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Summary

Ultrasound localization microscopy (ULM) can surpass the spatial resolution limit of
conventional ultrasound imaging by accumulating centroids of MBs injected into the
bloodstream in one image frame. However, there is a trade-off between the resolution and
data acquisition time. For accurate localization, low concentrations of diluted MBs are
commonly used. That limits the number of detectable MBs, and the long data acquisition
time is thus required. This Ph.D. project aims to localize high concentrations of MBs
using data-driven deep learning methods.

Initially, localizing scatterers from radiofrequency (RF) channel data has been in-
vestigated since point spread functions (PSFs) of closely spaced scatterers overlap each
other in beamformed ultrasound images. Convolutional neural networks (CNNs) were
trained with simulated ultrasound data and non-overlapping Gaussian confidence maps
for stable training. The performance was evaluated in the simulated test data and phantom
measurements, showing that scatterers closer than the resolution limit of delay-and-sum
(DAS) beamforming can be localized.

Next, a sub-pixel localization method using a CNN on the beamformed ultrasound
images has been studied. Sub-pixel localization was achieved by fitting Gaussians in the
extended non-overlapping Gaussian confidence maps. That allows utilizing computational
resources efficiently as no additional upsampling is required. In a phantom experiment at a
high MB concentration, the sub-pixel CNN localization method resolved a pair of channels
spaced 22 µm away while centroid detection failed. Sub-pixel CNN localization was also
tested on in vivo data and resulted in estimated MBs spaced closer than a wavelength.

Lastly, model-based neural networks for ULM have been investigated. The model-
based neural networks are designed based on mathematical foundations. Hence, compared
with the model-agnostic data-driven methods, fewer learning parameters are required.
The few learning parameters allow a short training time with a small number of data,
good generalization, and fast inference speed. Deep unfolded ULM, which localizes the
overlapping MBs using a model-based neural network, has shown comparable results to
the fully data-driven methods on simulated and measured data. In addition, task-adaptive
beamforming for MB localization has been investigated. By jointly optimizing a deep
beamformer and localization network, ultrasound images tailored for MB localization
were able to be obtained, and thus, the performance of deep unfolded ULM increased.
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Resumé

ULM kan overgå grænsen for rumlig opløsning ved konventionel ultralydsbilleddannelse
ved at akkumulere centroider af mikrobobler (MB’er), der injiceres i blodbanen. Dog
er der en afvejning mellem rumlig opløsning og dataindsamlingstid. Ofte anvendes lave
koncentrationer af MB’er for at opnå nøjagtig lokalisering. Det begrænser antallet af
detekterbare MB’er, og den lange dataindsamlingstid kræves derfor. Dette Ph.D. projekt
sigter mod at lokalisere høje koncentrationer af MB’er ved hjælp af datadrevne deep
learning metoder.

Først er lokalisering af scatterers fra radiofrekvens-kanaldata blevet undersøgt, da
punktspredningsfunktioner (PSF’er) af scatterers tæt på hinanden overlapper hinanden i
beamformede ultralydsbilleder. Convolutional Neural Networks (CNN’er) er blevet trænet
med simulerede ultralydsdata, og ikke-overlappende Gaussiske confidence maps for mere
stabil træning. Ydeevnen blev evalueret i de simulerede testdata og fantommålinger, der
viser, at scatterers, der er tættere på hinanden end grænsen for rumlig opløsning ved DAS
beamforming, kan lokaliseres.

Dernæst er en sub-pixel lokaliseringsmetode, ved anvendelse af en CNN på de beam-
formede ultralydsbilleder, blevet undersøgt. Sub-pixel-lokaliseringen blev opnået ved at
passe Gauss kurver på de udvidede ikke-overlappende Gaussiske confidence maps. Dette
gør det muligt at udnytte beregningsressourcer effektivt, da der ikke kræves yderligere
opsampling. I et fantomeksperiment med en høj MB-koncentration kunne sub-pixel CNN-
lokaliseringsmetoden bestemme to kanaler, der var anbragt 22 µm væk, mens centroid-
detektion mislykkedes. Sub-pixel CNN-lokalisering blev også testet på ’in vivo-data og
viste estimerede MB’er, der var anbragt tættere på hinanden end bølgelængden.

Endelig er model-based neural networks til ULM blevet undersøgt. De model-based
neural networks er designet ud fra matematiske fundamenter. Derfor kræves der færre
indlæringsparametre sammenlignet med de model-agnostiske datadrevne metoder. De få
læringsparametre tillader en kort træningstid med et lille antal data, god generalisering
og hurtig inferenshastighed. Deep unfolded ULM, som lokaliserer overlappende MB’er
ved hjælp af et modelbaseret neuralt netværk, har vist sammenlignelige resultater med
de fuldt datadrevne metoder på simulerede og målte data. Derudover er task-adaptive
beamforming til MB-lokalisering blevet undersøgt. Ved samtidigt at optimere en deep
beamformer og et lokaliseringsnetværk kan ultralydsbilleder, der er skræddersyet til
MB-lokalisering, opnås, og dermed øges ydeevnen for deep unfolded ULM.
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CHAPTER 1
Introduction

1.1 Medical Ultrasound Imaging

The use of ultrasound for medical imaging was proposed over 70 years ago (Edler and
Hertz 1954; Howry and Bliss 1952; Wild 1950), and medical ultrasound imaging is now
one of the most widely used imaging modalities. It is safe, non-invasive, low-cost, and
does not employ ionizing radiation. Ultrasound scanners are portable and stream images
in real-time so it is easily accessible and effective at the bedside.

Medical ultrasound relies on the pulse-echo principle, assuming that the speed of
sound is constant. Ultrasound probes can convert mechanical vibration to electrical
energy or vice versa, i.e., transmit and receive ultrasound waves. Transmitted ultrasound
beams by the probes are backscattered when they face the acoustic impedance changes
in tissue. The changes in acoustic impedance along the beams can be measured from
the received echoes with their time of flight and amplitude. Brightness mode (B-mode)
images are formed by collecting such information in a 2-D plane where their brightness
represents the backscattering amplitude at the pixel location. The B-mode images allow
investigating internal body structures and, in clinics, they are used to diagnose diseases,
monitor treatments, examine fetuses in the womb, guide biopsies.

Medical ultrasound can visualize blood flow in Doppler mode, as well as anatomical
structures in B-mode. Spectral Doppler measures the blood flow in a position over time,
and color Doppler overlays color-coded velocity information in a 2-D region on top of
B-mode images. The velocity is estimated by measuring the phase shift of the echoes
induced by moving scatterers away from or towards the ultrasound probe. In practice, the
Doppler mode images help physicians diagnose vascular diseases, examine heart valve
function, and determine if a patient is in good condition for angioplasty.

The velocity estimation in Doppler mode is operator-dependent since the estimation
accuracy depends on the flow angle which the operator determines. Vector flow imaging
(VFI) has been proposed to overcome the limitation using speckle tracking (Bohs et al.
1993), transverse oscillation (Jensen and Munk 1998), and vector Doppler (Dunmire et al.
2000). Those techniques are angle-independent by providing the velocity estimations
in all directions in a 2-D plane. Hence, more consistent velocity estimation is available
regardless of the operators. VFI using transverse oscillation is already implemented in
commercial ultrasound systems bk5000 (BK Medical, Herlev, Denmark).

Despite the advances in ultrasound imaging technology, it has been challenging to
visualize microvasculature due to the limited spatial resolution of ultrasound until the

3



4 Chapter 1. Introduction

advent of ultrasound localization microscopy (ULM) (Christensen-Jeffries et al. 2015;
Couture et al. 2011; Errico et al. 2015; O’Reilly and Hynynen 2013; Siepmann et al. 2011;
Viessmann et al. 2013). ULM is one of the super-resolution imaging methods that can
break the diffraction limit. By pinpointing individual microbubbles (MBs) injected into
the bloodstream and superimposing their centroids in one image frame, sub-wavelength
imaging can be achieved. ULM enables mapping microvascular networks composed of
microvessels spaced closer than the resolution limit of conventional ultrasound imaging.
Its resulting super-resolution images can be used for the diagnosis of the early-stage
cancer (Lin et al. 2017), ischemic kidney disease (Andersen et al. 2020), and diabetes
(Ghosh et al. 2019), as well as functional ultrasound (Deffieux et al. 2018).

1.2 Motivation

ULM has shown great potential as a breakthrough in super-resolution ultrasound imaging.
However, long data acquisition time is one of the major limitations that hinder ULM to
be employed in practice. Generally, MB localization is performed on the beamformed
ultrasound images, which are diffraction limited. The standard MB localization methods,
e.g., centroid detection or Gaussian fitting, are not able to correctly localize overlapping
point spread functions (PSFs). Therefore, for accurate localization, low concentrations of
diluted MBs are commonly used to avoid the overlapping PSFs as much as possible. But
this also limits the number of detectable MBs in an image frame, and as a result, the long
data acquisition time is required to map the entire target structures.

Recently, deep learning has had a profound impact on processing complex information
and making associated decisions. By constructing deep neural networks with a lot
of learning parameters and training them with a large amount of data, unprecedented
improvements have been achieved in many various areas, e.g., image classification
(He, Zhang, et al. 2016a,b; Krizhevsky, Sutskever, and Hinton 2012), object detection
(He, Gkioxari, et al. 2017; Huang et al. 2017; Redmon and Farhadi 2018), semantic
segmentation (Chen et al. 2018; Ronneberger, Fischer, and Brox 2015; Zhao et al. 2017),
single-image super-resolution (Ledig et al. 2017; Lim et al. 2017), natural language
processing (Brown et al. 2020; Devlind et al. 2019), and image generation (Goodfellow
et al. 2014; Karras et al. 2018; Radford, Metz, and Chintala 2016).

Correspondingly, deep learning techniques have been applied to ultrasound imaging
applications. In beamforming, image contrast was improved by suppressing off-axis
scattering (Luchies and Byram 2018) and reducing speckle noise (Hyun et al. 2019). A
content-adaptive beamformer that estimates beamforming weights and produces high-
quality ultrasound images was proposed in (Luijten et al. 2020). Radiofrequency (RF)
channel data sub-sampling was suggested to reduce the data rate without losing image
quality (Huijben et al. 2020; Khan, Huh, and Ye 2020; Yoon et al. 2018). A robust
PCA-based neural network was presented to perform clutter filtering in (Solomon et al.
2020).
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In this Ph.D. project, it is hypothesized that the data-driven deep learning techniques
can solve the trade-off problem between the resolution and data acquisition time in ULM.
Therefore, deep learning-based MB localization methods, especially for conditions with
overlapping PSFs, have been studied. Ultimately, this project aims to localize high
concentrations of MBs with a high localization accuracy, so that the data acquisition time
can be shortened without sacrificing the resolution of ULM, by localizing more MBs in
an image frame.

1.3 Scientific Contribution

A list of published papers and papers in preparation during this Ph.D. project is shown
below. The listed papers can be found in the appendix.

• Paper 1
Jihwan Youn, Martin Lind Ommen, Matthias Bo Stuart, Erik Vilain Thomsen,
Niels Bent Larsen, Jørgen Arendt Jensen,
“Multiple Point Target Detection and Localization using Deep Learning,”
In IEEE Int. Ultrason. Symp., pp. 1937-1940, 2019.

• Paper 2
Jihwan Youn, Martin Lind Ommen, Matthias Bo Stuart, Erik Vilain Thomsen,
Niels Bent Larsen, Jørgen Arendt Jensen,
“Detection and Localization of Ultrasound Scatterers Using Convolutional Neural
Networks,”
In IEEE Trans. Med. Imag., pp. 3855-3867, 2020.

• Paper 3
Jihwan Youn, Iman Taghavi, Martin Lind Ommen, Mikkel Schou, Matthias Bo Stu-
art, Erik Vilain Thomsen, Niels Bent Larsen, Jørgen Arendt Jensen,
“Sub-pixel Accuracy Microbubble Localization using Convolutional Neural Net-
works,”
In preparation.

• Paper 4
Jihwan Youn, Ben Luijten, Matthias Bo Stuart, Yonina C. Eldar, Ruud J. G. van
Sloun, Jørgen Arendt Jensen,
“Deep Learning Models for Fast Ultrasound Localization Microscopy,”
In IEEE Int. Ultrason. Symp., pp. 1-4, 2020

• Paper 5
Jihwan Youn, Ben Luijten, Matthias Bo Stuart, Yonina C. Eldar, Ruud J. G. van Sloun,
Jørgen Arendt Jensen,
“Model-based Deep Learning on Ultrasound Channel Data for Fast Ultrasound
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Localization Microscopy,”
In preparation.

1.4 Outline

In the following chapter, ULM is introduced. And then, the main part comes, which
consists of two parts: fully data-driven methods and model-based data-driven methods,
where the main contributions are presented. Finally, the conclusion and outlook are given.
A brief description of each chapter is as follows.

Chapter 2 explains the basic concepts of ULM and reviews each step of the ULM
pipeline. And the limitations of current ULM processes and potential solutions are
discussed.

Part I Fully data-driven methods

Chapter 3 presents ultrasound scatterer localization from RF channel data using
convolutional neural networks (CNNs) without explicit beamforming. Fabrication of
3-D printed PEDGA phantoms containing ultrasound scatterers and validation of the
localization method on the phantoms are introduced. This chapter is based on Paper 1
(Youn, Ommen, et al. 2019) and Paper 2 (Youn, Ommen, et al. 2020).

Chapter 4 describes MB localization on the beamformed ultrasound images. Sub-
pixel localization is achieved unlike other deep learning methods by Gaussian fitting. A
3-D printed phantom having pairs of closely spaced channels is employed to compare dif-
ferent localization methods. In vivo validation is performed at various MB concentrations
to assess the ability to localize the overlapping MBs. This chapter is based on Paper 3
(Youn, Taghavi, et al. 2021).

Part II Model-based data-driven methods

Chapter 5 explains a kind of model-based neural network, deep unfolded neural
networks, that solves sparse recovery problems. And deep unfolded ULM that performs
MB localization using the model-based network is introduced. The localization perfor-
mance of deep unfolded ULM is compared against model-agnostic data-driven methods
on simulated test data and the phantom measurements acquired in Chapter 4. This chapter
is based on Paper 4 (Youn, Luijten, et al. 2020).

Chapter 6 investigates task-adaptive beamforming for MB localization. The beam-
former and localization network is trained jointly in an end-to-end fashion. The resulting
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beamformed images become favorable to the downstream localization task. This chapter
is based on Paper 5 (Youn, Luijten, et al. 2021).

Part III Conclusion

Chapter 7 summarizes this Ph.D. project and provides an outlook on ULM using
deep learning techniques.
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CHAPTER 2
Ultrasound Localization Microscopy

In this chapter, a brief overview of ULM is presented. The steps of the ULM pipeline are
reviewed. In addition, the limitations of current ULM methods and potential solutions are
discussed.

2.1 Introduction

There have been efforts to increase the spatial resolution of ultrasound imaging since 1979
(Ikeda, Sato, and Suzuki 1979). The most straightforward way of increasing the resolution
would be transmitting high frequency ultrasound beams (Lockwood et al. 1996). The
higher frequencies give shorter wavelengths, so better resolution can be achieved as the
resolution is proportional to the wavelength. For example, a 15 MHz frequency ultrasound
gives resolution below 100 µm, assuming the speed of sound is around 1540 m/s. However,
it is still diffraction limited, and the penetration depth becomes more constrained as the
frequency increases. Super-resolution ultrasound imaging aims to separate targets placed
closer than the resolution limit of ultrasound by diffraction, i.e., half of a wavelength
(Christensen-Jeffries, Couture, et al. 2020).

In 2006, super-resolution microscopy using fluorescence sources was proposed, sur-
passing the diffraction of light in optics (Betzig et al. 2006; Hess, Girirajan, and Mason
2006; Rust, Bates, and Zhuang 2006). The basic concept is based on the fact that the
center positions of the isolated sources can be determined with a localization precision
higher than the wavelength. By activating a sub-set of the fluorescence sources, the
interference among the signals triggered by the activated sources can be avoided. The
super-resolution images with the resolution of several nanometers can be reconstructed by
collecting the centroids of the sources over a large number of frames in an image frame.
Eric Betzig, Stefan Hell, and William E. Moerner won the Nobel Prize in Chemistry 2014
for the development of super-resolved fluorescence microscopy.

Inspired by the fluorescence localization microscopy, ULM has been introduced in
(Couture et al. 2011). The fluorescence sources were replaced by ultrasound contrast
agents and ultrasound waves were employed instead of light. The resulting ULM image
can achieve resolution improvements by a factor of 10 (Christensen-Jeffries, Couture, et al.
2020). The capability of ULM has been extensively investigated on in-vitro (Viessmann
et al. 2013) and in-vivo data (Christensen-Jeffries, Browning, et al. 2015; Errico et al.
2015; M. A. O’Reilly and Hynynen 2013). Fig. 2.1 shows an overview of the ULM

9
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Figure 2.1: An overview of the ULM pipeline. (a) is MB signals isolated from tissue
signals. (b) is localization of individual MBs on the image obtained in (a). (c) is tracking
on the estimated MB positions over multiple consecutive frames to remove false estimation
and provide velocity information, and (d) is the final ULM image.

pipeline, and the detail of each step is presented in the following sections.

2.2 Microbubble Data Acquisition

Firstly, the scattered sound from MBs need to be separated from the surrounding tissue;
otherwise, it is difficult to identify and localize individual MBs in the B-mode images.
The MB signal separation can be performed by utilizing their non-linear property or
capturing the movement of MBs across multiple frames.

MBs show non-linear behavior when they are insonified by ultrasound beams. Contrast-
enhanced ultrasound (CEUS), e.g., pulse inversion (PI) (Simpson, Chin, and Burns 1999)
or amplitude modulation (AM) (Brock-Fischer, Poland, and Rafter 1996; Mor-Avi et al.
2001) can isolate the non-linear signals and visualize MBs effectively. CEUS imaging
involves multiple transmissions and the summation of adjacent frames in time. For PI,
the fundamental signals are removed and the even-ordered harmonics are captured by
summing a positive and a negative transmission frames. Therefore, the non-linear signals
from MBs can be clearly separated from the background tissue. Furthermore, it does not
rely on the movement of MBs, therefore, slow moving or stationary MBs can be detected.
AM also employs the non-linear behavior of MBs, but it maintains the fundamental signals
as well as the harmonics. Hence, more sensitivity can be achieved compared to PI because
AM preserves the non-linear component of the fundamental frequency and suffer less
attenuation. Alternatively, a combination of PI and AM (PIAM) (Eckersley, Chin, and
Burns 2005) can be considered to further increase the sensitivity.

On the contrary, differential imaging (DI) (Desailly et al. 2013) and singular value
decomposition (SVD) filtering (Demene et al. 2015) do not employ the non-linear property
of MBs but filter out stationary echoes to separate MB signals. DI subtracts two adjacent
frames, which leaves the signals incurred by movement between the frames. It is simple
and easy to implement, however, not robust to tissue motion caused by heartbeat and
breathing. Also, slow moving or stationary MBs are not well detected. SVD represents a
stack of ultrasound images with singular vectors and their corresponding singular values
describing the temporal consistency. The singular vectors with small singular values
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represent moving objects, i.e., moving MBs. By reconstructing ultrasound images with
the singular vectors with low singular values, MB signals can be extracted. SVD filtering
is often more robust than DI and does not need to sacrifice frame rate, yet there are
several limitations from the practical point of view. For example, SVD is computationally
expensive, so real-time streaming is almost impossible. And it is not straightforward to
find the optimal singular value to determine MB signals and its performance is also highly
dependent on such decision parameters. More detailed comparison of PI, DI, and SVD
for MB signal separation can be found in (Brown et al. 2019).

2.3 Localization

MB localization can be performed either on RF channel data or beamformed ultrasound
images. On the RF channel data, the vertex is found by parabola fitting (Couture et al.
2011; Desailly et al. 2013). On the beamformed images, the MB positions can be found
by intensity-weighted centroid detection using image moments (Christensen-Jeffries,
Browning, et al. 2015; Siepmann et al. 2011; Viessmann et al. 2013), fitting a Gaussian
function to the local peak and its neighboring pixels, or deconvolution (Errico et al. 2015).

ULM maps target structures indirectly by collecting the centers of MBs injected into
the bloodstream. Therefore, accurate localization is essential to achieve high-resolution
images. Overlapping PSFs make the aforementioned localization methods inaccurate, so
it matters to ensure that individual MBs are well isolated without interference. Accord-
ingly, low concentrations of diluted MBs are commonly employed (Christensen-Jeffries,
Browning, et al. 2015; M. A. O’Reilly and Hynynen 2013; Viessmann et al. 2013) and
interfering signals due to closely spaced MBs are rejected (Christensen-Jeffries, Browning,
et al. 2015; M. A. O’Reilly and Hynynen 2013). However, by reducing the concentrations
of MBs, the number of detectable MBs becomes limited, which eventually requires long
data acquisition time.

Besides the overlapping PSFs, the image quality also affects on the localization per-
formance. Advanced imaging sequences, e.g., synthetic aperture imaging with diverging
(Jensen, Nikolov, et al. 2006) or plane waves (Tanter and Fink 2014), adaptive beam-
forming (Diamantis et al. 2018), filtering for noise reduction (Song, Trzasko, et al. 2017)
can improve MB localization by offering the ultrasound images with higher resolution,
contrast, frame rates, and signal-to-noise ratios (SNRs).

2.4 Motion Correction

During in-vivo measurements, it is inevitable to avoid motion artifacts by the subject and
operator. Considering the resolution of ULM can be several micrometers and the long
data acquisition time is required, proper motion compensation can improve the image
quality of ULM enormously.
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A simple way of removing the motion artifacts is excluding image frames affected
by the breathing motion (Christensen-Jeffries, Browning, et al. 2015; F. Lin et al. 2017),
however, it is not always applicable. Rigid motion of tissue is often estimated by phase
correlation (Song, Trzasko, et al. 2017) or spatial correlation on the B-mode images
(Foiret et al. 2017; Taghavi, Andersen, et al. 2021), and more advanced non-rigid motion
correction is also available (Harput, Christensen-Jeffries, Brown, et al. 2018).

2.5 Tracking

Tracking is a process of associating estimated MBs temporally over frames and improves
the image quality. Intravascular MBs move along the blood flow inside vessels. By
taking the temporal correlation of MB movements into account, tracks that give a partial
view of the vascular structures can be found. Tracking allows suppressing erroneous
MB estimations by removing not associated MBs and short tracks. Moreover, tracking
offers velocity information, i.e., the direction and speed of blood flow in the resolution
of a few micrometers. The velocity information is important quantities for physicians.
And attached microvessels can be distinguished based on the blood flow direction, which
cannot be achieved in MB intensity images.

There are elementary tracking methods, e.g., cross correlation (Christensen-Jeffries,
Browning, et al. 2015), nearest neighbor (Errico et al. 2015), and Hungarian algorithm
(Song, Manduca, et al. 2018). More advanced methods utilizing the Markov chain
(Ackermann and Schmitz 2016) or Kalman filtering (Solomon et al. 2019; Taghavi, Schou,
et al. 2020) have been investigated.

2.6 Discussion

In this chapter, a general overview of ULM has been reviewed. Using the fact that the
isolated single sources can be localized with a sub-wavelength precision, ULM is able
to break the resolution limit by accumulating the centers of estimated MBs in an image
frame. Also, the use of ULM to various clinical applications is expected (Andersen et al.
2020; Ghosh et al. 2019; C. Lin, Chang, and Chuang 2016; Opacic et al. 2018; Siepmann
et al. 2011).

Nevertheless, there are several limitations that make ULM challenging in practice.
One is the long data acquisition. Several minutes of ultrasound scans required for ULM
are not realistic. On top of that, ultrasound data from the long scanning are likely exposed
to more motion artifacts, which potentially results in motion error accumulation. Super-
resolution imaging at high concentrations of MB have been studied by exploiting sparse
recovery methods (Bar-Zion, Solomon, et al. 2018; Bar-Zion, Tremblay-Darveau, et al.
2016; Solomon et al. 2019). Recently, deep learning methods have been suggested for
localizing the overlapping MBs (van Sloun, Solomon, et al. 2021; Youn, Ommen, et al.
2020) or directly estimate tracks (Milecki et al. 2021). For more efficient computation
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and generalization, model-based neural networks, embedding prior knowledge into the
network architecture, have been applied to MB localization (van Sloun, Cohen, and Eldar
2020; Youn, Luijten, et al. 2020, 2021).

The processing chain of ULM consists of several steps, and the performance of each
step is interdependent. Considering there are so many factors affecting ULM, e.g., the
SNR, contrast agents, motion, and imaging sequence, a proper way of validating each
step of ULM processing is necessary. In general, it is challenging to evaluate in vivo
results due to the absence of ground truth. To circumvent this problem, the ULM methods
were compared with other modalities such as micro-CT (Zhu et al. 2019) or optical
microscopy (Christensen-Jeffries, Browning, et al. 2015). Cross-modality validation
offers the consistency among different modalities yet the accuracy cannot be measured
since all the modalities have their own uncertainties. Alternatively, 3-D PEGDA printed
phantoms can be employed for the validation (Ommen et al. 2021). Unlike other flow
tube phantoms used in (Harput, Christensen-Jeffries, Ramalli, et al. 2020; Viessmann
et al. 2013), more complex structures can be designed by users and fabricated precisely.
The use of phantoms for validation is shown in Chapter 3, 4, and 5.

Lastly, there are inherent problems of imaging 3-D structures in the 2-D planes using
1-D array probes. A 2-D ultrasound image is essentially an integration over the elevation
beam profile, so ambiguity exists in the data along the elevation direction. This can
degrade the localization performance, especially on complex in vivo measurements, and
the resulting out-of-plane motion cannot be compensated for. These problems can be
dealt with 3-D ULM using 2-D array probes such as fully-addressed matrix array probes
(Heiles et al. 2019; Provost et al. 2014) or row-column addressed matrix probes (Jensen,
Ommen, et al. 2020).
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CHAPTER 3
Localization on Radiofrequency

Channel Data
In this chapter, scatterer localization directly on RF channel data using CNN is given.
Ultrasound data generation with the designed imaging sequence and CNN architecture
along with non-overlapping Gaussian confidence maps are explained. The methods are
evaluated on the simulated test data and phantom measured data. This chapter is based
on Paper 1 (Youn, Ommen, et al. 2019) and Paper 2 (Youn, Ommen, et al. 2020).

3.1 Introduction

3.1.1 Motivation
The standard MB localization methods for ULM are limited by ultrasound diffraction
since they are performed on conventional delay-and-sum (DAS) beamformed images.
In general, overlapping PSFs cannot be easily localized by the standard methods and
induce wrong estimates. Here, it is hypothesized that performing localization directly
on RF channel data can localize the scatterers spaced closer than the resolution limit of
conventional ultrasound imaging.

It has been shown that localization on RF channel data is available by fitting a parabola
to the echo from an isolated scatterer and finding its summit (Couture et al. 2011; Desailly
et al. 2013). However, the parabola fitting is not suitable for localizing high-density
scatterers since it is not straightforward to separate the echoes from multiple closely
spaced scatterers. Therefore, a data-driven localization method using CNNs is proposed.
CNNs can model complex non-linear mappings by a series of convolution operations
and non-linear functions. The mapping from the RF channel data to scatterer positions is
estimated using CNNs without beamforming.

3.1.2 Problem Definition
Let us consider received ultrasound RF channel data x ∈ RNa×Nl×Nt which are induced
by scatterers placed at p ∈ RNs×2, where Na is the number of samples in the axial direc-
tion, Nl is the number of active elements in reception, Nt is the number of transmission
events, Ns is the number of scatterers, and 2 is the number of the spatial dimensions, i.e.,
the lateral and axial directions. To localize the scatterers from the RF channel data, a
mapping f : RNa×Nl×Nt → RNs×2 satisfying

17
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Figure 3.1: Overview of scatterer localization from ultrasound RF channel data. A two-
stage process was adopted to handle the varying number of scatterers. A CNN formed a
confidence map from ultrasound RF channel data and scatterer localization using local
peak detection was followed. The illustration is modified from Paper 2 (Youn, Ommen,
et al. 2020).

p = f (x) (3.1)

needs to be found.
The number of scatterers Ns are different depending on the input ultrasound images,

so the mapping f should be able to manage the varying number of scatterers. Fully-
connected neural networks are not suitable for this application as their output size is
commonly fixed. Therefore, a two-stage process is used to handle the varying number of
scatterers by reformulating the mapping f as follows:

p = f (x) = h (g (x)) = h (c) . (3.2)

The function g : RNa×Nl×Nt → RNz×Nx produces a confidence map c ∈ RNz×Nx ,
whereNz andNx are the number of samples in the axial and lateral directions, respectively.
The confidence map represents the spatial domain of a region of interest (ROI) whose
pixel value indicates the confidence of scatterer presence in the corresponding pixel
location. The mapping h : RNz×Nx → RNs×2 locates scatterers from the confidence map.
The confidence map estimation, i.e., the mapping g, was modeled by a fully CNN, and
scatterer localization, i.e., the mapping h, was implemented by local peak detection. The
overview of the method is illustrated in Fig. 3.1.

3.2 Ultrasound Data Generation

CNNs require a large amount of training data with labels, i.e., true scatterer positions.
However, it is extremely difficult to acquire measured data with ground truth for these



3.2. Ultrasound Data Generation 19

Table 3.1: Ultrasound RF channel data simulation parameters

Category Parameter Value
Transducer Transmission frequency 5.2MHz

Pitch 0.20mm
Element width 0.18mm
Element height 6mm
Number of elements 192

Imaging Number of TX elements 32
Number of RX elements (Nl) 64
Steering angles −15°, 0°, 15°

Environment Speed of sound (c) 1480m/s
Field II sampling frequency 120MHz
RF channel data sampling frequency 29.6MHz

Scatterer Number of scatterers (Ns) 20 · i, ∀i ∈ {1, 2, . . . , 10}
Lateral range (−3.2, 3.2)mm
Axial range (14.8, 21.2)mm

kinds of works. Alternatively, ultrasound RF channel data were simulated for training,
validation, and evaluation. The simulation was performed in Field II pro with the parame-
ter values in Table 3.1. It is important to simulate the channel data as close to measured
data as possible; otherwise, the trained CNN will suffer a generalization problem. For
this reason, the impulse response of a commercial ultrasound probe used for experiments
was measured (Tomov et al. 2018) and applied in the simulation (Jensen 2016).

One image frame was generated by placing point scatterers randomly in the 6.4mm×
6.4mm region and simulating three steered plane waves. Common plane wave imaging
employs all the elements both in transmit and receive (Tanter and Fink 2014). Here, how-
ever, to insonify the ROI only, different sub-apertures were defined in transmission using
32 elements for each steering angle, as shown in Fig. 3.2. For receiving backscattered
signals, 64 elements in the center of the probe were used to reduce data rate.

