

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 01, 2024

Security Protocols as Choreographies

Bruni, Alessandro; Carbone, Marco; Giustolisi, Rosario; Mödersheim, Sebastian Alexander; Schürmann,
Carsten

Published in:
Protocols, Strands, and Logic

Link to article, DOI:
10.1007/978-3-030-91631-2_5

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bruni, A., Carbone, M., Giustolisi, R., Mödersheim, S. A., & Schürmann, C. (2021). Security Protocols as
Choreographies. In D. Dougherty, J. Meseguer, S. A. Mödersheim, & P. Rowe (Eds.), Protocols, Strands, and
Logic : Essays Dedicated to Joshua Guttman on the Occasion of his 66.66th Birthday (pp. 98-111). Springer.
https://doi.org/10.1007/978-3-030-91631-2_5

https://doi.org/10.1007/978-3-030-91631-2_5
https://orbit.dtu.dk/en/publications/13355403-b681-442d-9e5e-d2239d8a164e
https://doi.org/10.1007/978-3-030-91631-2_5

Security Protocols as Choreographies

Alessandro Bruni1, Marco Carbone1(B), Rosario Giustolisi1,
Sebastian Mödersheim2, and Carsten Schürmann1

1 IT University of Copenhagen, 2300 Copenhagen S, Denmark
{brun,carbonem,rosg,carsten}@itu.dk
2 DTU Compute, 2800 Lyngby, Denmark

samo@dtu.dk

Abstract. A choreography gives a description of how endpoints in a
concurrent systems should exchange messages during its execution. In
this paper, we informally introduce a choreographic language for describ-
ing security protocols and a property language for expressing non-trivial
security properties of such protocols. We motivate this work using the
envelope protocol [2] as an example, which ensures auditable transfers
by means of a TPM, that guarantees that the issuer of a message always
learns whether such message has been opened or not. We then take an
implementation of the TPM formulated as an API and discuss how such
implementation and the usage of the TPM in the protocol can be related.
Finally, we illustrate how the protocol and property descriptions can be
translated into multiset rewrite rules and metric first order logic respec-
tively, in order to check if auditable transfer holds.

Keywords: Security protocols · Choreography · Verification

1 Introduction

Choreographic programming [13,14,34] is a programming paradigm for concur-
rent systems that focuses on the global flow of interactions that communicating
peers are supposed to follow during execution rather than their local sequence
of send and receive operations. Choreographies have been studied extensively in
the context of concurrency theory and programming languages, but they have
only been sporadically considered for modeling security protocols [6,11,12]. This
is quite surprising, because Alice-Bob notations, which are prevalently used in
security theory [3,10,27,30], are closely related to choreographies that describe
the communication structure of entire systems. In fact, extensions of the Alice-
Bob notation with more features such as long-term state or subprotocols [7] can
be found in the literature.

In this paper, we celebrate Joshua Guttmann by proposing a choreography
language extended with term algebras and equational theories for modelling var-
ious cryptographic primitives used in security protocols, for example, encryption
and decryption, signatures and verifications, etc. The main idea is that security

c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 98–111, 2021.
https://doi.org/10.1007/978-3-030-91631-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_5

Security Protocols as Choreographies 99

protocols can be written in such language and then the minimum local behav-
ior of each participant can be automatically generated from the choreography
through an operation called endpoint projection. Note that a choreography only
provides the local behavior of honest participants (while the intruder may not
stick to the protocol and is rather defined, for instance, by a Dolev-Yao-style
model). Generating the endpoint projection requires an analysis of the honest
agents knowledge, and how they can compose and decompose the messages that
they send and receive [3,30]. Since this problem is well-understood, here we focus
on those aspects of choreographic languages that distinguish them from tradi-
tional Alice-and-Bob narrations. The (honest) local behaviour generated from
a choreography specifying a protocol can then be used for two purposes. First,
it can be used as a local specification for verifying that a given implementation
is compliant with a given API (similarly to what is done for multiparty session
types [23]), e.g., in the TPM envelope example reported in this article, where
we check that the usage of the TPM in the protocol description is compati-
ble with the TPM API. Second, it allows us to replace the local projection of
API-like participants with their API implementations, and use them along with
the local projections of the remaining honest agents as the input for a protocol
analyser, where we can verify some security properties. A key feature of our
approach is that such properties can be specified at the choreographic level and
then automatically translated, in a semantic preserving way, into the language
of the protocol analyser automatically, via the endpoint projection.

