuous sensing [196, 133].

8.6 Limitations
The work presented in this thesis is limited in a number of ways. Firstly, the sample
size in the mCardia’s feasibility study was small, which might limit the ability to
generalize the findings. Also, the length of the data collection study was limited to
two weeks as it was more focused on technology demonstration or proof of the concept.
The usability and patient engagement behavior might change during extended use.

Secondly, the investigation of contextual and temporal distribution of false posi-
tives was done on a state-of-the-art AF detection model trained on RRI features. The
same might not hold true on other algorithms trained on non-RRI features. However,
the models trained on RRI are computationally less expensive and remain the widely
used feature in AF detection algorithms [118]. Also, due to resource constraints, the
first stage of screening for identifying outrightly NSR or noisy segments was not done
by cardiologists. Even though all doubtful segments were passed to the second stage
and were reviewed by the cardiologists, there might be a possibility of some misclassifi-
cation in the first stage, particularly in segments in which the noise and AF mimicked
each other. Furthermore, when annotating the samples marked as AF by the DL al-
gorithm, the cardiologists only looked at ECG samples from the onset, offset, and a
few random samples in-between to decide the label for the whole segment. It is likely
(particularly with long AF segments) that some short ECG samples in-between that
were misclassified as AF by the DL model would have gone unnoticed. Nevertheless,
this approach was very practical for screening the longitudinal ECG data required
for the experiment.

Thirdly, the proposed DeepAware is computationally heavy and can work only in
a cloud computing environment. In general, the availability of computation, memory,
and power on mobile and wearable ECG devices is a significant obstacle for deploying
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DL architectures [36]. Furthermore, in DeepAware, the DENS-ECG model used for
P-wave count has limitations in detecting inverted P-waves, primarily because of the
lack of such inverted P-wave morphologies in the training dataset QTDB. Therefore,
the overall efficiency of DeepAware might differ on the ECG segments with inverted
P-waves. In the future, the DENS ECG model used needs to be retrained and tested
with more data including inverted P-wave morphology.

8.7 Future work
During the feasibility study of mCardia, many false events were registered while taking
off the device from the chest or putting it on for charging. In the next iteration, we
will resolve this issue by ensuring that event registration by tapping on the ECG
Holter can only be done if the ECG Holter is attached. Also, to further reduce the
noisy or non-usable data, we will implement signal quality-based alerts for patients
and caregivers. In addition, we will address the problem of the ECG device’s battery
dying, or even being close to dying, going unnoticed when mCardia is running in
the background, by implementing a server-side notification based on the last known
battery status and expected battery life. Furthermore, as we learned during the
mCardia feasibility study, patients thought that a medication tracking facility would
potentially make mCardia more engaging. In the next iteration, such a feature could
be added to mCardia in order to enhance patient engagement in the longitudinal
home-based arrhythmia screening.

The long-term plan is to deploy the mCardia technology as part of a larger-scale
clinical trial in the REAFEL project1. This would require that the issues with mCar-
dia are addressed and that mCardia and the DeepAware model are integrated on
the back-end server setup. Moreover, a web interface for the clinicians to use would
also be needed. During such a clinical trial, the CACHET-CADB will be further
expanded.

In the current implementation of DeepAware, the contextual information is used in
the post-processing stage via the context-aware heuristics and not as a direct feature
of the deep learning model. In the future, further research should be undertaken to
explore the use of context information directly as an input feature to the DL model.

1https://www.cachet.dk/research/research_projects/REAFEL
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CHAPTER9
Conclusion

The objective of this PhD research project was to design and evaluate mobile health
technology for ambulatory monitoring and diagnosis of heart arrhythmias. More
specifically, we focused on investigating the role of context-awareness obtained via
mobile and wearable technology to improve arrhythmia detection on patient-operated
ECG under free-living conditions. Two clinical case studies (in chapter 4) demon-
strated how and where contextual information helped cardiologists make a better
assessment of ambulatory ECG in the manual analysis of a single channel ECG. Fur-
thermore, through the DeepAware model, we demonstrated the use of contextual
information for reducing the FPR in an automated arrhythmia detection algorithm.
Taken together, these findings show that contextualized ECG data collected under
free-living conditions can improve both manual analysis and computer-aided algo-
rithms for arrhythmia detection.

To carry out this investigation, we first designed the mCardia system that allowed
the collection of longitudinal contextualized ECG under free-living conditions. The
mCardia feasibility study demonstrated its capability for user engagement and col-
lection of quality ECG data needed for longitudinal arrhythmia screening in patient-
operated environments. It was also perceived to reduce the recall bias in reporting
the symptoms and to improve the patient–doctor communication in the longitudinal
screening process. The two clinical case studies demonstrated that context data could
provide clinicians with a better perspective of patients’ reported symptoms during
ECG review.

Using the collected contextualized ECG data, we analyzed the temporal and con-
textual distribution of FPs in a state-of-the-art end-to-end, deep learning-based AF
detection model. The analysis revealed that three specific user contexts, (1) change
in activities, (2) body position change, and (3) sudden movement acceleration, were
responsible for inducing nearly 62% of the non-trivial FP segments of length ≤ 50-
seconds. Based on this analysis, we proposed the design implications for future DL
models and argued that using context-awareness could reduce the FPs in real-time AF
detection under free-living conditions. This analysis also demonstrated that under-
standing the DL-based, end-to-end AF classification model’s outcome in the patient’s
context can help identify the source of models’ shortcomings and make them more
transparent.

Based on the above findings, DeepAware, a hybrid model combining deep learning
and context-aware-heuristics was proposed. In terms of generality, it outperformed
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the state-of-the-art AF classification models on public datasets. Its performance on
the patient-operated single-channel ECG from free-living conditions (in CACHET-
CADB and CACHET-NSRDB) showed its robustness in reducing the FPR in the
presence of AF-mimicking confounding artifacts and non-AF arrhythmias. The ef-
ficacy of the proposed DeepAware model in reducing the FPR on patient-operated
single-channel ambulatory ECG from free-living conditions, while maintaining high
sensitivity, provides us with the opportunity to use this algorithm “in-house” by
cardiologists for longitudinal AF screening. DeepAware can significantly reduce car-
diologists’ workload of manual review of FPs in a clinical setting, allowing them to
focus more on treatment than diagnostics.

This thesis also contributed CACHET-CADB, a 259-day-long contextualized ECG
arrhythmia dataset from patients in free-living ambulatory conditions. We believe
that the CACHET-CADB will help the broader DL community to build and evaluate
the arrhythmia detection models that can work under free-living conditions. It will
also pave the way for making the DL-based, end-to-end arrhythmia detection models
more explainable and help identify the source of algorithm errors, which otherwise
remain a black box.
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1 INTRODUCTION

In the past decade, rapid improvements in processing power, network speed, storage, and the addition of inte-
grated sensors on mobile phones, combined with wearable sensors, have paved the way for new opportunities
in research fields such as mobile crowdsensing (MCS), ubiquitous computing, and pervasive health. Today most
smartphones are equipped with a wide range of sensing capabilities, such as motion and direction (accelerometer
and gyroscope), position (GPS), light intensity, atmospheric pressure (barometer), temperature, proximity, and
connectivity (Bluetooth and Wi-Fi). In addition, wearable devices such as activity trackers and medical devices
can be connected to the smartphone, which then works as the hub for data collection and processing. Due to the
widespread availability of smartphones (nearly 2.5B globally [46]), researchers use them for in situ data collection
for social, environmental, and mobile health (mHealth) studies. Among others, mHealth in particular has shown
growing scientific and commercial interest and has been used for next-generation health research, including
in situ monitoring and just-in-time (JIT) interventions [2, 10]. Over the years, several mHealth based studies
have been conducted in areas such as heart arrhythmia detection, cardiac rehabilitation training, stress, depres-
sion, and behavior change [14, 36, 67, 87]. However, to conduct these mHealth studies, researchers may need to
implement their own study specific sensing, data storage, and data analysis from scratch, as well as handle non-
functional technical challenges such as smartphone resource optimization, configuration of sensors, support for
longitudinal data storage and processing, and constant upgrading of the low-level sensing integration to differ-
ent operating systems (e.g., iOS vs. Android) and smartphone hardware models. All of this requires substantial
technical skills and many resources, which is costly and time-consuming. To address these challenges and to sup-
port the development and deployment of mHealth studies, researchers have been designing and building more
generic and reusable mHealth sensing frameworks. These frameworks provide configurable libraries, modules,
and plugins for mobile and wearable sensing, data storage, management, and analysis. Over the years, generic
sensing frameworks such as Funf [3], AWARE [24], mCerebrum [35], Beiwe [85], and RADAR-base [68] have been
designed and implemented. Such frameworks have typically been released as open source for other researchers
to download, adapt, and (re)use. The overall purpose of these frameworks is to help researchers to easily design
and deploy mHealth studies with no—or very limited—need for actually programming the sensing technology.

This article presents a systematic literature review of existing mobile and wearable sensing frameworks for
mHealth. Such a review is useful for clinical researchers who want to engage in mHealth research studies and
are looking for a sensing framework to support their research, as well as for technical researchers interested in
existing frameworks to use, extend, or adapt in the design of their own technical solutions and applications. Prior
reviews of sensing frameworks have focused on more technical issues such as privacy, resource management
strategies, and energy efficiency. For instance, Wang et al. [86] presented a review of various state-of-the-art
energy saving techniques in mobile crowdsensing (MCS) applications. Similarly, Christin et al. [16] did a survey
on privacy in participatory mobile sensing applications. The review by Khan et al. [42] provided an overview of
the state-of-the-art of mobile phone sensing applications in several domains such as traffic and environmental
monitoring. Hence, to the best of our knowledge, this systematic review is the first to focus on mHealth sensing
frameworks. The review focuses on generic sensing frameworks for mHealth, which is distinct from use-case-
specific sensing applications. Generic sensing frameworks can typically be configured to support several different
types of studies (i.e., use-cases/diseases) or can be used to build new sensing applications, whereas use-case-
specific sensing applications are tied to a particular study.

This review is conducted as a systematic literature review (SLR) describing the state-of-the-art of currently
available generic frameworks that can be used for creating and implementing mHealth studies and applications.
The review focuses on describing the functional and non-functional features, historic evolution, maintenance,
uptake, and supported stakeholders of the different frameworks. Based on this overview, the article highlights and
discusses open issues and potential new features that could be relevant to implement in the further development
of such frameworks. The contribution of this systematic literature review (SLR) can be summarized as follows:
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• It identifies, summarizes, and analyzes existing generic mHealth sensing frameworks and presents the
health studies, application areas, and stakeholders each of them support.

• It provides an overview of common functional and non-functional features in the identified frameworks.
• It examines the historical evolution and the uptake of these mHealth sensing frameworks, including how

well they are maintained and updated after their initial release.
• Based on this analysis, the review identifies and discusses open issues in contemporary research on

mHealth sensing frameworks.

The rest of the article is organized as follows: Section 2 describes the systematic review methods, including
the research questions, search and screening strategy, inclusion and exclusion criteria, and a description of the
data extraction procedure. Section 3 through Section 6 present a detailed analysis of all the functional and non-
functional features, health areas and applications, and historical evolution of generic mHealth sensing frame-
works. Section 7 provides a discussion of the results, including trends in the research of generic sensing frame-
works, their implications for healthcare, as well as new potential features needed in the further development of
such sensing frameworks, and potential threats to the validity of this review. Section 8 concludes the article.

2 SYSTEMATIC REVIEW PROCEDURE

In this SLR, we applied the review strategy for conducting SLR in software engineering as proposed by Kitchen-
ham and Charters [43] with a slight modification in search strategy to make it a better fit for this review in
the field of mHealth. Specifically, in addition to the proposed search strategy, the backward snowballing tech-
nique [90] was applied for finding additional relevant papers. This implies iteratively screening the list of refer-
ences of the already-included papers in the review.

2.1 Identifying the Need for the Review

Within the past decade, there has been a growing interest in using mobile and wearable technology for collecting
contextual, behavioral, and health-related data “in-the-wild,” i.e., data that are not acquired in a clinical and/or
laboratory setting, but are collected continuously from users in their everyday life. For this purpose, a range
of generic mobile-wearable data sampling platforms and frameworks have been designed and released for gen-
eral use. To search for a systematic overview of existing framework for such mobile and wearable sensing for
mHealth purposes, we conducted searches for “systematic literature reviews” in online databases such as ACM,
IEEE, Google Scholar, and Scopus using terms such as “mobile/smartphone sensing framework,” “crowdsens-
ing frameworks,” “sensing framework,” and “mobile data collection” in combination with “health” or “behavior
sensing” to find any existing SLRs summarizing different generic mobile sensing frameworks for mHealth ap-
plications. The search indicated that no overview of this research exists. Therefore, an SLR to summarize and
discuss the current state-of-the-art in health-focused generic mobile sensing frameworks is relevant and needed.

2.2 Research Questions

The objective of this review is to identify and provide an overview of all relevant mobile/wearable sensing plat-
forms and frameworks for mHealth and provide an overview of their features (functional and non-functional),
which health domain they are used in, and how they have evolved historically and are maintained over time.
This overall objective leads to the following four research questions (RQs):

RQ1: Which health-focused generic mobile and wearable sensing platforms and frameworks exist, and which
health studies, application areas, and stakeholder do they target?

RQ2: What functional features are supported by these frameworks?
RQ3: What are the non-functional features of these frameworks in terms of extensibility, scalability, security,

privacy, license model, and documentation?
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Table 1. Number of Papers per Database

Database Search results

IEEE 330
ACM 226
Scopus 1,058

RQ4: How have these frameworks evolved over time, and how are they reused and maintained after their initial
release?

2.3 Search Strategy

The first step of the search strategy was to identify a search string. The search string was constructed by follow-
ing the guidelines from Khakurel et al. [41] and involved four components. First, we selected keywords used in
our previously defined RQs. In addition, we used initial Google Scholar search results to check which keywords
are used in popular framework papers. Second, we identified synonyms, acronyms, and alternative phrasings
for these keywords. For example, “mobile sensing” for “smartphone sensing,” “mobile crowdsensing” for “smart-
phone crowd sensing,” and “behaviour” for “behavior.” Third, we merged all synonyms, acronyms, and alterna-
tive phrasings using “OR” operations. Finally, all the terms were combined to construct the final search string:

(“mobile sensing” OR “smartphone sensing” OR “context sensing” OR “wearable sensing” OR “mobile
platform” OR “smartphone platform” OR “mobile context” OR “smartphone context” OR “mobile data col-
lection” OR “sensing framework” OR “data collection platform” OR “smartphone data collection” OR “mo-
bile crowdsensing” OR “smartphone crowdsensing” OR “mobile crowd sensing” OR “smartphone crowd
sensing”)

AND (“health” OR “human behaviour” OR “human behavior”).

In the second step, the first author of this article (DK) used the finalized search string on Dec 20, 2018, to
search three electronic databases: (1) IEEE Xplore, (2) ACM Digital Library, and (3) Scopus, limiting the search to
publications between 2008–2018 inclusive. The database search was performed on title, abstract, and keywords.
These databases were chosen because of their relevance to the field of mobile and wearable technology. Table 1
lists the number of search results for each database.

2.4 Inclusion and Exclusion Criteria

The aim of applying inclusion criterias (ICs) and exclusion criterias (ECs) is to extract only publications relevant
to the objective of this SLR. We used the following set of inclusion criterias (ICs) and exclusion criterias (ECs):

IC1: Papers should describe a framework that is generic and supports designing and/or building new sensing
applications on top of it, rather than being a use-case or application-specific system.

IC2: Papers should include a reasonably detailed description of the sensing framework’s architecture and tech-
nical implementation.

IC3: Papers should focus on potential use cases in health, wellness, or behavior sensing.
IC4: Publication date should be on or after the year 2008 (the iPhone was introduced late 2007).
EC1: Papers should not describe a system that is specific to one study or that is not generic enough to support

building other mHealth applications than the one described.
EC2: Papers that do not focus on health or well-being.
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Records identified through
database searching

(n=1614)

Titles screened based on
inclusion criteria

(n=1200)

Full-text articles assessed for
eligibility
(n=56)

Duplicates removed
(n=414)

Records excluded
(n=1144)

Articles included in final-analysis
(n=16)

Backward snowballing 

Articles included in final analysis 
after  snowballing  

(n=30)

Full-text articles
excluded ,with reasons

(n=40)

Articles included (Level 1)
(n=12)

Articles included in (Level 2)
(n=2)

Fig. 1. Review flowchart for selection of papers.

2.5 Screening Process

Figure 1 illustrates the different phases and the number of retained papers in each phase of the screening process.
The initial search found 1,614 papers, from which 414 duplicates were removed. The remaining 1,200 papers were
then screened based on their titles, adhering to the above-listed ICs and ECs, which removed 1,144 irrelevant
papers. Most of these papers were removed due to EC1, since the title often revealed whether a paper presented
a use-case-specific sensing application or a generic framework. This resulted in a total of 56 papers for full-text
screening, out of which 16 papers were retained for further analysis.

Next, backward snowballing [90] was applied. This implies iteratively looking at the list of references of the
included papers and screening them to find new potential papers to include. Through backward snowballing,
we identified several papers that used alternative phrasings of “data collection platform” or “mobile sensing
frameworks,” which we did not anticipate, such as “digital phenotyping” and “social psychology sensing toolkit.”
Therefore, these papers were only found through backward snowballing, highlighting the effectiveness of this
approach. We primarily focused on the references within the “Related Work” sections of the papers. In a first
iteration, we included 12 new papers by following references in the initial 16. In a second iteration, we included
two new papers. These last two inclusions did not lead to any new identified papers, thereby concluding the
snowballing process. Thus, in total, 14 additional papers (12 + 2) were included as part of the snowballing process
and at the end of the screening process, 30 papers were included.

2.6 Additional Frameworks

Many of the papers include references to open-source or commercial mobile and wearable sensing frameworks.
These frameworks are not published in peer-reviewed scientific venues, but are still similar to the systems found
through the systematic literature search and have been widely used for building mHealth applications. To make
our review more inclusive, we will also include and discuss these unpublished frameworks. However, given that
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they do not have an associated publication, we want to emphasize that their presented data have not been ob-
tained systematically as has been done for the frameworks with a matching publication. Instead, we extracted
available information from their website and open-source code base, as available at the time of writing this
review. The data tables presented in this review will clearly distinguish between scientifically published frame-
works (white background) and unpublished frameworks (gray background).

2.7 Data Extraction, Categorization, and Labeling

The categorization and labeling schemes were created iteratively and were continuously verified through a col-
laborative process involving all authors. This includes the labeling of application areas, stakeholder classification,
sensing typology, and the classification of functional and non-functional features. Full data extraction, labeling,
and categorization of the 30 papers was initially done by the first author (DK) and then validated by the second
author (SJ). We found two pairs of papers describing the same sensing framework, and one paper from each of
these two pairs was removed. Thus, in total, we analyzed 28 distinct sensing frameworks, as listed in Table 2.
For information not contained within the papers—such as software license, available documentation, and last
update to the code base—we investigated the open-source repositories of the frameworks, if available.

3 FRAMEWORK OVERVIEW, APPLICATIONS AREAS, AND STAKEHOLDERS

This section outlines the results with respect to the first research question (RQ1) introduced in Section 2.2.

3.1 Frameworks

Table 2 provides an overview of all identified frameworks. In total, 28 frameworks have been published in sci-
entific peer-reviewed literature, while 9 frameworks are unpublished (shown on a gray background). In the
presentation and discussion of the findings, we will focus on the 28 scientifically published frameworks, unless
mentioned otherwise.

We classify 9 frameworks as “end-to-end,” as these frameworks provide support for all aspects of running a
mHealth study, including data collection and storage, data processing, visualization, participant recruitment, and
monitoring study progress. The majority of frameworks (N = 20) are built for Android, followed by iOS (N = 7)
and Nokia (N = 3); six frameworks support both Android and iOS operating systems.

3.2 Application Area

Frameworks included in this review are generic and intend to support the design and implementation of mHealth
applications in a broad sense. However, to provide an overview of some of the health domain(s) a framework has
been used in, we looked at case studies reported in the papers documenting the framework, in papers citing the
framework paper, and on the framework’s website, if available. Table 3 lists examples of health studies that were
implemented using the corresponding frameworks. We find that despite the intention of these frameworks to be
general-purpose, most of them still have only been used in a limited number of studies. As shown in Figure 2,
the mHealth studies can broadly be categorized into three overlapping categories: behavioral, mental health, and
physiological health studies.

In behavioral studies, a sensing framework is used to build applications that collect behavioral data (e.g., diet,
physical activity). The collected data can be used by behavioral health professionals to understand which behav-
ior contributes to individuals’ health condition. Examples include: risky behaviors and HIV transmission using
AndWellness [32]; obesity monitoring using HealthOS [48]; StudentLife [87] for assessing behavioral trends,
health, and academic performance of college students using Jigsaw [51]; and behavioral correlation between
location, social context, and mobility context using AWARE [24]. Out of 28 frameworks, 20 have been used in
studies or applications related to human behavioral studies.
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Table 3. Health Applications Implemented Using the Frameworks

Framework Health Studies

AndWellness Risky behaviors and HIV transmission [32], Behaviors and emotions of young breast cancer
survivors [32]

AWARE Alcohol use events JIT intervention [8], Symptom severity during chemotherapy [50], Detecting
drinking episodes [9]

Beiwe Schizophrenia spectrum illness [85]

CONSORTS-S Physiological symptom monitoring [78]

Dandelion Heart-rate and EKG monitoring [49], Fall detection [49]

Emotion Sense Social psychology [66]

EUPMS Remote therapeutic interventions [79]

HealthOS ObeCure: obesity monitoring [48]

iEpi Study of health behavior in pregnant mothers diagnosed with gestational diabetes [44], Gamified
intervention for healthy behavior [44]

Jigsaw StudentLife: assessing mental health, academic performance, and behavioral trends of college
students [87]

Lifestreams Diet, stress, and exercise in young moms [37], Family wellness study [37]

mCerebrum Smoking & stress [35], Heart failure [35]

MobiSens Remote elderly care [91], Mental health monitoring [92]

mk -sense Thought and life logging–Mental time travel [31]

ODK Sensors Heart rate monitoring [15], Diagnose childhood pneumonia [13]

Ohmage Moms: Studying diet, stress, and exercise-related risk factors for CVD in young mothers [84],
PREEMPT: N-of-1 trials using mHealth in chronic pain [84]

Psychlog Arousal and psychological stress [27]

QuestionSys Remote therapeutic interventions [79]

RADAR-base Depression and epilepsy [83]

Sensus Hourly activity sampling in behavioral activation [73], Social interaction anxiety scale
assessment [94]

StarLog Behavior analysis [59]

TigerAware Diabetes self-management study [60], Drink and drive [60]

UbiqLog Mood and sleep [69]

Zappa Cloud Rehab: Tracking patients with severe brain damage [74]

Bridge Blood pressure and stress levels tracking [54], Mole Mapper [88]

CareKit A symptom tracking and reporting instrument mobile application for central nervous system
cancer patients [47]

Funf EMA of day-to-day mood [7], Modeling and discovering human behavior [52]

Open mHealth Post-traumatic stress disorder (PTSD) [55], Type 1 diabetes self-monitoring case study [56]

Purple Robot Depressive symptom severity in daily-life behavior [75]

ResearchKit mPower study (Parkinson’s disease) [12], Mole Mapper [88],C3-PRO [65]

ResearchStack C3-PRO [65]

Mental health studies are built to assess the psychological, emotional, social conditions of human subjects, e.g.,
to study bipolar disorder, schizophrenia, depression, and anxiety disorder. Although there is overlap between
behavioral and mental health disorders, not all mental health disorders are a result of behavioral issues. Of the
28 frameworks, 14 have been used in applications studies related to mental health. Examples include: monitoring
schizophrenia spectrum illness using Beiwe [85], and depression and epilepsy using RADAR-base [68].
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Fig. 2. Behavioral health is a superset of mental and physical health that looks at how behaviors impact health.

Researcher (18) Developer (19) 

End User (5)

9

2

4

3

Fig. 3. Number of frameworks supporting different stakeholders.

Physiological health studies involve sensing physiological data such as heart rate, blood pressure, ECG, and skin
temperature. Examples include: heart rate monitoring built using Dandelion [49] and heart failure detection using
mCerebrum [35]. Of the 28 frameworks, 13 have been used in studies or applications related to physiological
health sensing.

3.3 Stakeholders

Since the goal of these general-purpose health sensing frameworks is to support a wide range of health domains
and studies with a wide range of potential features, they are also designed to target different stakeholders, de-
pending on their focus. During the labeling of the included papers, we identified the following three categories of
stakeholders that the included frameworks provide support for: (i) researchers, (ii) developers, and (iii) end-users

including patients. Only a couple of frameworks target all three stakeholders and thereby provide a complete
end-to-end solution; most target one or two. Table 2 lists stakeholders per framework and Figure 3 gives an
overview of the distribution of frameworks per stakeholder category.

A researcher—or study investigator—designs mHealth studies and decides which data to collect to answer a
particular research question. They are typically domain experts (e.g., psychologist) and are unlikely to have
any experience in software development. This stakeholder group requires support for setting up new studies,
setting up personalized interventions, fine-tuning data sampling methods and frequency, triggering surveys
remotely, obtaining user consent, recruiting participants, and monitoring progress of ongoing studies. Out of
the 28 published frameworks listed in Table 2, two-thirds (N = 18) of them target researchers. Examples of such
frameworks are QuestionSys [81], EUPMS [80], Beiwe [85], AWARE [24], RADAR-base [68], and Ohmage [84].
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Application developers use a framework to implement mHealth applications for data collection and analy-
sis, without having to implement everything from scratch [84]. This stakeholder group expects frameworks to
provide secure, modular, and extensible application programming interfaces (APIs) for both mobile phone and
server-side development. Two types of frameworks targeting developers can be identified: middleware and back-
end frameworks. Middleware frameworks provide application programming interfaces (APIs) to build context-
aware applications and pre-processing on phones, whereas back-end frameworks help with storing, analyzing,
and visualizing study data on the server side. Nearly two-thirds (N = 19) of the 28 frameworks included in this
review support developers. Besides, nearly one-third (N = 9) of the frameworks support both developers and re-
searchers. All 9 open-source non-academic frameworks target developers and are intended for use in application
development (see Table 2).

End-users are individuals or patients who want to use mobile devices to capture health-related data. This is
typically done by self-reports (e.g., survey or questionnaires) and continuous sampling from the smartphone’s
built-in sensors and connected wearable devices. Such users use the sensing frameworks for use cases such as
health-awareness and well-being tracking. Since they use their own phones, battery drain is a core concern for
them [24, 84]. Such frameworks typically include end-user dashboards to modify which data are collected; e.g.,
AWARE [24] and Funf [26] support enabling or disabling sensors. Others, such as AndWellness [32], allow end-
users to specify a time when to trigger a daily survey. Although most frameworks supporting end-users allow
them to view collected data to motivate them for self-reflection and behavioral improvement, only a few (e.g.,
Reference [32]) support instant feedback. Only Ohmage [84] provides support for privacy control by allowing
end-users to delete, export, and change the privacy states of their responses and data. As shown in Figure 3,
only 5 out of 28 published frameworks in this review focus on this user group, and only 2 support all three
stakeholders.

4 FUNCTIONAL FEATURES

This section describes different functional features supported by the frameworks (RQ2). Based on thematic la-
beling, the functional features of each framework have been grouped into three overall categories: (i) sensing

and storage, (ii) data processing and analysis, and (iii) study management. Table 2 provides an overview of all
identified functional features per framework.

4.1 Sensing and Storage

Collection of data and storing it for later access is the primary functionality provided by most of the mHealth
frameworks. This overarching feature can be further broken down into support for: (1) integration with exter-

nal sensors, (2) built-in smartphone sensors and software sensing probes, (3) ecological momentary assessments
(EMAs)and surveys, (4) data storage and cloud back-end, (5) context-aware sampling, and (6) remote configuration.

4.1.1 Integration with External Sensors. Wearable sensors are used in many health care studies to enable con-
tinuous monitoring of physiology parameters such as heart rate, electrocardiography (ECG), glucose level, sleep,
and physical activity. For example, wearables like Fitbit [25] have been widely adopted for monitoring of health
symptoms and early intervention in a clinic setting. Nearly two-thirds (N = 17) of the 28 frameworks in this re-
view report support for data collection from external sensors. This is typically implemented in one of two ways:
through a wired or wireless connection between the smartphone and the sensor, or by retrieving data from the
device’s data server, where data pre-processing, aggregation, and analysis might be done.

For wireless communication to external sensors, the majority of these frameworks used Bluetooth. Besides,
few other wireless protocols such as Adaptive Network Topology (ANT+) and Bluetooth Low Energy (BLE)
(in mCerebrum [35]) were also used. Only one framework, ODKSensor [15], provides a plugin interface for
connecting external sensors over USB.
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Alternatively, rather than retrieving data directly from the sensors, data can be retrieved from the device’s
remote data repository by calling, e.g., a web API. In this scenario, sensors upload data directly to a vendor’s
repository either from the sensor or via a vendor-specific smartphone app. Next, vendors may perform additional
data-processing on their servers to extract higher-level features that are made available through their APIs. For
example, Fitbit performs advanced processing of raw accelerometer data to calculate higher-level features such
as step count and sleep patterns. The drawback of this approach is that the framework and its users do not
have real-time access to sensor readings, since data are only available through the web API after they have
been uploaded to the server. For example, there is a delay of 15 minutes in the case of Fitbit. Additionally, such
higher-level features may rely on proprietary algorithms that may change over time. Examples of this type of
integration include HealthOS [48], AWARE [24], and RADAR-base [68], which provide plugins to retrieve data
from sensor vendors’ data repositories. In some frameworks (e.g., AWARE [24]) data collection from the sensor’s
server is done via the smartphone whereas in other frameworks (e.g., mCerebrum [35] and RADAR-base [68])
this happens server-to-server.