The raw RF channel data consisted of parabolic wavefronts, as shown in Fig. 3.3(a),
which makes the confidence map estimation complicated. To ease the problem by making
wavefronts more like straight lines, a pre-processing was applied to the channel data by
delaying the signal according to the following time-of-flight,

τi(x, z) =

(√
(x− xi)2 + z2 + z

)/
c, (3.3)

where τi is the time-of-flight of the i-th transmission, (x, z) is the data point, xi is
the center of the i-th transmission aperture, and c is the speed of sound. After the
pre-processing, the wavefronts became more like lines, as shown in Fig. 3.3(b). This
pre-processing has improved the CNN performance on validation data. Note that the
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Figure 3.2: Illustration of transmission scheme. For one image frame, three plane waves
were transmitted. To insonify the ROI only, different sub-apertures were defined using 32
elements for the steered ultrasound beam transmissions. The illustration is modified from
Paper 2 (Youn, Ommen, et al. 2020).

(a) (b)

Figure 3.3: Example of simulated RF channel data. (a) is simulated raw RF channel data
and (b) is delayed RF channel data. Note that the delay here is different from the delay
for beamforming. The figure is modified from Paper 2 (Youn, Ommen, et al. 2020).
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(a) (b)

Figure 3.4: Comparison of 2-D binary and non-overlapping Gaussian confidence maps.
(a) is the binary confidence map that is so sparse that large enough gradients for stable
training cannot be provided during gradient descent-based optimization. (b) is the non-
overlapping Gaussian confidence map that provides large gradients for stable training by
Gaussian filtering while being able to recover closely spaced scatterers correctly thanks to
the maximum operation.

delay for this pre-processing is performed in the channel data domain and different from
the delay for beamforming.

A high sampling frequency was used in Field II pro to avoid numerical errors that can
perturb the accuracy of the simulation. The proposed CNN, which will be introduced in
Section 3.4, was designed that the input and output data have the same number of samples
along the axial direction. The RF channel data were, therefore, downsampled to match
the size of the data along the axial direction with that of confidence maps, i.e., Na = Nz .
Pixel size of the confidence maps effectively defined the final sampling frequency of the
channel data.

3.3 Confidence Map

3.3.1 Non-overlapping Gaussian Confidence Map
Confidence maps represent the presence of scatterers in the spatial domain. The simplest
confidence map is a binary confidence map whose pixel value is 1 if a scatterer is present
in the corresponding pixel location, and 0 otherwise, as shown in Fig. 3.4(a). Initially,
CNNs were trained using the binary confidence maps, however, the estimated confidence
maps by the trained CNNs were always 0 irrespective of input channel data. The CNNs
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(a) (b)

Figure 3.5: Comparison of 1-D Gaussian and non-overlapping Gaussian confidence
maps. There are two scatterers at p1 and p2, and g1 and g2 are Gaussians applied to their
positions, respectively. The black curve in (a) is the Gaussian confidence map created
by the summation of g1 and g2. The green curve in (b) is the non-overlapping Gaussian
confidence map created by the maximum of g1 and g2. In (b), two scatterers p̂1 and p̂2 can
be estimated at correct positions from the confidence map, however, in (a), one scatterer p̂
is found at a wrong position. The figure is modified from Paper 2 (Youn, Ommen, et al.
2020)

were optimized by the gradient descent algorithm, but the binary confidence maps were
too sparse to provide large enough gradients for stable training; therefore, the CNNs were
trained to output 0’s. Advanced losses such as weighted cross entropy (Ronneberger,
Fischer, and Brox 2015), jaccard loss (Jaccard 1912), or focal loss (Lin et al. 2017) were
also considered, but did not work.

To relax the sparsity of the binary confidence maps while being able to localize closely
spaced scatterers correctly from confidence maps, a non-overlapping Gaussian confidence
map was proposed, as shown in Fig. 3.4(b). It has been reported that stable training is
available by applying a Gaussian filter to sparse labels (Gomariz et al. 2019; Nehme et al.
2018; van Sloun et al. 2021). But such naïve Gaussian filtering occurs a problem similar
to overlapping PSFs in high-density scatterer localization as the resulting confidence
map after Gaussian filtering is essentially a summation of the Gaussians at each scatterer
position. Let us consider an 1-D example, where two scatterers are placed closer than the
full width at half maximum (FWHM) of the Gaussian filter. Then their positions cannot
be recovered from the confidence map because a single peak will appear between two
scatterers, as shown in Fig. 3.5(a).
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Fortunately, the confidence maps are labels that can be controlled unlike the overlap-
ping PSFs which are physical effect. Therefore, the non-overlapping Gaussian confidence
map was suggested to avoid the overlaps among the Gaussians. It is created by applying
the Gaussian filter to each scatterer position separately and taking the maximum of all
the Gaussians. Now, in the non-overlapping Gaussian confidence map, the two closely
spaced scatterers can be separated correctly, as shown in Fig. 3.5(b). The operation of
creating the non-overlapping Gaussian confidence maps is non-linear and takes more time
compared to simple Gaussian filtering. However, it needs to be run only one time when
preparing for training data, and the peaks correspond to the scatterer positions even when
the scatterers are spaced closer than the FWHM of the Gaussian.

The standard deviation of the Gaussian filter is a hyper-parameter that determines the
smoothness of Gaussians. To maximize the localization performance, it is important to
find an optimal standard deviation. For example, a large standard deviation will make
localization of closely spaced scatterers difficult. On the other hand, a small standard
deviation will not provide large enough gradients for stable training. For this work, the
standard deviation of 5 pixels was chosen through validation. The scatterer positions were
quantized and represented in the confidence map with respect to the pixel coordinates
with the pixel size of 25 µm (≈ λ/10).

3.3.2 Scatterer Localization on Confidence Map
In the estimated confidence maps ĉ, scatterers need to be localized. Ideally, pixels contain-
ing scatterers and their neighboring pixels are supposed to follow the Gaussian function,
as shown in Fig. 3.4(b) and 3.5(b). Based on this fact, localization was implemented by
finding local peaks in the confidence maps. As localization is performed on the estimated
confidence maps, there can be unwanted local peaks that do not correspond to true scatter-
ers. To avoid such wrong estimations, the peaks having confidences higher than a certain
value were accepted. The threshold value of 0.9 was chosen heuristically.

3.4 Convolutional Neural Network

3.4.1 Network Architecture
An encoder-decoder structured CNN has been designed to reconstruct confidence maps
from ultrasound RF channel data. The input and output are not in the same domain
unlike common fully CNN applications such as semantic segmentation (Badrinarayanan,
Kendall, and Cipolla 2017; Ronneberger, Fischer, and Brox 2015) single-image super-
resolution(J. Kim, J. K. Lee, and K. M. Lee 2016; Ledig et al. 2017; Lim et al. 2017).
The input is in the channel data domain, but the output is in the ultrasound image domain;
therefore, it can also be interpreted that the CNN performs beamforming implicitly in
the confidence map estimation. In the encoding path, features are extracted from the
channel data and represented in the latent space. In the decoding path, the corresponding
confidence maps are produced from the extracted features.
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Figure 3.6: Proposed CNN architecture and its blocks. (a) is the modified pre-activation
residual unit, (b) is the down-block, (c) is the conv-block, (d) is the up-block, and (e) is
the network architecture. In (e), the number of kernels (n) and stride (s), if necessary,
are presented for each block next to the arrows. The asterisk represents that CoordConv
(Liu et al. 2018) was applied to its first convolution layer. The feature size was given in
the form of (height × width × kernel). This illustration is modified from Paper 1 (Youn,
Ommen, et al. 2019) and Paper 2 (Youn, Ommen, et al. 2020)
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A detailed illustration of the proposed CNN architecture is shown in Fig. 3.6. The ma-
jor parts of the network were composed of four down-blocks (Fig. 3.6(c)), one conv-block
(Fig. 3.6(d)), and four up-blocks (Fig. 3.6(b)), and each block was based on pre-activation
residual units (He et al. 2016b) (Fig. 3.6(a)). The residual units have advantages over
conventional convolution and rectified linear unit (ReLU) (Nair and Hinton 2010) layers
in the sense that they allow training deeper neural networks and, as a result, achieving
better performance. In theory, the deeper networks can achieve better performance as
they can represent more complex non-linear functions. However, in practice, training the
deeper networks is challenging due to the gradient vanishing problem, and the network
performance gets saturated and degrades as increasing the depth. The residual units
ease the optimization problem by learning residual mappings instead of direct mappings;
therefore, the deeper networks can be trained effectively (He et al. 2016a,b).

The original pre-activation unit does not include dropout (Srivastava et al. 2014), but
that was necessary to apply the proposed network to measured ultrasound data due to the
generalization problem. It was considered to put dropout layers after each convolution
layer or between two convolution layers in the residual unit as proposed in (Zagoruyko
and Komodakis 2016). However, it was found that putting the dropout layers after the
element-wise summation achieves the best performance through validation. Additionally,
batch normalization was added to stabilize training by suppressing the internal covariate
shift and gain the regularization effect (Ioffe and Szegedy 2015). Lim et al. argued
that batch normalization layers need to be removed as they remove range flexibility by
normalizing the features for single-image super-resolution (Lim et al. 2017). Nonetheless,
batch normalization was essential for the confidence map estimation here. Presumably,
the internal covariate shift is more drastic when the discrepancy between the input, i.e.,
channel data, and the output data, i.e., confidence map, is large.

Before the encoding path, an 11 × 1 convolution layer was placed to extract per-
channel features. In the encoding path, the down-blocks downsampled the features using
strided convolution. Downsampling helps decrease the number of parameters and provides
different receptive fields without changing the kernel size. Max pooling or average pooling
are generally used for downsampling, but the spatial information can be lost. Therefore,
strided convolution was chosen to keep the spatial information. In the decoding path, the
up-blocks upsampled the downsampled features to the size of the confidence maps. For
effective and efficient upsampling, pixel shuffle was employed (Shi et al. 2016). Lastly,
two convolution layers were placed to refine the confidence maps. For activation, Leaky
ReLUs (Maas, Hannun, and Ng 2013) were selected to avoid the dying ReLU problem
and Sigmoid was used in the output layer to force to the output values to be [0, 1].

For the confidence map estimation, the large receptive field was required. The
backscattered signal by a single scatterer appears across all the channels at several depths,
although the pre-processing introduced in Section 3.2 makes wavefronts more like straight
lines. Hence, local information in the RF channel data is not enough to localize a scatterer,
and the proposed CNN was established by four down- and four up-blocks. Skip connection
is a widely used technique to transfer the spatial information over the convolution layers



26 Chapter 3. Localization on Radiofrequency Channel Data

(Drozdzal et al. 2016; Ronneberger, Fischer, and Brox 2015). However, skip connections
were not able to be implemented in the proposed network since training failed when they
are included. The features extracted from the channel data in the encoding path are not
correlated to the reconstruction of the confidence maps; therefore, the skip connections
deterred training. Alternatively, CoordConv (Liu et al. 2018) was utilized for certain
convolution layers, which is indicated in Fig. 3.6(e).

3.4.2 Training Detail
Training was performed by optimizing the mean squared error (MSE) between true and
estimated confidence maps,

LMSE (x, c; g) =
1

N

N∑

i=1

‖ci − g (xi; θ)‖2F , (3.4)

where xi and ci are the i-th ultrasound RF channel data and corresponding confidence
map, g is the proposed CNN with learning parameters θ, N is the number of samples, and
‖·‖F is the Frobenius norm.

Training and validation data were simulated at four different scatterer densities of
0.49mm−2, 0.98mm−2, 2.44mm−2, and 4.88mm−2 by changing the number of scat-
terers for one image frame in the simulation. For each scatterer density, the number of
training and validation data were 10 240 and 1280 frames, respectively. The network pa-
rameters were initialized by the orthogonal initialization (Saxe, McClelland, and Ganguli
2013) and the ADAM (Kingma and Ba 2015) optimizer was employed with β1 = 0.9,
β2 = 0.999, and ε = 10−7. The network was trained for 800 epochs with the batch size
of 32. For the first 600 epochs, training was performed using the training data simulated
at the scatterer density of 2.44mm−2 with the learning rate of 10−4, and the learning rate
was halved every 100 epochs. And then, the training continued for 200 epochs using all
the training data, where the learning rate was 10−5 and it was halved every 50 epochs.
The two-phase training was more efficient in terms of convergence, i.e., requiring fewer
iterations to the solution, compared with training a CNN using all the training data from
scratch. The CNNs were implemented using Tensorflow (Abadi et al. 2011) in Python,
and training took approximately 40 hours in a server equipped with a NVIDIA TESLA
V100 16 GB PCIe graphics card.

Having more training data is preferable because the CNNs can learn more diverse
data distributions. The correspondence between RF channel data and confidence maps
are valid after being flipped along the lateral direction. Therefore, for data augmentation,
the training data were horizontally flipped at random during training. Additionally,
perturbing the training data allows the CNNs to be robust to the noise and improves
their generalizability. So, additive white Gaussian noise was added for generalization.
Especially, the Gaussian noise was added during training to provide independent noise
at each training iteration. The dropout rate was set to 0.3. Lastly, the RF channel data



3.5. Simulation Experiment 27

and confidence maps were normalized by their maximum values, and thus their ranges
became [−1, 1] and [0, 1].

3.5 Simulation Experiment

The capability of the trained CNN was assessed on simulated test data. The test data
were generated at 10 scatterer densities from 0.49 mm−2 to 4.88 mm−2 to validate the
performance at different scatterer densities, i.e., different degrees of overlaps. For each
scatterer density, 3840 data were generated using the parameter values in Table 3.1.

3.5.1 Evaluation Metric
To quantify the localization performance, the estimated scatterers need to be associated

with true scatterers to decide whether an estimated scatterer is positive or negative
detection. Simply finding the closest true scatterer given an estimated scatterer can
encounter problematic situations where one true scatterer is associated with multiple
estimated scatterers. Therefore, a bi-directional matching process was proposed, inspired
by the left-right consistency check in computer vision (Chang, Chatterjee, and Kube
1991; Fua 1993). A detailed procedure is described in Algorithm 3.1. The bi-directional
matching process satisfies the uniqueness constraint, i.e., a true scatterer is either matched
with only one estimated scatterer or not matched.

Algorithm 3.1: Data association for determining positive or negative detection.

Input: True scatterer positions p ∈ RNs×2 and estimated scatterer positions p̂ ∈ RN̂s×2

Output: A vector represents positive or negative detection y ∈ RN̂s×1

1: y ← 0 ∈ RN̂s×1 // Initialization
2: D ←

{
(dij) ∈ RNs×N̂s

∣∣∣ dij = ‖pi − p̂j‖2
}

// Pairwise distance

3: for j = 1 to N̂s do
4: î← argminD∗j
5: if j = argminDî∗ then

6: if (pî1−p̂j1)
2

(FWHMx/2)2
+

(pî2−p̂j2)
2

(FWHMz/2)2
< 1 then // Localization error

7: aj ← 1 // Positive detection
8: else
9: aj ← 0 // Negative detection

10: end if
11: else
12: aj ← 0 // Negative detection
13: end if
14: end for
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Figure 3.7: A simulated PSF at the center of the ROI. The −6 dB contour can be approxi-
mated to an ellipse.

Basically, an estimated scatterer is decided to be a positive detection when it is
exclusively matched with a true scatterer while the localization error is smaller than a
certain localization error. The acceptable localization error can be related to the target
resolution of ULM, and the half of the FWHM was set to the criteria, which was defined
from a simulated PSF at the center of the ROI, as shown in Fig. 3.7. The FWHM in
the lateral and axial directions were 265 µm (0.93λ) and 140 µm (0.49λ), and the −6 dB
contour, i.e., FWHM, can be approximated to an ellipse. Therefore, the half of FWHM
was modeled as an ellipse whose major axis is half of the lateral FWHM (FWHMx) and
minor axis is half of the axial FWHM (FWHMz).

After matching the estimated scatterers with the true scatterers, the performance was
assessed by precision and recall, localization precision, and resolved rate. Precision and
recall were defined by

Precision =
TP

TP + FP
, (3.5)

Recall =
TP

TP + FN
, (3.6)

where TP is the number of true positives, i.e., correct estimations, FP is the number
of false positives, i.e., wrong estimations, and FN is the number of false negatives, i.e.,
missed scatterers. Localization precision was measured by the standard deviation of
localization errors of positive detections in the lateral and axial directions. The spatial
resolution refers to the ability of how closely spaced targets can be separated. It was
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measured statistically by finding pairs of two isolated true scatterers and checking whether
they were matched with the estimated scatterers, i.e., correctly detected, or not. If both
scatterers were detected, the pair was regarded as a resolved case. If only one of them was
detected, the pair was regarded as a not resolved case. And the case that none of them
were detected was not considered. And then, the resolved rate was calculated by

Resolved rate =
Nres

Nres+Nnon-res

, (3.7)

where Nres is the number of resolved pairs and Nnon-res is the number of non-resolved
pairs.

3.5.2 Result
The proposed method was compared with peak detection and deconvolution. Peak
detection was performed by finding local peaks on the DAS beamformed and compounded
images. Deconvolution was performed on the same images using Richardson–Lucy (RL)
deconvolution (Lucy 1974; Richardson 1972) with the PSF simulated at the center of
the ROI in Fig 3.7 as a reference. The localization results by different methods on a test
image frame are shown in Fig. 3.8. The isolated scatterers were well localized by all the
methods. On the other hand, the closely spaced scatterers were localized correctly by the
proposed method but not by peak detection and deconvolution.

Precision and recall, and localization precision at various scatterer densities are shown
in Fig. 3.9 and Fig. 3.10, respectively. As the scatterer density increases, the performance
degraded for all the methods because more overlapping PSFs appear. However, for all the
metrics, the proposed method outperformed peak detection and deconvolution. Also, the
proposed method kept relatively high performance at high scatterer densities, showing
that it can handle a certain degree of overlaps. Additionally, the lateral localization
precision was worse than the axial localization precision for all the methods, showing that
localization along the lateral direction is typically more difficult in ultrasound data for the
CNN-based proposed method, as well as the standard methods such as peak detection and
deconvolution.

Fig. 3.11 visualizes 2-D histograms of the resolved rate in the 20 µm× 20 µm grids.
The blue curve indicates the theoretical resolution limit estimated by the FWHM of the
PSF simulated in the center of the ROI in Fig 3.7. The resolution limit, i.e.,−6 dB contour,
was assumed to be an ellipse whose major axis is the FWHMx, 265 µm (0.93λ), and minor
axis is the FWHMz , 140 µm (0.49λ). It is clearly shown that the proposed method can
separate the scatterers spaced closer than the resolution limit compared to peak detection
and deconvolution. The mean resolved rate was measured in the region under the green
curves, i.e., two scatterers placed closer than the resolution limit. The proposed method
achieved the mean resolved rate of 0.67, but peak detection and deconvolution achieved
the mean resolved rate of 0.17 and 0.11, respectively.

Deconvolution has been employed for MB localization (Couture et al. 2011; Siepmann
et al. 2011) and Yu et al. have demonstrated that sub-wavelength localization using
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Figure 3.8: Scatterer localization on a simulated test frame. (a) is the B-mode image
beamformed by DAS and compounded. (b)-(d) are the localization results by different
methods in the red rectangle region in (a). (b) is peak detection, (c) is deconvolution, and
(d) is the proposed method.

deconvolution on simulated data (Yu, Lavery, and K. Kim 2018). Even so, the performance
of peak detection surpassed that of deconvolution in all aspects. RL deconvolution, the
chosen deconvolution method, is an iterative algorithm that deblurs images using a
reference PSF; therefore, PSFs in the image need to be spatially stationary. However,
in the given ultrasound images, the PSF was spatially varied more dynamically than
usual plane wave images since the designed imaging sequence constrained the aperture
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(a) (b)

Figure 3.9: Precision and recall on simulated test data by peak detection, deconvolution,
and the proposed method. (a) is precision and (b) is recall. The figure is modified from
Paper 1 (Youn, Ommen, et al. 2019) and Paper 2 (Youn, Ommen, et al. 2020).

(a) (b)

Figure 3.10: Localization precision on simulated test data by peak detection, deconvolu-
tion, and the proposed method. (a) is the lateral localization precision and (b) is the axial
localization precision.
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(a) (b)

(c)

Figure 3.11: 2-D histograms of resolved rate calculated in a 20 µm × 20 µm grid. (a)
is peak detection, (b) is deconvolution, and (c) is the proposed method. The figure is
modified from Paper 2 (Youn, Ommen, et al. 2020).

size in transmitting and receiving ultrasound beams. As a result, deconvolution was
not suitable due to the highly variant PSFs; nonetheless, it cannot be generalized that
peak detection is superior to deconvolution for localization since the designed imaging
sequence is somewhat of an exception.
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3.6 Phantom Experiment

3-D printed phantoms were fabricated and scanned to validate the proposed method on
measured data and compare it with peak detection. Deconvolution was not considered
as its performance on the simulated test data was not as good as peak detection due to
the exceptional imaging sequence, and extensive parameter tuning was required in the
measured data.

3.6.1 Phantom Fabrication
Two PEGDA 700 g/mol hydrogel phantoms (Fig. 3.12(a)) that contained water-filled
cavities inside were fabricated (Ommen et al. 2019, 2021). The cavities act as scatterers
because the acoustic property of water and the phantom medium are different. The size of
the cavities was 45 µm× 45 µm in the imaging plane and 1 mm in the elevation direction.
As it was assumed that the scatterers are infinitesimally small points in the simulation,
the cavities were made as small as possible in the imaging plane. Contrarily, they were
relatively long in the elevation direction to maximize the backscattering energy.

For the first phantom, 100 cavities were placed uniformly in a 10 × 10 grid at a
spacing of 518 µm laterally and 342 µm axially, as shown in Fig. 3.12(b). The purpose
of this uniform phantom was to validate whether the scatterers are placed as designed
and the trained CNN can be generalized to the measured data. Hence, the spacing among
the cavities was set to be larger than the resolution limit of the DAS beamforming, i.e.,
FWHM. On the other hand, for the second phantom, 100 cavities were placed randomly
with a minimum spacing of 190 µm among the scatterers, as illustrated in Fig. 3.12(c).
This random phantom was made to check if the proposed method can localize closely
spaced scatterers. The minimum spacing among cavities was introduced due to the limit
in the voxel size of the 3-D printer.

3.6.2 Experiment Setup
The 3-D printed phantoms were scanned with a commercial 192-element linear array
probe whose specification followed the parameter values in Table 3.1. The same imaging
sequence with the simulation was implemented, and raw RF channel data were acquired
in synthetic aperture real-time ultrasound system (SARUS).

The experiment setup is given in Fig. 3.13. The whole setup was placed on a optical
table to control the disturbance caused by vibration, as seen in Fig. 3.13(a). The probe
was fixated to the probe fixture. The phantom was submerged in a water tank and the
water tank was placed on the motion stage, as illustrated in Fig. 3.13(b). The motion stage
can rotate around the z-direction and translate in the x- and y-directions. So, the phantom
was able to be aligned in the imaging plane by the motion stage. And then, 33 frames
were obtained by translating the phantom in a step of 50 µm in the x-direction, i.e., lateral
direction, between the frames.
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(a)

(b) (c)

Figure 3.12: 3-D printed phantom and scatterer positions. (a) is the picture of a 3-D
printed PEGDA hydrogel phantom. (b) is the scatterer placement of the uniform phantom
and (c) is the scatterer placement of the random phantom. The picture is modified from
Paper 2 (Youn, Luijten, et al. 2020)
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(a) (b)

Figure 3.13: Phantom experiment setup. (a) is the picture of the experiment setup and (b)
is the illustration of the experiment setup. The figure was modified from Paper 2 (Youn,
Ommen, et al. 2020).

3.6.3 Training Data Modification
The initially trained CNN did not work properly on the phantom measurements due to
the generalization problem, as shown in Fig. 3.14(a). Even though the cavities were
made as small as possible, that was still not enough for the CNN to recognize individual
scatterers correctly since they were modeled by infinitesimally small point scatterers in
the simulation.

Accordingly, the training data were updated by considering the physical aspects of
the cavities. A simplified 1-D illustration of scattering at a cavity in the phantom along
the axial direction is shown in Fig. 3.15. Firstly, the scatterers were modeled by two point
scatterers because scattering happens twice. One is when an ultrasound beam goes into
the cavity and the other is when the beam comes out of the cavity. Furthermore, the sign
of the first scattering amplitude was changed since the acoustic impedance is higher in the
phantom than water, so the first scattering experiences the phase reversal. In the updated
training data, the scatterer positions of the original training data were used to maintain
consistency.

For the phantom experiment, a new CNN was trained from scratch with the updated
training data. It was considered to apply transfer learning to the CNN trained with the
original training data, but that did not solve the generalization problem. The newly trained
CNN estimated confidence maps more accurately and individual scatterers were able to
be identified, as shown in Fig. 3.14(b).
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Figure 3.14: Confidence map estimation on phantom measured RF channel data. (a) is
before and (b) is after the training data modification.

transmitted
utrasound beam

First 
scattering

Second 
scattering

water-filled cavity

Figure 3.15: Simplified 1-D illustration of scattering in a cavity of the phantom in the
axial direction. Two scattering happens. One is when an ultrasound beam goes into
the cavity and the other is when the beam comes out of the cavity. The first scattering
experiences phase reversal as the acoustic impedance is higher in the phantom medium
than in water.
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Figure 3.16: Measured speed of sound in the 3-D printed phantom at various frequencies.

3.6.4 Depth Correction
The speed of sound in the phantom was not identical to that in water. The measured speed
of sound in the phantom medium is shown in Fig. 3.16. It changed depending on the
frequency of the ultrasound beam and was faster than the speed of sound in water. For
this reason, the estimated scatterers appeared at the shallower depths than the designed
positions. So, the different speed of sound was compensated by correcting the axial
positions of the estimated scatterers as follows:

ẑ∗ = (ẑ − dpht) ·
cwater

cpht
+ dpht, (3.8)

where ẑ and ẑ∗ are the estimated axial position of a scatterer before and after the depth
correction, cwater and cpht are the speed of sound in water and in the phantom, and dpht is
the depth of the upper surface of the phantom.

3.6.5 Results
Fig. 3.17 shows scatterer localization on one of the phantom measured data by peak
detection and the proposed method. On the uniform phantom, both methods successfully
localized scatterers accurately. However, it was difficult to localize the closely spaced
scatterers on the random phantom, which agrees with the simulation results.

Precision, recall, and localization precision are given in Table 3.2. The proposed
method achieved slightly lower precision due to few false estimations, but the localization
precision was better than centroid detection on the uniform phantom. On the random
phantom, the proposed method achieved better precision and recall by localizing the
closely spaced scatterers. For localization, the proposed method achieved worse lateral
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(a) (b)

(c) (d)

Figure 3.17: Confidence map estimation and scatterer localization. The first row shows
the results on the uniform phantom by (a) peak detection and (b) the proposed method.
The second row shows the results on the random phantom by (c) peak detection and (d)
the proposed method. The figure is modified from Paper 1 (Youn, Ommen, et al. 2019)
and Paper 2 (Youn, Ommen, et al. 2020).
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Table 3.2: Precision, recall, and localization precision on the phantom measured data.

Phantom Method Precision Recall
Localization Precision

Lateral Axial

Uniform
Peak detection 1.00 1.00 39.09 µm 18.40 µm

Proposed 0.98 1.00 36.30 µm 14.69 µm

Random
Peak detection 0.49 0.32 51.96 µm 28.75 µm

Proposed 0.59 0.63 61.53 µm 16.89 µm

localization precision but better axial localization precision compared with centroid
detection.

3.7 Discussion

Scatterer localization directly from RF channel data using a CNN is presented. The
CNN estimated non-overlapping confidence maps, and scatterers were localized from the
confidence maps. The simulation results showed that the proposed method could localize
the scatterers spaced closer than the resolution of conventional ultrasound imaging. In
the phantom results, for the trivial case, i.e., uniform phantom, centroid detection and the
proposed method showed similar results by localizing all the scatterers. However, on the
random phantom, where some of the scatterers were spaced closer than the resolution limit
of ultrasound, the proposed method showed better performance than centroid detection
apart from the lateral localization precision. This shows that the proposed localization
method can be employed to localize more MBs at high concentrations of MBs, and to
potentially shorten the data acquisition time of ULM.

Deep-ULM can localize overlapping PSFs on beamformed images (van Sloun et al.
2021) unlike the proposed method performing localization on the RF channel data. The
proposed method was compared with deep-ULM after recalculating recall and localization
error in Fig. 3.18, following the method van Sloun et al. used to make the results in Fig. 2
in (van Sloun et al. 2021). Both methods showed good performance at high densities,
however, the proposed method achieved slightly better performance. Specifically, deep-
ULM recovered roughly 2.10 mm−2 at the density of 3.53 mm−2 when the proposed
method recovered 3.00 mm−2 at the density of 3.42 mm−2. The median localization error
of deep-ULM was approximately λ/12 over all the scatterer densities, but the proposed
method achieved smaller errors than λ/12. Yet, it is difficult to conclude that the proposed
method outperforms deep-ULM since the evaluation was not performed on the same test
data. This comparison, however, shows the potential of the methods localizing scatterers
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(a) (b)

Figure 3.18: Recalculated recall and localization error of the proposed method to compare
it with deep-ULM: (a) Positive detection density and (b) median position error with bars
representing the standard deviation at different scatterer densities.

directly in the RF channel data.
The CNN was able to be generalized to the phantom measurements by considering

the physical aspects of the cavities and phantom medium in the simulation, although
training was performed using the simulated ultrasound data. Even so, there were still
discrepancies between the simulated data and real-world data, and that resulted in the
performance degradation in the phantom experiments compared with the simulation
results. In in vivo scenarios, the discrepancies will be larger due to the variations of
echoes by artifacts such as reverberation, attenuation, refraction, electrical noise, various
physical properties of MBs, and tissue. Therefore, further performance degradation is
expected when applying the method for MB localization. To handle those problems,
a more sophisticated simulation to cover possible in vivo variations of channel data is
necessary. At the same time, deep learning models that have better generalizability need
to be investigated to increase the localization performance on the measured data and
overcome the expected limits on the in vivo data.



CHAPTER 4
Localization on Beamformed

Ultrasound Data
This chapter introduces a CNN-based MB localization method on beamformed ultrasound
data. Especially, sub-pixel localization using non-overlapping confidence maps is pre-
sented. The method is evaluated on measured MB data from a 3-D printed phantom and
animal experiments, as well as simulated data. This chapter is based on the Paper 3
(Youn, Taghavi, et al. 2021).

