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Purpose: MRI can be utilized for quantitative characterization of tissue. To assess e.g. water fractions or
diffusion coefficients for compartments in the brain, a decomposition of the signal is necessary. Imposing
standard models carries the risk of estimating biased parameters if model assumptions are violated. This
work introduces a data-driven multicomponent analysis, the monotonous slope non-negative matrix
factorization (msNMF), tailored to extract data features expected in MR signals.
Methods: The msNMF was implemented by extending the standard NMF with monotonicity constraints
on the signal profiles and their first derivatives. The method was validated using simulated data, and sub-
sequently applied to both ex vivo DWI data and in vivo relaxometry data. Reproducibility of the method
was tested using the latter.
Results: The msNMF recovered the multi-exponential signals in the simulated data and showed superi-
ority to standard NMF (based on the explained variance, area under the ROC curve, and coefficient of vari-
ation). Diffusion components extracted from the DWI data reflected the cell density of the underlying
tissue. The relaxometry analysis resulted in estimates of edema water fractions (EWF) highly correlated
with published results, and demonstrated acceptable reproducibility.
Conclusion: The msNMF can robustly separate MR signals into components with relation to the underly-
ing tissue composition, and may potentially be useful for e.g. tumor tissue characterization.

� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Quantitative assessment of tissue properties has become
possible with specific MRI sequences that enable extraction of
parameters such as T1 and edema water fraction. With a
quantitative characterization of the tissue, it is possible not only
to compare data across scans and subjects, but also to capture
changes at sub-voxel scale [1,2]. This can potentially improve our
understanding of pathophysiology and generate biomarkers for
e.g. abnormality detection, disease staging or treatment response
assessment. However, probing tissue parameters requires
acquisition of high-dimensional datasets and appropriate
parameterization. A well-known example is the calculation of the
apparent diffusion coefficient (ADC) from a set of pulsed gradient
spin-echo scans with varying diffusion weighting (b-value). The
ADC describes the mean diffusivity of water in a voxel and is
obtained by fitting the diffusion-weighted signal to a mono-
exponential model, as expressed in the Stejskal-Tanner equation
[3]. Important factors modulating the diffusivity are the volume
of extracellular water with a less restricted mobility [4], the size
of restricting domains such as cells, and further, the orientation
of elongated restrictions which makes the diffusivity directionally
dependent. However, a voxel can contain multiple tissue compart-
ments (partial volume effect) or orientational dispersion of aniso-
tropic domains, and the diffusion can be affected by water
exchange between compartments [5,6]. Furthermore, biophysical
processes such as flow and perfusion can cause extra signal decay
[7,8]. Hence, tissues exhibit non-exponential signal decay if a
broad range of b-values is used. Several more complex models
have been suggested and used to improve fitting, e.g. the
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intravoxel incoherent motion model or water exchange models [6].
Imposing models, however, always carries the risk of estimating
biased or uninformative parameters, because the model may be
misleading, or too restricted or flexible considering the underlying
signal variation [8,9]. Nevertheless, decomposition of the signal
into multiple compartment-related components is desired for tis-
sue characterization, which is an essential challenge that is repeat-
edly encountered in quantitative analysis of MRI data. Mapping
parameters for relaxometry or magnetic resonance fingerprinting,
for example, faces the ill-posed problem of decomposing a signal
into a weighted sum of exponentials or other latent factors [1,7].
A class of methods designed to solve this ill-posed inversion, is reg-
ularized voxel-wise spectral fitting [10–12], which in the case of
multi-exponential decay is also referred to as regularized inverse
Laplace transforms [13]. A frequently used version is the non-
negative least squares (NNLS) technique [14,15] which has proven
useful, e.g. for estimation of myelin water fractions (MWF)
[14,10,16]. The regularization is necessary to handle the inevitable
large impact of noise in a voxel-wise fitting regime [17], but
requires the choice of a penalty parameter. Though a cross-
validated or data-driven estimation of this is possible [16], it
may introduce a bias in quantitative estimates due to the well
known bias/variance trade-off. Additionally, the method relies on
an identification of spectral clusters or averaging across regions
of interest (ROIs) requiring prior knowledge of the tissue homo-
geneity [17,18].

Another group of strategies avoiding these limitations and pre-
sumptive physiological models is blind source separation (BSS)
techniques, including widely used unsupervised linear dimension-
ality reduction (LDR). Here, all measurements are analyzed simul-
taneously and represented as a product of two factors; a matrix of
fundamental basis functions and a matrix of the associated spatial
distributions [9,19,20]. An attractive feature of LDR techniques is
their insensitivity to partial volume effects often hampering tradi-
tional signal modeling. What sets the different LDR techniques
apart is the assumptions on the structure of the factors. The
well-known principal components analysis yields orthogonality
between the principal components [21–23], while the independent
component analysis, often used for separation of functional MRI
signals, ensures independence between them [19,24]. While these
methods may result in low-error reconstructions of the data since
the underlying singular value decomposition is guaranteed to pro-
duce the minimum error for a given dimensionality reduction [25],
the components may be physically unrealistic and difficult to inter-
pret. For medical image intensities, a natural assumption is
component-wise non-negativity leading to the LDR technique,
non-negative matrix factorization (NMF). This method is popular
within a broad range of applications ranging from text mining to
image processing because the non-negativity assumption pro-
motes an attractive part-based representation with more realistic
factors, although the general non-uniqueness of NMF solutions
can render the interpretation of the estimated components difficult
[19,26–28]. In general, NMF is non-convex and the estimated solu-
tion is often sensitive to initialization and small perturbations of
the input data. In practice, a common strategy to tackle these
issues is to use priors on the factors or regularization during opti-
mization [19,27,29].

