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Abstract

Mechanical metamaterials that achieve ultimate anisotropic stiffness are highly desired in engineer-
ing practice. Particularly, the plate microstructures (PM) that are comprised of 6 sets of flat plates
have been proved to attain any extreme stiffness in theory. In this paper, we solve two remaining
issues for design of optimal PMs. On one hand, we investigate the stiffness optimality of three
PMs that involve fewer than 6 freely-oriented plate sets subjected to any prescribed multi-loadings,
which are typically quasiperiodic. Because they have simpler geometries with fewer plate sets, they
are preferred in practical applications. On the other hand, we identify two optimal periodic plate
lattice structures which are comprised of 7 plate sets, and demonstrate that they are able to attain
near-optimal stiffness (over 97% and 99% of the extreme stiffness in theory) for any multi-loadings
in the low volume fraction limit. In order to ensure a sufficiently large loading space for verification
of the stiffness optimality of these PMs, tens of thousands of random multi-loadings are first used
and further the worst multi-loading that yields the highest stiffness deficiency is systematically
identified for each PM. The numerical results not only illustrate the stiffness optimality of these
PMs, but also provide suggestions on selection of the simplest PMs with the fewest plate sets in
applications.

Keywords: mechanical metamaterial, plate microstructures, extreme stiffness, anisotropic
stiffness, multiple loadings

1. Introduction

Mechanical metamaterials are artificial materials whose effective properties are determined by
their microstructures [1–3]. They provide either superior mechanical properties that are beyond nat-
urally existing materials [4–12], or unusual functionalities [13–16]. Rapid advance of manufacturing
techniques provides fabrication capabilities of mechanical metamaterials with complex geometries,
whose feature sizes can be down to tens of nanometers [17–19]. Hence, mechanical metamaterials
with extreme properties are becoming realizable and attractive.

Long-term efforts have been devoted to design of symmetric elastic microstructures with ultimate
stiffness defined by the Hashin–Shtrikman bounds [20, 21]. Several optimal cubic materials have
been identified, such as three elementary cubic structures (i. e. simple cubic, body-centered cubic

∗Corresponding author: wangyq@dlut.edu.cn

Preprint submitted to Computer Methods in Applied Mechanics and Engineering December 7, 2021



and face-centered cubic) [22], composite sphere assemblages [20], Vigdergauz microstructures [23,
24], and minimal-surface microstructures (like P-surface) [25]. These can attain the extreme bulk
modulus, but cannot attain optimal shear modulus at the same time. A class of lattice structures
was formed by synthesizing two or more elementary cubic structures to attain optimal isotropic
stiffness in the sense that they simultaneously attain the maximum bulk, shear and Young’s moduli
[26–30]. Recently, the authors identified a new family of quasi-periodic microstructures [31] which
use n-fold rotational geometric symmetries to achieve optimal isotropic stiffness. In the case of
6-fold symmetry, the microstructures become periodic and can be represented by parallelepiped
unit cells. It is worth noting that the extreme stiffness in theory can be exactly attained only
by the plate microstructures (PMs), while the truss microstructures suffer from essential stiffness
deficiency. In the case of isotropic stiffness, the truss microstructures reach as little as one third of
the extreme stiffness provided by the PMs in the low volume fraction limit [21, 32].

Anisotropic stiffness-optimal microstructures are more efficient for bearing multi-loadings, how-
ever they are difficult to identify. In single loading cases, orthotropic microstructures involving 3
sets of orthogonal members are optimal when aligning the members with principal stress or strain
directions [33]. Several groups proposed rank-n microstructures to attain the extreme stiffness for
arbitrary multi-loadings [34–36]. These rank-n microstructures are built by a sequential layering of
flat plates at n separated length scales, where no more than n = 3 and n = 6 are needed for 2D and
3D problems, respectively. Remark that in the low volume fraction limit, the rank-n microstruc-
tures possess the same properties as their single-scale counterparts [37]. Therefore, in that case,
the single-scale counterparts with 6 sets of flat plates can attain any extreme stiffness in theory.
Another class of optimal microstructures combines solid domains with rank members [38]. They
were first used to achieve the maximum bulk modulus and almost minimum shear modulus, but
their construction can be extended to any anisotropic case. Recently, four categories of optimal
truss microstructures were identified to attain near-optimal stiffness for arbitrary multi-loadings
[39].

Despite above efforts, two issues are remained. One issue is that compared to the optimal PMs
with 6 plate sets, the PMs that involve fewer plate sets are preferable in engineering practice [40];
however, their stiffness optimality subjected to any multi-loadings has yet to be examined, and
therefore no guideline can be made on how to select the simplest PMs with the fewest plate sets
in applications. The other issue is that since the optimal PMs with free plate sets are typically
quasiperiodic, in the sense that each plate set reappears infinitely but the PMs can never be de-
scribed in a periodic form, they may have limitations in applications. Only in the condition that
the plate sets meet periodic connections, the PMs become periodic, which is usually referred to as
plate lattice structures (PLSs). To the authors’ best knowledge, the optimal PLSs that can attain
any extreme stiffness has yet to be identified.

In this paper, we intend to address these two issues. On one hand, we investigate the stiffness
optimality of three PMs which involve 3 to 5 plate sets that can be freely oriented. On the other
hand, we identify two optimal PLSs which can attain the extreme stiffness for any multi-loadings.
The two PLSs have 7 plate sets, whose plate connections originate from two optimal isotropic
PLSs, which are a combined PLS involving simple and body-centered cubic structures [26, 27] and
a PLS possessing 6-fold symmetry [31]. For prescribed multi-loadings, the plate orientations and
thicknesses of the considered PMs are optimized to achieve the maximum stiffness. The optimization
problems are solved in the low volume fraction limit, in which the intersecting regions of different
plate sets play marginal roles on the effective stiffness. We verify stiffness optimality of these PMs
first by tens of thousands of random multi-loadings, which are generated via various strategies,
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and further by identification of the worst case multi-loadings, which result in the highest stiffness
deficiency. Numerical results demonstrate that, for arbitrary multi-loadings, the three PMs with
free plate sets achieve over 83.5%, 90% and 95% of the extreme stiffness, and the two PLSs attain
near-optimal stiffness with over 97% and 99% of the extreme stiffness. With the obtained optimal
plate orientations, PMs for moderate volume fractions can be directly constructed by proportionally
increasing the plate thicknesses. In that case, the plate intersections would cause local stress
concentrations, but according to the numerical studies from [26, 27, 31], the PMs suffer from
stiffness deficiency of only a few percent for volume fractions up to 50%.