This paper is not a theory paper in that it does not provide a formal develop-
ment of the translation of choreographies. It should be read as a position paper
that elaborates the idea of choreographies applied to security protocols and their
endpoint projections by the means of an example, namely the envelope protocol,
first proposed by Ables and Ryan [2] and analyzed by Delaune et al. [17]. Joshua
Guttman and colleagues [22] proposed an extension to the CPSA tool [18] to
protocols with state, contributing to the first verification of the envelope pro-
tocol with unbounded reboots, while also introducing a modular approach that
faithfully represents the interface offered by the trusted third party used in the
protocol.

The envelope protocol uses the Trusted Platform Module (TPM) as a trusted
party to guarantee a security property that we have dubbed auditable transfer :
Alice wants to share a message with Bob such that Alice will be able to verify
if Bob has opened the message or not. The TPM is used to securely store the
state of this transfer.

In this paper, we give a formulation of the auditable transfer protocol as a
choreography in Sect. 2, describe the result of the endpoint projection including
the property in Sect. 3, and feed the result into Tarmarin to verify the auditable
transfer property in Sect. 4. Our main goal with this notation is to allow for a
simple, clear and yet very expressive specification language. We revisit related
work in Sect. 5 and assess results and outline future work in Sect. 6.

100 A. Bruni et al.

2 The Envelope Protocol and Its Choreographic
Description

The envelope protocol aims at being the digital version of a sealed physical
envelope. A sealed envelope allows to achieve auditable transfer: the recipient
can either obtain the content inside the envelope or prove that they have not
broken the seal and thus obtained the content, with no intervention required from
the sender. In this paper, we use the classic example of the envelope protocol:
Alice would like her parents to know where she is going out for the night only
in case of necessity, so she writes this information in a letter and puts it into a
sealed envelope. Alice does not necessarily trust her parents, who may behave
adversarially and hence may like to know where Alice is going out without her
noticing that they learned this information. The sealed envelope protects Alice
in this case, as learning the information requires breaking the seal, which Alice
would notice upon her comeback. Its digital counterpart cannot be implemented
with cryptography alone, as revealing the content of a message usually requires
obtaining the key or solving an interactive challenge.

The envelope protocol relies on a trusted third party, the TPM,
which provides an interface to create a key that is concealed inside the
trusted computing module, and offers functions for encryption and decryp-
tion which are bound to the internal state of the TPM. The internal
state of a TPM is made of 24 Platform Configuration Registers (PCRs),
which essentially implement a hash chain: the TPM allows to reset one
of these registers to an initial known value (with the Boot command) and
to extend the chain with a new value (with the Extend, n command).
For simplicity we assume only one register, which is also what the envelope
protocol requires, hence all the commands omit the first parameter. The three
other commands that the TPM implements that are used by the envelope proto-
col are the following: the Create, s command that creates a new public-private
key bundle and releases the public key (the corresponding private key is retained
by the TPM and can only be used through the TPM interface when the pcr is in
state s); the Quote, x command that binds the message x to the current value of
the pcr, and the Decrypt command that takes a ciphertext and a key bundle and
returns the decryption only if the state of the key bundle matches the current
value of the pcr. In Sect. 3.2, we formalise the TPM interface and show that the
envelope protocol respects this interface.

The envelope protocol uses the TPM as follows: Alice first resets the TPM
to its initial pcr state 1 and then issues the Extend command with a fresh secret
nonce n, so the TPM is now in state hash(n,1). Now Alice asks the TPM to
create a public key k for the state hash(obtain, hash(n, 1)), i.e., the TPM will
only decrypt messages using inv(k), when the TPM is in that state. The TPM
can be brought into that state by performing the Extend command with value
obtain, but afterwards it is impossible to bring it back to state hash(n,1) unless
one knows the nonce n. Alice now encrypts her message v with k and sends it to
her parent. The parent now has two options: they can either extend the PCR to
the state hash(refuse, hash(n, 1)) and obtain a proof that they refused to open

Security Protocols as Choreographies 101

1 Roles: Alice , TPM[Honest], Parent

2 Knowledge : tpmk

3

4 Protocol

5 Alice → TPM: Boot

6 TPM: pcr := ’1’

7 TPM → Alice: Booted

8 Alice: new n, new esk

9 Alice → TPM: Session , tpmk , aenc(esk , tpmk)

10 TPM: new sid

11 TPM → Alice: sid

12 Alice → TPM: senc ((Extend , n, sid), esk)

13 TPM: pcr := hash(n, pcr)

14 TPM → Alice: Extended

15 Alice → TPM: Create , hash(’obt ’, pcr)

16 TPM: new k

17 TPM → Alice: sign ((Created , k, hash(’obt ’, pcr)), inv(tpmk)

)