4.1 Introduction

4.1.1 Motivation
In Chapter 3, it has been discussed that the CNN-based localization method on ultrasound
channel data suffers generalization problems due to the limited simulation accuracy,
though that has high potential for localizing overlapping PSFs. Also, the channel data
are not easily accessible, and streaming the channel data is challenging due to the high
data rates. Such problems can be alleviated by localizing MBs on beamformed ultrasound
data. There have been efforts to use deep learning techniques for super-resolution imaging
at high concentrations of MB. Localization of overlapping MBs using CNNs was first
proposed in (van Sloun et al. 2021), and improvement by adopting a different network
architecture was reported in (X. Liu et al. 2020). The use of 3-D CNNs on a stack of
beamformed ultrasound images has been suggested to utilize the temporal correlation of
MB echoes for more effective localization (Brown, Ghosh, and Hoyt 2020) or to estimate
track images directly without localization (Milecki et al. 2021). Nonetheless, all of them
localize MBs in the pixel coordinates, so the localization accuracy is constrained by pixel
size. To address this problem, additional upsampling layers are included in the networks
(X. Liu et al. 2020; van Sloun et al. 2021), or the networks were applied after upsampling
the beamformed ultrasound images. In this chapter, a sub-pixel localization method using
a CNN and non-overlapping Gaussian confidence maps is discussed, which performs sub-
pixel localization in the same image resolution of the input without additional upsampling.

4.1.2 Problem Definition
Let us consider a beamformed ultrasound image x ∈ RNz×Nx which are induced by MBs
located at p ∈ RNmb×2, whereNz andNx are the number of pixels in the axial and lateral

41
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Beamformed
MB image

Convolutional
Neural Network

Estimated
confidence map
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localzation

Estimated
scatterer positions

Confidence map estimation Scatterer localization

Figure 4.1: Overview of scatterer localization from beamformed MB images. A two-
stage process was adopted similarly to Chapter 3, as shown in Fig 3.1, to achieve sub-
pixel localization as well as to handle the varying number of MBs. The CNN formed
a confidence map from the MB image and sub-pixel localization was followed. The
illustration is modified from Paper 3 (Youn, Taghavi, et al. 2021).

directions, Nmb is the number of MBs, and 2 is the number of spatial dimensions, i.e., the
lateral and axial directions. An beamformed ultrasound image can be approximated by

x =

Nmb∑

i=1

PSF(pi) ∗ δ(pi) + n, (4.1)

where PSF(pi) is the PSF at the i-th MB position, δ is the Dirac delta function, andn is the
noise. To locate the MBs from the ultrasound image, a mapping f : RNz×Nx → RNmb×2

that estimates p from x,
p = f(x), (4.2)

needs to be found.
The mapping f was modeled similarly to Chapter 3 as a two-stage process as follows:

p = f(x) = h(g(x)) = h(c). (4.3)

The two-stage process allowed sub-pixel localization as well as handling the varying
number of MBs depending on the input image. The function g : RNz×Nx → RNz×Nx

was a CNN that estimates confidence maps c ∈ RNz×Nx from the ultrasound images
x ∈ RNz×Nx and sub-pixel localization on the confidence maps was performed by the
function h : RNz×Nx → RNmb×2, which will be introduced in Section 4.5.2.

4.2 Imaging Sequence

Ultrasound data were acquired by the commercial ultrasound system bk5000 (BK Medical,
Herlev, Denmark) using the 150-element linear array probe X18L5s (BK Medical, Herlev,
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Figure 4.2: Overview of imaging sequence implemented in the bk5000 scanner (BK
Medical, Herlev, Denmark). The sequence was composed of contrast mode and B-mode.
Conventional focused beam transmissions using a sliding aperture with 91 sub-apertures
was employed. In contrast mode, the CEUS imaging was achieved by the amplitude
modulation scheme with three transmissions per sub-aperture: one full positive and two
half negative transmissions. In B-mode, one full positive transmission was employed per
sub-aperture. For both contrast mode and B-mode, a total of 364 transmission events
were required for one cycle. The numbers inside transmission events correspond to the
sub-aperture index. The illustration was modified from Paper 3

Denmark). In research ultrasound systems, e.g., SARUS (Jensen, Holten-Lund, et al.
2013) and vantage systems (Verasonics Inc., Redmond, WA, USA), imaging sequences
can be customized and raw channel data are accessible. However, in the employed
commercial scanner, the imaging parameters that can be modified were limited and only
beamformed ultrasound data were accessible.

The imaging sequence of the scanner is illustrated in Fig. 4.2. It consisted of contrast
mode and B-mode. For both modes, the conventional focused beam was transmitted
using 91 sub-apertures with a sliding aperture of 25 elements. In contrast mode, CEUS
was achieved by amplitude modulation (Mor-Avi et al. 2001) with three transmissions
in each sub-aperture, i.e., one full positive and two half negative transmissions. The
contrast-mode separated MB signals using the non-linear behavior of MBs and resulted
in MB images for localization. After that, the B-mode sequence followed with one full
positive transmission. The B-mode images were used for motion compensation in animal
study. For one image frame cycle, 91× 3 + 91 = 364 transmissions were involved. The
frame rate was 53.85 Hz with the pulse repetition frequency fprf of 19.6 kHz.

4.3 Microbubble Data Generation

RF channel data were simulated in Field II pro (Jensen 1996, 2014; Jensen and Svendsen
1992) to generate MB data for training, validation, and evaluation. In the simulation,
MBs were modeled as point scatterers since the diameters of MBs are much smaller than
the diffraction limit of ultrasound. Specifically, SonoVue (Bracco Imaging, Milan, Italy)
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Table 4.1: Field II simulation parameters.

Parameter Value

Transducer Number of elements 150
Pitch 0.16 mm
Element height 3.40 mm
Element width 0.15 mm
Elevation focus 20 mm

Imaging Transmission pulse frequency 6 MHz
Number of transmission pulse cycle 2
Number of active elements in transmission 25
Wave type Focused beam
Focal depth in transmission 0.01 mm
Apodization in transmission Boxcar window

Beamforming Method Delay-and-sum
F-number 1
Apodization in reception Gaussian window
Pixel size 48 µm axially

79 µm laterally
Region of interest (0.02, 20.01) mm axially

(−10.72, 10.64) mm laterally

Environment Speed of sound 1540 m/s
Field II sampling freq. 350 MHz

has the mean diameter of 2.5 µm (Schneider 1999), which was the employed contrast
agent. Also, the non-linear behavior of MBs was not considered to simplify the simulation
model. The simulation parameter values in Table 4.1 were chosen following the scanner
configuration and the probe specification that were used for ULM experiments.

In measured data, weak scattering originated from not rejected stationary echoes,
out-of-plane MBs, and the low SNR appeared in the background, as shown in Fig. 4.3(a).
CNNs can handle such noise as long as it is reflected in the training data. Hence, the
noise was included in the simulation by adding another point scatterers that have 4 times
smaller scattering amplitudes than MBs.

To generate one MB image frame, the RF channel data were simulated by placing point
scatterers randomly in the ROI. The simulated RF channel data were then beamformed
by DAS (Thurstone and Ramm 1974) (Fig 4.3(b)), the weak scattering noise was added
(Fig 4.3(c)), and envelope detection was performed using the Hilbert transform. Lastly,
the image was quantized to be matched with the measured data because the measured MB
data had few intensity levels. The quantization process was applied so that isolated MBs
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(a) (b) (c) (d)

Figure 4.3: An example of measured and simulated CEUS MB images. (a) is the measured
image, (b) is the simulated image only with MBs, (c) is the simulated MB image with the
noise, and (d) is the final simulated MB image after the quantization.

have five-level intensities, as shown in Fig 4.3(d), which was defined empirically from the
measured data.

4.4 Convolutional Neural Network

4.4.1 Network Architecture
Fig. 4.4 shows the proposed CNN architecture that was constructed based on U-Net
(Ronneberger, Fischer, and Brox 2015) and pre-activation residual units (He et al. 2016).
It was composed of three down-blocks, one conv-block, and three up-blocks (Youn,
Ommen, et al. 2019, 2020), which are presented in Section 3.4. Localization on RF
channel data in Chapter 3 required a large receptive field as the network implicitly
performed beamforming along with localization. On the other hand, for localization on
beamformed ultrasound data, having three pooling and unpooling layers were enough
to achieve good confidence map estimation. The input data were already beamformed;
therefore, MB positions could be determined by locally extracted features.

Both the proposed CNN and deep-ULM (van Sloun et al. 2021) adopted the encoder-
decoder structure. Nevertheless, the proposed method can achieve sub-pixel localization,
so the localization process is performed in the same image resolution to the input MB
image. However, for deep-ULM, localization is available only in the pixel coordinates
without sub-pixel accuracy. Therefore, it has additional upsampling layers to maximize
localization accuracy, which increases computational complexity.

4.4.2 Training Detail
The proposed CNN was trained to obtain the mapping that returns confidence maps c
given ultrasound images x. Training was performed by optimizing the difference between
true and estimated confidence maps captured by the MSE:
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Figure 4.4: Proposed network architecture based on U-Net (Ronneberger, Fischer, and
Brox 2015) and pre-activation residual units (He et al. 2016). The number of kernels
(n) and stride (s) are indicated next to the arrows. The details about down-, conv-, and
up-blocks (Youn, Ommen, et al. 2019, 2020) can be found in Section 3.4. The illustration
is modified from Paper 3 (Youn, Taghavi, et al. 2021).

LMSE (x, c; g) =
1

N

N∑

i=1

‖ci − g (xi; θ)‖2F , (4.4)

where xi and ci are the i-th MB image and corresponding confidence map, g is the
proposed CNN with learning parameters θ, N is the number of samples, and ‖·‖F is the
Frobenius norm.

The learning parameters were optimized using Rectified Adam (RAdam) (L. Liu
et al. 2020) and Lookahead (Zhang et al. 2019) after being initialized by orthogonal
initialization (Saxe, McClelland, and Ganguli 2013). RAdam provides training stability at
the beginning of training (L. Liu et al. 2020) and Lookahead provides training stability
during the rest (Zhang et al. 2019). So, the combination of them is known to stabilize the
whole training and converge to the solution with fewer iterations than Adam (Kingma
and Ba 2015). The learning rate was set to 0.0001 and halved every 200 epochs. The
proposed CNN was implemented using Tensorflow (Abadi et al. 2011) in Python and a
server equipped with a NVIDIA TESLA V100 16 GB PCIe graphics card was employed
for training, which took approximately 24 hours for 1000 epochs.

The MB images and weak scattering images, i.e., noise, were simulated separately.
An MB image was generated by placing 400 scatterers and a weak scattering image was
generated by placing 4000 scatterers in the ROI. The scattering amplitudes among MBs
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were assumed to be the same, and those of weak scatterers were 4 times smaller than the
MB scattering.

A training image frame was formed by selecting one MB image and one weak
scattering image randomly during training and summing them up to provide more diverse
training data. That allows training the network on the noise independent to the MBs
images. And then, the training frame was randomly cropped to be a size of 128× 128.
Although the the same number of MBs were used for the MB image simulation, the MB
overlaps and MB densities in the cropped region were different since the ROI was large.
For data augmentation, the training frame was flipped in the lateral direction at random.
Finally, the input MB image and corresponding confidence maps were normalized to be
in the range of [0, 1].

To monitor training and select hyper-parameters, validation was conducted. For
validation data, 128 MB images and 128 weak scattering images were generated in the
same way as the training data.

4.5 Confidence Map and Sub-pixel Localization

4.5.1 Non-overlapping Gaussian Confidence Map
In confidence maps, the pixel values indicate the confidences of MB presence in each
pixel position. The higher the confidence is, the higher the change that an MB exists
in the pixel. By training CNNs to learn the confidence map and localizing MBs in the
confidence map, varying numbers of MBs depending on the input ultrasound image can
be dealt with. Especially, non-overlapping Gaussian confidence map has been proposed
to provide large gradients for stable training without losing positions of closely spaced
targets (Youn, Ommen, et al. 2019, 2020).

Previously, target positions were quantized based on pixel size and Gaussians were
defined in the discrete image grid. To achieve sub-pixel localization, the non-overlapping
Gaussian confidence maps were extended by defining the Gaussians in the continuous
domain. The confidence maps were then constructed by sampling the maximum of
the Gaussians in the image coordinates. A detailed process of implementing the non-
overlapping Gaussian confidence maps is described in Algorithm 4.1.

4.5.2 Sub-pixel Localization
Local peaks and their surrounding pixels in the extended non-overlapping Gaussian
confidence maps follow the Gaussian functions thanks to the maximum operation in the
confidence map generation. Also, the Gaussians are defined in the continuous spatial
domain. Therefore, sub-pixel localization can be achieved by applying Gaussian fitting to
the local peaks and their surrounding pixels and taking the centers of the fitted Gaussians.
The sub-pixel localization scheme in a confidence map is presented in Algorithm 4.2.
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Algorithm 4.1: Non-overlapping Gaussian confidence map implementation.

Input: MB positions p ∈ RNs×2, confidence map pixel coordinates pimg ∈ RNz×Nx ,

and a covariance matrix Σ =

(
σ2
z 0
0 σ2

x

)
, where σz and σx are the standard

deviations along the z and x directions.
Output: A non-overlapping Gaussian confidence map c ∈ RNz×Nx

1: Let us consider a 2-D Gaussian function

G (x;µ,Σ) = exp

{
−1

2
(x− µ)ᵀ Σ−1 (x− µ)

}
,

where µ = (µz, µx).
2: for k = 1 to Ns do
3: ck ←

{(
ckij
)
∈ RNz×Nx

∣∣∣ ckij = G(pimgij ;pk∗,Σ)
}

// k-th Gaussian
4: end for
5: c←

{
(cij) ∈ RNz×Nx

∣∣ cij = maxk∈[1,Ns] c
k
ij

}
. // Maximum of Gaussians

Algorithm 4.2: Sub-pixel localization from a confidence map.

Input: A non-overlapping Gaussian confidence map c ∈ RNz×Nx and confidence map
pixel coordinates pimg ∈ RNz×Nx .

Output: Estimated MB positions p̂mb ∈ RN̂mb×2.
1: p̂mb ← { }
2: for i = 2 to Nz − 1 do // Local peak search
3: for j = 2 to Nx − 1 do
4: if ci,j = max{ci−1,j , ci,j−1, ci,j , ci+1,j , ci,j+1} then
5: p̂← fitGaussian

(
i, j, c,pimg

)
// Gaussian fitting

6: p̂mb.insert(p̂)
7: end if
8: end for
9: end for
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The Gaussian fitting can be solved analytically. Let us consider N data samples
{(yi;xi1, xi2)}Ni=1 that follow a 2-D Gaussian function

y = exp

{
−1

2

(
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

)}
, (4.5)

where µ = (µ1, µ2) is the mean, i.e., center, and σ = (σ1, σ2) is the standard deviation
of the Gaussian function. Then, the following equation can be acquired by taking natural
logarithms in equation (4.5),

ln y = ax21 + bx22 + cx1 + dx2 + e, (4.6)

where a = −1/2σ2
1 , b = −1/2σ2

2 c = µ/σ
2
1 , d = µ2/σ

2
2 , and e = −

(
x21/2σ

2
1 + x22/2σ

2
2

)
.

A linear regression can be formalized by the data samples and equation (4.6):




x211 x212 x11 x12 1
x221 x222 x21 x22 1

...
x2N1 x2N2 xN1 xN2 1







a
b
c
d
e




=




ln y1
ln y2

...
ln yN


 . (4.7)

The analytic solution of equation 4.7 can be found by
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and the center of the Gaussian can be estimated by

µ1 = −c/2a and µ2 = −d/2b. (4.9)

As seen from equation 4.8, at least five data points are necessary to estimate the peak of a
2-D Gaussian function. So, the Gaussian function was fitted to the local peak and its 4
neighboring pixels in the estimated confidence map.

4.6 Simulation Experiment

In this section, (1) sub-pixel localization given true confidence maps and (2) the per-
formance of the trained CNN were assessed on the simulated test data. The test data
were generated at 9 different MB densities from 0.3mm−2 to 4.9mm−2 in a 128× 128
region. At an MB density, 128 frames were generated, which have similar degrees of
MB overlaps. The 128 × 128 region was selected randomly for each frame to take the
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spatially varying PSFs into account. Unlike the training data, the MB images and weak
scattering images were simulated simultaneously for the test data. The number of MBs
was changed depending on the target MB density, but the number of weak scatterers was
fixed, assuming the noise is independent to the number of MBs.

4.6.1 Evaluation Metrics
For the sub-pixel localization evaluation, the estimated MBs were obtained by performing
localization in the true non-overlapping Gaussian confidence maps since the purpose was
to evaluate the sub-pixel localization process against localization in the pixel coordinates.
Localization precision was calculated by

localization precision = 2
√
2 ln 2σ, (4.10)

where σ is the standard deviation of localization errors between true and estimated MBs.
Equation 4.10 is the FWHM of a Gaussian function. Therefore, the localization error
will be the resolution of reconstructed ULM images if the localization errors follow a
Gaussian distribution.

For the trained CNN assessment, precision, recall or reconstructed MB density, and
localization precision (equation 4.10) in the lateral and axial directions were measured.
Precision and recall are

Precision =
TP

TP + FP
, (4.11)

Recall =
TP

TP + FN
, (4.12)

and the reconstructed MB density d̂mb is

d̂mb = recall× dmb, (4.13)

where TP is the number of true positives (correct MB localization), FP is the number
of false positives (wrong MB localization), FN is the number of false negatives (missed
MBs), and dmb is the true MB density.

Unlike the sub-pixel localization evaluation, it is necessary to match the true MBs
with the estimated MBs for the CNN evaluation to determine the wrong localization and
missed MBs. As stated in Section 3.5.1, simply matching an estimated MB with the
nearest true MB has a problem that a true MB can be matched with several estimated MBs
(Youn, Ommen, et al. 2020). The bi-directional matching was suggested in Section 3.5.1,
but it is computationally expensive. Thus, the matching problem was formulated as a
linear assignment problem, and the MATLAB (MathWorks, MA, USA) built-in function
matchpairs (Duff and Koster 2001) was used to solve the optimization problem. By doing
so, the same solution can be obtained in a much shorter computation time. The cost matrix
of the linear assignment problem was defined by pairwise distances between the true and
estimated MBs. In addition, the cost of not matching, i.e., the cost of not assigning an
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(a) (b)

Figure 4.5: Comparison of localization in the pixel coordinates and sub-pixel localization.
Sub-pixel localization (w/ sub-pix) was achieved in the true confidence maps using the
Gaussian fitting presented in Section 4.5.2. Localization without sub-pixel accuracy was
performed by quantizing the true MB positions to the input image grid (w/ sub-pix) and
the 4 times higher resolution image grid than the input (w/ sub-pix ×4). (a) is an example
of a true confidence map with the true and estimated MB positions. (b) is the localization
precision of the different methods at various MB densities.

estimated MB to a true MB, was set to reject assignments with large localization errors.
The estimated MBs with large localization errors are essentially wrong localization. The
cost of not matching was λ/5 (49 µm) for precision and recall, and λ/2 (123 µm) for
localization precision.

4.6.2 Result
Fig.4.5 shows a comparison of localization in the pixel coordinates and sub-pixel local-
ization using true MBs or true confidence maps. Sub-pixel localization (w/ sub-pix) was
achieved using the aforementioned Gaussian fitting in Section 4.5.2. Localization without
sub-pixel accuracy was performed by quantizing the true MB positions to the input image
grid (w/ sub-pix) and to the 4 times higher resolution image grid than the input image (w/
sub-pix ×4). The 4 times higher resolution image grid was selected because Liu et al. has
reported that the additional sampling in the network with a factor of 4 shows good balance
between training stability and localization accuracy empirically (X. Liu et al. 2020).

Understandably, w/o sub-pix ×4 showed better localization precision than w/o sub-pix
as its quantization errors are lower thanks to the smaller pixel size. Nonetheless, w/o
sub-pix ×4 was not as good as w/ sub-pix, though w/ sub-pix had the larger pixel size, as
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(a) (b)

(c) (d)

Figure 4.6: Comparison of localization capability between centroid detection and the
proposed method on test data simulated at various MB densities. (a) is precision, (b) is
recall, (c) is the reconstructed MB density, and (d) is localization precision in the lateral
and axial directions. The figure is modified from Paper 3 (Youn, Taghavi, et al. 2021)

shown in Fig. 4.5(b). Sub-pixel localization achieved more than 2 times better localization
precision than localizing MBs in the pixel coordinates in the given MB densities when
the true MB positions and true confidence maps are available.

Notably, the localization precision of w/ sub-pix degraded as the MB density increased,
indicating that w/ sub-pix was affected by the MB density. The reason is that the local
peaks and their neighboring pixels are getting away from the Gaussian function as more
overlapping MBs appear. On the other hand, the quantization error is not affected by
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Figure 4.7: Illustration of 3-D printed channel phantom. The channel was bent a 90°
angle several times and fashioned ten local pairs of closely spaced channels with various
spacing. The illustration was from (Youn, Taghavi, et al. 2021)

the MB density, so the localization precision of w/o sub-pix and w/o sub-pix ×4 were
consistent across different MB densities.

Fig. 4.6 shows the comparison of the proposed CNN localization method against
centroid detection on DAS beamformed images. As centroid detection cannot handle
overlapping PSF localization, the proposed method achieved better precision, recall, and
localization precision at high MB densities. The proposed method also outperformed
centroid detection at low MB densities where the overlapping PSFs are less likely to
appear, showing that the isolated MBs can also be localized more accurately.

Without the ability of overlapping PSF localization, the number of MBs can be
localized was limited even though the MB density increased. In Fig. 4.6(b), recall of
centroid detection decreased as the MB increased, and this resulted in the saturation of
reconstructed MB density, as shown in Fig. 4.6(c). The reconstructed MB density of
centroid detection reached a peak of around 1.0 mm−2 at the MB density of 2.9 mm−2 and
started to decrease. The reconstructed MB density of the proposed method, however, kept
increasing.

4.7 Phantom Experiment

4.7.1 Phantom Fabrication
A PEGDA 700 g/mol hydrogel phantom (Ommen et al. 2019, 2021) that embeds a channel
inside was fabricated. Contrary to the phantoms in Section 3.6.1 that have cavities acting
as scatterers, this phantom has the empty channel in a plane, so MBs can be infused into it
and the structure of the channel can be imaged by ULM. An illustration of the phantom is
shown in Fig. 4.7. The channel whose diameter is 200 µm was bent at a 90° angle several
times and fashioned ten pairs of closely spaced channels. To evaluate the limit of different
localization methods, the spacing of each pair was varied from 22 µm to 121 µm. The
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(a) (b)

Figure 4.8: Phantom experiment setup. (a) is the picture of the experiment setup and (b)
is the illustration of the experiment setup. The figure is modified from Paper 3 (Youn,
Taghavi, et al. 2021).

spacing decreased and increased again from the left to right to maintain the stability of
the phantom during 3-D printing and minimize unexpected 3-D printing errors.

4.7.2 Experiment Setup
The 3-D printed phantom was scanned with the X18L5s linear array probe (BK Medical,
Herlev, Denmark) whose specification followed the parameter values in Table 4.1. The
MB images were acquired in the commercial ultrasound system bk5000 (BK Medical,
Herlev, Denmark) by the imaging sequence introduced in Section 4.2.

The scanning was performed using the experiment setup shown in Fig.4.8. The setup
was installed on the optical table that absorbs and dissipates vibration. The probe was
fixated to a probe fixture using a probe holder, and the phantom was submerged and
fixed in a water tank. The water tank is then laid on the motion stage, and the phantom
was aligned so that the channel can be positioned in the imaging plane. For ultrasound
contrast agents, SonoVue (Bracco Imaging, Milan, Italy) was diluted and injected to the
channel of the phantom by a syringe which was controlled by a flow pump to keep the
MB concentration uniform by applying a constant flow. The phantom was measured at 2
MB concentrations. One was 1:40 dilution (low concentration) and the other was 1:20
dilution (high concentration). The volume flow rate was fixed to 1 µL/min.
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(a)

Figure 4.9: Phantom measurement results. (a) and (b) include the ULM reconstruction
by centroid detection (top left) and the proposed method (top right), MB contrast at each
pair (bottom left), and the lateral intensity profile at the closest pair (bottom right). (a) is
the result at low MB concentration with 3000 frames and (b) is the result at the high MB
concentration with 800 frames. The figure is modified from Paper 3 (Youn, Taghavi, et al.
2021)

4.7.3 Evaluation Metric
In phantom measurements, true MB positions are unknown, therefore, the evaluation
metrics suggested for the simulation experiments are not applicable. Instead, the structure
of the channel is known, so a new metric, MB contrast ratio, was calculated by checking
whether the estimated MBs are inside or outside of the channel. The MB contrast ratio
Cmb is given by

Nmb,ch (Atot −Ach)
(Nmb,tot −Nmb,ch)Ach

, (4.14)
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(b)

Figure 4.9: Phantom measurement results. (a) and (b) include the ULM reconstruction
by centroid detection (top left) and the proposed method (top right), MB contrast at each
pair (bottom left), and the lateral intensity profile at the closest pair (bottom right). (a) is
the result at low MB concentration with 3000 frames and (b) is the result at the high MB
concentration with 800 frames. The figure is modified from Paper 3 (Youn, Taghavi, et al.
2021)

where Nmb,tot and Atot are the total number of MBs in an region and the area of the
region, and Nmb,tot and Ach are the number of MBs inside channels and the area of
channels in the region. Having an MB contrast ratio higher than 1 is a necessary condition
for a pair of channels being resolved.

4.7.4 Result
The phantom experiment results at the low MB concentration with 3000 frames and at the
high MB concentration with 800 frames are shown in Fig. 4.9. At the low concentration,
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for both methods, all the pairs were well separated, and the MB contrast ratio satisfied
the necessary condition to resolve the channels, i.e., higher than 1. The lateral intensity
profile also shows that both methods successfully resolved the most closely spaced pair
whose wall-to-wall distance is 22 µm. On the other hand, at the high MB concentration,
the proposed method still resolved all the pairs clearly, but centroid detection failed as
it cannot localize the overlapping PSFs accurately, as shown in Fig. 4.10(b). The MB
contrast ratio of centroid detection was lower than 1 at all the pairs, and the lateral profile
also showed one peak in the middle of the channels. On the other hand, the proposed
method achieved the MB contrast ratio higher than 1 and showed clear separation of the
closest pair.

The high concentration result of the proposed method was comparable to the low
concentration result with 3.8 times fewer frames. This shows that the potential of the
proposed method for shortening the data acquisition time of ULM by employing high con-
centrations of MBs. The average number of the estimated MBs per frame for the proposed
method was 32 at the low and 124 at the high concentration. When the concentration was
doubled from the low to high concentration, the number of localized MBs increased by a
factor of 3.9. The average number of the estimated MBs per frame for centroid detection
was also increased from 19 to 40, but the estimated MBs were mostly found outside the
channel, i.e., wrong estimations.

4.8 Animal Experiment

The kidney of a healthy male Sprague-Dawley rat was scanned following the protocols
approved by the Danish National Animal Experiments Inspectorate. The procedures were
conducted at University of Copenhagen and the details can be found in (Youn, Taghavi,
et al. 2021). The scan was performed for 9 minutes at 4 MB concentrations using the
same model of the ultrasound system and probe as the phantom experiments, as shown
in Table 4.2. The MB concentration was assumed to be linearly proportional to the MB
dilution and volume flow rate.

After scanning, localization was performed in MB images and motion correction
was applied to the estimated MB positions. The 2-D cross-correlation in small patches
between the reference and a current frame was calculated to estimate the rigid motion in
the B-mode images (Taghavi, Andersen, Hoyos, Nielsen, et al. 2021). Lastly, tracking was
applied on the motion corrected MBs using the hierarchical Kalman filtering suggested in
(Taghavi, Andersen, Hoyos, Schou, et al. 2020). The hierarchical Kalman filtering has
multiple motion and noise models unlike normal Kalman filter-based MB tracking (Tang
et al. 2020). Therefore, different models can be adapted depending on the velocity of the
MBs for more effective tracking.

For in vivo measurements, tracking is essential since the chance of wrong estimations
appearing is higher due to the complexity of target structures, poor SNR, and ultrasound
artifacts. The wrong estimations can be removed effectively by taking the temporal
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Table 4.2: MB concentrations for animal experiments.

Experiment MB dilution Flow rate MB concentration (a.u.)

Scenario 1 1:20 85 µL/min 4
Scenario 2 1:20 170 µL/min 9
Scenario 3 1:10 170 µL/min 17
Scenario 4 1:5 170 µL/min 34

correlation of the estimated MBs into account. The tracking stage also provides velocity
information which allows separating mingled microvessels with different flow directions
(Couture et al. 2018). Hence, a proper tracking process provides better ULM image
quality. For the animal experiments, ground truth is unknown, so it is assumed that track
samples, i.e., the samples consist of the tracks, are correct and the results were assessed
based on the number of track samples and their distances in a frame.

4.8.1 Result
The reconstructed ULM images from the rat kidney measurements are shown in Fig. 4.10.
In scenario 1, both methods resulted in similar high-resolution microvascular images. In
scenario 2, more microvessels were highlighted and the proposed method achieved a little
brighter image than centroid detection by localizing more MBs. Centroid detection started
to fail in scenario 3 by losing many microvessels and failed in scenario 4 apart from the
inner medulla region, where the local MB concentration was relatively low compared to
the other regions. On the contrary, the proposed method achieved good image quality in
scenario 3 and the overall shape of the kidney was perceptible with clear large vessels in
scenario 4, although it also mostly failed to reconstruct microvessels except in some inner
medulla regions.

To analyze the effect of the MB concentrations locally, three regions were selected
from the inner medulla, outer medulla, and cortex. The selected regions are highlighted
as blue rectangles in Fig 4.10. Fig. 4.11 shows the ULM reconstruction and the number
of track samples by centroid detection and the proposed method in the selected regions at
the different MB concentrations. In the inner medulla, a similar trend was observed for
both methods. The number of track samples increased up to scenario 3 and decreased in
scenario 4. In the outer medulla and cortex, more MBs were localized by the proposed
method at all the MB concentrations. Furthermore, the number of track samples for the
proposed method peaked at the higher MB concentrations than centroid detection.