The paper is organized as follows. In section 2, we illustrate configurations of our considered
PMs as well as the parameters to describe their geometries. In section 3, optimization problems are
set up to obtain the extreme stiffness in theory by using the rank-6 microstructures. In section 4,
we study stiffness optimality of our considered PMs with respect to thousands of prescribed random
multi-loadings, and in section 5, the worst multi-loadings that obtain the highest stiffness deficiency
for each PM are systematically identified. A conclusion is made in the final section.

2. Geometries of considered PMs

The considered microstructures are synthesized by n sets of continuously flat plates, and each set
involves infinite equidistant and parallel plates. Typically, these plate sets can be freely oriented,
and thus the PMs are typically quasiperiodic. In the following, the PMs with n free plate sets
are denoted by PM-n. Different from the rank-n microstructures that involve multi-scale members
(Fig. 1a), PM-n are formed by n plate sets at the same single scale (Fig. 1b). The volume fraction
of solid domains in the microstructure is denoted by ρ. Remark that in the low volume fraction
limit, i. e. ρ → 0, the rank-n microstructures and PM-n that have the same plate orientations and
thicknesses possess identical effective stiffness [37]. Hence, PM-6 is able to achieve the optimal
stiffness for arbitrary multi-loadings in case of ρ → 0. To this end, we are more interested in
stiffness optimality of PM-3, PM-4 and PM-5 for any applied multi-loadings, as they have simpler
geometries with fewer plate sets. Here, PM-3 has the smallest number of plate sets necessary to
achieve optimal stiffness for any single-loadings.

In addition, we investigate stiffness optimality of two PLSs involving n = 7 plate sets. Compared
to three above PM-n with free plate sets, the two PLS7s have periodic plate connections, and
thus they can be represented by periodic unit cells (Fig. 1c). Their designs arise from two optimal
isotropic PLSs. One PLS7 is synthesized by 3 sets of simple cubic plates and 4 sets of body-centered
cubic plates [26, 27], denoted by PLS7-SB. The other PLS7 is shaped in a diamond-like prism that
is formed by 1 horizontal plate set and 6 inclined plate sets that meet the 6-fold symmetry [31],
denoted by PLS7-6Fold. Although there are many other optimal isotropic microstructures [27, 31],
these two PLS7s most probably involve the least number of plate sets among all the PLSs that can
achieve the near-optimal isotropic stiffness. Because optimal isotropic stiffness is very special as
the elastic stiffness tensor meets infinite symmetries, we expect that any other extreme anisotropic
stiffness with lower order of material symmetries could be obtained by modifications of these two
PLS7s.

In order to describe geometries of the three PM-n and two PLS7s, different representation
methods are applied (Fig. 1d). The three PM-n are represented by geometric parameters of the
plate sets. In each PM-n, t̃i indicates the proportion of solid domains of the ith plate set among
all the plate sets, meeting

∑
t̃i = 1. In the low volume fraction limit ρ→ 0, the volume fraction of
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solid domains of the ith plate set in the microstructure is obtained by ρt̃i. It is further related to the
plate thickness ti and the distance between two neighboring plates di as ρt̃i = ti/di. Furthermore,
the plate orientations are characterized by normal directions ni, which are stated in terms of two
angles by (Fig. 1d left)

ni = {cos θ2i−1 cos θ2i, cos θ2i−1 sin θ2i, sin θ2i−1}T, (i = 1, 2, ..., n) (1)

For the two PLS7s, their unit cells can be flexibly transformed to parallelepipeds to achieve the
maximum stiffness for prescribed multi-loadings. Two sets of parameters are used to describe shapes
of the unit cells (Fig. 1d right). One set is used to represent three periodic directions, in which the
ith periodic direction is characterized by two angles Θ2i−1 and Θ2i in the same way as Eq. (1). For
three periodic directions, totally six angle parameters are employed. The other set of parameters
determines periodic distances. Since no length scale effect is considered for evaluating the effective
properties, two variables s1 and s2 are used to denote the relative periodic distances along two
periodic directions with respect to the third one. During transformation, the plate connections
are retained. In this sense, the normal direction of each plate set in one PLS7 can be uniquely
determined in terms of Θi and sj.

Several remarks are made. Firstly, the two PLS7s have distinct plate connections in the sense
that with any transformation, one PLS7 cannot be reproduced by the other one. Hence, they
might cover different stiffness spaces and have different stiffness optimality subjected to various
multi-loadings. Secondly, the unit cells can be transformed by any rotations and elongations by
varying Θi and sj, but never by distortions (twisting the cells). Thirdly, in case of ρ→ 0, adjusting
spatial positions of the plate sets but retaining t̃i would not change the effective properties. In this
sense, PM-3 and PM-4 can always be represented by periodic parallelepiped unit cells. However,
PM-5 may never be periodic. Finally, individual plate sets can be removed in the microstructures,
by setting t̃i = 0. This implies that the two PLS7s and PM-5 can reproduce any geometries from
PM-4 and PM-3, and thus they cover larger property spaces. However, because of the implicit
restriction applied on geometries of the two PLS7s, they have different design spaces from PM-5.
Consequently, they might obtain different stiffness optimality with respect to various multi-loadings.

