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Abstract

Inflexible combined heat and power (CHP) plants and uncertain wind power production result in excess power in distribution
networks, which leads to inverse power flow challenging grid operations. Power-to-X facilities such as electrolysers and electric
boilers can offer extra flexibility to the integrated energy system. In this regard, we aim to jointly determine the optimal Power-to-X
facility sizing and integrated energy system operations in this study. To account for wind power uncertainties, a distributionally
robust chance-constrained model is developed to characterize wind power uncertainties using ambiguity sets. Linear decision rules
are applied to analytically express real-time recourse actions when uncertainties are exposed, which allows the propagation of wind
power uncertainties to gas and heat systems. Accordingly, the developed three-stage distributionally robust chance-constrained
model is converted into a computationally tractable single-stage mixed-integer conic model. A case study validates the effectiveness
of introducing the electrolyser and electric boiler into the integrated energy system, with respect to the decreased system cost,
expanded CHP plant flexibility and reduced inverse power flow. The developed distributionally robust optimization model exhibits
better effectiveness and robustness compared to a chance-constrained optimization model assuming wind forecast errors follow
Gaussian distribution. Detailed profit analysis reveals that although the overall system cost is minimized, the profit is distributed
unevenly across various stakeholders in the system. The profit mainly falls with the wind power plants, which therefore are most
motivated to make investments in the flexibility resources. Other parties rely on additional policies such as bilateral contracts with
the wind power plants to gain incentives to invest. The findings from this study can be used to motivate policy-makers to make
proper regulations to incentivize investments in flexibility resources and establish a more reliable power grid.

Keywords: Power to hydrogen and heat, integrated energy system, flexibility planning, distributionally robust chance-constrained
planning, linear decision rule

1. Introduction

As a response to clean energy targets, distributed wind gen-
erators have been emerging in distribution networks. How-
ever, their uncertainty and variability challenge grid operations,
thus limit their continuing rapid development and grid integra-
tion. One of the main concerns for distribution networks with
a high wind energy penetration level is inverse power flow [1],
i.e., power flow from low-voltage networks to high-voltage net-
works. This inverse power flow, typically with a longer delivery
path, raises considerable security issues and incurs high power
losses [1, 2].

Inflexible combined heat and power (CHP) plants have been
recognized as an important source of the inverse power flow
[2, 3]. For some provinces in China, CHP plants supply nearly
70% of heat demands [4], which inevitably, generate a large
amount of electricity at the same time. Especially in winters
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when energy systems face high heat loads, CHP plants are op-
erated in a heat-demand-driven mode, which implies that CHP
plants are operated to follow the high heat demand, thus lose
operational flexibility. The inflexible high electricity output
from CHP plants, together with uncertain and variable wind
power, represents the two significant sources of excess power
in distribution networks, challenging the system operation and
reducing the energy efficiency.

Under this concern, additional flexibility resources have been
introduced into the distribution networks to utilize the excess
power, such as electrical energy storage facilities [5], thermal
storage units [6] and Power-to-X infrastructures [7]. In this
work, we focus on investigating the couping with power to hy-
drogen and heat (P2HH) infrastructures (specifically on elec-
trolysers) and electric boilers to build an integrated energy sys-
tem (IES) to provide flexibility to incorporate the electric and
heat loads and address the long-term energy sufficiency. Elec-
trical storage and heat storage are not within the scope of this
study based on the following reasons. But it is noteworthy that
these two technologies can be incorporated into our problem
with slight modification of the model.

1. Electrical energy storage though can absorb excess elec-
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Nomenclature

Acronyms
AC Absorption Chiller
AEC Alkaline Electrolyser
ARO Adaptive Robust Optimization
BT Battery
CC Chance-Constrained
CHP Combined Heat and Power
DRCC Distributionally Robust Chance-Constrianed
EB Electric Boiler
GT Gas Turbine
HCNG Hydrogen-enriched Compressed Natural Gas
IES Integrated Energy System
MILP Mixed-Integer Linear Programming
MIQCP Mixed-Integer Quadratically Constrained

Programming
MISOCCQP Mixed-Integer Second-Order Cone Con-

strained Quadratic Programming
P2H Power to Hydrogen
P2HH Power to Hydrogen and Heat
PEMEC Polymer Electrolyte Membrane Electrolyser
RO Robust Optimization
SHS Seasonal Hydrogen Storage
SOC Second Order Cone
SOEC Solid Oxide Electrolyser
TT Thermal storage Tank
Indices
i P2HH corner point index
j Auxiliary binary variable index
k CHP corner point index
r Representative day index
t Hour index
Parameters
ε Confidence level parameter
ηcomp Compressor efficiency
ηconv Converter efficiency
ηEB Power to heat conversion efficiency of elec-

tric boiler
µ Mean of prediction error of distributed wind

generators
Σ Covariance of prediction error of distributed

wind generators
C Fuel costs of various corner points of CHP

plant
dp Electric demand
dq Heat demand
m Wind forecast mean
PH2 Hydrogen power of various corner points of

P2HH
PHeat Heat power of various corner points of P2HH
P Power production of various corner points of

CHP plant
Q Heat production of various corner points of

CHP plant
T Temperature of various corner points of

P2HH
P Ambiguity set
C Specific heat capacity of electrolysis cell
ccomp Annualized compressor cost

cconv Annualized converter cost
cEB Annualized electric boiler cost
cel Annualized single electrolyser cell cost
cH2 Hydrogen price
csu, csd Start-up/shut-down cost of CHP plant
ctank Annualized hydrogen tank cost
F Faraday’s constant
kr Weights of representative days
M Arbitrarily large number
mtank,max Maximal tank capacity
Reqv Equivalent thermal resistance of electrolysis

cell
RU,RD Ramp up/down rate of CHP plant
S U, S D Start-up/shut-down rate of CHP plant
Ta Environment temperature
Tmin,Tmax Minimum/maximum electrolysis cell tem-

perature
Z Number of wind power plants
Variables
α, β, ρ, etc Participation factors
usu,usd Binary variable indicating start-up/shut-

down of CHP plant
u ON/OFF status of CHP plant
x̃, x Assigned weights of corner points in CHP’s

operation region
ỹ, y Assigned weights of corner points in P2HH’s

operation region
h̃P2HH , hP2HH Hydrogen production power from P2HH
h̃p2hh, hp2hh Hydrogen production power from single

electrolysis cell
m̃H2,mH2 Stored hydrogen mass
ñH2, nH2 Produced hydrogen mass
p̃EB, pEB Electric boiler consumed power
p̃P2HH , pP2HH Injected power into P2HH
p̃p2hh, pp2hh Injected power into single electrolysis cell
p̃trans, ptrans Transmitted power from transmission grid
q̃EB, qEB Electric boiler released heat power
q̃EXC , qEXC Heat exchange with district heating network

from P2HH
q̃exc, qexc Heat exchange with district heating network

from single electrolysis cell
q̃P2HH , qP2HH Heat release from P2HH
q̃p2hh, qp2hh Heat release from single electrolysis cell
T̃ ,T Electrolysis cell temperature
e Auxiliary continuous variables
icell Electrolysis cell current density
mcomp Compressor capacity: maximum flow rate
mtank Tank capacity
nel Electrolysis cell number in P2HH stack
Pconv Converter capacity
PEB Electric boiler capacity
qDissipation Heat dissipation to the environment from

P2HH
Uact Activation over-potential
Uohm Ohmic over-potential
Urev Reversible voltage
Utn Thermal-neutral voltage
z Auxiliary binary variables
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tricity, does not relieve CHP plants from their tight oper-
ations, i.e., CHP plants still have to work under the heat-
demand-driven mode.