4.1.2 Built-in Smartphone Sensors and Software Sensing Probes. Modern mobile phones have a range of so-
phisticated built-in sensors that can sense motion, mobility, and the environment, as well as a set of network
antennas and communication features, which can be used to sense social and communication behavior. A num-
ber of “mobile health sensing” studies have shown that such data can help discover correlations between various
physical, behavioral, and mental health conditions [24, 66]. To collect the data from the smartphone’s built-in
sensors and communication components, mobile sensing frameworks typically provide abstract general-purpose
interfaces—often called “probes” [26]. Based on the thematic analysis, support for collecting data from built-in
sensors and other components can be divided into five overall categories: (i) motion sensors, (ii) environmen-
tal sensors, (iii) communication probes, (iv) network probes, and (v) device probes. Using this categorization,
Table 4 provides an overview of the different types of data that can be sensed using built-in sensors and probes
on a mobile phone for each of the frameworks included in this review. Please note that these data are based on
the available description as provided in the articles and code documentation (if available). It may be the case
that only a few relevant sensors were mentioned. Therefore, we do not conclude that omissions in this table
imply a given sensor is not supported by the framework. In some cases, articles just stated that the framework
supports various built-in sensors but did not provide details. Therefore, it is likely that they might have � under
the “built-in smartphone sensors” category in Table 2 but missing details in Table 4.

The most commonly supported sensors mentioned are: accelerometer, GPS, gyroscope, proximity, gravity,
light (ambient light intensity), magnetometer, audio, temperature, telephony (start and end time of calls), cell
tower (cell towers connected to), Bluetooth (surrounding Bluetooth-enabled and visible devices), and Wi-Fi (e.g.,
nearby Wi-Fi access points).

Apart from the hardware sensor probes, frameworks also support software and human-based sensing probes.
Such software probes include capturing data from the user’s calendar, application use, emails, and the call log to
capture social activity. The human-based sensing probes include simple prompting of users to input some data
(e.g., label an activity for experience sampling method (ESM)) and gesture input [24]. Although some frameworks
support multiple operating systems (OSs), the number of supported sensor probes varies from operating system
(OS) to OS. For instance, Sensus supports SMS message and light level probes on Android but not on iOS [94].
This is partly due to different hardware setup on the different phones and OSs but also due to iOS implementing
a more stringent security and privacy policy, which restricts access to users’ personal data such as the phone
and SMS logs.

4.1.3 Ecological Momentary Assessments (EMAs) and Surveys. Through the use of surveys, detailed observa-
tions or subjective experiences can be obtained by asking users a list of questions. Input requested from users
can be in various formats: free text, radio button selection, check-boxes, Likert scale, yes/no queries, and quick
responses (a simple button press). ecological momentary assessments (EMAs) involve the repeated collection
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of subjects’ current experiences through the use of surveys in real time, in their natural setting. By prompting
the user in the relevant context at the right time, EMAs help in reducing recall bias and maximizing ecological
validity of the collected subjective data. Half (N = 14) of the 28 frameworks report support for EMAs or surveys.

Commonly reported EMA scheduling approaches are: (i) randomized, (ii) triggered at a fixed point in time,
(iii) triggered by contextual events, and (iv) remotely triggered by a researcher. The selection of an appropriate
EMA scheduling approach is highly use-case specific. Remote scheduling is preferred when a researcher needs
to change the survey content very often. When context is important, an EMA can be triggered based on a sensed
event, e.g, when the user completes 10,000 steps in a day or when the user approaches a specific geo-location.

mCerebrum [35] implements a bipartite-graph-based EMA scheduler supporting the dynamic adaptation of
EMA triggers. It learns from the user’s previous responses and adjusts subsequent scheduling accordingly. Sen-
sus [94], AWARE [24], and iEpi [29] support remote and context-triggered EMA scheduling. AWARE [24] employs
an EMA questionnaire-building schema defined in JSON, whereas iEpi [29] uses XML to define the content and
structure of surveys. Most frameworks do not report on support for multiple survey languages. Only Ohmage [84]
supports a few survey languages but not full internationalization.

4.1.4 Data Storage and Cloud Back-end. Frameworks can store the collected data locally and/or on the cloud.
In the case of cloud storage, different data offloading techniques are used: when and how often data are synced to
remote servers. We found that nearly half (N = 18) of the 28 reviewed frameworks rely on cloud storage. Across
the frameworks the most common data offloading techniques were: (i) at a fixed point in time, (ii) event-based,
and (iii) triggered remotely on demand.

When a fixed point in time for data offloading is chosen, data synchronization with the server takes place
at regular intervals. In case the device or server is unreachable, data to be synchronized are queued locally
for delivery at a later time. Event-based scheduling is a popular data offloading technique in data collection
frameworks that only support low-frequency sensors or surveys. Common examples of events to schedule data
offloading are: (1) when a data buffer size reaches a limit, (2) the network connectivity changes from mobile data
to WiFi, or (3) the phone is put on charge. Triggering data offloading on demand is typically used in frameworks
that involve data sampling across devices. For example, in AWARE [24], the message queue telemetry transport
(MQTT) protocol is used to allow devices to issue commands to other devices for data upload, exchange, and
synchronization.

SQLite, an embeddable relational database management system, is used as the de facto local data storage
for both Android and iOS. However, frameworks that support high-rate sensor data generate large amounts of
data. Therefore, such frameworks employ several custom techniques. For instance, mCerebrum [35] implements
a custom data router for offloading and efficient data sharing across different applications, called “DataKit.”
Similarly, RADAR-base [68] relies on Apache Kafka streams for real-time data processing and cloud storage of
high volumes of incoming data.

4.1.5 Context-aware Sampling. Context-aware sampling in a sensing framework is when data collection is
customized or adapted based on the user’s current activity. Nearly half (N = 12) of the 28 frameworks report
context-aware sampling support to different degrees. Different reasons for using context-aware sampling are:
(i) optimizing phone resource (i.e., CPU, memory, battery) dynamics and achieving adaptability based on de-
mands of the application and (ii) to achieve personalization in data sampling by incorporating user’s preferences.

Healthopia [58] utilizes context-aware sampling to turn off a subset of sensors based on user context to reduce
bandwidth usage and battery consumption (e.g., if the user is not moving then stop measuring the user’s heart
rate and location). mCerebrum [35], iEpi [29], and AWARE [24] use context inferred from sensors to schedule
EMAs. Among the unpublished frameworks, Funf [26], Purple Robot [72], and the Context Sensing SDK [38]
provide support for context-aware sampling. In particular, the Context Sensing SDK includes a context API that
supports several built-in user context types such as physical activity recognition, location, environment, and
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audio classification. It also has a rule-based engine that can be used to create new rules and corresponding event
triggers for optimizing phone resource.

4.1.6 Remote Configuration. Remote configuration enables researchers to remotely manage and modify a
study at runtime, i.e., after it has been started. For instance, researchers can change the configuration of a run-
ning study if they observe that location needs to be sampled more frequently or the timing of an EMA needs
to be changed. Only 3 of the 28 frameworks listed in Table 2 describe support for remote configuration. For
the others, no description is provided in the paper. Remote configuration is most commonly supported for:
(i) changing survey triggers, (ii) adapting survey content, and (iii) changing the sensors’ sampling configuration.
Frameworks such as AWARE [24] and mk -sense [31] provide researchers with a web-based dashboard, which
enables remote configuration. Similarly, iEpi [29] allows changing sensing and survey parameters in a running
study, but does not allow changing contextual triggers for surveys. Amongst unpublished frameworks Purple
Robot [72] and Funf [26] support remote configuration. Funf [26] only supports remotely changing the sensors
data configuration whereas Purple Robot [72] provides a scripting engine allowing for remote configuration of
both surveys and sensor configurations.

4.2 Data Processing and Analysis

Data processing can happen at several levels starting with simple support for data quality assessment, to support

for data analysis, to extracting more high-level bio-markers, behavioral & health features from the data.

4.2.1 Data Quality Assessment. Data quality assessment refers to the ability of a framework to assess whether
or not incoming data are of acceptable quality for both passively collected sensor data and survey data. This
enables warning when data are missing, sensors malfunction or need to be re-calibrated. We found that only
a few (N = 4) of the 28 articles in our review reported on data quality assessment mechanisms. For passively
collected sensor data, they were either used (i) to dynamically adjust depth and complexity of the mobile sensing
process or (ii) to alert the researcher about data discrepancies, such as missing data or data outside of expected
ranges. Only AndWellness [32] discusses quality assessment of survey data.

As an example, mCerebrum [35] verifies whether incoming high-frequency sensor data are of poor quality and
adjusts the depth and complexity by reusing the results from other modules or by choosing an optimal classifier
at runtime to achieve optimal performance. An example of supporting data discrepancy alerts is available in the
iEpi framework [29], which includes a “compliance report generator” tool, including an analysis of how long
each phone was actively collecting data.

4.2.2 Data Analysis. Data analysis tools enable researchers to draw insights from collected data. Depending
on the use case, data processing and analysis can be performed either on the mobile phone or on the web server
and during (online) or after (offline) the study completed. Nearly two-thirds (N = 19) of the 28 frameworks report
on their support for data analysis. The granularity and approach for data analysis and processing differs from
framework to framework.

The majority of articles report support for post-data-collection data processing (offline) on their back-end
servers by providing custom plugins and libraries for data analysis. For instance, Lifestreams [37] is a modular
mHealth data analysis stack for personal data sense-making and provides complex feature extraction such as the
user’s semantic location and physical activity. Similarly, SensingKit [39] describes a plug-in system that allows
developers to write automated data processing scripts for pre-processing the data before extraction. Sensus [94]
provides an analytics library written in R (SensusR). AWARE [24] does not have ready-made plugins for data
processing and analysis, but supports building custom plugins for data processing and analysis. Among the
unpublished frameworks, Bridge [11] implements “Synapse,” a data analysis subsystem that periodically imports
data from the main server for analysis. It creates a separate data analysis environment per individual study to
prevent researchers from accessing potentially sensitive data.
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4.2.3 Bio-markers, Behavioral & Health Features. In recent years, machine learning and deep learning models
have been applied to sensor data to perform real-time behavior feature extraction, activity recognition, and de-
velop bio-markers. mHealth researchers are utilizing such models in applications that require real-time anomaly
detection (e.g., continuous stress assessment [36]) and health interventions (e.g., smoking detection [76]). These
deep learning–based digital bio-marker models can facilitate new value chains when applied to longitudinal
mHealth data, thus help in discovering new behavioral patterns and the personalization of healthcare.

Twelve out of the 28 frameworks support models for bio-markers and health and/or behavior feature extrac-
tion. Some prominent supported bio-marker or health feature models are abnormal heart-rate detection [35, 45,
49, 58, 77], fall detection [77], and activity recognition [37, 45, 51, 92]. Among others, mCerebrum [35] has an
emphasis on supporting reusable bio-markers and provides models for detecting events such as stress, smoking,
and eating. Its architecture enables the creation of study specific bio-marker modules that may build on top of
existing ones.

4.3 Study Management

Study management involves handling (1) participant consent and (2) study setup and monitoring.

4.3.1 Participant Consent. When conducting an mHealth study, obtaining participant consent is essential.
The researcher must ensure that study participants are informed about which data are collected, who can ac-
cess them, and for what purpose they will be used. None of the published frameworks listed in Table 2 provide
support for obtaining participant consent, and consent is typically implemented in a study-specific application
or obtained in a paper-based form. Among the unpublished frameworks, however, three frameworks [11, 70, 71]
provide support for participant consent. Bridge [11] supports defining how consent should be obtained and what
it should be obtained for as part of configuring a study protocol, including information such as signature, the
scope of data sharing (who all can access data) and consent signing and withdrawal dates. If the consent con-
figuration gets updated during the course of a study, the participant is notified. Likewise, both ResearchKit [70]
and ResearchStack [71] provide user interface templates for consent documents with predefined sections such
as an overview of the study, information on how data are gathered, privacy policies, how the collected data will
be used, time commitment, and consent withdrawal information. Custom study-specific consent sections can be
added if needed. Overall, this saves development time.

4.3.2 Study Setup and Monitoring. Nearly one-third (N = 9) of the 28 frameworks listed in Table 2 provide
support for study setup and monitoring through a user interface, typically through a web portal. This includes
support for: (i) study participant recruitment, (ii) creating and scheduling surveys, (iii) visualizing study progress,
and (iv) remote configuration of sensors and survey triggers.

All the frameworks that support study setup and monitoring provide a dashboard for the researchers to vi-
sualize the collected data. Besides this, frameworks such as AWARE [24], Beiwe [85], and Sensus [94] provide
assistance in registering study participants, creating, editing, and deploying surveys. AWARE [24] additionally
supports editing sensor sampling configurations, changing the database, adding co-researchers, and viewing
the devices linked to a study. In addition to providing researchers access to collected data, two frameworks—
Ohmage [84] and Andwellness [32]—also enable study participants to view their data. Ohmage [84] in particular
further allows the participant to change their privacy settings, delete, and export their study data.

5 NON-FUNCTIONAL FEATURES

This section presents the non-functional features of the frameworks and hence addresses the second part of RQ2.
In traditional software engineering, a non-functional requirement (NFR) is defined as “a software requirement
that describes not what the software will do but how the software will do it” [1]. non-functional requirements
(NFRs) are used to evaluate the operation of a system, rather than specifying its functional behavior. For the 28
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published frameworks, we looked for NFR details in the papers. For the unpublished frameworks, we looked at
information on their respective websites, but overall very limited information was available. Please note that in
case no details on an NFR are presented, this does not necessarily mean it is not addressed by the framework, but
simply that we could not find any mention of it in the screened sources. The review focused on four categories of
NFRs, which are most relevant to mobile sensing frameworks: (i) extensibility, (ii) scalability, (iii) security and pri-

vacy, and (iv) license and documentation. An overview of all identified NFRs per framework is provided in Table 5.

5.1 Extensibility

In software engineering, extensibility denotes the ability to add, enhance, or repair existing functionality in a
system or component [19]. Since the number of available built-in sensors in modern smartphones keeps in-
creasing and new wearable sensors emerge continuously, it is important that these can easily be integrated into
existing sensing frameworks. For extensibility, we checked if the framework article describes an APIs for adding
new functionalities, including support for adding new sensing capabilities. More than two-thirds of the articles
(N = 19) state that they support extensibility. It is interesting to note that a total of 10 articles just state support
for extensibility without providing any further details. In the articles describing the extensibility mechanisms,
there were typically two ways to extend the framework: (i) an API for adding new smartphone sensing modali-
ties (such as a light sensor on the phone) and/or data types to be collected or (ii) a plugin mechanisms for adding
support for external sensors (like an electrocardiography (ECG) monitor).

Examples of frameworks supporting the first type of extensibility include AndWellness [32], AWARE [24],
Passive Data Kit [82], Funf [26], and Purple Robot [72], which all support extensibility and modifiability by
providing an interface to add new custom smartphone sensor probes. Extensibility can also be supported on the
back-end of a framework, where extensibility focuses on the ability to support new data types of custom data
sources. For instance, Ohmage [84] implements a backward-compatible API to achieve extensibility. However,
Open mHealth [57] allows adding new custom data schemas and also provides an extension for integration with
external data sources such as HealthKit and data collected from electronic health records (EHR)s.

In the second category, we identified frameworks such as AWARE [24], UbiqLog [69], and HealthOS [48],
which support extension of the framework to collect data from external sensors. ODK Sensors [15] supports
extensibility by providing an interface between external sensors and a smartphone for managing device discov-
ery, data buffers, and communication channels. ODK Sensors also provides an ecosystem of underlying reusable
sensor drivers that enables developers to write minimal sensor-specific code.

5.2 Scalability

In software engineering, scalability is a desirable property for a computing system to have. And while the basic
notion is intuitive, scalability has no generally accepted definition [33]. Therefore, in this review, we examined
how scalability is described in the articles or websites of the included frameworks. Of all the frameworks listed in
Table 5, more than two-thirds (N = 19) of the articles mention support for scalability. However, out of these, only
7 present additional details to back up the claim that the presented framework is scalable. For each framework
that provided details on scalability, we investigated whether support for scalability was (i) argued based on the
underlying technology used or (ii) claimed based on a dedicated scalability evaluation.

In two articles, the authors argue for the scalability of the framework based on a description of the underlying
infrastructure and technology used to implement the framework. Ranjan et al. [68] state that RADAR-base relies
on the Apache Kafka platform [20] as the underlying infrastructure to achieve scalability. However, no scalability
evaluation is reported. In AndWellness [32], the authors state that they rely on the Spring framework for server
scalability, as it provides component replaceability and flexibility.

Some articles report on scalability evaluations. Examples include mCerebrum [35], AWARE [24], and
Ohmage [84]. The article on mCerebrum [35] describes a high-frequency sensor data collection test on the
phone, the results of which indicate that the framework outperforms others, such as GoogleFit [28], AWARE [24],
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Table 5. Non-functional Features

Framework Extensible Scalability Security Privacy Open Docs

AndWellness � � � DENC,SPC �
AWARE � � � DENC,SPC � � �
Beiwe � � � DENC,EXT,SPC � � �
CONSORTS-S �
Dandelion �
Emotion Sense � � �
EUPMS � DENC
HealthOS � � � DENC �
Healthopia �
iEpi � � DENC �
Jigsaw � �
Lifestreams � � � �
mCerebrum � � � DNA � � �
MobiCon �
MobiSens �
mk -sense � � DENC �
Niima � � � DENC,SPC �
QuestionSys �
ODK Sensors � �
Ohmage � � � DNA � � �
Psychlog �
RADAR-base � � � DENC � � �
Sensus � � EXT � � �
SensingKit � � �
StarLog �
TigerAware � � � DENC �
UbiqLog � � � DENC,SPC � �
Zappa � � �
Bridge � � � DENC,SPC,EXT � � �
CareKit � � � �
Context Sensing SDK � � �
Funf � � � DENC � � �
Open mHealth � � � SPC � �
Passive Data Kit � �
Purple Robot � �
ResearchKit � � � �
ResearchStack � � � DENC � �
The frameworks at the bottom of the table with a gray background are unpublished open-source frameworks. Check marks (�)
indicate that the article provides a description of the listed non-functional feature. Open = Open Source, SPC = Secure protocol,
EXT = Rely on external infrastructure for security, DENC = Data encryption, DNA = Details not available (the framework states
that it has support for security, but details of the security mechanisms are not specified).
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and HealthKit [30]. Other articles report on scalability tests on the server-side. For example, the Ohmage [84]
server was load-tested using over a million API calls, and scalability of the AWARE [24] server dashboard was
demonstrated by increasing the number of participants and measuring response time for page load, visualization,
sorting, and searching.

5.3 Security and Privacy

Since sensitive health and behavioral data are collected as part of mHealth studies, support for security and
privacy in sensing frameworks is essential. In this review, we have investigated which techniques the frameworks
use to ensure data security as well as privacy.

5.3.1 Security. Surprisingly, we found that only half (N = 14) of the 28 articles discuss security techniques.
The main security techniques presented are (i) data encryption (DENC) and (ii) data transfer over secure proto-
cols (SPCs).

Data encryption is a security method that allows data encoding that then can be only decoded with the correct
encryption key. A total of 11 articles in this review report using encryption for security, and five out of these
stated using Advanced encryption standard (AES). Advanced Encryption Standard (AES) is encryption specifica-
tion set by United States’ National Institute of Standards and Technology [63] for encryption of electronic data.
AWARE [24], Beiwe [85], and Ohmage [84] are examples of frameworks that use AES. Among the unpublished
frameworks, three frameworks use encryption: Funf [26], Bridge [11], and ResearchStack [71].

All frameworks that provide details on how they securely transfer data to the server (SPC) do so by using
Secure Sockets Layer (SSL). Among unpublished frameworks, two frameworks—mHealth [57] and Bionetworks
[11]—use Secure Sockets Layer (SSL). In addition, there are three frameworks in which the authors state that
they provide secure data collection and offloading, but do not provide any additional details (labeled as “DNA”
in Table 5).

Three frameworks—Sensus [94], Beiwe [85], and Bridge [11]—report that they rely on the security mechanisms
of a cloud provider (e.g., Amazon Web Service (AWS)) for back-end data security (labeled as “EXT” in Table 5).

5.3.2 Privacy. Collecting contextual and physiological data in mHealth sensing involves significant privacy
risks. Therefore, it is relevant for mHealth sensing frameworks to implement privacy-preserving techniques as
part of data collection, processing, and sharing. We found that 17 of the 28 articles discuss privacy-preserving
techniques. The key techniques used are: (i) deleting personally identifiable information, (ii) one-way hashing,
and (iii) storing personal information and sensor data on separate servers.

One-way hashing is a technique that converts a message into a unique message digest in an irreversible way.
It is often used to obfuscate and protect sensitive information. Three frameworks [5, 24, 85] use one-way hashing
to obfuscate personal identifiers (e.g., phone numbers and MAC address). Beiwe [85] uses the standard SHA-256
algorithm for hashing phone numbers, whereas Niima [5] uses a two-stage hashing process in which the first
hashing takes place on device and the second hashing is done on the server using a secret Salted Hash [40]
algorithm. One framework—RADAR-base [68]—keeps sensor data and user information on separate servers to
achieve pseudonymization. mCerebrum [35] introduced a new privacy preservation technique by means of im-
plementing central privacy and access controllers. Its central privacy controller allowed participants to suspend
sensor specific data collection and sharing.

Among the unpublished frameworks, both ResearchKit [70] and ResearchStack [71] provide means to list
privacy policies in the user consent module. However, the implementation details of the specific privacy tech-
nique is left to the individual applications that are built using these frameworks. Two others—Funf [26] and
Bridge [11]—use one-way hashing for anonymization.
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Fig. 4. Initial release and last update time for all frameworks.

5.4 License Model and Documentation

To make sensing frameworks reusable, maintainable, and extendable, detailed and accurate documentation is
necessary. Moreover the software license model is important for developers and researchers to consider when
choosing a framework, since copyright restrictions could limit how the framework can be used and modified. To
obtain information about the license and available documentation, we looked at framework websites and their
code repositories in the case of open-source frameworks.

5.4.1 License Model. Over one-third (N = 12) of the 28 frameworks in this review are open source. Seven of
them are licensed under the Apache License 2.0, three under BSD 2-Clause “simplified,” one under BSD licenses,
and one under GNU Lesser GPL v3.0 (LGPL). All the unpublished frameworks except for Context-Sensing SDK
[38] are open source: five are licensed under the Apache License 2.0., two under BSD License, and one under
GPL v3.0.

5.4.2 Documentation. Since it is difficult to assess whether a framework is sufficiently documented, we only
looked at whether documentation of any kind, be it on an architectural level or API level, is provided. We found
that less than one-third (N = 9) of the 28 frameworks provide some level of documentation. In contrast, all of the
unpublished (mainly commercial) frameworks provide detailed API documentation.

6 MAINTENANCE

The main purpose of researching, designing, and implementing a mHealth framework is to support re-usability
of core components and technology, thereby enabling easier creation of mHealth applications. This kind of re-
usability and cross-application technology requires, however, that the frameworks are updated and maintained
on a regular basis to accommodate changes in the underlying OS and to support new features. This section inves-
tigates the maintenance of the frameworks, i.e., research question 4 (RQ4). We are interested in understanding
how the identified mHealth sensing frameworks have evolved over time and to what degree the frameworks are
being updated and maintained after their initial release.

To identify the period over which frameworks have been maintained, we compare the first and last date at
which information about the framework has been made available, illustrated in Figure 4. Concretely, for the first
date, we used the publication date of the framework’s article or the date of the first release of the software for
non-published frameworks. For the last date, we chose the date of the last commit to the framework’s public
code repository or alternatively the date of the last listed release on the corresponding website. We found that
more than two-thirds (N = 21) of the included frameworks (including the unpublished frameworks) maintained
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their repositories after the initial release. Ten frameworks have been updated in the year 2018 (the time this
review was concluded). AWARE [24], SensingKit [39], Sensus [94], RADAR-base [68], Beiwe [85], Bridge [11],
and mCerebrum [35] are some of the most regularly updated frameworks that were still being maintained in
2018. The past few years (2015–2018) have seen a dramatic increase in the number of released frameworks.
Also notable is that up until 2014 most frameworks were middleware libraries, whereas most recent frameworks
(in or after 2015) are end-to-end mHealth frameworks that include support for sensing, storage, processing,
visualization, and study management.

7 DISCUSSION

This review has shown that, since 2010, dedicated research into mobile and wearable sensing frameworks for
mHealth has resulted in a non-trivial set of sensing technologies. Approximately ten frameworks are maintained
today (see Figure 4) and the more recent ones are far more comprehensive, including sophisticated functional and
non-functional features on both the phone and the server side of the technology (see Tables 2 and 5). In addition
to the early frameworks that were mainly driven by academic researchers there has been a growing interest
in mHealth from industry. Several commercial frameworks, such as HealthKit [30] and GoogleFit [28], have
been introduced to support the creation of mHealth sensing applications in the Apple and Google technology
ecosystems, respectively.

In terms of functional features, several recent frameworks have focused on functionalities such as remote
configuration and study monitoring support (see Table 2), which enable researchers to change data sampling
configuration, survey content, and triggers remotely. Also, given the advancement in machine learning and deep
learning, support for features such as behavioral and health-biomarkers computation is starting to be included
in recent frameworks [35]. Due to limited resources on the smartphone (e.g., computational power, battery, and
network bandwidth), the initial work on feature extraction and data analysis was mostly done offline on servers.
Adding support for high-level feature extraction on smartphones has the potential of enabling the design of
advanced just-in-time interventions in health sensing applications.

The unpublished open-source frameworks seem more popular, gauged by the number of people that starred
their code repositories. This might be due to the fact that these frameworks typically come with good documen-
tation, including tutorials, and are maintained by a professional software development team of a large company.
Amongst the research-based frameworks, AWARE [24], Sensus [94], and Beiwe [85] seem to be the most popular
in terms of people that starred their repositories.

The majority of framework evaluations focused on system resource management and impact on battery life
while sensing, storing, and transferring data over the network. However, the evaluations did not use a common
or standardized way to evaluate performance and efficiency. For example, different versions of smartphones from
different manufactures were used. This complicates comparing efficiency and performance across frameworks.
Nevertheless, there are some recurring findings. Evaluations of frameworks such as StarLog [59], AndWell-
ness [32], SensingKit [39], and Aware [24] show that configuring high sampling frequencies for sensing probes
is associated with draining the battery very rapidly. But, there are ways to mitigate this. An evaluation of mCere-
brum’s micro-batching strategy showed a significant reduction in CPU use while ingesting high-frequency sen-
sor data. Thus, this makes micro-batching a good strategy for applications that require real-time data sharing
and processing. In addition, none of the reviewed frameworks reported on health efficacy of applications built
and deployed using them. They solely report on technical proof-of-concept studies within different health do-
mains. But, it must be noted that such studies are typically reported in separate papers, referring back to the
toolkit/framework papers, which were not included in this review.

7.1 Implications on Healthcare Research

There is mounting evidence that mHealth applications are practical and low-cost means to deliver disease pre-
vention, self-management, diagnostics, and treatment based on commodity hardware. A simple app could give
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anyone, anywhere, the ability to perform diagnostic screening tests and monitor their condition after they re-
ceive an official diagnosis [53]. Moreover, healthcare may become more available and affordable in resource-poor
settings in a way that was previously unimaginable [4, 22]. The reviewed frameworks enable the creation of such
mHealth apps in a manner in which developers and researchers can more easily design, implement, deploy, and
monitor mHealth applications and studies for a growing number of diseases and user groups. As shown in Table 3
and Figure 3, the reviewed frameworks have been utilized for building a diverse range of mHealth applications
for different stakeholders.

However, the review also points to a set of issues in this line of research. First, despite that a major part of
the frameworks were designed for mHealth application development and targeted developers as their primary
stakeholders, we found that such frameworks were actually only used in a limited (1–3) number of mHealth
applications. And, they are rarely used by researchers outside of the group of researchers who implemented the
framework in the first place. Hence, it seems that the overall goal of having application developers adopt reusable
mHealth frameworks has still not been achieved.

Second, from a healthcare perspective, the use of detailed data sampling from mobile and wearable devices
still needs to fit into the overall clinical treatment and care of diseases. Many of the application studies reported
are still early work and basic research, trying to understand the role and utility of mHealth sensing. Much of
the research so far has targeted sensing from the mobile phone—such as accelerometer, movement, and phone
interaction—that reveals information about the patient’s behavior but very little about the patient’s health status.
Very limited work has been addressing general-purpose collection of health-related data such as physiological
signals, bio-chemical data, and medication. A few frameworks—like HealthOS [48]—provide custom adapters to
medical wearable devices, but their adapters are not generic and are limited to a handful of consumer health
devices (i.e., not medical grade). Moreover, due to the voluminous size of data and limited time of researchers,
not all insights that could be obtained from the collected data are found [17, 89]. Thus, there is a need for auto-
matic detection of higher-level biomarkers for these frameworks to be useful in the clinic. Hence, from a health-
care perspective, multi-parametric data collection as well as the recognition of higher-level biomarkers will be
needed.