3. Extreme stiffness by rank-6 microstructure

In this study, because our concerned PMs are anisotropic, we use the stress energy to indicate
their stiffness optimality when subjected to prescribed multi-loadings. For stress loadings, the
optimal microstructure that has the highest stiffness is found by solving an optimization problem,
which is stated by

Minimize
χ

J =
Nσ∑
r=1

wrσ
(r) : CH(χ, ρ) : σ(r)

Subject to
6∑

k=1

t̃k = 1

χ ≤ χi ≤ χ

(2)

where J is the weighted stress energy subjected to the prescribed multi-loading that involves Nσ

stress cases, in which each stress case is denoted by σ(r), wr is the weighting factor which is nor-
malized for

∑
wr = 1, χ indicates the design variable vector including various sets of geometric
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Figure 1: Configurations of the considered PMs. (a) Rank-n microstructures including multiscale members,
where grey regions indicate uniform materials in the lower scale level; (b) Our considered PMs formed by
sets of continuously flat plates at the single scale, where the number of plate sets can be varied to have
PM-3, PM-4 and PM-5; (c) Unit cells for two PLS7s that have distinct plate connections; (d) Parameter
descriptions for PMs with free plate sets (left) and PLSs with unit cells (right). Different colors are used
to indicate the plates from various sets.

parameters for different microstructures, with lower and upper bounds denoted by χ and χ, respec-

tively, and CH is the compliance tensor, which is related to the geometric variables χ as well as the
relative volume fraction ρ.

In order to obtain the extreme stiffness in theory, we solve the optimization problem by the
rank-6 microstructures. In that case, the optimal proportional thickness and orientation of each
rank member are determined, and the design variable vector includes χ = {θi, t̃k}, for i = 1, 2, ..., 12
and k = 1, 2, ..., 6 and in the condition of −2π ≤ θi ≤ 2π and 0 ≤ t̃k ≤ 1. The compliance tensor of
the rank-6 microstructures can be analytically calculated based on t̃k, θi and ρ [41–43], where ρ is
manually prescribed. The optimal geometries that attain one extreme stiffness could be non-unique.
In order to identify the optimal microstructures involving the least number of rank members, one
way is to incorporate a penalization term with 2-norm of t̃k into the objective function [37, 39]. Note
that the multiscale members ensure ideal force transfer between various plate sets, hence solving
this optimization yields the theoretical bounds for any 0 < ρ ≤ 1.

This optimization problem includes only 18 geometric variables, and therefore it can be efficiently
solved by gradient-based optimization algorithms. The gradient of the stress energy reads

∂J

∂χ
=

Nσ∑
r=1

wrσ
(r) :

∂CH

∂χ
: σ(r), such that

∂CH

∂χ
= −CH :

∂DH

∂χ
: CH (3)
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where ∂DH/∂χ can be analytically calculated for the rank-6 microstructures. Derivatives of the
linear constraints are one with respect to t̃k and zero with respect to the other variables.

4. Stiffness optimality for prescribed multi-loadings

4.1. Optimization formulations for prescribed multi-loadings

The maximum stiffness for the prescribed multi-loadings by the considered PMs is obtained
by solving the same optimization problem as Eq. (2). Different from the rank-6 microstructures,
we here focus on optimizations in the low volume fraction limit ρ → 0. In that case, stiffness
contribution from the ith plate set is linearly proportional to its proportional thickness t̃i. Hence,
the stiffness tensor DH can be calculated by a superposition (add-up) law, which linearly sums up
the transformed stiffnesses from each individual plate set by,

DH =
N∑
i=1

ρt̃iDi =
N∑
i=1

ρt̃iTi : Ds : Ti (4)

where Ds indicates the stiffness tensor for a single solid plate set with a unit thickness, Di is the
corresponding transformed stiffness tensor, and Ti = T (ni) is the transformation tensor for the ith
plate set, which relates to the orientations of the plate sets and its formulation can be found in the
textbook, e. g. [44].

This superposition model is able to exactly estimate the effective stiffness in case of ρ → 0.
In moderate volume fractions, this model typically causes prediction errors due to the effects of
intersecting regions, and the error gets quadratically smaller with lower volume fractions. For in-
stance, for ρ = 10% and 5%, this model underestimates the effective Young’s modulus of the optimal
isotropic 6-fold PLS by about 4% and 1% compared to the result from the numerical homogenization
method [31]. The superposition law works effectively for any microstructures that have continuous
members, where the resulting microstructures can be either periodic or quasiperiodic and they can
be formed by either flat plates or straight trusses [21, 31, 37]. Note that the calculated DH does not
rely on the applied strain or stress loadings, since it is an essential property of the PM. By using
this explicit model, the derivative of DH with respect to the geometric parameters can be directly
obtained.

In the optimization, the compliance tensor CH of each PM is calculated by the inverse of DH.
In order to determine the optimal plate orientations and proportional thicknesses, for the three
PM-n, the design variable vector includes χ = {θi, t̃k}, for i = 1, 2, ..., 2n and k = 1, 2, ..., n. For
the two PLS7s, the cell shapes are optimized to vary the plate orientations, and the design variable
vector includes χ = {Θi, sj, t̃k}, for i = 1, 2, ..., 6, j = 1, 2 and k = 1, 2, ..., n, respectively. The
lower bound for sj is set to be s = 0.1, which prevents excessive cell distortions. In the optimized
results, any plate set(s) can be removed by t̃k = 0.

The optimization problems include at most 15 design variables (for PM-5 and the two PLS7s).
The gradient of the stress energy has the same form as Eq. (3), and the derivative of the linear
constraints are one with respect to t̃k and zero with respect to the other variables. The optimality
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conditions are

∂J

∂t̃p
=

Nσ∑
r=1

ρwr(σ
(r) : CH) : Dp : (CH : σ(r)) = λ, (p = 1, 2, ..., n)

∂J

∂θi
=
∂J

∂sj
=

∂J

∂Θq

= 0, (i = 1, 2, ..., 2n; j = 1, 2; q = 1, 2, ..., 12)

(5)

where λ is the Lagrange multiplier applied on the linear constraints. The first condition indicates
a uniform strain energy density distribution, which implies that all the plates are equally used to
bear the multi-loading, and the second conditions indicate optimal plate orientations.

