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We determine the optimal method of discriminating and comparing quantum states from a certain class of
multimode Gaussian states and their mixtures when arbitrary global Gaussian operations and general Gaussian
measurements are allowed. We consider the so-called constant- p̂ displaced states, which include mixtures of
multimode coherent states arbitrarily displaced along a common axis. We first show that no global or local
Gaussian transformations or generalized Gaussian measurements can lead to a better discrimination method
than simple homodyne measurements applied to each mode separately and classical postprocessing of the results.
This result is applied to binary state comparison problems. We show that homodyne measurements, separately
performed on each mode, are the best Gaussian measurement for binary state comparison. We further compare
the performance of the optimal Gaussian strategy for binary coherent states comparison with these of non-
Gaussian strategies using photon detections.
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I. INTRODUCTION

Quantum state discrimination is the task of determining
which quantum state, among a known set of states, a given
system is in. The problem is nontrivial if the states are at
least partially indistinguishable, i.e., nonorthogonal to each
other [1]. The nonorthogonality arises not only due to im-
perfections of the measuring method or errors induced by
limited knowledge and control, but also due to the funda-
mental features of quantum mechanics. This fundamental
indistinguishability is the key enabling feature of quantum
key distribution protocols [2–6] as it prevents an eavesdropper
from extracting information from a quantum state without
being noticed. However, the same features may imply re-
strictions when the results are to be read out [7–12], thereby
limiting the mutual information between sender and recipi-
ent. To attain the maximum mutual information in quantum
channels—the classical-quantum capacity—it is thus critical
to optimize the discrimination scheme [13–15].

In quantum optical systems, a natural set of resources
are Gaussian states, operations, and measurements [16–19].
Gaussian states are described by Gaussian characteristic func-
tions on the phase space of the quadratures, while Gaussian
operations by definition preserve the Gaussianity of the char-
acteristic functions. Generalized Gaussian measurements can
be thought of as any Gaussian operation, partial Gaussian
measurement, and classical feedforward or feedback, fol-
lowed by heterodyne measurements [20]. The technology
of Gaussian operations and measurements is nowadays rel-
atively well established and easily implementable, but this
limited set of transformations is insufficient for many quantum

information protocols. For example, by exploiting pure
Gaussian transformation, quantum computation cannot show
a quantum advantage [21], entanglement cannot be dis-
tilled [22], quantum error correction against Gaussian noise
cannot be realized [23,24], and the capacity of optical com-
munication cannot be reached [25,26].

Similarly, it has been shown that the optimal discrimi-
nation of binary phase shift keyed (BPSK) coherent states
(|α〉, | − α〉), and thereby reaching the fundamental Helstrom
bound, cannot be done by Gaussian measurements [27]. To
beat the Gaussian limit and approach the Helstrom bound,
non-Gaussian measurements relying on photon detection have
been theoretically conceived [28–33] and experimentally real-
ized [34–39]. However, despite being insufficient for reaching
the Helstrom bound, it is still interesting to find the optimal
Gaussian approach that minimizes the error rate due to the
simplicity of Gaussian measurements and their compatibility
with current coherent communication systems. Indeed, it has
been shown that among all possible Gaussian strategies, the
optimal Gaussian strategy is simply to perform homodyne
detection [20]. However, for some important sets of Gaus-
sian states or some particular noisy environments [40,41], the
ultimate limit of the Gaussian schemes has not been fully
investigated, and clarification of a Gaussian benchmark is of
both practical and fundamental interest due to the simplicity
in implementing Gaussian measurements.