18 Alice: new v

19 Alice → Parent: Envelope , enc(v, k)

20 Parent: new esk

21 Parent → TPM: Session , aenc(esk , tpmk)

22 TPM: new sid

23 TPM → Parent: sid

24 Parent → TPM: {

25 senc ((Extend , ’ref ’, sid), esk):

26 TPM: pcr := hash(’ref ’, pcr)

27 TPM → Parent: Extended

28 Parent → TPM: Quote , enc(v, k)

29 TPM → Parent: sign ((Quoted , pcr , enc(v, k)), inv(tpmk))

30 event secret(v)

31 +

32 senc ((Extend , ’obt ’, sid), esk):

33 TPM: pcr := hash(’obt ’, pcr)

34 TPM → Parent: Extended

35 Parent → TPM: Decrypt , enc(v, k), sign ((Created , k, pcr),

inv(tpmk))

36 TPM → Parent: v

37 }

38

39 Objectives

40 Intruder learns v implies not secret(v)

Fig. 1. The envelope protocol as a chreography

the letter, or they can extend the PCR to the state hash(obtain, hash(n, 1))

and use the TPM to decrypt Alice’s message.
We now give a precise specification of the envelope protocol as a choreogra-

phy, which is depicted in Fig. 1. A choreography consist of four sections: Roles,
Knowledge, Protocol, and Objectives. The roles and initial knowledge declared

102 A. Bruni et al.

are standard. More interesting is the specification of the protocol. The TPM
offers different services, such as Boot, Extend, Create, Quote, Decrypt, or Envelope,
which are followed by their respective parameters. Upon completion, the TMP
signals the caller that a particular service has terminated, again using messages,
such as Booted, Extended, Created, Quoted, or Decrypted. We use M to denote
messages.

Choreographies also support state. In our example the state is denoted by pcr,
the internal state of the TPM. The expression algebra that we use, includes oper-
ations such as bit string concatenation, denoted by a comma, hashing, denoted
by hash, and encryption, denoted by enc. Dereferencing pcr is a silient operation.
Expressions are denoted by E.

The language supports two forms of command, generically denoted by C:
a command to create fresh nonces written as new, and another command for
assignment, denoted by :=. The scope of nonces extends to the end of the protocol
specification, but a priori, only the principal who creates the nonce knows it.
Let A and B be two different roles. Protocols P,Q are defined by a sequence of
operations, in Alice Bob notation, message transfer of message M as A → B : M ,
internal execution of command C as A : C, and choice A → B : {P + Q}.

As part of a formal semantics in the style of [3,11,30], we rule out as not
executable (or not well-formed) those specifications that require participants to
produce messages that they actually cannot produce (without breaking cryptog-
raphy). This, however, requires a considerable amount of formal machinery that
we do not want to introduce in this more conceptual paper.

3 Projection and Refinement

In the previous section, we have shown how to use a choreographic language
for specifying the envelope protocol. Besides proving the correctness of such a
protocol (which we will do in the next section), we show how we can use a type-
like approach for checking that an implementation of (some of) the participants
is compliant with the behavioural specification given by the protocol. In order
to do so, we proceed by two steps. First, we define the notion of projection, a
well-studied concept in the theory of choreographies.

3.1 Projection

The projection of a choreography with respect to a particular endpoint is a
specification of how such endpoint has to behave in the protocol. In a nutshell,
given the choreography A → B : M1;B → A : M2 for example, the projection
with respect to A is send M1 ; receive M2, while the projection with respect
to B is receive M1; send M2, were send and receive are standard endpoint
operations, i.e. commands. However, in general just literally taking the messages
from the choreography for the endpoint actions will not be correct, e.g., if M1

is an encrypted message that B cannot decrypt, then it must be replaced by a
variable as first observed by Lowe [27]. This question is in general also related

Security Protocols as Choreographies 103

to the algebraic properties of cryptographic operators that we consider, e.g., the
properties of exponentiation in Diffie-Hellman. In general such a formal seman-
tics can be given in the style of [3]. The endpoint specification is useful, because
we can use it for checking that, e.g., a given implementation of A follows the
specification given by the original choreography.