Third, the frameworks available now are quite mature and seem to be maintained and backed by larger groups
or consortiums of researchers, rather than individuals. This is promising for the use of these frameworks in the
design and development of mHealth applications for clinical use. However, the main focus of current frame-
works is on data collection, which is useful for population screening and disease diagnosis and monitoring.
But, there is little or no support for interventions and delivering treatments. Examples of such treatment com-
ponents could be targeting educational material, medication management including reminders, behavioral or
cognitive therapy, and recommendations for healthy living. As such, the flow of data and information in these
frameworks seems to be “one way,” i.e., flowing from the patient to the clinicians, while little or no information
flows in the other direction. Some of the frameworks are, however, designed to be used in conjunction with
other frameworks, which may support interventions. But for the majority of the frameworks this is not the
case.

Nevertheless, for healthcare research, the use of such data sampling frameworks may open doors for large-
scale data analysis in healthcare. “Big data” and cross-study analysis can help researchers in unearthing new
trends in disease management and treatments at both the individual and population level. Also, through stan-
dardized and exportable study protocols (sampling profile, data analysis tools, survey, and EMAs configurations,
etc.) frameworks could significantly enhance study reproducibility, replicability, and transparency in mHealth
research.

The selection of a framework for research or development purposes should be done with care. We hope this
review can help guide healthcare researchers and/or mHealth application developers in the selection of a frame-
work that suits their needs.
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7.2 Research Gaps and Recommendations for Future Research

This review has shown that several mHealth sensing frameworks exist, some of which are maintained and are
fairly popular in terms of use and offer quite an advanced set of functional and non-functional features. As
such, research into mHealth sensing frameworks seems to have come a long way, and several frameworks are
available to choose from for researchers and application developers. A relevant question is then whether there
are still open research questions to be addressed. Based on our review, we have identified six gaps and thus
opportunities for further research. This section discusses these gaps and provides recommendations for future
mHealth frameworks.

7.2.1 Personalizing Data Collection. Frameworks suffer from poor power management and cloud offloading
strategies [35, 92]. In most frameworks, sampling frequencies, data processing, and data offloading techniques
are either hard-coded or one configuration is provided for all participants. The existing frameworks do not take
individuals’ preferences, mobile hardware, resource availability, and so on, into account. Such non-personalized
data collection results in poor resource management, which can be expected to annoy users of longitudinal
mHealth studies. Even though frameworks such as AWARE [24] and Beiwe [85] support remote re-configuration
of sampling probes after the deployment of a study, this reconfiguration needs to be done manually and cannot
be personalized to individual participants. We argue that resource management and therefore user experience in
mHealth applications can be improved by incorporating adaptive personalization and dynamic re-calibration of
sampling profiles. This could include the use of various code offloading techniques—techniques that dynamically
migrate processor-intensive tasks to cloud surrogates.

7.2.2 Data Standardization. The frameworks described in this review support data collection from a wide
range of sensors. These data, however, are not stored in any standardized format and none of the frameworks
that do sensing support specifying standardized data schemes to use for sampled data. This implies, for example,
that blood glucose measurements collected from the same device but via two different frameworks cannot be
directly compared, as there is no common standard for storing blood glucose (including the context within which
the measurement was collected). Similarly, since patient-generated data do not comply to any clinical standards,
these data are hard to integrate into existing clinical systems, limiting its use [89]. Furthermore, to allow for
reusable higher-order features and bio-markers extraction, and for cross-device and cross-study analysis, it is
essential that all the data points for a specific measure (e.g., heart rate or blood glucose) are represented in a
standardized format, regardless of the framework and/or devices from which the data were collected.

Currently, there are some initiatives to standardize mHealth data. The Health Level 7 (HL7) standardization ini-
tiative has a “Mobile Health” work group, which creates and promotes health information technology standards
and frameworks for mobile health [34]. The Institute of Electrical and Electronics Engineers (IEEE) develops and
maintains the IEEE 11073 standards on “Personal Health Devices’ [61] as well as the P1752 open standard for
Mobile Health Data [62], which is based on the Open mHealth initiative [57]. However, none of the reviewed
frameworks (except Open mHealth of course) supports any of these standards. Therefore, this could be a topic
for the evolution of mHealth frameworks.

7.2.3 Measurable User Privacy Support. Mobile and wearable sensing frameworks provide a novel opportu-
nity for long-term health sensing. However, due to the sensitive nature of health data, such frameworks pose
a risk to users’ privacy, which is important to consider, especially given the recent introduction of the General
Data Protection Regulation (GDPR) in Europe. Even though several frameworks such as mCerebrum [35] and
AWARE [24] have implemented various privacy protection mechanisms (e.g., pseudonymization; central privacy
and access controllers), they are mainly focused on privacy protection as part of data collection. But, when
sharing data across different studies to enable “big data” analysis, additional concerns arise. Data should not be
used for a different purpose than the user has given consent for. Similar to security and encryption standards,
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incorporating privacy compliance standards (e.g., BS 10012:2017 [23]) in mHealth frameworks could help in
achieving measurable user privacy.

7.2.4 Measurable User Feedback. We observed that out of their three target audiences, namely, developer,
researcher, and end-user, frameworks in this review mainly reported on the end-user’s feedback and usability
evaluation. Except for a few (e.g., EUPMS [80]), there was no reporting on feedback from developers and re-
searchers who used these frameworks in various applications. Alongside the technical evaluations, reporting
the measurable feedback from all the stakeholders will help others to identify which framework is suitable for
them.

7.2.5 User Consent Support. When enrolling participants in a research study, user consent needs to be ob-
tained. By giving consent, users give approval to be part of a study and for researchers to collect and process data
for the specified purposes. Traditionally, such consent is given on paper by signing an informed consent docu-
ment after having read a detailed description of the study or the purpose of the application. The introduction of
new regulations such as General Data Protection Regulation (GDPR) [18] are empowering users to have full con-
trol over their data during and after the study is done, and puts forth the need for advanced consent management
and configuration. ResearchKit [70] provides support for showing study information to the user on a phone and
having him or her sign a consent form in a user-friendly manner. However, ResearchKit does not in any way
support additional support for handling this consent during or after a study is done. Except for Bridge [11], all
other frameworks in this review supporting the registration of consent leave further consent handling to the
individual application that has been built using that framework. In addition, none of the frameworks provide
support for handling partial consent or withdrawal of consent.

If user consent is not handled at the framework level, guaranteeing compliance with given consent during
data sharing and processing within a framework may be challenging. A researcher might use data for another
purpose than for which consent was given. Or, consent may expire, be modified, or retracted entirely. Manual
tracking of consent forms and modifications made to them in a longitudinal study is challenging and negligence
might pose privacy and legal risks. Providing support for obtaining and maintaining user consent in mHealth
frameworks can help researchers identify which part of collected data the user has consented to and for which
parts consent was withdrawn or modified. This would help in building more granular access restrictions for data
processing and sharing.

7.2.6 Support for Study Reproducibility. When sensing frameworks are used to build applications for clinical
and biomedical studies, support for study reproducibility becomes important [85]. The frameworks in this re-
view offer limited or no support for study reproducibility. There have been some initiatives in this direction by
Beiwe [85], which stores a configuration file specifying all of the applications settings to reproduce the study,
such as surveys, user prompts, sensor settings, and version of the data analysis tool used. By standardizing data
collection and data analysis, mHealth frameworks can help achieve study reproducibility and thereby encourage
replication studies. For example, they could support exporting study protocols that define the study’s technical
know-how such as configuration and specifications of sensors and devices used, data sampling profile, defining
when data should be collected, which stimuli need to be presented, tasks, interventions, and how user consent
should be obtained for the experiment. The same study protocol could then be used by other researchers who
wish to replicate the study.

7.2.7 Internationalization of Surveys. In software engineering, internationalization refers to tasks and activ-
ities by which a software system can adapt to different languages, cultural, and regional requirements without
programmatic modifications (code) [93]. With the growing availability of smartphones, mHealth studies and in-
terventions are reaching far beyond the English-speaking world. Therefore, it is essential for sensing frameworks
to support various languages, text, and data input formats to reach all potential users. Only one framework
(Ohmage [84]) in this review supports multiple languages for survey questions. However, it still does not support
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full internationalization. Achieving full support for internationalization requires incorporating best practices
such as string externalization, full support for Unicode, standard resource file types, and locale and culture
awareness (e.g., date and time format, calendar differences) into the architecture of the sensing framework.

7.2.8 Gap between Collected mHealth Data and Clinical Knowledge. As discussed earlier, the reviewed frame-
works focus primarily on supporting data collection. However, there is a big gap between collecting mHealth
data and utilizing it according to clinical knowledge, such as incorporating it into workflow, decision-making,
and so on, which has not been addressed in any of the reviewed frameworks. Previous studies have shown that
in clinical settings getting actionable info from collected mHealth data remains a challenge due to limited time
and resources [21, 89]. Therefore, future frameworks should also focus on bridging the gap between collecting
information and obtaining actionable clinical knowledge from it.

7.3 Threats to Validity

There are two potential threats to validity that may affect our findings: the method adopted for selecting articles

and unavailable data during data extraction.

7.3.1 Selecting Articles. As presented in Section 2, our review focuses on frameworks that may be used for
health or behavior sensing. Some relevant articles may omit a discussion of the applicability of the presented
framework in this context, in which case it would not show up in our search results. In addition, many of the data
collection frameworks are published as part of a study. In such cases the main focus of the article is on the study
and not the sensing framework. Thus, judging them solely on the basis of the title, it is likely that frameworks,
which are described as part of a study article, might have been left out.

7.3.2 Unavailable Data. Since many articles do not explicitly report on all available functional and non-
functional features, it is not always possible to assess whether or not a certain framework supports a given
feature. Authors might omit mentioning certain features when they are already present in prior work, since they
want to focus on novel contributions instead. Hence, we can only report on whether an article explicitly describes

a particular feature. Therefore, features in the presented tables that do not include a check mark for a particular
framework indicate the given feature was not discussed in the paper, but does not rule out entirely that it is not
supported.

8 CONCLUSION

Generic sensing frameworks facilitate the development and deployment of mHealth applications and relieve
developers and researchers from worrying about the underlying issues pertaining to smartphone and wearable
sensor data collection, data offloading, processing, analysis, visualization, feature extraction, phone resource
optimization, and study management. As the number of publications over time in this review indicate, research
into the design and implementation of mHealth frameworks has grown in recent years. More recent frameworks
include support for more and more functional and non-functional features. In this systematic literature review
(SLR), we identified a list of 28 published and 9 unpublished open-source mHealth frameworks. Nearly one-third
(N = 11) of the reviewed frameworks are still actively maintained.

We classified the functional features they support in three broad categories: sensing and storage, data process-
ing and analysis, and study management. There are a total of 12 frameworks that support functional features in
all three categories. With regard to non-functional features, our results suggest that there has not been enough
emphasis on non-functional features in mHealth sensing frameworks and a large number of the articles just state
supporting non-functional features without providing additional details such as necessary tradeoffs to make or
a performance evaluation.

Based on this review, we discussed the state-of-the-art in mHealth sensing frameworks and identified new
features that are relevant to explore in future research on such frameworks. We hope this overview of functional
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and non-functional features, health studies in which existing frameworks have been used, how well frameworks
have been maintained, and which license they use can help researchers and developers decide which framework
is suitable for their next mHealth application.
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1 INTRODUCTION
Cardiovascular diseases (CVD) are the most prevailing diseases globally causing 17.9 million deaths
(nearly 31% of all global deaths) in the year 2016 alone [48]. Amongst the CVD, cardiac arrhythmias
are widespread and affect over four million people in the US, costing up to $67.7 billion annually [56].
Cardiac arrhythmias such as Atrial Fibrillation (AF) and Atrial Flutter are the most common causes
of heart failure, hospitalization, thromboembolic events [10, 13] and death. Nearly 30% of patients
with AF are unaware of their diagnosis [18]. Therefore, early diagnosis and treatment of such
arrhythmias is important to provide timely healthcare and prevent life threatening conditions [25].
Moreover, CVD are chronic diseases, and the provision of chronic care in CVD patients does
not reach quality standards in about 50% of cases, which has significant consequences for both
patients and society [43]. To meet the demand for high-quality care based on evidence-based
principles, organizational care models such as the Chronic Care Model (CCM) [60] have been
proposed. Ambulatory technology for continuous CVD monitoring is seen as an essential means
for improving chronic care outcome [21].

1.1 Traditional arrhythmia screen process
AF and other heart rhythm disorders are diagnosed based on ECG analysis. The current practice
of arrhythmias diagnosis employs a 6 or 4-channel Holter monitor1 and records ECG data from
the patients, typically for 24-48 hrs. During this period, the patient is instructed to maintain a
diary for keeping track of any symptoms suspected to be related to arrhythmia (e.g., palpitation,
dizziness, chest pain). Figure 1 shows the typical workflow of the traditional home-based ECG
Holter monitoring. When the recording is complete, the patient-reported diary and ECG recordings
from the Holter monitor are examined by a trained Holter nurse or a cardiologist. This method
of Holter monitoring is subjected to many limitations. For instance, when arrhythmias are often
sporadic, it may not be easy to detect them in just 24-48 hours of Holter monitoring. Long-term
ambulatory ECG under the free-living condition is limited by the Holter device’s battery life and the
need for turn-over of the devices to examine other patients. Even with seven-day Holter monitoring,
about 30 percent of episodes are missed [32]. Implanted pacemakers provide an alternative way
of collecting long term ECG for arrhythmia analysis, but they are invasive. Similarly, implantable
loop-recorders can also sense arrhythmias for very prolonged periods (years). However, compared
to continuous Holter monitoring, their capacity to effectively detect arrhythmia is limited due to
their dependence on their algorithm and limited memory capacity [19, 26, 59]. Recent advances in
wearable and mobile health (mHealth) technologies, however, have made it possible to collect long
term ECG in a non-invasive way, and several studies [22, 44] have shown that they are also very
cost-effective for arrhythmia diagnosis and management.

1.2 Challenges in ambulatory ECG monitoring
Although longitudinal ambulatory ECG monitoring under natural settings using wired Holter
monitors are useful for improving arrhythmia screening, it has a set of challenges.

1.2.1 Arrhythmia misinterpretation due to the lack of contextual information. When recording long-
term ECG under free-living conditions, many motion artifacts and anomalies are added to the ECG
signal. These artifacts mimic arrhythmias [42], which impacts both manual and computer-aided
automated arrhythmia diagnostic accuracy, resulting in more false positive and false negative
detections. A recent smartwatch-based arrhythmia detection study conducted by Dörr et al. [15]

1ECG monitors for ambulatory use is often called a ‘Holter’ monitor in general. This name comes from the Holter Research
Laboratory where experimental physicists Norman J. Holter and Bill Glasscock started working on radio telemetry in 1949.
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ECG

Patient diary
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Cardiologist Holter nurse
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Fig. 1. Workflow of the traditional outpatient ECG Holter monitoring during arrhythmia screening. The
patient wears a four or six-lead wired ECG monitor for 24 to 72 hours and fills out a diary with the symptoms
experienced during this period. When the patient returns to the outpatient clinic, the ECG data is transferred
(using a USB stick) to a large desktop computer where a Holter nurse or cardiologist analyzes it. During the
ECG analysis, the Holter nurse and the cardiologist use the patient diary to understand the ECG recording
in comparison to all reported symptoms.

reported that factors such as movement artifacts and poor signal quality adversely affected the
diagnostic performance of arrhythmia detection algorithms when applied to ambulatory ECG.

Moreover, the lack of knowledge about the context in which the ECG was recorded can lead to
misinterpretation and misclassification of heart arrhythmias [2, 11]. Dinakarrao et al. [14] recently
reviewed the trends and techniques of computer-aided arrhythmia diagnosis and highlighted that
ECG analysis independent of the patients’ physical condition and context (such as activities, place,
food intake) could induce misinterpretation and misclassification of arrhythmias, which is likely to
multiply manifold when dealing with long term ECG recordings from the free-living condition,
due to a number of confounding artifacts.

1.2.2 Lack of user engagement in longitudinal ECG collection. In longitudinal home-based ECG
monitoring for arrhythmia screening, patients need to be active participants. However, previous
research have shown that sustained patient engagement is a major barrier in collecting quality
ambulatory ECG [51]. In addition, the use of traditional wired Holter monitors for longitudinal
ECG collection under free-living conditions is very inefficient as they are bulky in size [31] and do
not provide feedback for patient engagement during the process, and hence remains a ‘black box’
to the patient.

1.2.3 Poor signal quality. In long-term ambulatory ECG collection, it is quite common that elec-
trodes become non-adhesive over time resulting in poor ECG signals. While some Holter monitors
provide alarms to the patient on poor signal quality, patients are not always able to identify and
take corrective measures to fix or change the electrodes, which results in noisy or unusable ECG
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data. Additionally, the motion artifacts during various activities under free-living conditions affects
the signal quality [49].

1.2.4 Recall bias on patient’s self-reported symptoms and events. The quality, usefulness, and
reliability of patient-generated data without a full understanding of the patient’s context have
been a major concern in clinical settings [61]. As shown in Figure 1, during ambulatory Holter
monitoring, patients are asked to keep a diary of any cardio-related symptoms or events (e.g.,
dizziness, palpation, shortness of breathing). The diary is typically paper-based. The cardiologists
use the information in this diary during ECG analysis by mapping symptoms noted in the diary
with the ECG recording, in order to find any occurrence of arrhythmias. This paper-based diary
suffers from recall bias as patients do not always carry it with them and have to rely on their
memory when filling in the diary later. Moreover, the timing noted in the diary is often wrong
or very imprecise. This lack of synchronization between the timestamp of the patient-reported
symptoms with the ECG signal’s timestamp makes it difficult for the cardiologist or nurse to map
the symptoms to the corresponding ECG during analysis. This recall bias on patient-reported
symptoms gets multiplied manifold when collecting long term ECG in free-living conditions.

1.3 Context-aware ECG monitoring under free-living conditions
To address the above-mentioned challenges in longitudinal arrhythmia screening, this paper
presents the design, implementation, and usability and feasibility evaluation of mCardia, which is a
context-aware ECG collection system designed to be used under free-living conditions. In contrast
to conventional ECG monitoring, mCardia provides means to collect contextual information such
as activities, sleep quantity and quality, body position (sleeping left/right/supine), user-provided
abnormal symptoms and events (e.g., dizziness, palpitation) and their duration, food intake, and
maps them with the raw ECG recordings (see Figure 2). This contextual information can help
cardiologists reducing misinterpretation and misclassification of events due to many confounding
artifacts when assessing long-term ECG data for arrhythmia screening. In addition, these contextual
features associated with the raw ECG data can be utilized as input to machine learning algorithms
for reducing the false alarm in automatic arrhythmia analysis of ambulatory ECG. In addition,
mCardia can also help in improving doctor and patient communication in a chronic care model.

The contribution of this work is in (1) identifying relevant contextual data that can help in improv-
ing arrhythmia diagnosis, (2) implementation of mCardia system based on a device-independent
plugin-based software architecture which makes it easy to integrate with other ECG devices, and (3)
demonstrating the usability and feasibility of such a system in longitudinal arrhythmia screening
via field deployment and two case studies.

The remainder of this paper consists of 8 sections. Section 2 describes related work. Section 3
outlines the design process of the proposed system and section 4 describes the mCardia system’s
architecture and implementation. Sections 5 and 6 describe the usability and clinical feasibility
study and its results. Section 7 discusses the obtained results and section 8 lists the limitations.
Thereafter, section 9 concludes the paper.

2 RELATEDWORK
The long term in situ ECGmonitoring is an area that is rapidly growing and very promising for early
diagnosis and follow-up of Cardiovascular diseases. In particular, ECG monitoring for arrhythmia
detection has received a great deal of attention with a plethora of remote ECG monitoring devices
such as patches, wired and wireless Holters, and event recorders [53]. Event recorders are the
devices that record an ECG after or during an arrhythmia event. They record ECG for a short
duration (30 sec to 1 min ) and transmit it to a clinician or a heart monitoring center. These events are
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Fig. 2. Schematic diagram of mCardia. The ECG device collects raw ECG in combination with a set of other
biomedical signals (HR, HRV, etc.). Contextual data is collected from the phone. All data is transmitted from
the phone to a cloud-based data management system.

either marked by patients or, in some cases, by the recorder’s auto-activation algorithm. Compared
to the event recorders, ‘patch monitors’ and ‘Holter Monitors’ provide ECG collection for a longer
duration (2-7 days). They operate in both modes: (1) real-time transmission, (2) store data for later
analysis. Patches are more comfortable than Holters and mostly wireless [53]. However, most of the
above-mentioned ECG collection systems only collect ECG and do not capture the user’s context
in which the ECG was collected.

2.1 Contextualized Mobile ECG
Some of the earliest work on contextualized mobile ECGwas done by Shirazi et al. [52] in CardioViz,
where they showed the ECG signal together with photos and notes overlaid on a map. The core
idea of the system was to use a phone camera for photography and an external GPS sensor,
that can hint and remind users about the place and location related to a specific period in ECG.
Similarly, Belgacem and Boumerdassi [9] proposed a mobile ECG monitoring system with the
patient location. The contextual information collected in these two systems was limited to GPS
location and photography. Moreover, neither of these systems were evaluated for their usability
and feasibility in a clinical setting.

Forkan et al. [16] proposed context-aware cardiac monitoring systems for reducing false alerts by
utilizing the context-awareness of the collected ECG data. In their other work [17] they developed a
context-aware system for monitoring elder cardiac patients in the home environment and integrated
it with social networking services for distant help and tracking, by shared the contextual health
situation with friends, family, and doctors. Their focus was on expanding the elderly patient’s social
linkage and not on the effective use of contextual data for improving arrhythmia diagnosis itself.

Spadini et al. [54] proposed the iMote2-based context-aware ECG monitoring system, which,
along with ECG, also collects accelerometer and environmental data such as temperature, humidity,
and light intensity. Although this system collected some passive context from sensors, it does not
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take subjective, or user’s self-described context/symptoms into consideration. Contrary to this, the
context-aware ECG monitoring system proposed by Li et al. [39] mainly focused on active context
collection, which was also just limited to activity recognition. Upon detecting any change in the
bio-signal recording system, it would prompt interface to the user, asking them to enter the activity
they are performing. Similarly, Miao et al. [46] built a wearable Context-Aware ECG Monitoring
by utilized built-in smartphone sensors for physical activity recognition. They demonstrated that
physical activity recognition could help improve the diagnosis accuracy of heart arrhythmias and
identify the most frequent irregular ECG patterns in various activities. In line with the finding from
the Miao et al. [46]’s work, mCardia is also designed to utilize the built-in kinematic sensors of
smartphone for collecting user context. However, compared to their work where context collection
was limited to physical activity recognition,mCardia also collects user reported (subjective) context,
which is very essential when analyzing long term ECG for arrhythmia detection. Furthermore,
they did not evaluate the usability of the proposed system under free-living conditions, and the
feedback provided to the user during the data collection was also limited.

2.2 Commercial patches and short term ECG measurements apps
In addition, there are commercial patches such as Zio Patch [29], WebCardio [40] which are designed
for short term (1-2 days) to long term (over 14 days) ECG collection. However, they also do not
collect contextual information, and patients are asked to maintain a symptoms/events diary and
send it to the doctor together with the device after the screening period.

In contrast to mCardia which focuses on longitudinal continuous ECG collection, in recent years
there has been may mobile ECG /PPG measurement apps and devices such as AliveCor [1], Apple
watch [28], CardiioRhythm [12], and Zenicor-ECG [55] are being utilized for short term (30 sec – 1
min) ECG recording for arrhythmia screening. In this type of ECG measurement, patients usually
take short ECG recording several times a day or when they feel any unusual symptoms and share
it with the doctor. Nevertheless, in many cases, continuous long-term monitoring is desirable as
short term sporadic ECG might miss asymptomatic arrhythmias [20].

3 RESEARCH METHODS
The design of the mCardia system followed a User-centered Design (UCD) approach [23] and
applied the patient-clinician-designer (PCD) framework [41]. This research method seeks to find
a good design compromise by considering different, and sometimes conflicting, concerns from
the perspective of three stakeholder groups; the patient, the clinician, and the designer. The PCD
framework provides a structured process for mediating co-design activities to find appropriate
design solutions. In total, the design activities spanned 16 months (April 2018 to July 2019) and
involved 14 participants; 6 patients, 4 clinicians (3 cardiologists (MD) and 1 nurse), and 4 designers.
The entire design process involved clinicians affiliated with a department of cardiology at a

high-volume Danish University Hospital, in Copenhagen. Patients were also recruited from this
department. Figure 3 illustrates the timeline of the design process and its main activities, which
involved identifying the context of use, specifying requirements, and two iterations of design and
evaluation.

3.1 Identify the context of use
In this phase, the design involved a group of clinicians including a cardiologist, a nurse, and a
medical intern in the department of cardiology, and a group of three patients.

To identify the clinicians’ needs and context of use of the system, we conducted several design
meetings and workshops focusing on designing three main parts of the system: (a) What data
to collect, including cardiovascular data (e.g., ECG and Heart Rate (HR)), contextual data (e.g.,
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Fig. 3. User-centered Design (UCD) process timeline. SR = Specify Requirements

physical activity and step count), self-reported symptoms (e.g., feeling dizzy or experiencing racing
heartbeats), and self-reported lifestyle data (e.g., information on sleep and eating). (b) The user
experience, including creating the User Experience (UX) design for how to use and mount the ECG
device, how to pair it with the phone, how to input data on the phone, how data is visualized, and
how to navigate between different parts of the app. (c) Using the data in clinical practice, including
understanding how the contextual and self-reported data can improve arrhythmia screening and
diagnosis and how data can be mapped and visualized. Meeting minutes were noted and circulated
to the participants from each meetings.
In parallel to the design workshops, we conducted an observational field study of the current

Holter monitoring process (Figure 1) in the hospital’s outpatient clinic. This study focused on
observing and understanding the current process of preparing and setting up a patient for Holter
monitoring, including how the device was introduced and mounted on patients, as well as getting
the device and data back from the patient. The study also observed the process of analyzing the
ECG data and the paper-based diaries collected from the patients, and how they were analyzed
in the current software systems. Detailed notes were taken throughout this observational study.
Pictures were taken and the audio was recorded while the nurse analyzed the ECG data following
a think-aloud protocol.

To understand the patients’ needs and context of use of the system, we involved and interviewed
three patients (P1: M/78, P2: F/73, P3: F/25), who had been subject to traditional Holter monitoring.
The patients were involved in the study outside the cardiology department, when they finished their
Holter monitoring, and returned to the outpatient clinic. Open-ended interviews were conducted
that focused on their experience using the traditional Holter monitoring setup. Notes were taken
during the interviews.

3.2 Requirements Specification
Based on the first phase of the project, a comprehensive list of requirements were collected and
documented in a Requirement Analysis Document (RAD) [36]. In summary, these requirements
are:
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• User engagement in data collection. In terms of the user experience, the primary concern
of both patients and clinicians was the collection and mapping of self-reported symptoms
and activities. Traditional Holter monitoring typically involves collection of self-reported
symptoms and activities on paper-based diaries filled in by the patient. Later the clinicians
need to map this to the ECG recordings. Clinicians stated that this process was cumbersome
and the data was not valid, since the paper diaries suffered frommany flaws including missing
data, incomplete data, and recall bias. All the patients agreed that it would be much easier for
them to record the symptoms and activities in a smartphone app. For example, P1 only entered
activities such as cycling, running etc. at the end of day and often forgot this, and P2 did
not record anything in the paper diary. P3 explained that she took notes on her smartphone
and then had to manually add this to the paper diary at the end of the day. Patients also
reported that it was difficult to push the event marker button on the Holter device, since
it was hard to locate underneath clothes. Therefore, the requirement was to provide better
methods for collecting self-reported symptoms and activities, and automatically map these
with the timeline of the ECG recording.

• Collect contextual information relevant for arrhythmia screening. Clinicians emphasized the
value of contextual information such as HR, Heart Rate Variability (HRV), sleep, step counts,
Metabolic (MET) level, self-reported symptoms, symptom duration, and patients’ activity
during the symptom in order to better interpret the ECG data. Patients were willing to
provide these information as long as they are informed about what data is being collected
and how it is used for the diagnosis and treatment purposes. Therefore, the requirement was
to collect a wide set of contextual information about the patient’s conditions, activities and
where-abouts, by implementing ecologically momentary assessment (EMA) approach as well
as by collecting data automatically from the sensors on the ECG device and the smartphone.