In this work, we extend the results on the ultimate Gaus-
sian limit in state discrimination to a much larger class of
states. In particular, we consider the discrimination of any
two mixtures of Gaussian states (squeezed thermal states)
distributed along a certain line in phase space, which we refer
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to as a constant-p̂ set. This includes, but is not restricted to,
multimode coherent states displaced along a common axis.
We show that for such states, the optimal Gaussian strategy is
simply to perform homodyne detection on each mode, which
means there is no need for Gaussian multimode interactions,
squeezing operations, or feedback to attain the optimal Gaus-
sian discrimination measurement. We also discuss the relation
of our result to the task of quantum state comparison. The
goal of quantum state comparison is to assess if two states
from a given set are the same or different. Indeed, in the
case of binary state comparison, the optimal general strat-
egy minimizing the error probability of the comparison is to
simply perform the optimal discrimination measurement on
each system and compare the outcomes [42–44]. Therefore, as
with state discrimination, one could expect that non-Gaussian
measurements provide an advantage over Gaussian strategies
for quantum state comparison. However, there is yet no rigor-
ous benchmark for the ultimate performance of the Gaussian
strategy for state comparison. Here we show that homodyne
measurements, individually performed on each system, are the
best Gaussian strategy for minimizing the error probability for
quantum state comparison. As for quantum state discrimina-
tion, there is no need for multimode interaction or classical
feedforward or feedback to reach the optimal bound.

The paper is organized as follows. In Sec. II, we present
our main result. We recognize the ultimate limit of fully Gaus-
sian protocols for binary state discrimination of two arbitrary
mixtures of constant- p̂ multimode states. We apply this result
to several discrimination and comparison tasks in Sec. III. In
Sec. III B, we discuss, as well, practical non-Gaussian meth-
ods with photon detections and the possibility to approach the
theoretical bound for coherent state comparison.

II. GAUSSIAN BINARY STATE DISCRIMINATION

In binary state discrimination, we are provided with a
system prepared in one of two known states ρ1, ρ2, which
may be mixed states in general. It is also assumed that we
know the prior probability p with which we receive ρ1 (thus
we receive ρ2 with probability 1 − p). Our goal is to decide
which state the given system is in with the largest possible suc-
cess probability. If arbitrary measurements are allowed, then
the optimal strategy is to perform a projective measurement
whose two outcomes correspond to the positive and negative
eigenspaces of the operator pρ1 − (1 − p)ρ2, which succeeds
with probability

1
2 [1 + ‖pρ1 − (1 − p)ρ2‖1], (1)

where ‖ρ‖1 is the sum of singular values of ρ [27].

A. Gaussian measurement and state

We are interested in the optimal strategy when restricted
to Gaussian operations and measurements, in the case where
the two states are mixtures of Gaussian states. In Fig. 1(a),
there is a schematic of a generic Gaussian operation. It
consists of the n-mode input ρi, an m-mode ancillary state,
a sequence of Gaussian unitary operations UG each fol-
lowed by partial Gaussian measurements �G whose outcomes
are allowed to be fed forward, and, finally, a Gaussian

FIG. 1. (a) General Gaussian strategy with classical feedforward
operations. GU: Gaussian unitary; GM: Gaussian measurement.
(b) The general Gaussian strategy can be simplified to a measurement
structure composed of a Gaussian unitary operation followed by
heterodyne detections (HD) performed on each mode.

measurement (which, without loss of generality, can be as-
sumed to be a heterodyne measurement on each mode)
followed by postprocessing. The complicated nature of this
protocol makes it difficult to analyze directly. However, it
was shown that if the input is a mixture of Gaussian states,
then the partial measurements and feedforward are unneces-
sary [25]. Therefore, we may assume that our strategy consists
of performing a single Gaussian unitary operation UG on our
n-mode input state followed by a heterodyne measurement
on each mode and then postprocessing, as represented in
Fig. 1(b). The outcome of such a measurement is given by a
vector of n complex numbers �α = (α1, . . . , αn) corresponding
to the n heterodyne measurements. This outcome corresponds
to the positive operator-valued measurement (POVM) opera-
tor,

��α = 1

πn
|α1〉〈α1| ⊗ · · · ⊗ |αn〉〈αn|. (2)

For the discrimination of states ρ1 and ρ2, the postprocessing
will consist of partitioning this uncountable set of possible
outcomes into two outcomes corresponding to whether we
decide the received state is ρ1 or ρ2. This will result in POVM
operators

�′
1 =

∫
R1

d �α��α, (3)