In the envelope protocol, the behaviour of Alice according to the choreo-
graphic specification of the envelope protocol consists of:

1 Role Alice

2 send Boot

3 new n

4 send Extend(n)

5 receive Extended

6 send Create(hash(’obt ’, pcr))

7 receive Created(k, hash(’obt ’, pcr))

8 new v

9 send Envelope(enc(v, k))

The projection of Alice corresponds to her behaviour in the choreography.
Above, new n creates a fresh nonce n and works as a binder in the subsequent
code. On the other hand, send Extend(n) sends a message which selects option
Extend and also communicates the value n, which in this case is bound by the
new n in the second line. When receiving a message, the language uses struc-
tured terms with constants and variables, implying standard pattern matching.
Similarly, we can project the behaviour of the TPM:

1 Role TPM

2 receive Boot

3 pcr := ’1’

4 receive Extend(n)

5 send Extended

6 receive Create(hash(’obt ’, pcr))

7 new k

8 send Created(k, hash(’obt ’, pcr))

9 receive {

10 Extend(’ref ’):

11 pcr := hash(’ref ’, pcr)

12 send Extended

13 receive Quote(enc(v, k))

14 send Quoted(pcr , enc(v, k))

15 +

16 Extend(’obt ’):

17 pcr := hash(’obt ’, pcr)

18 send Extended

19 receive Decrypt(enc(v, k)), Created(k, pcr)

20 send Decrypted(v)

21 }

104 A. Bruni et al.

In the case of TPM, we note that the receive operation can also handle choice.
Options in the choice are separated by the keyword + as in standard choreogra-
phies which corresponds to the standard external choice from the pi-calculus [29].
As mentioned in the previous sections, in order to ensure consistency of these
specifications, each branch must have a unique label. In order to achieve this,
while retain flexibility, we use pattern matching to distinguish branches with the
same label. E.g., above, although the label Extend is identical in both branches,
each branch can be identified by the constant that the branch is expecting to
receive. Finally, this is the projection of the parent’s expected behaviour:

1 Role Parent

2 receive Envelope(enc(v, k))

3 send {

4 Extend(’ref ’):

5 receive Extended

6 send Quote(enc(v, k))

7 receive Quoted(pcr , enc(v, k)) (1)

8 +

9 Extend(’obt ’):

10 receive Extended

11 send Decrypt(enc(v, k)), Created(k, pcr)

12 receive Decrypted(v)

13 }

Dually to the external choice provided by the TPM, the parent’s projection is
making an internal choice: it either sends the ref value or the obt value.

3.2 Refinement

In the theory of choreographies, choreographic specifications are projected into
endpoints behaviour. Such cut of the global behaviour can often be used by a
type system to do a local type checking of code. In here, our choreographies are
richer in the sense that contain information about values that the protocol being
described should handle. Hence, the specification and a possible implementation
are very close. In this subsection, we illustrate how a notion of refinement could
be used for verifying that an implementation is compliant to the protocol spec-
ification. In order to do so, we focus on the TPM behaviour. Obviously, the
projection from the choreography given above does not have to be the exact
way the TPM should be implemented. In general, a TPM is a piece of hardware
that can provide the TPM service to system components. Therefore, it is usually
implemented as a simple API. The one below is a possible API implementation:

1 TPM(pcr) = {

2 receive Boot: {

3 send Booted;

4 TPM(-1)

5 } +

Security Protocols as Choreographies 105

6 receive Create , s: {

7 new k

8 send sign((Created , k, s), inv(tpmk))

9 TPM(pcr)

10 } +

11 receive Quote , x: {

12 send sign((Quoted , pcr , x), inv(tpmk))

13 TPM(pcr)

14 } +

15 receive Session , tpmk , aenc(esk , tpmk): {

16 new sid;

17 send sid;

18 receive senc((Extend , x, sid), tpmk);

19 send Extended , hash(x,pcr);

20 TPM(hash(x, pcr))

21 } +

22 receive Decrypt , aenc(c, pk(k)), Created(k, pcr ’)): {

23 if (pcr = pcr ’) then

24 send dec(c, k)

25 TPM(pcr)

26 }

27 }

Unlike the projection from the choreography, the behaviour of the TPM API is
just a sum of all the possible methods that can be invoked. Note that we also
enhance the local behaviour specification with recursion. We conjecture that the
projection of the TPM from the choreography and the API above can be formally
related. Our idea is to look at the set of possible traces that the API can perform
and compare to the traces of the projection (up-to recursive behaviour). Clearly,
if a trace is in the projection of the choreography then it is for sure a trace of the
API. This shows that the API implementation is compliant with the envelope
protocol.