2. Large-scale electrical energy storage is costly and relies
on governmental subsidies to be profitable for power sys-
tem applications [8].

3. The main concern for the integrated energy system is lack
of heat supply, which leads CHP plants to operate in the
heat-demand-driven mode. Thermal storage units them-
selves do not supply heat, but rely on power to heat facil-
ities to convert excess power to heat to charge the thermal
storage. By introducing P2HH facilities and electric boil-
ers into the system, the excess power can be absorbed.
Equivalently important, the CHP plants are released from
the heat-demand-driven mode as part of the heat load is
supplied by power to heat infrastructures. These two fac-
tors combined can significantly reduce the excess power.

4. Thermal storage units typically suffer from low round-
trip efficiency.

In an overview, this work investigates P2HH facility and
electric boiler’s roles for flexibility provision in an integrated
energy system. The following research questions are addressed.

1. How can we determine the optimal sizing of P2HH in-
frastructure and electric boiler in an integrated energy
system, and how do they perform in terms of system
cost decrease, CHP plant flexibility expansion and excess
power reduction?

2. How can wind power uncertainties be characterized in an
integrated energy system model while not knowing its ex-
act probability distribution? How can uncertainties from
power systems propagate to gas and heat systems?

3. How is profit distributed among various stakeholders in
the integrated energy system, and how can we incentivize
investments in flexibility resources?

This study offers an optimal planning decision of the flex-
ibility resources for the integrated energy system considering
minimized overall system cost. It is noteworthy that this in-
vestment decision falls in individual investors under the market
context, who aim to maximize their own profits. However, this
centralized integrated energy system model can still be useful
as it can serve as an ideal benchmark to provide insights for
policy-makers [9]. They can make proper regulations to in-
centivize potential investors to make investment decisions ac-
cording to the planning result from this centralized model. In
section 5.5, the profit distribution among various stakeholders
in the integrated energy system is analyzed. Regulations to in-
centivize investments of these flexibility resources are also dis-
cussed. In the following section, a literature review of most rel-
evant studies is presented to further disclose the contributions
of our study.

Existing studies [3, 10–12] have looked at using power to
heat infrastructures (e.g., electric boilers, heat pumps, com-
bined with thermal storage) to release CHP plants from the
binding heat and power production constraint, thus facilitat-
ing wind power integration. An equally important scheme to

utilize excess power is turning power to hydrogen (P2H) via
electrolysers. Wang et al. [13] has looked at the role of power
to hydrogen and electric boilers in expanding CHP plant’s op-
erational flexibility. An integrated power, heat and hydrogen
optimization model was developed to simulate the system op-
eration. The CHP plant’s operational flexibility expansion was
visualized. However, heat recovery from the electrolyser is not
considered in this study, which could account for around 30%
of injected power [2, 14]. A fixed electricity to hydrogen con-
version ratio of the electrolyser was adopted, which neglects
its varying temperature-hydrogen-heat (T-H-H) relation that re-
flects P2HH’s non-linear hydrogen and heat production at vari-
ous temperature. A detailed description of this concept will be
seen in section 2.

References [2, 4, 15] have proposed operational models for
P2HH infrastructures in various integrated energy systems con-
sidering heat recovery and T-H-H model. The studies demon-
strated the benefits of introducing P2HH in terms of expanded
CHP plant flexibility, reduced overall costs and improved lo-
cal power balancing. However, their models are based on pre-
known P2HH sizes. Uncertainties are not addressed in [4, 15].
A single-level robust optimization (RO) model was adopted in
[2] to handle wind and solar power generation uncertainties,
which generally provides over-conservative planning results. A
joint sizing and operational model for P2HH and other facili-
ties in a multi-carrier energy system was proposed in [16]. The
study applied a two-stage robust optimization (also referred as
adaptive robust optimization, ARO) model to account for gen-
eration and load uncertainties. Likewise, this model generally
gives over-conservative results. Moreover, the conservativeness
of the model cannot be easily adjusted. A full comparison be-
tween these studies and this paper are provided in Table 1 to
disclose the contributions of this work.

As indicated in above literature, uncertainty handling has
been an important consideration in energy system models. Un-
certainty sources in energy systems include power generation,
loads, market prices and etc. Scenario-based stochastic pro-
gramming and robust optimization are the two most common
approaches to address uncertainties. Scenario-based stochastic
programming approach requires pre-known probability distri-
bution of the uncertainty sources in order to create the scenar-
ios. Moreover, a large number of scenarios is generally nec-
essary to characterize the probability distribution, which sig-
nificantly undermines computational tractability. Scenario re-
duction techniques such as K-means clustering algorithm bring
back computational tractability, but at the risk of an inappropri-
ate representation of the uncertainties [9]. Robust optimization
aims to identify the worst uncertainty realization in the uncer-
tainty set and make decisions accordingly. It has found its appli-
cation in previous studies [2, 16]. However, robust optimization
usually leads to over-conservative results. More importantly, its
conservativeness cannot be easily adjusted.

By leveraging the advantages of stochastic programming
and robust optimization, distributionally robust optimization (DRO)
has gain increasing popularity in recent integrated energy sys-
tem planning and operations studies [17–23]. It brings im-
portant characteristics such as adjustable conservativeness level
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Table 1: Comparison between developed model with models in literature

Ref. System spec. P2HH
sizing

Heat
recovery

Electrolyser
modeling

Uncertainty
handling Math. model

[2] CHP,P2HH No Yes T-H-H RO MIQCP
[4] CHP,P2HH,EB No Yes T-H-H Deterministic MILP
[13] CHP,P2HH,EB No No Fixed ratios Deterministic MILP
[15] CHP,P2HH,HCNG No Yes T-H-H Deterministic MILP

[16]
GT,P2HH,EB,AC,

TT,BT,SHS Yes Yes T-H-H ARO *

Paper CHP,P2HH,EB Yes Yes T-H-H DRCC MISOCCQP
* Two-stage RO, solved with C&CG

and not requiring the uncertainty source’s true probability dis-
tribution [19, 20]. An ambiguity set which contains a group of
probability distributions is constructed to characterize the un-
certainties. There are different paradigms to construct the am-
biguity set in the literature. The studies [9, 22–24] constructed
their ambiguity sets based on the first and second order mo-
ment information, while in [17, 21] more general moment in-
formation was adopted to achieve less conservative results. The
authors in [19] built the ambiguity set based on 1-norm and
inf-norm constraints, which allows a simpler solution method.
The study [20] proposed the use of confidence bands to con-
struct their ambiguity set to incorporate the shape information
of uncertaintuy distribution. In [18], the authors proposed a
strengthened ambiguity set based on both moment and Wasser-
stein metric information to characterize the ambiguity set more
accurately. Despite the interesting properties of other methods,
this study followed the most common approach and constructed
the ambiguity set based on first and second order moment infor-
mation considering its easier formulation combined with linear
decision rules and computational tractability properties [25]. To
the best of our knowledge, this modeling technique has not yet
been applied for IES planning study incorporating P2HH.