�′
2 =

∫
R2

d �α��α, (4)

where R1 and R2 partition Cn. We can also incorporate the
Gaussian unitary operation UG directly into the measurement,
which will result in POVM elements

�1 =
∫

R1

d �αUG��αU †
G, (5)

�2 =
∫

R2

d �αUG��αU †
G. (6)
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Note that a Gaussian unitary, by definition, maps Gaussian
states to Gaussian states. Therefore, the operator

UG��αU †
G = 1

πn
UG(|α1〉〈α1| ⊗ · · · ⊗ |αn〉〈αn|)U †

G (7)

is a scalar multiple of a projection onto a Gaussian state,
and thus the POVM elements �1 and �2 are integrals over
Gaussian states. This implies that the Wigner function of these
POVM elements is positive, which we will make use of later.

Now consider the case where ρ1 and ρ2 are mixtures of
n-mode Gaussian states, i.e.,

ρi =
m∑

j=1

pj
i τ j, (8)

where pj
i � 0, and

∑m
j=1 pj

i = 1 for i = 1, 2 and τ j is an
n-mode Gaussian state for j = 1, . . . , m for some m. Note that
using the same set of states for ρ1 and ρ2 is not a restriction,
since we allow pj

i = 0. We also remark that we could consider
mixtures defined in terms of integrals over Gaussian states
weighted by a probability density and the analysis would re-
main the same, but the application to state comparison makes
finite mixtures more relevant for our work. Our analysis does
not hold for arbitrary mixtures of Gaussian states ρ1 and ρ2;
we must put some restrictions on the Gaussian states making
up these mixtures. To describe these restrictions, we briefly
review the basics of Gaussian states.

Recall that a Gaussian state is completely described by its
first and second moments of the quadrature operators, i.e.,
its displacement vector d and covariance matrix �. For an
n-mode state, the displacement vector is a 2n-dimensional
real vector and the covariance matrix is a 2n × 2n real sym-
metric positive definite matrix. The entries of d and the
rows and columns of � are indexed by the quadrature oper-
ators for each mode, usually in the order x̂1, p̂1, . . . , x̂n, p̂n.
However, it is more convenient for us to index them in the
order x̂1, . . . , x̂n, p̂1, . . . , p̂n, which we will do from here on.
The quadrature operators satisfy the commutation relations
[x̂�, p̂k] = iδ�k , where δ�k is the Kronecker delta and we use
the convention h̄ = 1. Thus, for a given Gaussian state, we
can write its covariance matrix and displacement vector as

� =
(

�x �xp

�T
xp �p

)
, d =

(
dx

dp

)
. (9)

Suppose now that ρ1 and ρ2 are mixtures of n-mode Gaus-
sian states as written in Eq. (8). For each j = 1, . . . , m, let

� j =
(

�
j
x �

j
xp

(� j
xp)T �

j
p

)
and d j =

(
d j

x

d j
p

)
(10)

be the covariance matrix and displacement vector of the state
τ j , respectively. We consider the case where there exists a
fixed �p and dp such that �

j
p = �p, d j

p = dp, and �
j
xp = 0 for

all j = 1, . . . , m. We refer to such a set of Gaussian states as
a constant-p̂ set. Notice that τ1 can be an arbitrary multimode
displaced squeezed thermal state with diagonal covariance
matrix which determines dp and �p for the remaining states in

the mixture [Eq. (8)]. However, apart from the present section,
we focus our attention on coherent states, so with zero noise
and squeezing. We will show that if ρ1 and ρ2 are mixtures
of Gaussian states from a constant- p̂ set, then the optimal
Gaussian strategy for discriminating ρ1 and ρ2 is to perform a
homodyne measurement in the x̂-quadrature on each mode.