4.2. Generation of random multi-loadings

Stiffness optimality of the three PM-n and the two PLS7s are first verified for random multi-
loadings. Because each σ(r) includes three normal and three shear stress components, at most 6
stress cases are linearly independent, and any extra stress case is linearly dependent on them. Hence,
we consider multi-loadings with 2 ≤ Nσ ≤ 6 independent stress cases in this study. Furthermore,
in order to normalize the generated stress cases, we define a mathematical fourth-order tensor to
represent a weighting summation of all the stress cases by

Γ = Γijkl =
∑Nσ

r=1
wrσ

(r)
ij σ

(r)
kl (6)

where repeated subscripts indicate summation from 1 to 3. In this way, the stress energy can also
be stated by J = ΓijklC

H
ijkl.

Three strategies are employed to generate random multi-loadings. In strategy I, all the 6 terms
in each stress case of one multi-loading are randomly generated within the internal [-1, 1] by

σ
(r)
ij = 2Φ− 1, (ij = 11, 22, 33, 23, 13, 12; r = 1, 2, ..., Nσ) (7)

where Φ indicates the embedded function rand in Matlab, which generates uniformly-distributed
random numbers.

In strategy II, for each stress case in one multi-loading scenario, 3 random principal stresses are
first generated by Eq. (7), which are denoted by σ̃(r). Then, σ̃(r) is rotated in a sequential order
along x, y and z axis, in which the rotation angles are randomly generated within [−π, π]. The
corresponding rotation tensor is denoted by Rij = Rx

ipR
y
pqR

z
qj, where the superscripts indicate the

rotation axis. The final stress case is obtained by

σ
(r)
ij = Ripσ̃

(r)
pq Rqj, (i, j = 1, 2, 3; r = 1, 2, ..., Nσ) (8)

In both strategies, the weighting factors are also randomly generated within [0, 1]. Moreover,
both the stresses and weighting factors are normalized by σ(r)/‖Γ‖F and wr/

∑
wr, respectively, in

which ‖�‖F is the Frobenius norm. The regularized stresses will be applied in the optimizations.
For each Nσ, 500 random multi-loadings are generated by using each strategy.

Furthermore, strategy III is made to generate random multi-loadings around the isotropic multi-
loading case, which refers to the multi-loading that results in optimal isotropic stiffness. Essentially,
Γ formed by the isotropic multi-loading through Eq. (6) meets infinite symmetries. Here, we employ
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one isotropic multi-loading that involves 6 uniaxial stress cases in a 5-fold rotational symmetric way,
which is stated by

σ
(1)
iso = [0, 0, 1, 0, 0, 0]T, σ

(r)
iso = σ

(r)
0 ⊗ σ

(r)
0 , (r = 2, 3, ..., 6) (9)

where σ
(r)
0 = [cosα cos βr, cosα sin βr, sinα]T with sin2 α = 4/5 and β = 2π/5. The weighting

factors are wr = 1/6. Random perturbations are made to both stress terms in each stress case and
weighting factors to create random multi-loadings

σ
(r)
ij = (1 +mfr)(σ

(r)
iso )ij, wr = (1 +mgr)wr, (i, j = 1, 2, 3; r = 1, 2, ..., Nσ) (10)

where fr, gr = 2Φ− 1 and m is a factor to control the perturbation magnitude, which is evaluated
by m = ±5%, 10%, 15%, 20%, 25%. For each m value, 50 random values are generated, and totally
500 perturbations are created. Furthermore, other random multi-loadings with Nσ < 6 are also
generated by removing specific number of stress cases.

4.3. Implementation

The above optimization problems are solved by using the interior-point method that is embedded
in optimizer fmincon in Matlab. The procedure is terminated if either the maximum difference
of both objective functions and design variables between two subsequent iterations are smaller
than 10−10 or maximum 1000 iterations are reached. For each multi-loading, 200 random initial
guesses are used for each PM testing, and the minimal stress energy among the 200 optimized
solutions is referred to the maximum stiffness that this PM can achieve. In this way, totally
3× 5× 500× 200× 6 = 9× 106 optimization problems are solved. In all testing, Young’s modulus
and Poisson’s ratio of the solid constituent are Es = 1 and ν0 = 1/3, respectively. The maximum
value for the relative edge length is s = 5.

We use an energy ratio R to indicate stiffness optimality (or deficiency) of each PM, which is
defined by

R =
Jopt
Rank6 × ρRank6

Jopt
PM × ρPM

× 100% (11)

where superscript ’opt’ indicates the optimal energy when optimizations converge. The optimized
microstructures attain the extreme stiffness if R = 1, and suffer from higher stiffness deficiency as
R gets smaller. In the equation, both the extreme energy by the rank-6 microstructures and the
optimal energy by the PMs are normalized by their volume fractions. There, we use ρRank6 = 10−6

for obtaining the extreme stiffness, where a smaller value may cause numerical issues. In the
optimization for the PMs, we simply take ρPM = 1, as ρ in Eq. (4) is merely a scaling parameter.

We also measure the anisotropy level of the optimal microstructures by using an index

A =
M

Miso

, with M =

∑6
i=1 ei√∑6
i=1 e

2
i

(12)

where ei is the ith eigenvalue of the stiffness tensor of the optimal microstructures, and Miso is
for the optimal isotropy, which is also the maximum value of M . The maximum value A = 1
indicates that the extreme stiffness is isotropic, and it indicates higher order of anisotropy as A
gets smaller. The minimum value is A =

√
8/15 ≈ 0.73 (for ν0 = 1/3), which arises when the PM

includes a single plate set. To ensure rotational invariance of the eigenvalues, the stiffness tensor is
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represented in its second-rank tensor notation [45]. In each multi-loading, we will use the anisotropy
level of the optimal rank-6 microstructures for comparisons of stiffness optimality of various PMs,
which is denoted by Arank-6. Moreover, the anisotropy level of the optimal PM is indicated by a
corresponding subscript, such as APM-3 for PM-3.