• System feedback. The clinicians opposed the idea of providing visual feedback on physiologi-
cal data to the patient. They argued that the feedback might cause unnecessary concerns and
overwhelm the clinicians with calls from worried patients. Furthermore, clinicians asserted
that providing visual feedback of the cardiovascular data to the patients might not be mean-
ingful due to the complex nature of the data, which patients might not understand. On the
other side, all the patients were quite enthusiastic about being able to see their own ECG
data and welcomed any feedback that the system can provide about their heart condition.
P1 said that he would be interested in seeing what the data looks like. He would also like
to get feedback from the app, but he would see the cardiologist for a diagnosis (if any). P2
argued that she would like to get some feedback, but that she would call the clinician if she
suspected something to be wrong. P3, who had an anxiety disorder, argued that the feedback
from the system could be helpful, especially for the patients with anxiety. She argued that;
“it is better to know if your heart is normal than not knowing anything”. Using the PCD
approach, we found a compromise between these conflicting requirements and came up with
a design requirement that the system should not provide any system-generated feedback that
might worry the patient (such as automatic detection of AF), and at the same time, provide
an overall visualization of selected data items.

3.3 System Design
Based on the requirement specifications, a Minimum Viable Product (MVP) focusing on three main
features was outlined: (i) CVD data collection from a wearable ECG device, (ii) visualization of
the data in the app, and (iii) collection of symptoms as reported by the patients. For the MVP, the
Movisens ‘EcgMove4’ ECG device was chosen due to its availability, its data collection features, its
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Fig. 4. The mCardia User Interface (UI) flowchart, including the user authentication and onboarding process,
before the home screen (see Fig. 5) is shown.

connectivity, and its open application programmer interface (API). The EcgMove4 records ECG, HR,
HRV, body position, step counts, and MET level, and allows patients to mark an event by double-
tapping the device. The device can send data to a smartphone using Bluetooth low energy (BTLE).
The system was designed and implemented during two major iterations.

3.3.1 Iteration 1. Initially, the overall user flow in the app was designed (Figure 4) with a set of
mock-up designs for each screen. The first design iteration focused on the ‘Home’ and ‘Events’
screens in the app. Figure 5 shows the ‘Home’ screen. This is where all data is visualized and
where the patient can get an overview. The overall design rationale of this screen is to provide
an overview of relevant CVD physiological parameters, associated context information, and self-
reported ‘events’ on a daily basis. This 24 hours overview is designed to be simple, aesthetically
pleasing and informative. Therefore, it only shows selected data items that are most relevant for
the patients to follow, namely; HR, HRV, sleep, active time, step counts, MET levels, and events.
Other contextual and physiological data that is collected (e.g., raw ECG and accelerometer data,
food-intake, body position, etc.) is not visualized.

An event can be reported in the system by pressing the plus (+) button or by double-tapping the
ECG device. Event details are reported via the ‘Event Details’ screen (Figure 6a), which allow the
patient to self-report symptoms, symptom duration, activity while the symptoms occurred, and a
free-text note. The ‘Events’ screen (Figure 6b) lists the events reported by the patient, including
both those entered using the plus button and the ones originating from a double-tap on the device.
Events reported by a double-tap on the device is listed as ‘Missing symptoms’, and the user can
select this, and fill in the details on the details screen.
The initial prototype of the app was evaluated by the clinicians. Semi-structured interviews

were used to assess the key aspects regarding relevance of the data collection and visualization.
Clinicians liked the fact that the app does not provide any system generated feedback and agreed
that the data visualized in the app is informative and that patients might be able to understand
them. The feedback from the clinicians helped improve the overall design of the system, including,
for example, how event details should be specified by the patient and the data visualization could be
improved. The evaluation also revealed that some data were missing. For example, the daily intake
of meals and beverages can impact hearth rhythms. All comments and feedback were analyzed and
consolidated during the next design iteration.
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Fig. 5. The UI design of the mCardia home screen (final design). The main UI element is the ‘wheel’ which
shows the detailed recordings of HR, HRV, and MET level in a 24-hour clock.

3.3.2 Iteration 2. Based on the feedback from the first iteration, an additional screen named ‘Daily
Info’ (Figure 6c) was added. This page collects self-reported data on stress level, sleep quality, and
dietary details like the timing and size of breakfast, lunch, and dinner. Finally, a set of introductory
screens were added, which provide information to the patient on the first time the app is installed
and used (see Figure 4). These screens include; (i) a set of informed consent screens, where the
patient is informed about the purpose of the app and the study and can sign the consent form; (ii) a
screen for collection of demographic data; (iii) a screen where the user grants permission to collect
data from the phone (e.g., location data); (iv) a screen providing instruction for use; and (v) a screen
instructing the patient on how to mount the ECG device on their chest and pair it with the phone.
Then the system was evaluated by three patients (P4: M/55; P5: F/60; P6: M/70) who used it for

24–72 hours on their own. Each patient was interviewed after using the system. The overall design
and core features were well received. Specifically, patients stated that the visualization of the data
on the app was helpful to see if the system was working. Patients argued that the system and
continuous visualization increased their awareness of their health. For example, P5 said that the
‘spikes’ (HR and HRV) on the app was more interesting and informative than the heart rate data
displayed in the Fitbit tracker they used. When asked how the visualization was informative to
them, they said that the mCardia visualization provided them with an easy-to-understand, 24-hour
visualization of when their HR/HRV was in or out of the range. The patients also provided input
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(a) Event details (b) List of events (c) Daily Info

Fig. 6. The UI design of the mCardia mobile app (final design).

for improvements of the UI design of the app. For example, they wanted to be able to navigate back
in time and see data from previous days, and they had suggestions for improving the legends. All
these issues were incorporated into the final UI design as shown in Figure 5 and 6.

4 MCARDIA SYSTEM IMPLEMENTATION
Fig. 7 shows the overall software architecture of the mCardia mobile app, which runs on the
patient’s smartphone and collects passive and active contextual data. The mCardia app consists of
a set of dedicated UI screens (marked red in Fig. 7), which implement the flow in Fig. 4 and the UI
design in Fig. 5 and 6. mCardia is build using two frameworks; the CARP Mobile Sensing (CAMS)
framework [6, 7] and the Research Package framework [27], which in turn consist of a number of
sub-components (all marked in green in Fig. 7). CAMS is a cross platform and extensible framework
for implementing mobile sensing apps and comes with a long list of options for data collection,
data management, data anonymization, power (battery) optimization, and data upload. All data
collection and data management in mCardia are handled by CAMS. The Research Package handles
the informed consent flow, displays information about the study to the user, and asks for a signature.

The data sampling is configured as a ‘Study’ script in CAMS&handed over to the StudyController,
which is then responsible for collecting and transforming the data according to the study specifi-
cation. In mCardia, the data is stored in the CACHET Research Platform (CARP), a cloud-based
infrastructure for managing and analysing mHealth data. The CARPDataManager is responsible for
uploading data to CARP.
A set of sampling packages are registered with CAMS’s study script, which are responsible for

handling the data sampling. For example, all the contextual data collection (location, activity, and
weather – see Table 1) is done via the ContextSampling Package. Similarly, step counts from
the pedometer sensor in the smartphone are collected via the SensorSampling Package. Each
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Fig. 7. Architecture diagram ofmCardia app (red components) and its use of the CARPMobile Sensing (CAMS)
framework (green components) and Flutter plugins (blue components).

sampling package encapsulated access to the operating system (OS) sensors and typically uses one
or more Flutter plugins to access the OS level sensors.

Likewise, the integration of the ECG Holter (Movisens EcgMove4) in mCardia was performed by
implementation of a MovisensSampling Package [34], which usage a Movisens Flutter plugin [35]
to access the native Movisens API via BTLE (all marked purple in Fig. 7). However, due to the
extensible plugin architecture of CAMS, any new ECG Holters can be used as a plug-and-play by
simply registering its sampling package with CAMS, without changing anything in the app itself.

4.1 ECG Sensor Data Management and Synchronization
As shown in Fig. 7, the ECG Holter’s (Movisens in this prototype) Flutter plugin connects to it’s
native Android/iOS API over BTLE. It is capable of recording continuous ambulatory ECG with
adhesive electrodes or a dry electrode textile chest belt, hence avoiding the need for cables. In
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combination with the ECG sensor, the Holter also has on-board 3D accelerometer, gyroscope,
barometric air pressure, and temperature sensors. Table 1 lists all the data types provided by the
sensors, along with their sampling frequencies.
The Movisens Holter supports the ‘live’ and ‘live + buffed’ modes to communicate with these

on-board sensors. In ‘live’ mode, the sensor signal can be activated via GATT notification, and if a
sensor is not connected to a receiving device, then data is discarded. Therefore, this mode is not
suitable for longitudinal data collection, where device disconnection is a very common scenario.
For this reason, mCardia utilizes the ‘live + buffer’ mode in which sensors’ signals are activated
via GATT indication. As long as mCardia app remains connected, the device transmits data, and
when disconnected, the data is buffered. It has a maximum buffering capacity of one day. On
re-connection, the device sends the buffered data sequentially until all data is transmitted (or the
connection is terminated).

The Movisens Holter records a one-lead 12-bit resolution ECG at a sampling frequency of 1024
Hz. The other sensors, like the 3D accelerometer and gyroscope sensors, are sampled at 64 Hz.
In ‘live’ mode, the delay between measurement and the transmission of heart rate, heart rate
variability, step counts, body position, and metabolic levels over BTLE is 70, 94, 94, 94, and 94
seconds respectively. Due to the high resolution and sampling frequency, the raw ECG recordings
are not transmitted via BTLE for power saving reason. By default, all the data is also stored in
Movisens Holter’s 4GB internal memory. It has a capacity of holding of 14 days of raw ECG data.
This ECG data is extracted manually by connecting the device to a PC via USB and then uploaded
to the CARP cloud server, where the ECG and the other contextual data (collected via smartphone)
are synchronized.

4.2 Data Visualization and User Information
mCardia visualizes data in real time as per the sampling frequencies in Table 1. Data visualization UI
elements listen to the CAMS StudyController event stream, which broadcasts all data collected
in real time. Data is not stored locally but uploaded directly to CARP. If the user wants to navigate
back in time, data for a day is fetched from CARP and visualized. Sedentary behavior and active
times are calculated based on the MET level data from the Holter device. Sleep is calculated once
per day based on body position, heart rate, and other sensor data from the phone.

When the app is installed and used for the first time, it provides GDPR-compliant information to
the user and shows a consent form that can be signed on the smartphone display, which is then
stored in CARP. Upon installation, it also asks for the patients’ demographic information, including
gender, age, height, weight, and sensor location. The Movisens Holter uses this information for
personalizing the computation of MET level, energy expenditure, etc. Since mCardia is designed to
be used in an ambulatory setting (e.g., at home) for longitudinal data collection, the patient needs
to understand how to set up and take care of the system. For this purpose, mCardia includes an
elaborate tutorial that explains; (i) how to place the sensor and electrodes properly, (ii) how to
clean the skin before placing the electrodes, and (iii) how to register an event by double-taping the
sensor and annotate event in the app.

5 FEASIBILITY STUDY OF MCARDIA
Klasnja et al. [33] recommended that in the early phase of design or evaluation of novel health
technologies “a deep understanding of the how and why of the system use by its target users should
be a central goal for evaluations of systems”. Therefore, adhering to the best practices in health
technology design research, a single-arm feasibility study of mCardia was carried out to obtain
a comprehensive understanding of its usability and feasibility under free-living conditions. We
applied the CACHET Unified Methodology for Assessment of Clinical Feasibility (CUMACF) [4, 8]
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Parameters Type Source Sampling rate

ECG S EcgMove4 1024 Hz
HR S EcgMove4 1/60Hz
HRV S EcgMove4 1/60Hz
MET Level S EcgMove4 1/60Hz
Acceleration S EcgMove4 64Hz
Rotation rate S EcgMove4 64Hz
Body position S EcgMove4 1/60Hz
Activity S Phone EB
Steps S EcgMove4 & Phone 1/60Hz & EB
Events PR EcgMove4 & Phone EB
Weather S Phone 4/day
Location S Phone EB
Sleep PR & S Phone 1/Day
Noise level S Phone 1/120 Hz
Dietary PR Phone 1/Day

Table 1. Data features collected in mCardia with source and sampling rate. S: Sensed. PR: Patient-reported.
EB: Event-based. Dietary includes food timings and type (light, moderate or heavy), sleep quality, and self
perceived stress levels

method, which is an adoption from the Post Study System Usability Questionnaire (PSSUQ) [37]
scale, Behavior Change Wheel Methodology [47], and Unified Theory of Acceptance and Use of
Technology (UTAUT) [58] for assessing the user’s intention for future acceptance of the technology.
For a more comprehensive understanding, this was followed by the post-study semi-structured
interviews. All the CUMACF [4] questions used in this study are available in the supplement.
Specifically, the following three aspects of mCardia system were investigated:

• Usability evaluation which includes perceived user engagement, usefulness, and usability of
mCardia in longitudinal ECG data collection.

• Technical robustness and feasibility of mCardia.
• Clinical usefulness of contextual data in the arrhythmia screening process.

5.1 Recruitment
Participants were recruited fromDenmark and India. In Denmark, ethical approval for the study was
obtained from the Danish research ethics committee (Journal-nr.: H-19071015). In India, approval
was obtained from the institutional ethical committee (IRB) of our collaborator institute Mahatma
Gandhi University of Medical Sciences & Technology (MGUMST), Jaipur.
In India, participants were recruited during their outpatient clinic visit at MGUMST’s heart ar-

rhythmia clinic. Likewise, in Denmark, participants were recruited by invitation and announcement
to participate in the study outside the outpatient clinic, making it clear that observations in the
study would be used for technical development, not for their clinical assessment or treatment. The
study participant received a copy of the Q&A document describing the purpose of the study and
the working of mCardia system. Inclusion criteria were; (i) previously undiagnosed individuals
interested in heart arrhythmia screening; (ii) individuals who are already diagnosed with AF but
are interested in tracking AF symptoms; (iii) comfortable in using smartphone apps and wearables
or have a caretaker or family member who can help them in using mCardia; (iv) willing to use
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mCardia for a minimum of two weeks. We used a rolling recruitment strategy for four months. A
total of 33 participants were interested and met the inclusion criteria. All the participants signed
the informed consent in the mCardia app.

5.2 Procedures
The studywas divided into three phases; an orientationmeeting, the ambulatory use ofmCardia, and
an end meeting. At the orientation meeting, a kit was provided to the study participant, containing
a single-channel Movisens ECG device, a phone (if they needed), charging cables, and a user manual
explaining how mCardia and the Movisens ECG device should be used. Participants were asked to
sign a consent form in the mCardia app and provide some details regarding demography, medical
history related to heart diseases, medication, and previous ECG monitoring experience. Besides,
they were instructed on how to use the app and take care of the ECG device (charging, putting
on, and taking off electrodes). During the study, participants were asked to continuously wear
the ECG device for two weeks (or longer if they wanted to) and actively use the mCardia app for
reporting and annotating any symptoms. They were also instructed to fill in the self-reports on food
consumption, self-perceived stress, and sleep quality in themCardia app on a daily basis. At the end
of the study period, participants were asked to answer the CUMACF [4] questionnaire to evaluate
the usefulness and usability of mCardia. Based on the participant’s response to these questioners,
we did a semi-structured qualitative interview for in-depth understanding of the experience in
using mCardia.

No of participants 24
Sex – Female / Male 8 / 16
Age – Mean (SD) 58.79 (10.11)
Prior Holter experience 10
Assisted by caregivers 9

Table 2. Participants demographics.

6 RESULTS
Of 33 recruited participants, nine dropped out of the study and did not finish the minimum 2-
week study period. The dropout reasons included; sudden deterioration of their health causing
hospitalization (𝑁 = 2), skin allergy/irritability (𝑁 = 4) caused by the wet ECG electrode, and
travel constraint (𝑁 = 3). Thus, we present the usability and technical feasibility of mCardia based
on the data collected from 24 participants (8 females, 16 males, the average age of M = 58.79, SD
= 10.11) over two weeks. Except for one participant (who used mCardia for over a month), all
participants contributed equally (2 weeks) to the quantitative and qualitative data. All participants
or their caretakers in this study reported owning a smartphone. However, we provided an Android
phone to four participants as the mCardia was not compatible with their phone’s older Android
version. Total ten (𝑁 = 10), participants had previous experience of short-term (1-2 days) ECG
screening using a traditional wired Holter monitor at home or in a hospital. In addition, 9 out of 24
participants were assisted by a family member or caretaker at home during the two week study
period.

6.1 User Experience
6.1.1 Perceived Usefulness and Usability. Figure 8 shows the results of the CUMACF questions for
perceived usefulness and usability. Overall 96% of the study participants responded very positively
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Fig. 8. Perceived usefulness and usability of mCardia. The list of CUMACF [4] questionnaire (Q1–Q19) is
provided in the appendix.

about the design and usability of mCardia (Q1). They found the app to be unobtrusive and non-
interfering in their day-to-day tasks. Nearly 95% of the participants reported that keeping track of
daily activity and unusual symptoms can help them understand their symptoms and health better
(Q5). Besides 78% found that mCardia could help increase the quality of communication with the
doctor (Q3) and reduce recall bias (Q4) in home-based monitoring. Especially if they were to use the
system for longitudinal arrhythmia screening. One participant who had previously used traditional
wired Holder monitoring remarked that:

“The big wired Holter monitor was just a black box for me, and it was not very comfortable
to sleep or work while wearing it. Also, I was not strict about keeping the symptoms diary,
as I would not keep the diary and a pen with me at all time.” [P23]

In the "Effort Expectancy" assessment, nearly 75% of the participants found the help, error
messages, guidelines etc. offered in mCardia adequate (Q11). In response to the question whether
mCardia has all the functionality expected (Q14), around 50% of the participants responded neutrally,
whereas, 9% showed disagreement. During the post-study interview, we found that participants
wanted support for medication tracking and reminders in mCardia, since keeping track of their
medication was core to their treatment. Finally, when asking about "Facilitating Conditions" most
participants were positive. They reported that they had the resources needed (i.e smartphone) (Q17,
N=95.8%) and assessed themselves to be skillful in the use of mCardia (Q18, N=95%). Besides, only
8.3% reported that they would require a dedicated person to assist (Q19).

Overall, the mCardia was reported as easy to use, with high user satisfaction, especially amongst
the participants who have had previous experience with traditional wired Holter monitoring; 8 of
10 these users were very satisfied.

6.1.2 Engagement as time spent. The amount of time spent on the mobile app is another indicator
of user engagement. On average, participants spent 21 minutes interacting with mCardia daily.
We found the use pattern for filling the details about recorded symptoms or events to be random.
However, daily information such as stress level, sleep quality, and food intakes were mostly filled in
once in the evening. Besides these two tasks, the majority of the participants routinely interacted
with mCardia in the morning (to check night trends in heart rate) or after performing physical

J. ACM, Vol. -, No. -, Article -. Publication date: 2021.



mCardia: An Ambulatory Context-Aware ECG Collection System for Arrhythmia Screening -:17

Participants 

E
ve

nt
s 

0

10

20

30
P

1
P

2
P

3
P

4
P

5
P

6
P

7
P

8
P

9
P

10
P

11
P

12
P

13
P

14
P

15
P

16
P

17
P

18
P

19
P

20
P

21
P

22
P

23
P

24

Deleted/Unfilled Events Annotated Events 

Fig. 9. Number of annotation events and number of deleted or unfilled events per participant.

activities such as exercise, cycling, or a long walk. It should be noted thatmCardiawas not designed
to maximize the time spent on the app. As one participant states in the post-study interview:

“I might have spent more time in the app, if it had provided additional features such as
medication tracking or recommendations.” [P7]

However, based on the initial design phase, mCardia was designed mainly for brief sporadic use
and not for medication management.

6.1.3 Events recording and phone-based context collection. A total of 𝑁 = 235 events were created
(either by taping on the Movisens device or on the phone), out of which nearly 60% were annotated,
and the other 40% were either deleted or remained unfilled. Figure 9 shows the number of annotated
and deleted/unfilled events per participant during the study. Among all the participants, the
frequency of events created and deleted due to accidental taps on the ECG device was more on the
initial few days and declined as the participants became more familiar with mCardia.

6.2 Performance of data collection and its impact on usability
During the feasibility study over 8064 hours of contextualized ECG data from 24 participants was
collected. Nearly 89% of the collected ECG data is suitable for arrhythmia analysis. The remaining
11% data is not usable primarily because the patient forgot to put on the device, or because the
electrodes became nonadhesive resulting in poor signal quality. We also found that the percentage
of unusable data was slightly higher among the nine participants who were assisted by family
members or caretakers. During the post-study interview, we learned that when electrodes became
nonadhesive, they would not realize this and replace them, unless told by the caretakers. The
caretakers could spot missing HR and HRV data in the mCardia app. One caretaker recalled:

“I would usually check and change the electrodes only when I found gaps in the HR or
HRV data in the mCardia app’s circular wheel.” [P3]
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Fig. 10. Data collection yield per participant

6.2.1 Yield. Li et al. [38] define yield as “the fraction of the expected samples to the actual number
of samples collected by the system” and argue that yield can serve as a proxy for determining
engagement and user compliance. Following this definition, we define yield in mCardia as the
fraction of the expected samples of various data points such as HR, HRV, MET-level, and Daily
Info that are successfully collected and stored in the cloud back-end. For instance, since HR, HRV,
MET-level (corresponding to light, moderate, and vigorous activities), and steps are collected once
per minute, 60 samples of them are expected in any given single hour. Similarly, Daily Info is
collected once per day; therefore, the fraction of days in which we collected Daily Info data defines
the Daily Info yield. Figure 10 shows the yield of HR, HRV, MET level, Step, and Daily Info for
each participant. The median yield of Daily Info is 0.671, and only 57% of participants have Daily
Info yield higher than 0.6. The MET-level median yield is 0.903, and nearly 88% of participants
reaching yield more than 0.85. Similarly, the median yield for step is 0.902, and 81% of participants
reaching yield more than .85. In contrast, the median yield of both HR and HRV is 0.79, which is
lower than steps and MET-level, and only 41% and 37% of participants have HR and HRV yield
higher than 0.85, respectively. The potential reasons for low HR and HRV yield include; (i) user not
wearing the ECG device or wearing discharged device, (ii) non-adhesive of the ECG electrodes over
time resulting in a noisy signal, and (iii) arrhythmia episodes in which the Movisens’ on-board
algorithm is unable to correctly calculate HR and HRV.

6.3 Qualitative Data
To further understand the participants’ perspective, we conducted a post-study semi-structured
interview of each participant and their caretaker. We employed an inductive approach [57] for
analyzing this interview data. As the focus of this study was on the feasibility and perceived
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Factors

Total duration of ECG recording 8054 Hrs
Total events events registered 235
Events deleted or unfilled 98
Total annotated events 137
Average no of events filled per participants 5.7

Table 3. Overall collected ECG and contextual data

usefulness ofmCardia, the following themes were in focus; (i) issues encountered, (ii) task suitability,
and (iii) perceived usefulness.

6.3.1 Issues encountered by participants. Table 4 lists the four main issues reported by the study
participants during the post-study interview. One-fourth of the participants reported issues related
to non-adhesiveness of wet ECG electrodes due to sweating or body movements during the night.
This mainly happened when participants forgot to change the electrodes daily and continued using
the same electrodes for more than 24 hours. A related issue is the skin discomfort or irritability
which was reported by 20% of the participants – an issue that is well-known in long-term ECG
monitoring [45]. A third issue reported by 38% of the participants was the creation of “false events”
due to accidental tapping on the ECG sensor. Such accidental taps typically happened when putting
the device on or off for charging. Such taps resulted in creating false events in the mCardia app
and it annoyed the participants as they had to delete them manually in the app. One participant
recalled:

“For the first two days, when I pushed the ECG device hard in order to fit it into the
charging tray, it added some events. When I saw these empty events later in the app, I was
confused as I didn’t recall tapping on the device.” [P10]

Finally, 20% of the participants reported that they kept wearing the ECG sensor even when its
battery was completely discharged. Although the mCardia app displays the battery level of the
sensor, the participants said that they did not notice it unless they explicitly opened the app and
looked at the battery level. As explained by a participant:

“If the app is closed and the device battery dies, I would not realize it. I [would] continue
wearing it for hours until I opened the app and looked at the battery level. This happened
several times in the last two weeks.” [P17]

6.3.2 Task suitability. From the user’s point of view, the main task was to collect high-quality
event information during ambulatory long-term use. Hence, we investigated the feasibility of
phone-based event annotation as compared to the traditional paper-based diary. Compared to
traditional paper-based event diaries, participants found the event creation and annotation in
mCardia simple, clean, and very convenient. Interestingly, phone-based event annotation was most
liked by participants (𝑁 = 10) who previously have had the experience of traditional home-based
Holter monitoring and paper-based event diaries. As explained by P20:

“It is easier to note the symptoms on the mobile phone, since I carry it all the time. I do
not have to remember and write it down in my [paper-based] event diary – especially, if I
have to do it for many days or months.” [P20]

6.3.3 Perceived Usefulness. Although context-aware ECG monitoring via mCardia is primarily
designed to help cardiologists in a more accurate and informed assessment of arrhythmias, we
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Issue %

Electrodes becoming non-adhesive 26%
Skin irritability due to continuous use of wet ECG electrodes 20%
Accidental tapping on ECG device causing false event registration 38%
ECG device battery discharged 20%

Table 4. Issues identified and their relative distribution.

were also interested in the participants’ perceived usefulness of mCardia for managing their CVD
health. In this regard, several participants or their caretakers described that they believed mCardia
could be useful in two ways; (i) in better communicating their symptoms to the cardiologist, and
(ii) to keep them aware about any unusual symptoms and the context in which they appear. For
example, as explained by P2:

“I think this clock overview is nice. I can see how my heartbeat changes when I am
doing different activities. On two Fridays – when I had been playing basketball – I felt
palpitations during the night and registered these events. It makes it easy to show them to
the cardiologist and ask what happened at that time, and if it is related to playing sports.”
[P2]

6.4 Clinical case studies
The usefulness of context-aware ECG monitoring in arrhythmia screening can be demonstrated in
two clinical cases based on data collected from the feasibility study – one focusing on tachycardia
(high restring heart rate) and the other looking at palpitations.

6.4.1 Clinical case #1: Tachycardia. Tachycardia is the condition in which the heart rate exceeds
the normal resting rate, which can be physiological or due to abnormal heart rhythm, then called
tachyarrhythmia. The definition of tachycardia in adults is a resting HR above 100 BPM [3]. Figure 11
(a) and (b) shows a sudden increase in heart rate to over 100 BPM on two different occasions for
the same patient (P12, female, 70 years). In Figure 11(b), contextual data reveals that the subject is
not doing any physical activities during this time or even prior to the onset. During this period,
the participant also added an event by tapping the device and provided some additional context
that she was lying down after dinner and felt severe heartburn symptoms that lasted for around
20 minutes. This makes it a typical case of a supraventricular tachycardia (SVT) episode. On the
other hand, Figure 11 (a) although showing HR above 100 (at around 10-10:30 PM), contextual data
shows that the patient is doing physical activity of jogging, walking, and running prior and during
this period. Hence, in this scenario HR above 100 is not a case of SVT.
This case demonstrates that interpretation of ECG segments and HR is different depending on

the context, and assessment in isolation could potentially lead to misdiagnosis. Thus, collection of
contextual data in ambulatory ECG monitoring could enable faster and more accurate assessment
of arrhythmias in both manual and computer computer-aided diagnosis of arrhythmia.

6.4.2 Clinical case #2: Palpitations. In this case, the patient was evaluated for annoying palpitations,
and had known permanent atrial fibrillation. He referred palpitations during sleep that lasted 30
minutes. Figure 12 (a) shows cases of mild rate changes whereas the accelerometer shows that
patient is just turning in bed. At this point his doctor may hesitate to increase rate-lowering
medications since the patient also referred dizziness when changing from laying down to standing
position. In this context, Figure 12 (b) helps to choose an adequate medicine adjustment since it is
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Fig. 11. Clinical case #1 demonstrating the usefulness of context information in ECG interpretation. Although
both ECG snippets from the same participant have HR >130, the context information (sleeping or running)
helps in distinguishing that (b) is a case of supraventricular tachycardia (SVT), whereas (a) is normal.
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Fig. 12. Clinical case #2 demonstrating the usefulness of context information in medication prescription. (a)
Subject tapped on device and registered an event. (b) Subject gets up from the bed and starts walking.

reassuring that there is an adequate chronotropic response when changing from laying in bed to
walk, suggesting problem with ortostatic blood pressure changes. Furthermore, there are no case of
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severe low rate. Hence, choice could be made for a rate-lowering medicine without blood-pressure
lowering effect. This demonstrates that, in this case collection of contextual data not only helps in
diagnosis but also in deciding on correct medication treatment.

7 DISCUSSION
This study aimed to test the feasibility and usability of mCardia for collecting context-aware
ambulatory ECG for arrhythmia screening under free-living conditions. To this end, we need to
ensure that mCardia meets the user experience and usability standards and keeps participants
engaging as well as informed. The overall results of this feasibility study are encouraging. The
findings indicated a good degree of usability, usefulness, and clinical applicability of mCardia. With
the aim of replacing wired Holter monitors and paper-based diaries, it is especially interesting
to notice that the quantitative results on usability and feasibility were more positive from the
participants (𝑁 = 10) who had previously used a traditional setup for home-based ECG monitoring.
In this section, we discuss the patient’s perspective on the mCardia system, areas of improving it,
and the use of contextual information in arrhythmia analysis.