Our analysis will make use of the Wigner function formal-
ism [16,45] of quantum states and operators. For any n-mode
linear operator X , its Wigner function is

WX (�x, �p) = WX (x1, . . . , xn, p1, . . . pn)

=
∫

dn�u ei�u �p
〈
�x + �u

2

∣∣∣∣X
∣∣∣∣�x − �u

2

〉
, (11)

where |�x〉 = |x1〉 ⊗ · · · ⊗ |xn〉 are the quadrature eigenstates.
Two of the main properties of the Wigner function that we
will use are that it is linear in X and that for a Gaussian state
ρ with covariance matrix � and displacement vector d , the
Wigner function evaluates to

Wρ (�r) = 1

πn
√

det(�)
e−(�r−d )T �−1(�r−d ), (12)

where �r = (�x, �p)T . We also use the fact that the overlap of
two linear operators X and Y can be written in terms of their
Wigner functions,

Tr(XY ) =
∫

d�x d �p WX (�x, �p)WY (�x, �p). (13)

B. Optimal Gaussian measurement

Assuming, as above, that we are given ρ1 with probability
p, we can write the error probability of our Gaussian discrim-
ination protocol as

Perr = pTr(�2ρ1) + (1 − p)Tr(�1ρ2)

= pTr(�2ρ1) + (1 − p)Tr[(I − �2)ρ2]

= (1 − p) + Tr{�2[pρ1 − (1 − p)ρ2]}, (14)

where we have used the fact that �1 + �2 = I . Let X =
pρ1 − (1 − p)ρ2. In order to minimize the error probability,
we must choose �2 such that Tr(�2X ) is minimized. In terms
of Wigner functions, we wish to minimize∫

d�x d �p W�2 (�x, �p)WX (�x, �p). (15)

Now, recalling that �2 is an integral over Gaussian states,
we have that W�2 (�x, �p) � 0 for all �x, �p. Moreover, since �1 +
�2 = I , and the Wigner function of I is 1 everywhere, we have
that W�2 (�x, �p) � 1 for all �x, �p. We can therefore lower bound
the expression in Eq. (15) by∫

R
d�x d �p WX (�x, �p), (16)

where R is the region where WX (�x, �p) is negative. Recall that
the operator X is a linear combination of Gaussian states τ j for
j = 1, . . . , m. Consider the Wigner function for a single such
state τ j . By Eq. (12) and our assumption on the covariance
matrix and displacement vector of τ j , we have that
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Wτ j (�x, �p) = exp
[ − (

�x − d j
x
)T (

�
j
x
)−1(�x − d j

x
) − ( �p − dp)T �−1

p ( �p − dp)
]

πn
√

det
(
�

j
x
)

det(�p)

=
⎧⎨
⎩exp

[ − (
�x − d j

x
)T (

�
j
x
)−1(�x − d j

x
)]

√
πn det

(
�

j
x
)

⎫⎬
⎭

{
exp[−( �p − dp)T �−1

p ( �p − dp)]√
πn det(�p)

}
. (17)

In other words, the Wigner function of τ j factors as

Wτ j (�x, �p) = f j (�x) f ( �p), (18)

where f ( �p) does not depend on j. Furthermore, f j (�x) and
f ( �p) are Gaussian probability distributions in �x and �p, respec-
tively. Therefore,

f j (�x) =
∫
Rn

d �p Wτ j (�x, �p), (19)

f ( �p) =
∫
Rn

d�x Wτ j (�x, �p). (20)

Thus, f j (�x) and f ( �p) are the probability distributions over
outcomes resulting from homodyning each mode of τ j in the
x̂- and p̂-quadratures, respectively.

The Wigner function WX (�x, �p) is a linear combination of
the Wigner functions Wτ j (�x, �p), and thus we can also factor
the f ( �p) term out of the former. Thus, WX (�x, �p) = g(�x) f ( �p),
where

g(�x) = pg1(�x) − (1 − p)g2(�x) (21)

and

gi(�x) =
m∑

j=1

pj
i f j (�x) =

∫
Rn

d �p Wρi (�x, �p), (22)

i.e., gi(�x) is the probability distribution resulting from homo-
dyning each mode of ρi in the x̂-quadrature.