Based on the above literature review, the main contributions
of this work fall in the following aspects.

1. The sizing of P2HH facility and electric boiler, as well as
system operations are jointly optimized for an integrated
electricity and heat energy system considering minimized
overall system cost.

2. A distributionally robust chance-constrained integrated
energy system model is developed to characterize wind
power uncertainties for the integrated energy system. This
allows adjusting model conservativeness by selecting dif-
ferent confidence levels in the chance constraints.

3. Linear decision rules are applied to analytically express
real-time control actions when uncertainties are exposed,
which allows the propagation of uncertainties originated
from power systems to heat and gas systems.

The following part of this study is structured as below. Sec-
tion 2 introduces the integrated energy system and derives the
T-H-H relation for the P2HH infrastructure. Section 3 details
the distributionally robust chance-constrained planing model
and linear decision rules that are applied to represent recourse

Figure 1: Integrated energy system

actions. Section 4 presents a case study. Relevant results are
shown in section 5. Section 6 draws conclusions and discusses
future work.

2. Integrated Energy System

2.1. Integrated Energy System Structure

The investigated integrated energy system is presented in
Figure 1, which consists of existing wind turbines, CHP plant,
electric and heating loads and potentially installed power to heat
infrastructures: P2HH and electric boiler. Bi-directional power
exchange with the transmission grid is also considered. Vari-
ous types of energy flows are specified, including power flow,
heat flow and gas flow (hydrogen and methane). The wind tur-
bines and CHP plant inject power to the distribution network,
while P2HH, electric boilers and loads consume power. The
distribution network can import or export electricity from the
transmission grid for local balancing. Produced heat from the
P2HH infrastructure, electric boiler and CHP plant is injected
to the district heating network to satisfy the heating demand.
Similar to [9, 24], the electric and heating loads are assumed
inelastic to price. It is noteworthy that an alkaline electrolyser
(AEC) is selected for this P2HH application due to the fact that
it has been commercialized in Mega-Watt levels [2, 16], which
so far is not the case for its counterparts: polymer electrolyte
membrane electrolyser (PEMEC) and solid oxide electrolyser
(SOEC).
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Figure 2: P2HH Structure

2.2. P2HH Modeling

In this section, we focus on the derivation of the T-H-H
model that was originally proposed in [2] and applied in [4,
15, 16] to model the non-linear temperature, hydrogen and heat
production relation of P2HH. It is noted in the previous part that
heat release accounts for approximately 30% of injected power
into the P2HH. By recovering this part of low-grade energy
(60-80°C [26]) for district heating use, the overall efficiency of
P2HH can be significantly increased. Therefore, it is important
to have an accurate model to account for the hydrogen and heat
production in the P2HH. In references [13, 27], a fixed power
to hydrogen conversion factor for the P2HH infrastructure has
been assumed, which can be easily integrated into optimization
models. However, at varying temperature and varying current
density, this assumption fails as this conversion factor can be
changing significantly, which will be shown in later this chap-
ter. In the following sections, 2.2.1 explains the P2HH struc-
ture, 2.2.2 derives the T-H-H relation.

2.2.1. P2HH Structure
A schematic configuration of P2HH infrastructure is pre-

sented in Figure 2, which consists of an AC/DC converter, al-
kaline electrolytic cells, a heat exchanger which collects heat
for district heating network use, a compressor and a hydrogen
tank, which stores hydrogen on a daily basis. The produced hy-
drogen can be used in the transport sector or industry. Various
energy flows are specified in the figure, which include hydrogen
energy flow, injected electric energy flow and heat energy flow.
It is worth noting that we use capital abbreviation P2HH to re-
fer to the electrolyser stack while we use the lowercase p2hh to
refer to each electrolytic cell. The number of electrolytic cells
in the stack is an integer decision variable to be determined in
our model, which links single cells and the stack.

The working process of P2HH is explained as below. The
injected power pP2HH is split into power for hydrogen hP2HH

and heat qP2HH production. The amount of produced hydrogen
is directly proportional to hydrogen production power hP2HH .
Hydrogen is separated from the electrolyte and collected in the
hydrogen tank. Electrolyte in the stack is accordingly sup-
plemented. The other part, i.e., heat power qP2HH , deducted
from dissipation to the environment qDissipation, is collected by
a close-loop water circulation system to supply district heating

demand through a heat exchanger. It is noteworthy that this re-
cycled heat qEXC is not necessarily equivalent to the available
heat qP2HH − qDissipation. Instead, by manipulating qEXC , elec-
trolysis stack temperature can be adjusted in the model.

2.2.2. T-H-H Relation
In this section, we derive the T-H-H relation for a single

P2HH cell, which will be integrated into the model by assum-
ing all the electrolytic cells are working under the same con-
dition [2]. The reason for deriving this T-H-H relation is that
at different temperature and different current density, power to
hydrogen and heat ratios can be varying significantly, which
in return change the cell temperature according to temperature
evolution in the cell. The derivation is shown as below.

pp2hh = Ucellicell (1a)

Ucell (icell,T ) = Urev(T ) + Uohm (icell,T )

+Uact (icell,T )
(1b)

hp2hh = Utnicell (1c)

Utn = Utn(T ) (1d)

qp2hh = pp2hh − hp2hh = (Ucell − Utn)icell (1e)

qp2hh =
hp2hh

Utn(T )

(
Ucell

( hp2hh

Utn(T )
,T

)
− Utn(T )

)
(1f)

Injected power density of the P2HH infrastructure pp2hh is
stated as (1a), where icell refers to the cell current density and
Ucell refers to the cell voltage. The polarization of the elec-
trolysis cell is stated as Eq. (1b), which imposes that the cell
voltage is composed of reversible voltage Urev, over-potentials
from ohmic loss Uohm and activation Uact. Concentration over-
potential from mass transport limitation is neglected as it is
much smaller compared to Uohm and Uact, especially for al-
kaline electrolysers [14, 28]. According to [2, 16], hydrogen
production power density can be stated as (1c) and (1d). Com-
bining (1a) to (1d), the released heat can be expressed as (1e),
being the difference between injected power and power used
for hydrogen production. By eliminating current density icell in
(1e), the T-H-H relation is presented as (1f), which establishes
the non-linear relation between temperature, hydrogen produc-
tion and heat release for the P2HH facility. It is noteworthy that
eliminating icell does not affect the model accuracy, as icell is
determined when temperature and hydrogen power are known,
shown as (1c)-(1d). Referring to [28–30], detailed derivation of
cell voltage and thermal-neutral voltage and data are available
on the online open-source repository [31].