The capability of separating closely spaced MBs was investigated implicitly by
measuring the smallest pairwise distances among track samples in a frame over the
9 minute measurements. Fig. 4.12 shows the normalized counts of the smallest pairwise
distances on the scenario 2 rat data as a histogram with bins of 50 µm. The normalized
counts were acquired by dividing the counts by the total number of counts. For centroid



4.8. Animal Experiment 59

Figure 4.10: ULM reconstruction from the rat measurements by centroid detection and
the proposed method at 4 MB concentrations. The figure is modified from Paper 3 (Youn,
Taghavi, et al. 2021)
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(a) (b)

(c)

Figure 4.11: Rat experiment results in the three selected regions for local analysis. The
selected regions are highlighted as blue rectangles in Fig.4.10. The ULM reconstruction
and the number of track samples by centroid detection and the proposed method at
different MB concentrations are shown in (b) for the inner medulla, (c) for the outer
medulla, and (d) for the cortex. The figure is modified from Paper 3 (Youn, Taghavi, et al.
2021).

detection, there were not track samples closer than 250 µm (≈ λ), represented as a red
vertical dashed line. However, for the proposed method, 8% of the estimated track samples
were closer than 250 µm (≈ λ), showing that the proposed method can localize MBs
closer than the resolution limit of ultrasound.
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Figure 4.12: Histogram of the smallest pairwise distances among track samples in a frame
over the 9 minute measurements on the scenario 2 rat data. The normalized counts were
acquired by dividing the counts by the total number of counts. The red vertical dashed
line represents 250 µm (≈ λ). The figure is from Paper 3 (Youn, Taghavi, et al. 2021).

4.9 Computation Complexity

The proposed method utilizes computational resources efficiently by virtue of the sub-pixel
accuracy processing as additional upsampling layers are not necessary and localization
is performed on the same image resolution as the input image. The computational
complexity of deep-ULM (van Sloun et al. 2021), mSPCN-ULM (X. Liu et al. 2020),
and the proposed method given ultrasound images with a size of 786 × 272, the image
size of the phantom and animal measurements, were investigated. The number of model
parameters and the number of floating point operations (FLOPs) were calculated manually.
The process time was measured for one image frame by repeating inference for 1000
times. Lastly, the maximum available batch size, i.e., the number of image frames that can
be processed in a single iteration, was measured by increasing the batch size in powers of
2 until running out of GPU memory. For the computational complexity evaluation, the PC
equipped with a NVIDIA Titan V graphics card was used, and the results are shown in
Table 4.3. Note that the number of FLOPs, process time, and maximum batch size depend
on the input image size, while the number of parameters does not.

Deep-ULM and the proposed method have similar encoder-decoder architecture,
thereby both require similar number of parameters and FLOPs. However, the proposed
method was faster by a factor of 2.3 for processing one image frame since the additional
upsampling was not necessary. Also, the proposed method was able to process with
roughly 23 times more images in a batch. Considering current ULM processing is mostly
performed off-line, larger batch size is beneficial as more image frames can be processed
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Table 4.3: Comparison of computational complexity given an ultrasound image with a
size of 768× 272.

Model Number of Number of Process Maximum
parameters FLOPs time batch size

Deep-ULM 5.9× 106 29× 109 355 ms 23

mSPCN-ULM 0.4× 106 63× 109 158 ms 26

Proposed 5.8× 106 23× 109 156 ms 26

in parallel. Contrarily, the number of parameters for mSPCN-ULM was much less because
mSPCN-ULM adopts a ResNet style architecture. Nonetheless, the number of FLOPs
was much larger since the size of feature maps are kept in the same image resolution
as the input before the additional upsampling layers due to the lack of pooling and
unpooling operations. Hence, the proposed method achieved comparable process time to
mSPCN-ULM with 15 times more model parameters.

4.10 Discussion

In this chapter, a CNN-based localization method that can handle overlapping MBs with
sub-pixel accuracy has been introduced. The sub-pixel accuracy was achieved by learning
the non-overlapping Gaussian confidence maps and applying Gaussian fitting to the
local peaks in the confidence maps. The method was evaluated on the simulation data,
phantom measurements, and animal measurements at various MB concentrations. The
results showed that the proposed method can separate closely spaced MBs that cannot
be separated by centroid detection. In the phantom experiments, the proposed method
successfully resolved the pair of channels whose wall-to-wall distance is 22 µm at a high
MB concentration when centroid detection failed. And, in the in vivo measurements,
the proposed method was able to detect more MBs, and MBs closer than 250 µm were
separated, which was not achieved by centroid detection.

The proposed method performs localization explicitly at high MB concentrations,
unlike some other works that directly produce super-resolved images at high MB concen-
trations (Bar-Zion et al. 2016; Milecki et al. 2021). Therefore, velocity information, i.e.,
the magnitude and direction of blood flow can be obtained through tracking, as shown in
Fig. 4.13. The track images provide clinical quantities that can be used by clinicians to
diagnose diseases, as well as better image quality by filtering out wrong estimations, and
the ultimate resolution by separating attached microvessels using their flow directions,
which cannot be distinguished in the intensity images.

The effective MB concentrations in local regions are determined by perfusion, vessel
size, and microvascular structures, as well as infused MB concentrations, under in vivo
scenarios. The trends of the number of track samples were locally different, although
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Figure 4.13: The ULM track image generated from the scenario 2 rat kidney measurement
using the proposed localization method and hierarchical Kalman filter. The color wheel
on the top right corner represents the magnitude and direction of the velocity. The figure
is from Paper 3 (Youn, Taghavi, et al. 2021).

the infused MB concentrations were identical, as shown in Fig. 4.11. For example, the
effective MB concentration was higher in the cortex than the inner medulla so, the number
of track samples peaked at different scenarios, i.e., infused MB concentrations. The
degree of overlaps that can be handled by the proposed method limited. Therefore, ULM
at high MB concentrations can give different image qualities depending on the target
structures, and the MB concentrations should be selected based on the region of interests
and the applications.
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CHAPTER 5
Deep Unfolded Ultrasound

Microscopy Localization
In this chapter, MB localization using one of the model-based neural networks that
embeds a sparse prior, a deep unfolded network, is presented. The model-based network
is designed on mathematical formulations, and can thus achieve similar performance
to fully data-driven methods with much fewer learning parameters. The model-based
data-driven method is assessed on simulated test data and phantom measurements. This
chapter is based on Paper 4 (Youn, Luijten, et al. 2020).

5.1 Introduction

Generalization is critical when applying machine learning models to real-world appli-
cations. Deep neural networks are model-agnostic so, a mapping from the input to the
output is learned fully from given training data using a lot of learning parameters. So, it is
difficult to achieve good generalization when the real-world data does not follow the train-
ing data distributions. On the contrary, model-based neural networks are designed based
on mathematical structures using prior information and underlying domain knowledge.
Therefore, the model-based neural networks require much fewer learning parameters and
can achieve better generalization even when only a limited number of training data is
available.

Deep unfolded networks are one kind of model-based network that solves sparse
recovery (Monga, Li, and Eldar 2020), and MB localization for ULM can be defined
as a sparse recovery problem (Eldar 2015). In this chapter, MB localization using a
deep unfolded network, deep unfolded ULM (van Sloun, Cohen, and Eldar 2020), is
introduced, and its performance is compared with centroid detection and other fully-data
driven methods.

5.2 Deep Unfolded ULM

5.2.1 Sparse Recovery
Deep unfolded ULM solves MB localization as a sparse recovery problem which can be

67
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Figure 5.1: Illustration of the ISTA.

formalized as
y = Ax + n, (5.1)

where y is the upsampled MB ultrasound image, A is the PSF model, x is the MB
distribution in a high-resolution image grid, and n is the noise. The MB distribution x
can be assumed to be sparse since the MB positions are represented in the high-resolution
image grid. By exploiting the sparse prior, an optimization problem with the the `1-
regularization to find the solution x̂ can be defined by

x̂ = argmin
x
‖y −Ax‖22 + λ‖x‖1, (5.2)

where λ is the regularization coefficient that controls the sparsity of x.

5.2.2 Iterative Shrinkage-thresholding Algorithm
The problem (5.2) can be optimized iteratively using the proximal gradient methods such
as the fast iterative shrinkage-thresholding algorithm (FISTA) (Beck and Teboulle 2009).
The proximal form of the gradient descent of (5.2) is

xk+1 = proxλ‖·‖1
(
xk − µAᵀ (Axk − y

))
, (5.3)

where k is the step, µ is the step size, and proxλ‖·‖1(x) = sign(x)max(|x| − λ, 0) is the
proximal operator of the `1-norm. Equation (5.3) can be simplified by

xk+1 = proxλ‖·‖1
(
W1y + W2x

k
)
, (5.4)

where W1 = µAᵀ and W2 = I − µAᵀA. An overview of the iterative shrinkage-
thresholding algorithm (ISTA) scheme is illustrated in Fig. 5.1.

5.2.3 Deep Unfolded Network
Proximal gradient-based methods such as the FISTA (Beck and Teboulle 2009) require
many iterations, so it often takes a long time to converge to a solution. Additionally, the
solution is highly dependent on the optimization parameters such as the step size µ, the
regularization coefficient λ, and the PSF model A; therefore, careful tuning is necessary.
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Figure 5.2: Illustration of deep unfolded ULM constructed by unfolding the iteration part
of the ISTA in Fig. 5.1. The image is modified from Paper 4 (Youn, Luijten, et al. 2020).

To cope with those limitations, deep unfolded networks (Monga, Li, and Eldar 2020)
have been proposed, where the ISTA is learned from data (Gregor and LeCun 2010). The
deep unfolded network is formed by unfolding the iteration part of the ISTA and creating
a K-layer network with learning parameters Wk

1 , Wk
2 , and λk, as shown in Fig. 5.2.

Essentially, the deep unfolded network is a K-iteration ISTA, where the optimization
parameters are learnable at each layer from the training data.

Deep unfolded ULM employs deep unfolded networks for MB localization. Hence, it
is fast as the iteration part in the ISTA is removed, and it does not require parameter tuning
since the optimization parameters are embedded in the network architecture, so the optimal
parameter values can be learned from the data during training. Deep unfolded ULM can,
therefore, achieve more robust MB localization by learning more diverse PSF models
from the training data, compared with the ISTA. Also, much fewer learning parameters
are necessary than fully data-driven methods, which allows better generalizability and
efficient computation in training and inference.

The sub-pixel localization scheme in Chapter 4 was considered, but the non-overlapping
Gaussians were not able to be reconstructed effectively by the deep unfolded networks.
Therefore, the MB positions were quantized and represented in a λ/16 grid, i.e., the
binary confidence map, and the input MB data were upsampled by a factor of 4 before
being fed to the network. The learning parameters were defined by 9× 9 convolutions,
so each convolution kernel covers an area of 0.6λ× 0.6λ. The networks were trained by
minimizing the MSE loss between true and estimated MB positions using the ADAM
optimizer (Kingma and Ba 2015). In the loss function, a 2-D Gaussian is applied to the
true MB positions to ensure training stability as follows:

L (x,y; θ, σ) = 1

N

N∑

i=1

‖G (yi;σ)− f (xi; θ)‖2F , (5.5)

where N is the number of samples, G is the 2-D Gaussian smoothing with a standard
deviation of σ, f ( · ; θ) represents the neural network with learning parameters θ, and



70 Chapter 5. Deep Unfolded Ultrasound Microscopy Localization

Figure 5.3: Deep-ULM: an encoder-decoder structure CNN that is compared with deep
unfolded ULM. The details on the down-block, conv-block, and up-block can be found in
(Youn, Ommen, et al. 2020). The upsampling factor of the first up-block was 2, but those
of the second and third up-blocks were 4 to localize MBs in a higher-resolution image
grid. The illustration is modified from Paper 4 (Youn, Luijten, et al. 2020)

‖·‖F is the Frobenius norm. The standard deviation of the Gaussian filter was set to 1
pixel.

5.3 Simulation Experiment

In the simulation experiments, deep unfolded ULM was compared with standard ULM,
i.e., centroid detection, and deep-ULM on two test sets. One test set was generated by
simulating ultrasound data with randomly placed scatterers in the ROI at different MB
densities, where each frame was simulated independently. The other test set was simulated
consecutively with the scatterers flowing along a pair of parallel channels whose flow
directions are opposite to each other.

Deep-ULM is a fully data-driven method that uses an encoder-decoder structure CNN.
The encoder-decoder structure has been widely used for various computer vision and
image processing problems such as image segmentation (Badrinarayanan, Kendall, and
Cipolla 2017; Ronneberger, Fischer, and Brox 2015) and image generation (Isola et al.
2016). To compare the performance of the methods, deep-ULM was also trained with the
same training data. The network architecture of deep-ULM is shown in Fig. 5.3. It was
composed of three down-blocks, one conv-block, and three up-blocks (Youn, Ommen, et al.
2020), and the details of each block are presented in Section 3.4. In the encoding, feature
maps were downsampled by a factor of 2. In the decoding path, they were upsampled by
a factor of 2 in the first up-block but by a factor of 4 in the second and third up-blocks
to localize the MBs in a 4 times higher image grid. The sub-pixel localization scheme
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Table 5.1: Field II simulation parameters

Parameter Value

Transducer Transmit frequency 6.9 MHz
Pitch 30 mm
Element height 5 mm
Element width 27 mm
Number of elements 128

Imaging Wave type Plane
Steering angles 2 · i◦, i ∈ {−5, . . . , 5}
F# 0.5
# of elements in TX 128
Apodization in TX Hann window
Apodization in RX Hann window

Environment Speed of sound 1480 m/s
Field II sampling frequency 180 MHz

using the non-overlapping Gaussians was not considered for a fair comparison since deep
unfolded ULM performed localization in the pixel coordinates without sub-pixel accuracy.

5.3.1 Ultrasound Data Generation
MB data were simulated in Field II pro (Jensen 1996, 2014; Jensen and Svendsen 1992)
using plane wave imaging (Tanter and Fink 2014) which allows higher frame rates than
conventional line-by-line focused beam transmission. The simulation parameter values
are given in Table 5.1. RF channel data were simulated using a 128-element linear array
probe with randomly placed scatterers in the ROI. For one image frame, 11 steered plane
waves were simulated with a single cycle sinusoid at the frequency of 6.9 MHz. To
form an ultrasound image, DAS beamforming with a dynamic apodization and coherent
compounding were applied to the simulated RF channel data. The beamforming was
performed in a λ/4 grid, and 256 image frames were generated for the training set.

5.3.2 Result
The evaluation on the randomly placed scatterer test set shows the performance of the
localization methods at different MB densities. For the assessment, precision, recall, and
the median localization errors were calculated. Precision and recall are defined by

Precision =
TP

TP + FP
, (5.6)
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Figure 5.4: Comparison of localization methods at different MB densities. (a) is precision,
(b) is recall, and (c) is median localization error. The figure is from Paper 4 (Youn, Luijten,
et al. 2020).

Recall =
TP

TP + FN
, (5.7)

where TP is the number of true positive, FP is the number of false positive, and FN
is the number of false negative. The true and estimated MBs were matched using the
method explained in Section 4.6.1, allowing a localization error of 50 µm (0.23λ).

Fig. 5.4 shows the results of standard ULM, deep-ULM, and deep unfolded ULM.
Centroid detection cannot localize overlapping PSFs; therefore the performance of it
degraded as the MB density increased. A similar trend was observed for deep-ULM,
but its performance was much better than centroid detection since the overlapping PSFs
could be handled. Deep unfolded ULM achieved comparable precision and localization
uncertainty to deep-ULM, though the recall was not as good as deep unfolded ULM.
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Figure 5.5: Comparison of the methods on the parallel channel simulation data. (a) -
(d) are the results of channels separated by λ/2 and (e) - (h) are the results of channels
separated by λ/4, where (a), (e) are stand ULM, (b), (f) are deep-ULM, (c), (g) are deep
unfolded ULM, and (d), (h) are the lateral intensity profile of each method. The figure is
from Paper 4 (Youn, Luijten, et al. 2020).

This result shows that deep-ULM can achieve better performance on the data drawn from
the same data distribution as the training data, i.e., randomly placed scatterer data, by
exploiting a larger number of learning parameters.

To evaluate the methods in more realistic situations, 1024 consecutive frames were
simulated with scatterers flowing along a pair of channels separated by λ/2 and λ/4.
Fig 5.5 shows the ULM reconstruction and intensity profile in the lateral direction. It
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was challenging for standard ULM to localize MBs correctly since the channels were
spaced closer than the resolution limit of ultrasound imaging. In the reconstructed ULM
images by centroid detection, wrong MB estimations were observed in the middle of
the channels, where MBs are not supposed to be localized. The intensity profile of
both data-driven methods, i.e., deep-ULM and deep unfolded ULM, showed two peaks
where the channels were placed and lower intensities in the middle. Comparing the deep
learning methods, deep-ULM achieved better imaging quality with fewer false estimations
and clearly resolved the channels with better localization precision. This shows better
generalizability of deep unfolded ULM to various data distributions that are not seen
during training, which is consistent with (Dardikman-Yoffe and Eldar 2020; Monga, Li,
and Eldar 2020).

5.4 Phantom Result

To see how it works on measured data, deep unfolded ULM was applied to the phantom
measurements acquired in Section 4.7. For that, a new deep unfolded network was trained
using the training data used for training the sub-pixel localization CNN in Chapter 4. The
simulation parameters can be found in Table 4.1. As deep unfolded ULM localizes MBs
in the pixel coordinates without sub-pixel accuracy, the input image was interpolated in
the λ/4 grid and the MB positions were quantized and represented in the λ/16 grid.

The ULM reconstruction, MB contrast ratio, and lateral intensity profile at the most
closely spaced pair, i.e., the sixth pair from the left, are shown in Fig. 5.6. At the low MB
concentration (Fig. 5.6(a)), deep unfolded ULM as well as other methods resolved all the
pairs clearly, showing that deep unfolded ULM can be generalized to the measured data.
At the high MB concentration, deep unfolded ULM resolved all the channels successfully
while achieving comparable performance to the sub-pixel localization CNN when centroid
detection failed. This demonstrates that deep unfolded ULM can localize the overlapping
PSFs effectively on the measured data.

It is surprising as deep unfolded ULM requires much fewer learning parameters than
the CNN method. The number of learning parameters for deep unfolded ULM was
1735 when that for the sub-pixel localization CNN was about 5.8× 106. Accordingly,
the number of operations was also smaller. To process a 128 × 128 image, the FLOPs
necessary for the CNN model was 12 305 787 392, however, that for deep unfolded ULM
was 57 016 320.

5.5 Discussion

MB localization using the deep unfolded network, i.e., deep unfolded ULM, has been
presented and evaluated on the simulated and measured data. By learning the optimization
parameters from the training data, the deep unfolded network solves the sparse coding
problem more effectively and efficiently without iterations and parameter tuning. There-
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(a)

Figure 5.6: The results on the phantom measurements by centroid detection, the sub-pixel
localization CNN which was introduced in Chapter 4, and deep unfolded ULM on the
phantom measurements in Section 4.7. The ULM reconstruction, MB contrast ratio, and
lateral intensity in the most closely spaced are shown at the (a) low concentration and (b)
high concentration.

fore, deep unfolded ULM can localize MBs more robustly than the ISTA-based methods
such as the FISTA.

Compared to the fully data-driven CNN, deep unfolded ULM required fewer learning
parameters by a factor of about 3000 thanks to its model-based approach, which allows
better generalizability. On the simulated parallel tube data, deep unfolded ULM achieved
better imaging quality by localizing MBs more accurately with fewer wrong estima-
tions. Deep unfolded ULM was also well generalized to the phantom measurement with
comparable results to the sub-pixel localization CNN. Under the better generalizability,
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(b)

Figure 5.6: The results on the phantom measurements by centroid detection, the sub-pixel
localization CNN which was introduced in Chapter 4, and deep unfolded ULM on the
phantom measurements in Section 4.7. The ULM reconstruction, MB contrast ratio, and
lateral intensity in the most closely spaced are shown at the (a) low concentration and (b)
high concentration.

deep unfolded ULM will possibly be able to achieve more robust MB localization than
deep-ULM on in vivo measurements.

Deep unfolded ULM required fewer FLOPs by a factor of about 200, leading to faster
inference. Currently, most of ULM processing is performed off-line due to the high
computational complexity such as beamforming, MB localization, motion correction, and
tracking. Deep unfolded ULM may open the possibility of real-time ULM by reducing the
processing time for localization as well as shorten the data acquisition time by localizing
high concentrations of MBs.



CHAPTER 6
Task-adaptive Beamforming

and Localization
The performance of MB localization in beamformed ultrasound images is bounded by
the adequacy of the beamforming stage even though recent deep learning methods can
localize overlapping MBs. This chapter introduces a model-based neural network that
performs both beamforming and localization. By doing so, the beamforming stage can be
optimized for the subsequent task, i.e., MB localization, and the localization performance
can be improved. This chapter is based on Paper 5 (Youn, Luijten, et al. 2021).

6.1 Introduction

Several deep learning methods have been proposed to localize overlapping MBs on
beamformed ultrasound images (Brown, Ghosh, and Hoyt 2020; Liu et al. 2020; Milecki
et al. 2021; van Sloun, Cohen, and Eldar 2020; van Sloun, Solomon, et al. 2021; Youn,
Taghavi, et al. 2021). For those methods, DAS beamforming is commonly used as it
is efficient and effective. However, the ability of the deep learning-based localization
methods is potentially limited by the adequacy of the beamforming stage as DAS is
devised for investigating anatomical structures.

To push this boundary, task-adaptive beamforming is proposed by jointly optimizing a
deep neural beamformer and localization network using Adaptive Beamforming by deep
LEarning (ABLE) (Luijten et al. 2020) and deep unfolded ULM (van Sloun, Solomon,
et al. 2021). ABLE is a model-based neural network that performs content-adaptive
beamforming and results in high-quality ultrasound images. By placing ABLE before
deep unfolded ULM and training the network as a whole, in an end-to-end fashion,
adaptive beamforming weights tailored for the downstream task, i.e., MB localization
by deep unfolded ULM, can be obtained. The images beamformed by ABLE ease the
downstream localization problem, and thus, the localization performance of deep unfolded
ULM can be improved.

6.2 Ultrasound Data Generation

Ultrasound data were simulated in Field II pro (Jensen 1996, 2014; Jensen and Svendsen
1992) using the same imaging sequence introduced in Section 5.3.1. The parameters for
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Table 6.1: Field II simulation parameters

Parameter Value

Transducer Transmit frequency 6.9 MHz
Pitch 30 mm
Element height 5 mm
Element width 27 mm
Number of elements 128

Imaging Wave type Plane
Steering angles 2 · i◦, i ∈ {−5, . . . , 5}
F# 0.5
# of elements in TX 128
Apodization in TX Hann window
Apodization in RX Hann window

Environment Speed of sound 1480 m/s
Field II sampling frequency 180 MHz

the simulation are presented in Table 6.1. One image frame was simulated with randomly
placed point scatterers and 11 plane waves. The simulated RF channel data were then
delayed on a λ/4 grid but not summed along the channel directions. Therefore, the data
size of one image frame was M×N× C× 11, where M and N are the numbers of image
points in the axial and lateral directions, C is the number of the transducer channels, and
11 is the number of transmission events. For training, 768 frames were generated.

6.3 Network Architecture

The overview of the proposed network is shown in Fig. 6.1(a). The network performing
task-adaptive beamforming and MB localization is designed by incorporating ABLE
(Luijten et al. 2020) into deep unfolded ULM (van Sloun, Cohen, and Eldar 2020). By
training the beamformer and localization networks as an end-to-end fashion, beamforming
weights that are optimal for the downstream task, i.e., MB localization by deep unfolded
ULM, can be learned. In this network, the beamforming part firstly estimates the task-
adaptive beamforming weights from delayed but not summed RF channel data. And
then, the estimated weights are applied to the channel data, and the beamformed images
are compounded. Finally, MB localization is performed on the image beamformed and
compounded by the network.

Fig. 6.1(b) shows the beamforming part of the network for one transmission event.
A 5 × 5 convolution layer is placed before ABLE to offer a larger receptive field, so
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(a)

(b)

Figure 6.1: A schematic overview of the proposed network. (a) shows the whole pipeline
and (b) shows the beamforming process for one transmit event. The proposed network
takes delayed RF channel data as input and performs beamforming. Here, optimal apodiza-
tion weights for the downstream task (i.e., MB localization) are learned by ABLE(Luijten
et al. 2020). This is why the method is referred to as task-adaptive beamforming. After
that, beamformed signals from each transmit are compounded using a dense layer, and
MBs are localized using deep unfolded ULM (van Sloun, Cohen, and Eldar 2020; Youn,
Luijten, et al. 2020) in the image beamformed and compounded by the network. The red
text represents data size. The illustration is modified from Paper 5 (Youn, Luijten, et al.
2021).
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that the subsequent beamformer network, i.e., ABLE, can consider neighboring pixels
when estimating the beamforming weights at a pixel position. Further details of ABLE
can be found in (Luijten et al. 2020). Distinct convolution layers and ABLE networks
were defined for each transmission event, i.e., 11 convolution layers and ABLE networks.
The beamformed images were then compounded by a dense layer that learns a weighted
summation. After the dense layer, a beamformed and compounded ultrasound image
whose size is M× N can be obtained.

Deep unfolded ULM cannot localize MBs with sub-pixel accuracy. To minimize the
quantization error of the estimated MB positions, MB localization was performed in a
λ/16 image grid after upsampling the beamformed images by a factor of 4. Deep unfolded
ULM was explained in Section 5.2 and the details can be in (Monga, Li, and Eldar 2020;
van Sloun, Solomon, et al. 2021). A 10-layer deep unfolded network composed of 9× 9
convolutions was used for localization.

The proposed network was trained by minimizing the MSE loss with the 2-D Gaussian
smoothing as follows:

L (x,y; θ, σ) = 1

n

n∑

i=1

‖G (yi;σ)− f (xi; θ)‖2F , (6.1)

where xi is the i-th delayed RF channel data in the λ/4 grid, yi is the i-th MB positions
represented in the λ/16 grid, n is the number of data, G is the 2-D Gaussian filtering
with the standard deviation of σ, f ( · ; θ) is the neural network function with learning
parameters θ, and ‖·‖F is the Frobenius norm.

The standard deviation of the Gaussian filter was initially set to 4 pixels and training
was performed with 1000 epochs, where the initial learning rate was 0.0001 and it was
halved every 200 epochs. After that, the network was further trained with the standard
deviation of 1 pixel for 200 epochs to acquire sharper MB distributions, where the learning
rate was 0.0001 and it was halved every 40 epochs.

6.4 Simulation Result

The task-adaptive beamforming and localization method was evaluated on simulated test
data and compared against centroid detection and deep unfolded ULM. Deep unfolded
ULM was trained with the images obtained by beamforming the channel data used for
training the proposed method. Beamforming was performed by DAS with a dynamic
apodization where the F# was 0.5.

The mapping from RF channel data to MB positions is learned in an end-to-end
fashion, although the proposed neural network is constructed by combining two networks.
Therefore, the beamforming network is tailored for the downstream task, i.e., MB local-
ization. Fig. 6.2 shows a DAS beamformed image and a network beamformed image
before MB localization on a test data. The network beamformed image in Fig. 6.2(b)
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(a) (b)

Figure 6.2: A comparison of (a) DAS beamformed image with a dynamic apodization
where the F# is 0.5 and (b) task-adaptive beamforming result which was jointly trained
with deep unfolded ULM. The task-adaptive beamforming achieved sharper peaks at MB
positions. The image is from Paper 5 (Youn, Luijten, et al. 2021).

(a) (b) (c)

Figure 6.3: A comparison of different method localization results on the same test data
used in Fig. 6.2. (a) is centroid detection on the DAS beamformed and envelope detected
image, (b) is deep unfolded ULM on the DAS beamformed RF image, and (c) is the result
of the jointly optimized task-adaptive beamforming and localization network.
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(a) (b) (c)

Figure 6.4: A comparison of centroid detection, deep unfolded ULM, and task-adaptive
beamforming and localization. (a) is precision, (b) is detected MB density, and (c) is
median localization error at different MB densities.

resulted in sharper peaks at MB positions compared to the DAS beamformed image in
Fig. 6.2(a).

Fig. 6.3 shows a comparison of the localization results on the same test data used in
Fig. 6.2. Fig. 6.4 shows precision, detected MB density, and median localization error,
following the methods presented in Section 5.3, at different MB densities. Centroid
detection on the DAS beamformed image (Fig. 6.3(a)) could localize isolated MBs
accurately but failed to localize overlapping PSFs and produced a wrong estimation.
For the result of deep unfolded ULM on the DAS beamformed RF image (Fig. 6.3(b)),
two MBs were missed, but other MBs were accurately localized without producing the
wrong estimations. This explains higher precision of deep unfolded ULM than centroid
detection, as shown in Fig. 6.4(a). The task-adaptive beamforming and localization
network estimated all the MBs at the correction positions. For deep unfolded ULM, the
degree of overlaps can be handled was limited due to DAS beamforming. However, for
the proposed method, the beamforming part already made localization easier by making
sharper peaks at the MB positions, as shown in Fig. 6.2(b). Therefore, it was able to
localize all the MBs successfully. This is also shown in Fig. 6.4(b) that the detected MB
density of the proposed method converged to a higher density than deep unfolded ULM.
Deep unfolded ULM and the proposed method showed comparable localization precision,
as shown in Fig. 6.4(c).

6.5 Discussion

A beamformer and localization network which can localize high concentrations of MBs is
proposed. The network is constructed by incorporating ABLE into deep unfolded ULM.
Hence, adaptive beamforming weights optimal for deep unfolded ULM to locate MBs
was able to be learned. The beamforming network was not optimized for perceptually
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appealing images for humans, but to ease the subsequent MB localization. The beam-
formed results showed sharper peaks at the MB positions than DAS. By localizing MBs
in the sharper images, the proposed network achieved higher recall than deep unfolded
ULM while keeping similar precision and localization error to deep unfolded ULM. The
model-based beamformer and localization network can possibly be used to reduce the
data acquisition time of ULM by localizing more MBs accurately, whilst employing high
concentrations of MBs.

In this chapter, the task-adaptive beamforming scheme was used for MB localization,
however, its application is not limited to localization. By combining the beamforming
network with another network performing some task, the adaptive beamforming weights
dedicated to the given task can be learned. Examples of such tasks include clutter removal,
artifact suppression, and diagnosis. It may open up a new approach of accommodating
beamforming for the downstream task.
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CHAPTER 7
Conclusion

The goal of this Ph.D. project is to localize more MBs by employing high concentrations of
MBs to decrease data acquisition time of ULM. The standard localization methods suffer
when the targets are closer than the resolution limit and overlapping PSFs appear. Several
data-driven deep learning methods have been investigated to localize the overlapping
PSFs accurately and robustly.