Since WX (�x, �p) = g(�x) f ( �p) and f ( �p) is positive every-
where (since it is a Gaussian probability distribution), the
region R ⊆ R2n where WX (�x, �p) is negative only depends on
g(�x). Letting Rx ⊆ Rn be the region where g(�x) is negative,
we can write the expression in Eq. (16) as[∫

Rx

d�x g(�x)

][∫
Rn

d �p f ( �p)

]
=

∫
Rx

d�x g(�x), (23)

where we have used the fact that f ( �p) is a probability distri-
bution. Plugging this into our lower bound on the error of our
Gaussian discrimination protocol, we obtain

Perr � (1 − p) +
∫

Rx

d�x g(�x). (24)

Now let us consider a discrimination protocol for ρ1 and ρ2

which consists simply of performing homodyne detection in
the x̂-quadrature on each mode and then postprocessing. We
will see that with such a protocol, we are able to obtain an
error probability equal to the lower bound given in Eq. (24),
thus proving optimality.

After performing the x̂-quadrature homodyne detection on
each mode, we will obtain an outcome �x ∈ Rn. Our post-
processing procedure then takes this outcome and determines

whether we should conclude that the state we were given was
ρ1 or ρ2. Thus our postprocessing can be specified by a subset
S ⊆ Rn such that if our outcome �x ∈ S, then we conclude
that we were given ρ2 and otherwise conclude we were given
ρ1. As we have already seen, the probability distribution over
outcomes resulting from x̂-quadrature homodyne detection on
each mode of ρi is gi(�x). Thus the error of this protocol is

p
∫

S
d�x g1(�x) + (1 − p)

∫
Rn\S

d�x g2(�x)

= (1 − p) +
∫

S
d�x [pg1(�x) − (1 − p)g2(�x)]

= (1 − p) +
∫

S
d�x g(�x). (25)

Thus, the lower bound can be obtained by performing an x̂-
quadrature homodyne detection on each mode of the given
state, and concluding it was ρ2 if the outcome was in Rx and
concluding the state was ρ1 otherwise.

We remark that determining the region Rx may be difficult
in practice, but this does not prevent one from implementing
the above-described optimal Gaussian discrimination proto-
col. Indeed, one does not need to precompute Rx in order to
implement this protocol. Rather, after performing the homo-
dyne detection on each mode and obtaining outcome �x, one
simply computes g(�x) for that outcome. If it is negative, then
conclude the state was ρ2 and otherwise conclude it was ρ1.

Unfortunately, we do not know how to derive a closed-form
expression for the error probability of the above protocol. In
the case where p = 1/2, the error probability is closely related
to the total variation distance of the two distributions g1(�x)
and g2(�x), denoted V (g1, g2). This is defined as

V (g1, g2) = 1

2

∫
Rn

d�x |g1(�x) − g2(�x)|

=
∫

Ŝ
d�x [g1(�x) − g2(�x)], (26)

where Ŝ ⊆ Rn is the region where g1(�x) > g2(�x). Thus when
p = 1/2, the error probability is 1

2 [1 − V (g1, g2)].
The reason for considering the discrimination of states

ρ1 and ρ2 that are mixtures of a constant-p̂ set of states
{τ1, . . . , τm} is that when we factor the Wigner functions of
each τi into the product of the distributions resulting from
homodyning in the x̂- and p̂-quadratures, respectively, the
latter distribution is the same for each τi in our set. This is
done in Eq. (17). This allows us to separate the variables in
the lower bound of Eq. (16) as shown in Eq. (23), resulting in
the elimination of the p̂-quadrature altogether. We remark that
there is nothing special about the p̂-quadrature, and we could

022423-4



LIMIT OF GAUSSIAN OPERATIONS AND MEASUREMENTS … PHYSICAL REVIEW A 103, 022423 (2021)

just as well have considered constant-x̂ sets of states or any
other constant quadrature set in the x̂ p̂ space (that is, along
any line in phase space). The optimal Gaussian measurement
would then be homodyne detection of the quadrature orthog-
onal to the one along which the states are constant.