The obtained T-H-H relation for the alkaline electrolyser is
illustrated in Figure 3, which presents an approximately affine
surface. Each point on the surface corresponds to a different
temperature and current density combination. Power instead
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Figure 3: T-H-H relation for P2HH
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Figure 4: Power to heat ratios at various temperature and current density

of power density is used assuming a cell area of 0.25m2. The
boundaries reflect temperature limits and current density limits.
Specifically, AB and CD reflects lower and upper temperature
limits (60-80°C), AD and BC reflects lower and upper current
density limits (0.2-0.4Acm−2). These limits are imposed from
[26]. The convex hull formulated by the boundary points is
adopted to approximate this non-linear surface in order for this
T-H-H relation model to be easily into the following optimiza-
tion model.

Power to heat and hydrogen ratios are illustrated in Fig-
ure 4 and Figure 5 respectively. At higher current densities,
thermal-neutral voltage remains the same, while cell voltage
increases significantly. Therefore, power to hydrogen ratio de-
creases, while power to heat ratio increases as a higher pro-
portion of power is converted to heat. At increasing tempera-
tures, thermal-neutral voltage increases slowly. However, cell
voltage drops as higher temperature facilitates electrolysis re-
action. Therefore, an increase in power to hydrogen ratio and
a decrease in power to heat ratio are seen. Combining the in-
fluence of temperature and current density, power to heat ratio
ranges from 0.18 to 0.26 (44.4% difference), power to hydro-
gen ratio ranges from 0.74 to 0.82 (10.8% difference), which
underlines the importance of applying a more accurate T-H-H
relation rather than assuming fixed power to heat and power to
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Figure 5: Power to hydrogen ratios at various temperature and current density

hydrogen ratios.

3. Problem Formulation

3.1. Addressing Uncertainties

As previously introduced, a distributionally robust chance-
constrained planning model is applied to address short-term
wind power uncertainties while assuming inelastic (i.e., deter-
ministic) electric and heating demands. These short-term wind
power uncertainties are modeled via ambiguity sets, which are
a family of distributions concerning wind power forecast errors
having the same first- and second-order moment information,
i.e., mean and covariance. It is assumed that exact values for
the first- and second-order moments can be estimated from his-
torical data [9].

We note Z as the number of uncertainty sources, i.e., wind
power generators. The wind power production in the short term
is modeled as mr,t + ωr,t, where mr,t ∈ RZ refers to the wind
power forecast vector andωr,t ∈ RZ refers to the uncertain wind
power forecast error vector which follows some unknown dis-
tribution in the ambiguity set Pr,t. Without loss of generality,
the first-order moment, i.e., mean of wind power forecast er-
rors, similar to [9, 24], is assumed to be 0, i.e., µr,t = 0. Using
this zero-mean assumption, we note the ambiguity set Pr,t as
(2) for each representative day and each hour, which includes
a family of distributions D in Ψ(RZ) that have the same mean
µr,t and covariance Σr,t. E refers to the expectation operator
wherein the uncertain parameter ω follows the distribution D.

Pr,t =
{
D ∈ Ψ

(
RZ

)
: ED(ω) = µr,t,ED

(
ωω>

)
= Σr,t

}
(2)

The underlying philosophy behind distributionally robust
chance-constrained planning is that we would like to identify
the worst distribution in this ambiguity set Pr,t that ωr,t follows
and make decisions under this worst distribution, hence is con-
sistent with the idea of distributionally robust planning. Us-
ing the above ambiguity set, the distributionally robust chance-
constrained model is formulated in the following sections.
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3.2. Mathematical Model

The objective function (3) seeks to minimize the total sys-
tem cost, taking into account investment and O&M costs of the
electrolyser, AC/DC converter, compressor, hydrogen tank and
electric boiler, and system operational costs, where the set Θ in-
cludes decision variables in the planning stage, i.e., {nel, Pconv,
mcomp,mtank, PEB,usu,usd,u}. The first five terms, i.e., celnel +

cconvPconv +ccompmcomp +ctankmtank +cEBPEB, are the annualized
investment and O&M costs of the electrolyser, AC/DC con-
verter, compressor, hydrogen tank and electric boiler, whereas
the next term represents the start-up and shut-down costs of the
CHP plant for a target year, with r and kr referring to a set
of representative days and their corresponding weights for the
year.

min .
Θ

{
celnel + cconvPconv + ccompmcomp + ctankmtank

+cEBPEB +
∑

r

kr

∑
t

[
csuusu

r,t + csdusd
r,t

]
+max .

D∈Prt

min .
Θrec

∑
r

kr

∑
t

ED
[
C>x̃r,t(ωr,t)

+ctrans( p̃trans
r,t (ωr,t))2 − cH2ñH2

r,t (ωr,t)
]}

(3)

The last term includes the CHP operation cost, electricity
exchange cost with the transmission grid and hydrogen sale
profit respectively. The electricity exchange cost is a quadratic
term, penalizing both importing and exporting electricity from
the transmission grid. It is noteworthy that this last term takes a
max-min form, aiming to identify the worst forecast error dis-
tribution in the ambiguity set (thus distributionally robust) and
optimize recourse actions based on the worst distribution, given
the investment decisions and day-ahead CHP plant ON/OFF
decisions. Using linear decision rules, this overall three-stage
(i.e., min-max-min) distributionally robust problem boils down
to a single-level minimization problem and can be readily solved
with existing solvers. Details will be covered in later this sec-
tion.

nel ∈ N, [Pconv,mcomp, PEB] ≥ 0, 0 ≤ mtank ≤ mtank,max (4)

Constraints (4) is imposed on the investment decision vari-
ables, where the number of electrolysis cells in the electrolyser
stack nel is constrained as an integer variable. An upper limit is
set to the tank size mtank for practical consideration of a maxi-
mum hydrogen export on a daily basis.

usu ∈ B|r|×|t|,usd ∈ B|r|×|t|,u ∈ B|r|×|t| (5a)

ur,t − usu
r,t ≤ 0,∀r, t = 1 (5b)

−ur,t−1 + ur,t − usu
r,t ≤ 0,∀r, t ≥ 2 (5c)

ur,t−1 − ur,t − usd
r,t ≤ 0,∀r, t ≥ 2 (5d)

ur,t − ur,τ ≤ 0,∀τ ∈ {t + 1, ...,min(|t|, v̄ + t − 1)},∀r, t = 1 (5e)

−ur,t−1 + ur,t − ur,τ ≤ 0,∀τ ∈ {t + 1, ...,min(|t|, v̄ + t − 1)},
∀r, 2 ≤ t ≤ |t| − 1

(5f)

ur,t−1 − ur,t + ur,τ ≤ 1,∀τ ∈ {t + 1, ...,min(|t|, v + t − 1)},
∀r, 2 ≤ t ≤ |t| − 1

(5g)

1>x̃r,t(ωr,t) = ur,t,∀r,∀t (5h)

min
D∈Prt

P[̃xr,t(ωr,t) ≥ 0] ≥ 1 − ε,∀r,∀t (5i)

min
D∈Prt

P[̃xr,t(ωr,t) ≤ 1] ≥ 1 − ε,∀r,∀t (5j)

min
D∈Prt

P[P>x̃r,t(ωr,t) ≤ S U] ≥ 1 − ε,∀r, t = 1 (5k)

min
D∈Prt

P[P>x̃r,t(ωr,t) − P>x̃r,t−1(ωr,t−1) ≤ S U(1 − ur,t−1)