Fully Data-driven Methods
Localization directly on RF channel data using an encoder-decoder structure CNNs was
studied and presented in Chapter 3. The training was performed with simulated ultrasound
channel data. Non-overlapping confidence map has been proposed to provide large gradi-
ents for stable training without losing closely spaced target positions. In the simulation
results, the CNN localization method outperformed peak detection and deconvolution
methods by localizing scatterers placed closer than the resolution of ultrasound. Also,
the comparison of the proposed method with deep-ULM has shown the great potential
of localizing scatterers on the RF channel data without explicit beamforming. For the
assessment on measured data, 3-D printed scatterer phantoms were fabricated. And the
training data were updated following the physical properties of the scatterers inside the
phantoms due to the generalization problem. The CNN trained with the updated data was
able to identify scatterers, however, its performance on the phantom measurements was
not as good as on the simulated data.

In Chapter 4, the CNN localization method on the beamformed ultrasound data
was investigated since it was difficult to simulate the channel data accurately and the
accessibility to the channel data is limited. Especially, sub-pixel accuracy was achieved
by extending the non-overlapping Gaussian confidence maps in the continuous spatial
domain and applying Gaussian fitting to the local peaks in the estimated confidence maps.
This method does not require additional upsampling, unlike other deep learning-based
methods; therefore, the computation was faster and required less GPU memory. The
sub-pixel CNN method was evaluated in a 3-D printed channel phantom, where the
dimensions of the channel was known. At a high MB concentration, the sub-pixel CNN
method successfully resolved the pair of channels whose wall-to-wall distance is 22 µm
when centroid detection failed. Furthermore, in the in vivo measurements, more MBs were
estimated by localizing MBs spaced closer than 250 µm (≈ λ), which was not available
by centroid detection.
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Model-based Data-driven Methods
Deep unfolded ULM that solves the MB localization problem using deep unfolded
networks, which are one kind of model-based neural network that can solve the sparse
recovery problem, has been investigated in Chapter 5. Deep unfolded ULM required
much fewer learning parameters thanks to its model-based approach. Therefore, it was
able to achieve better generalizability to out of training data distributions compared
with deep-ULM, the model-agnostic fully data-driven method. In addition, the training
of deep unfolded ULM took a short time and its inference was fast by virtue of the
fewer learning parameters. On the phantom measurements obtained in Chapter 4, similar
performance to the sub-pixel CNN localization method was achieved by deep unfolded
ULM. Considering its better generalizability, more robust MB localization is expected on
in vivo measurements.

To further employ the model-based network approach in the ultrasound data process-
ing chain, the network that performs beamforming and MB localization simultaneously
was investigated in Chapter 6. The task-adaptive beamforming network was constructed
by combining two model-based networks that estimate content-adaptive beamforming
weights (ABLE) and localize MBs (deep unfolded ULM). The beamforming and local-
ization network was trained as an end-to-end fashion; hence, the beamforming part was
optimized to learn the optimal weights for the downstream localization task from train-
ing data. The ultrasound images beamformed by the task-adaptive beamformer showed
sharper peaks at the MB positions than the DAS beamformed ultrasound images. The
sharper peaks eased the downstream localization problem, and thus, more MBs were
localized at high MB densities. At the MB density of 7.34 mm−2, the beamforming and
localization method reconstructed 4.48 mm−2 when centroid detection and deep unfolded
ULM reconstructed 1.47 mm−2 and 2.98 mm−2, respectively.

7.1 Perspective and Outlook

From this Ph.D. project, it has been shown that deep learning-based data-driven local-
ization methods outperform other localization methods for localizing overlapping high
concentrations of MBs. For applying the deep learning methods to real-world applications,
more efficient and generalized models for ultrasound signal processing need to be inves-
tigated. CNNs showed descent performance, however, by employing the model-based
deep learning, deep unfolded ULM achieved comparable performance with 3000 times
fewer learning parameters and 200 times faster inference, compared to deep-ULM, a fully
data-driven method. For the moment, most ULM processing is performed off-line, as
it takes a long time. The advanced deep learning models will be able to decrease the
processing time and help ULM operate in real time.

This project mostly focused on applying deep learning to MB localization, but it can
be extended to other ULM processing. The task-adaptive beamforming and localization
has already shown that the localization performance can be improved by incorporating
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the beamforming stage into the localization network, although it is still in its early stage
and further development needs to follow. Specifically, deep learning can be applied to
consider the temporal correlation for clutter rejection, motion correction, and tracking.
Each step of ULM that determines the final image quality is interdependent. Ultimately,
deep learning models that perform the whole ULM chain need to be developed to optimize
each step jointly.

Lastly, there are fundamental limitations of 2-D ULM for scanning 3-D structures.
The 2-D ultrasound image is an integration over the elevation beam profile, which can
potentially degrade localization. Also, it is difficult to capture the out-of-plane motion
for motion correction. There have been 3-D ULM using fully-addressed matrix probes or
row-column addressed matrix probes. Accordingly, the deep learning methods need be
extended for 3-D ULM.
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Abstract—Super-resolution imaging (SRI) can achieve sub-
wavelength resolution by detecting and tracking intravenously
injected microbubbles (MBs) over time. However, current SRI is
limited by long data acquisition times since the MB detection still
relies on diffraction-limited conventional ultrasound images. This
limits the number of detectable MBs in a fixed time duration. In
this work, we propose a deep learning-based method for detecting
and localizing high-density multiple point targets from radio
frequency (RF) channel data. A Convolutional Neural Network
(CNN) was trained to return confidence maps given RF channel
data, and the positions of point targets were estimated from the
confidence maps. RF channel data for training and evaluation
were simulated in Field II by placing point targets randomly
in the region of interest and transmitting three steered plane
waves. The trained CNN achieved a precision and recall of 0.999
and 0.960 on a simulated test dataset. The localization errors
after excluding outliers were within ± 46µm and ± 27µm in the
lateral and axial directions. A scatterer phantom was 3-D printed
and imaged by the Synthetic Aperture Real-time Ultrasound
System (SARUS). On measured data, a precision and recall of
0.976 and 0.998 were achieved, and the localization errors after
excluding outliers were within ± 101µm and ± 75µm in the
lateral and axial directions. We expect that this method can be
extended to highly concentrated microbubble (MB) detection in
order to accelerate SRI.

I. INTRODUCTION

Super-resolution imaging (SRI), often referred to as ultra-
sound localization microscopy (ULM), has demonstrated that
it is possible to surpass the diffraction limit of conventional
ultrasound imaging. Microvessels laying closer than a half-
wavelength apart have been resolved by deploying microbub-
bles (MBs) as a contrast agent and using SRI [1]–[5]. The
centroids of individual MBs can be easily found as MB echoes
are much stronger than surrounding tissues when insonified,
and their sizes are much smaller than a wavelength. Sub-
wavelength imaging is achieved by accumulating the detected
MB positions over time, revealing the fine structure of the
microvasculature.

The MB detection in SRI, however, is still diffraction-
limited because it is performed in conventional ultrasound
images which are commonly formed by delay-and-sum (DAS)
beamforming [6]. For accurate and reliable detection and
localization, the MBs need to be more than a wavelength apart
to avoid the overlaps of MB point spread functions (PSFs).
Diluted concentrations of MBs are commonly used to satisfy
this criteria as the behavior of MBs is hard to control. The
number of detectable MBs, therefore, is constrained and this

leads to very long data acquisition times in order to map the
entire microvasculature.

In this work, we propose a deep learning-based method for
detecting and localizing multiple ultrasound point targets. The
method especially aims to identify high-density point targets
whose PSFs are overlapping, by feeding radio frequency (RF)
channel data directly as input. A fully convolutional neural
network (CNN) was designed to return 2-D confidence maps
given RF channel data. The pixel values of the confidence
maps correspond to the confidence of point targets existing
in the pixels. The point target positions were extracted from
the confidence maps by identifying local maxima. The CNN
was trained and evaluated using simulated RF channel data.
To further investigate the method on measured data, a phan-
tom experiment was performed using a 3-D printed PEGDA
700 g/mol hydrogel phantom [7].

II. METHOD

A. Simulated Dataset

1) RF channel data: The Field II ultrasound simulation
program [8], [9] was used to simulate RF channel data for
generating a training and a test datasets. The datasets were
composed of a certain number of frames. One frame was
created by transmitting three steered plane waves after placing
100 point targets randomly within a region of 6.4× 6.4mm2

(an average target density of 2.44mm−2) where the center was
18mm away from a transducer. The transducer was modeled
after a commercial 192-element linear array, and the measured
impulse response [10], [11] was applied to make the RF data
as close to real measured data as possible. The parameters
used in simulation are listed in Table I.

The simulated raw RF data were not beamformed but
delayed, based on the time-of-flight calculated by

τi(x, z) =

(√
(x− xi)2 + z2 + z

)
/c (1)

where τi is the time-of-flight of the i-th transmission, (x, z) is
the point, xi is the center of the i-th transmission aperture,
and c is the speed of sound. The delayed RF data were
then sampled to have the same number of samples as that of
confidence maps along the axial direction. The size of resulting
RF data for one frame was 256× 64× 3.



TABLE I
RF CHANNEL DATA SIMULATION PARAMETERS

Category Parameter Value
Transducer Center frequency 5.2MHz

Pitch 0.20mm
Element width 0.18mm
Element height 6mm
Number of elements 192

Imaging Number of TX elements 32
Number of RX elements 64
Steering angles −15◦, 0◦, 15◦

Environment Speed of sound 1480m/s
Field II sampling frequency 120MHz
RF data sampling frequency 29.6MHz

Scatterer Number of scatterers 100
Lateral position range (−3.2, 3.2)mm
Axial position range (14.8, 21.2)mm

2) Confidence Map: Non-overlapping Gaussian confidence
maps were used as labels for training CNNs. Initially, binary
confidence maps were created, where pixel values of one
indicated a point target and the remaining pixel values were
zero. A 21 × 21 Gaussian filter with a standard deviation of
six was then applied at each point target position in the binary
confidence maps. The filter values from the targets will be
overlapped when some targets are closer than a half of the
filter size in the confidence maps. In that case, the maximum
value at each pixel location was taken. This maintained local
maxima at target positions as opposed to the overlapping PSFs
of DAS beamforming, and enabled the CNN to resolve targets
closer than the diffraction limit.

The pixel size of the confidence maps was set to 25 µm,
and the image size of them became 256×256, given the pixel
size and the region of interest.

B. Convolutional Neural Network

1) Network Architecture: The proposed CNN is adapted
from U-Net [12] which has an encoder-decoder structure. The
feature maps are downsampled while the number of feature
maps increases in the encoding path. Then, the feature maps
are upsampled to their original size while the number of
feature maps decreases in the decoding path. U-Net has a
large receptive field, an effective input size that is covered
by a convolution operation in an unit, for the sake of this
structure. This is beneficial because a partial view of RF data
is not enough to determine point target existence.

A detailed CNN architecture is illustrated in Fig. 1. Con-
volution and rectified linear unit (ReLU) layers in U-Net
were replaced with pre-activation residual units (Fig. 1a) [13].
The pre-activation residual units ease optimization problem
by introducing shortcuts, thereby improving performance. The
proposed CNN (Fig. 1e) mainly consisted of four down-
blocks (Fig. 1b), one conv-block (Fig. 1c), and four up-blocks
(Fig. 1d). The skip-connections in U-Net was removed since it
hindered the training. Instead, CoordConv [14] was added to
transfer spatial information over convolution layers. Dropout
[15] was attached after the shortcut in residual blocks for regu-
larization. For pooling and unpooling, strided convolution and

pixel shuffle [16] were chosen, respectively. Leaky rectified
linear units (Leaky ReLU) [17] were applied as non-linear
activation to avoid dying ReLU problem causing nonactivated
units.

2) Training Details: The CNN was trained by minimizing
the mean squared error (MSE) between true confidence maps
and CNN outputs. The training dataset consisted of a total
of 10, 240 frames. The kernel weights were initialized with
orthogonal initialization [18] and optimized with ADAM [19]
by setting β1 = 0.9, β2 = 0.999, and ε = 10−7. The initial
learning rate was 10−4 and it was halved at every 100 epoch
while limiting the minimum learning rate to 10−6. The number
of epochs was 600 and the mini-batch size was 32.

C. 3-D Printed Scatterer Phantom

A PEGDA 700 g/mol hydrogel scatterer phantom [7] was
3-D printed to investigate the proposed method on measured
data. The phantom contained water-filled cavities which acted
as scatterers. A total of 100 scatterers were placed on a 10×10
grid with a spacing of 518 µm in the lateral direction and
342 µm in the axial direction, as illustrated in Fig. 2.

The 3-D printed phantom was scanned by the Synthetic
Aperture Real-time Ultrasound System (SARUS) [20] to
acquire RF channel data. The same imaging scheme and
transducer described in Table I were used. The phantom was
placed on a motion stage and scanned at different positions
by moving the motion stage at a step of 50 µm in the lateral
direction. A total of 33 frames were obtained.

III. RESULTS

A. Simulation Experiment

The trained CNN was initially evaluated on a simulated
test dataset. It was simulated in the same way as the training
dataset in Field II, and consisted of 3,840 frames. In Fig. 3, the
result of applying the CNN method to a test frame is compared
with simply using the conventional DAS beamforming on the
same frame. The CNN method was able to identify highly
concentrated point targets while the DAS beamforming failed
due to the overlapping PSFs. Full width at half maximum
(FWHM) of the DAS beamforming at a depth of 18 mm was
387 µm (1.36 λ) in the lateral direction and 140 µm (0.49 λ)
in the axial direction.

The CNN’s capability to detect and localize point targets
were quantitatively evaluated. Detection was measured by
precision and recall that are defined by

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives.
The positive and negative detections were determined by
comparing estimated target positions with true target positions
based on their pair-wise distances. The CNN method achieved
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Fig. 1. The proposed CNN architecture and its components. (a) residual unit, (b) down-block, (c) conv-block, (d) up-block, and (e) the network overview.
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numbers between blocks in (e) represent feature map size in the order of height, width, and the number of feature maps.
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Fig. 2. Fabricated 3-D scatterer phantom: (a) photograph of the phantom and
(b) 100 scatterers placed in a 10× 10 grid.

a precision and recall of 0.999 and 0.960, while DAS beam-
forming achieved a precision and recall of 0.986 and 0.756.

Localization uncertainties in the lateral and axial position
were calculated using the positive detections, and is illustrated
using a box-and-whisker plot in Fig. 4a. The bottom and
top edges of the blue box indicate the 25th (q1) and 75th
percentiles (q3) and the center red edge indicates the median.
The vertically extended line from the box (whisker) indicates
the range of inliers which are smaller than q3+1.5×(q3−q1)
and greater than q1− 1.5× (q3− q1). The inliers were within
±46 µm (0.16λ) in the lateral direction and ±27 µm (0.09λ)
in the axial direction.

B. Phantom Experiment

The CNN trained for the simulation experiment was not
effective on the measured data because the scatterers in
the phantom are not infinitesimally small point targets. The
ultrasound beam is actually scattered twice at each scatterer
in the phantom. Therefore, the RF data in the training dataset
were simulated a second time by modeling a target using two
points. In addition, the first scattering was phase reversed since
the acoustic impedance is higher in the phantom than in the
water inside the targets.

(a) (b)

(c) (d)

Fig. 3. Comparison of point target detection between DAS beamforming and
CNN on a simulated test data using three steered plane wave transmissions.
(a) DAS beamformed B-mode image, (b) confidence map returned from CNN,
(c) true and estimated scatterer positions in the green square region of (a),
and (d) true and estimated scatterer positions in the green square region of
(b)

A new CNN was trained using the modified training dataset,
and it successfully identified scatterers from the measured data
as shown in Fig. 5. The achieved precision and recall were
0.976 and 0.998. The inliers were within ±101 µm (0.33λ) in
the lateral direction and ±75 µm (0.25λ) in the axial direction,
as illustrated in Fig. 4b.

IV. CONCLUSION

A CNN-based ultrasound multiple point target detection and
localization method was demonstrated. The CNN was trained



(a) (b)

Fig. 4. Localization uncertainty in the lateral and axial direction measured
(a) on the simulated test dataset and (b) on the measured phantom data.

(a) (b)

Fig. 5. Comparison of scatterer detection between DAS beamforming and
CNN on phantom data using three steered plane wave transmissions. (a) DAS
beamformed B-mode image and (b) confidence map returned from CNN with
true and estimated scatterer positions

to learn a mapping from RF channel data to non-overlapping
Gaussian confidence maps, and point target positions were
estimated from the confidence maps by identifying local
maxima. The non-overlapping Gaussian confidence maps were
introduced to relax the sparsity of binary confidence maps
while maintaining local maxima as target positions. The CNN
method resolved point targets closer than the diffraction limit,
whereas DAS beamforming failed as shown in Fig. 3.

It is also shown that the CNN method is applicable to real-
world data, as well as simulated data, through the phantom
experiment. It is notable that the training was performed
solely using simulated data because it is nearly impossible
to obtain a large number of measurements with ground truth
for these kinds of work. It was also imperative to employ
the measured impulse response and model targets following
realistic physical modeling in the simulation.

We expect that this method can be extended to MB detection
and potentially shorten the data acquisition time of SRI by
detecting a greater number of MBs in a shorter amount of
time.
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Detection and Localization of Ultrasound Scatterers
Using Convolutional Neural Networks

Jihwan Youn, Martin Lind Ommen, Matthias Bo Stuart, Erik Vilain Thomsen,
Niels Bent Larsen, Jørgen Arendt Jensen, Fellow, IEEE

Abstract—Delay-and-sum (DAS) beamforming is unable to
identify individual scatterers when their density is so high that
their point spread functions overlap each other. This paper
proposes a convolutional neural network (CNN)-based method
to detect and localize high-density scatterers, some of which are
closer than the resolution limit of DAS beamforming. A CNN was
designed to take radio frequency channel data and return non-
overlapping Gaussian confidence maps. The scatterer positions
were estimated from the confidence maps by identifying local
maxima. On simulated test sets, the CNN method with three
plane waves achieved a precision of 1.00 and a recall of 0.91.
Localization uncertainties after excluding outliers were ± 46 µm
(outlier ratio: 4%) laterally and ± 26 µm (outlier ratio: 1%)
axially. To evaluate the proposed method on measured data,
two phantoms containing cavities were 3-D printed and imaged.
For phantom study, training data were modified according
to the physical properties of the phantoms and a new CNN
was trained. On an uniformly spaced scatterer phantom, a
precision of 0.98 and a recall of 1.00 were achieved with the
localization uncertainties of ± 101 µm (outlier ratio: 1%) laterally
and ± 37 µm (outlier ratio: 1%) axially. On a randomly spaced
scatterer phantom, a precision of 0.59 and a recall of 0.63 were
achieved. The localization uncertainties were ± 132 µm (outlier
ratio: 0%) laterally and ± 44 µm with a bias of 22 µm (outlier
ratio: 0%) axially. This method can potentially be extended to
detect highly concentrated microbubbles in order to shorten data
acquisition times of super-resolution ultrasound imaging.

Index Terms—high-density scatterers, convolutional neural
network, super-resolution ultrasound imaging, ultrasound local-
ization microscopy

I. INTRODUCTION

DELAY-AND-SUM (DAS) beamforming [1] is simple
and effective for B-mode image generation, but the

spatial resolution is limited by wave diffraction. The reso-
lution of conventional ultrasound imaging depends on wave-
length, f-number, and excitation pulse bandwidth. Recently,
ultrasound localization microscopy (ULM) and the resulting
super-resolution ultrasound imaging (SRUS) were devised to
overcome the diffraction limit [2]–[6]. The microvasculature,
composed of vessels that are separated by less than a half-
wavelength, was mapped by deploying microbubbles (MBs)
as contrast agents. SRUS can be achieved by detecting and
tracking the centroids of individual MBs over time.

ULM-based SRUS, however, requires long data acquisition
times since the MB detection still relies on conventional
ultrasound images. The ultrasound images are generally DAS

This work was supported in part by the Fondation Idella.
The authors are with the Department of Health Technology, Technical

University of Denmark, 2800 Lyngby, Denmark (email: jihyoun@dtu.dk).

beamformed and diffraction-limited as a consequence. There-
fore, the MB concentration should be low to avoid overlapping
point spread functions (PSFs) for accurate and reliable MB
detection and localization. This constrains the number of
detectable MBs in a frame, and it leads to long data acquisition
times for mapping the entire target structure.

A novel method is proposed in this paper to detect and
localize high-density scatterers by using convolutional neural
networks (CNNs). Deep learning has had a profound impact
on processing complex data and making associated decisions.
By training deep neural networks with a large number of
examples, impressive improvements were achieved in various
challenging problems such as image classification [7]–[10],
object detection [11], [12], semantic segmentation [13]–[15],
and single-image super-resolution [16], [17]. It would be
nearly impossible to attain such improvements using tradi-
tional logic programming or model-based approaches. The
same principles can be applicable to ultrasound signals. It
is hypothesized that a data-driven CNN-based method can
identify scatterers laying closer than the resolution limit of
DAS beamforming directly from radio frequency (RF) channel
data.

In optics, where localization microscopy was firstly pro-
posed [18]–[20], several studies have been conducted to in-
corporate deep learning in super-resolution localization mi-
croscopy [21]–[23]. These studies used CNNs to localize
fluorescent molecules and showed that deep learning-based
methods can drastically reduce data acquisition times and data
processing times while achieving state-of-the-art performance.

Similar attempts also exist in SRUS. Van Sloun et al.
[24] proposed Deep-ULM that outputs high-resolution images
where the pixel values correspond to scattering intensities,
given image patches of contrast-enhanced ultrasound (CEUS)
acquisitions. This is similar to our approach in the sense that
it handles high-density scatterer detection using CNNs, but
Deep-ULM takes beamformed signals as input, whereas the
proposed method only uses RF channel data without beam-
forming. Allman et al. [25] tried to locate and classify sources
and artifacts from pre-beamformed photoacoustic channel data
using Faster R-CNN [26] with VGG16 [27]. However, only up
to 10 sources were considered, and classification for artifact
removal is not necessary for scatterer detection.

Deep learning techniques have been applied to achieve bet-
ter ultrasound image quality. A fully connected neural network
beamformer improved image contrast by suppressing off-axis
scattering [28]. Hyun et al. [29] proposed a CNN beamformer
that reduces speckle and eventually enhances contrast while
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Fig. 1. Overview of the proposed scatterer detection and localization method.

preserving resolution. Generative Adversarial Network (GAN)
[30], an architecture that generates output following the same
distribution as training data, were applied to improve image
quality without sacrificing frame rate. Multi-focus line-by-line
images were synthesized from single-focus line-by-line images
[31] and image quality comparable to using thirty one plane
waves was achieved using three plane waves [32].

In this work, CNNs were trained to learn a mapping from
RF channel data to confidence maps, and scatterer positions
were then estimated from the confidence maps by identifying
local maxima. The RF channel data were directly fed to the
CNNs without beamforming to avoid the information loss
caused by overlapping PSFs. The potential of the CNN-based
method using RF channel data has been shown in [33]. Previ-
ously, however, the training was performed at a fixed scatterer
density and its performance was not fully investigated. In this
paper, two CNNs were trained and evaluated using simulated
RF channel data generated using one plane wave or three plane
waves. The training sets were generated using four different
scatterer densities and the test sets were generated using ten
different scatterer densities. The evaluation was performed
with respect to three criteria, which are detection, localization,
and resolution. Additionally, two phantoms with water-filled
cavities were 3-D printed and imaged to examine the feasibility
of the CNN method on measured data. Lastly, a comparison
of the proposed method to Deep-ULM is discussed.

II. METHODS

Consider RF channel data x ∈ RNa×Nl×Nt induced by
scatterers p ∈ RNs×2, where Na is the number of samples
along the axial direction, Nl is the number of active elements
of a transducer in reception, Nt is the number of transmissions,
Ns is the number of scatterers, and 2 is the number of spatial
dimensions (in the lateral and axial positions). The nonlinear
mapping f : RNa×Nl×Nt → RNs×2 needs to be found to
estimate scatterer positions from the RF channel data, which
satisfies

p = f (x) . (1)

Here Ns varies depending on the given RF channel data x,
so the mapping f needs to adjust Ns adaptively, but this is
not straightforward. Therefore, the mapping f is decomposed
into two functions g and h to handle the varying Ns. The
mapping g : RNa×Nl×Nt → RNh×Nw forms a confidence
map c ∈ RNh×Nw , where Nh and Nw are the number of
samples in the axial and lateral directions, respectively. The

TABLE I
RF CHANNEL DATA SIMULATION PARAMETERS

Category Parameter Value
Transducer Transmission frequency 5.2MHz

Pitch 0.20mm

Element width 0.18mm

Element height 6mm

Number of elements 192
Imaging Number of TX elements 32

Number of RX elements (Nl) 64
Steered angles −15°, 0°, 15°

Environment Speed of sound (c) 1480m/s

Field II sampling frequency 120MHz

RF data sampling frequency 29.6MHz

Scatterer Number of scatterers (Ns) 20 · i, ∀i ∈ {1, 2, . . . , 10}
Lateral position range (−3.2, 3.2)mm

Axial position range (14.8, 21.2)mm

confidence map c represents a region of interest (ROI) where
the pixel values indicate confidences of scatterer presence in
each pixel. The mapping h : RNh×Nw → RNs×2 detects and
locates scatterers from the confidence map. The mapping in
(1) can be rewritten using g and h as follows:

p = f (x)

= h (g (x)) = h (c) , (2)

where
c = g (x) . (3)

The overview of the proposed method is illustrated in
Fig. 1. The mapping g was modeled by a fully CNN and the
mapping h corresponded to local maxima identification with
thresholding. The RF channel data simulation and confidence
map generation are explained in Section II-A and II-B, respec-
tively. The architecture of the proposed CNN is introduced in
Section II-C. Scatterer detection from the confidence maps is
explained in II-D and the phantom fabrication is described in
Section II-E. A baseline method for comparison is introduced
in Section II-F.

A. RF Channel Data Simulation

Field II pro [34]–[36] was used to simulate RF channel data
to generate data sets for training, validation, and evaluation.
The parameters for the simulation are listed in Table I. The
transducer was modeled after a commercial 5.2MHz 192-
element linear array transducer, and a measured impulse
response [37] was applied to make the simulated RF channel
data as close to measured data as possible [38].

For each frame, a certain number of point scatterers were
placed randomly within a region of 6.4mm× 6.4mm where
the center of the region was 18mm away from the transducer,
and three steered plane waves were transmitted using 32
elements. All the simulated scatterers had the same scattering
intensity. Motion and flow were not considered, therefore,
the scatterers used in each frame were static in the three
plane wave transmissions and the scatterer positions were
independent between frames. The aperture was shifted for each
steered angle to insonify only the ROI, as shown in Fig. 2. The
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Fig. 2. Illustration of the imaging scheme. Scatterers were placed in the
region of interest, and three steered plane waves were transmitted for each
frame. The aperture was shifted to insonify only the region of interest.

(a) (b)

Fig. 3. An example of simulated RF channel data with one plane wave without
steering. (a) is simulated raw RF channel data and (b) is delayed RF channel
data. Note that the delay here is different from the delay for beamforming.

elements used in transmission were the 105th to the 136th
(−15◦), the 81st to the 112nd (0◦), and the 57th to the 88th
(15◦) elements. Backscattered waves were received with 64
elements in the center of the transducer.

The simulated RF channel data were not beamformed but
delayed based on the time-of-flight calculated as

τi(x, z) =

(√
(x− xi)2 + z2 + z

)/
c. (4)

Here τi is the time-of-flight of the i-th transmission, (x, z) is
the data point, xi is the center of the i-th transmission aperture,
and c is the speed of sound. This preprocessing helped the
CNN solve the problem by making wavefronts appear more
like straight lines, instead of parabolas, as shown in Fig. 3, so
it is different from the delay for beamforming.

The input and output of the proposed CNN were required
to have the same number of samples along the axial direction.
Therefore, the delayed RF channel data were re-sampled to
match the same number of samples as confidence maps along
the axial direction (Na = Nh). Essentially, the sampling
frequency of the RF channel data was determined by the pixel
size of the confidence maps, and Na was determined by the
sampling frequency and the ROI. After preprocessing, the size
of RF channel data x for one frame was 256× 64× 3 before
being fed to the CNNs.

(a) (b)

Fig. 4. An example of cropped confidence maps. (a) is a binary confidence
map and (b) is a non-overlapping Gaussian confidence map created from (a).

(a) (b)

Fig. 5. A comparison of 1-D Gaussian confidence maps created by (a)
summation and (b) maximum operation. There are two scatterers y1 and y2,
and c1 and c2 are their confidence maps, respectively. The yellow line in (a)
is the sum of c1 and c2. The green line in (b) is the maximum of c1 and
c2. In (a), one scatterer ŷ is found at a wrong position, whereas in (b), two
scatterers ŷ1 and ŷ2 can be recovered at correct positions in the confidence
map.

B. Non-overlapping Gaussian Confidence Map

Initially, binary confidence maps were created, where pixel
values indicated presence (1) or absence (0) of a scatterer in
the corresponding location, as shown in Fig. 4a. However,
CNNs were not able to be trained using such confidence
maps because most of their pixel values were zero. The sparse
confidence maps provided small gradients during optimization
and made the CNNs prone to converging to the wrong optimal
solutions, returning only zero confidence maps regardless of
input.

A non-overlapping Gaussian confidence map (Fig. 4b) was
proposed to solve the imbalance problem of the binary confi-
dence maps. Applying 2-D Gaussian filtering to sparse labels
can improve training stability and guide CNNs to correct
solutions [21], [24], [39]. But simply applying 2-D Gaussian
filtering is problematic because the scatterer positions cannot
be recovered in the confidence maps when the scatterers are
closely spaced, as shown in Fig. 5a. To keep peaks at scatterer
positions in the confidence maps, the Gaussian filter was
applied one by one at each scatterer position in the binary
confidence maps. Notably, when the Gaussian filter values
induced by different scatterers were overlapped, the maximum
values were taken instead of summation. By doing so, clearly
separated peaks can be obtained at the true scatterer positions,
as shown in Fig. 5b.

The parameters for non-overlapping Gaussian confidence
maps are listed in Table II. The 2-D Gaussian filter is defined
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TABLE II
CONFIDENCE MAP PARAMETERS

Parameter Value
Pixel size 25 µm
Confidence map size (Nh ×Nw) 256× 256

Gaussian filter size 21 pixels
Gaussian filter standard deviation 5 pixels

by

G(u, v;σ) =
1

2πσ2
e−

u2+v2

2σ2 , (5)

where u and v are the pixel distances from the scatterer
position in the lateral and axial directions, respectively, and σ
is the standard deviation. The filter size was fixed to 4σ+1 and
the standard deviation was chosen by cross-validation among
3, 5, and 7 pixels. The scatterer positions were quantized
according to pixel size since the confidence maps are on
discrete grids. Here the pixel size was set to 25 µm (≈ λ/10);
the lateral and axial localization uncertainties are ±12.5 µm
in an ideal situation. The confidence map size was 256× 256
(Nw = Nh = 256) given the pixel size and the area of the
ROI.