4 Verification in Tamarin

Our mechanised analysis is carried out in Tamarin [28], an interactive proto-
col verifier that can prove reachability and equivalence-based properties in the
symbolic model. It has an expressive language based on multiset rewriting rules.

In Tamarin, terms are variables and functions ranging over terms; facts are
predicates that store state information and are parameterized by terms; facts
may be linear (i.e. can be consumed only once) or persistent (i.e. can be con-
sumed arbitrarily often by rules); rules are essentially defined as transitions from
one multiset of facts to another. The Tamarin multiset rewriting rules define a
labeled transition system. The labels are used to reason about the behaviour of
a protocol. Thus, to analyse the envelope protocol in Tamarin, we need to anno-
tate our rules with appropriate labels that will serve to the specification of our

106 A. Bruni et al.

security properties. Tamarin encodes a Dolev-Yao [19] adversary that controls
the network.

Conventionally, cryptographic primitives can be modelled in Tamarin by
means of equational theories. An equational theory E describes the equations
that hold on terms built from the signature. Terms are related by an equiva-
lence relation = induced by E. For instance, the equation dec(enc(m, k), k) = m
models a symmetric encryption scheme. The term m is the message, the term k
is the secret key, the term enc models the encryption function, and the term dec
models the decryption function, namely a deconstructor for the function enc.

Trace properties can be modelled in Tamarin via metric first-order logic.
Predicates are labels and properties can be expressed using quantification over
time. For example, the following lemma models a non-injective agreeement on
the message x, meaning that for all got message x, there exists at least an event
in which the message x has been previously sent.

(Non-injective agreement) ∀x #i. Get(x)@i =⇒ ∃ #j. Sent(x)@j ∧ j < i

The endpoint projection of the API of the TPM have immediate specifica-
tions into Tamarin rules: labels in a choreography can be translated to Tamarin’s
facts; send and receive can be mapped into the Tamarin’s Out and In respec-
tively; conditionals in choreography can be captured using pattern matching in
Tamarin. For example, the rule below captures the Decrypt service.

1 rule Decrypt:

2 let c = enc(v,∼k) in

3 [In(c), In(Created(∼k, pcr)), TPM(pcr)]
4 −[Decrypt(v), TPM(pcr)]→
5 [Out(v), TPM(pcr)]

Here, the TPM outputs the value v, which is encrypted in c, if and only if the
value of pcr in the TPM is equal to the value of pcr in Created.

Similarly, we can model Alice behaviour with two rules, one to capture Alice
sending the commands Boot, Extend, and Create (Alice BEC) and one to cap-
ture Alice sending the envelope (Alice Env).

1 rule Alice_BEC:

2 [Fr(∼n)]
3 −[Alice_BEC(∼n)]→
4 [Out(Boot()), Out(Extend(∼n)), Out(Create(hash (’obt ’,

hash (∼n, ’nil ’)))),

5 Alice1(∼n)]
6

7 rule Alice_Env:

8 [Alice1(∼n), Fr(∼v), In(Created(∼k, hash (’obt ’, hash (∼n,
’nil ’))))]

9 −[Alice_Env(∼n, ∼v, ∼k)]→
10 [Out(enc(∼v, ∼k))]

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

Security Protocols as Choreographies 107

We do not need to model the role the parents since they act as an adversary,
thus the role is controlled by the Dolev-Yao attacker encoded in Tamarin.

The specification of auditable transfer can be modelled in Tamarin as

(Auditable transfer) ∀n v k #i #j. Alice BEC(n)@i ∧ Alice Env(n, v, k)@j
=⇒ ¬(∃ #l. !KU(v)@l) ∨ ¬(∃ #l.

!KU(Quoted(h(’ref ’, h(n, ’nil’)), enc(v, k)))@l)

The fact !KU represents the knowledge of the adversary, which in our case
is the parents. Thus, the property says that whenever Alice has initialised the
TPM and sent the envelope, the adversary cannot both open the envelope and
learn the content and obtain a proof of refusal of opening the envelope.

Tamarin cannot prove automatically auditable transfer. However, we resort
to the interactive proof theory feature of Tamarin to find the proof. The proof
and the full Tamarin code modelling the envelope protocol are available in [1].

5 Related Work

The idea of using choreographic languages for describing security protocol is not
new: in fact, Alice and Bob notations are the predominant informal notation
used by protocol designers.