+RUur,t−1] ≥ 1 − ε,∀r, t ≥ 2
(5l)

min
D∈Prt

P[P>x̃r,t−1(ωr,t−1) − P>x̃r,t(ωr,t) ≤ S D(1 − ur,t)

+RDur,t] ≥ 1 − ε,∀r, t ≥ 2
(5m)

Operational constraints of the CHP plant are shown in (5),
where (5a) defines the start-up, shut-down and ON/OFF sta-
tus of the CHP plant using sets of binary variables respectively.
(5b)-(5d) associate ON/OFF status variables with start-up and
shut-down variables which assume the CHP plant to be off at the
beginning of each representative days. The minimum up- and
down- time limits of the CHP plants are imposed in (5e)-(5g).
Constraints (5h)-(5m) enforce the real-time operation limits for
the CHP plant. (5h) constrains the CHP plant to be operated
within its feasible region if it is on, where x̃r,t is a R4-valued
function with its components summing up to 1, representing
weights to each corner points in the operational region (A, B,
C, D as in Fig 7). (5i)-(5m) are a set of individual distribu-
tionally robust chance constraints, where P[·] is the probability
operator wherein the uncertainty source ωr,t follows the worst
distribution D in the ambiguity set Pr,t. This implies that un-
der the worst distribution, the probability of meeting each in-
dividual inequality constraints should be greater than or equal
to 1 − ε, where ε is a predefined parameter from 0 to 1. This
allows adjusting the conservativeness of the developed model
by choosing different ε. It is worth noting that the worst distri-
bution within the constraints and that in the objective function
(3) are not necessarily identical. By adopting linear decision
rules and Cantelli’s inequality (a one-sided Chebyshev inequal-
ity), the distributionally robust chance constraints can be for-
mulated as second-order cone constraints. Specifically, (5i) and
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(5j) constrain the weights of each corner points in CHP plant’s
operation region to be within 0 to 1. (5k)-(5m) pertain to ramp-
ing rates of the CHP plant.

p̃trans
r,t (ωr,t) + P>x̃r,t(ωr,t) + 1>(mr,t + ωr,t) =

p̃P2HH
r,t (ωr,t)/ηconv + ñH2

r,t η
comp + p̃EB

r,t (ωr,t) + 1>dp
r,t,∀r,∀t

(6a)

Q>x̃r,t(ωr,t) + q̃EXC
r,t (ωr,t) + q̃EB

r,t (ωr,t) = 1>dq
r,t,∀r,∀t (6b)

Similar to (5h), the electricity and heat balance equality
constraints (6) are met regardless of the uncertainties. Specifi-
cally, (6a) enforces the electricity balance, where the power in-
jection from the transmission grid, CHP plant and distributed
wind generators are equal to the power consumption of the
P2HH facility, compressor, electric boiler and the inelastic de-
mand. A conversion efficiency parameter ηconv is applied to
account for AC/DC conversion loss. Electricity consumption
of the compressor is set to be linearly related to hydrogen pro-
duction by a constant compression efficiency ηcomp in the unit
of MWh/kg, which compresses outlet hydrogen from 30 bar to
around 540 bar for truck load [27]. (6b) imposes the heat bal-
ance, where the heat output from the CHP plant, P2HH facil-
ity and electric boiler equals the inelastic heat demand. Using
linear decision rules, the nominal terms and stochastic terms
can be separated and the original equality constraint can be re-
placed as two (nominal and stochastic) corresponding equality
constraints.

min
D∈Prt

P[ p̃EB
r,t (ωr,t) ≥ 0] ≥ 1 − ε,∀r,∀t (7a)

min
D∈Prt

P[p̃EB
r,t (ωr,t) ≤ PEB] ≥ 1 − ε,∀r,∀t (7b)

q̃EB
r,t (ωr,t) = p̃EB

r,t (ωr,t)ηEB,∀r,∀t (7c)

Constraints (7) pertain to operations of the electric boiler,
where (7a)(7b) enforce the electric boiler to operate within its
designed capacity. (7c) imposes a linear relation between the
power injection and heat output via a fixed power conversion
ratio ηEB.

p̃P2HH
r,t (ωr,t) = nel p̃p2hh

r,t (ωr,t),∀r,∀t (8a)

h̃P2HH
r,t (ωr,t) = nel̃hp2hh

r,t (ωr,t),∀r,∀t (8b)

q̃EXC
r,t (ωr,t) = nelq̃exc

r,t (ωr,t),∀r,∀t (8c)

min
D∈Prt

P[̃qexc
r,t (ωr,t) ≥ 0] ≥ 1 − ε,∀r,∀t (8d)

p̃p2hh
r,t (ωr,t) = h̃p2hh

r,t (ωr,t) + q̃p2hh
r,t (ωr,t),∀r,∀t (8e)

Constraint (8) pertains to operations of the P2HH facility,
where (8a)-(8c) relate the cell operational variables with the
electrolyser stack operational variables. (8d) imposes that the

P2HH facility supplies heat to the district heating network. Power
balance of the electrolyser is enforced in (8e), where the inject-
ing power is converted to hydrogen energy and released heat.

ñH2
r,t (ωr,t) =

3.6 × 106

UtnF
h̃P2HH

r,t (ωr,t),∀r,∀t (8f)

Using Faraday’s law of electrolysis and assuming a constant
thermal-neutral voltage in the operational temperature range
(0.44% difference over the temperature range), the produced
hydrogen (kg) can be related to the hydrogen production power
(MW) as (8f), where F is the Faraday’s constant.

1>ỹr,t(ωr,t) = 1,∀r,∀t (8g)

min
D∈Prt

P[̃yr,t(ωr,t) ≥ 0] ≥ 1 − ε,∀r,∀t (8h)

min
D∈Prt

P[̃yr,t(ωr,t) ≤ 1] ≥ 1 − ε,∀r,∀t (8i)

PH2
>ỹr,t(ωr,t) = h̃p2hh

r,t (ωr,t),∀r,∀t (8j)

PHeat
>ỹr,t(ωr,t) = q̃p2hh

r,t (ωr,t),∀r,∀t (8k)

T>ỹr,t(ωr,t) = Tr,t,∀r, t = 1 (8l)

T>ỹr,t(ωr,t) = T̃r,t(ωr,t),∀r, t ≥ 2 (8m)

Similar to the CHP plant, the P2HH facility takes a lin-
earized operation region, with ỹ which is a R4-valued function
representing weights associated with each corner points in the
operation region, hence (8g)-(8i). Hydrogen production power,
released heat and electrolyte temperature are related to ỹ by
(8j)-(8m), with PH2 ∈ R4 and PHeat ∈ R4 denoting hydro-
gen production power and released heat in the corner points.
It is noteworthy that the starting temperature of the P2HH is as-
sumed as a pre-known parameter (e.g., 80°C), which does not
take a stochastic term (8l).