Extending our scheme to more general sets of states seems
challenging as the constant- p̂ property is integral to our
analysis. In the general case, the optimal Gaussian protocol
still boils down to choosing �2 [from Eq. (6)] to minimize
Eq. (15). However, in this case, it is not clear that there exists
a Gaussian measurement �2 that achieves the lower bound of
Eq. (16). Thus, in addition to presumably requiring a more
elaborate Gaussian measurement to achieve optimality, the
general case would likely require a new analytical approach
to prove optimality. We therefore leave the case of optimally
discriminating general Gaussian states with Gaussian opera-
tions open, and only venture to say that we do not expect that
homodyning will be the optimal measurement in every case.

III. GAUSSIAN STATE COMPARISON

Formally, the task of state comparison for a set S =
{τ1, . . . , τm} of known quantum states consists of being given
two states ρ1, ρ2 ∈ S, and deciding whether ρ1 = ρ2. It is
assumed that the deciding agent knows the probability pi j of
receiving the ordered pair of states (τi, τ j ), and their objec-
tive is to maximize the probability of correctly determining
whether the two states they are given are equal. In general, this
means that they perform a measurement M = {�E ,�D} on
the state ρ1 ⊗ ρ2 with two possible outcomes corresponding
to whether they claim that the two states are equal (E ) or
different (D). The expected probability of making an error is
then given by

Perr =
∑
i �= j

pi jTr[�E (τi ⊗ τ j )] +
∑

i

piiTr[�D(τi ⊗ τi )]

= Tr

[
�E

(∑
i �= j

pi jτi ⊗ τ j

)]
+Tr

[
�D

(∑
i

piiτi ⊗ τi

)]

= Tr[�E (pDρD)] + Tr[�D(pEρE )], (27)

where pE = ∑
i pii and ρE = (1/pE )

∑
i piiτi ⊗ τi, and sim-

ilarly for pD and ρD. Thus the state comparison problem
reduces to the state discrimination problem for states ρE and
ρD given with prior probabilities pE and pD, respectively.

Suppose that the set S of states we are comparing is a
constant- p̂ set. Then there exists a matrix �p and vector dp

such that the covariance matrix and displacement vector of
every state τi ∈ S has the form

�i =
(

�i
x 0

0 �p

)
, di =

(
di

x

dp

)
. (28)

Thus the state τi ⊗ τ j has covariance matrix and displacement
vector equal to the following:(

�i
x ⊕ �

j
x 0

0 �p ⊕ �p

)
and

(
di

x ⊕ d j
x

dp ⊕ dp

)
. (29)

This means that the Gaussian states τi ⊗ τ j for i, j = 1, . . . , m
form a constant-p̂ set as well. Since both ρE and ρD are
mixtures of these states, the result of Sec. II can be applied.
Therefore, the optimal Gaussian state comparison protocol for
a constant- p̂ set of Gaussian states is to perform homodyne
detection in the x̂-quadrature on each mode. We remark that
the set S can actually be slightly more general: it can consist
of mixtures of Gaussian states from some constant- p̂ set T .

A. Gaussian binary state comparison

Let T = {τ1, τ2} be a set of two states on which we wish
to perform state comparison. Suppose also that the probability
of receiving the ordered pair (τi, τ j ) follows a product distri-
bution: i = 1 with probability q, and j = 1 with probability q
independently. In this case,

pEρE = q2τ1 ⊗ τ1 + (1 − q)2τ2 ⊗ τ2, (30)

pDρD = q(1 − q)(τ1 ⊗ τ2 + τ2 ⊗ τ1). (31)

Letting X = qτ1 − (1 − q)τ2, it is easy to see that X ⊗ X =
pEρE − pDρD. Using the expression for error in Eq. (27) and
substituting �D = I − �E , we have

Perr = pE + Tr[�E (pDρD − pEρE )] (32)

= pE − Tr[�E (X ⊗ X )]. (33)

This follows the analysis in Ref. [44]. They further note that
since �E is a positive operator between 0 and I , choos-
ing it to be the projection onto the positive eigenspace of
X ⊗ X minimizes the error. Thus, if � is the projection
onto the positive eigenspace of X , then the optimal choice
of �E is � ⊗ � + (I − �) ⊗ (I − �), where {�, I − �} is
the optimal POVM for discriminating τ1 and τ2 with prior
probabilities q and 1 − q, respectively. Thus they conclude
that the optimal state comparison procedure is to perform
optimal state discrimination on each received state, and then
conclude the states were equal if they get the same outcomes,
and otherwise conclude they were different. If the optimal
success probability for the state discrimination was p, then
the optimal success probability for state comparison will be
p2 + (1 − p)2.