C. Convolutional Neural Network Architecture

The proposed CNN has an encoder-decoder structure with
pooling and unpooling, similar to U-Net [13] but without skip
connections. The encoder-decoder structure was adopted to
transform the input in the channel data domain to the confi-
dence map in the ultrasound image domain. In the encoding
path, information is extracted from the RF channel data, and
in the decoding path, the confidence maps are reconstructed
based on the extracted information.

The overview of the CNN architecture and its components
are shown in Fig. 6. It mainly consists of four down-blocks,
one conv-block, and four up-blocks. In the down-blocks, the
feature map size is decreased by strided convolution to reduce
the amount of parameters, and in the up-blocks, the feature
map size is increased to the confidence map size by pixel
shuffle [40]. An 11 × 1 convolution layer prior to the encoding
path extracts per-channel features, and two convolution layers
after the decoding path refine the feature maps and return the
confidence maps.

The pre-activation residual units [9] (Fig. 6a) were used in-
stead of common convolution and rectified linear unit (ReLU)
layers to improve the network performance. Batch normaliza-
tion (BN) in the residual units helped ease the optimization,
limited covariate shift, and had the effect of regularization
[41]. Dropout [42] was additionally attached after the shortcut
for further regularization. Leaky ReLU [43] and Sigmoid were
chosen as non-linear activation. CoordConv [44] was added to
transfer spatial information over convolution layers.

The same CNN architecture was used for both one and three
plane wave data. For three plane waves, the preprocessed RF
channel data from each transmission in a frame were stacked
along the third dimension before applied to a CNN.
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Fig. 6. The proposed CNN architecture and its components: (a) residual unit,
(b) down-block, (c) conv-block, (d) up-block, and (e) the network overview.
The n and s in the parenthesis are the number of kernels and stride. In (e),
the sets of three numbers are the feature map size between two blocks, and
the asterisk indicates that CoordConv was applied at the first convolution in
the block.

D. Scatterer Detection from Confidence Maps

The scatterer positions can be found by locating the pixels
whose confidences are one in the true confidence map c.
However, the estimated confidence map ĉ = g (x) acquired
from a trained CNN is an approximation of c. It is not
guaranteed that the confidences are one where scatterers are
located in ĉ. Therefore, the algorithm relied on the fact that
pixels containing scatterers are local peaks. The scatterer
positions were recovered by finding the local maxima whose
confidence is larger than a certain decision value. The chosen
decision value was 0.9 in this work.

E. Phantom Fabrication

Two PEGDA 700 g/mol hydrogel phantoms were 3-D
printed [45], [46] to assess the CNN method on measured data.
The phantoms contained water-filled cavities which acted as
scatterers. The volume of each cavity was 45 µm×1000 µm×
45 µm. The cavities were designed to be elongated in the
elevation direction to increase the intensity of received signals.

In the first phantom, 100 cavities were placed on a 10× 10
grid with a spacing of 518 µm in the lateral direction and
342 µm in the axial direction, as illustrated in Fig. 7. This grid
scatterer phantom had the spacing larger than the resolution
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Fig. 7. Fabricated 3-D phantom with uniformly spaced cavities: (a) photo-
graph of the phantom and (b) 100 cavities placed on a 10× 10 grid.

limit of DAS to show that the CNN method works on measured
data. The second phantom, on the other hand, had 100 cavities
randomly distributed with a minimum spacing of 190 µm to
demonstrate that the CNN method can resolve targets closer
than the conventional resolution limit. The minimum spacing
between cavities were constrained due to the cavity size and
the 3-D printer voxel size.

F. Baseline Method

Local peak detection on the beamformed images was chosen
as a baseline method for comparison. RF channel data were
DAS beamformed in the region of interest with the same
pixel size as the confidence map, and, for three plane wave
transmissions, beamformed images in a frame were coherently
compounded [47]. The baseline method detected and located
scatterers in the envelope detected and log-compressed B-
mode images with a dynamic range of 40 dB. The B-mode
images were smoothed to avoid more than one pixel corre-
sponding to a peak, and scatterer positions were estimated by
finding local maxima.

Deconvolution using an estimated PSF is one of the com-
monly used techniques for microbubble localization [5]. How-
ever, it was not considered in this work since its performance
has been found to be sensitive to parameters when the PSFs
were highly overlapped, and the spatially varying PSF of
ultrasound imaging resulted in imprecise scatterer localization.

III. EXPERIMENTS

A. Training Details

CNNs, which correspond to the mapping g in (2), were
trained to return the corresponding confidence map ci given
RF channel data xi by minimizing the mean squared error
(MSE), given by

LMSE (xi, ci; g) =
1

N

N∑

i=1

‖ci − g (xi)‖2F , (6)

where N is the number of samples and ‖·‖F is the Frobenius
norm.

One data set consisted of frames simulated at the same
scatterer density, and four training sets and four validation
sets were generated at the scatterer densities of 0.49mm−2,
0.98mm−2, 2.44mm−2, and 4.88mm−2, i.e., the numbers of
scatterers were 20, 40, 100, and 200 in one frame, respectively.

Each training set and validation set had 10 240 and 1280
frames, respectively.

The kernel weights were initialized by orthogonal ini-
tialization [48] and optimized with ADAM [49] by setting
β1 = 0.9, β2 = 0.999, and ε = 10−7. Firstly, the training
was performed using only the training set at the scatterer
density of 2.44mm−2. The initial learning rate was 10−4

and it was halved every 100 epochs. After 600 epochs, the
learning rate was set to 10−5 and the training continued
using all the training sets while the learning rate was halved
every 50 epochs. The mini-batch size was 32, and each batch
was composed of frames from all four training sets after
600 epochs. The CNN was implemented in Python using
Tensorflow [50], and were trained on a server equipped with
a NVIDIA TESLA V100 16 GB PCIe graphics card. The
total number of training epochs was 800, and the training took
approximately 40 hours.

During training, the RF channel data and confidence maps
were flipped along the lateral direction at random with a
probability of 0.5 to augment the training sets. White Gaussian
noise was added to the RF channel data for generalization
along with BN and dropout. The signal-to-noise ratio after
noise addition was 6 dB, and the dropout rate was 0.3. The
RF channel data and confidence maps were then normalized
to be in the range [−1, 1] and [0, 1], respectively. Validation
was performed every epoch to monitor the training, and also
for cross-validation to choose hyper-parameters.

For both simulation and phantom experiment, two CNNs
were trained and compared: one CNN acting on the data from
one plane wave (0◦) and the other CNN acting on the data
from three plane waves (−15◦, 0◦, 15◦).

B. Simulation Experiment

The CNNs were evaluated on simulated test sets firstly.
One test set consisted of 3840 frames simulated at the same
scatterer density, and ten test sets were created at scatterer
densities from 0.49mm−2 to 4.88mm−2 by varying the
number of scatterers from 20 to 200 with intervals of 20.
The parameters in Table I were used again, apart from the
number of scatterers. The evaluation was performed on the
frames simulated at various scatterer densities to evaluate how
the performance changes over different scatterer densities and
how well the CNNs were generalized in terms of scatterer
density.

C. 3-D Printed Phantom Experiment

1) RF Channel Data Acquisition: The 3-D printed phan-
toms were scanned using the 5.2MHz 192-element linear
array transducer which has the same parameters as in Table I.
The raw RF channel data were acquired by the synthetic
aperture real-time ultrasound system (SARUS) experimental
ultrasound scanner [51]. The same imaging scheme and pro-
cessing as in the simulation were applied.

The experimental setup is shown in Fig. 8. The transducer
was fixed, and a water tank containing the phantom was
placed on a motion stage. The phantom was aligned with
the transducer by the motion stage, capable of translating
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Fig. 8. Illustration of the experimental setup for phantom measurement.

in the x- and y-axis, and rotating around the z-axis. During
measurement, the motion stage was translated along the x-
axis in steps of 50 µm between frames, and 33 frames were
acquired for each phantom experiment.

2) Training Set Modification: The training sets were modi-
fied and new CNNs were trained from scratch for the phantom
experiment. Transfer learning was also considered but it did
not show as good performance as training from scratch. In the
simulation, it was assumed that scatterers were infinitesimally
small points. However, the cavities in the phantoms were
squares, as shown in Fig. 7b, if the elevation direction is
ignored. Scattering, therefore, happens twice at each cavity:
once when a wave goes into the cavity and the other when the
wave comes out of the cavity. Additionally, the first scattering
experiences a phase reversal because the acoustic impedance
of the phantoms is higher than that of water.

RF channel data for training were accordingly re-simulated
by modeling each scatterer using two points separated by
the cavity size axially and with a phase reversal. To remain
consistent, the same scatterer positions of the original training
set were used.

3) Depth Correction: The speed of sound in the phantoms
is higher than in water. The axial positions of the estimated
scatterers were corrected to compensate for the different speed
of sound in the phantoms by

ẑ∗ = (ẑ − dpht) ·
cwater

cpht
+ dpht, (7)

where ẑ and ẑ∗ are the axial position before and after
correction, cwater and cpht are the speed of sound in water and
in the phantoms, respectively, and dpht is the distance from the
transducer to the surface of the phantoms.

D. Evaluation Metrics

Three evaluation criteria were considered to assess the
CNNs: detection, localization, and resolution. The positive and
negative detections were determined by pairing estimated scat-
terers with true scatterers based on their pair-wise distances,
as stated in Algorithm 1. Namely, to be a positive detection,
an estimated scatterer should be exclusively matched with
a true scatterer within a certain localization precision. This
localization precision can be translated to the target resolution
of ULM without tracking. It was set to be half of the full
width at half maximum (FWHM) in this work. Specifically, an

Algorithm 1 Algorithm for determining positive or negative
detections
Input: p ∈ RNs×2 and p̂ ∈ RN̂s×2, where p is true scatterer

positions and p̂ is estimated scatterer posions
Output: Positive or negative detection a ∈ RN̂s×1

1: a← 0 ∈ RN̂s×1

2: D ←
{
(dij) ∈ RNs×N̂s

∣∣∣ dij = ‖pi − p̂j‖2
}

3: for j = 1 to N̂s do
4: î← argminD∗,j

5: if j = argminDî,∗ and (pî1−p̂j1)
2

(FWHMx/2)2
+

(pî2−p̂j2)
2

(FWHMz/2)2
< 1

then
6: aj ← 1
7: else
8: aj ← 0
9: end if

10: end for

ellipse whose major axis and minor axis were half of FWMHx

and half of FWMHz , respectively, was used as the desired
localization precision, where FWMHx is the lateral FWHM
and FWMHz is the axial FWHM. This bi-directional matching
process was extended from the left-right consistency check
[52], [53] for stereo matching in computer vision. It conforms
to the uniqueness constraint; one true scatterer can be paired
with at most one estimated scatterer.

Detection capability was assessed by quantifying wrong
detections and missed detections using precision, recall, and
F1 score, which are defined as follows:

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

and

F1 score = 2× Precision× Recall
Precision + Recall

, (10)

where TP is the number of true positives (correct detections),
FP is the number of false positives (wrong detections), and
FN is the number of false negatives (missed detections).

Localization uncertainties were measured by calculating the
lateral and axial position errors. Only positive detections were
considered for the localization assessment.

Spatial resolution, meaning the ability to separate two points
that are close together, was investigated statistically. For two
isolated true scatterers, it was checked whether they were
detected. A pair of scatterers was set to resolved if both
scatterers were detected. It was set to non-resolved if only
one of them was detected. And it was not considered if none
of them were detected, as this would be a detection problem.
The resolved rates were calculated in 20 µm× 20 µm bins by

Resolved rate =
Nres

Nres +Nnon-res
, (11)

where Nres is the number of resolved pairs and Nnon-res is the
number of non-resolved pairs in a bin.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. A comparison of scatterer detection between baseline method and CNN method on a simulated test frame. (a) and (c) are DAS beamformed B-mode
images with one and three plane waves, respectively. (b) and (d) are estimated confidence maps by CNNs with one and three plane waves, respectively. (e) -
(h) show true scatterers and estimated scatterers from their corresponding results above in the same column in the green box region.

TABLE III
PRECISION, RECALL, AND F1 SCORE COMPARISON ON THE SIMULATED

TEST SETS

Method
One plane wave Three plane waves

Precision Recall F1 Precision Recall F1

Baseline 0.83 0.51 0.63 0.93 0.62 0.75
CNN 0.99 0.83 0.90 1.00 0.91 0.96

IV. RESULTS

The CNN method results on the simulated data and the
measured data of the 3-D printed phantoms presented in this
Section. Quantitative evaluation comparing one plane wave
and three plane waves was performed as specified in Section
III-D. The results of the baseline method on the same test data
are also presented for comparison.

A. Simulation Experiment

The qualitative comparison between the baseline and CNN
methods is shown in Fig 9. The proposed CNN method suc-
cessfully detected and localized high-density scatterers when
the baseline method failed due to overlapping PSFs.

The detection results on the simulated test sets are shown
in Table III. The CNN method achieved the better precision,
recall, and F1 score for both one and three plane transmissions.
Also, when the higher number of transmissions was involved,
the detection performance was improved for both methods.
The detection capabilities over different scatterer densities
were investigated, as shown in Fig. 10. The recalls dropped
as the scatterer density increased while the precisions were
relatively kept high. In addition, the recalls of the baseline

(a) (b)

(c)

Fig. 10. Detection capabilities of the baseline and CNN methods over different
scatterer densities on the simulated test sets with one and three plane waves:
(a) precision, (b) recall, and (c) F1 score.

method decreased more drastically as the scatterer density
increased, which led to the lower F1 scores.

The comparison of localization uncertainties between the
baseline and CNN methods on the simulated test sets are
presented in Fig. 11, using box-and-whisker plots along with
violin plots. The bottom and top edges of the blue boxes
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(a) (b)

Fig. 11. Localization uncertainties of baseline and CNN methods on the
simulated test sets. (a) and (b) are the results with one plane wave and three
plane waves, respectively.

(a) (b)

(c) (d)

Fig. 12. Localization uncertainties of the CNN method on the simulated test
sets at different scatterer densities: the lateral position errors with (a) one
plane wave and (b) three plane waves, and the axial position errors with (c)
one plane wave and (d) three plane waves.

indicate the 25 th (q1) and 75 th percentiles (q3), and the
center red lines indicate the medians. The whiskers, vertically
extended lines from the boxes, indicate the range of values
except outliers, which are greater than q3 +1.5× (q3− q1) or
less than q1 − 1.5× (q3 − q1). The violin plots were overlaid
as shaded area to demonstrate the error distribution directly.
For both methods, the lateral position error was higher than
the axial position error, and the CNN method achieved clearly
better localization than the baseline method. For the most part
the medians were very close to zero, indicating that the scat-
terer position estimation was unbiased in both directions. The
localization was also improved when more plane waves were
transmitted. Localization uncertainties of the CNN method at
different scatterer densities are shown in Fig. 12. Neither the

(a) (b)

(c) (d)

Fig. 13. Resolved rate of (a), (c) baseline methods and (b), (d) CNN methods
on the simulated test sets where (a) and (b) are with one plane wave and (c)
and (d) are with three plane waves. The green lines represent the theoretical
resolution limit of DAS beamforming.

TABLE IV
PRECISION, RECALL, AND F1 SCORE COMPARISON ON THE PHANTOM

TEST SETS

Phantom Method
One plane wave Three plane waves

Precision Recall F1 Precision Recall F1

Grid
Baseline 0.82 0.41 0.54 1.00 1.00 1.00

CNN 0.89 0.22 0.35 0.98 1.00 0.98

Random
Baseline 0.47 0.23 0.31 0.49 0.32 0.39

CNN 0.53 0.37 0.44 0.59 0.63 0.61

scatterer density nor the number of transmissions had much
impact on the axial position errors. The lateral position errors,
on the other hand, gradually increased as the scatterer density
increased.

The 2-D histograms in Fig. 13 show the resolved rates of
two isolated scatterers measured in 20 µm× 20 µm bins. The
green lines represent the theoretical resolution limit of DAS
beamformed images, assuming that the 6 dB contour of a PSF
is an ellipse. The FWHM was measured on a simulated PSF
in the center of the ROI. For one plane wave, the FWHM
was 376 µm (1.32λ) laterally and 125 µm (0.44λ) axially. For
three plane waves, the FWHM was 265 µm (0.93λ) laterally
and 140 µm (0.49λ) axially. The resolution results show that
the CNN method can resolve scatterers closer than the DAS
limit. The mean resolved rates in the area under the green line
for the baseline and CNN methods were 0.16 and 0.68 with
one plane wave, and 0.17 and 0.67 with three plane waves,
respectively.

B. 3-D Printed Phantom Experiment

For the phantom study, CNNs were applied to measured
data without evaluation on simulated test data. The qualitative
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 14. A comparison of scatterer detection between baseline method and CNN method on phantom measured frames. (a) - (d) are results of the grid
phantom and (e) - (h) are results of the random phantom. B-mode images with (a), (e) one plane wave and (c), (g) three plane waves and confidence maps
with (b), (f) one plane wave and (d), (h) three plane waves are shown with true scatterers and estimated scatterers.

(a) (b)

(c) (d)

Fig. 15. Localization uncertainties of baseline and CNN methods on phantom
measured data: (a) and (b) are results on the grid scatterer phantom with one
and three plane waves, respectively. (c) and (d) are results on the random
scatterer phantom with one and three plane waves, respectively.

results of the baseline and CNN methods on the grid and
random scatterer phantoms are presented in Fig. 14 and their
quantitative comparison is shown in Table IV and Fig. 15.

With one plane wave, side lobe level was high, and side
lobes were added up when the scatterers were placed in a
grid. Therefore, the DAS beamforming was unable to identify
individual scatterers of the grid phantom properly, as shown in
Fig. 14a. The CNN method also achieved poor detection with
one plane wave on the grid phantom, as shown in Fig. 14b.
The CNN was not generalized sufficiently to handle regularly
placed scatterers as the training frames were generated by
placing scatterers randomly. Most of the scatterers in the first
and the last columns were correctly detected, but the other
scatterers were missed. Thus, the precision was higher than
the baseline but the recall was lower. On the contrary, with
three plane waves, the baseline method found all the scatterers
without any false detection. The CNN method also achieved
comparable detection results with three plane waves, showing
that more transmissions for a frame helped generalization of
the CNN. For localization, the CNN method showed slightly
smaller uncertainties except the axial localization with one
plane wave.

On the random scatterer phantom, the CNN method
achieved better detection for both one and three plane waves.
For localization, the CNN method showed smaller axial uncer-
tainties but little higher lateral uncertainties. With three plane
waves, the detection and localization were improved but, in
general, it was more challenging to identify scatterers for both
methods on the random scatterer phantom.

V. DISCUSSION

A CNN-based scatterer detection and localization method
is presented. Instead of end-to-end training, the CNNs were
trained to learn the mapping from RF channel data to non-
overlapping Gaussian confidence maps, and scatterers were
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detected and localized from the confidence maps by looking
for local maxima. This two-step framework made it possible
to handle varying numbers of scatterers (Ns). By obtaining
non-overlapping Gaussian confidence maps from RF chan-
nel data without beamforming, it was able to identify high
concentrations of scatterers which cannot be separated by
conventional ultrasound imaging due to the overlapping PSFs.
This method also has an advantage of fast processing by
exploiting GPU computation. The proposed CNN implicitly
included beamforming since it is a mapping from the channel
domain to the ultrasound image domain, which is a bottleneck
of current ultrasound imaging. For the CNNs, processing time
for a frame was 16ms on average in a PC equipped with a
NVIDIA Titan V graphics card.

It was essential to use non-overlapping Gaussian confidence
maps to make training work. Binary confidence maps were
initially used to train CNNs with advanced loss functions such
as weighted cross entropy [13], jaccard loss [54], or focal loss
[55], as well as simple loss functions such as MSE or mean
absolute error, but all of them failed. The binary confidence
maps were too sparse to be handled by simply manipulating
the loss function. However, non-overlapping Gaussian con-
fidence maps relaxed the sparsity of the binary confidence
maps while being able to recover scatterer positions by taking
the maximum of overlapping Gaussians. Therefore, the larger
gradients were provided during training and the CNNs were
able to be guided to the correct solutions stably.

The training was firstly performed in the training set at the
scatterer density of 2.44mm−2, and was further performed on
the whole training sets later. Interestingly, the CNNs trained
at the scatterer density of 2.44mm−2 were already well
generalized at the scatterer densities higher than 2.44mm−2.
On the other hand, the CNNs achieved poor precision and
localization at the lower scatterer densities as two Gaussian
peaks appeared laterally near a true scatterer position in the
confidence maps. Therefore, the training sets had more frames
at the lower scatterer densities. It was also investigated to train
CNNs using the whole training sets from the beginning of
the training but the proposed way was more efficient; CNNs
converged to the solutions with fewer iterations.

The delayed RF signal induced by a scatterer lies across
all the channels and at several depths depending on the
lateral location of the scatterer. Hence, large receptive fields
were required for a CNN, so four down and four up blocks
were used. We tried to incorporate skip connections into the
proposed CNN by, if necessary, applying upsampling to the
feature maps in the contracting path to match the size of
their corresponding feature maps in the expanding path. For
image segmentation, the skip connections play an important
role to recover lost spatial information during downsampling
[13], [56]. The resulting reconstructed images have more fine
details and, as a result, provide better localized semantic
segmentation. However, the skip connections hindered suc-
cessful training for the task in this paper and the CNNs
learned zero confidence maps. We presume that the feature
maps extracted from RF channel data in the contracting path
are not directly related to the reconstruction of confidence
maps, unlike image segmentation. Instead, CoordConv [44]

(a)

Fig. 16. The average numbers of scatterers closer than the theoretical
resolution limit of DAS beamforming given a scatterer at different scatterer
densities in the simulated test sets.

(a) (b)

Fig. 17. Recall and localization precision re-calculated to compare CNN
method to Deep-ULM: (a) Positive detection density and (b) median of
Euclidean position errors with one standard deviation bars at different scatterer
densities.

was applied to cope with the spatial information loss. The
CNNs with CoordConv localized non-overlapping Gaussians
more precisely and achieved the better recall and localization
precision on the validation sets.

On the simulated test sets, the proposed method outper-
formed the baseline method. The performance drop was much
more severe for the baseline method at high scatterer densities,
where the more scatterers were placed with in the resolution
limit. Fig.16 shows the average numbers of scatterers within
the FWHM (the 6 dB ellipse contour) given a scatterer in the
simulated test sets.

Deep-ULM is another CNN-based method which local-
izes high-density targets from beamformed images that con-
tain overlapping PSFs. To compare the proposed method
with Deep-ULM, the recall and localization errors were re-
calculated following the method which van Sloun et al. used
to generate the results in the supplementary Fig. 1 in [24].
The threshold value for determining positive detection was
λ/7 and Euclidean distances between the true and estimated
scatterers were calculated. The evaluation results depend on
the threshold value. As it increases, recall improves while
localization precision degrades. The threshold λ/7 was chosen
following [24] for a fair comparison. The results are presented
in Fig. 17. Both methods showed good performance at high
densities but the proposed method achieved slightly better re-
call and localization precision. Deep-ULM recovered roughly
1.80mm−2, while the proposed method recovered 2.26mm−2
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at the density of 2.44mm−2, and Deep-ULM recovered
roughly 2.10mm−2 at the density of 3.53mm−2 when the
proposed method recovered 3.00mm−2 at the density of
3.42mm−2. The median of Euclidean errors of Deep-ULM
was approximately λ/12 but the proposed method achieved
smaller errors than that. It is difficult to conclude that the
proposed method outperforms Deep-ULM since the evaluation
was not performed on the same test data. This, however, shows
the potential of the methods directly employing RF channel
data.

To assess the proposed method for real world applications,
two 3-D printed phantoms were imaged. One of the benefits of
using the 3-D printed phantoms is that true scatterer positions
and the dimensions of the phantom and scatterers (cavities) are
known. It was important to modify the scatterers in the training
sets to match the cavity dimensions. The CNNs trained for the
simulation experiment failed on the measured data, showing
too many false positive detections axially. However, the CNNs
trained with the modified training sets successfully identified
scatterers to some extent except some scatterers on the grid
phantom when one plane wave was transmitted as seen in
Fig. 14b. It is notable that this was achieved only with the
simulated training data, since it is extremely difficult to obtain
sufficient training data with ground truth for these kinds of
experiments.

The phantom experiments show that the CNN method is
transferable to measured data by modeling scatterers properly
in the training data simulation. The baseline method performed
slightly better for the most trivial case, namely the grid
scatterer phantom with three plane waves, but the CNN method
performed better on the random scatterer phantom. Even so,
the CNN method on the random scatterer phantom presented
a relatively large number of false positives compared to the
simulation results. This could be because of the discrepancy
between the training (simulated) data and the test (phantom)
data. There are factors not considered in the simulation such as
attenuation, different scattering intensities of the cavities, and
different speed of sound in the phantom medium. Moreover,
a further degradation of the performance is expected on in
vivo data since the discrepancy between the training data
and the in vivo data would become larger due to scatterer
response variations, refraction, reverberation artifacts, etc. A
more versatile simulation using various parameters to cover
possible in vivo variations of RF channel data and a more
generalized CNN model could increase the CNN method
performance on the measured phantom data and overcome the
potential limits in in vivo scenarios.

The proposed method gives 2-D images using a 1-D trans-
ducer. This limits the view of target structure along the
elevation direction. The 3-D printed phantoms are essentially
2-D phantoms which have elongated cavities and the dimen-
sion along the elevation direction was not captured in the
results. This limitation can be solved by using 2-D transducers
such as fully addressed transducers or row-column addressed
transducers.

Several problems are expected to occur if the CNN method
is applied to MB detection for SRUS. MBs are not static but
move with different velocities depending on the vessel size.

This should be considered during training data generation.
Also, it is important to model MBs properly in simulations
since their sizes and other physical properties vary. It was
necessary to remodel scatterers following the real physical
structure for the phantom experiment. This is expected to be an
important factor when applying the CNN method on measured
MB signals.

Background scattering from tissue was not dealt with here
since this work focused on a proof-of-concept of CNNsâĂŹ
ability to detect and localize high concentrations of scatteres
from RF channel data. For in-vivo scenarios, the tissue sig-
nals may hinder the CNN method, so a way of rejecting
them without hurting the performance of CNNs needs to be
investigated. For example, clutter filtering based on singular
value decomposition (SVD) or contrast-enhanced ultrasound
(CEUS) imaging such as pulse inversion [57] or amplitude
modulation [58] can be applied. However, the drawbacks of
such methods are that it is difficult to find an optimal singular
value for SVD to separate MB signals, and the CEUS imaging
limits the frame-rate. In addition, both methods have a chance
to distort the signals from the MBs, which would make the
detected MB signals different from the data used for training.
Alternatively, another neural network such as CORONA [59]
can be deployed, which is a Robust PCA-based unfolded
neural network that performs clutter filtering. By incorporating
CORONA with the proposed CNN method, clutter filtering and
MB localization can be learned simultaneously.

Lastly, further research on the optimal imaging scheme and
scalability of CNN is required. Plane waves were used to
support the hypothesis in a small region. In practice, however,
a larger field of view is needed. Also, the more correlated data
are available, the better estimation can be achieved. The CNNs
with three plane waves achieved better performance than the
CNN with one plane wave in all evaluation criteria, but this
increases the required GPU memory. In addition, the imaging
scheme would affect the capability of the CNN method and
plane waves might not be the optimal choice. It is necessary
to examine how other imaging schemes, such as focused or
defocused waves affect the CNN method, or a new imaging
scheme could be developed.

VI. CONCLUSION

The CNN-based scatterer detection and localization method
is presented. CNNs were trained to return non-overlapping
Gaussian confidence maps from simulated RF channel data,
and the scatterer positions were estimated from the confi-
dence maps. The simulation results show that the proposed
method can identify high-density scatterers successfully even
when some of them are closer than the resolution limit
of conventional ultrasound imaging. It is also shown that
the CNN method can be applied to real measured data by
modeling scatterers following the true scatterer structure. The
CNN method can potentially be extended to replace DAS
beamforming for high concentration MB detection and thus
reduce the long data acquisition times of SRUS using ULM.
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Abstract— Localizing more microbubbles (MBs) using
high concentrations of MBs is preferred as the data acqui-
sition time of ultrasound localization microscopy can be
shortened. However, it is challenging for standard meth-
ods to localize overlapping point spread functions (PSFs).
Recently, several deep learning methods have been pro-
posed to localize the overlapping PSFs, but lack the ability
to achieve sub-pixel accuracy localization. This work pro-
poses a way of achieving sub-pixel MB localization with the
overlapping PSFs using convolutional neural networks by
finding interpolated peaks of Gaussians. On simulated test
data, the proposed method achieved precision and recall of
0.93 and 0.83 with localization precision of 35.09µm later-
ally and 25.29µm axially, when centroid detection achieved
precision and recall of 0.77 and 0.53 with localization preci-
sion of 48.65µm laterally and 43.13µm axially. To validate
the method on measured data, a phantom that embeds
a channel was 3-D printed and scanned with a high con-
centration of MBs injected into the channel. The proposed
method reconstructed the channel successfully with MB
contrast of 10.62, a ratio of MBs inside the channel to all
the estimated MBs per unit area, whereas centroid detec-
tion failed with MB contrast of 0.34. Finally, the proposed
method was applied to measurements of a rat kidney at var-
ious MB concentrations. In the inner medulla, both methods
showed similar results, however, in the outer medulla and
cortex, the proposed method was able to achieve higher
detection counts of MBs than centroid detection.

Index Terms— Convolutional neural network, localization
of high concentration microbubbles, sub-pixel microbub-
ble localization, super-resolution ultrasound imaging, ultra-
sound localization microscopy

I. INTRODUCTION

SPATIAL resolution of conventional ultrasound systems
is limited by wave diffraction. The lateral and axial

resolutions are determined by the wavelength, aperture size,
pulse length, and imaging sequence, and cannot commonly
surpass a half-wavelength. Ultrasound localization microscopy
(ULM) is one of the super-resolution ultrasound imaging
methods that can break the resolution limit of conventional
ultrasound imaging [1]–[6]. ULM can reconstruct an image of
microvasculature with a sub-wavelength resolution by local-
izing microbubbles (MBs), injected into the bloodstream over
time, and accumulating their centroids in an image frame.
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The authors are with the Department of Health Technology, Technical
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MBs are ultrasound contrast agents that show non-linear
behavior when insonified by ultrasound beams. Contrast-
enhanced ultrasound (CEUS) imaging such as amplitude mod-
ulation [7] or pulse inversion [8] can separate MB signals from
stationary echoes by utilizing the non-linearity. Also, MBs
can flow through capillaries thanks to their size of several
micrometers. Such properties made MBs appropriate for ULM
to map the fine structures in the microvasculature. ULM is
expected to be practical in clinics for the diagnosis of early-
stage cancer [9], ischemic kidney disease [10], and diabetes
[11], as well as functional ultrasound [12].