min
D∈Prt

P[Tmin ≤ T̃r,t(ωr,t)] ≥ 1 − ε,∀r, t ≥ 2 (8n)

min
D∈Prt

P[T̃r,t(ωr,t) ≤ Tmax] ≥ 1 − ε,∀r, t ≥ 2 (8o)

T̃r,t+1(ωr,t+1) = Tr,t +
1
C

(
q̃p2hh

r,t (ωr,t) − q̃exc
r,t (ωr,t)

−
1

Reqv (Tr,t − Ta)
)
,∀r, t = 1

(8p)

T̃r,t+1(ωr,t+1) = T̃r,t(ωr,t) +
1
C

(
q̃p2hh

r,t (ωr,t) − q̃exc
r,t (ωr,t)

−
1

Reqv (T̃r,t(ωr,t) − Ta)
)
,∀r, 2 ≤ t ≤ |t| − 1

(8q)
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min
D∈Prt

P[T̃r,t(ωr,t) +
1
C

(
q̃p2hh

r,t (ωr,t) − q̃exc
r,t (ωr,t) −

1
Reqv

(T̃r,t(ωr,t) − Ta)
)
≥ Tmin] ≥ 1 − ε,∀r, t = |t|

(8r)

min
D∈Prt

P[T̃r,t(ωr,t) +
1
C

(
q̃p2hh

r,t (ωr,t) − q̃exc
r,t (ωr,t) −

1
Reqv

(T̃r,t(ωr,t) − Ta)
)
≤ Tmax] ≥ 1 − ε,∀r, t = |t|

(8s)

Minimum and maximum temperature limits of the P2HH
are enforced in (8n) and (8o) respectively as distributionally ro-
bust chance constraints. Temperature evolution of the P2HH
electrolyte is imposed by (8p) and (8q), where C is the specific
heat capacity of the electrolysis cell. The last term 1

Reqv

(
Tr,t − Ta

)
refers to heat dissipation of the electrolyte, where Reqv (°C/MW)
is the equivalent thermal resistance of the electrolyte. Distri-
butionally robust chance constraints (8r) and (8s) enforce the
temperature limits at the end of representative days.

m̃H2
r,t (ωr,t) = ñH2

r,t (ωr,t),∀r, t = 1 (9a)

m̃H2
r,t (ωr,t) = m̃H2

r,t−1(ωr,t−1) + ñH2
r,t (ωr,t),∀r, t ≥ 2 (9b)

min
D∈Prt

P[m̃H2
r,t (ωr,t) ≤ mtank] ≥ 1 − ε,∀r, t = |t| (9c)

Constraint (9) are associated with the hydrogen tank oper-
ation. (9a)-(9b) impose the hydrogen content evolution in the
tank, while (9c) limits the hydrogen content within the tank ca-
pacity at the end of each representative days. (10a)-(10b) per-
tain to capacity limits of the AC/DC converter and compressor
respectively.

min
D∈Prt

P[p̃P2HH
r,t (ωr,t) ≤ Pconvηconv] ≥ 1 − ε,∀r,∀t (10a)

min
D∈Prt

P[̃nH2
r,t (ωr,t) ≤ mcomp] ≥ 1 − ε,∀r,∀t (10b)

3.3. Linear Decision Rule

The infinite-dimensional nature of the problem (3)-(10) as
the recourse variables are functions of uncertain parameters that
are only revealed in the real time results in an intractable opti-
mization problem. To enable solvability of the problem, linear
decision rules [9, 24] are applied, where recourse actions of
the flexibility sources (i.e., CHP operations, P2HH operations,
electric boiler operations, grid transmission) are approximated
as affine responses to the uncertainty realization. The proposed
linear decision rules, although somewhat limiting by not cover-
ing the dynamic nature of power system operations, provide a
straightforward understanding of uncertainty handling in power
systems and a reasonable approximation of recourse actions

and most importantly, a tractable reformulation of the proposed
problem (3)-(10) at a lower level of complexity.

The linear recourse actions of the flexibility sources are pre-
sented in Appendix A. In addition to their nominal schedul-
ing, the flexible agents are assigned optimal affine resposes,
which govern their operations in response to uncertainty real-
ization in the real time. Using transmission power as an exam-
ple, p̃trans

r,t (ωr,t) refers to the transmitted power in the real-time
operation as a function of wind forecast errors ωr,t, ptrans

r,t refers
to the nominal scheduling in the absence of forecast errors and
βr,t(1>ωr,t) denotes the affine response, where 1>ωr,t denotes
aggregated forecast error and βr,t is the affine response parame-
ter (also called participation factor).

3.4. Model Reformulation

Using above linear decision rules, the problem (3)-(10) can
be reformulated as a tractable optimization problem, where the
objective (3) is reformulated as a single-level minimization prob-
lem and the distributionally robust chance constraints are re-
formulated as second-order cone constraints. The details are
presented as in Appendix B. The overall methodology of this
study is shown in Figure 6.

3.5. Benchmark Chance-Constrained Model

A benchmark model using chance-constrained programming
(not distributionally robust) is formulated to compare with the
developed model. It assumes the forecast errors follow Gaus-
sian distribution. Similar to distributionally robust chance con-
straints, chance constraints assuming Gaussian distribution can
also be reformulated into second-order cone constraints. The
derivation is seen in Appendix C.

3.6. Assumptions

Throughout this study, the following assumptions are made.

• The probability distribution of wind power uncertainties
is assumed unknown, which motivates the development
of a distributionally robust chance-constrained model.

• The exact mean and covariance of wind forecast errors
are assumed estimated from historical data.

• The recourse actions of flexibility resources in the real-
time are assumed linearly related to wind power uncer-
tainty realization.

• The ON/OFF status of the CHP plant is assumed deter-
mined in the day-ahead, while its production levels can
be adjusted in the real time according to wind power pro-
duction.

• Hydrogen produced from alkaline electrolysers is assumed
fully sold at constant price.

• The network constraints are not yet included.
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Figure 6: Overall methodology, code and data open source at [31, 32]

4. Case Description

A case study is performed on an integrated energy system
to test the effectiveness of the developed distributionally robust
chance-constrained model for the power to heat facility siz-
ing and IES operations. The integrated energy system includes
electric and heat loads. Some technical details of the case study
are introduced below, while the others can be accessed on the
online open-source repository [32]. The models are formu-
lated with YALMIP toolbox [33] on Matlab and solved with
the Gurobi solver 9.0 [34]. The optimization models take 2-3
hours to run on an Intel Core i5-9300H CPU running at 2.4GHz
with an 8GB RAM.

4.1. CHP Plant
For CHP plants, electricity and heat production are cou-

pling. A convex operation region similar to Figure 7 has been
extensively applied in energy system studies [2, 3, 10, 16] to
characterize CHP plant operation. In our study, non-negative
variables x̃ summing up to 1 are assigned to each corner point
to represent weights given to each corner point during CHP op-
eration.

4.2. Electric and Heat Demands
Yearly electric and heat demands are normalized from [35]

and [36] respectively, shown as Figure 8. While electric load
and district heating load both present seasonal variations, dis-
trict heating load variation is more fluctuating. Much less heat
is consumed during the summer than the winter.