We aim to extend the above result of Ref. [44] to the
Gaussian case. In this case, τ1 and τ2 are (mixtures of) some
n-mode Gaussian states. Almost all of the analysis above still
holds, except that we cannot freely pick the POVM operator,
rather we are restricted to Gaussian operations and measure-
ments. It is thus not immediately obvious that the optimal
choice for �E will have the same form as above. However,
if τ1 and τ2 are mixtures of n-mode Gaussian states from
a constant- p̂ set, then we can apply our previous results.
Thus, in this case, the optimal measurement is homodyne
detection on each of the 2n modes. Note, however, that this
does not fully specify the POVM since that also depends on
the postprocessing of the homodyne detection outcomes. To
determine the optimal postprocessing, let g1(�x) and g2(�x) be
the probability distributions resulting from performing ho-
modyne detection on each mode of τ1 and τ2, respectively.
Then the distribution obtained from performing homodyne
detection on every mode of τi ⊗ τ j is the product distribu-

022423-5



DAVID E. ROBERSON et al. PHYSICAL REVIEW A 103, 022423 (2021)

FIG. 2. Schematics of coherent state comparison with (a) the
displacement operation with the photon detection measurements
individually performed on each mode, and (b) the balanced beam
splitter with the photon detection.

tion gi(�x1)g j (�x2), where the superscripts indicate whether the
vector variable refers to the first or last n-modes. If we let
g(�x) = qg1(�x) − (1 − q)g2(�x) and let R ⊆ R2n be the region
of outcomes for which we conclude that the states were the
same, then our error is given by

Perr = q2 + (1 − q)2 −
∫

R
d�x1 d�x2 g(�x1)g(�x2). (34)

Obviously, the optimal choice for R is the region where
g(�x1)g(�x2) is positive. If we let R′ ⊆ Rn be the region where
g(�x) is positive, then an optimal choice for R is (R′ × R′) ∪
(R′ × R′), where R′ = Rn \ R′. Note that this will include
some points where g(�x1)g(�x2) = 0, but this will not change the
error probability. The region R′ × R′ corresponds to perform-
ing optimal Gaussian discrimination on each received state
and determining that they are both τ1, while R′ × R′ corre-
sponds to determining both are τ2. Thus the optimal Gaussian
state comparison protocol for {τ1, τ2} is to perform optimal
Gaussian state discrimination on each state and conclude they
are equal if and only if the outcomes are the same.

In the case of the BPSK states {|α〉, | − α〉}, we have �x =
�p = I , �xp = 0, for both states, and d = (±√

2α, 0)T . As-
suming uniform priors, the optimal Gaussian protocol has an
error of PG

err = 1
2 [1 − erf2(

√
2α)], while the error associated

with the optimal general strategy is Perr = 1
2 e−4α2

(see Fig. 3).
For the BPSK coherent state discrimination, the fundamental
quantum bound is given by perr = 1

2 (1 −
√

1 − e−4α2 ) [27],
while the best Gaussian strategy yields an error probabil-
ity of pG

err = 1
2 [1 − erf (

√
2α)] [20]. Since pG

err/PG
err � 1

2 and
perr/Perr � 1

2 for α � 1, the ratio between the best Gaussian
strategy and the fundamental quantum bound for discrimi-
nation of binary coherent states scales very similarly to the
analogous ratio for comparison of these states.