The first work on a formal Alice and Bob notation with automated translation
to the process algebra CSP is the Casper compiler by Lowe [27]. Mödersheim [30]
later proposed an Alice and Bob-like language with a formal semantics and
support for algebraic properties a-la Diffie-Hellman, that is integrated into the
prover OFMC [5]. Several extension to this line of work have been made, for
example, to support arbitrary algebraic reasoning [3] and secure and pseudon-
imous channels [33] forwarding channels [10]. Alice and Bob-style languages have
a level of clarity and explainability that other models lack, however they only
support linear protocols, which makes it impossible to represent API-like proto-
cols such as the one analyzed in this paper, which typically contain branching
and state that persists across sessions.

Stateful protocol verification is another relevant line of work. The first tool
to support stateful verification was AIF [31], which abstracts values according to
their membership class. This abstraction techniques was also applied to process
algebras [9] and extended to countable families of sets [32] to support unbounded
principals. The TPM envelope protocol that we use here as an example motivated
the work on StatVerif [4], however the first analysis of the protocol was done with
a custom encoding in Horn clauses [17]. Joshua and his colleagues also took the
TPM envelope protocol as inspiration to extend the CPSA tool based on strand
spaces to handle stateful protocols [22]. Another tool that supports stateful
protocols is the Tamarin prover [28], which uses multiset rewrite rules to describe
security protocols and we employ here as our target language. Later, support to
stateful protocols was also added into the protocol verifier ProVerif [15].

Carbone and Guttmann [11] proposed a simple choreographic language with
boxes for writing web interactions. Their core idea is that boxes containing infor-
mation that must be exchanged in a network are annotated with the sender and

108 A. Bruni et al.

the receiver, respectively the creator of box and the one who can open it. Then,
an endpoint projection is provided which generates local behaviour expressed in
the Strand Spaces formalism. The translation introduces cryptographic enhance-
ments to the boxes in order to ensure authentication and secrecy. Similarly,
Bhargavan et al. [6] use a choreographic language inspired by multiparty session
types for specifying web services. Similarly to Carbone and Guttmann, their
tool adds some cryptographies to the messages specified in the choreography.
Both research contributions differ from our idea in the fact that, unlike us, they
abstract from the details that are necessary for achieving security properties. In
particular, they do not consider expressing security properties at choreographic
level.

The hallmark characteristic of auditable transfer is that it allows a party
to get evidence on whether another party has learnt a secret. This seems an
instantiation of the broader notion of auditability [21,24], which is defined as
the quality of a protocol, which stores a sufficient number of pieces of evidence,
to convince a third party that specific properties are satisfied. Similar proper-
ties are verifiability, which ensures that the failure of a protocol’s goal can be
detectable [16,25] and accountability [8,26], which additionally guarantees that
misbehaving parties can be blamed. An interesting line of work is to study chore-
ography for the modelling of such broader properties. For example, verifiability,
accountability, and dispute resolution properties can all be defined by identifying
the tests that decide whether a protocol’s goal fails, and then check that each
of the tests meets soundness, completeness, and sufficiency conditions [8,20,26].
Choreographies can be the language that enables the analyst to formulate tests
and conditions, which can be then checked by a model checker of choice.

6 Conclusion

In this work we have given a formulation of the auditable transfer protocol as
a choreography. We have shown how the role of the TPM can be defined with
a local choreography, and that the auditable transfer protocol is shown to be
a refinement of the TPM API. The choreographic constructs of branching and
recursion useful language constructions to express the core properties of stateful,
API-like protocols like the one we considered in this paper. It is then possible
to translate to other intermediate languages for verification, like we have shown
in our example for the multiset rewrite rules of Tamarin.

References

1. Tamarin code (2021). https://www.dropbox.com/sh/lonxu6vmj3iilmu/
AAAErB3ATSNg59MFGxBcp74Ha?dl=0

2. Ables, K., Ryan, M.D.: Escrowed data and the digital envelope. In: Acquisti, A.,
Smith, S.W., Sadeghi, A.-R. (eds.) Trust 2010. LNCS, vol. 6101, pp. 246–256.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13869-0 16

https://www.dropbox.com/sh/lonxu6vmj3iilmu/AAAErB3ATSNg59MFGxBcp74Ha?dl=0
https://www.dropbox.com/sh/lonxu6vmj3iilmu/AAAErB3ATSNg59MFGxBcp74Ha?dl=0
https://doi.org/10.1007/978-3-642-13869-0_16

Security Protocols as Choreographies 109

3. Almousa, O., Mödersheim, S., Viganò, L.: Alice and bob: reconciling formal models
and implementation. In: Bodei, C., Ferrari, G.-L., Priami, C. (eds.) Programming
Languages with Applications to Biology and Security. LNCS, vol. 9465, pp. 66–85.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25527-9 7