7.1 Patient’s perspective on mCardia
From the users’ perspective, three interesting findings emerged from the study, namely thatmCardia
could improve event reporting practice, could improve patient clinician communication, but that
medication tracking was missing.

7.1.1 Improved event reporting practice. The ability to fill the details of the symptomatic events
on the phone rather than a paper-based event diary was especially liked by the participants who
previously had undergone 1-2 days ambulatory Holter monitoring at home. One participant noted
that;

“It was much easier to remember that I had tapped the device and had unusual symptoms
by looking at the unfilled event log in the mCardia app. In my previous home Holter
test, I rarely maintained the event diary, and even when I did the entries, it was with an
approximate time.”[P5]

Careful mapping of an event’s timestamp to the ECG timestamp is vital because – as shown in
clinical case #2 – only accurate mapping of these events helps in a better understanding of these
unusual symptoms during ECG analysis. If relied on recall memory and proximate timestamp, these
reported symptoms might not be reflected in corresponding ECG, which may cause ambiguity
during analysis. By tapping the ECG device and using the phone to provide the details of the event
significantly reduced recall bias in reporting events.

7.1.2 Improvement in patient clinician communication. As reported in the qualitative findings
(Section 6.3), the patients argued that mCardia has a strong potential to improve communication
about their health condition to the doctor in a longitudinal home-based arrhythmia screening. In
particular, the visualization of the daily overview of HRwith the different activities and symptomatic
events was considered motivating enough to keep using mCardia for a longer period. Although
participants asked if mCardia could give them real-time feedback on arrhythmia, this feature was
intentionally not part of the design. During the PCD design process, the doctors warned against
such a feature. Current machine learning algorithms for automatic arrhythmia detection are still in
their infancy and mainly work on high-quality ECG recording done in the clinic under controlled
conditions. Therefore, enabling real-time automatic arrhythmia detection on ambulatory ECG
could result in false positives, causing anxiety and unnecessary hospital visits. This problem has
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also been reported in several other studies involving short (30 sec) ECG even in a low-risk healthy
population [30, 50].

Instead, mCardia can be seen as a tool for improving patient-clinician communication during the
longitudinal arrhythmia screening period. On the one hand, it helps collect a much richer data set
for the clinician to improve clinical decision-making. On the other hand, it provides the patient with
much better awareness and understanding of their disease symptoms and the relationship between
behavior and their heart-related symptoms, without providing the diagnosis. Taken together, this
can improve the dialogue between the patient and clinician.

7.1.3 Medication tracking and reminders. In CUMACF questionnaire, question no. 14 (“Q14: mCar-
dia has all the functionalities that I expect it to have?”) received the most negative response, with a
majority of participants disagreeing to this statement (see Figure 8). In the post-study interview,
we learned that the majority of participants who disagreed to this statement wanted medication
tracking and reminders to be part of mCardia. This was especially highlighted by participants
who suffered from several co-morbid chronic conditions. Even though medication tracking was
discussed during the mCardia design process, we decided not to include this since there are plenty
of other apps available for this. However, the study showed that this might be important tomCardia
after all. Partly because the study showed that participants wanted this as an integrated feature in
the same app. But more importantly, because medication tracking could help understand if there
are any correlations between the medication dose and timing, and the occurrence of arrhythmia
events or unusual symptoms experienced by participants. Furthermore, medication tracking could
help in keeping participants more engaged in the data collection process.

7.2 Improvements to the mCardia system
While mCardia was widely accepted, we found inspiration for several areas of technical improve-
ments concerning improving signal quality, keeping the ECG device charged, the prevention
accidental event logging, and improvement of self-reported data.

7.2.1 Improving signal quality. Proper attachment of the electrodes to the skin as well as changing
them daily is key to quality transmission of the ECG signal. Support for continuous monitoring of
signal quality could be added tomCardiawhich could provide in-app notification if the signal quality
remains weak for more than a certain period. Moreover, motion sensors, such as accelerometers,
makes it possible to distinguish whether poor signal quality is due to motion artifacts or due to
non-adhesiveness of the ECG electrode.

In this context it is worth noticing that compared to others, the participants assisted by caretakers
(N=9) have a high percentage of unusable ECG data and lowHR and HRV yield. The high percentage
of unusable data is because caretakers would leave the phone with the patient and mainly check
mCardia in the morning and evening. If electrodes become nonadhesive, caretakers would not
realize this and replace them until they open the mCardia app on participant’s phones and see the
missing data. To overcome this challenge, mCardia could also send a notification on signal quality
to the caretaker’s phone.

Electrodes are also one of the common causes of skin discomfort and amajor reason for participant
dropout in ECG monitoring studies [45]. Our study was not exempt from this. Although the
participants were instructed to change the electrodes every day, some patients did not adhere to
this instruction resulting in skin irritability and eventually dropping out of the study. One way to
address this challenge could be to implement a daily notification in the app and alert the patient to
change the electrodes. This feature could be combined with signal quality reporting.
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7.2.2 Keeping the ECG device charged. We found that although the battery level of the ECG device
was displayed in the mCardia app, participants often forgot to charge the device. This could result
in full discharge of the device and participants could end up wearing a discharged device for several
hours. They would notice this only when they open the app. This was especially prevalent in the
(𝑁 = 9) participants who were assisted by a caretaker. This problem could be mitigated if mCardia
notified the user or caretaker with an alert on low battery level, even if the app is closed. This can
be done by server-sided push notification based on the last charging status of the ECG device and
its discharge rate, which would work even if the mCardia app is closed or if the device becomes
disconnected.

7.2.3 Preventing accidental event logging. Unintended logging of events due to accidental taps
on the ECG device, especially while putting on or taking off the device to charge, was one of
the main issues surfaced in qualitative analysis. Although detecting “accidental events” could be
device-specific (Movisens in this case), they can be prevented by checking whether ECG electrodes
are attached to the device or not. When the electrodes are not attached to the device, and tap on it
should simply be discarded. In this way, new events will only be listed in the mCardia app when a
participant is wearing the device and the recording is in progress.

7.2.4 Improving reporting of daily info. The information such as stress, sleep, and food intake
provides important contextual and behavioral information that supplements the underline ECG
data during arrhythmia analysis. However, the relatively low yield of Daily Info (c.f., Figure 10)
suggests that participants were not motivated to enter these details on a daily basis. When asking
about the reason for this low yield, we learned that participants could not see any direct value
of this information for themselves. The design decision to collect this information was primarily
focused on its importance for clinicians during ECG analysis. Hence, it seems important to feed
this information back to the user as day-to-day educational information about the potential linkage
between lifestyle and commonly known arrhythmia triggers.

7.3 Using contextual information in arrhythmia analysis
The two clinical cases highlighted in this study demonstrate the usefulness of contextual data
in making more clinically informed decisions when analysing ambulatory ECG for arrhythmia
diagnosis. For these case studies, the temporal alignment of ECG with the different contextual data
was done manually. To take full advantage of these different contextual data, a fully automated
system for temporal alignment, synchronization, and visualization of the context and ECG would
be needed. Moreover, semi-automatic detection of potential arrhythmia onsets and offsets time
would be needed to quickly analyze such a large amount of data.

In addition, contextual features can be used together with the ECG morphology to achieve
personalization in algorithms for arrhythmia detection. Arrhythmia-provoking user-contexts and
common symptoms at the onset of arrhythmias (as listed by Hansson et al. [24]) can be utilized
to build context-specific heuristics, which can help in reducing false alarms in computer-aided
diagnosis of ambulatory ECG.

8 LIMITATIONS AND FUTUREWORK
Our sample size is small, which might limit the ability to generalize the findings. Also, as there is no
optimal length of the arrhythmia screening period and the study was focused more on technology
demonstration or proof-of-concept rather than clinical outcomes, we kept the study period to a
minimum of two weeks. However, it would be interesting to learn how the participant’s response,
engagement, and usability behavior changes when they use mCardia for a much extended period
(i.e., 2-4 months).
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In the next iteration, we would like to address the issue highlighted in this study namely:
(1) provide alerts to users or caretakers on signal quality when electrodes become non-adhesive,
(2) add medication tracking and reminders to increase user engagement, and (3) provide alerts
to users when the ECG device battery needs charging, even while the mCardia app is closed or
running in the background. The plan is to use and deploy mCardia in a larger-scale clinical trial
as part of the REAFEL project [5] for diagnosis and management of Atrial Fibrillation in frail and
elderly patients.

9 CONCLUSION
This paper has described the design, technical implementation, and initial deployment of mCardia,
a context-aware longitudinal ambulatory ECG collection system for cardiac arrhythmia screening.
The primary contributions of the work are threefold. First, we have identified the relevant contextual
information that can help improve arrhythmia screening when combined with ECG data. Second,
we have presented the design and technical implementation of a device-agnostic plugin-based
mHealth application for collecting ECG with a broad spectrum of contextual data. Third, a non-
randomized, single-arm feasibility study in a Danish and Indian setting demonstrated the usability
and user acceptance of such technology for continuous ambulatory ECG monitoring for arrhythmia
diagnosis. ThemCardia system achieved high data yield, as well as high levels of patient compliance
and acceptance. Via two clinical case studies, we also demonstrated how contextual information
could help improve arrhythmia screening. As such, this paper presents promising results in terms of
the usability and feasibility ofmCardia system for longitudinal arrhythmia diagnosis andmonitoring
under free living conditions.
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A LIST OF CUMACF QUESTIONS USED IN THE FEASIBILITY EVALUATION

List of CUMACF (CACHET Unified Methodology for Assessment of Clinical Feasibility)  Questions used
Questions

Q1 Overall, I would find the system useful in home based longitudinal ECG collection for arrhythmia 
screening

Q2 I would use mCardia daily basis as instructed
Q3 Using mCardia would increases the quality of communication b/w me and my doctor
Q4 Using mCardia would reduce recall bias in reporting my symptoms during screening period

Q5 mCardia would help me in keeping track of my daily activeness and unusual symptoms and 
help me understand my symptoms better 

Effort Expectancy
Q6 Overall, I would be satisfied with how easy it is to use mCardia App

Q7 My interaction with mCardia would be clear and understandable.
Q8 It would be easy for me to learn to use mCardia App
Q9 I would find mCardia easy to use
Q10 I would be skillful at using mCardia

Q11 The information (such as [error messages | help | messages | guidelines | tutorials | …]) 
provided with mCardia are clear and useful

Q12 The interface was effective in helping me complete the task [events entry]

Q13 mCardia was pleasant to use

Q14 mCardia has all the functionalities that I expect it to have

Social Influence
Q15 My doctor thinks that I should use mCardia

Q16 My family [spouse | children | parents | ...] think that I should use mCardia

Facilitating Conditions
Q17 I have the resources necessary to use mCarida app

Q18 I have the knowledge necessary to use mCardia app

Q19 A specific person should be available for assistance with mCardia if I face any difficulty with 
mCardia App
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Abstract

Goal : To investigate the contextual and temporal distribution of false positives (FPs) in a state-of-the-art deep

learning (DL)-based atrial fibrillation (AF) detection algorithm when applied to patient-operated ECG from free-

living ambulatory conditions. We hypothesize that under such conditions, the FPs detected by a DL model might

have some correlations with the patient’s ambulatory contexts. Method : First, a DL model is trained and evaluated

on three public arrhythmia datasets from PhysioNet. It is ensured that the model had state-of-the-art performance

on these public datasets. Thereafter, the same model is applied to a 215-days long contextualized single-channel

ECG dataset collected under free-living ambulatory conditions. Through a manual examination of the model’s

output, the ground truth is obtained, and the correlations between patient’s ambulatory contexts and the true/false

positive rate are analyzed. Results: Nearly 62% of the non-trivial short segments of FPs are mainly associated

with three specific contexts: change in activity, change in body position (especially during the night), and sudden

movement acceleration. Moreover, the number of FPs detected by the DL model are more in female than in male

participants. Finally, true positive (TP) AF segments are found more in the morning and late evening. Significance:

These findings may have significant implications for the current use and future design of DL models for AF detection

and help understand the role of context information in reducing the FP rate in real-time AF detection under free-

living conditions.

Keywords: Atrial Fibrillation (AF), Electrocardiogram (ECG), Context-aware ECG, Deep Learning (DL), False

Positive (FP).

1. Introduction

Cardiovascular diseases (CVD) are one of the most common causes of mortality worldwide, especially in the

developed countries (Gaziano, 2001). Among all CVDs, atrial fibrillation (AF) has the highest prevalence and is

considered as a major contributor to stroke (Wolf et al., 1987). It affects nearly 10 and 2.3 million people in Europe

and the United States, respectively. This is projected to rise to 14-17 million in Europe by year 2030 and 5.6 million5
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in the US by year 2050 (Go et al., 2001; Zoni-Berisso et al., 2014). Early diagnosis of AF can absolutely help in

preventing heart attacks and subsequent complications significantly.

Electrocardiogram (ECG) analysis is the most common means of AF diagnosis. However, when AF and other

arrhythmias are paroxysmal, they might be missed while performing the clinical investigation on short ECG record-

ings and may remain undiagnosed (Dinakarrao et al., 2019). Diagnosis may thus require longitudinal ambulatory10

monitoring in the patient’s natural settings. Holter monitors and recent advancements in wearable technology have

made it possible to continuously collect ambulatory ECG recordings. The challenge, however, is the manual analysis

of such long (several hours) ECG recordings by a cardiologist, which is cumbersome, time consuming and hence

extremely costly.

To aid with the analysis of longitudinal ECG, a number of computer-aided arrhythmia detection techniques15

have been developed. They have evolved from traditional feature-engineering (FE)-based techniques to the more

recent machine learning (ML) techniques, such as deep learning (DL). Techniques such as wavelet transforma-

tion (WT) (Shyu et al., 2004), support vector machines (SVM) (Melgani & Bazi, 2008), hidden Markov models

(HMM) (Coast et al., 1990), and frequency domain analysis (Minami et al., 1999) are examples of FE-based ap-

proaches. They require domain knowledge and mostly work well on clean ECG data. In contrast, the DL-based20

techniques do not require manual feature extractions and in recent years, there have been several advances in the

application of DL for AF and other types of arrhythmia detection, with a high level of performance (Andersen

et al., 2019; Poh et al., 2018; Pourbabaee et al., 2018; Faust et al., 2018; Wang, 2020; Hannun et al., 2019; Xu et al.,

2018; Limam & Precioso, 2017; Yao et al., 2017; Chocron et al., 2020).

Despite these promising improvements in AF detection, bringing these algorithms into widespread adoption25

still remains challenging. When applying these algorithms on longitudinal ambulatory ECG recordings collected

in free-living conditions, they result in a high number of non-trivial FP detection and display general performance

degradation (Halvaei et al., 2020; Hannun et al., 2019; Ceylan & Özbay, 2007; Yao et al., 2017; Gao et al., 2019). This

is primarily because the majority of these algorithms are trained and evaluated on publicly available high quality

ECG datasets, which are collected in controlled clinical settings (Parvaneh et al., 2019). Also, in many cases, only a30

small number of subjects as well as carefully-selected clean-data are used to provide good performance (Fan et al.,

2018). The FP rate (FPR) in a longitudinal ambulatory monitoring under free-living conditions, could potentially

lead to spurious or over-diagnoses and patient anxiety (Cheung et al., 2018), especially in the population with a

lower AF burden.

In this paper, we investigate the relationship between the false positive rate (FPR) of a DL-based AF detection35

algorithm and the patient’s context using a dataset collected in an ambulatory, free-living environment. It is

hypothesized that in such conditions, there are specific user context which trigger more FP in a DL-based algorithm.

For example, it has been shown that different walking style and pattern influences the FPR; in an abnormal heartbeat

detection algorithm more FPs are found when a person walks on a slope rather than on a flat surface (Noh et al.,

2013). We explore this more generally and examine the relationship between FPR and patient’s context like40

activities, change in body position (lying supine, lying left/right, standing etc.), movement acceleration, eating

2



heavy meals, user reported events and unusual symptoms. Understanding the temporal and contextual distribution

of FP in free-living condition will help in designing DL models which incorporate such contextual confounders in

their design, thereby can achieve context-specific dynamic adjustment of sensitivity and specificity in free-living

conditions.45

The main contributions of this work are twofold: (i) We identify the user context which result in more FPR in

a DL-based model when applied to ECG collected under free-living ambulatory conditions, and (ii) We outline the

design implication and the role of context-awareness for the design of future DL-based AF detection models.

The rest of this article is organized as follows: Section 2, describes the related work. The ECG datasets and

DL model used in this study are outlined in section 3. In section 4, the experimental details are provided. The50

obtained results are presented in section 5. Section 6 discusses the results in detail. Limitations and future work

are described in section 7, followed by concluding remarks in section 8.

2. Related Work

Over the years, numerous techniques have been developed for computer-aided automatic detection of AF and

other types of arrhythmias. This includes algorithms based on auto-correlation function, spectrum analysis, pattern55

recognition, threshold-crossing intervals, and ML. Although these methods achieve a decent classification accuracy,

they face two significant challenges: (1) they require manual feature extraction by the domain experts, and (2)

their performance degrades in the presence of noise. To overcome these challenges, researchers have been exploring

DL for AF detection. The DL models, such as convolutional neural network (CNN), belief propagation deep

neural networks (DNNs), and long-short term memory (LSTM) networks are now being extensively used in AF60

detection (Dinakarrao et al., 2019). These models help in achieving end-to-end AF detection without any need for

manual feature extraction (Pourbabaee et al., 2018; Andersen et al., 2019).

Andersen et al. (2019) built an end-to-end model by combining CNN and recurrent neural network (RNN). In

a 5-fold cross-validation on MIT-BIH AF Database (AFDB), the model achieved a sensitivity and specificity of

98.98% and 96.95%, respectively. In addition, the model is claimed to be computationally efficient as it can process65

24 hours of ECG in less than a second. Similarly, Petmezas et al. (2021) designed a hybrid CNN-LSTM network

that utilizes focal loss and an improved version of cross-entropy loss to improve the AF classification in imbalanced

ECG datasets and reported a sensitivity of 97.87% and specificity of 99.29% in a 10-fold cross-validation on AFDB.

Lai et al. (2020) compared four different 8-layer CNN based AF detection models and found that combining

two individual models of CNN with F-wave frequency spectrum and RR-interval (RRI) features achieved better70

performance over the individual model. On a 24 hours long single lead in-hospital ECG, they achieved accuracy,

sensitivity, and specificity of 93.1%, 93.1%, and 93.4%, respectively. Similar, multiplicative fusion approach was

proposed in MultiFusionNet (Tran et al., 2020) in which a network combines two sub-networks. This network

architecture is reported to be performing well even with a small training dataset. Besides, Fan et al. (2018) also

introduced a multi-scale fusion of deep CNN (MS-CNN) for AF screening from single lead short ECG and achieved75

a classification accuracy of 96.99% on ECG as short as 5 seconds.
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Pourbabaee et al. (2018) introduced a computationally intelligent AF detection model employing deep CNN with

raw ECG as inputs. By employing the majority voting methodology for performance improvement,Wei et al. (2019)

combined recurrence complex network (RCN) and CNN and have achieved sensitivity, specificity, and accuracy of

94.28%, 94.91%, and 94.59%, respectively. Further, Limam & Precioso (2017) used a convolutional RNN comprising80

two independent CNN models, where one of them used raw ECG data, and the other used heart rate data as inputs.

The features from these two CNNs are then merged into an RNN for AF classification.

Apart from standard ECG, in recent years, other modalities such as photoplethysmography (PPG), contextual

and mechanical signals (i.e., seismocardiograms) are also being explored for AF detection (Kwon et al., 2019;

Lahdenoja et al., 2017; Hurnanen et al., 2016; Shen et al., 2019). For instance, Hurnanen et al. (2016) used features85

of the spectral entropy and a heart rate variability index computed from the seismocardiograms and achieved a

99.9% true positive (TP) and 96.4% true negative (TN) AF detection rate. Similarly, Lahdenoja et al. (2017)

achieved 97.4% accuracy in healthy versus AF classification using the accelerometer and gyroscope readings of a

smartphone.

Although the aforementioned models show good performance on publicly available ECG datasets, their gener-90

alisability and performance on ECG collected under free-living conditions remains problematic. For instance, the

model by Andersen et al. (2019) resulted in 4.99% FPR when applied on unseen MIT-BIH NSR Database (NSRDB)

which only has the data from healthy subjects with normal sinus rhythm (NSR). Similarly, the model by Lai et al.

(2020) reported high FPR on ambulatory ECG dataset as compared to its performance on AFDB. Without address-

ing the FPR problem under the free-living condition, bringing these models into widespread use will not be possible95

as FPR (as small as 1%) could lead to over-diagnosis and patient anxiety in a longitudinal screening (Cheung et al.,

2018; Komorowski & Celi, 2017).

Moreover, there is an increasing awareness that the user’s activity and context is relevant in understanding and

analyzing ambulatory ECG (Ebrahimi et al., 2020; Dinakarrao et al., 2019). For example, it has been shown that a

heartbeat classification algorithm based on ECG has more FPs when the subject is walking on a sloped surface as100

compared to walking on a flat surface or sitting (Noh et al., 2013). In general, it is more and more acknowledged that

under free-living conditions, the occurrence of FPR in an AF classification algorithm have some correlations with

the user’s context. Thus, without understanding the patient’s context, ECG analysis under free-living conditions

remains prone to a high FPR, which again may lead to under/over diagnosis.

3. Research Methods105

To investigate the contextual and temporal relationships of FPs in a DL model applied on ambulatory data,

the following approach is followed. First, an end-to-end AF detection DL model is trained and ensured that it had

the state-of-the-art performance on publicly available ECG datasets. This model is then tested on a ambulatory

and contextualized ECG dataset collected from patients under free-living conditions. Thereafter, the AF onset and

offset detected by the model are manually examined and labeled by biomedical engineers and cardiologists. Finally,110

the patient’s context is plotted against the FP and TP episodes detected by the model.
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3.1. Public arrhythmia datasets

This research is based on three public datasets from PhysioNet (Goldberger et al., 2000): the MIT-BIH AF

Database (AFDB) (Moody, 1983), the MIT-BIH Arrhythmia Database (MITDB) (Moody & Mark, 2001), and

the MIT-BIH NSR Database (NSRDB) (Goldberger et al., 2000). Table 1 lists the technical specifications of these115

databases. These have labeling of different types of arrhythmias. As this work focuses on AF, the data is categorized

into two classes: “AF” and “other” (which includes noise, NSR, and other types of arrhythmia (if any) combined).

Table 1: Technical specifications of databases. Ch: No. of ECG channels, T: Duration of the data recording, F: Sampling
frequency, N: No. of unique subjects in the recording, T-AF: Duration of AF, R: No. of unique annotated rhythms

Databases Ch F (Hz) T (h) T-AF (h/%) R N

AFDB 2 250 234.3 93.40 (39.87%) 4 25

MITDB 2 360 24.07 2.16 (8.97%) 15 47

NSRDB 2 128 437.5 0 (0%) 1 18

3.2. Contextualised ECG dataset

None of the public arrhythmia databases from PhysioNet (Goldberger et al., 2000) have any information about

the patient’s context during the ECG recording. Moreover, despite being ambulatory, ECG recordings are limited to120

a few hours as well as activities. Therefore, they do not contain ECG morphology changes and noise contamination

under all activities (e.g., biking, climbing stairs, running, jogging, walking) that occur in natural free-living settings.

In this study, the mCardia system (Kumar et al., 2021) is used for collecting the longitudinal single channel

contextualized ECG in the patient’s natural setting. The resulting dataset is named as the “CACHET Contextu-

alised Arrhythmia Database (CACHET-CADB)”(CACHET, 2021). The participants are recruited from Denmark125

and India. The ethical approval for the data collection is obtained from the Institutional Review Board of the

Mahatma Gandhi Medical College and Research Institute, Jaipur, India, and the Danish Research Ethical Com-

mittee. Patients’ recruitment took place during their outpatient arrhythmia clinic visit and only patients who are

either already diagnosed with paroxysmal AF or suspected of having AF are included. The data collected from 21

patients (13 male and 8 female) with an average age of 58.7±10.11 years is used in this study. The length of ECG130

recordings from patients are varied from 3 days to 3 weeks.

Table 2 lists the details of the collected data. The mCardia system uses a Movisens single-channel ECG EcgMove4

monitor mounted on the chest of the patient, which samples ECG at 1024Hz with a 12-bit resolution (Movisens

GmbH, 2019). Contextual data is collected both from the EcgMove4 device and from the participant’s mobile phone.

This data can be categorized into three main types: (i) passively sensed data such as activity, acceleration, body135

position, noise, and local weather; (ii) patient-reported data such as sleep quality, stress level, food consumption;

and (iii) experienced symptoms recorded as ‘events’, such as palpitations or shortness of breath. For the event-based

data, participants could tap on the EcgMove4 device if they felt any unusual symptoms and then provide additional

information in the mCardia app, which included specifying the duration of the symptoms and the activity they
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Table 2: ECG and contextual data types in the CACHET-CADB with source and sampling rate. S: Sensed. PR: Patient-
reported. EB: Event-based.

Data type Type Data source Sampling rate

ECG S EcgMove4 1024 Hz

HR S EcgMove4 1/60Hz

Movement acc. S EcgMove4 64Hz

Rotation rate S EcgMove4 64Hz

Body position S EcgMove4 1/60Hz

Activity S Phone EB

Steps S EcgMove4 & Phone 1/60Hz & EB

Events PR EcgMove4 & Phone EB

Weather S Phone 4/day

Sleep PR & S Phone 1/Day

Noise level S Phone 1/120 Hz

Dietary PR Phone 1/Day

are doing when the event occurred. More fine grind (every 10 seconds) activity, movement acceleration, and body140

position data are obtained by processing the raw 3D accelerometer and gyroscope data from the EcgMove4 device

using the Movisens DataAnalyzer tool (Movisens GmbH, 2020). Patient-reported data, such as symptoms events,

food intake and stress levels, are used without pre-processing.

3.3. Model overview

An end-to-end AF detection model, which is a modification of Andersen et al. (2019) for a single channel ECG145

is developed for this study. The original model is trained and tested on two channel ECG from AFDB dataset, but

since the CACHET-CADB uses only a single channel, we choose to modify and train the model on a single channel

ECG. The multi-layer CNN is utilized for extracting high-level features from the raw input sequence and RNN is

used for processing the sequential features extracted by CNN. Figure 1 shows the high-level architecture of this DL

model.150

3.3.1. Data preparation and pre-processing

To train the model on the AFDB dataset, we utilize the RRI as input for feature extraction. Irregular ventricular

contraction due to AF is reflected in the RRIs and have been used in several studies for efficient detection of

AF (Andersen et al., 2019; Zhou et al., 2014; Nguyen et al., 2018; Moody, 1983). Moreover, it is computationally

less expensive and thus can be utilized for real-time AF detection in wearables. The public databases (AFDB,155

MITDB, and NSRDB) already provide the locations of R-peaks in the raw ECG, which is used to find the RRI

6



Convolution
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Ksize=3, output= 80
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Pooling Layer

Hidden units
n units = 100
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Figure 1: The network consisted of 2 convolutional layers, followed by a pooling layer. Features extracted in the convolution
are fed into the LSTM layer, which consists of 100 hidden units. Finally, the sigmoid layer gives the binary output of the
entire 30 RRIs long window. The network takes 30 RRIs (calculated from raw ECG) data as input and outputs a binary
classification of AF or non-AF class.

using the following formula:

RRI(n) =
rPeaks(n + 1) − rPeaks(n)

fs
, (1)

where fs is the sampling rate. These RRIs are segmented into windows of 30 RRIs and fed as inputs to the model.

Each consecutive window has an overlap of 10 RRIs. The beat-by-beat annotations are used to create the new

annotation of the entire window of 30 RRIs. If the fraction of AF beats in the windows’ length is more than 0.5,160

then the entire window is labeled as AF (Andersen et al., 2019).

The length of ECG recordings in the CACHET-CADB varies from a minimum of three days to three weeks and

are therefore trimmed into segments of 24 hours to ease the processing and analysis. Since it is an ambulatory ECG

dataset and contains many artifacts, we used a set of filters and techniques to minimize the artifacts: (i) Band-pass

[0.5 to 50 Hz] filter to remove artifacts and baseline wander, (ii) Savitzky-Golay filter (Press & Teukolsky, 1990) for165

smoothing the data, and (iii) 10-seconds sliding windows to calculate the cross-correlation and reject noisy signal.

Thereafter the Pan-Tomkins algorithm (Pan & Tompkins, 1985) is used to calculate the R-peaks from the ECG

signal. From these R-peaks, the RRIs are obtained using Eq. (1). It is important to note that the CACHET-CADB

dataset is only used for testing the hypothesis; model is trained on the AFDB.