4.4. Results

The obtained energy ratios for various Nσ are presented in Fig. 2. The stiffness optimality of
each PM is measured by the minimal R value among the solutions for 500 random multi-loadings
in each stress generation strategy, which are given in Table 1. It is seen that increasing Nσ makes
the effective stiffness of the optimal rank-6 microstructures more isotropic. The results for Nσ = 2
(red dots) have the highest anisotropy with 0.77 < Arank-6 < 0.87, while the results for Nσ = 6
(blue samples) are closer to isotropy with 0.87 < Arank-6 < 0.97. The results for strategies I and II
(circular and square samples) do not reach pure isotropy. For comparisons, small perturbations on
the isotropic multi-loading in strategy III obtains optimal stiffness around pure isotropy (triangular
samples), with 0.96 < Arank-6 ≤ 1.00. On the other end, no results are found to be within

√
8/15 <

Arank-6 < 0.77. This part might correspond to the optimal results for single loadings, in which case,
the microstructures with simple geometries, like the ones involving 3 plate sets, could achieve the
extreme stiffness.

From Fig. 2, it is seen that PM-3, PM-4 and PM-5 have similar shapes of stiffness optimality, in
which their stiffness optimalities decay as Nσ increases. Particularly, this tendency is more obvious
for the multi-loadings in strategy III than the cases in strategies I and II when Arank-6 approaches
isotropy. Therein, PM-3 is able to achieve R > 98% of the extreme stiffness for Nσ = 2 and
R > 86% for Nσ ≥ 3. For comparisons, PM-4 and PM-5 gain improvement on stiffness optimality
by incorporating more plate sets. In Table 1, PM-3 shows a slightly higher minimal R value for
Nσ = 4 than Nσ = 3. This may be because the generated random multi-loadings for Nσ = 4 do not
cover the worst case multi-loading for Nσ = 3. The results subjected to the worst multi-loadings
show a monotonous decrease of R by increasing Nσ (see section 5).

When the isotropic multi-loading is applied, PM-3, PM-4 and PM-5 all suffer from the highest
stiffness deficiency with R = 86.82%, R = 92.78% and R = 96.33%, respectively. In the correspond-
ing geometry for PM-3, 3 plate sets with an equal t̃ = 1/3 form the side faces of a regular triangular
prism, where the relative angle between each two plate sets is 2π/3. This geometry has a 3-fold rota-
tional symmetry (see Fig. 3(a)). The optimized PM-4 is described as a full regular triangular prism,
where 3 plate sets form the side faces and the other plate set forms the base faces (see Fig. 3(b)),
with a relationship of t̃side/t̃base ≈ 0.73. In the optimized PM-5, all the plate sets are oriented in
a 5-rotational symmetry (see Fig. 3(c)), where they have an equal t̃ = 1/5 and the relative angle
between each two neighboring plate sets is about 69-degree. These geometries might have shown
the highest symmetric order that each PM-n can achieve. Particularly, by adding one extra plate
set to the optimized PM-5 and adjusting t̃ and the relative angle between each two neighboring
plate sets, a 5-fold microstructure that achieves optimal isotropy is produced [31]. Note that the
obtained stiffness of these optimized PM-n are anisotropic, with APM-3 = 0.91, APM-4 = 0.97 and
APM-5 = 0.99.

The two PLS7s are superior to the three PM-n. In all testing, PLS7-SB and PLS7-6Fold obtain
R > 99.20% and R > 99.70% of the extreme stiffness, respectively. The worst cases for PLS7-SB
and PLS7-6Fold are found around Arank-6 = 0.97 and Arank-6 = 0.95, respectively, when they are
subjected to random multi-loadings from strategy I with Nσ = 6. The corresponding geometries

9



for PLS7-SB and PLS7-6Fold include 6 and 5 plate sets, respectively. However, they are difficult to
describe because of their non-uniform t̃ and non-regular plate orientations. Compared to the rank-6
microstructures, the two PLS7s are periodic and have unique plate connections, and therefore, they
might be easier to be recognized and manufactured in practical applications.

Table 1 Minimum R for each PM among the 500 solutions by using each stress generation strategy
(abbreviation by ST). Underlines are marked on the smallest values among three strategies for each Nσ.

ST

Nσ 2 3 4 5 6

PM-3

I 98.26 93.17 93.21 92.28 91.56

II 98.87 95.01 91.55 93.02 91.93

III 99.41 96.24 96.27 93.23 86.82

PM-4

I 99.99 99.83 98.51 98.38 98.38

II 99.99 99.98 99.50 98.53 98.55

III 99.99 99.99 99.72 98.76 92.78

PM-5

I 99.99 99.99 99.99 99.99 99.99

II 99.99 99.99 99.99 99.96 99.99

III 99.99 99.99 99.99 99.99 96.33

PLS7-SB

I 99.99 99.83 99.01 99.64 99.21

II 99.99 99.98 99.77 99.62 99.44

III 99.99 99.99 99.91 99.31 99.54

PLS7-6Fold

I 99.99 99.98 99.83 99.91 99.77

II 99.99 99.98 99.91 99.78 99.90

III 99.99 99.99 99.99 99.94 99.77

5. Stiffness optimality for the worst multi-loadings

5.1. Optimization to identify the worst loadings

The above study investigated stiffness optimality of the considered PMs subjected to random
multi-loadings, and thus might not catch the worst cases. Next, we proceed to identify the worst
case multi-loadings that obtain the highest stiffness deficiency (or lowest stiffness optimality) for
each PM. This can be numerically realized by solving the optimization problem

Minimize
σ
(r)
pq

R =
Jopt
Rank6 × ρRank6

Jopt
PM × ρPM

Subject to ‖Γ‖2F ≥ 0.01

− 1 ≤ σ(r)
pq ≤ 1, (pq = 11, 22, 33, 23, 13, 12; r = 1, 2, ..., Nσ)

(13)

where Nσ is manually specified by 2 ≤ Nσ ≤ 6. The constraint on norm of Γ is imposed to
prevent the stress terms becoming too small, which might cause numerical issues for optimization
convergence. Again, the problem is solved in the low volume fraction limit.