4. Arapinis, M., Phillips, J., Ritter, E., Ryan, M.D.: Statverif: verification of stateful
processes. J. Comput. Secur. 22(5), 743–821 (2014). https://doi.org/10.3233/JCS-
140501

5. Basin, D.A., Mödersheim, S., Viganò, L.: OFMC: a symbolic model checker for
security protocols. Int. J. Inf. Sec. 4(3), 181–208 (2005). https://doi.org/10.1007/
s10207-004-0055-7

6. Bhargavan, K., Corin, R., Deniélou, P., Fournet, C., Leifer, J.J.: Cryptographic
protocol synthesis and verification for multiparty sessions. In: Proceedings of the
22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port Jefferson,
New York, USA, 8–10 July 2009, pp. 124–140. IEEE Computer Society (2009).
https://doi.org/10.1109/CSF.2009.26

7. Brøndum, C.: Languages and Translators for Stateful Protocols. Tech. rep., DTU,
MSc. Thesis (2020). https://findit.dtu.dk/en/catalog/2525864377

8. Bruni, A., Giustolisi, R., Schuermann, C.: Automated analysis of accountability.
In: Nguyen, P., Zhou, J. (eds.) Information Security Conference, vol. 10599, pp.
417–434. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-69659-
1 23

9. Bruni, A., Mödersheim, S., Nielson, F., Nielson, H.R.: Set-pi: Set membership p-
calculus. In: Fournet, C., Hicks, M.W., Viganò, L. (eds.) IEEE 28th Computer
Security Foundations Symposium, CSF 2015, Verona, Italy, 13–17 July 2015, pp.
185–198. IEEE Computer Society (2015). https://doi.org/10.1109/CSF.2015.20

10. Bugliesi, M., Calzavara, S., Mödersheim, S., Modesti, P.: Security protocol speci-
fication and verification with anbx. J. Inf. Secur. Appl. 30, 46–63 (2016). https://
doi.org/10.1016/j.jisa.2016.05.004

11. Carbone, M., Guttman, J.D.: Choreographies with secure boxes and compromised
principals. In: Bonchi, F., Grohmann, D., Spoletini, P., Tuosto, E. (eds.) Proceed-
ings 2nd Interaction and Concurrency Experience: Structured Interactions, ICE
2009, Bologna, Italy, 31st August 2009. EPTCS, vol. 12, pp. 1–15 (2009). https://
doi.org/10.4204/EPTCS.12.1

12. Carbone, M., Guttman, J.D.: Execution models for choreographies and cryptopro-
tocols. In: Beresford, A.R., Gay, S.J. (eds.) Proceedings Second International Work-
shop on Programming Language Approaches to Concurrency and Communication-
cEntric Software, PLACES 2009, New York, UK, 22nd March 2009. EPTCS, vol.
17, pp. 31–41 (2009). https://doi.org/10.4204/EPTCS.17.3

13. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8:1–8:78
(2012). https://doi.org/10.1145/2220365.2220367

14. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Giacobazzi, R., Cousot, R. (eds.) The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’13, Rome, Italy, 23–25 January 2013. pp. 263–274. ACM (2013). https://doi.org/
10.1145/2429069.2429101

15. Cheval, V., Cortier, V., Turuani, M.: A little more conversation, a little less action,
a lot more satisfaction: Global states in proverif. In: 31st IEEE Computer Security
Foundations Symposium, CSF 2018, Oxford, United Kingdom, 9–12 July 2018,
pp. 344–358. IEEE Computer Society (2018). https://doi.org/10.1109/CSF.2018.
00032

https://doi.org/10.1007/978-3-319-25527-9_7
https://doi.org/10.3233/JCS-140501
https://doi.org/10.3233/JCS-140501
https://doi.org/10.1007/s10207-004-0055-7
https://doi.org/10.1007/s10207-004-0055-7
https://doi.org/10.1109/CSF.2009.26
https://findit.dtu.dk/en/catalog/2525864377
https://doi.org/10.1007/978-3-319-69659-1_23
https://doi.org/10.1007/978-3-319-69659-1_23
https://doi.org/10.1109/CSF.2015.20
https://doi.org/10.1016/j.jisa.2016.05.004
https://doi.org/10.1016/j.jisa.2016.05.004
https://doi.org/10.4204/EPTCS.12.1
https://doi.org/10.4204/EPTCS.12.1
https://doi.org/10.4204/EPTCS.17.3
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1109/CSF.2018.00032
https://doi.org/10.1109/CSF.2018.00032