3.3.2. Model architecture170

The processing steps of the model is illustrated in Figure 1. After pre-processing, the windows of 30 RRIs are

fed into the convolution layer, which extracts the temporal features from the input signal. The model consists of

two successive convolution layers. The first layer has a kernel size (Ksize) = 5, and its output filter (nfilter) consists
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of 60 learned features. The second convolution layer has these 60 features as its input with a kernel size (Ksize) = 3

and nfilter = 80 output features. In both CNN layers, the input is zero-padded to preserve the temporal dimensions.175

After that, the max-pooling operation is performed to retain maximum spatial information while reducing the

temporal dimensions of the extracted features in the convolution stage. The pooling layer uses a kernel size of

Psize = 2 with strides of two and reduces the temporal dimension by half. The pooling layer output is passed as

input to the bidirectional LSTM layer. It consists of nunits = 100 hidden units. Finally, the output of the LSTM

layer is passed to a single sigmoid neuron. It outputs a probability of a given input sequence of 30 RRIs belonging180

to AF. The default probability threshold is set to 0.5. If the probability is ≥ 0.5, the input sequence belongs to the

AF class; otherwise, it is classified as “other class”. Further details of the model and its tuning parameters can be

found in Andersen et al. (2019).

3.4. Model evaluation metrics

In order to evaluate the performance of the AF detection model on the different arrhythmia datasets, we applied185

the sensitivity (Se), specificity (Sp), FPR, and accuracy (Acc), which are the standard metrics used for evaluating

the performance. They are defined as follows:

Se =
TP

TP + FN
, (2)

Sp =
TN

TN + FP
, (3)

Acc =
TP + TN

TP + TN + FP + FN
, (4)

FPR =
FP

FP + TN
. (5)

where TP , FN , and TN stands for true positives, false negatives, and true negatives, respectively.

4. Experiment

Figure 2 shows the workflow of our experiment. It involves the following four steps: (A) Testing the DL model190

on public datasets and comparing its performance with state-of-the-art on these datasets, (B) Applying the model

on the CACHET-CADB, (C) Manual annotation of the model’s output for the ground truth, and (D) Mapping the

contextual data to the TP and FP predicted by the model. Each of these steps are detailed below.

4.1. Testing model on public datasets

In the first step, we train and test the model’s performance on the public databases from PhysioNet (AFDB,195

MITDB, NSRDB) and compare it with state-of-the-art performance by other DL models on these databases. It

should be noted that compared to other models in the literature, which are mostly trained and tested on two-channel
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Table 3: Performance of the model on public datasets and its comparison with other state-of-the-art models. C: No. of ECG
channels

Algorithm C AFDB MITDB NSRDB

Se

(%)

Sp

(%)

Acc

(%)

FPR

(%)

Se

(%)

Sp

(%)

Acc

(%)

FPR

(%)

Se

(%)

Sp

(%)

Acc

(%)

FPR

(%)

Xia et al. (2018) 1 98.79 97.87 98.63 - - - - - - - - -

Lai et al. (2019) 1 97.4 97.2 97.3 - - - - - - - - -

Wei et al. (2019) 2 94.28 94.91 94.59 - - - - - - - - -

Yao et al. (2017) 2 98.22 98.11 98.18 - - - - - - - - -

Dang et al. (2019) 2 99.93 97.03 96.59 - - - - - - - - -

Andersen et al.

(2019)

2 98.17 96.29 97.10 3.71 98.96 86.04 87.40 13.96 - 95.01 - 4.99

This work 1 96.06 98.29 97.04 1.7 96.87 86.94 87.98 13.06 - 94.44 - 5.56

ECG of these public datasets, our model for this experiment is trained on single-channel (channel-1 of AFDB). It

is primarily because our CACHET-CADB used for the contextual analysis contains only single-channel ECG.

4.2. Applying model on CACHET-CADB and mapping model output to raw ECG timestamp200

After achieving state-of-the-art performance on the public datasets, the trained model is applied to the CACHET-CADB.

Since the input to the DL model are RRIs (after classification), they are mapped back to raw ECG (see Figure 3),

and the timestamp of each AF onsets and offsets marked by the DL model are stored in a CSV file. The duration

between a single AF onset/offset pair will be referred as a “segment” throughout the rest of this article.

One biomedical engineer and a cardiologist manually screened the CACHET-CADB and categorized each par-205

ticipant’s recording into one of the three types: (i) NSR (T1), (ii) paroxysmal AF (T2), and (iii) persistent AF

(T3). Although, the patients who are either previously diagnosed with AF or suspected of at high risk for AF

are recruited for this study, it is observed during the manual screening of the database that a few subjects had

persistent AF, i.e., subjects remain in AF for 99% of the total recording time. These subjects are excluded from

the study, since contextual analysis of FP/TP in such subjects is not useful for testing our hypothesis.210

4.3. Annotation

As illustrated in Figure 2, only type T1 and T2 recordings are manually annotated. A two-stage screening

strategy is adopted. In the first stage, each AF onset and offset segments marked by the DL model are reviewed by

a biomedical engineer. The obvious noisy or NSR segments are labeled in this round. The ambiguous segments are

passed into the second stage, where two independent cardiologists annotated each segment. The two cardiologists’215

annotations are compared, and any disagreements are resolved to obtain the final labels. Based on this approach,

each segment of AF marked by the DL model is assigned a “ground truth” label as either TP or FP.
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Figure 2: Experimental workflow.
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segment

Figure 3: Process of mapping DL model’s output to raw ECG timestamp. The AF segments between onset and offset are
marked in red.

4.4. Mapping contextual data to TP and FP

After the manual annotation process, the patient’s context (movement acceleration, activity, body position, tap

events, reported stress level, food intake, etc.) corresponding to those TP and FP labels are analyzed.220

5. Results

The DL model for AF detection used in this work is built in Python 3.7 using Keras and Tensorflow 2.0. The

model utilizes RRI for feature extraction instead of the raw ECG; thus, the computational time and resource

requirement is less compared to the conventional DL models. On a Dual-Core Intel Core i7 (3.6 GHz) CPU with

16 GB RAM and Intel Iris Plus Graphics 650 graphic card computing environment, it takes 0.62 seconds to classify225

24 hours of ECG and 2.65 seconds to map the model output to ECG.

5.1. Performance on the PhysioNet datasets

Table 3 lists the performance of the model on three public datasets from PhysioNet. In a 5-fold cross-validation,

the Se, Sp, Acc, and FPR on AFDB are shown to be 96.06%, 98.29%, 97.04%, and 1.7%, respectively. We trained

and tested on ECG channel-1 and channel-2 of the AFDB independently, and found the performance on channel-1230

slightly better than channel-2. Thus we chose to train the model on channel-1 for the rest of the analysis. Both the

MIT-BIH Arrhythmia Database (MITDB) and NSRDB are used only for testing the model’s generalization and, as

expected, the FPR on these unseen databases is higher (13.06% and 5.56%, respectively).

5.2. Analyzing FPs in the CACHET-CADB

A total of 215 days single-channel ECG of 21 subjects from the CACHET-CADB is analyzed using the DL235

model. During the manual screening, four subjects are found to remain in persistent AF and are excluded from

further analysis (see Figure 2). Table 4 shows the total number of segments marked as AF by the DL model, the
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Figure 4: Annotation summary after manual examination

number of recording days, the average number of onset/offset segments per day, and the number of segments of

length ≤ 50 seconds and ≥ 400 seconds. An average 261 segments per day are flagged as AF by the DL model of

which more than 62% are of length ≤ 50 seconds.240

Figure 4 shows the results of the manual annotation process. A total of 41,648 segments are marked as AF by

the DL model. A biomedical engineer, in the first stage, manually annotated and looked for obvious noisy/NSR

segments. When in doubt, a segment is sent to the second stage and annotated by two cardiologist. In the second

stage, a total of 1,707 segments are annotated, of which 747 turned out to be TP, and the remaining 960 are FP.

5.2.1. Correlations between FPs and context features in the CACHET-CADB245

As shown in Table 4, nearly 62% of the total AF segments detected by the model are of length less than 50

seconds, and 99.9% of them are FP (Figure 4). Through visual inspection, it is found that these short segments

are mostly associated with a change in body position, movement acceleration, and activity change. Figure 5 shows

24 hours of ECG with the AF segments detected by the DL model, the ground truth (true labels after annotation

by the cardiologists), and their correlations with the user-context. Whenever there is a sudden peak in movement250

acceleration, and if the DL model has classified that ECG segment as AF, it is mostly FP when it is of length

less than 50 seconds. In contrast to these many FP from short segments, it is observed that long segments of FP

are contributed by multiple premature ventricular contraction (PVC) beats (bigeminy, trigeminy etc.) and atrial

flutter.

When investigating the correlation between TP and user-generated reports on stress and food intake, no con-255

clusive pattern is found. This is primarily due to the fact that many of the patients in paroxysmal AF failed to fill

out the stress and food surveys regularly, and those who filled them regularly are either in continuous AF or did

not have any AF episodes at all.

With respect to patient reported tap marker events and time in general, the analysis of TP is done for only
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Table 4: Statistics of DL model’s performance on CACHET-CADB. AF-DL: Number of segments detected as AF by DL
model

Subject AF-DL Days Avg/day Seg≤50s Seg≥400s

S1 1991 12 166 1348 68

S2 2826 5 565 1857 25

S3 3419 16 214 1705 317

S4 3712 10 371 1711 107

S5 2308 11 209 1381 166

S6 3198 12 266 1877 65

S7 1702 12 141 1374 32

S8 3058 8 382 2132 153

S9 2415 12 201 1646 55

S10 4290 16 268 2835 71

S11 1236 19 65 883 37

S12 2470 12 205 1707 116

S13 1453 14 103 764 283

S14 787 5 157 614 8

S15 2075 4 518 1152 46

S16 2742 8 342 1569 97

S17 1966 7 280 1435 10

subjects in paroxysmal AF (T2 in Figure 2). Three subjects from this category in our dataset are found to have260

more TP AF onsets/offsets clustered around morning and late evening hours. Also, most of the self-reported tap

marking events of unusual symptoms were also around these time periods. The most common symptom reported

in these self-reported events are “shortness of breath” and “palpitation”.

Finally, an investigation on the possible gender differences in the number of FP detected by the model showed

that the female participants are more prone for FP than male participants. This could be attributed to the mounting265

of the ECG device on the chest having breast movements for females adding more confounding motion artifacts.

Besides, as ECG patterns are significantly different between genders (Surawicz & Parikh, 2002); this result could

also be due to the bias of female gender distribution in the AFDB (training) dataset.

6. Discussion

The DL model designed and trained in this paper achieved state-of-the-art performance when applied to the270

AFDB. However, the number of FP are increased when applied on the MITDB and NSRDB, and, as hypothesised,

the number of FP increased even more when applied on the CACHET-CADB, which contains data collected under

free-living ambulatory conditions. In this section, a discussion of these findings and reflection upon their implications
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Figure 5: User context and FP occurrences in a 24 hour ECG. The AF detected by the DL model in 24 hours ECG is shown
in (a). The ground truth of AF episodes after manual annotation is shown in (b). The short segments (≤ 50-seconds) of FP
detected by the DL model in (a) are associated with movement accelerations peaks in (c) and the body position and activity
change in (d) and (e).
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RR irregularity induced by sudden movement

Angular rate
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Figure 6: Movement acceleration induced irregularity in RRIs resulting in FP detection.
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on the design of AF detection models and their use for CVD monitoring and treatment is provided.

6.1. False positives and user context275

Our results show that despite showing good performance on public datasets (Table 3), applying the DL model

on ambulatory ECG recordings collected under free-living conditions resulted in a very large number of non-trivial

FP. When investigating the correlation between the FP and the user’s context, it is revealed that the majority

of short length non-trivial FP are associated with three primary context features; (i) activity change, (ii) body

position change (especially during the night), and (iii) movement acceleration (see Figure 5).280

Based on these findings, the DL model could be significantly improved by taking such contextual information

into consideration. If a segment marked as an AF onset is at the start of user activity change (i.e., sitting to walking

or running), or a body position change during the night (from supine to lying on the left side), and is not lasting for

more than 50 seconds, then there is a high probability that this is a FP. Figure 6 depicts how the change in context

induces the variability in RRI, which resembles the ECG during AF. A similar pattern can also be seen with the285

movement acceleration in Figure 5; whenever there is a peak in movement acceleration and if the DL model has

marked an AF onset on this peak, it is mostly a FP if it last less than 50 seconds.

As for the temporal distribution of AF, it is well-known that AF episodes are more prevalent early in the morning

and late in the evening (Viskin et al., 1999; Hansson et al., 2004). In our analysis, it is found that a small number

of subjects who had TP AF occurrences in the morning and evening. The knowledge about such temporal patterns290

to AF episodes can be utilized to dynamically fine-tune the sensitivity and specificity of an AF detection algorithms

during such AF-prone time periods.

Since it is known that mental stress and certain types of food and drink intake (e.g., alcohol, coffee or a heavy

meal) are common triggers of paroxysmal AF (Hansson et al., 2004), it is important to consider these factors.

However, due to the patients’ lack of compliance in providing this information regularly during the data collection295

period, it is not possible to see any such conclusive patterns in the analysis. To convey this, the availability of

automatic bio-markers for detecting food intake (Sazonov & Fontana, 2011) and mental stress (Hovsepian et al.,

2015) may be useful in the future for dynamic adjustment of the DL models output.

6.2. Implications for algorithm design

The results from this study clearly show the influence of the patient’s contexts on the algorithm’s FPR. This300

insight gives us the following options that can improve the AF detection algorithm’s performance.

Firstly, as shown in this study, nearly 99.9% of the short segment (≤ 50 seconds) are falsely marked as AF when

there is a change in activity, body position or movement acceleration. A context-aware heuristic can be built to

adjust the probability of sigmoid function. For instance, when an AF is detected around a change in activity or

body position, such segments can be put in the buffer, and subsequent segments can be observed before deciding305

the final probability. Context information can also be utilized with methods such as a majority voting scheme (Wei

et al., 2019; Hurnanen et al., 2016) for improving the model’s performance.
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Similarly, falls are common amongst elderly patients suspected of AF (Hung et al., 2013), and Se and Sp of

algorithms can be fine-tuned around such context information. For example, for a given 30 seconds of input ECG

sample, the DL model gives the probabilities as 0.4 or 0.49, whereas the cutoff probability for classifying a sample310

as AF is set as ≥ 0.5. However, if the given sample belonging to an elderly patient, and a fall has been detected

(e.g., via other contextual sensors like the accelerometer) just before this sampling window, the final probability

should factor the fall and increase the likelihood of this sample being a TP despite the model’s probability slightly

less than 0.5.

Secondly, since most (≈ 60%) of the total FP are of a very short length (≤50 seconds) and happening in specific315

contexts such as changing body position in the bed, on activity change, sudden movement acceleration implies that

ECG morphology corresponding to these activities is missing in the public datasets. Taking inference from these

findings, future DL models should try to include additional ECG data specific to these contexts in ambulatory

free-living conditions. Combining additional ECG morphology in training sets (in addition to public datasets) from

these specific contexts would help reduce the FPR.320

Thirdly, it has been argued that designing models capable of utilizing multi-modal data can improve the limita-

tions posed by models trained on any single modality (ECG alone) (Hong et al., 2020). Although several researchers

have explored techniques like ECG signal quality indexing and multi-modal signals to reduce false alarms, this work

is limited to a clinical settings (Aboukhalil et al., 2008; Sadr et al., 2016; Behar et al., 2013). It is not possible to get

many of these multi-modal signals from wearables when doing AF monitoring under free-living conditions. However,325

in the ambulatory setting, contextual features extracted from other sensors on the ECG device in combination with

data collection from mobile phones (both sensors and user-generated reports) can be utilized as input signals for

the design of multi-modal DL algorithms. For example, accelerometer and gyroscope data has been shown useful

for AF assessment (Lahdenoja et al., 2017). Hence, utilizing such contextual data alongside ECG for a multi-modal

algorithm design can help in improving the classification of AF under free-living conditions.330

6.3. Challenges in bringing mHealth based longitudinal AF screening under free-living conditions

The higher FPRs and incorrect diagnosis in these DL models under free living condition would require careful

manual check if used in ambulatory monitoring of patients. This clearly would increase the cost of ambulatory

monitoring and is not practically feasible. The risk of inadequate AF diagnosis and treatment in the form of

anti-coagulation may put patients at risk of bleeding complications (Kirley et al., 2012; Sørensen et al., 2013;335

Carley et al., 2014). Moreover, if this type of automatic AF detection algorithms is build into patient-facing

mobile health (mHealth) technology, false diagnosis of AF may lead to anxiety for the patients and their relatives.

Algorithms for ambulatory, real-world monitoring and diagnosis of AF needs to be realigned to the real-time,

longitudinal, contextual, and ‘messy’ nature of patients’ free-living conditions. And importantly, such algorithms

must be built and evaluated on multi-site ECG data collected from free-living conditions rather than clinically340

prepared ‘clean’ datasets on which they tend to give high accuracy.
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7. Limitations and Future Work

The DL model used in this study is trained using RRI features. Usually, the performance of the model trained

on RRI features tends to degrade in the presence of multiple PVCs. To deal with PVCs related FPs, an ECG

delineation model with a p-wave count can be combined with this model. Also, as described in the experiment345

section, due to resource limitation, the first round of screening for removing the noisy or NSR segments is done by

a biomedical engineer and not by cardiologists. Although the biomedical engineer has the expertise to differentiate

noise/NSR rhythms and is advised to pass on all doubtful segments to the cardiologists, there still might be a

possibility of mis-classification, especially segments where the AF and noise mimic each other. Moreover, the

cardiologists only looked at ECG samples from the onset, offset, and a few random samples between onset and350

offset when annotating the whole segment. There is a possibility, especially in long AF segments, that a few short

ECG snippets in-between are mis-classified as AF and would go unnoticed. Nevertheless, this strategy is very

practical for screening the longitudinal ECG data needed for this experiment.

Based on the findings from this experiment, in the future, we would like to build a post-processing heuristic

based on contextual features pertaining to movement acceleration, body position, and activity changes that can355

significantly reduce the FPR in longitudinal monitoring under free-living conditions.

8. Conclusion

In this paper, we explored the contextual and temporal distributions of FPs in a DL algorithm when ap-

plied on contextualised ECG collected under free-living conditions. As hypothesized, the algorithm, which has

state-of-the-art performance on public datasets, resulted in a large number of FPs when applied on 215-days long360

patient-operated ambulatory ECG data. Upon analyzing the FPs and the users’ context, we found that nearly

99.9% of segments of length ≤50 seconds which are falsely labeled as AF are associated with three user contexts,

namely, (i) activity change, (ii) change in body position (especially during the night), and (iii) on sudden movement

acceleration. Besides, the number of FPs is relatively more in female subjects. The user’s self-reported “events” of

unusual symptoms during the ECG recording period and the TP segments are clustered in the morning and late365

evening hours. The paper also discussed the design implications of these findings for future DL models and how

contextual features can be utilized for reducing the FPR of AF detection models, when used in free-living ambu-

latory conditions. We believe that understanding the DL-based end-to-end AF detection models’ outcome in the

patient’s ambulatory context can bring transparency and help identify the sources of the algorithm’s shortcomings

that otherwise remain a black box.370

In recent years, we are witnessing an increasing proliferation of patient-facing mHealth technologies that incor-

porate such AF detection models. To ensure trust in the wider adoption of such technologies, we find that it is

essential to address the FPR in AF detection models.
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ABSTRACT9

Electrocardiogram (ECG) is a non-invasive tool for arrhythmia detection. In recent years, wearable ECG-based ambulatory
arrhythmia monitoring has gained increasing attention. However, arrhythmia detection algorithms trained on existing public
arrhythmia databases show higher afalse-positive rate (FPR) when applied to such ambulatory ECG recordings. It is primarily
because the existing public databases are relatively clean as they are recorded using clinical-grade ECG devices in controlled
clinical environments. They may not represent the signal quality and artifacts present in ambulatory patient-operated ECG. To
help build and evaluate arrhythmia detection algorithms that can work on wearable ECG from free-living conditions, we present
the design and development of the CACHET Contextualised Arrhythmia Database (CACHET-CADB), a multi-site contextualized
ECG database from free-living conditions. In contrast to the existing databases, along with the ECG, CACHET-CADB also
provides the continuous recording of patients’ contextual data such as activities, body positions, movement accelerations,
symptoms, stress level, and sleep quality. Currently, CACHET-CADB has 259 days of contextualized ECG recordings from 24
patients and 1602 manually annotated 10-seconds heart-rhythm samples.

10

Background and Summary11

A heart arrhythmia like atrial fibrillation (AF) alone affects nearly 2% of the global adult population and is one of the major12

contributors to cardiovascular diseases (CVD) related morbid conditions and mortality1, 2. The management of AF includes13

anti-coagulation to prevent strokes and heart rhythm-modifier medications3. However, for treatment to be effective in preventing14

further complications, early diagnosis and timely evaluation of AF plays a vital role. Analysis of electrocardiogram (ECG)15

signals is a non-invasive and cost-effective way of diagnosing AF. Due to their transient nature, paroxysmal AF remains under16

diagnosed in baseline ECGs and require long-term ECG monitoring. However, long-term preemptive monitoring is challenging17

as manual analysis of days/weeks-long ECG needed for detecting paroxysmal AF is resource and time-consuming.18

Over the years, many computer-based algorithms have been developed for faster and accurate detection of AF and other19

types of arrhythmias4. More recently, with the advent of machine learning (ML) and deep learning (DL), the field of computer-20

aided AF analysis has experienced a huge breakthrough4–6. As compared to traditional ML and other feature engineering-based21

approaches, DL-based models can achieve end-to-end classification, thus removing the dependence on domain experts in22

the classification and stratification process. Despite all these advancements, one of the major challenge of using DL in AF23

classification is the availability of training and validation datasets. Although the DL algorithms can directly learn features24

from raw ECG data, it requires large and diverse datasets. The training data diversity helps the models to incorporate all the25

variations in inter/intra-personal ECG morphologies.26

To meet this demand, many Internet ECG datasets such as the MIT-BIH AF Database (AFDB)7, MIT-BIH Arrhythmia27

Database (MITDB)8, PTB-LX9, Computing in Cardiology Challenge 2017 Dataset (CinCDB)10, Open-Access Arrhythmia28

Database (OA-ADB)11, and DeepQ12 have been published. Table 1 provides a summary of these publicly available arrhythmia29

databases. MITDB and AFDB are the earliest available ones and have been used extensively as a benchmark in training and30

evaluating ML/DL-based arrhythmia detection models4, 5, 13.31

Although the aforementioned databases have made a significant contribution for developing and evaluating arrhythmia32

detection models; generalisation and comprehensive performance evaluation of such models under free-living conditions remain33

questionable and face a number of significant challenges4, 13, 14:34

Firstly, as mobile and wearable technology is advancing, wearable ECG devices have become available for longitudinal35

arrhythmia screening under free-living conditions. However, the majority of the current databases are either collected in36

1



Table 1. Technical specifications and ECG annotation statistics of publicly available ECG databases. Freq: Sampling
frequency (Hz); Ch: No. of ECG channels.

Database Ch Freq
(Hz)

No.
samples

Sample
length

Rhythm
classes

No.
subjects Context Remark

AFDB7 2 250 23 10h 4 25 7 continuous, con-
trolled environment

MITDB8 2 360 48 30min 15 47 7 continuous, con-
trolled environment

NSRDB15 2 128 18 24h 1 18 7 continuous, ambula-
tory

DeepQ12 1 250 897 5min 8 299 7 intermittent, con-
trolled environment

OA-ADB11 6 400 2000 30s 15 200 7 continuous, ambula-
tory, patient-operated

CinC201710 1 300 8528 9s to 60s 4 - 7 intermittent, patient-
operated

CACHET-CADB 1 1024 1602 10s 4 24 X continuous, ambula-
tory, patient-operated

controlled in-hospital settings or, in some cases, under the environments where patients are sitting without any motion.37

Therefore, the recordings are relatively clean and lack the ECG morphology changes and confounding artifacts that occur under38

free-living conditions. When the classification models trained on these datasets are applied to ambulatory wearable-based ECG39

recordings, they result in non-trivial false positives due to the degradation in the signal quality16.40

Secondly, the patient’s context, such as physical activity and posture change, food intake (drinks or heavy meal), or mental41

stress, are known to introduce morphological changes in the ECG signal17, 18. Existing databases only provide the raw ECG42

data, while information on the patient’s context during the recording is missing. Recent systematic literature reviews of43

computer-aided arrhythmia analysis highlight that the arrhythmia detection in an ambulatory setting remains challenging and44

prone to mis-classification, without understanding the patient’s context in which the ECG was undertaken4, 19. Even during45

a manual ECG analysis, whenever a cardiologist finds 10 seconds or 30 seconds of ECG segment inconclusive, they often46

look for the longer context of the patient’s ECG and rely on their knowledge about arrhythmia epidemiology20. Therefore,47

the patient’s ambulatory context is essential for avoiding inappropriate classification due to "arrhythmia mimicking artifacts".48

Recent databases like DeepQ Arrhythmia Database (DeepQ)12 have tried to address this problem by providing ECG recordings49

under the following three activity classes viz. sitting, walking, and lying down. These are, however, still a very limited set of50

activities and are recorded under circumstances that are very discordant from the real-world free-living ambulatory settings.51

Thirdly, databases are usually generated from a single centre for a short time period (minutes or hours) on a homogeneous52

group of participants. Due to large variations that exist in the morphologies of ECG waveforms and the lack of diversity in53

current datasets, models trained on such datasets result in a large number of false positives when applied to ECG from different54

user contexts, ethnic characteristics, anthropomorphic features, gender, age group, and time-periods4, 21, 22. For instance, a55

multi-scale convolutional neural networks21 showed a 98.18% accuracy when trained and validated on the AFDB, but its56

accuracy was reduced to 94.93% when applied on a Chinese dataset collected under free-living conditions. Similarly, the model57

by Andersen et al.23 trained on AFDB has an excellent performance in 5-fold cross-validation on AFDB; however, it resulted58

in 4.9% FPR on previously unseen normal sinus rhythm (NSR) database from healthy individuals.59

To complement the existing databases and to address some of the above-mentioned challenges, we present the CACHET-CADB.60

In contrast to the existing databases, CACHET-CADB provides the following unique features:61

• It contains longitudinal wearable based ECG data from arrhythmia patients collected under free-living conditions, thus62

suitable for training and evaluating algorithms aimed at enabling real-time ambulatory ECG monitoring of the patients.63

• Along with the ECG dataset, it also provides contextual data such as activities, body positions, movement accelerations,64

patient-reported events like symptoms experienced, sleep quality, stress level, and food intake. This contextualized65

ECG data can help make the end-to-end DL-based ECG classification models more explainable. Further, identifying the66

algorithm’s source of errors in relation to the patient’s ambulatory context can help in dynamically fine-tune it for those67

false-positives prone/inducing contexts under free-living conditions.68

• Is multi-site and diverse (currently, Denmark and India but will be expanded further).69
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Figure 1. Data collection setup: (a) a chest-mounted single channel wireless ECG monitor collecting ECG and inertial
(movement) measurements, and (ii) the mCardia mobile application for collection of patient-reported data26.

Currently, the CACHET-CADB contains 259 days long contextualized ECG data from 24 patients. It also comprises 160270

annotations of 10-seconds long ECG-waveform, manually annotated by two independent Qualified cardiologists into four71

different heart rhythm classes: AF, NSR, ‘noise’, and ‘other’. The CACHET-CADB is under continuous development, and72

annotations by cardiologists will be added to the database as they become available. The ECG annotation tool will be made73

public to increase the effort of crowd-sourcing the annotation process. Along with the dataset, a set of Python scripts and other74

software tools for data access, visualization, and data processing are available on the CACHET GitHub repository24. The75

dataset is freely available at DTU Data25 at the Technical University of Denmark (DTU).76

Methods77

This section explains the data acquisition process, including ethical considerations, the data collection methods and technology,78

the data specifications, and the annotation process.79

Data acquisition80

Ethical consideration81

The data for the CACHET-CADB was collected in India and Denmark. In Denmark, the study was exempted for ethical approval82

by the Danish Research Ethical Committee because the ECG recordings were only collected for technical purposes, and not to83

be used in a clinical setting (File # H-19071015). In India, the data collection was done with Mahatma Gandhi University of84

Medical Sciences & Technology (MGUMST), Jaipur, and the process complies with MGUMST’s human participant’s guideline85

and regulation as stated by the MGUMST Institutional Review Board (IRB). The approvals were granted on the ground that86

data collection was purely for technology development, and that the data would not be used for clinical diagnosis or treatment87

of the patients.88

Recruitment89

The participants were recruited during their out-patient arrhythmia clinic visits via a general announcement to participate in the90

data collection study. It was also made clear to participants that their participation was purely for research purposes, and the91

collected data would not be used in their ongoing clinical diagnosis or treatment. Preference was given to the participants with92

a known history of paroxysmal AF or high AF risk factors. All participants signed an informed consent form and allowed their93

data to be used and shared publicly after subject identity anonymization.94

Data Collection Method95

We used the mCardia system26, 27 for the data collection. It uses a single-channel chest-mounted wireless ECG Holter96

(the Movisens ECGMove428) and a mobile application for data collection (Figure 1). Participants wore the ECG device97

using two disposable adhesive wet Ag/AgCl electrodes. All data was forwarded to, and stored in the CACHET Research98

Platform (CARP)29, which is a secure and scalable cloud-based infrastructure for health data science hosted at DTU. Each99

participant installed the mCardia mobile application on his/her phone and continuously wore the ECG device for a minimum of100

24 hours and up to 3 weeks. Participants were instructed to change the ECG electrodes daily and fill in the patient-reported101

information (symptoms, stress levels, sleep quality, and food intake) in the mCardia app. Further details on the mCardia system102

and CARP can be found at https://carp.cachet.dk/mcardia/.103
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Figure 2. Overview of data collection and annotation process.