Optimization problem (13) is solved in an embedded manner. In the inner processes, a multi-
loading starting guess is provided, and the optimization problems in section 4 are solved to generate
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Figure 2: Energy ratios R with respect to anisotropy level of optimal rank-6 microstructures Arank−6

for various PMs. Different colors are used for various Nσ and different shapes are used for three stress
generation strategies.
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Figure 3: Optimized geometries by (a) PM-3, (b) PM-4 and (c) PM-5 in representative volume elements
when subjected to isotropic multi-loadings. Various colors denote different plate sets. Solid plates are
emphasized to illustrate the geometries and transparent plates indicate that infinite number of plates make
up each plate set.

the extreme stiffness by the rank-6 microstructures as well as the maximum stiffness of each con-
sidered PM. In the outer process, optimization updates stress terms to find the worst multi-loading
based on the result from the inner processes. In order to incorporate gradient-based optimizers, the
derivative of the objective function is stated in terms of the derivative of the optimal stress energies
with respect to each stress term, which reads

∂Jopt

∂σ
(r)
pq

= 2wr(C
H
pqmn)optσ(r)

mn (14)

In the implementation, all parameter settings for the inner optimizations are the same as section
4.3. In the outer process, the optimization is terminated if the relative difference of R values in
two subsequent steps, as well as the constraint violence are smaller than 10−6. For each PM at
each Nσ, over 50 initial designs are applied, and the worst multi-loading is referred to the solution
that has the smallest Ropt among all the optimized solutions. Note that only those initial guesses
that generate non-extreme stiffness with R < 1 make sense in the optimizations, otherwise the
procedure is terminated at the beginning. To fulfill this requirement, we partly select a number
of multi-loadings that generated the optimized results with lowest Ropt in section 4.4 as the initial
designs, and partly generate random initial stress cases that can obtain non-extreme stiffness via
strategy I. If one PM achieves the extreme stiffness for over 10 thousand random initial guesses for
a Nσ, it is accepted to be the optimal for any multi-loadings with Nσ stress cases.

A rigid rotation of all the stress cases in an optimized multi-loading results in a simultaneous
rotation of the optimized rank-6 microstructures and the optimized PMs in the inner processes,
and therefore it retains the optimized energy ratio R. This non-uniqueness may cause convergence
issues when solving Eq. (13), since the optimal stress terms can be arbitrary numbers and infinite
optimized solutions can be found. To address this issue, we fix the first stress case by aligning its
three principal stresses with three coordinate axis over the entire optimization process. That is,
three shear terms in the first stress case are set to be zero and they are excluded from the design
variables. Consequently, we have 6Nσ − 3 design variables in Eq. (13).

Based on the optimized results, we identify the worst multi-loadings as the eigentensors of Γ
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through

J = ΓijklC
H
ijkl =

Nσ∑
r=1

w̃(r)σ̃
(r)
ij C

H
ijklσ̃

(r)
kl =

Nσ∑
r=1

σ
(r)
ij C

H
ijklσ

(r)
kl (15)

subject to

Γijklσ̃
(r)
ij = w̃(r)σ̃

(r)
kl and σ

(r)
ij =

√
w̃(r)σ̃

(r)
ij (16)

where w̃ and σ̃ij indicate the eigenvalue and eigentensor of Γ, and the identified multi-loadings are

formed by σ
(r)
ij . In this way, each two stress cases of σ

(r)
ij are both linear independent and orthogonal.

Note that only Nσ of the six eigenvalues are non-zero, and thus Nσ stress cases are reserved.

5.2. Results

The obtained worst multi-loadings for each PM at each Nσ are presented in Appendix A, and
the corresponding energy ratios are given in Table 2 and are marked as hollowed samples in Fig. 4.
Compared to the results in Table 1, the current results obtain higher stiffness deficiency with lower
R values. This illustrates that the worst multi-loadings are difficult to be produced by using the
random stress generation strategies as used in section 4. Moreover, these results show a monotonous
degradation of stiffness optimality for the PMs as Nσ increases.

For Nσ = 2, PM-3 can still preserve over 95% of the extreme stiffness, but for Nσ ≥ 3, its
stiffness optimality drops to R ≈ 86%. By calculating the principal stresses of each stress case,
it is found that the worst multi-loadings include near-pure shear stresses1 in the second to final
stress cases for Nσ = 2, 3, ..., 6. The orientations and magnitudes of these shear stresses vary with
Nσ. The main reason for obtaining such kind of worst multi-loadings is that PM-3 has relatively
low stiffness for shear loadings and therefore including more shear stresses leads to higher stiffness
deficiency. For Nσ = 6, the final stress case has small values compared to the first five stress cases.
As a consequence, it yields almost the same R value as the case of Nσ = 5. The worst multi-loadings
for Nσ = 5 and 6 obtain a slightly higher stiffness deficiency than the result for the isotropic multi-
loading. The optimized PM involves two plates with an equal t̃ and they are almost perpendicular
to the third one.

PM-4 and PM-5 improve the stiffness optimality by including more plate sets. Therein, PM-4
attains the extreme stiffness for any Nσ = 2 multi-loadings, and obtains R > 92% for Nσ ≥ 3.
PM-5 attains the extreme stiffness for any multi-loadings with Nσ ≤ 4, and obtains R > 96% for
Nσ ≥ 5. Their worst multi-loadings are not easily explained based on the numerical results, since
the solutions include combinations of normal and shear stresses. The corresponding geometries are
similar to the results for the isotropic multi-loading in section 4. For Nσ = 5 and 6, the optimized
PM-4 is a full regular triangular prism with t̃side/t̃base ≈ 0.64, and the optimized PM-5 has 5-fold
symmetry, where the relative angle between each two neighboring plate sets becomes approximately
66-degree. In summary, PM-4 and PM-5 are good candidates to obtain any extreme stiffness for
Nσ = 2 and Nσ ≤ 4, respectively, and PM-6 has to be used for Nσ ≥ 5.