B. Coherent state comparison with non-Gaussian measurements

The fundamental lower bound of 1
2 e−4α2

on the er-
ror probability for binary state comparison of the BPSK

FIG. 3. Error probability of coherent state comparison as a func-
tion of the signal mean photon number. The black dashed line
represents the Helstrom bound. The red, blue, and green solid lines
are the performances of the strategies using displacement operation
plus photon detection, homodyne measurement, and balanced beam
splitter plus photon detection, respectively.

states is attainable by separately performing an optimal pro-
jective measurement for the state discrimination on each
mode [44]. For the problem of discriminating the BPSK
states, non-Gaussian measurements based on photon detec-
tion provide a notable performance overcoming the Gaussian
limit [20,28,29]. In this section, we will investigate the
potential of non-Gaussian measurements consisting of a dis-
placement operation and a photon detection in coherent state
comparison. This is a promising and practical non-Gaussian
measurement beating the Gaussian limit in state discrimina-
tion [28,36].

A schematic of the coherent state comparison with such
non-Gaussian measurement is shown in Fig. 2(a). The
displacement-based photon detection measurements are indi-
vidually performed on each mode, where one of the BPSK
states is displaced close to a vacuum state. We conclude
whether the states are equal or different depending on the
number of detector clicks, i.e., equal for even number of
clicks and different for odd number of clicks. The POVMs
of the strategy using the displacement with photon detection
measurements for the state comparison are given by

�NG
E = �

NG1
off ⊗ �

NG2
off + �NG1

on ⊗ �NG2
on ,

�NG
D = �

NG1
off ⊗ �NG2

on + �NG1
on ⊗ �

NG2
off , (35)

where the POVMs for the displacement plus photon detection
measurement {�NG

off ,�NG
on } are represented by

�NG
off = D(β )†|0〉〈0|D(β ),

�NG
on = I − �NG

off . (36)

A measurement operator corresponding to an outcome “off,”
�NG

off , is a projection onto a coherent state, while �NG
on exhibits

a non-Gaussian feature, i.e., its Wigner function shows neg-
ativity [46]. If the displacement operation D(β ) is performed
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such that a state |α〉 is displaced to a vacuum state, the achiev-
able error probability for the coherent state comparison is
obtained to be

PNG
err = 1

2

(
Tr

[
ρE�NG

D

] + Tr
[
ρD�NG

E

]) = e−4α2(
1 − 1

2 e−4α2)
.

(37)

Figure 3 depicts the error probabilities of the coherent state
comparison for various measurement strategies. The Helstrom
bound, shown by a black dashed line, is the fundamental
bound of the discrimination error for a given pair of states.
A comparison scheme with the non-Gaussian measurement
consisting of the displacement operation and the photon de-
tection, shown by a red solid line, significantly outperforms
the Gaussian limit that is attainable by a homodyne measure-
ment (blue solid line) and shows a near-optimal performance
approaching the Helstrom bound. Another non-Gaussian mea-
surement for coherent state comparison can be implemented
with a balanced beam splitter followed by a photon detec-
tion, as shown in Fig. 2(b). While this strategy is technically
simple because it does not require additional phase reference
fields and is an optimal measurement for unambiguous state
comparison [42], the error probability is limited to 1

2 e−2α2
,

plotted by a green solid line [47]. Since an optimal mea-
surement minimizing the error probability for binary coherent
state comparison is accomplished by separately performing an
optimal measurement for the BPSK states discrimination on
each mode, the Helstrom bound is reachable by introducing
fast feedback operations to the displacement with the photon
detection measurement [29,37–39].

IV. CONCLUSIONS

In this paper, we have studied the state discrimination
problem for quantum Gaussian states of light. For constant-
p̂ sets of states, we have determined the optimal Gaussian
discrimination protocol. We found that the lower bound of the
error probability for Gaussian strategies can be obtained by
simply performing an x̂-quadrature homodyne detection on
each mode of the given state. Although such sets of states
as defined in Sec. II may seem artificial, they cover many
physically and technologically relevant problems. As one of
the relevant and important examples, we investigated the state
comparison problem and, by applying the above statement,
revealed that homodyne detections separately implemented
on each mode is the best Gaussian measurement minimiz-
ing the error probability. Moreover, we have discussed the
performance for binary coherent state comparison with non-
Gaussian strategies based on photon detections and compared
them with the ultimate Gaussian limit.
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