This work proposes a novel extension of the NMF by introduc-
ing additional constraints on the structure of the factors, which tai-
lors the method for extraction of multi-exponential or similar
signals, expected for many phenomena both within and beyond
the field of MRI. This loosely defined class of functions is called ap-
proximately multi-exponential in the following. The extension is
inspired by Bhatt and Ayyar who introduced the monotonous
NMF [30], mNMF. They enforced monotony of NMF components,
which in practise give results similar to NMF for a range of MR sig-
2

nals and is insufficient to enforce realistic signal behaviour (see
Supplementary Material). Hence, we introduce a method, which
constrains the problem further. It imposes two conditions on the
non-negative basis functions: they should be monotonous and
have a monotonous first derivative (slope). Thus, the proposed
method is referred to as monotonous slope non-negative matrix fac-
torization (msNMF). It is expected that the new constraint on the
first derivative makes msNMF superior to the mNMF in regards
to separation of mixed MRI signal components. Yet, the method
leaves more freedom to the signal components compared to the
spectral fitting techniques where the decomposition is within a
pre-determined multi-exponential basis constraining also higher
order derivatives. In more general terms, the additional constraints
enforce prior expectations of MR signal decay and represents a bal-
ance between model-based analysis that may rely on inadequate
model assumptions, and model-free analysis that may be too flex-
ible to give interpretable results.

We introduce and demonstrate the msNMF for multi-
component analysis of MRI data, and show examples where the
estimated components are related to the underlying tissue struc-
ture, thus demonstrating the use of the method as a robust alterna-
tive to advanced modeling.

2. Methods

2.1. Non-negative matrix factorization

The NMF approximates a given data matrix, X 2 Rm�n, with the
low rank matrix, WH:

X ¼ WHþ E ð1Þ
W 2 Rm�k

þ is a set of non-negative basis functions, H 2 Rk�n
þ is the

associated non-negative weights for the linear combination of
basic functions to reconstruct the data, and E 2 Rm�nis an error
matrix accounting for noise and non-factorizable signals. With
the assumption of Gaussian i.i.d. residuals in E, the Frobenius norm

is used as objective function, kX�WHk2F . This is a non-convex opti-
mization problem. However, using the two-block coordinate des-
cent framework known as the alternating non-negative least
squares (ANLS) algorithm, it can be formulated as two convex
sub-problems:

min
WP0

kX�WHk2F and min
HP0

kX�WHk2F ð2Þ

The problem is solved by alternately re-estimating one of the two
factors, W or H, under a non-negativity constraint, while keeping
the other fixed.

In this study demonstrating analysis of volumetric 4D MRI data-
sets withmmeasurements and n signal-carrying voxels, the k basis
functions in W are referred to as signal components. The weights in
H, specifying how these are mixed in each voxel, are referred to as
mixture maps.

2.2. Monotonous slope non-negative matrix factorization

The idea of introducing constraints that enforce monotonicity in
the NMF emerges from expectations for noise-free MR signal beha-
viour. It can be shown, that the group of mono- and multi-

exponential functions (described by: b0 þ
PN

n¼1bn � eanx) are mono-
tonous, so the continuous derivative has no zeros, provided the
exponents an have a common sign, and the arbitrary number of
non-zero coefficients bn also share sign. The offset b0 has no
impact. The derivatives fall within the same class of functions,
and are therefore also monotonous. In unusual specific cases
involving pronounced intermediate water exchange, mostly in
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combination with inversion recovery, the signal no longer
complies with the assumption of shared sign coefficients bn, but
normal multi-exponential signal decay and longitudinal magneti-
zation recovery fulfills this requirement adopted in the following
[31–33].

The two constrained least squares problems in (2) can easily be
restated in dual form to allow optimization via standard quadratic
programming. Eq. 3 shows the general case of such reformulation:

min
x

1
2 kRx� dk2 �! min

x
1
2x

TPxþ fTx subject to : Gx 6 a

where P ¼ RTR and f ¼ �RTd
ð3Þ

In the optimization problem at hand, x is a vectorization of eitherW
or H. The inequality constraint can be revised to include both the
non-negativity and monotonicity constraints. This approach was
inspired by the work of Bhatt and Ayyar [30] and results in the fol-
lowing reformulated optimization with the appropriate constraints
added:

GivenW : min
H

vecðHÞTðIn �WTWÞvecðHÞ �2vecðXTWÞTvecðHÞ

subject to : �InkvecðHÞ 6 0nk

Given H : min
W

vecðWÞTðHHT � ImÞvecðWÞ � 2vecðXHTÞTvecðWÞ

subject to :

�Imk

A
B

2
64

3
75vecðWÞ 6 0mk

vec() is a column vectorization of the matrix coefficients and � is
the Kronecker tensor product. For optimization of H (Eq. 4), only
the non-negativity constraint is included in the inequality. For opti-
mization of W (Eq. 5), the new constraints are added in A
2 Rðm�1Þk�mk ensuring a monotonous behavior of the basis functions,
and in B 2 Rðm�2Þk�mk ensuring monotonous behavior of their first
derivatives. A and B can be designed such that the basis functions
are either increasing or decreasing (Supplementary Material). The
implementation enables mixing of basis functions to involve both
decaying and growing signal components if desired. This may
become relevant, e.g. for saturation recovery or if a Rician noise bias
arises for small signal values.