The two PLS7s exhibit near-optimal stiffness in the worst multi-loadings for any Nσ. Here,
PLS7-SB and PLS7-6Fold attain over R > 97% and R > 99% of the extreme stiffness for arbitrary
multi-loadings. Slight stiffness deficiency for these two PLS7s is mainly caused by the implicit

1The principal stresses of a pure shear stress includes one zero and two opposite entries. Besides, if the summation
of three principal stresses is zero, the stress behaves as a combination of multiple shear stresses, leading to isochoric
deformations.
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restrictions from geometric periodicity. The worst multi-loadings are combinations of normal and
shear stresses. For Nσ ≥ 4, the optimized PLS7-SB and PLS7-6Fold involve 6 and 5 plate sets
with non-zero t̃, respectively. Note that although these results for the worst multi-loadings include
fewer than 7 plate sets, the optimized PMs including all the 7 plate sets are necessary for other
multi-loadings. In order to further increase stiffness optimality, one could use the PLSs that are
formed by more plate sets, like the one which involves 3 simple, 4 body-centered and 6 face-centered
plate sets [27]. However, this configuration might increase geometric complexity of the optimized
PLSs.

In another testing, we apply the worst multi-loading of one PM on the others and evaluate the
maximum stiffness by solving Eq. (2). The results are presented in Fig. 4. It is observed that each
PM gains larger R values when subjected to the worst multi-loadings for other PMs than the case
subjected to its own worst multi-loading. This illustrates that the worst multi-loadings are different
for various PMs. Hence, if the applied multi-loading is the worst multi-loading for one PM, another
PM can be used for higher stiffness.

Table 2 Energy ratios of considered PMs at their worst multi-loading.

Nσ 2 3 4 5 6

PM-3 95.15 87.12 86.85 86.19 86.15

PM-4 99.99 94.20 94.20 92.15 92.15

PM-5 99.99 99.99 99.99 96.23 96.22

PLS7-SB 99.99 99.34 97.85 97.83 97.83

PLS7-6Fold 99.99 99.65 99.45 99.45 99.45

We further compare stiffness optimality of these PMs under various Poisson’s ratios of the
solid constituents. The Poisson’s ratios vary within the interval of −0.99 ≤ ν0 ≤ 0.49, where
the maximum and minimum values are close to admissible upper and lower bounds for isotropic
block materials. In each testing, the worst multi-loading and the corresponding stiffness optimality
is obtained based on 50 solutions. The results are presented in Fig. 5. It is observed that the
highest stiffness deficiency of these PMs is dependent on ν0. In general, they have the best stiffness
optimality for ν0 = −0.99, and their stiffness optimality decays as ν0 increases. At each ν0, PM-4
and PM-5 attain the extreme stiffness for any Nσ = 2 and Nσ ≤ 4 multi-loadings, respectively. At
ν0 = 0.49, the PLS7-SB and PLS7-6Fold suffer from the worst stiffness optimality for Nσ = 5 and
6, but they can still obtain R > 97% and R > 99% of the extreme stiffness, respectively.

6. Conclusion

We have investigated stiffness optimality of several PMs subjected to various types of multi-
loadings. Based on the numerical results with respect to both random and the worst multi-loadings,
we conclude that in the low volume fraction limit, PM-3, PM-4 and PM-5 can attain over 83%, 90%
and 95% of the extreme stiffness for arbitrary multi-loadings, respectively. This stiffness optimality
may be good enough for most practical applications if considering their simple geometries with fewer
than 6 plate sets. Moreover, simple periodicity of PM-3 and PM-4 might have benefits in practical
manufacturing. Furthermore, we identify two optimal PLSs, which are formed by 7 plate sets with
defined connections, which achieve near-optimal stiffness for any multi-loadings. These PMs provide
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Figure 4: Stiffness optimality of PMs subjected to the worst multi-loadings for other PMs. Dashed lines
with hollow samples indicate stiffness optimality of one PM subjected to its own worst multi-loading, and
solid lines with filled samples denote stiffness optimality of one PM subjected to the worst multi-loadings
for other PMs. Different colored samples indicate the worst multi-loadings for different PMs.

good candidates for achieving optimal stiffness for any specific multi-loadings, and using them in
a multi-scale structural design framework may generate optimal structures with ultimate stiffness
[10, 46, 47].

Besides stiffness, it is also crucial to investigate strength of the optimal PMs and to make a
critical comparison with the truss microstructures. In the low volume fractions, the PMs involve thin
plate members and thus they mainly suffer from buckling failure. Our recent study [48] has shown
that although the PMs have higher stiffness than the truss microstructures, they have lower buckling
strength. As the volume fraction increases, yield failure becomes dominating. It is of importance
to identify the volume fractions for the transition between the two failure modes for the PMs. This
future work would be fundamental to design advanced anisotropic mechanical metamaterials with
both high stiffness and superior strength in a systematic manner [48]. Fabrication of these closed-
walled PMs is quite challenging. By using 3D printing, one way is to make holes in the plates to
remove enclosed fluid, powders or support materials [27, 49, 50].
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Figure 5: Stiffness optimality dependence on ν0 for the considered PMs. Different colored samples denote
the results for various Nσ.
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Appendix A. Worst multi-loadings for PMs

This appendix presents the worst multi-loadings for various PMs at each Nσ. For the case that
a specific PM can achieve extreme stiffness for arbitrary multi-loadings, no worst multi-loadings are
obtained.
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Table A1 Worst multi-loadings for PM-3 at each Nσ

Nσ 2 3 4

σ11 -0.572 0.001 -0.040 -0.002 0.004 -0.999 -0.002 0.003 0.027
σ22 0.112 -0.001 1.000 0.001 0.002 -0.955 -0.006 0.000 -0.028
σ33 1.000 0.004 1.000 0.001 0.000 -0.004 -0.005 0.001 0.007
σ23 0.000 0.004 0.000 -0.001 0.000 0.000 0.025 -0.539 0.004
σ13 0.000 -0.107 0.000 -0.032 0.612 0.000 0.659 0.020 0.000
σ12 0.000 0.328 0.000 0.613 0.032 0.000 0.001 -0.005 -0.379