Anonymization and data trimming104

The initial recording length varied from 24 hours to 3 weeks. For better manageability, analysis, and data handling, recordings105

were trimmed and assigned an anonymous ID (see Figure 5). In each record, the first (0th) and the last days are of variable106

lengths, whereas the rest are 24 hours long, starting from midnight.107

ECG annotation process108

Figure 2 shows the process used for annotating the ECG samples in the CACHET-CADB. A DL based AF detection model23
109

was used to process the raw ECG recording. The AF onset and offset timestamps marked by the DL model were stored in CSV110

files. Thereafter, the segments between the onset and the offset were chopped into 10 seconds interval recordings and sent to111

two independent cardiologists for manual annotation via a mobile ECG annotation app. Figure 3 shows the user interface112

of the ECG annotation app used for the manual annotation. The annotation rules were discussed and agreed upon by the113

two cardiologists. A 10-second segment was assigned a label if it contained more than 50% of a particular rhythm type. If114

there were multiple rhythm classes in 10 seconds sample without having a majority (≥50%) of a particular class, then it was115

annotated as “others”. If artifacts in the 10-second signal precluded proper interpretation of the underlying rhythm, then the116

sample was annotated as “noise”. The annotations of the two independent cardiologists were compared for inter-observer117

agreement. If there were disagreement between the two cardiologists, the annotations were discarded. Thus, the final database118

only includes samples where there is an agreement between the two cardiologist’s annotations.119

Processing Contextual data120

The collected contextual data is of two categories: (1) patient-reported data collected via the mCardia app, and (2) sensor-121

generated data which is passively collected from the sensors on the mobile phone and the ECG Movisens device. Table 2122

provides an overview of the types of collected data.123

Patient-reported data124

Patient-reported contextual data was collected when the patient manually enters data during the study period. We collected two125

types of patient-reported context information; (1) experienced events, and (2) daily health reports. The events were registered126

by patients when they experienced any unusual symptoms (e.g., palpitations, heartburn, etc.) during the ECG recording period.127
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Figure 3. Mobile application used for ECG annotation

Table 2. Specifications of the collected data. S: Sensed; PR: Patient-reported; EB: Event-based.

Collected data type Type Data source Sampling rate
ECG S EcgMove4 1024 Hz
3D acceleration S EcgMove4 64Hz
Rotation rate sensor S EcgMove4 64Hz
Pressure sensor S EcgMove4 8Hz
Events PR EcgMove4 & Phone EB
Sleep PR & S Phone 1/Day
Dietary PR Phone 1/Day

It includes details about the type of symptom, its duration, activity during the symptom, and a short note providing more context128

and experience. Health reports were provided daily and comprised of a three short survey on meals (timings and type of meal129

(light, heavy, moderate), self-perceived stress level, and sleep quality (on a scale of 1 to 5). The freestyle comments added by130

patients for further describing the symptoms or events were either in English or in the local vernacular language.131

Sensor-generated data132

The sensed context is passively derived from the on-board sensors (3D acceleration sensor, gyroscope, and pressure sensor)133

of the chest-mounted Movisens ECG device and from the phone’s sensors. Table 2 lists the sensors’ sampling rates. The134

DataAnalyzer Tool30 was used for processing data from the Movisens sensors, and context data such as movement acceleration,135

body position, activity, step count, wear time, energy expenditure, and Metabolic Equivalent for Task (MET) levels were136

derived for an interval of 10 seconds. The movement acceleration, also known as Movement Acceleration Intensity (MAI), is137

a typical physical activity metric that depicts bodily movements’ intensity. The MAI is measured in ‘g’, which is multiples138

of Earth’s gravity (1g = 9.81 m/s2). In the DataAnalyzer Tool, the body positions were classified based on the inclination139

obtained from the 3D accelerometer. Its activity recognition is based on a white-box decision tree on the features extracted140

from the accelerometer and the barometric air pressure data31. The type of recognized activities include unknown, lying, sitting,141

standing, cycling, slope up, jogging, slope down, walking, and not-worn. Similarly, the body positions are classified based on142

the inclination obtained from the 3D accelerometer. The body position classes include unknown, lying supine, lying left, lying143

prone, lying right, upright, sitting/lying, standing, and not-worn.144

Data Records145

The CACHET-CADB includes over 259 days of single-channel contextualized ECG recording from 24 patients previously146

diagnosed with or suspected of the high risk of AF. Besides the patient’s ambulatory contexts, it also contains 1602, 10-seconds147

long annotation samples of 4 different ECG rhythm classes, namely, AF, NSR, noise, and others (anything excluding AF, NSR,148

and noise). A sample of each of these rhythm classes is shown in Figure 4. The CACHET-CADB is freely available on DTU149

Data figshare25 under the name “CACHET-CADB”.150

Figure 5 describes the organization of the records in CACHET-CADB. For better manageability and incorporation of future151

updates, the dataset is split into two main parts: (i) the raw signals (i.e., ECG, 3D accelerometer, angular rate) and (ii) the152
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(a)

(b)

(c)

Figure 4. Figure (a), (b), and (c) show the 10 seconds ECG recordings of AF, NSR, and Noise classes, respectively.

annotations, while keeping the same folder structure inside each part. At the time of drafting this manuscript, the dataset has 24153

records, spanning 259 days of recording from 24 patients of which, 7 were Danish and 17 were Indian. There were 15 males / 9154

females – with an average age of 59, and of which 11 patients had documented one or more AF episodes in past.155

Raw Signals and Metadata156

The raw sensor data is stored in Unisens32 file format. It allows simultaneously multi-sensor data, with synchronous storage157

at different sample rates, and comes with a human-readable meta-file in XML format. As illustrated in Figure 5, for each158

day the unisens.xml file contains the metadata for the raw signals. Table 3 describes these metadata in detail. The general159

metadata information includes the start timestamp, the total recording time (in seconds), and the anonymous user id (same as160

the anonymous id for the entire recording). The patient metadata includes height, weight, gender, location of the ECG sensor,161

and age at the time of recording. The raw ECG, 3D accelerometer, angular rate, and pressure signals are in the ecg.bin, acc.bin,162

angularrate.bin, and press.bin files, respectively. To allow for any future processing and analysis of the recordings, the dataset163

contains the raw signal without any preprocessing or filtering. However, given the recordings’ ambulatory nature, any use of164

the data would probably need to implement baseline correction and removal of other artifacts beyond the normal ECG band165

[0.5–50Hz].166

Annotations and Metadata167

As shown in Figure 5, the annotations follow the same folder structures as the raw signals. For each day, the context.xlsx168

and annotation.csv files contain the contextual and annotation data, respectively. The context.xlsx file contains the patient’s169

ambulatory context for every 10 seconds interval. These contextual data are derived from a 3D acceleration sensor, gyroscope,170

and pressure sensor, as described earlier. Table 4 provides the metadata for these contextual data, where the attributes listed in171

the table are columns in the context.xlsx file. The ‘unit’ column in Table 4 represents the measurement unit of each attribute. The172

remark column provides the label of each subclass within the same column. For instance, ActicityClass has several sub-classes,173
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Table 3. Metadata for the signal files described in the unisens.xml file of each record.

Type Key Data Type Channel Name Description
duration string Total recording time in seconds

General timestampStart string Recording start time
measurementId string Anonymous user id
height string Height in centimeters
weight string Weight in kilograms

Patient & sensorVersion string Recording device version
Device sensorType string Recording device type

age string age at recording in years
sensorLocation string ECG sensors location on body
personId string Anonymous user id
gender string Gender (M/F)

ECG ecg.bin binary ECG I

Resolution: 12 bit,
Input range CM = 560 mV,
DM = +/-5 mV, 3db
bandwidth 1,6 - 33 Hz
Output rate: 1024 Hz

Accelerometer acc.bin binary accX, accY, accZ
3D acceleration sensor
Measurement range: +/- 16 g
Output rate: 64 Hz

Angular Rate angularrate.bin binary
angularRateX,
angularRateY,
angularRateZ

Rotation rate sensor:
Measurement range: +/-2000 dps
Output rate: 64 Hz

Pressure press.bin binary press
Measurement range: 300 - 1100 hPa
Noise: 0,03 hPa
Output rate: 8 Hz

Marker marker.csv integer

Contains indexes of events when the
patient experienced unusual systems
and tapped on ECG Holter.
Divide the index by 64 to get the
event time in seconds from
the start of the recording.
Output rate: 64 Hz
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Table 4. Contextual-data descriptor table. The attributes are the columns of the context.xlsx file in the annotation folder of
each day.

Attribute Unit Remark
Time rel [s] Relative time from start of measurements in seconds
Day rel [d] Number of days from start of measurement
Time rel [hh:mm:ss] Relative time from start of measurement
Date abs [yyyy-mm-dd] Absolute date
Time abs [hh:mm:ss] Absolute time
ActivityClass - Activity Class (0=unknown, 1=lying, 2=sitting/standing, 3=cycling,

4=slope up, 5=jogging, 6=slope down, 7=walking, 8=sitting/lying,
9=standing, 10=sitting/lying/standing, 11=sitting, 99=not worn)

ActivityEnergyExpenditure [kcal/d] Activity energy expenditure (AEE) in kcal/d
Altitude [m] Altitude from barometer
BodyPosition - Body position (0=unknown, 1=lying supine, 2=lying left, 3=lying prone,

4=lying right, 5=upright, 6=sitting/lying, 7=standing , 99=not worn)
InclinationDown [deg] Inclination of sensor axis down against the vertical (0 to 180 deg)
InclinationForward [deg] Inclination of sensor axis forward against the vertical (0 to 180 deg)
InclinationRight [deg] Inclination of sensor axis right against the vertical (0 to 180 deg)
MET MET value directly calculated from regression models
MovementAcceleration [g] MovementAcceleration: Raw acceleration, bandpass filtered, vector

magnitude
NonWearSleepWake - Sleep/Wake detection (0=wake, 1=sleep, 2=not worn)
NonWearTime - Non wear detection (0=worn, 1=not worn)
StepCount [steps] Count of steps per output interval
TotalEnergyExpenditure [kcal/d] Total energy expenditure (TEE = BMR + AEE)
VerticalSpeed [m/s] Vertical speed, calculated from barometer

Table 5. ECG annotation overview showing the class of rhythm types , its code in the annotation.csv file, and the number of
available annotations for each class.

Class Code #
AF 1 747
NSR 2 615
Noise 3 221
Others 4 19
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Figure 5. The structure of the data records in CACHET-CADB. Overall, the database is divided into two major parts; (i) the
raw recordings in binary files and (ii) the contextual information including patient-reported data and the annotations. Each
record is organized according to patient ID first and day in study subsequently.
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to detecting noisy signal 

Figure 6. Analysis of ECG quality, QRS complex and R-peak detection.

such as lying, sitting/standing, cycling, slope up, or jogging. The corresponding subclass code (0, 1, 2...) represents them in the174

activity column of the context.xlsx file. Patient-reported data is provided as a single JSON file in each annotation folder (see175

Figure 5). The JSON file contains two types of data "dailyInfo", and "event". Their metadata are described in Table 6 (a) and176

Table 6 (b), respectively.177

The annotaion.csv file contains the cardiologists’ annotation of hearth rhythms. It contains the following columns: (i) the178

start index of 10 seconds long segment (Start), (ii) the end index of 10 seconds long segment (End), and (iii) the ECG rhythm179

class (Class). Table 5 provides the statistics of each of the annotated rhythm classes and their associated code in the Class180

column of the annotation.csv file.181

Technical Validation182

Quality assessment of ECG annotation183

Although the DL models23 was used for automatic labeling (Figure 3), to ensure the quality and integrity of the rhythm184

annotation, we have released only the annotations that have been manually checked by the two independent cardiologists. A185

100% inter-rater agreement policy is followed. The ECG segments on which there was a disagreement between two cardiologists186

are not included in this release.187
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Table 6. Metadata of patient-entered context data

(a) Metadata of "dailyInfo" field in JSON file.

Field name Description
date_time Day for which the "daily-

Info" is filled
bed_time Bed time
awake_time Wake up time
sleep_quality Self-assessed sleep quality

(1–5)
stress_level Self-assessed stress level (1–

5)
lunch_time Lunch time
lunch_weight Lunch quantity (heavy, mod-

erate, light)
breakfast_time Breakfast time
breakfast_weight Breakfast quantity (heavy,

moderate, light)
dinner_time dinner time
dinner_weight Dinner quantity (heavy, mod-

erate, light)
other_time Time of any other meal/drink
other_weight Meal/Drink quantity (heavy,

moderate, light)

(b) Metadata of "event" field in JSON file representing
patient-reported symptoms that the patient may have experienced
during the recording period.

Field name Description
id Unique id
notes Note describing the unusual experi-

ence/symptoms
labels n/a
source How was the event entered? "Tap":

By tapping on the ECG Holter "Self
input": Manually created in the app

deleteda Was the event deleted? (true/false)
comments n/ab

duration Time in seconds for which symp-
toms lasted

symptom Symptom experienced during the un-
usual event (e.g., “Dizziness”)

activity Patients activity when the unusual
symptoms were experienced

completed Were the details of an event filled
in? True: All fields were completed.
False: Not filled/ Partially filled

reviewed n/a
date_time Time of the event as experienced by

the patient

aThe patient could delete an event e.g., if it was created by accidentally
tapping the ECG device.

bThe patient’s comments are removed for anonymity.

Signal quality assessment188

For testing the validity of the collected ECG data, an ECG signal quality assessment was done using an auto-correlation-based189

noise detector. Subsequently, the Pan Tomkinson algorithm33 was used to calculate QRS complex/R-peaks. The steps used190

in the validation process are shown in Figure 6. As the ambulatory ECG signal tends to get contaminated by noise and other191

artifacts, first, a band-pass [0.5–50Hz] filter was applied, and the baseline was removed. A Savitzky–Golay34 filter followed192

this to smoothen out the data. Thereafter, the signal was chopped into 10 seconds long windows, and an auto-correlation based193

noise detector was applied to detect the noisy signal. Finally, the Pan Tomkinson algorithm33 was used to calculate the QRS194

complexes and the R-peaks for each of these 10 seconds windows. Table 7 shows the number of R-peaks detected and the195

percentage of the noisy signal detected in each record. In the ECG signal, intervals between the R-peak indicate heart rhythm’s196

regularity. These RR intervals (RRI) features have been extensively used in DL-based AF detection models23.197

Although we did identify noise in the dataset, we did not exclude the noise from the database. This was done intentionally198

to allow the CACHET-CADB to reflect a realistic distribution of ECG quality as expected under free-living conditions. ECG199

riddled with confounding artifacts and varying signal quality is expected when performing longitudinal ambulatory arrhythmia200

screening. Therefore, we put forward the CACHET-DB as a resource for designing and evaluating DL-based arrhythmia201

detection algorithms, which work under free-living condition without generating false positives. Moreover, the database can be202

used for creating unsupervised learning methods, which can enable feature extraction representing ECG quality variation in203

ambulatory settings. As already discussed, one of the main challenges with the existing arrhythmia ECG datasets is that they204

are collected in a clinically controlled environment and are relatively clean. Models trained on such clean datasets may result in205

many false-positive cases when applied on ECG collected under free-living conditions that inevitably has low signal quality and206

many artifacts35, 36.207
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Table 7. Signal quality assessments and detection of QRS complex/R-peaks

Record User Id Days No of R-peaks
Signal Duration

(hours)
Noisy Signal

(%)
Non-wear Time

(hours)
P1 a2b3c4@cachet.dk 12 1158069 241.58 7.48 6.15
P2 t1y2u3@cachet.dk 7 673950 139.40 6.47 1.03
P3 q1w2e3@cachet.dk 15 1440323 315.77 8.40 41.08
P4 p1q2w3@cachet.dk 8 739199 173.14 5.80 10.85
P5 b1t2s3@cachet.dk 8 665666 147.97 16.27 25.50
P7 k9v3r7@cachet.dk 12 913892 260.16 12.43 41.91
P6 s1a2n3@cachet.dk 12 1241040 257.34 3.26 8.82
P8 g4v3r7@cachet.dk 22 2895927 479.16 9.90 77.98
P9 c1x2p3@cachet.dk 12 921713 247.78 29.61 82.21
P10 k1x2p3@cachet.dk 16 1297163 359.85 31.72 80.28
P11 v2c3r4@cachet.dk 16 1363671 326.96 12.72 61.26
P12 r4p2n8@cachet.dk 14 1988086 308.91 6.88 6.31
P13 f7c4n6@cachet.dk 19 1964554 412.19 2.65 16.63
P14 j4y9x6@cachet.dk 12 1035832 262.94 29.90 111.36
P15 u3h6c1@cachet.dk 14 1385906 315.49 28.05 79.08
P16 i6t2v4@cachet.dk 17 1567938 359.86 6.29 25.71
P17 z2y4b9@cachet.dk 15 1280062 325.34 6.02 19.18
P18 g2v5x7@cachet.dk 5 431256 92.95 3.23 1.54
P19 m1t2a3@cachet.dk 4 272549 75.22 3.59 2.51
P21 y1t2r3@cachet.dk 8 778148 168.93 10.34 12.10
P23 m1n2b3@cachet.dk 7 762802 160.54 7.24 6.33
PNSR-1 deku_test@cachet.dk 1 105079 24.00 0.49 0.56
PNSR-3 j5f3c2@cachet.dk 1 92134 26.44 27.14 0.00
PNSR-4 w1y3n2@cachet.dk 2 191867 48.00 5.63 2.05
Total 259 25166826 5529.94 726.57

Discussion208

This paper presents the design and development of a contextualised ECG database to support the development and generalisation209

of ECG analysis and arrhythmia detection models. The CACHET-CADB has been developed as a part of the REAFEL37
210

research project, which focuses on building mHealth and DL-based solutions for optimizing diagnosis of AF in the frail and211

elderly population. CACHET-CADB is particularly important for researchers who are working on bringing ECG analysis and212

AF detection on patient-operated wearable ECG into widespread adoption under free-living conditions. The database will be213

further expanded with more recordings and ECG annotation as they become available by following the data annotation and214

storage setup described above.215

The ability to bring arrhythmia detection models in widespread adoption under free-living conditions is limited by the216

lack of a patient-operated ambulatory ECG dataset that truly represents all the confounding contamination expected in such217

conditions. The models trained on benchmark datasets in Table 1 show high performance when tested on the same datasets or218

similar datasets collected under clinical supervision. However, the high classification performances often obtained on these219

datasets are not reproducible when applied to patient-operated ECG data under free-living conditions. The patients-operated220

wearable-based ECG under free-living condition is often contaminated with arrhythmia mimicking artifacts and suffers from221

poor signal quality. The cause of the poor performance under free-living conditions is attributed to the lack of diversity and222

relatively good signal quality of ECG wave forms in these benchmark databases16.223

With wearable technology advancements, single lead portable ECG monitoring has been gained attraction for arrhythmia224

screening under free-living conditions38. Coupling portable patient-operated ECG monitoring with computer-aided ML and225

DL-based classification algorithms can help in real-time and cost-effective longitudinal arrhythmia screening under free-living226

conditions. To achieve high sensitivity and reproducibility under free-living conditions, the CACHET-CADB provides an227

opportunity to train and evaluate arrhythmia detection models on a dataset representing all the ECG morphology changes and228

confounding noise contamination expected in free-living conditions.229
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Figure 7. Explainable deep learning: This Figure shows a contextualized view of a deep learning-based AF detection model’s
performance on a single day of ECG from CACHET-CADB. In 24 hours of ECG under free-living conditions, short segments
of false positive in a model’s output are linked to change in activity, change in body position, and sudden movement
accelerations.
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Context-aware ECG for explainable DL models230

One advantage of CACHET-CADB over the existing database is the availability of patients’ ambulatory context corresponding231

to the recorded ECG. In the absence of patients’ context, the ECG analysis under free-living conditions is prone to mis-232

classification and misinterpretation4. The contextual data can also be used for multi-model input and context-based heuristics to233

dynamically fine-tune the models’ sensitivity and specificity under different user contexts in ambulatory settings. To reduce234

the FPR, algorithms should be made adaptive to the user’s context–i.e., the sensitivity and specificity of algorithms should be235

dynamically adjustable. For instance, in the elderly population, there is a significantly higher prevalence of falls in patients with236

AF39. Suppose an algorithm is applied to elderly patients’ data and if a fall is detected, then the algorithm should factor-in for237

the fall in the dynamic adjustment of its sensitivity and specificity. Similarly, information about AF triggering contexts40 such238

as high stress-level, food-intake (heavy meal), drinks (alcohol, caffeine) can be utilized to make algorithms more sensitive in239

those contexts.240

Furthermore, the contextual data can pave the way for improving the interpretability of ML and DL models41. For instance,241

Figure 7 shows a DL model’s AF classification results, the ‘ground truth’ annotations, and patient’s ambulatory contexts (body242

position, activities, movement acceleration) for 24 hours long record in CACHET-CADB. It can be inferred from Figure 7243

that the model is resulting in more false positives (FP) whenever there is a change in activity, body position, and movement244

acceleration, which is most prominent after 09:00 o’clock. Such information can be made available to a cardiologist for the245

manual inspection of the dataset thereby providing a better insight into when and why the AF detection algorithm has identified246

an AF episode. The information can also be utilized to build post-processing heuristics around these FP prone ambulatory247

contexts. With CACHET-CADB, we aim to provide the DL research community rich longitudinal contextualized ECG data that248

can help build and evaluate models which realistically work on patient-operated ECG from free-living ambulatory conditions.249

Usage Notes250

The design, data-descriptor, and the software tools for using CACHET-CADB are presented and made available for public use.251

When using this database, please cite the current publication. The new data recording and ECG annotations on the existing252

records will be added to CACHET-CADB periodically when they become available; details of the subsequent release will be253

available at CACHET’s website42.254

Code availability255

Visual inspection and editing of records can be done using the UnisensViewer tool http://software.unisens.org/256

download/UnisensViewer/UnisensViewer_Setup.exe. Python library pyunisens (https://github.com/257

Unisens/pyunisens) can be used for reading and editing the signal programmatically. We also provide a basic code exam-258

ple and Jupyter Notebook in Python for using the database https://github.com/cph-cachet/cachet-ecg-db.259

The contextual data file context.xlsx can be loaded and viewed using the panda library (https://pandas.pydata.org/);260

an example code for the same can be found at https://github.com/cph-cachet/cachet-ecg-db. All software261

is open sourced under an MIT license and we welcome pull requests.262
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DeepAware: A Hybrid Deep Learning and
Context-Aware Heuristics Based Model for Atrial

Fibrillation Detection
Devender Kumar, Abdolrahman Peimankar, Kamal Sharma, Helena Dominguez, Sadasivan

Puthusserypady, and Jakob E. Bardram

Abstract— The automatic atrial fibrillation (AF) detection
models trained on RR-interval (RRI) based features usually
achieve a high performance on the standard benchmark
ECG datasets. However, they may result in significant false
positives (FPs) when tested on patient-operated single-
channel ECG data from free-living ambulatory conditions
and in the presence of non-AF arrhythmias. In this paper,
to alleviate such false positive rate (FPR) and to improve
the AF detection performance on free-living ambulatory
ECG, we propose DeepAware – a hybrid deep learning
(DL) and context-aware heuristics-based model for AF de-
tection. It combines the ventricular response (i.e., RRI)
features, atrial activity (i.e., P-wave) features, and a context-
aware-heuristics model to improve the AF detection and
significantly reduces the FPR. The proposed model has
outperformed the state-of-the-arts on the standard bench-
mark ECG datasets. To show the capability of the model,
it has also been evaluated on a private dataset CACHET
Contextualised Arrhythmia Database (CACHET-CADB) from
free-living conditions, on which it achieved a sensitivity
(Se), specificity (Sp), and accuracy (Acc) of 97.94%, 98.39%,
98.06%, respectively. Further, we compared DeepAware’s
performance with the RRI features-based AF detection
model and demonstrated that incorporating atrial activity
features and context-awareness can significantly reduce
the FPR caused by confounding non-AF arrhythmias and
ambulatory context changes. By lowering the FPR, the
DeepAware model can substantially reduce the physician’s
workload of manually reviewing the FPs.

Index Terms— Atrial fibrillation, convolutional neural net-
works (CNNs), deep learning, electrocardiogram (ECG),
health informatics, long short-term memory (LSTM)

I. INTRODUCTION

Atrial fibrillation (AF) is one of the most prevalent types of
cardiac arrhythmias. It is considered a leading cause of stroke
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and other heart-related complications in elderly population [1].
Nearly 2.3 million people in the USA alone are affected by AF,
and this number is likely to increase by 2.5 times by the year
2050 [1]. Early diagnosis and anti-coagulation medication can
help in preventing AF complications [2]. The electrocardio-
gram (ECG) analysis is one of the most inexpensive and non-
invasive ways for AF detection. However, due to its abrupt and
paroxysmal nature, it may be very challenging to detect AF
during routine in-hospital ECG checkups. Thus, a longitudinal
screening in a patient’s natural setting is needed. One of the
most common ways to analyze ECG signals by physicians and
cardiologists is through visual examination of the recordings.
However, it is a very difficult and time consuming task to
analyze such huge amounts of data. Therefore, it is of great
interest to develop reliable software to analyze and interpret
ECG signals to detect cardiac arrhythmias.

Various state-of-the-art algorithms have been introduced in
the literature to automatically detect AF from ECG record-
ings [3]. Most of these algorithms are based on classical ma-
chine learning and feature engineering techniques (e.g., tempo-
ral intervals, wavelet transform, etc.) [4]. Feature engineering
is an essential step in these models to transform raw data into
a suitable representation as inputs for the machine learning
model to distinguish between different cardiac arrhythmias.
Even though feature engineering based algorithms perform
very well in some cases, they face three main challenges:
(1) they require hand-crafted feature extraction by a domain
expert, (2) they are susceptible to noise in ambulatory set-
ting, and (3) they have relatively low generalization on new
data [3]–[5].

In recent years, there have been many breakthroughs in var-
ious applications of DL in the areas such as computer vision,
natural language processing, and health informatics [6]–[10].
In addition, DL has been widely explored to analyze ECG
signals to detect AF in heart disease patients. Various end-
to-end DL models have been introduced for AF detection,
which basically bypass the handcrafted feature engineering
step needed by other machine learning methods [5], [11]–[19].
Wang [14] proposed a convolutional neural network (CNN)
and a modified Elman neural network (MENN) based AF
detection model, which achieved an accuracy of 97.4% on
MIT-BIH AF Database (AFDB) dataset. Similarly, Faust et
al. [13] applied a LSTM model for AF detection on heart
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rate features, which achieved 98.51% accuracy using 10-fold
cross-validation on AFDB dataset. Petmezasa et al. [20] built a
hybrid CNN-LSTM model that utilizes focal loss when dealing
with an imbalance train set. This model also performs well on
AFDB dataset with a high sensitivity and specificity of 97.87%
and 99.29%, respectively.

Despite the promising performance of the above-mentioned
research on the publicly available datasets, applying them for
longitudinal AF screening under free-living conditions still
remains an open challenge for several reasons [3], [21].

Firstly, most of the DL models have been built and evaluated
on the public databases, which are relatively clean and contain
manually corrected/annotated R-peaks [22], [23]. The AF
detection algorithms based on RR-interval (RRI) features are
limited by their assumption of receiving almost perfect R-peak
detection [22]. On the other hand, due to the users’ continu-
ous movements in free-living conditions, the patient-operated
ECG recordings can often be confounded with various AF
mimicking artifacts and noises [24]. Presence of such noises
makes the detection of R-peaks and P-waves cumbersome if
not impossible in some cases. Consequently, this result in
non-trivial false positives and performance degradation for
such models [19], [25]. For instance, in Andersen et al. [5]
the false positive rate increased from 1.7% to 4.5% when
validating the model on an ambulatory database, which only
contains ambulatory normal sinus rhythm (NSR) data from
healthy individuals. Moreover, AF episodes occurrences will
be rare, especially in the low AF burden population, and the
noisy ambulatory recordings can often mimic such events. In
our previous study [26], we showed that an AF detection DL
model [5] trained on the AFDB dataset achieved excellent
performance of around 98% accuracy. However, it resulted in
a larger number of non-trivial false positive cases when applied
on patient-operated ambulatory single channel ECG from free-
living condition. In the same study, we found that nearly
62% of all the false positive cases were correlated with users
ambulatory-context under free-living conditions. These false
positive cases, which were mostly segments of length smaller
than 50 seconds, were associated with three user contexts: (1)
change in activity, (2) change in body position, and (3) sudden
movement acceleration. It has been shown that such incorrect
detection of AF in the longitudinal screening period could lead
to over-diagnosis and patient anxiety [27].