The image quality, i.e., contrast and resolution, of ULM is
essentially determined by localization accuracy of estimated
MBs [13]. The more accurate MB localization is, the higher
resolution ULM can achieve. Centroid detection or Gaus-
sian fitting are commonly used for MB localization [2]–[5],
[14]. However, since such methods are poor at localizing
overlapping MB point spread functions (PSFs), diluted low
concentrations of MBs are commonly employed to avoid the
overlaps. As a result, a long data acquisition time is required
to fully image the target structure, as the number of MBs that
can be localized in a fixed time duration becomes limited.

Lately, deep learning has been applied to ultrasound imaging
applications such as beamforming to suppress off-axis scat-
tering [15], reduce speckle noise [16], and calculate content-
adaptive weights [17]. There have also been efforts to re-
construct ultrasound images from sub-sampled radiofrequency
(RF) data without sacrificing image quality [18]–[20] and
to perform clutter filtering using a Robust PCA-based neu-
ral network [21]. Correspondingly, deep learning for MB
localization has been investigated to deal with the trade-
off between the localization accuracy and data acquisition
time. Deep-ULM [22] and mSPCN-ULM [23] localized high
concentrations of MBs from beamformed ultrasound images.
To consider temporal correlation, 3-D convolutional neural
networks (CNNs) were applied to a stack of ultrasound images
over time as a spatiotemporal filter to remove tissue signals
and localize MBs effectively [24] or obtain MB tracks di-
rectly without localization [25]. Deep unfolded ULM [26],
a model-based neural network [27], has been suggested to
improve generalization using a sparsity prior while keeping
comparable performance to the fully data-driven methods [28].
However, the aforementioned methods perform localization
in the pixel coordinates without sub-pixel accuracy, which
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Fig. 1. An overview of the proposed method. A CNN takes a CEUS
image x as input and returns a confidence map c. The MB positions p
are then estimated from the confidence map with sub-pixel accuracy.

means that achievable localization accuracy, i.e., resolution of
ULM, is constrained by pixel size. Therefore, the deep learning
methods either have additional upsampling layers in their
network architecture [22], [23] or are applied to upsampled
ultrasound images [24]–[26], [28].

This work proposes a sub-pixel accuracy MB localization
method using CNNs that can localize high concentrations of
MBs. Specifically, the proposed CNN was trained to return
a non-overlapping Gaussian confidence map [29] from an
ultrasound image, and sub-pixel localization was performed
by applying Gaussian fitting on the peaks in the confidence
map. Additional upsampling is not necessary unlike other
deep learning methods since sub-pixel localization is available,
therefore, computational resources can be managed more
efficiently. Also, it is more flexible in a way that the ULM
images can be reconstructed in image grids of any pixel
size. The proposed CNN was designed based on U-Net [30]
with pre-activation residual blocks [31], and training set was
generated using Field II pro ultrasound simulation [32]–[34].
In simulation experiments, localization accuracy of the trained
network was assessed at various MB densities. Then, phantom
experiments were performed using a 3-D printed phantom at
two MB concentrations, showing that the generalizability of
the CNNs to measured ultrasound data and the ability of the
proposed method at a high MB concentration. Finally, the
proposed method was validated on in-vivo data from animal
experiments at 4 different MB concentrations.

II. METHODS

Let us consider a CEUS image x ∈ RNz×Nx induced by
MBs located at p ∈ RNmb×2, where Nz and Nx are the
number of image samples along the lateral and axial directions,
Nmb is the number of MBs, and 2 is the number of spatial
dimensions (i.e., the lateral and axial positions). The CEUS
image can be expressed by

x =

Nmb∑

i=1

PSF(pi) ∗ δ(pi) + n, (1)

where PSF(pi) is the PSF at the i-th MB position, δ is the
Dirac delta function, and n is the noise. The goal is to find a
mapping f : RNz×Nx → RNmb×2 that recovers p from x:

p = f(x). (2)
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Fig. 2. An overview of B-mode and CEUS imaging sequence for
one cycle. Conventional focused beam transmissions using a sliding
aperture with 91 sub-apertures was employed. In contrast mode, the
CEUS imaging was achieved by the amplitude modulation scheme
with three transmissions per sub-aperture: one full positive and two
half negative transmissions. In B-mode, one full positive transmission
was employed per sub-aperture. For both constrast mode and B-mode,
a total of 364 transmission events were required for one cycle. The
numbers inside transmission events correspond to the sub-aperture
index.

In this work, the mapping f is composed of two functions
g and h to handle sub-pixel localization and varying num-
bers of MBs depending on the input image. The mapping
g : RNz×Nx → RNz×Nx is a CNN that returns a confidence
map c ∈ RNz×Nx and h : RNz×Nx → RNmb×2 detects and
localizes MBs with sub-pixel accuracy from the confidence
map.

The pipeline of the proposed method is shown in Fig. 1.
The method estimates a confidence map from a CEUS image
using a CNN, i.e., the mapping g, and localizes MBs with sub-
pixel accuracy on the confidence map, i.e., the mapping h. An
imaging sequence for CEUS and RF channel data simulation
for training, validation, and test sets are explained in Section
II-A and II-B, respectively. The CNN architecture is presented
in Section II-C. Sub-pixel localization in the confidence map
is introduced in Section II-D, and 3-D phantom fabrication for
validation is described in Section II-E.

A. Imaging Sequence
A commercial ultrasound system bk5000 (BK Medical,

Herlev, Denmark) was used to acquire ultrasound data. Re-
search ultrasound scanners allow to customize the imaging
sequence and acquire raw channel data, e.g., synthetic aper-
ture real-time ultrasound system (SARUS) [35] and vantage
systems (Verasonics Inc., Redmond, WA, USA). However,
in commercial scanners, it is not easy to modify imaging
parameters, and the scanners commonly return beamformed
ultrasound data only. The imaging sequence implemented in
the scanner is illustrated in Fig. 2. The sequence employs
focused beam transmissions using a sliding aperture with 91
sub-apertures for both contrast mode and B-mode. CEUS
imaging was achieved using the amplitude modulation [7]
scheme in contrast mode to isolate non-linear MB signals and
reject tissue signals using three transmissions per sub-aperture,
i.e., one full positive and two half negative transmissions. A
B-mode sequence followed using one transmission per sub-
aperture. There were 91 sub-apertures, therefore, the total
number of transmission events was 91 × 3 + 91 = 364. The
pulse repetition frequency fprf was 19.6 kHz, which resulted
in a frame rate of 53.85Hz.



YOUN et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 3

TABLE I
FIELD II SIMULATION PARAMETERS

Parameter Value

Transducer # of elements 150
Pitch 0.16mm
Element height 3.40mm
Element width 0.15mm
Elevation focus 20mm

Imaging TX pulse frequency 6MHz
# of TX pulse cycle 2
# of TX elements 25
Wave type Focused beam
Focal depth in TX 10mm
Apodization in TX Boxcar window

Beamforming Method Delay-and-sum
F-number 1
Apodization in RX Gaussian window
Pixel size 24 µm axially

79 µm laterally
Region of interest [0.02, 20.01] mm ax.

[−10.72, 10.64] mm lat.

Environment Speed of sound 1540m/s
Field II sampling freq. 350MHz

(a) (b)

Fig. 3. An example of (a) measured and (b) simulated CEUS MB
images.

B. Data Generation

Ultrasound data were generated by simulating RF channel
data in Field II pro [32]–[34] and beamforming them following
the parameter values listed in Table I. It is difficult to obtain
true MB positions in measured data, especially when there are
many overlapping PSFs, therefore, the simulated data were
used for training, validation, and evaluation. The simulation
parameter values were chosen from the commercial scanner
setting and transducer specification that were used for the
ULM experiments.

The diameters of MBs are much smaller than the diffraction
limit of ultrasound. The mean diameter of SonoVue (Bracco
Imaging, Milan, Italy), the contrast agent used in this work, is
2.5 µm [36] when the wavelengths of typical ultrasound pulses
are several hundreds of micrometers. Thus, point scatterers
were used to simulate MBs, and the non-linear behavior of
MBs was not considered to simplify the simulation model.
In measured data, weak scattering was observed apart from
MB signals, caused mainly by not rejected stationary echoes,
out-of-plane MBs, and low singal-to-noise ratio (SNR) due
to electronic noise, as shown in Fig. 3a. To take such noise
into consideration, a different kind of point scatterers with a
4 times smaller scattering amplitude than MBs were added.
The weak scatterers represent the noise in the measurement

Fig. 4. The proposed U-Net style CNN architecture. The number in the
parenthesis are the number of kernels of the corresponding block, and
the sets of three numbers represent data size.

and they are not supposed to be localized as MBs.
For an image frame, RF channel data were simulated by

placing point scatterers randomly in the region of interest.
The simulated RF channel data were then beamformed by
delay-and-sum [37], and envelope detection was performed
using the Hilbert transform. To further mimic measured data,
pixel values of the resulting image was quantized, so that a
peak of an isolated PSF has five levels of pixel values. This
quantization scheme was chosen empirically from measured
CEUS images of MBs. A simulated image frame is shown in
Fig. 3b.

C. Convolutional Neural Network

A U-Net [30] style CNN was adopted to estimate a con-
fidence map from a CEUS image, as shown in Fig. 4. The
proposed CNN architecture is similar to deep-ULM [22] in the
sense that both have an encoder-decoder structure. However,
deep-ULM localizes MBs in the pixel coordinates without sub-
pixel accuracy, so it requires additional upsampling layers to
increase localization accuracy. On the other hand, the proposed
method can achieve sub-pixel localization without additional
upsampling layers.

The proposed network consists of three down-blocks, one
conv-block, and three up-blocks. Those blocks use the pre-
activation residual unit [31] to improve the network perfor-
mance. A detailed description of each block can be found
in [29]. In the encoding path, features are extracted from
the CEUS image at different scales by the down-blocks.
In the decoding path, the corresponding confidence map is
reconstructed from the representation in the latent space by the
up-blocks. Skip connections are implemented as concatenation.

D. Confidence Map and Sub-pixel Accuracy Localization

A confidence map represents confidences of MB presence
in each pixel location by its pixel values. Localizing MBs in
the confidence map allows to handle varying numbers of MBs
depending on the input ultrasound image. Especially, non-
overlapping Gaussian confidence map has been proposed to
localize closely spaced scatterers by identifying local maxima,
while providing large gradients for stable training [29]. In the
previous work, however, Gaussians were defined in the discrete
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image grid, so localization was performed with pixel accuracy.
In this work, for sub-pixel localization, Gaussians were created
in the continuous domain and sampled according to the image
grid coordinates, as described in Algorithm 1. By doing so, not
only closely spaced MBs can be localized, but also sub-pixel
localization can be achieved. An example of a non-overlapping
Gaussian confidence map is shown in Fig. 5a.

Algorithm 1 Confidence map generation
Input: Microbubble positions pmb ∈ RNmb×2, image pixel

positions pimg ∈ RNz×Nx , and a covariance matrix

Σ =

(
σ2
z 0
0 σ2

x

)
, where σz and σx are the standard

deviations along the z and x directions.
Output: A non-overlapping Gaussian confidence map

c ∈ RNz×Nx

1: Let’s consider a normalized 2-D Gaussian function

N (p;µ,Σ) = exp

{
−1

2
(p− µ)ᵀ Σ−1 (p− µ)

}
,

where µ = (µz, µx).
2: for k = 1 to Nmb do
3: ck ←

{(
cki,j
)
∈ RNz×Nx

∣∣∣ cki,j = N (pimgi,j ;pmbk,∗,Σ)
}

4: end for
5: c←

{
(ci,j) ∈ RNz×Nx

∣∣ ci,j = maxk∈[1,Nmb] c
k
i,j

}
.

In the non-overlapping Gaussian confidence map, pixel
values around a local peak follows a Gaussian function thanks
to the maximum operation in the generation of the confidence
map. Based on this fact, a MB position can be localized
by fitting a Gaussian function to a local maximum and its
neighboring pixels in the confidence map. Essentially, the
center of the Gaussian can be estimated in the continuous
spatial domain, which corresponds to the sub-pixel position of
a MB. The procedure of sub-pixel localization in a confidence
map is described in Algorithm 2.

Algorithm 2 MB localization from a confidence map
Input: A non-overlapping Gaussian confidence map

c ∈ RNz×Nx and image pixel positions pimg ∈ RNz×Nx .
Output: Estimated MB positions p̂mb ∈ RN̂mb×2

1: p̂mb ← { }
2: for i = 2 to Nz − 1 do
3: for j = 2 to Nx − 1 do
4: if ci,j = max{ci−1,j , ci,j−1, ci,j , ci+1,j , ci,j+1} then
5: p̂← fitGaussian

(
i, j, c,pimg

)

6: p̂mb.insert(p̂)
7: end if
8: end for
9: end for

The Gaussian fitting can be performed as follows. Let us
consider N data points {(yi, xi1, xi2)}Ni=1 that follow an 2-D
Gaussian function

y = exp

{
−1

2

(
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

)}
, (3)
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Fig. 5. An example of the non-overlapping Gaussian confidence map
with true and estimated scatterer positions.

where µ = (µ1, µ2) is the center and σ = (σ1, σ2) is the
standard deviation of the Gaussian function. By taking natural
logarithms in (3), the following can be obtained,

ln y = ax21 + bx22 + cx1 + dx2 + e, (4)

where a = −1
2σ2

1
, b = −1

2σ2
2
c = µ1

σ2
1

, d = µ2

σ2
2

, and e =

−
(
x2
1

2σ2
1
+

x2
2

2σ2
2

)
. By using the data points and (4), a linear

regression can be formalized as follows,




x211 x212 x11 x12 1
x221 x222 x21 x22 1
· · ·
x2N1 x2N2 xN1 xN2 1







a
b
c
d
e




=




ln y1
ln y2
· · ·

ln yN


 , (5)

the analytic solution can be found as follows,



a
b
c
d
e




=




x211 x212 x11 x12 1
x221 x222 x21 x22 1
· · ·
x2N1 x2N2 xN1 xN2 1




−1


ln y1
ln y2
· · ·

ln yN ,


 , (6)

and the center of the Gaussian can be found as

µ1 = −c/2a and µ2 = −d/2b. (7)

To estimate the peak of a 2-D Gaussian function, at least five
data points are necessary. In this work, the local maximum
along with its 4 adjacent pixel values, i.e., 5 pixels, were used
to fit a Gaussian function.

E. Phantom Fabrication

For the validation of ULM on measured data, a PEGDA
700 g/mol phantom was 3-D printed using stereolithography
[38]. The phantom had a channel with a diameter of 200 µm,
where MBs can be injected through a syringe. The channel
was designed to be bent 90 degrees multiple times on an
imaging plane, as illustrated in Fig 6. This design resulted
pairs of parallel channels where, in each pair, the MBs
flowed in opposite directions to each other. The wall-to-wall
spacing between the pairs was varied from 22 to 120 µm to
compare various ULM methods at different spacing. From
left to right, the spacing decreased from 121 µm to 22 µm and
again increased to 110 µm to maintain the stability during 3-D
printing.
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Fig. 6. Layout of the 3-D printed phantom embedding a channel to
validate ULM.

III. EXPERIMENTS

A. Training Detail

A CNN, the mapping g with its learning parameters θ, was
trained to obtain the model that returns the confidence map
c given the ultrasound image x. For training, the difference
between true and estimated confidence maps was captured by
the mean squared error (MSE) which is given by

LMSE (x, c; g) =
1

N

N∑

i=1

‖ci − g (xi; θ)‖2F , (8)

where N is the number of samples and ‖·‖F is the Frobenius
norm.

The learning parameters were initialized by orthogonal
initialization [39] and updated using the Rectified Adam
(RAdam) [40] and LookAHead [41] optimizer. The learning
rate was initially set to 0.0001 and halved every 200 epochs.
The CNN model was implemented using Tensorflow [42] in
Python. A server equipped with a NVIDIA TESLA V100
16 GB PCIe graphics card was used for training. The total
number of training epochs was 1000 and the training took
approximately 24 hours.

The training set consisted of 3840 MB images and 3840
weak scattering images, i.e., noise, that were simulated sepa-
rately. One MB image was simulated with 400 point scatterers,
and one weak scattering image was simulated with 4000 point
scatterers. All MB scattering had the same amplitude and the
weak scattering amplitudes were a quarter of that. During
training, one ultrasound image frame was formed by selecting
one MB image and one weak scattering image randomly from
the training set. And then, the frame was randomly cropped to
a size of 128×128 and was flipped along the lateral direction
with a probability of 0.5 for data augmentation. The degree
of the MB overlap and essential MB density in the cropped
region varied due to the large initial imaging region even
though the MB images were simulated with the same number
of MBs. The ultrasound image and confidence map were lastly
normalized to be in [0, 1].

Validation was performed at the end of every epoch to mon-
itor the training and choose hyper-parameters. The validation
set was created in the same way as the training set with 128
MB images and 128 noise images.

B. Simulation Experiment

The trained CNN was firstly evaluated on simulated test
sets. Each test set was composed of 128 frames that were
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Fig. 7. Illustration of phantom experiment setup

simulated at the same MB density and a total of 9 test sets
were created by varying the MB density from 0.3mm−2

to 4.9mm−2. Unlike the training data that cover the whole
imaging region, the test data were simulated in a 128 × 128
region, so that the similar degree of the MB overlap can appear
at the same MB density. The 128 × 128 region was selected
randomly for each data since the PSFs vary spatially. The
number of MBs were changed depending on the test set, but
the number of weak scatterers was not.

C. Phantom Experiment

The 3-D printed phantom was measured using the bk5000
ultrasound system and X18L5s linear array transducer (BK
Medical, Herlev, Denmark). The imaging sequence of the
scanner is shown in Fig. 2, and the specification of the trans-
ducer follows the parameter values in Table I. The phantom
was submerged in a water tank and fixed by a 3-D printed
holder, as illustrated in Fig. 7. The water tank was placed on
a motion stage that helps align the channel inside the phantom
in the imaging plane. SonoVue (Bracco Imaging SpA, Milan,
Italy) was diluted into two concentrations: 1:40 (low) and 1:20
(high), and then injected into the channel using a syringe and a
syringe pump neMESYS 290N (Centoni, Thuringia, Germany)
with a constant volume flow rate of 1 µL/s.

D. Animal Experiment

Animal experiment was performed on a healthy male
Sprague-Dawley rat according to the protocols approved by
the Danish National Animal Experiments Inspectorate. The
procedures were conducted at the University of Copenhagen,
following all local ethical standards. The ethical policy adheres
to that of the National Institutes of Health. The animal
was housed in an animal facility under the supervision of
trained animal caretakers at the Department of Experimental
Medicine, University of Copenhagen.

Prior to ultrasound scans, the rat was anesthetized with 5%
isoflurane and placed on a heating pad (37 °C) to keep body
temperature. Through tracheotomy, a mechanical ventilator
(Ugo Basile, Gemonio, Italy) was connected to the rat to
control respiration with a cycle of 72 breaths/min and anes-
thesia was maintained with 1∼2% isoflurane. Jugular vein was
catheterized to provide 0.85mg/mL cisatracurium (Nimbex;
GlaxoSmithKline, Brentford, UK) at 20 µL/min. The arterial
blood pressure was monitored in the left carotid artery using
a pressure transducer P23Db (Gould Statham Instr. Inc., CA,
USA). The left kidney was exposed through laparotomy with
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TABLE II
MB CONCENTRATIONS FOR ANIMAL EXPERIMENTS.

Experiment MB dilution Volume flow rate MB concentration

Scenario 1 1:20 85 µL/s 4
Scenario 2 1:20 170 µL/s 9
Scenario 3 1:10 170 µL/s 17
Scenario 4 1:5 170 µL/s 34

the rat in the supine position. The diaphragm was pulled
cranially with a retractor to further expose the kidney and
reduce respiratory motion. The rat kidney was scanned at 4
different MB concentrations by adjusting MB dilution and
infusion volume flow rate, as shown in Table II. The MB
concentration was assumed to be linearly proportional to MB
dilution and volume flow rate. The scan for each concentration
lasted for 9 minutes, and the rat was euthanized in anesthesia
after the experiments.

On the animal measurements, motion correction was ap-
plied using B-mode images [43]. Local motion was estimated
by dividing the B-mode images into small patches and co-
registering them to a reference image frame using 2-D cross-
correlation. The locally estimated motion was then interpolated
to a finer grid, and its inverse transform was applied to the
estimated MB positions for motion correction.

E. Evaluation Metrics
For the simulation experiments, evaluation was performed

by calculating precision, recall or reconstructed MB density,
and localization precision in the lateral and axial directions.
Precision P , recall R, and reconstructed MB density d̂mb are
given by

P =
TP

TP + FP
, R =

TP

TP + FN
, and (9)

d̂mb = R× dmb, (10)

where TP is the number of true positives (correct MB
localization), FP is the number of false positives (wrong MB
localization), FN is the number of false negatives (missed
MBs), and dmb is the true MB density. Localization precision
σloc was measured by

σloc = 2
√
2 ln 2σ, (11)

where σ is the standard deviation of distance errors between
true and estimated MBs. The localization precision (11) is the
full width at half maximum (FWHM) of a Gaussian, therefore,
it can be translated to the resolution of ULM, assuming that
the localization errors follow a Gaussian distribution.

To determine whether the estimated localization is correct
or wrong, true and estimated MBs need to be paired. Simply
finding the nearest true MB given an estimated MB is prob-
lematic since that can lead to a situation where one true MB
is paired with more than one estimated MB [29]. Therefore,
the matching problem was formulated as a linear assignment
problem and solved by the built-in function matchpairs in
MATLAB (MathWorks, MA, USA) [44]. A cost matrix was
defined by pairwise distances of all possible assignments

TABLE III
COMPARISONS OF PRECISION, RECALL, AND LOCALIZATION PRECISION

ON SIMULATED TEST SETS.

Method Precision Recall localization
precision (lat./ax.)

Centroid 0.77 0.53 48.65 µm / 43.13 µm
Proposed 0.93 0.83 35.09 µm / 25.29 µm

between the true and estimated MBs, and the optimal matches
that give the minimum cost assignment were obtained. The
threshold of not matching was also employed to reject the
assignments whose assignment costs (i.e., distance) are higher
than the threshold. In this work, the threshold was set to λ/5
(49 µm) for precision, recall, and reconstructed MB density
and λ/2 (123 µm) for localization precision.

For the assessment of the phantom measurements, the above
metrics are not appropriate due to the lack of true MB
positions. Instead, the dimensions of channels inside the 3-
D phantom where MBs are injected were used. The ratio of
the number of MBs per unit area inside channels to the number
of MBs per unit area outside channels, termed as MB contrast
ratio, was calculated for evaluation in the following way:

CRmb =
Nmb,ch (Atot −Ach)

(Nmb,tot −Nmb,ch)Ach
, (12)

where Nmb,tot and Atot are the total number of MBs in an
image region and the area of the region, and Nmb,tot and
Ach are the number of MBs inside channels and the area of
channels in the region.

For the animal experiment, it is difficult to evaluate the
results due to the absence of ground truth. Hence, tracking
was applied by Kalman filtering on the estimated MBs and
the assessment was performed on the MBs that contribute to
tracks, which will be referred to as track samples. Specifically,
unlike single model Kalman filtering such as [45], the Kalman
filter was implemented in a hierarchical way by exploiting
multiple models for each velocity range. The concept of the
hierarchical Kalman filter was discussed in [46]. Tracking is an
important step along with localization in ULM [5], [6], which
filters out wrong localization by taking temporal correlation
into account, thereby improving image quality and providing
velocity estimation of microvessels [47]. The number of the
track samples and the distance between the closest track
samples at each frame were calculated, assuming track samples
are correct localization.

IV. RESULTS

A. Simulation Experiment
Localization capability of centroid detection and the pro-

posed method on the simulated test sets is shown in Table III.
The proposed method achieved better performance for all
metrics than centroid detection. The performance of each
method at different MB densities is also shown in Fig. 8.
In general, localization performance deteriorated as the MB
density increased regardless of the methods. The proposed
method, however, suffered less than centroid detection by its
ability to localize overlapping MBs.
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(a) (b)

(c) (d)

Fig. 8. Localization capability of centroid detection and the proposed
method over different MB densities on the simulated test sets: (a)
precision, (b) recall, (c) reconstructed MB density, and (d) localization
precision in the lateral and axial directions.

Localizing more MBs within an image frame allows to
shorten the data acquisition time of ULM. However, simply
increasing MB concentrations will not help centroid detection
shorten the data acquisition time as the reconstructed MB
density peaked to 0.9mm−2 at the MB density of 2.9mm−2

and started to decrease. However, the reconstructed MB den-
sity of the proposed method kept increasing and converged
to 2.4mm−2. The higher reconstructed MB density, seen in
Fig. 8c, essentially indicates the proposed method can map the
target structure with fewer image frames by localizing more
MBs.

B. Phantom Experiment
The ULM results of the 3-D printed phantom measurements

at two different MB concentrations are shown in Table IV and
Fig. 9. For ULM image reconstruction, 3000 frames for the
low concentration and 800 frames for the high concentration
were used. Even though a constant concentration of MBs
were infused, the concentration decreased inside the phantom
channel as they flowed from left to right since more MBs
were disrupted as exposed by more ultrasound beams. The
MB contrast ratio was, therefore, calculated on the first 6
pairs of channels from the left to measure it under similar
MB concentrations.

Centroid detection and the proposed method showed similar
results at the low concentration (1:40). Both resolved well all
the pairs of channels in the phantom, as shown in Fig. 9a
(first row). The mean MB contrast (Table IV) and the MB
contrast ratio at each pair (Fig. 9b) were higher than 1, which
is the necessary condition for resolving a pair of channels.
The lateral intensity profile of the most closely spaced pair
(the sixth pair from the left) in Fig. 9c confirmed that the pair
with the wall-to-wall distance of 22 µm was clearly separated

TABLE IV
COMPARISONS OF THE NUMBER OF ESTIMATED MBS PER FRAME AND

MEAN MB CONTRAST RATIO OVER ALL THE PAIRS OF CHANNELS ON

THE PHANTOM MEASUREMENTS.

Concentration Method # estimated MBs mean MB
per frame contrast ratio

Low (1:40) Centroid 19 3.67
Proposed 32 3.75

High (1:20) Centroid 40 0.34
Proposed 124 10.62

by both methods. Nonetheless, the proposed method localized
more MBs by a factor of 1.7 per frame, which agrees with
the higher recall or reconstructed MB density at a low MB
density in the simulation.

At the high concentration (1:20), the proposed method still
resolved all the channels clearly, but centroid detection failed,
as shown in Fig. 9a (second row). Centroid detection resulted
in single channels for all the pairs of channels. The mean
MB contrast ratio of centroid detection was 0.34 and the
MB contrast ratio at each pair were below 1, which is the
sufficient condition that a pair of channels is not resolved.
The lateral intensity profile in Fig. 9c (second row) clearly
shows a high peak in the center of the channels, where no
MBs were supposed to be localized. However, the proposed
method achieved MB contrast ratio higher than 1 at all the
pairs, and the most closely spaced channels were also well
resolved as shown in Fig. 9c (second row). Compared to the
low concentration result, the proposed method localized more
MBs by a factor of 2.8 per frame at the high concentration,
and it achieved a comparable ULM image with 3.8 times less
image frames.

C. Animal Experiment
The ULM images of a rat kidney at 4 different MB con-

centrations using centroid detection and the proposed method
are shown in Fig. 11a. Both methods produced high-resolution
images by resolving the microvasculature of the kidney, and
the results were consistent with each other in scenario 1.
In scenario 2, when the MB concentration was doubled,
more microvessels were developed by both methods, how-
ever, the proposed method achieved mostly brighter intensity
by localizing more MBs from the same data. As the MB
concentration further increased, centroid detection started to
fail in scenario 3 by losing many microvessels and failed to
reconstruct most microvessels except the inner medulla region
in scenario 4. On the other hand, the proposed method still
showed a decent result in scenario 3 though some vessels
in the cortex area were missed. In scenario 4, the proposed
method also failed to reconstruct microvessels properly except
some region in the inner medulla, but the overall shape was
still perceptible and relatively large vessels were visible.

The ability of how closely spaced MBs can be resolved
has implicitly been investigated by measuring the smallest
pairwise distances among track samples in a frame. The
histogram in Fig. 10 shows the normalized counts of the
smallest pairwise distances on the scenario 2 rat data in bins
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(a) (b) (c)

Fig. 9. Comparison of ULM results on 3-D phantom measurements at a low (first row) and a high (second row) MB concentrations. (a) is the ULM
reconstruction by centroid detection (first column) and the proposed method (second column). (b) is the MB contrast ratio at the first 6 pairs of
channels from the left. (c) shows the lateral intensity profile of the most closely spaced pair, the sixth from the left in (a).

Fig. 10. A histogram that shows how closely spaced MBs were able
to be localized by centroid detection and the proposed method. The
minimum of pairwise distances were found in each frame in the rat
measurements of scenario 2. The red dashed line represents 250µm
(≈ λ).

of 50 µm. The counts were normalizing by the total number
of counts, so the normalized count does not reflect the real
number of counts but the ratio of the counts in each method.
For the proposed method, 8% of the estimated track samples
were closer than 250 µm (≈ λ), represented as a red vertical
dashed line, while there were no such track samples for
centroid detection.

Three 1.6mm × 1.6mm regions were selected from the
inner medulla, outer medulla, and cortex to further analyze
the effect of the MB concentrations locally. The selected
regions are highlighted as blue rectangles in Fig. 11a. The local
ULM results and the number of track samples in the regions
at the different MB concentrations are shown in Fig. 11b,
11c, and 11d. For inner medulla (Fig. 11b), both methods
showed similar trend when the MB concentration increased.
The number of track samples kept increasing up to scenario 3
and dropped in scenario 4. For the outer medulla (Fig. 11c)

and cortex (Fig. 11d), the proposed method localized more
MBs over all MB concentrations. In addition, as the MB
concentration increased, the proposed method acquired more
track samples up to scenario 3 and scenario 2 for the outer
medulla and cortex, respectively, where the number of track
samples by centroid detection started decreasing.

V. DISCUSSION

In this work, a sub-pixel MB localization method that can
handle overlapping MBs using CNNs has been proposed.
The CNN was trained to learn non-overlapping Gaussian
confidence maps, instead of MB positions, from CEUS im-
ages. And then, the sub-pixel localization was performed by
applying Gaussian fitting to the local peaks in the confi-
dence maps. The method was evaluated on simulation data,
phantom measurements, and animal measurements at various
MB concentrations, showing that the proposed method can
separate MBs that were spaced closer than the resolution of
conventional ultrasound imaging without being limited to the
input image pixel size.