Nσ 5 6

σ11 0.440 0.503 -0.005 -0.039 -0.006 0.458 -0.474 0.031 -0.015 -0.168 0.008
σ22 0.530 -0.471 0.020 0.004 0.004 0.516 0.447 -0.076 0.023 0.163 0.008
σ33 0.999 0.029 -0.009 0.014 0.001 0.999 -0.015 0.007 -0.004 -0.003 -0.008
σ23 0.000 -0.036 0.007 -0.558 -0.015 0.000 0.013 -0.011 -0.551 0.016 0.000
σ13 0.000 0.020 0.584 0.008 -0.028 0.000 0.069 0.565 -0.008 0.002 0.002
σ12 0.000 0.005 0.033 -0.017 0.488 0.000 -0.166 0.017 0.013 0.465 0.000

Table A2 Worst multi-loadings for PM-4 at each Nσ

Nσ 3 4

σ11 -0.192 0.001 0.001 -0.191 0.013 -0.002 -0.023
σ22 1.000 0.001 0.001 0.997 0.031 -0.002 0.036
σ33 1.000 0.000 0.001 0.999 0.010 -0.007 -0.041
σ23 0.000 0.000 0.000 0.000 -0.006 0.011 -0.087
σ13 0.000 -0.640 0.004 0.000 -0.639 -0.027 0.005
σ12 0.000 -0.004 -0.640 0.000 -0.025 0.638 0.002

Nσ 5 6

σ11 -0.957 -0.263 0.002 0.001 0.000 -0.949 -0.277 0.002 -0.002 0.000 -0.003
σ22 0.252 0.968 -0.001 -0.011 0.004 0.234 0.972 0.009 0.016 -0.036 -0.003
σ33 0.724 -0.684 0.003 0.000 -0.001 0.741 -0.662 0.002 -0.005 0.022 -0.003
σ23 0.000 -0.002 -0.143 0.128 0.837 0.000 0.032 -0.119 -0.111 0.840 0.000
σ13 0.000 0.003 0.855 0.017 0.141 0.000 -0.005 -0.821 0.268 -0.077 0.000
σ12 0.000 -0.009 -0.005 -0.853 0.129 0.000 0.009 -0.255 -0.809 -0.142 0.000

Table A3 Worst multi-loadings for PM-5 at each Nσ

Nσ 5 6

σ11 -0.887 0.401 -0.019 -0.027 0.014 -0.854 0.491 0.031 -0.002 0.001 0.073
σ22 0.057 -0.992 -0.048 0.107 0.015 -0.025 -0.997 -0.004 0.002 -0.005 0.069
σ33 0.846 0.487 -0.020 -0.029 -0.026 0.875 0.451 0.029 0.000 0.000 0.073
σ23 0.000 -0.064 0.268 -0.444 -0.658 0.000 -0.002 0.031 0.620 0.584 0.000
σ13 0.000 0.039 0.786 0.363 0.052 0.000 -0.038 0.863 -0.030 -0.014 -0.005
σ12 0.000 -0.064 0.267 -0.614 0.509 0.000 -0.004 -0.011 -0.595 0.610 0.000
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Table A4 Worst multi-loadings for PLS7-SB at each Nσ

Nσ 3 4

σ11 -0.992 -0.083 0.116 -0.967 -0.251 0.044 -0.022
σ22 0.131 -0.141 0.103 0.003 -0.724 0.072 0.001
σ33 0.824 -0.050 0.127 0.966 -0.251 0.033 0.011
σ23 0.000 0.216 -0.123 0.000 0.061 0.518 -0.298
σ13 0.000 0.184 -0.010 0.000 -0.365 0.058 0.000
σ12 0.000 0.425 0.137 0.000 0.065 0.517 0.302

Nσ 5 6

σ11 -0.871 -0.001 0.472 0.133 0.026 -0.856 -0.068 0.498 -0.089 0.056 0.000
σ22 -0.008 -0.021 0.196 -0.463 -0.008 -0.011 0.001 0.153 0.466 -0.004 0.003
σ33 0.867 0.020 0.480 0.120 0.014 0.858 0.001 0.498 -0.096 0.075 0.000
σ23 0.000 0.611 -0.033 -0.031 0.298 0.000 -0.628 0.056 0.039 -0.275 0.000
σ13 0.000 0.012 -0.125 0.239 0.002 0.000 -0.031 -0.100 -0.235 -0.006 0.006
σ12 0.000 -0.613 -0.015 0.018 0.297 0.000 0.605 0.136 -0.022 -0.283 0.000

Table A5 Worst multi-loadings for PLS7-6Fold at each Nσ

Nσ 3 4

σ11 -0.991 0.114 -0.034 -0.895 -0.447 0.002 -0.013
σ22 -0.192 0.105 -0.027 -0.090 0.203 -0.008 0.005
σ33 0.990 0.138 -0.034 0.724 -0.527 0.027 -0.021
σ23 0.000 0.458 -0.076 0.000 -0.024 -0.410 0.249
σ13 0.000 0.086 0.097 0.000 0.033 0.025 0.013
σ12 0.000 -0.185 -0.206 0.000 0.004 -0.356 -0.288

Nσ 5 6

σ11 -0.214 -0.015 -0.025 0.006 0.027 -0.978 0.094 -0.183 0.042 -0.005 0.000
σ22 0.721 0.611 -0.020 -0.004 0.006 -0.108 0.160 0.356 -0.179 -0.030 0.002
σ33 0.783 -0.561 -0.001 -0.019 0.002 0.355 0.490 -0.436 0.099 -0.014 0.001
σ23 0.000 0.404 -0.015 0.013 -0.004 0.000 0.511 0.126 0.052 0.024 -0.002
σ13 0.000 0.033 0.257 -0.373 0.000 0.000 -0.018 0.097 0.238 0.020 0.003
σ12 0.000 0.016 -0.507 -0.187 -0.002 0.000 0.040 -0.225 -0.293 0.028 0.002
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