Secondly, to reduce the complexity and achieve real-time
detection, most of the AF classification models are primarily
trained on the RRI based features without atrial activity
analysis. Such models result in higher FPR in the presence of
non-AF arrhythmias such as premature ventricular contractions
(PVCs) and confounding noise in the ambulatory, which also
exhibit irregular RRI characteristics similar to AF [5], [28],
[29]. In a recent study, Tuboly et al. [29] also highlighted
this problem. They showed that in the presence of non-AF
arrhythmias, the numbers of false-positive AF detections are
significantly higher if relied only on RRI features. Further-
more, Oster et al. [22] too pointed out that AF detection
models trained only on RRI (heart’s ventricular response)
features are bound to result in high FPR on ECG from free-
living conditions [22]. Jalali et al. [30] have tried to address

the problem of AF misclassification due to the presence of
PACs by using sensitivity and orthogonality constraints on
a Residual Network (ResNet)’s cost function. They focused
on detecting the irregularities before the AF onset that can
indicate the onset of AF. Although this approach showed
superior performance in the presence of PACs, the generality
of such a model under-free living conditions with confounding
noise and other artifacts remains unexplored.

In this paper, to reduce the FPR in longitudinal AF detection
under free-living conditions and in the presence of confound-
ing non-AF arrhythmias, we propose DeepAware – a hybrid
multi-fusion based end-to-end AF detection model. The model
is trained using both atrial activity and ventricular activity
(i.e., RRI) based features. The proposed DeepAware model
combines two of our previous algorithms as sub-models,
which are introduced in [5] and [31]. Additionally, a context-
aware heuristics (CAH) model is also developed in DeepAware
model to analyzes patients’ ambulatory contextual data. The
context-aware heuristics module specifically enhances the AF
detection results under free-living ambulatory conditions.

DeepAware model is validated successfully on several
datasets, which shows its high generalizability. Moreover, the
main differences between DeepAware and other state-of-the-art
algorithms are the capability of the proposed model to reduce
the number of false positive cases:

1) In the presence of many confounding non-AF arrhyth-
mias.

2) Under free-living ambulatory conditions where con-
founding artifacts mimic AF.

It should be mentioned that the DeepAware model shows
promising results in longitudinal AF screening under free-
living conditions, which helps reduce the need to examine
false-positive cases by physicians while preserving high sen-
sitivity.

The remainder of this paper consists of 5 sections. Sec-
tion II provides the methodology of the proposed algorithm.
In Section III, the proposed DeepAware model is described in
details. The results are presented and discussed in Section IV.
Section V presents the limitations and future work, followed
by the conclusion in Section VI.

II. MATERIALS AND METHODS

A. Databases
In this study, six databases were used to train and val-

idate the performance of the proposed model, which in-
cludes four PhysioNet databases such as MIT-BIH AF
Database (AFDB) [32], QT database (QTDB) [33], MIT-
BIH Arrhythmia Database (MITDB) [34], and two in
house databases named CACHET Contextualised Arrhythmia
Database (CACHET-CADB) and CACHET NSR Database
(CACHET-NSRDB). Table I presents the technical specifica-
tions of these six databases.

The QTDB contains 105 recordings of 15 minutes each with
a sampling frequency of 250 Hz, and the annotations include
onset, peak, and offset labels of P, QRS, T, and U waves [33].
Likewise, AFDB includes 25 long-term ECG recordings of
patients with paroxysmal AF. Each recording is nearly 10
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TABLE I: Technical specifications of databases: Ch: No. of ECG channels, Freq: Sampling frequency, NS: Number of unique
subjects in the recording, TR: Total number of records.

Database Ch Freq (Hz) TR Single
Record Length

Total
Duration AF Duration h(%) Unique

Rhythms NS Contextual
Data

AFDB 2 250 23 10h 234.3h 93.40 (39.87%) 4 25 7
MITDB 2 360 48 0.5h 24.07h 2.16 (8.97%) 15 47 7
NSRDB 2 128 18 24h 437.5h 0 (0%) 1 18 7
CACHET-CADB 1 1024 1602 10sec 4.45h 2.07 (46.6%) 4 24 3
CACHET-NSRDB 1 1024 10 24h 240 h 0 (0%) 1 10 3
QTDB 2 250 105 15min 26.25h n/a n/a 105 7

hours long and includes two channels of ECG collected at
a sampling frequency of 250 Hz and 12-bit resolution [32],
[35]. MITDB is sampled at 360 Hz and comprises 48 ECG
records of 30 minutes long from 47 patients. Its annotations
files include 14 different rhythms classes [34], [35]. On the
other hand, MIT-BIH NSR Database (NSRDB) [35] contains
18 long-term two channels ECG from healthy subjects, which
are mostly in NSR without any significant arrhythmias. The
NSRDB is digitized at a sampling rate of 128 Hz.

The CACHET-CADB and CACHET-NSRDB are both in
house databases, which contain patient operated single-channel
contextualised ECG from free-living conditions. They are sam-
pled at 1024 Hz and 12-bit resolution. Beside the ECG record-
ings, the patient’s ambulatory contextual information such as
activities, body positions, and movement accelerations are also
provided with these two databases. These contextual data are
obtained by processing the raw accelerometer, gyroscope, and
pressure sensor of the chest-mounted ECG Holter for every 10
seconds interval. There are 1602 ECG records of 10 seconds
length from 24 subjects in the CACHET-CADB. Each record
belongs to one of the four classes, namely AF, NSR, noise, and
‘others’ class. On the other hand, CACHET-NSRDB contains
10 long-term normal sinus rhythm ECG records. Almost all
the recordings in CACHET-NSRDB are 24 hours long. Both
CACHET-CADB and CACHET-NSRDB were mainly used for
evaluating the impact of context-aware heuristics (section III-E
) on AF detection under free-living conditions.

B. Deep learning theory
Deep learning enables computational models to learn useful

features directly from input data without any needed prior
knowledge to engineer the features [36]. It has enhanced
the state-of-the-art in domains such as image and speech
recognition, natural language processing, drug discovery, and
genomics [6], [36]. In recent years, deep learning has been
successfully applied for the detection of AF and other type of
arrhythmias [19], [37], [38].

The proposed DeepAware algorithm in this study combines
two deep learning models, which were introduced in our
previous studies [5], [31]. The first model is a combination
of CNN and long-short term memory (LSTM) layers, which
takes the heart rate variability (ventricular response) i.e., RR-
intervals as inputs [5], [39]. It is denoted as RR-Net in the
Fig. 2. The seconds model is likewise a combination of CNN
and LSTM layers, which is used for p-wave detection from
heart beats. The second model is called DENS-ECG [31]. As
shown in Fig. 2, there are three layers of CNN followed by one

LSTM layer. DENS-ECG takes raw ECG signals and outputs
the number of detected p-waves. The output of these two
models is combined with the context-aware heuristic model
to detect the AF rhythms.

1) CNN layer: The CNN [40], [41] have been proven very
effective in pattern recognition tasks. CNNs are capable of
exploiting both spatial and temporal patterns in the data [36].
To achieve this, CNNs follow four key ideas, which are:
1) local connections; 2) shared weights for convolution pro-
cess; 3) create large number of filters; and 4) reduce the
network complexity as much as possible. Besides input and
output layers a typical CNN structures consist of one or
more connected convolutional layers, pooling layers, ReLU,
and normalization layers. Fig 1 depicts the CNN structure
with input, convolution, and pooling layers. In 1D-CNNs for
analyzing ECG signals, various filters are generated by sliding
a fixed window over the ECG record. This process is called
convolution and the size of window is known as kernel size
(ksize). The weights of these kernels and the overall bias is to
be learned during the training process. It should be noted that
the weights of the kernel are fixed for each filter map [42].
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Fig. 1: CNN structure with input, convolution, and pooling
layers

2) LSTM layer: Recurrent Neural Networks (RNNs) are
specially designed to handle sequential and time-series data.
RNNs can capture dependencies in sequential information very
efficiently. However, it has been shown in the literature that
learning long-term dependencies are very challenging [43]. On
the other hand, the problem of unstable gradient can be solved
by LSTM networks, which are a special type of RNNs. LSTM
networks can handle long-term dependencies [44]. As shown
in Figure 3, a LSTM block has three main parts: 1) input
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gate (it), 2) forget gate (ft), and 3) output gate (ot). Forget
and input gates control the flow of information removal and
addition to the memory block as follows:

f(t) = σ(uT
f at +wT

f ht−1 + bt), (1)

i(t) = σ(uT
i at +wT

i ht−1 + bt), (2)

where at is the output from the previous layer and is the input
sequence to the LSTM block at time step t, and ht−1 is the
output sequence of the LSTM block at time t−1. The trainable
parameters of the LSTM block are wf , uf , wi, ui, bf , and

bi, which are weight vectors and bias terms. The memory of
a LSTM block, ct, is updated as follows:

ct = ftct−1 + itc̃t, (3)

where
c̃t = tanh(bc + uT

c at +wT
c ht−1). (4)

Consequently, the output of the LSTM block is generated
by:

ht = ot tanh(ct), (5)

where
ot = σ(wT

o at + uT
o ht−1 + bo). (6)

In (6), uo and wo are the weight vectors and bo is the bias
of the output gate. It can be seen from (5) and (6) that
LSTM is capable of keeping or forgetting the existing memory
efficiently [45].

Bidirectional LSTM is a variant of LSTM, which unlike
LSTM can process the sequential time-series in both forward
and backward directions with two separate hidden layers. Bidi-
rectional LSTM have been found very useful in several ECG
classification algorithms [5], [46]. In our proposed DeepAware
algorithm, bidirectional LSTM has been used in both DENS-
ECG and RR-Net models (Figure 2).

III. DEEPAWARE ARCHITECTURE

Fig 2 illustrates the flowchart of the proposed DeepAware
algorithm. It comprises of six main components: (1) ECG data
preprocessing, (2) segmentation, (3) RR-Net, (4) DENS-ECG
model for the p-wave count, (5) the context-aware heuristic
model, and (6) the AF decision box. In this section, all these
six components will be described in detail.
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A. Data preparation and pre-processing

As shown in Figure 2, data preparation and pre-processing is
the first step. The baseline wanders and high-frequency noises
were removed using a band-pass (0.5–40 Hz) filter. Then, the
ECG signals were smoothed by applying a Savitsky-Golay
filter [47]. It should be noted that, in some databases like
AFDB, MITDB, and NSRDB, the R-peak locations are already
available within the database, whereas, for CACHET-CADB
and CACHET-NSRDB, the Pan–Tompkins algorithm [48] was
used for finding R-peaks locations.

B. Segmentation

The RRIs and the filtered ECG signal obtained in the
previous step are segmented into a window length of 30
RRIs. The sliding window has an overlap of 10 RRIs. The
segmented windows (30 RRIs) are provided as input to the
RR-Net model. The corresponding ECG segments, which has
the same size as 30 RRIs, was fed simultaneously as input to
the DENS-ECG model. Similarly, the CACHET-CADB and
CACHET-NSRDB databases, which include the information
about the user’s context such as activity, body position, and
movement acceleration data, were also segmented into time-
duration equal to that of 30 RRIs.

C. RR-Net

Irregular RRIs is considered as one of the strong indications
of AF in ECGs. The RR-Net model takes the windows of
RRIs of size 1× 30 as inputs. The model is a combination of
two convolutional layer followed by a LSTM layer [5]. The
convolutional layers extract the features from the RRIs, which
are used by the LSTM layer afterwards. The first convolutional
layer uses a kernel of size 5 (Ksize = 5) and outputs 60
features. The input sequences are zero-padded to preserve the
temporal dimensionality. The outputs of the first convolutional
layer are considered as inputs to the second convolution layer,
which has a kernel size of 3 (Ksize = 3). The second
convolutional layer generates more abstract features. Similar
to the first layer, zero-padding is also applied to preserve
the temporal dimensionality. As depicted in Figure 2, a max
pooling layer is applied after the two convolutional layers,
which has a kernel size of 2 (Psize = 2) with strides of two.
The pooling layer results in reducing the temporal dimension
of the inputs by half, which is an essential step for bringing
down the complexity before the LSTM layer. The output of the
pooling layer is fed into the bidirectional LSTM layer consists
of nunits = 100 hidden units. The output of LSTM is fed into
the classification layer with a sigmoid neuron. The sigmoid
neuron’s output can be considered a posterior probability of
the degree of irregularity for the i’th RRIs (input sequence).
These probabilities is finally converted to a binary output of
RR-Net model as follows:

RR-Net(i) =

{
1, if p(yi = irregular|xi, RR-Net) ≥ 0.5,

0, otherwise,
(7)

where RR-Net(i) is the predicted irregularity for the i’th RRIs
segment and the probability threshold is set to 0.5. As shown in
Figure 2, the output of RR-Net is further used by the decision
box.

D. DENS-ECG model

The DENS-ECG model is a combination of three convolu-
tional layers and a dropout layer followed by two BiLSTM
layers [31]. The 1D convolutional layers extract high abstract
features from ECG segments. The two deep LSTM layers is
used to process the extracted features by the previous 1D
convolutional layers. The three convolutional layers use a
kernel size of 3 (Ksize = 3) and the number of filters (feature
maps) for the three successive layers are 32, 64, and 128,
respectively. In addition, zero padding is applied to maintain
the same dimension in the input and convolutional layers. For
example, the output of the third convolutional layer is 128
feature maps, which are then used as inputs for the first LSTM
layer. The corresponding number of hidden units (nunits) are
250 and 125 for the two LSTM layers, respectively. Finally,
The output of the second LSTM layer is fed into a dense
layer, which generate posterior probabilities for the P-, QRS,
T-, and No-wave segments of the ECG signals. As presented
in Figure 2, the number of the P-waves detected by DENS-
ECG model is provided to the decision box. It is worth noting
that the dropout layer after the third convolutional layer helps
preventing the over-fitting problem during the training phase
of the model. The dropout probability is set to 0.2, which
means 20% of the units is set to zero at each training step.

The absence of P-waves for the i’th ECG segments is
computed as follows:

DENS-ECG(i) =

{
1, IfPcounts ≤ 15 for 31 heartbeats (30 RRIs),
0, otherwise,

(8)

where DENS-ECG(i) is the predicted P-wave for the i’th RRIs
segment and Pcounts is the number of P-waves detected by the
DENS-ECG model for the i’th ECG segment as the threshold
is set to 15. As shown in Figure 2, the output of DENS-ECG
is further used by the decision box.

E. Context-Aware Heuristics

The context-aware heuristics (CAH) model is based on our
previous work [26] in which we analyzed the relationship
between the false positive rate and user’s context. Further
analysis of false-positive cases using contextual data con-
cluded that the vast majority (∼99%) of false-positive cases,
which have episodes shorter than 50 seconds, were associated
with three main contexts: 1) change of activity; 2) change in
body position (especially during laying/sleep); and 3) sudden
movement acceleration.

The CAH model evaluates if there is a change in user’s
context during a specific 30 RRIs segment or its preceding
segment. As shown in Figure 2, the CAH model assigns a
binary output to detect whether a context change is detected
with the current or previous RRI input window. Any identified
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context changes result in a non-AF episode detection for the
corresponding RRIs segment, which is done as follows:

CAH(i) =

{
0, if context change detected,
1, otherwise,

(9)

where CAH(i) is the prediction for the i’th RRIs segment.

F. The decision box
As depicted Figure 2, the outputs of the three models (RR-

Net, DENS-ECG, and Context-Aware Heuristics) are com-
bined using the decision box. This is performed as follows:

D̂(i) =

{
RR-Net(i) ∧ DENS-ECG(i), if context not available,
RR-Net(i) ∧ DENS-ECG(i) ∧ CAH(i), otherwise,

(10)

where D̂(i) is the final binary classification for the ith input
sequence.

IV. RESULTS AND DISCUSSION

Two publicly available datasets, the AFDB and QTDB were
used for training the RR-Net and DENS-ECG sub-models,
respectively. First, a 10-fold cross validation technique [53] is
applied to train the model. Then, it is evaluated on two public
(MITDB and NSRDB) and two in house datasets (CACHET-
CADB and CACHET-NSRDB). The details of these datasets
are available in Table I. Specifically, the MITDB dataset
consists of 13 other types of arrhythmias. The performance
of the model on MITDB indicate its generalizability in the
presence of PVCs and other non-AF arrhythmias. On the
other hand, both NSRDB and CACHET-NSRDB datasets
only contain normal rhythms, which are used to evaluate
model’s performance and expected FPR on healthy subjects. In
addition, the CACHET-NSRDB and CACHET-CADB datasets
contain user’s contextual information during the ambulatory
ECG under free-living conditions. These two datasets are
specifically used to examine the effectiveness of the context-
aware heuristics model in reducing the FPs induced by the
change in user ambulatory contexts.

All the individual sub-modules of DeepAware (Figure 2)
were built in python 3.7 using Tensorflow 2.4.1 framework.
The training was done on macOS 10.15.7 with 16 GB RAM,
Dual-Core Intel Core i7 processed and an Intel Iris Plus
Graphics 650 1536 MB graphics card. The metrics used for
evaluating the performance of DeepAware and the obtained
results on each dataset are described in the following sections.

A. Model Evaluation Metrics
Classification systems are usually evaluated by their capa-

bility of correctly classifying new samples. The performance
of the binary classification problems are evaluated using a
confusion matrix as given in Table III.

Average accuracy is one of the most commonly used metrics
to evaluate the performance of classification models, which
can be calculated as:

Acc =
TP + TN

TP + TN + FP + FN
. (11)

In addition, other well-known metrics can be derived from
Table III to report the performance of classifiers, which are
given as follows:

Se =
TP

TP + FN
. (12)

Sp =
TN

TN + FP
. (13)

FPR =
FP

FP + TN
. (14)

where Se, Sp, and FPR are sensitivity, specificity, and false
positive rate, respectively.

B. DeepAware performance on public datasets and
Comparison with the state-of-the-art

Table II compares the performance of the proposed Deep-
Aware model with other state-of-the-art models on the AFDB,
MITDB, and NSRDB datasets. Figure 4a and 4b also show
the confusion matrices of the proposed DeepAware model
on AFDB and MITDB datasets, respectively. The DeepAware
model clearly outperforms the state-of-the-art algorithms on
AFDB and it is generalized enough to perform well on unseen
datasets such as MITDB and NSRDB. It archived a sensitivity,
specificity and accuracy of 98.27%, 98.84%, and 98.62%,
respectively, on AFDB dataset using a 10-fold cross-validation.
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Fig. 4: Confusion matrix of: (a) AFDB, (b) MITDB. The
numbers are in percentage

The proposed model also achieved a sensitivity, specificity
and accuracy of 93.05%, 91.67%, and 91.82% on MITDB
dataset, respectively. The proposed DeepAware model im-
proved the reported specificity and accuracy in [5] on MITDB
dataset by 5.63% and 4.42%, respectively, at the cost of
5.91% reduction in sensitivity. It should be mentioned that
the performance of the DeepAware model on MITDB dataset
indicates its robustness in the presence of PVC/VPC beats and
non-AF arrhythmias. The ectopic beats and non-AF arrhythmia
resemble the AF in terms of irregularity in the RR intervals,
thereby causing more FPs in AF detection models [29], [54],
[55]. For example, in [5] (see Table II), despite high speci-
ficity on AFDB dataset, model’s specificity on the MITDB,
which has 14 other types of non-AF arrhythmias, has reduced
drastically to 86.04%.
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TABLE II: Comparison of Deep Aware algorithm with other state-of-the-art models on AFDB, MITDB, and NSRDB datasets.
All the results are in percentage.

Algorithm Methods Features Ch AFDB MITDB NSRDB
Se Sp Acc FPR Se Sp Acc FPR Sp FPR

[49] CNN,
BLSTM

RRI,
Heartbeat
Sequences

1 99.93 97.03 96.59 - - - - - - -

[50] CNN MFSWT 1 74.96 86.41 81.07 - - - - - - -

[25] CNN SWT,
STFT 1 98.79 97.87 98.63 - - - - - - -

[51] CNN
RRI,

F-wave frequency
spectrum

1 97.4 96.2 97.3 - - - - - - -

[52] CNN,
RCN Raw ECG 2 94.28 94.91 94.59 - - - - - - -

[18] MCNN Instant Heart
Rate Sequence 2 98.22 98.11 98.18 - - - - - - -

[5] CNN,
BLSTM RRI 2 98.17 96.29 97.1 3.71 98.96 86.04 87.4 13.96 95.01 4.99

DeepAware CNN,
BLSTM

RRI,
Raw EEG,

Context
1 98.27 98.84 98.62 1.16 93.05 91.67 91.82 8.33 98.47 1.53

Ch: Number of ECG channels; MFSWT: Modified Frequency Slice Wavelet Transform; MCNN: Multi-Scale CNN; IHR: Instant Heart Rate Sequence;
RCN: Recurrence Complex Network

TABLE III: Confusion matrix

Predicted positive Predicted negative
Actual positive True positive (TP) False negative (FN)
Actual negative False positive (FP) True negative (TN)

Furthermore, the DeepAware model has been generalized
well to perform better on NSRDB dataset compared to other
state-of-the-art models. As it can be seen in Table II, the
proposed DeepAware model improved the specificity reported
in [5] by 3.57%.

C. DeepAware performance on contextualised ECG
datasets

The context-aware heuristics model was evaluated on two
in house CACHET-CADB and CACHET-NASRDB datasets,
which are patient-operated contextualized ECG datasets under
free-living conditions. As reported in Table IV, the proposed
DeepAware model has achieved a sensitivity, specificity, and
accuracy of 97.94%, 98.39%, 98.06% on CACHET-CADB
dataset, respectively. Figure 5 shows the confusion matrix
of DeepAware model on CACHET-CADB dataset. Similarly,
Table V reports the performance of the DeepAware model on
CACHET-NSRDB dataset. The average FPR for all the records
in Table V is 1.76%. As given in Table V, in general, the
proposed DeepAware model outperforms the RR-Net model
on CACHET-NSRDB dataset.

TABLE IV: Performance on CACHET-CADB.

Measure CACHET-CADB
RR-Net DeepAware

Se (%) 99.63 97.94
Sp (%) 90.32 98.39
Acc (%) 97.22 98.06
FPR (%) 9.68 1.61

Additionally, a comparison between the performance of RR-
Net and DeepAware models in Table IV and Table V on
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Fig. 5: Confusion matrix of CACHET-CADB. All number are
in percentage.

CACHET-CADB and CACHET-NSRDB confirms the positive
effect of the context-heuristics approach to lower down the
FPR on patient-operated ECG under free-living conditions.

TABLE V: Performance on CACHET-NSRDB. Each record
consists of 24 hours long contextualised ECG under free living
conditions from healthy individuals.

Record Inputs No. R-peaks RR-Net DeepAware
Sp FPR Se FPR

1 5714 114319 89.1 10.9 98.41 1.59
2 5906 118156 88.52 11.47 95.54 4.45
3 3998 80037 89.37 10.63 99.39 0.61
4 3535 70733 91.85 8.15 99.8 0.2
5 1429 28634 97.06 2.93 99.02 0.8
6 4123 82565 82.77 17.23 98.16 1.84
7 5388 108046 95.36 4.64 96.82 3.18
8 5959 119276 80.86 19.13 96.29 3.71
9 4600 92173 94.043 5.95 99.54 0.46
10 5017 100396 95.25 4.7 99.36 0.76
Inputs No.: Number of (30x1) input windows

On CACHET-CADB, as compared to RR-Net, DeepAware
has improved the specificity and reduced the FPR by around
8% at the cost of a 1.69% reduction in the sensitivity. Simi-
larly, on CACHET-NSRDB, the average FPR has been reduced
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by 7.81%. Furthermore, as CACHET-NSRDB only contains
subjects having normal sinus rhythms, the performance of
DeepAware on CACHET-NSRDB is a good indication of
expected FPR in healthy and low AF prevalence subjects under
free-living conditions.

D. AF detection with and without atrial activity analysis
on various datasets

Table VI compares the performance of RR-Net and Deep-
Aware model on MITDB and NSRDB datasets, which signifies
the impact of including atrial activity analysis (i.e P-wave de-
tection using DENS-ECG model) in AF detection algorithms.
These results are in consistent with the findings in [29], which
also showed that taking atrial activity analysis features into
account can reduce the false positive rate of RRI based models
significantly.

As given in Table VI, including atrial activity feature in
the proposed DeepAware model (using DENS-ECG model),
reduced the FPR by 4.57%. It should be noted that respiratory
sinus arrhythmia, which is a natural response of the healthy
heart, can be misclassified as AF without the analysis of
atrial activity. This false diagnosis usually occurs in the young
population with a low prevalence of AF [29]. It is also
important to highlight that existing literature on deep-learning-
based AF detection has limited coverage of examining the
impact of non-AF arrhythmias (i.g, sinus arrhythmia) on FPR
and specificity of AF detection algorithms.

TABLE VI: Comparison of the classification performance be-
tween RR-Net and DeepAware model on MITDB and NSRDB
datasets.

Measure MITDB NSRDB
RR-Net DeepAware RR-Net DeepAware

Se [%] 97.74 93.06 - -
Sp [%] 87.10 91.67 95.53 98.47
Acc [%] 88.22 91.82 - -
FPR [%] 12.90 8.33 4.47 1.53

E. Performance improvement by context-aware
heuristics model under free-living ambulatory conditions

Figure 6 shows a typical scenario of an ECG signal captured
under free-living ambulatory conditions. The irregularity in
RRI, which is induced by a change in the user’s ambulatory
contexts, may lead to an AF diagnosis. Such RRI irregularities
on context change are either heart’ natural response to change
or could be due to motion artifacts. The irregularity induced by
a change in the context is usually short (30-60 seconds) [26].
The context-aware heuristics part in the proposed DeepAware
model helps identifying whether the RRI irregularity detected
by RR-Net is in fact due to the heart diseases or it is just a
change in the user’s ambulatory context. The impact of the
context-aware heuristics (CAH) model in reducing the FPR
under free-living ambulatory conditions can be observed in
both Table IV and Table V.

Reguler RRIReguler RRI

RR irregularity induced by sudden movement

Angular rate

Accelerometer

ECG

Fig. 6: An example of irregular RRI caused by changes in
user’s ambulatory context, which resembles an AF episode.
The single lead ECG signal along with accelerometer and
angular rate are shown.

V. LIMITATIONS AND FUTURE WORK

The presented DeepAware model has two main limitations
that require further improvements. First, compared to RRI
based model such as RR-Net model, the proposed DeepAware
model is computationally expensive. The RR-Net can classify
24 hours of ECG in ≤ 1 minute, whereas it takes more than
30 minutes for DeepAware to analyze the same amount of
the data in a non-GPU computing environment. Therefore, it
may not be straightforward to deploy this model in resource-
constrained wearable devices. However, the DeepAware model
will be more suitable to be used in a cloud computing
environment.

Secondly, following the limitation of DENS-ECG model
in detecting inverted P-waves, the DeepAware model may
encounter more FPs in the presence of such ECG morphology
with inverted P-waves. To overcome this, the DENS-ECG
model can be trained on a dataset with higher number of
inverted P-waves morphology, which is currently missing in
QTDB [33].

VI. CONCLUSION

This article presented a hybrid end-to-end AF detection
algorithm, named as, DeepAware, by combining DL and
context-aware heuristics. The model receives three different
inputs: (1) RRIs, (2) raw ECG signals, and (3) patient’s am-
bulatory context, and it outputs the binary classification of AF
and non-AF rhythms. Unlike most state-of-the-art, the Deep-
Aware model has been evaluated on five different datasets,
four of which are unseen to the model during the training
phase. The proposed DeepAware model achieved better AF
detection performance on public datasets than the state-of-the-
art and, most importantly, on the patient-operated ambulatory
mobile ECG from free-living conditions. The performance
improvement by the context-aware heuristics model highlights
the capability of context-awareness to enhance AF detection.
We also demonstrated that only relying on RRI features for AF
detection is problematic and leads to high false positive rate,
especially in the presence of confounding arrhythmias (i.e.,
atrial flutter, PVCs, atrial sinus arrhythmias), and ambulatory
motion artifacts (from context change). The DeepAware model
can significantly reduce the workload requiring the manual
verification of the false positives in a clinical setting for
longitudinal screening.
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List of CUMACF

Questionnaires in
mCardia’s usability

and feasibility study



List of CUMACF (CACHET Unified Methodology for Assessment of Clinical Feasibility)  Questions used
Questions

Q1 Overall, I would find the system useful in home based longitudinal ECG collection for arrhythmia 
screening

Q2 I would use mCardia daily basis as instructed
Q3 Using mCardia would increases the quality of communication b/w me and my doctor
Q4 Using mCardia would reduce recall bias in reporting my symptoms during screening period

Q5 mCardia would help me in keeping track of my daily activeness and unusual symptoms and 
help me understand my symptoms better 

Effort Expectancy
Q6 Overall, I would be satisfied with how easy it is to use mCardia App

Q7 My interaction with mCardia would be clear and understandable.
Q8 It would be easy for me to learn to use mCardia App
Q9 I would find mCardia easy to use
Q10 I would be skillful at using mCardia

Q11 The information (such as [error messages | help | messages | guidelines | tutorials | …]) 
provided with mCardia are clear and useful

Q12 The interface was effective in helping me complete the task [events entry]

Q13 mCardia was pleasant to use

Q14 mCardia has all the functionalities that I expect it to have

Social Influence
Q15 My doctor thinks that I should use mCardia

Q16 My family [spouse | children | parents | ...] think that I should use mCardia

Facilitating Conditions
Q17 I have the resources necessary to use mCarida app

Q18 I have the knowledge necessary to use mCardia app

Q19 A specific person should be available for assistance with mCardia if I face any difficulty with 
mCardia App
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