The programming language MATLAB 2018b (MathWorks, Inc.,
Natick, Massachusetts, United States) was chosen for implementa-
tion, and the trust-region-reflective algorithm was used for the
quadratic programming.

To facilitate straightforward adoption into existing processing
pipelines the software is made publicly available, https://github.c
om/sofierahbek/msNMF.

2.3. Practical implementation

Initialization and stopping criterion A basic random initializa-
tion of H with coefficients drawn independently from a uniform
distribution between 0 and 1 was used. For small datasets, all vox-
els were given as input to the iterative ANLS which continued until
a stopping criterion was met, being either a maximum of 500 iter-
ations or a relative change in factors below 10�8. To reduce the
unavoidable risk of ending in a local minimum due to the non-
convex nature of the optimization problem, the process was car-
ried out 10 times (each time with a different initialization), and
the lowest cost solution was chosen. This is also known as a
”multi-start” strategy [27,19]. For large datasets (> 105 observa-
tions), a stochastic gradient descent framework was utilized due
to memory limitations which also served to reduce computation
3

time. Data was divided into randomly selected batches, and the
input batch was replaced during optimization for every T’th itera-
tion. This continued until all data had been included (one full
epoch) or until fulfilling a convergence criterion based on relative
reduction in cost function (for the full data) averaged across the
latest five results. Here, the threshold for the relative reduction
of the cost function was set to 0.1%, the input batch size was cho-
sen to � 1% of all observations and T was set to 30. We found that
the optimization is robust to these choices and that they will pri-
marily affect computation time rather than the obtained result
[34].

Rank determination The resulting factorization of data is
dependent on the number of components, i.e. the rank, k, which
was chosen using prior knowledge or a trial-and-error approach,
where the factorization and its residual are used as feedback for
rank adjustments [19,27]. If anatomical structures were visible in
the residual image, the rank was increased. Conversely, if two com-
ponents were very similar, the rank was decreased.

Preprocessing steps A few preprocessing steps were imple-
mented to reduce the impact of noise on the factorization. First,
the data used as input to the msNMF was required to carry the
highest signal in the first measurement (m = 1) to exclude irrele-
vant signal behaviour from vascular components, for example. Sec-
ondly, data was normalized to have initial value 1 before
factorization. This removes the influence of the initial signal ampli-
tudes during estimation of the signal components in W. A subse-
quent projection of the original (unscaled) data onto these

(H ¼ ðWTWÞ�1
WTX) leaves H with the amount of total signal dis-

tributed over the identified components. The introduced data nor-
malization simultaneously amplifies the noise, which was
compensated by weighting the ANLS with the initial signal ampli-
tudes. An updated objective function is given in Supplementary
Material.
2.4. Validation

Simulated data was used to validate the implementation (visu-
alized in Supplementary Material, Figure S1). To imitate a set of
realistic MR measurements, eight non-equidistant samples of three
decaying signals, two mono-exponential and one bi-exponential
function (y1 ¼ e�0:01x; y2 ¼ 0:6e�0:08x þ 0:4e�0:03x; y3 ¼ e�0:15x), were
generated and mixed across 64x64 voxels. The bi-exponential
component was included to demonstrate the method’s ability to
detect realistic signals beyond the mono-exponential domain. Nor-
mally distributed complex noise (r ¼ 0:06) was added to the data.
This left the final magnitude data with a relatively low SNR and a
Rician noise distribution, which is more realistic than the assump-
tion of Gaussian independent and identically distributed (i.i.d)
residuals implied by the formulation of the cost function. Knowing
the underlying data structure it was possible to quantitatively
evaluate the result of the method. The explained variance (EV), with
1 indicating a perfect reconstruction, was used to compare the
reconstructed curves in W with the true signals (½y1; y2; y3�). The
area under the ROC curve (AUC) was used to compare the spatial
distributions in H with the true mixture maps. This measure
explains to what extent the spatial pattern of the components is
recognized, and is not affected by the absolute values of the load-
ings in H. The performance of the msNMF was compared to that of
the standard NMF. For a fair comparison, the exact same conditions
for both factorizations were used except for the monotonicity con-
straints, i.e. data normalization and weights were also applied for
the NMF which makes it more constrained than standard NMF.
Additionally, a stability test was carried out to investigate how
much the added constraints stabilize the solution across 50 ran-
dom initializations. The coefficient of variation (CV) was used as
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metric with a low percentage indicating high stability. The
specified value is the average CV across all elements in H (leaving
out background voxels).
2.5. Data

The application of the msNMF was demonstrated using two
previously published MRI datasets: ex vivo DWI of a monkey brain
acquired with 12 b-values at two different temporal scales [35],
and in vivo multiple spin-echo imaging with 40 echo times for
multi-exponential T2 (MET2) analysis of rat spinal cord [11]. The
relatively large number of measurements in both datasets yielded
well-characterized signal curves, which in both cases were
expected to exhibit an approximately multi-exponential signal
decay.