0 2 4 6 8 10 12
HCHP[MW]

4

6

8

10

12

14

P C
H
P[M

W
]

A
B

C
D

Figure 7: Operational region of the CHP plant

In order to capture the load characteristics while maintain-
ing computational tractability, a K-means clustering algorithm
is applied to form a set of representative days for the target year.
This technique has found its wide application in energy sys-
tem studies, e.g., [9] to cluster various types of scenarios. The
underlying idea for K-means clustering technique is to cluster
scenarios that are close in terms of Euclidean distance in high-
dimensional space. In this study, we limit us to 10 representa-
tive days for the target year since further increasing the number
of scenarios does not significantly change the results.
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Figure 8: Normalized hourly electric and district heating demands

Figure 9: Wind forecast errors of wind farm 1 (w1) and wind farm 2 (w2) at
two consecutive hours (t-1,t) in per-unit

4.3. Wind Uncertainties

Uncertainty handling has been an important consideration
in energy system models. In this study, developed a distribu-
tionally robust chance-constrained model to account for wind
uncertainties. Linear decision rules are applied to represent
real-time operation when wind uncertainty is revealed. This
provides an intuitive and straightforward understanding of un-
certainty handling in power systems.

In order to implement this distributionally robust chance-
constrained planning model, mean of wind forecast as well as
covariance of wind forecast error vector for each representa-
tive day and hour are required. For this purpose, 1000 wind
scenarios each containing 10 representative days’ wind forecast
profile are directly acquired from the dataset of [9] to calculate
these parameters, i.e., mr,t, Σr,t. To better illustrate the intention
of using DRCC planning, Figure 9 presents wind forecast errors
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Figure 10: Quantile-quantile plots and p values for wind forecast errors of wind
farm 1 (w1) and wind farm 2 (w2) at two consecutive hours (t-1,t)

for two wind farms at two consecutive hours in a representative
day. Diagonal histograms show frequency distributions of wind
forecast errors, which have a mean of 0. Off-diagonal plots il-
lustrate the spatial and temporal wind forecast error correlation
between two wind farms for two consecutive hours. Specif-
ically, plots in blue show spatial correlation of the two wind
farms at the same hour, plots in green show temporal correla-
tion for the same wind farm, while plots in red show both tem-
poral and spatial correlation of wind forecast errors. It can be
observed from these plots that these forecast error correlations
do not necessarily match any specific type of distribution. In
addition, normality tests are performed based on the quantile-
quantile plot and the Kolmogorov–Smirnov (KS) test, shown in
Figure 10. On all plots systematic departure from the straight
line is observed on the tails. P values from the KS test under the
null hypothesis that the wind forecast errors follow the normal
distribution are also shown. At the 10% significance level, the
null hypothesis is rejected for all, which indicates the forecast
errors do not fit into normal distribution. These point out the
significance of using distributionally robust optimization mod-
els to address wind forecast error uncertainties.

5. Results

This section covers important findings from the above case
study. Specifically, section 5.1 verifies the effectiveness of the
developed model by looking at power and heat balance of the
integrated energy system, as well as P2HH operation. Section
5.2 discusses the effects of introducing P2HH and electric boiler
to the IES in terms of economical performance, flexible CHP
plant operation and reduced inverse power flow. Section 5.3
deals with the system performance at various confidence lev-
els. Section 5.4 compares the distributionally robust chance-
constrained model with a chance-constrained model assuming
Gaussian distribution. Section 5.5 looks at the profit distribu-
tion across various stakeholders, i.e., wind plants, CHP plants
and P2HH/EB investors.
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Figure 11: Upper: nominal scheduling of wind turbines, CHP plant and trans-
mitted power. Lower: Stochastic scheduling of transmitted power and CHP
plant responding to wind power uncertainties, ε = 0.05
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Figure 12: Nominal scheduling of CHP plant, ε = 0.05

5.1. System Operations

5.1.1. Power and Heat Balance
Figure 11 presents the nominal scheduling and affine pol-

icy parameters (participation factors) of wind generators, CHP
plant and transmission grid under the existing integrated en-
ergy system context for a representative day with high heating
demand, where the P2HH facility and electric boiler are not
available. The inelastic electric load is met mostly from wind
power. Even in some hours (e.g., hour 4-6), wind power ex-
ceeds the electric loads. However, the CHP plant is held on-
line throughout the day, producing a nearly constant amount of
power (around 15 MW), which results from the binding high
heating demand. A large amount of power is thus transmitted
into the high-voltage transmission network for local balancing,
resulting in inverse power flow challenging grid operation. The
lower plot in Figure 11 indicates that the transmission grid is
the only source of flexibility for the distribution network to re-
spond to the uncertain wind power at most of the hours due to
the fact that the CHP plant lacks operational flexibility when
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Figure 13: Nominal and stochastic scheduling of various electricity genera-
tors/users, ε = 0.05
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Figure 14: Nominal and stochastic scheduling of various heat generators, ε =

0.05

facing high heating load. Similarly, Figure 12 shows the nomi-
nal heating scheduling of the CHP plant, which is able to meet
the high heating demand. However, as it is the only heating
source, it is not able to adjust its heat production when facing
wind forecast errors.

On the other side, Figure 13 and Figure 14 present the nom-
inal scheduling and affine responses of various agents in the in-
tegrated energy system for power and heat respectively where
the P2HH facility and electric boiler are introduced. It is ob-
served in Figure 13 that the inverse power flow is eliminated,
while a small amount of power is transmitted into the system
to meet extra demand from power to heat facilities. The CHP
plant regains operational flexibility as seen in Figure 13 where
it is able to lower its electricity production when unforeseen
extra wind power is injected in the system. The electric boiler
also responds to wind uncertainties by adjusting its power con-
sumption, e.g., increasing consumption when facing extra wind
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Figure 15: Temperature evolution for a representative day

power. It is worth mentioning that the P2HH facility is working
steadily at around its full capacity in order to gain more prof-
its by selling hydrogen, thus far less flexible than the electric
boiler. It is also noticed that the transmission grid still takes
an important role in local balancing due to power to heat facili-
ties’ relatively small capacities. On the heating side, the system
gains two extra heating sources: the P2HH facility and electric
boiler to satisfy the heating demand. The electric boiler re-
sponds to unforeseen wind power by consuming more energy,
and the CHP plant decreases its heat production.

5.1.2. P2HH Operations
Figure 15 validates the P2HH model by looking at temper-

ature evolution for a typical day. The cell temperature evolves
according to its heat generation and release. When the heat
generation exceeds the sum of district heating use and dissipa-
tion, the cell temperature increases. When the heat generation is
lower than that, the cell temperature drops. However, the alka-
line electrolysis cell temperature only evolves in a small range
of 60-80°C referring to [26]. It is also noticeable that heat dis-
sipation accounts for a high percentage of heat release due to
that the cell is operating at a relatively high temperature com-
pared to the ambient one. In order to further enhance the P2HH
facility’s overall energy efficiency, proper insulation should be
designed.