The CNN for the proposed method needs the capability of
reconstructing the non-overlapping Gaussian maps properly
for accurate localization. To select an appropriate deep learn-
ing model, validation was performed on the U-Net and ResNet
style architecture. And the U-Net style CNN showed better
confidence map estimation on the validation set, resulting in
more accurate localization. It has been reported in [23] that the
ResNet style architecture showed improvement of localization
in the pixel coordinates. However, for sub-pixel localization
via the non-overlapping Gaussians, it is complex to reconstruct
the confidence maps, so the U-Net style network worked better
thanks to its encoder-decoder structure.

The proposed method utilizes computational resources ef-
ficiently by virtue of the sub-pixel accuracy processing as
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(a)

(b)

(c)

(d)

Fig. 11. Comparison of ULM results on the rat kidney measurements. (a) is the ULM reconstruction at 4 different MB concentrations by centroid
detection (first column) and the proposed method (second column). Three 1.6mm × 1.6mm regions were selected from the inner medulla, outer
medulla, and cortex for local analysis, which were highlighted by blue rectangles in (a). The local ULM image results and the number of track
samples over different MB concentrations are shown in (b) for the inner medulla, (c) for the outer medulla, and (d) for the cortex.

additional upsampling layers are not necessary and localization
is performed on the same image resolution to the input image.
The computational complexity of Deep-ULM, mSPCN-ULM,
and the proposed method given ultrasound images with a
size of 786 × 272, the same image size with the phantom
and animal measurements, were investigated. The number of
model parameters and the number of floating point opera-
tions (FLOPs) were calculated manually. The process time
was measured for one image frame by repeating inference
for 1000 times. The maximum available batch size, which
determines the number of image frames can be processed in
a single iteration, was obtained by increasing the batch size
in powers of two until running out of GPU memory. The PC
equipped with a NVIDIA Titan V graphics card was used
for the computational complexity evaluation, and the results

are shown in Table V. Deep-ULM and the proposed method
have similar architecture except the additional upsampling
layers, thereby both require similar number of parameters
and FLOPs. However, the proposed method was faster by a
factor of 2.3 for processing one image frame and can deal
with roughly 23 times more images in a batch. Considering
current ULM processing is mostly performed off-line, larger
batch size is beneficial as it allows to process more image
frames in parallel. Contrarily, the number of parameters for
mSPCN-ULM was much less because mSPCN-ULM follows
a ResNet style architecture. Nonetheless, the number of FLOPs
was much larger since the size of feature maps are kept in the
same image resolution with the input before the additional
upsampling layers due to the lack of pooling and unpooling
operations. The proposed method achieved comparable process
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TABLE V
COMPARISON OF COMPUTATIONAL COMPLEXITY GIVEN AN

ULTRASOUND IMAGE WITH A SIZE OF 768 × 272.

Model Number of Number of Process Maximum
parameters FLOPs time batch size

Deep-ULM 5.9× 106 29× 109 355ms 23

mSPCN-ULM 0.4× 106 63× 109 158ms 26

Proposed 5.8× 106 23× 109 156ms 26

Fig. 12. ULM track image generated from the rat kidney measurement
of scenario 3 using the proposed localization method and the hierarchi-
cal Kalman filter. The color wheel on the top right corner represents the
magnitude and direction of the velocity.

time to mSPCN-ULM with 15 times more model parameters.
Note that the number of FLOPs, process time, and maximum
batch size depend on the input image size, while the number
of parameters does not.

Unlike [48] and [25] that produce super-resolved images
directly, the proposed method performs localization explicitly
at high concentrations of MBs. The access to the estimated
MB positions allows to make tracks out of them by taking
temporal consistency into account. An example of the track
image from the rat kidney measurement in Scenario 2 the
middle concentration using the proposed localization method is
shown in Fig. 12. Tracking helps filter out wrong localization,
separates entangled microvessels which is impossible in MB
intensity images, and, more importantly, provides velocity
information. The velocity information is one of the useful
ULM quantities that helps doctors diagnose diseases in clinics
[49].

The phantom experiment results clearly showed that the
proposed method could localize closely spaced MBs on the
measured data when centroid detection could not. The phan-
tom channel whose wall-to-wall distance varied from 22 to
121 µm was successfully reconstructed at the high MB concen-
tration. The image quality at the high MB concentration was
comparable to that at the low MB concentration in terms of the
number of localized MBs and MB contrast ratio with 6 times
less image frames. It also looked promising that the proposed
method can localize the overlapping PSFs on the in-vivo data,
as shown in Fig. 10. Yet, it is uncertain if the track samples
are true MBs, so further investigation will be necessary, e.g.,
cross-modality validation for a concrete conclusion.

In in-vivo scenarios, perfusion, vessel size, and microvas-
cular structure, as well as infused MB concentrations and
MB disruption affect on the actual MB concentration in local

regions. Even for the same localization method, the trend
of the number of track samples was different in each local
region, as shown in Fig. 11b, 11c, and 11d. The actual MB
concentration was higher in the cortex than in the inner
medulla even though the infused MB concentration is the
same. This explains why the number of track samples started
to decrease at different MB concentrations as the degree of
overlapping that the proposed method can handle is limited,
although it can localize overlapping PSFs. Therefore, ULM at
a high MB concentration can give a different image quality
depending on the target structure, and the concentration should
be selected based on the region of interest and the application.

The imaging sequence used in this work was limited and not
optimal to achieve good transmission focusing, a high frame
rate, and a high SNR. An advanced imaging sequence e.g.,
synthetic aperture imaging using diverging wave [50] or plane
wave [51] would improve localization results dramatically by
offering a better image quality. Furthermore, 2-D ULM using
1-D array probes has a problem that the elevation direction
is not recognized. The 2-D ultrasound images are essentially
an integration over the elevation beam profile, determined by
elevational resolution. This is fine for simple-structured targets
such as the channel of the 3-D printed phantom in Fig 6
as the channel was virtually a 2-D structure well aligned
in the imaging plane using the motion stage. However, in-
vivo targets have much more complicated structure. There
are microvessels in the out of imaging plane direction and
microvessels flowing in different directions can lie on top of
each other in the elevation direction, which hinder accurate
localization, motion correction, and tracking. Those limitations
can be solved by 3-D ULM using 2-D array probes such as
fully-addressed matrix array probes [52], [53] or row-column
(RC) addressed matrix array probes [54]. Especially, the RC
probes only require 2N connections compared to N2 of the
fully-addressed probes. The proposed method can be extended
for 3-D data by implementing the CNN and non-overlapping
Gaussian confidence maps in 3-D. Therefore, it is expected
that 3-D ULM using a synthetic aperture sequence with the
RC probe will allow the proposed method to achieve better
localization performance by removing the ambiguity of the
data in the elevation direction, and as a result, high-fidelity
ULM reconstruction.

VI. CONCLUSION

A sub-pixel MB localization method using a CNN has been
proposed. The CNN was trained to learn the mapping from
a CEUS image to a non-overlapping Gaussian confidence
map and sub-pixel localization was performed by applying
Gaussian fitting on the local peaks. The method was evaluated
on the simulation data, phantom measurements, and animal
measurements, showing overlapping PSFs spaced closer than
the ultrasound resolution limit can separated. This method can
achieve ULM at a higher MB concentration with a shorter data
acquisition time, and this will potentially help making ULM
more feasible in clinics.
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Abstract—Ultrasound localization microscopy (ULM) can sur-
pass the resolution limit of conventional ultrasound imaging.
However, a trade-off between resolution and data acquisition
time is introduced. For microbubble (MB) localization, centroid
detection is commonly used. Therefore, low-concentrations of
MBs are required to avoid overlapping point spread func-
tions (PSFs), leading to a long data acquisition time due to
the limited number of detectable MBs in an image frame.
Recently, deep learning-based MB localization methods across
high-concentration regimes have been proposed to shorten the
data acquisition time. In this work, a data-driven encoder-
decoder convolutional neural network (deep-ULM) and a model-
based deep unfolded network embedding a sparsity prior (deep
unfolded ULM) are analyzed in terms of localization accuracy
and computational complexity. The results of simulated test
data showed that both deep learning methods could handle
overlapping PSFs better than centroid detection. Additionally,
thanks to its model-based approach, deep unfolded ULM needed
much fewer learning parameters and was computationally more
efficient, and consequently achieved better generalizability than
deep-ULM. It is expected that deep unfolded ULM will be more
robust in-vivo.

Index Terms—deep unfolded network, high-concentration mi-
crobubble localization, model-based neural network, super-
resolution ultrasound imaging, ultrasound localization mi-
croscopy

I. INTRODUCTION

Ultrasound localization microscopy (ULM) has shown great
potential as a breakthrough in super-resolution ultrasound
imaging (SRUS) by imaging microvasculature whose vessels
are spaced closer than the resolution limit of conventional
ultrasound imaging [1]–[6]. ULM is achieved by localizing
gas-filled microbubbles (MBs) that are injected into the blood-
stream and accumulating their centroids from multiple frames
in an image. The resulting super-resolution images can be used

to diagnose early-stage cancer [7], ischemic kidney disease [8],
and diabetes [9].

The fidelity of ULM depends on the number of detected
MBs and their localization precision and sensitivity. Standard
ULM methods ordinarily locate the centroids of isolated MBs,
therefore, overlapping point spread functions (PSFs) need to
be avoided. Diluted low-concentrations of MBs are commonly
employed to minimize the overlapping PSFs for accurate
localization. Even so, some overlapping PSFs still appear
since MBs cannot easily be controlled after injection. The
high-resolution of ULM is related to precise MB localization,
so the overlapping MB PSFs are often rejected. However,
low-concentrations of MBs and overlapping PSF rejection
limit the number of detectable MBs in an image frame, and
eventually require a long data acquisition time. To cope with
this limitation, there have been efforts to achieve SRUS at
high-concentrations of MBs [10]–[12].

Recently, several deep learning-based methods have been
proposed to localize MBs across high-concentration regimes
with overlapping PSFs [13]–[16]. Here we analyze two models
and assess their capability in terms of localization accuracy
and computational complexity. One approach is a data-driven
encoder-decoder convolutional neural network (deep-ULM)
[13], and the other is a model-based deep unfolded network
that embeds a sparsity prior (deep unfolded ULM) [14]. These
algorithms were compared along with the centroid detection
method as baseline under challenging simulation scenarios.

II. METHOD

A. Data Generation

Ultrasound data were simulated in Field II pro [17]–[19] for
training and evaluating deep learning models. The simulated
data were chosen over measured data for training because it



is difficult to obtain ground-truth (i.e., MB positions) from
the measured data. Radiofrequency (RF) channel data were
simulated using a transducer modeled following the Verasonics
L11-4v and a single cycle 6.9MHz sinusoidal pulse. For one
image frame, eleven plane waves with different angles were
transmitted after placing ultrasound scatterers randomly in the
region of interest. The RF channel data were then delay-and-
sum beamformed with a dynamic apodization on a λ/4 grid,
and the beamformed images were subsequently coherently
compounded. The simulation parameters are presented in
Table I. For the training set, 256 image frames were generated.

TABLE I
FIELD II SIMULATION PARAMETERS

Parameter Value

Transducer Transmit frequency 6.9MHz
Pitch 30mm
Element height 5mm
Element width 27mm
Number of elements 128

Imaging Wave type Plane
Steering angles 2 · i◦, i ∈ {−5, . . . , 5}
F# 0.5
# of elements in TX 128
Apodization in TX Hann window
Apodization in RX Hann window

Environment Speed of sound 1480m/s
Field II sampling frequency 180MHz

B. Deep learning-based Localization

Deep learning methods were designed to estimate MB
positions from beamformed RF data. The MB positions (i.e.,
output) that were used to train networks were quantized
and represented in a λ/16 image grid. The values of pixels
containing MBs were set to one, and the others were zero. The
higher-resolution grid was used than the beamformed images
(i.e., input) to increase localization precision of estimated
MBs.

The deep neural networks were trained by minimizing
the difference between true MB positions and estimated MB
positions using the ADAM [20] optimizer. The difference was
captured by a loss function,

L (x,y; θ, σ) = 1

N

N∑

i=1

‖G (yi;σ)− f (xi; θ)‖2F , (1)

where xi and yi are the i-th ultrasound image and MB
positions, N is the number of samples, G is the 2-D Gaussian
filtering with a standard deviation of σ, f ( · ; θ) is the neural
network function with learning parameters θ, and ‖·‖F is
the Frobenius norm. Smoothing was applied to the true MB
positions to provide larger gradients to ensure training stability.

1) Deep-ULM: Deep-ULM uses an encoder-decoder con-
volutional neural network (CNN), which is widely used for
computer vision and image processing problems such as
segmentation [21], [22] and image generation [23]. It mainly
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Fig. 1. Deep neural networks for MB localization. (a) Deep-ULM: encoder-
decoder convolutional neural network and (b) Deep unfolded ULM: model-
based neural network.

consists of down, conv, and up blocks, as shown in Fig. 1a.
In the encoding path, the down blocks extract features using a
series of convolution layers while downsampling the features
from the previous layer by a factor of 2. In the decoding path,
the MB positions are reconstructed based on the extracted
features in the encoding path. To obtain the MB positions
in the higher-resolution grid, the first up block upsamples the
features by a factor of 2 and the other up blocks perform
upsampling by a factor of 4. A detailed description of down,
conv, and up blocks can be found in [15], [16].

The encoder-decoder CNN is a fully data-driven method
and requires millions of learning parameters, which has a
high chance of overfitting to the training data distributions.
Therefore, considering the training data were simulated, deep-
ULM may work well on the data simulated in the same way
but not on data simulated differently or measured data.

2) Deep unfolded ULM: Deep unfolded ULM has been
proposed to overcome the limitations of generalizability of
deep-ULM [14], [24]. It solves ULM as a sparse coding
problem, which can be formalized as

y = Ax+ n, (2)

where y is the low-resolution MB ultrasound image, A rep-
resents the PSF, x is the MB positions on the high-resolution
grid, and n is noise.

It can be assumed that x is sparse because the MB positions
are represented in a higher-resolution grid. The optimal x can
then be estimated by solving an optimization problem with a
sparsity prior, i.e., the `1-penalty:

x̂ = argmin
x
‖y −Ax‖22 + λ‖x‖1, (3)

where λ is the regularization coefficient. The problem (3) can
be solved using the proximal gradient method. However, such
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Fig. 2. Comparison of the methods on test sets simulated by placing scatterers
randomly at different MB densities where (a) is precision, (b) is recall, and
(c) is the median of localization error.

iterative methods may take a long time to converge and their
performance highly depends on the hyper-parameters such as
the regularization coefficient, the PSF model, and the step size
at each iteration, so that empirical tuning is necessary.

Deep unfolded ULM solves the optimization problem us-
ing Learned ISTA (LISTA) [25]. LISTA is constructed by
unfolding the iteration part as a K-layer neural network, as
shown in Fig. 1b. In this work, a 10-layer network was used.
LISTA is fast and tuning-free since the iteration is not required
and the hyper-parameters, which need to be tuned in the
proximal gradient scheme, are embedded in the model, as
learning parameters. That allows more robust MB localization
by learning more diverse PSF models, unlike the proximal
gradient methods which require a specific PSF model [26].
Deep unfolded ULM does not include upsampling in the
model, so the input data were upsampled by a factor of 4
before being applied to the network.

III. RESULTS

The trained deep learning models were compared with
standard ULM (centroid detection) on two different simulated
test sets. One test set comprised independent frames simulated
in the same way as the training data at different MB densities.
The other test set was composed of consecutive frames sim-
ulated using a pair of closely spaced parallel tubes in which
scatterers flowed in the opposite directions to each other.

A. Randomly Placed Scatterers

The capability of the models at various MB densities was
investigated using a randomly placed scatterer test set. Three
evaluation metrics were used: precision, recall, and the median
of localization error, defined as
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Fig. 3. Comparison of the methods on the simulation of a pair of parallel
tubes. (a) - (d) are the results of tubes separated by λ/2 and (e) - (h) are
the results of tubes separated by λ/4, where (a), (e) are stand ULM, (b), (f)
are deep-ULM, (c), (g) are deep unfolded ULM, and (d), (h) are the intensity
profile of each method along the lateral direction.

precision =
TP

TP + FP
, recall =

TP

TP + FN
, (4)

where TP is the number of true positive (true detection), FP
is the number of false positive (false detection), and FN is
the number of false negative (missed target).

The results are shown in Fig. 2. For standard ULM, all three
metrics got worse as the density increases. At higher densities,
a larger number of overlapping PSFs appeared, so that MB
localization became more challenging. On the other hand,
deep-ULM was not degraded as much as standard ULM at
the high densities because deep learning models can deal with
a certain degree of overlapping PSFs in MB localization. Deep
unfolded ULM achieved comparable precision and localization
uncertainty to deep-ULM, but the recall was not as good as
deep-ULM. This shows that deep-ULM can achieve better
performance on the data set that have the same distribution
as the training set, i.e., randomly placed scatterer data, by
exploiting a larger number of learning parameters.

B. Parallel Tubes

For more realistic experiments, 1024 consecutive frames
were simulated using a pair of parallel tubes separated by λ/2
and λ/4. The resulting super-resolution images of each method
and their MB intensity profile along the lateral direction are
shown in Fig. 3.

The limitation of standard ULM at a high MB density is
clearly shown. In the middle of the tubes where no MBs were
supposed to be detected, a larger number of false detection



TABLE II
SUMMARY OF DEEP-ULM AND DEEP UNFOLDED ULM

Deep-ULM Deep unfolded ULM

Scheme Fully data-driven Model-based
data-driven

# of learning parameters 5 998 785 1735
Floating point operations

788 259 839 3462(FLOPs)
Generalizability to Not good Goodout of data distributions

appeared and high MB intensity along the lateral direction
was achieved. Both deep learning models worked better than
standard ULM and deep unfolded ULM resulted in better-
resolved images with much fewer parameters. This shows that
deep unfolded ULM achieves better generalization to various
data distributions that are different from the training data,
consistent with [24], [26].

IV. DISCUSSION

A summary of deep-ULM (a fully data-driven method) and
deep unfolded ULM (a model-based data-driven method) are
shown in Table II. Deep unfolded ULM, required much fewer
parameters and operations while achieving comparable results
to deep-ULM. The model-based approach allowed not only to
reduce the number of learning parameters and operations, but
also to achieve better generalizability to out of training data
distributions. Deep unfolded ULM showed better performance
on the test set of parallel tubes, which had scatterers located
inside the tubes contrary to the training data which had
randomly placed scattereres. Under the better generalizability,
deep unfolded ULM will possibly be able to achieve more
robust MB localization than deep-ULM on measured data.
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ABSTRACT

Ultrasound localization microscopy (ULM) can break the
diffraction limit of ultrasound. However, a long data acqui-
sition time is often required due to the use of low-concen-
trations of microbubbles (MBs) for high localization preci-
sion. Lately, deep learning-based methods that can localize
high-concentrations of microbubbles (MBs) robustly have
been proposed to overcome this constraint. In particular, deep
unfolded ULM has shown promising results with few param-
eters by using a sparsity prior. In this work, deep unfolded
ULM is further extended to perform beamforming as well as
MB localization. The proposed network learns data-depen-
dent apodization weights that are optimal for deep unfolded
ULM to locate MBs. The beamformed images by the net-
work were sharper than delay-and-sum beamformed images.
In a test set simulated at an MB density of 3.84mm−1, the
proposed network reconstructed 87% of MBs while achiev-
ing comparable localization accuracy to deep unfolded ULM,
when centroid detection and deep unfolded ULM recon-
structed 42% and 67% of MBs, respectively.

Index Terms— adaptive beamformer, deep unfolded net-
work, model-based neural network, ultrasound localization
microscopy

1. INTRODUCTION

Super-resolution ultrasound imaging aims to separate targets
that are spaced closer than the diffraction limit of ultrasound.
One approach is ultrasound localization microscopy (ULM)
that localizes individual microbubbles (MBs) which are in-
jected into the bloodstream as contrast agents, and superim-
poses their centroids over time into one image frame. The
capability and potential of ULM for vascular imaging have
been extensively studied [1–6]. Clinically, ULM images are
expected to be used for the diagnosis of early-stage cancer [7],
ischemic kidney disease [8], and diabetes [9], as well as func-
tional ultrasound [10].

The resolution of ULM is essentially determined by
the sensitivity and localization precision of estimated MBs.
Therefore, diluted low-concentrations of MBs are often used
to minimize MB localization uncertainty by avoiding over-
lapping point spread functions (PSFs). However, a long data
acquisition time is required to reconstruct the target struc-
ture since the number of detectable MBs becomes limited.
Super-resolution imaging across high-concentrations of MBs
using sparse recovery has been proposed [11–13], and ULM
at high-concentrations using deep learning has been investi-
gated [14–18] to shorten the data acquisition time.

Among deep learning-based methods, deep unfolded
ULM [16] has shown comparable performance to deep-
ULM [14] with far fewer parameters thanks to its model-
based approach, which also led to better generalizabil-
ity [17]. In this work, we propose a deep learning model
by incorporating Adaptive Beamforming by deep LEarning
(ABLE) [19] into deep unfolded ULM. ABLE can perform
fast content-adaptive apodization calculation, which results
in high-quality ultrasound images. By placing ABLE before
deep unfolded ULM, and training the whole network in an
end-to-end fashion, apodization weights optimized for MB
localization by deep unfolded ULM can be learned. The lo-
calization performance of the proposed method was assessed
and compared with deep unfolded ULM under various sim-
ulation scenarios. The proposed network reconstructed more
MBs than deep unfolded ULM while keeping localization
accuracy.

2. METHOD

2.1. Ultrasound Data Generation

To train deep learning models, ultrasound data with ground
truth (i.e, MB positions) are necessary. It is extremely diffi-
cult to acquire true MB positions in measured data, especially
when there are overlapping PSFs. Therefore, training and test
data were simulated using Field II pro [20–22]. The parame-



TX #1

TX #11
D

en
se

U
p
sc

al
e 

x4

D
ee

p
u
n
fo

ld
ed

n
et

w
or

k 
[1

6
, 

1
8

]

Estimated
MB localization

M
 x

 N
 x

 1
1

M
 x

 N
 

4
M

 x
 4

N
 

4
M

 x
 4

N
 

beamforming compounding MB localizationDelayed
channel data

M
 x

 N
 x

 C
 x

 1
1

(a)

Beamformed 
image

Sum
M x N

Apodization
values

Delayed
channel data

co
n
v

M x N x C M x N x C

ABLE [19]

(b)

Fig. 1. A schematic overview of the proposed network. (a) shows the whole pipeline and (b) shows the beamforming process
for one transmit event. The proposed network takes delayed RF channel data as input and performs beamforming. Here, optimal
apodization weights for the downstream task (i.e., MB localization) are learned by ABLE [19]. After that, beamformed signals
from each transmit are compounded using a dense layer, and MBs are localized using deep unfolded ULM [16,18] in the image
beamformed and compounded by the network. The red text represents data size.

ters for the simulation are presented in Table 1. For one im-
age frame, ultrasound scatterers were randomly placed in the
region of interest and eleven plane waves steered at differ-
ent angles were transmitted. Simulated RF channel data were
then delayed (time-of-flight corrected) on a λ/4 grid but not
summed. The resulting data size for one image frame (eleven
transmit events) was M × N × C × 11, where M and N are
the numbers of image points in the axial and lateral directions
and C is the number of transducer elements. A total of 768
frames were generated for training.

Table 1. Field II simulation parameters
Parameter Value

Transducer TX frequency 6.9MHz
# of TX pulse cycle 1
Pitch 0.30mm
Element height 5.00mm
Element width 0.27mm
Number of elements 128

Imaging Wave type Plane
Steering angles 2 · i◦, i ∈ {−5, . . . , 5}
# of elements in TX 128
Apodization in TX Hann window
Apodization in RX Hann window

Environment Speed of sound 1480m/s
Field II sampling frequency 180MHz

2.2. Network Architecture

The proposed neural network was constructed by combining
ABLE [19] and deep unfolded ULM [16]. An overview of the
framework is illustrated in Fig. 1a. The network takes delayed
RF channel data as input and performs beamforming that is
optimized for the downstream task (i.e., MB localization).

Specifically, to that end, the beamforming part of the network
actively adapts apodization weights. After that, signals from
each transmit event are compounded. Lastly, MBs are local-
ized in the image that is beamformed and compounded by the
network.

The beamforming for one transmit event is illustrated in
Fig. 1b, where ABLE calculates content-adaptive apodization
weights for MB localization. The detailed network structure
of ABLE can be found in [19]. Here, a 5×5 convolution layer
was additionally used before ABLE to consider neighboring
pixels for apodization by offering a larger receptive field. A
distinct ABLE network was defined for each transmit event
(i.e., eleven ABLE networks). The beamformed signals from
each transmit are compounded through a dense layer, which
effectively learns a weighted summation. A compounded ul-
trasound image can be obtained after this dense layer, whose
size is M× N.

MB positions were represented in a λ/16 grid for more
precise localization, however, the beamforming was per-
formed in a λ/4 grid. Therefore, the beamformed images
were upscaled by a factor of 4 using the nearest neighbor
interpolation, and deep unfolded ULM localized MBs on
the upscaled images. Deep unfolded ULM is a model-based
neural network [23] that solves ULM as a sparse coding
problem [24], which can be expressed as

y = Ax+ n, (1)

where y is the MB ultrasound image, A is its shifted versions
of the PSF, x is the MB positions, and n is noise. The MB
positions x can be estimated by solving the following opti-
mization problem with the `1-penalty:

x̂ = argmin
x
‖y −Ax‖22 + λ‖x‖1, (2)

where λ is the regularization coefficient.
Proximal gradient methods can be used to solve the prob-

lem (2). But, such methods may require many iterations and



(a) (b)

Fig. 2. A comparison of beamformed and compounded RF
images by (a) delay-and-sum with a dynamic apodization
where F# is 0.5 and (b) ABLE trained jointly with deep un-
folded ULM.

are highly sensitive to hyper-parameters (e.g., the step size,
the regularization coefficient, and the PSF model). Deep un-
folded ULM instead uses Learned ISTA (LISTA) [25] to solve
the optimization problem, which is a K-layer neural network
built by unfolding the iteration part. The hyper-parameters in
proximal gradient methods are embedded in the network so
that they can be learned from data during training. Therefore,
deep unfolded ULM can achieve more robust MB localization
by learning diverse PSF models and better generalization with
few parameters thanks to its model-based approach [26]. Fur-
ther details on deep unfolded ULM can be found in [16, 18].
In this work, a 10-layer network was used, which consisted of
9× 9 convolution layers.

The training was performed by minimizing the following
loss function with the ADAM [27] optimizer,

L (x,y; θ, σ) = 1

n

n∑

i=1

‖G (yi;σ)− f (xi; θ)‖2F , (3)

where xi and yi are the i-th delayed RF channel data and MB
positions, n is the number of samples, G is the 2-D Gaus-
sian filtering with a standard deviation of σ, f ( · ; θ) is the
neural network function with learning parameters θ, and ‖·‖F
is the Frobenius norm. Here, smoothing was applied to gain
training stability by providing larger gradients. The standard
deviation was chosen to be 1 pixel through cross-validation.

3. RESULTS

Conceptually, the proposed network is composed of beam-
forming and MB localization, although a mapping from de-
layed RF data to MB positions is learned in an end-to-end
fashion. An image, beamformed by the proposed network,
can be obtained by taking the intermediate layer output. One
example is shown in Fig. 2 with a delay-and-sum beamformed
image with a dynamic apodization where F# is 0.5. The net-
work beamformed image resulted in sharper peaks at MB po-
sitions while producing noise in the other region, which can
easily be handled by deep unfolded ULM.

(a) (b)

(c) (d)

Fig. 3. Comparison of the methods on test sets simulated by
placing scatterers randomly at different MB densities where
(a) is precision, (b) is recall, and (c) is the median of localiza-
tion error.
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Fig. 4. Comparison of the methods on the simulation of a pair
of parallel tubes. (a) - (d) are the results of tubes separated by
λ/2 and (e) - (h) are the results of tubes separated by λ/4,
where (a), (e) are ULM images by centroid detection, (b), (f)
are ULM images by deep unfolded ULM, (c), (g) are ULM
images by the proposed method, and (d), (h) are the intensity
profiles along the lateral direction.



Table 2. Parallel tube simulation results

Method λ/2 λ/4

precision recall precision recall

Centroid detection 0.60 0.29 0.68 0.30
Deep unfolded ULM 0.72 0.53 0.83 0.52

Proposed network 0.80 0.71 0.80 0.66

Precision, recall, localization error median, and detected
MB density were calculated on test data at different MB den-
sities, which is defined as

precision =
TP

TP + FP
, recall =

TP

TP + FN
,

Detected MB density = recall×MB density,
(4)

where TP is the number of true positive (true detection), FP
is the number of false positive (false detection), and FN is
the number of false negative (missed target). The localiza-
tion performance degraded as the MB density increased for
all methods, as shown in Fig. 3 since more overlapping PSFs
started to appear. The performance drop of centroid detection
was more drastic because centroid detection cannot handle
overlapping PSFs. Precision and localization error were com-
parable for deep unfolded ULM and the proposed method.
However, the sharper peaks allowed for the proposed network
to reconstruct larger numbers of MBs, especially at high MB
densities than deep unfolded ULM without sacrificing preci-
sion and localization error.

More realistic experiments were performed by simulating
1024 consecutive frames using scatterers flowing in two pairs
of parallel tubes separated by λ/2 and λ/4. The ULM im-
ages and their MB intensity profiles along the lateral direction
are shown in Fig. 4, and precision and recall are presented
in Table 2. The limitation of centroid detection at high MB
densities was explicitly shown from not only low precision
and recall but also high MB intensities in the middle of the
tubes, where MBs should not be detected. The model-based
approach allowed deep unfolded ULM and the proposed net-
work to be well generalized to the parallel tube simulation
data that came from a different data distribution than the train-
ing data (i.e., randomly placed scatterer data) [18,23,26]. The
proposed network again showed better recall than deep un-
folded ULM.

4. CONCLUSION

A model-based neural network that can localize high-concen-
trations of MBs for ULM is proposed. The network is con-
structed by incorporating ABLE into deep unfolded ULM. By
doing so, adaptive apodization weights that are optimal for

deep unfolded ULM to locate MBs can be learned from data.
The neural network beamforming resulted in a sharper image
than delay-and-sum beamforming, as shown in Fig. 2. The
proposed network detected more MBs than deep unfolded
ULM while keeping similar localization accuracy by locating
MBs in the sharper image. The proposed network can pos-
sibly be used to reduce the data acquisition time of ULM by
localizing the more MBs precisely using high-concentrations
of MBs.
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