Ex vivo DWI data Data recorded and published by Lundell et al.
[35] with multidimensional diffusion encoding revealed
microstructural details in a post mortem brain of a Vervet monkey.
The sample was perfusion fixed and placed in a buffer solution
using procedures optimised for post mortem DWI [36], and data
was recorded with a 4.7 T pre-clinical MRI system. We refer to
the original publication for more details regarding the experimen-
tal setup and the data, which is available on reasonable request
[35]. In short, the experiment probed the effect of anisotropy as
well as time-dependent diffusion, depending on the size of restric-
tions. The latter was explored by comparing two diffusion acquisi-
tions recorded with the same echo time TE = 68 ms and so-called
”tuned” and ”detuned” directional encoding gradient waveforms
with an average diffusion time of � 10 ms (”short diffusion time”)
and of � 20 ms (”long diffusion time”) respectively. Both acquisi-
tions included the same 12 b-values in the range 242–4832 s/
mm2 in five slices of central brain. The difference in diffusion time
is expected to influence the signal response to restricted diffusion
on length scales � 3–10 lm, whereas free diffusion will provide
similar signal signatures [5]. All brain voxels from the two data sets
were used as input for the msNMF and the stochastic gradient des-
cent framework as described in Section 2.3 was used. This resulted
in a computation time of 266 s using a workstation equipped with
a 28-core system having 16 GB RAM. Signals were decomposed
using an initial rank k ¼ 3 due to expectations of at least a bi-
component signal decay in the brain tissue and an additional com-
ponent from the surrounding buffer solution. The resulting mix-
ture maps (H) for the two data sets were normalized, leaving the
coefficients as signal fractions, and compared through voxel-wise
subtraction. The decomposition was evaluated using knowledge
of cell densities in primate brain and findings by Lundell et al. [35].

In vivo MET2 data Relaxometry data originally presented in
[11] by Harkins et al. demonstrated a model for intra-myelinic
edema (IME) quantification in rat spinal white matter evaluated
by comparisons with histology. In this study, 24 rats were divided
into three groups of eight, each receiving a different amount of the
IME-inducing toxin hexachlorophene (HCP) in their diet: 0 ppm,
300 ppm and 600 ppm respectively. Forty T2-weighted spin-echo
images were recorded at 9.4 T using a fluid-attenuated inversion-
recovery-prepared multiple spin-echo imaging sequence [37]
(TI = 2 s, TR = 6 s). The first 32 echoes were collected with an echo
spacing of 9 ms starting from TE = 7.4 ms. The last 8 were collected
with an echo spacing of 50 ms. Recordings were obtained for a
1.5 mm thick axial slice (0.2x0.2 mm2 in-plane resolution) of the
cervical spinal cord, and histology data were obtained using light
microscopy of 1 lm thick slices dissected from the same location
for three rats from each group. Both MR images and histology data
were analyzed for the water content of edema, myelin and intra/
extra axonal space in four different white matter tracts: dorsal
cortical spinal tract, funicilus gracilis, rubrospinal tract, and
4

vestibulospinal tract. These regions-of-interest (ROIs) defined the
voxels to include in the msNMF, and the input signals were decom-
posed into three decaying components, one for each of the men-
tioned compartments, i.e. the rank best suited for comparison
was known in advance. H was normalized to provide the fraction
of each compartment and to facilitate comparison to both histol-
ogy values and imaging metrics (water fractions) estimated by
Harkins et al. The water fractions were defined as in Mackay
et al. [14], assuming proportionality between total signal ampli-
tude and total water content. Signal frommyelin lipids was consid-
ered to be negligible given its rapid T2 decay (<1 ms) [38–40].

Reproducibility test As a novel method based on a non-convex
problem and random initializations, it is sensible to test the repro-
ducibility of the full framework, which was done using the in vivo
data [11] and a split-half (NPAIRS) approach [41]: The full data was
divided in two sets, each consisting of every second echo, i.e. half of
the variables but all observations. The resulting H for each dataset
was compared using Pearson correlation coefficient to calculate a
reproducibility measure. The two factorizations were evaluated by
projection of H onto the other unseen dataset and calculating the
EV for each data reconstruction. The average defined a prediction
measure. A prediction/reproducibility curve (pr-curve) showing the
trade-off between prediction accuracy and pattern reproducibility
for a range of ranks k was produced.
3. Results

3.1. Validation data

Fig. 1 shows the final factorization of the simulated data. The
true exponential signals and true mixture maps are included for
visual comparison, and the quantitative comparison revealed
EVW ¼ 0:984 and AUCH ¼ 0:999. The three components are well
separated but the spatial distributions seen in H are not flawlessly
presenting homogeneous circles, especially the purple and yellow
component contain traces of other signal components and a higher
level of noise (confirmed by the indicated summary statistics). The
lower mean value for the purple component illustrates that part of
the signal has been incorrectly distributed to the other compo-
nents, consistent with the ”shadow” seen in the yellow mixture
map. Please note that even for a hypothetical method perfectly
identifying the true signals (dotted lines in Fig. 1a), the residual
noise amplitude will be spatially inhomogeneous due to the struc-
ture and noise level of the data.