110 A. Bruni et al.

16. Cortier, V., Galindo, D., Küsters, R., Müller, J., Truderung, T.: SoK: verifiability
notions for e-voting protocols. In: IEEE Symposium on Security and Privacy, pp.
779–798 (2016)

17. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal analysis of protocols based
on TPM state registers. In: Proceedings of the 24th IEEE Computer Security
Foundations Symposium, CSF 2011, Cernay-la-Ville, France, 27–29 June, 2011,
pp. 66–80. IEEE Computer Society (2011). https://doi.org/10.1109/CSF.2011.12

18. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic
protocols. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
523–537. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-
1 41

19. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–208 (1983)

20. Giustolisi, R., Bruni, A., et al.: Privacy-preserving dispute resolution in the
improved bingo voting. In: Krimmer, R. (ed.) E-Vote-ID 2020. LNCS, vol. 12455,
pp. 67–83. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60347-2 5

21. Guts, N., Fournet, C., Zappa Nardelli, F.: Reliable evidence: auditability by typing.
In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 168–183.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1 11

22. Guttman, J.D., Liskov, M.D., Ramsdell, J.D., Rowe, P.D.: Formal support for
standardizing protocols with state. In: Chen, L., Matsuo, S. (eds.) SSR 2015. LNCS,
vol. 9497, pp. 246–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27152-1 13

23. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695

24. Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: Towards a theory of accountability
and audit. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp.
152–167. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-
1 10

25. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting proto-
cols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 389–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15497-3 24

26. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: CCS, pp. 526–535. ACM (2010)

27. Lowe, G.: Casper: a compiler for the analysis of security protocols. J. Com-
put. Secur. 6(1–2), 53–84 (1998). http://content.iospress.com/articles/journal-of-
computer-security/jcs106

28. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

29. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes I and II. Inf.
Comput. 100(1), 1–77 (1992)

30. Mödersheim, S.: Algebraic properties in alice and bob notation. In: Proceedings of
the The Forth International Conference on Availability, Reliability and Security,
ARES 2009, 16–19 March 2009, Fukuoka, Japan, pp. 433–440. IEEE Computer
Society (2009). https://doi.org/10.1109/ARES.2009.95

https://doi.org/10.1109/CSF.2011.12
https://doi.org/10.1007/978-3-540-71209-1_41
https://doi.org/10.1007/978-3-540-71209-1_41
https://doi.org/10.1007/978-3-030-60347-2_5
https://doi.org/10.1007/978-3-642-04444-1_11
https://doi.org/10.1007/978-3-319-27152-1_13
https://doi.org/10.1007/978-3-319-27152-1_13
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-642-04444-1_10
https://doi.org/10.1007/978-3-642-04444-1_10
https://doi.org/10.1007/978-3-642-15497-3_24
https://doi.org/10.1007/978-3-642-15497-3_24
http://content.iospress.com/articles/journal-of-computer-security/jcs106
http://content.iospress.com/articles/journal-of-computer-security/jcs106
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1109/ARES.2009.95

Security Protocols as Choreographies 111

31. Mödersheim, S.: Abstraction by set-membership: verifying security protocols and
web services with databases. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V.
(eds.) Proceedings of the 17th ACM Conference on Computer and Communications
Security, CCS 2010, Chicago, Illinois, USA, 4–8 October 2010, pp. 351–360. ACM
(2010). https://doi.org/10.1145/1866307.1866348

32. Mödersheim, S., Bruni, A.: AIF-ω: set-based protocol abstraction with countable
families. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 233–
253. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-0 12

33. Mödersheim, S., Viganò, L.: Secure pseudonymous channels. In: Backes, M., Ning,
P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 337–354. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04444-1 21

34. W3C WS-CDL Working Group: Web services choreography description language
version 1.0 (2004). http://www.w3.org/TR/ws-cdl-10/

https://doi.org/10.1145/1866307.1866348
https://doi.org/10.1007/978-3-662-49635-0_12
https://doi.org/10.1007/978-3-642-04444-1_21
http://www.w3.org/TR/ws-cdl-10/

	Security Protocols as Choreographies
	1 Introduction
	2 The Envelope Protocol and Its Choreographic Description
	3 Projection and Refinement
	3.1 Projection
	3.2 Refinement

	4 Verification in Tamarin
	5 Related Work
	6 Conclusion
	References