In comparison, the standard NMF extracted erroneous signal
components and slightly worse spatial distributions (Supplemen-
tary Material, Figure S3). The evaluation metrics were correspond-
ingly lower than those obtained with the msNMF (EVW ¼ 0:922
and AUCH ¼ 0:989). The mean CV for 50 initializations was 5.07
% for the NMF and 1.13 % for the msNMF, i.e. a higher stability
of the solution was observed for the msNMF. A table in Supplemen-
tary Material shows the msNMF result for simulated data with coil
arrays (8, 16 and 32 elements) and other SNR (r) levels, included to
demonstrate the dependence on noise characteristics.
3.2. Ex vivo DWI data

Example raw data are shown in Fig. 2a in the shape of a some-
what T2-weighted image (TE = 68 ms, b = 242 s/mm2). Trial-and-
error testing of the rank led to a final choice of k = 3. A decrease
to k = 2 resulted in a residual map with clear cerebral structures.
Conversely, an increment to k = 4 resulted in two of the four com-
ponents to be very similar for both factors, and H was distinctly
contaminated with noise compared to the decomposition
presented here using k = 3. The resulting three diffusion-related



Fig. 1. True data compared to the msNMF result. (a) Estimated signal components, W, and true signals (y1 ¼ e�0:01x; y2 ¼ 0:6e�0:08x þ 0:4e�0:03x; y3 ¼ e�0:15x). (b): Associated
mixture maps, H, indicated by frame colors. The cyan numbers are mean	SD across the encircled voxel values. Similar illustrations obtained with standard NMF and the
mNMF are provided in Supplementary Material.

Fig. 2. (a): Measured image of the monkey brain for the lowest acquired b-value (242 s/mm2) (b): The signal components,W, from the msNMF. (c): The associated normalized
mixture maps, H, labelled by the frame colors. A logarithmic colorscale is used for the yellow component. Maps are given for both data sets and the right column shows the
difference between the two (”Short diffusion time” subtracted from ”Long diffusion time”). The thin and thick black arrows mark the conspicuous visual cortex and
cerebellum, respectively.
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components seen in Fig. 2b reveal long, short and intermediate sig-
nal lifetime (green, yellow and purple curve, respectively).

The associated normalized mixture maps in Fig. 2c reveal a rel-
atively high fraction of the purple signal component in the cortex,
creating a clear separation of grey matter from white matter,
which mostly contains the green signal component. The signal
from aqueous compartments (buffer solution surrounding the
brain sample) is almost exclusively described by the yellow com-
ponent. The difference between the two sets of maps, provided
to capture the effect of time-dependent diffusion, is presented in
the third column of images. Positive values (red colors) indicate
that an increase in diffusion time results in a higher fraction of
the respective component. This effect is observed for the long-
lived signal component (green), especially in white matter includ-
ing corpus callosum, visual cortex (thin arrow), and the cerebellar
cortex (thick arrow), which exhibit high contrast. Simultaneously,
the opposite effect (negative values) is seen for the intermediate
decaying signal component (purple) in these areas. The cerebellum
is particularly prominent (thick arrow), and superior to this, the
visual cortex (thin arrow) clearly differs from the rest of the cere-
bral cortex, which otherwise exhibits positive changes for this sig-
nal component. The small uniform change across the brain seen for
the short-lived signal (yellow) is in agreement with the expecta-
tion that a fast decaying liquid component is time independent.
3.3. In vivo MET2 data

Fig. 3a and 3b show the result of the msNMF: the signal compo-
nents and mixture maps, respectively. The mixture maps illustrate
the distribution of the signals across the spinal cord for a rat from
each group. Since only voxels from the white matter tracts have
been included in the factorization, the gray matter signals may
not be well represented. For all three components, the contrast
between the butterfly-shaped gray matter and the surrounding
white matter increases with increasing amount of HCP in the diet.
Especially the abundance of the long-lived component (green) is
increased in specific areas of the white matter for rats on HCP diet.
The three signal components are thought to reflect relaxation of
water within different compartments in the white matter. Fitting
a mono-exponential decay to the curves resulted in relaxation
times of 12 ms, 42 ms and 181 ms for the yellow, purple and green
curves respectively. With expectations of IME to cause T2 hyperin-
tensity [11,42], the long-living signal component is consistent with
IME. Thus, the fraction of the green component (given by the nor-
malized H) is considered an estimate of the EWF.
Fig. 3. Result of the msNMF for MET2 analysis of rat spinal cord. (a): The signal compone
Each column of images shows the maps for a specific rat (one from each group).
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Fig. 4b presents the mean EWF for the four ROIs visualized in
Fig. 4a averaged across the eight rats in each group. The error bars
indicate the inter-animal standard deviation. For comparison,
Fig. 4c shows the equivalent result presented in [11]. The two
bar plots are very similar considering the relative increase of
EWF in the different ROIs for the HCP groups. Quantitatively, the
paper reports slightly higher values than the method proposed
here.

Fig. 5 compares the EWF estimates with the histology-based
edema water content fraction (Wed) for three rats from each group.
The correlation metric for the linear regression together with the
associated p-value reveal a high agreement with histology data
(r2 = 0.88, P<0.001). The trendline is closer to unity, the intra-
ROI standard errors are lower, and the correlation metric is slightly
higher in comparison to the corresponding analysis in the original
paper [11]. For both approaches, non-zero intercepts remain in the
comparisons with histology estimates.

Fig. 6 shows the result of the split-half test, the pr-curve. The
plot reveals a high Pearson correlation (>0.8) for a rank below 5,
and a high predictability for a rank above 1. This indicates an
acceptable reproducibility of the framework for the chosen rank
k = 3 with predictability and correlation both being high.
4. Discussion

4.1. Simulated data

The simulated data was included to validate the method before
applying the msNMF to measured data where the true underlying
structure is unknown. Three fundamental signals, only eight tem-
poral samples, and a Rician noise distribution were selected to gen-
erate a clinically realistic MR dataset, and a non-trivial
decomposition problem.

It was confirmed both by the visual comparisons (Fig. 1) and
evaluation metrics that the msNMF provided a decomposition in
high accordance with the true data, thus validating the implemen-
tation. The example, however, demonstrates both the ability and
limitation of the method. The imperfect mixture maps observed
for the purple and yellow component, in particular, are consistent
with a lower integrated signal intensity for these components and
a larger similarity between them. Both properties can make them
more difficult to distinguish in the factorization. Comparisons with
results from the standard NMF and mNMF [30] confirmed that
adding constraints tailored to this type of data improves the result
and increases the stability of the solution.
nts, W. (b): The associated mixture maps, H, indicated by the frame and label colors.



Fig. 4. EWF estimates for each of the spinal cord tracts (ROIs). (a): The ROI locations for an example rat; dorsal cortical spinal tract (blue), funicilus gracilis (cyan), rubrospinal
tract (yellow), vestibulospinal tract (orange). (b): Estimates provided by the msNMF: the mean fraction of component 1 (green in Fig. 3) within a ROI averaged across rats. (c):
Estimates reported in [11]. Error-bars indicate inter-animal sta.ndard deviation.

Fig. 5. (a): Scatter plot comparing EWF estimates from the msNMF with Wed from histology data. Colors indicate the ROI, symbols indicate the rat group, and error bars
indicate intra-ROI standard error. The black solid line shows a linear regression for all data merged together (r2 = 0.88). (b): The equivalent scatter plot presented in the source
paper [11].

Fig. 6. Prediction/reproducibility curve for the msNMF of the MET2 data set. The
curve is constructed by varying the rank of the decomposition and calculating the
Pearson correlation and explained variance using the split-half test.
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The superiority to mNMF is particularly important, as this
method, among several BSS techniques extended with priors or
regularization in order to solve related problems [13,15,43–46],
7

is most similar to our proposed method. We emphasize that the
msNMF does not rely on specification of regularization parameters,
nor requires information from several contrast dimensions, and we
therefore consider it out of scope to compare msNMF to most alter-
native BSS methods imposing particular signal behaviour. The sim-
ple prior assumption of monotonicity of the individual signals and
their first-order derivatives have to our knowledge not been uti-
lized in a decomposition method before. These constraints intu-
itively fit many types of MR data.

A common problem of the Rician or noncentral chi distributed
noise present in MRI magnitude data, is a positive bias (noise floor)
for low SNR, and the effect is exacerbated using large coil arrays
and conventional sum-of-squares coil combination [47,48]. In the
validation example, this effect became evident for the yellow sig-
nal component (Fig. 1) for the added noise amplitude (r ¼ 0:06).
A pragmatic strategy to reduce such signal-dependent noise bias
is to estimate a single increasing component with monotonous
decreasing slope in addition to the decreasing components. This
may absorb a considerable fraction of the noise floor. To demon-
strate such flexibility of the msNMF, the strategy was tested for coil
array data in addition to the single element coil. The addition of a
spatially uniform growing component was found to improve the
estimates (Supplementary Material, Figure S4 and Table S1). The
uniformity condition on the mixture map was used to avoid exces-
sive ”cancellation” of the decaying signal components, which may
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occur if the noise floor is not reached for all signals and thus is
difficult to identify. However, the presence of a positive bias
depends on the level of signal in the given voxel, so the assumption
of a constant bias across all voxels is not accurate in general. Even
so, the proposed strategy can be advantageous to directly account
for noise or other sources of bias as demonstrated with the simu-
lated data. Also, it is possible to enforce more involved constraints
for the mixture map such as a low frequency basis for each tissue
class. For the animal data, the noise bias was not an issue so the
described correction strategy was not applied.

The msNMF has proven effective for decomposition of the sim-
ulated data generated as a weighted mixture of three main signal
components. However, signals of biological origin is often expected
to have a continuous distribution of decay rates, e.g. a range of dif-
fusivities from variation in cell sizes, centered around a mean
decay rate. In the Supplementary Material (Figure S2), an extended
example of the simulated data is presented to show how the
method handles such data. For two of the main signal components,
the decay rate was drawn from a normal distribution. As the result
reveals, the mean signals were recognized, i.e. the decomposition
outcome did not change significantly. This shows that msNMF pro-
vides an informative and compact representation of the data with-
out necessarily describing all aspects of the underlying data.

As already mentioned, another typical quantitative analysis
strategy is the NNLS approach. In spite of the necessity for regular-
ization and averaging across ROIs, the NNLS approach is a relevant
reference for the proposed strategy, and results of the method for
two sets of simulated data are provided in the Supplementary
Material (Figure S5). The presented results rely on post-
processing involving k-means partitioning of the raw spectra into
three clusters. Final results are comparable to those for the msNMF
considering single-coil data, but are more affected by the Rician
noise for the coil array data reconstructed using conventional
sum-of-squares. Notably, our method decomposes mixed signals
in the domain of the acquisition, e.g. the echo time domain, and
is not relying on critical or equidistant sampling of the distribution
of T2 values, for example.

An alternative group of strategies worth mentioning is the CORE
(component-resolved NMR) processing family, typically used for
analysis of diffusion-ordered NMR spectroscopy (DOSY) data sets.
Examples are CORE [49], GRECORD [50], OUTSCORE [51], SILT-
DOSY [52], and one of the newest presented in the literature, the
InSpect algorithm [18]. As for the BSS methods, these techniques
have replaced the univariate processing (voxel-wise fitting) with
a multivariate decomposition. However, they still require choosing
an explicit MR signal model for the reconstruction [18]. As
described in the Introduction, complex biological conditions make
it difficult to formulate an accurate signal model a priori. Our intro-
duction of msNMF is motivated by this and a direct comparison to
methods from the CORE family is therefore not possible.

4.2. Ex vivo DWI data

The DWI dataset was used to investigate whether the extracted
components were in fact related to the local diffusion and thus a
”fingerprint” of the underlying tissue micro-structure. Being an
ex vivo dataset with a broad range of b-values, measurements for
two different temporal scales, and an accompanying thorough
analysis published in [35], it was well-suited for testing the pro-
posed method.

The comparison of the mixture maps differing by diffusion time
(Fig. 2c, right column), uncovered areas of high cell density, espe-
cially visual cortex and cerebellum [53,54]. In more detail, the
enhancement of the long-lived diffusion-weighted signal (green
component) for increased diffusion time is associated with the
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degree of restrictions in the local tissue environment [35,55].
Therefore, the identified areas can be further categorized into very
restricted environments (cerebellum) and intermediate restricted
cell environments (visual cortex). This strong contrast across dif-
ferent areas of the cerebral and cerebellar cortex, revealed by the
maps, have to our knowledge not been presented based on other
MR contrast mechanisms before.

Thus, using two diffusion times and the msNMF for decomposi-
tion, the effect of time-dependent diffusion was convincingly
demonstrated, exactly as Lundell et al. aimed at when setting up
their experiment. Their analysis consisted of a voxel-wise calcula-
tion of the powder averaged signal difference at b = 4800 s/mm2

normalized to the b = 0 signal. The analysis revealed similar
time-dependent diffusion contrast, but was dependent on estimat-
ing the b = 0 signal from a 3rd order expansion of the signal in b
and thus delivered a more noisy map than the one presented in
Fig. 2c.

Through the use of non-conventional diffusion encodings with
general gradient waveforms, different effects related to the signal
attenuation in DWI (e.g. anisotropy, restrictions, exchange) can
independently be probed and detected as direct features of the
data or contrasts between measurements exploring single encod-
ing dimensions [35,56]. Time-dependent diffusion is a promising
marker of cell morphology and density in tumors [57]. This makes
the combination of msNMF applied to novel DWI data a potentially
powerful tool for characterization of tumor tissue that is generally
difficult to model, and thus relevant for e.g. therapy response eval-
uation. However, to adapt the acquisition for in vivo measure-
ments, fewer b-values (i.e. shorter scan time) and a more simple
gradient waveform are desired. For this data, it may thus be inter-
esting to investigate whether the separation into the three
diffusion-related components can be obtained with fewer mea-
surements, for example. Such analysis is beyond the scope of this
paper but possible now that the components are characterized.

Consideration should also be given to what tissue information
can be derived if only one data set was available, e.g if only the left
column of mixture maps is used (long diffusion time). The three
macrostructural brain tissues are easily distinguished. Gray matter
is separated from white matter, and firm tissue from aqueous solu-
tions. If the three decaying signal components each are fitted to a
mono-exponential function, the resulting decay constants would
be 0.1�10�3, 0.6�10�3 and 2.3�10�3 mm2/s respectively for the
green, purple and yellow signals. These values are within a range
of ADC values observed in the literature for white matter, gray
matter and CSF respectively, though the ADC is dependent on
acquisition method, handling of ex vivo material, temperature
etc. [58–60]. The fitted values are thus only included here to relate
the found components to a familiar characterization of diffusion. It
is evident that especially the purple signal component deviates
from an exponential decay as it reaches 0 for b = 4842 s/mm2. This
is an unrealistic behaviour indicating that all noise/left-over signal
is assigned to the green component for the last measurement, pos-
sibly an effect of the implicit sparsity of the NMF [19]. The effect
can potentially be reduced with signal sampling at even higher
b-values to allow all individual signals to reach the noise floor, so
they are easier to resolve.

A noticeable feature of the factorization is the alternative repre-
sentation of the signal variation between the two tissue types, gray
and white matter. A difference in the mixture of (mainly) two sig-
nal components discriminates the tissue types rather than a differ-
ence in a mono-exponential decay constant. This exemplifies that
the analysis provides a compact representation of the data that
may reveal relevant signal features without necessarily reflecting
the underlying time-dependent diffusion phenomena [61],
especially when data points are limited. The
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decomposition-based representation may robustly reveal useful
information about the local diffusion compared to a simplified
signal model vulnerable to noise and partial volume effects. Here,
it proved possible to capture cell density variation by means of
the factorization, thereby demonstrating a connection between
components and microstructure.
4.3. In vivo MET2 data

To further demonstrate the versatility of the method, in vivo
data was analyzed quantitatively to extract estimates of edema
water content similar to those obtained by Harkins et al. in [11].
Simultaneously, the method was tested as an alternative solution
for MET2 analysis, which in general is challenged due to the ill-
posed problem of inverting a sum of exponentials [31], but also
highly desired in order to obtain stronger quantitative relation-
ships between MR contrast and tissue microstructure [37,11,10].

The three extracted signal components (Fig. 3) are consistent
with T2-relaxation in the different compartments of white matter,
i.e. IME (green component), intra/extra cellular space (purple com-
ponent), and myelin water (yellow component). The visual con-
trast change observed in the mixture maps for HCP-affected rats
affirmatively indicates that the green component can be inter-
preted as the ”IME signal”, and literature confirms a decay constant
within the range 5–50 ms for water trapped in myelin sheaths [39].

The strategy used in Harkins et al. is similar to the NNLS
approach tested for the simulated data, but assumes a Gaussian
prior for the distribution of decay rates, and was found superior
to the standard NNLS [62]. The T2-distribution was fitted with up
to three Log-Gaussian shaped peaks (components), and this was
followed by a k-means algorithm to cluster the T2-values into
groups of short, intermediate and long decay. The resulting mean
decay constants of the distributions were roughly 9 ms, 40 ms,
and 150 ms, respectively, thus not far from the values obtained
by a mono-exponential fit to the three signal components of the
msNMF (12 ms, 44 ms, and 182 ms). The fitted decay rates are pre-
sented only to include a well-known characterization of the signal
profiles and show that results are consistent with the decomposi-
tion reported by the source paper [11] (also confirmed by the bar-
plots presented in Fig. 4).

Comparison to histology (Fig. 5a) is important for evaluation of
the proposed factorization. The high agreement between EWF esti-
mates and histology, revealed by an r2 of 0.88 (P< 0:001), confirms
that the decomposition is related to the underlying compartmen-
talization of the tissue, and demonstrates the method’s ability to
detect IME severity from T2-weighted relaxometry measurements.
However, similar to the results reported by Harkins et al., a small
overestimation of EWF compared to Wed was observed. In general,
one must be critical to the absolute values, from both factorization
(or any model) and histology. Explanations for the discrepancies
were discussed in [11].

Although the split-half experiment revealed a high repro-
ducibility for a decomposition of rank k ¼ 3, and the CV metric
for the simulation data revealed a relatively high stability of the
method, a stable quantitative measure is in general not guaran-
teed. A variability of the absolute EWF estimates across multiple
runs of the algorithm (as part of the initialization strategy) was
indeed observed, however at a lower level than the subject-
variability. This means that the relative difference of EWF between
rat groups and ROIs was stable, and the correlation of r2=0.88 with
histology was robustly observed (SD = 0.0019 for 50 runs).

The rank of the factorization was predetermined to k ¼ 3 to
match the decomposition presented by Harkins et al. However,
the pr-curve (Fig. 6) supports that two components may be suffi-
cient for a representative reconstruction of the data. Reasons could
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be that the water exchange effectively merges several physical
compartments and diminish the MWF [11], or simply that com-
partments co-vary so a linear combination of two components is
sufficient to describe the relaxation within three different com-
partments. This also explains why estimation of the MWF may
not be trustworthy and thus is not considered here, although it is
sometimes a target for relaxometry measurements. Dependence
on the choice of dimensionality of the sub-system is a common
challenge for decomposition methods as there is no established
procedure for rank determination, and metrics from heuristic
approaches suggested in the literature are highly dependent on
the data properties, making it difficult to know when a metric is
suitable [27,63]. The pr-curve in Fig. 6 illustrates the problem, as
for a range of rank values (k ¼ ½2;4�) an acceptable compromise
is seen between reproducibility and degree of data explanation.
The suggested ”trial-and-error” rank-adjustment guided by left-
over anatomy in the residual image relies on a subjective inspec-
tion, which is a limitation of the method present when the under-
lying sub-system dimensionality is unknown. That being said, the
rank is the only free parameter of the analysis (with or without
the inclusion of a bias-compensating component). In the spectrum
of techniques ranging from restrictive modeling to completely
data-driven signal processing, the msNMF is in the unrestrictive
end while relying on the existence of compartments and using this
to enforce realistic signal behaviour, though possibly approximate,
e.g. due to pronounced intermediate exchange or parameter vari-
ability within physical compartments. The technique used by Har-
kins et al. is also flexible, but still assumes a distribution of one to
three Log-Gaussian shaped peaks of exponential time-constants.

Although assumptions of the signal behaviour are less specific
than in model-based analysis, the monotonocity requirement must
essentially be fulfilled. For clinical multi-echo spin-echo sequences
at fields higher than 1.5 T, for example, transients will typically be
present causing initial signal oscillations, which makes the msNMF
inappropriate as analysis strategy. Also, RF inhomogeneity correc-
tion may be necessary to make signal decay rates independent of
position in the coil. No such transients or inhomogeneity were
observed in the MET2 data, recorded with a preclinical scanner
delivering a train of near-accurate 180� refocusing flip angles,
why it was suited for demonstration of the msNMF.

Overall, the pursuit of micro-structural specificity, pioneered
with the myelin water determination for multiple sclerosis
patients, have throughout the last decade been in rapid develop-
ment, and several strategies exist for analysis of relaxometry data
[14,10,39]. The msNMF is not promoted as a replacement or advo-
cated as a general new tool for MET2 analysis. The two clinical data
examples included in this paper are used to exemplify the charac-
teristics and potential of the proposed analysis method, but not to
promote the method for these applications in particular or in gen-
eral. Many MR signals fall within the class of approximately multi-
exponential signals and when prerequisites are met, the method
offers a data-driven decomposition which may be useful either
for direct analysis or to inspire modeling, e.g. let the detected data
structure inform priors for a more specific parameterization. When
a monotonous slope signal decay or increase is expected, this rela-
tively simple and rapid analysis can give a compact, informative
representation of data.
5. Conclusion

The msNMF robustly separated MR signals into identifiable
components specific to the underlying structure, and produced
quantitative results consistent with those published in the source
papers using tailored analysis. The method is insensitive to
partial-volume effects and requires only a choice of rank, and
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optionally correction of noise biases. The msNMF is potentially
applicable to a broad range of multi-dimensional MR data. The
demonstrated sensitivity to cell density, for example, makes it a
candidate for tumor tissue characterization needed for prognosis
and treatment planning.
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