5.2. Effects of Introducing P2HH and Electric Boiler
In this section, the effects of introducing P2HH infrastruc-

ture and electric boiler to the integrated energy system are ex-
plored. The analysis is carried out in terms of system cost,
CHP plant flexibility and excess power. Four scenarios are con-
sidered regarding the involvement of P2HH and eletric boiler,
which are listed in Table 2.

5.2.1. System Cost
Table 3 covers the optimal sizing and annualized system

costs of various facilities for the integrated energy system un-
der the 4 scenarios. By introducing a 6.7 MW electric boiler

Table 2: Simulation scenarios

Scenarios System components
Scenario 1 CHP
Scenario 2 CHP, EB
Scenario 3 CHP, P2HH
Scenario 4 CHP, EB, P2HH
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Figure 16: CHP operations for various scenarios

into the existing integrated energy system, the system cost is
halved due to reduced CHP output (hence reduced fuel cost)
and reduced excess power which could have brought consid-
erable penalty costs to the system. On the other side, by in-
troducing a 3.7MW P2HH facility, the system cost drops by a
magnitude, which comes from the extra revenue from using ex-
cess power to producing hydrogen, in addition to reduced CHP
cost and reduced excess power. By a combination of a 3.5 MW
P2HH facility and a 4MW electric boiler, the system starts to
make extra profit on top of meeting local electric and heat-
ing demands. However, our detailed economic analysis also
found that although the system cost is reduced, the profit is dis-
tributed unevenly across various stakeholders. This part will be
expanded in section 5.5.

5.2.2. Flexible CHP Operations
The points in Figure 16 represent working points of the

CHP plant throughout the 10 representative days under the 4
scenarios. For scenario 1 where the CHP plant is the only heat
source for the integrated energy system, the CHP plant’s work-
ing points lie on its right boundary most of the hours, especially
when facing high heating demands. Thus the CHP plant lacks
operational flexibility. By introducing extra heat sources in-
cluding P2HH and electric boiler into the system, many of the
CHP plant’s working points shift out of the right boundary as
can be observed in all other scenarios, which indicate that its
operational flexibility has been improved. It is also seen that
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Table 3: Integrated energy system specifications and annualized cost under various scenarios

Scenarios EB P2HH Tank Compressor Annualized IES cost
Sceanrio 1 - - - - $3.6 × 106

Sceanrio 2 6.7MW - - - $1.8 × 106

Sceanrio 3 - 3.7MW 1500kg 67kg/h $4.4 × 105

Scenario 4 4.0MW 3.5MW 1500kg 64kg/h $−1.7 × 105

Figure 17: Power transmission under various scenarios

the electric boiler has a better performance compared to the
P2HH facility in terms of helping improve CHP plant’s oper-
ational flexibility, which is attributed to its higher power to heat
conversion ratio and larger capacity.

5.2.3. Reduced Inverse Power Flow
Figure 17 summarizes transmitted power from the high-

voltage transmission grid under various scenarios. It is evident
that a large amount of inverse power flow is taking place under
scenario 1 due to inflexible CHP plant operation. By introduc-
ing P2HH and electric boiler, most of the inverse power flow
is eliminated. Moreover, the integrated energy system absorbs
electricity from the transmission grid to satisfy extra demand
from the P2HH facility and electric boiler. It is noticeable that
under scenario 2, more inverse power flow is eliminated than
scenario 3, which is attributed to the electric boiler’s larger ca-
pacity and higher power to heat conversion efficiency.

5.3. Effect of Confidence Levels

This section looks at the influence of different confidence
levels, i.e., 1 − ε on the system performance. Obviously, a
higher confidence level indicates a more stringent model and
thus a higher system cost. Figure 18 shows that the optimal
power to heat facility sizing does not vary significantly under
different confidence levels. However, a steady increase in the
system cost is observed, which is related to the higher trans-
mission costs at higher confidence levels incurred by expensive
regulating services from the transmission grid, shown in Fig-
ure 19 where transmission grid takes up more of the role of

0.6 0.8 0.9 0.92 0.95 0.99
0

2

4

C
a
p
a
c
it
y
(M

W
)

EB

P2HH

0.6 0.8 0.9 0.92 0.95 0.99
-4

-3

-2

-1

A
n
n
u
a
liz

e
d
 c

o
s
t 
($

) 105

0.6 0.8 0.9 0.92 0.95 0.99

Confidence level

0

0.5

1

V
io

la
ti
o
n
 p

ro
b
a
b
ili

ty

Figure 18: P2HH/EB sizing, system costs and violation probabilities at various
confidence levels

handling wind uncertainties with increasing confidence level re-
quirement. The underlying reason is that in order to satisfy the
high confidence level requirement, more flexible and reliable
resource has to be in position to handle wind uncertainties. The
CHP plant, P2HH and electric boiler though can provide cer-
tain degree of flexibility, are limited by their capacities. Trans-
mission grid is then in place to cope with wind uncertainties by
exchanging electricity with the integrated energy system, which
leads to higher transmission costs.

A higher confidence level implies a higher system cost, but
at the same time a more conservative and robust model. In or-
der to verify this, an out-of-sample violation test is performed
for the distributionally robust chance-constrained models with
different confidence levels. A new dataset is constructed based
on classic bootstrapping method. In this test, the affine policies
are fixed according to the optimization results for each model
with a different confidence level. The 1000 scenarios in the
new dataset are fed into the model using the fixed affine poli-
cies. The out-of-sample violation probability is defined as the
percentage of scenarios where at least one inequality constraint,
e.g., (5l), (5m) is violated. The violation probability shows
how robustly the wind uncertainty is characterized in the DRO
model. A higher violation probability indicates a poor and non-
robust characterization. The test results are available in Figure
18, which shows that the violation probability is at a high level
when the confidence level is lower than 0.8, which implies that
almost under every scenario at least one inequality constraint is
violated. When the confidence level exceeds 0.95, the original
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Figure 19: Participation factors at various confidence levels

dataset is represented robustly, with nearly zero violation of the
inequality constraints. Taking a balance between model robust-
ness and economical performance, we adopt a confidence level
of 0.95 for our application.

5.4. Comparison with Chance-Constrained Model

To further illustrate the effectiveness of our developed dis-
tributionally robust chance-constrained model, we compare it
with a chance-constrained model assuming Gaussian distribu-
tion, which models the wind forecast errors with Gaussian dis-
tribution. As a matter of fact, our forecast data show some
ellipsoid-like Gaussian distribution features as can be visual-
ized in Figure 9. The results are listed in Table 4. Similarly, the
model robustness does not chance power to heat facility sizing.
More transmission grid regulating is involved in handling wind
uncertainties in a more stringent model. Under both confidence
levels, the profits from chance-constrained models roughly dou-
ble that of distributionally robust chance-constrained models.
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Figure 20: Profit distribution across various stakeholders

However, the chance-constrained models perform poorly in the
out-of-sample violation tests, which implies that the chance-
constrained models inappropriately and insuffiently represent
the wind forecast dataset. From this comparison, we conclude
the effectiveness and robustness of our developed distribution-
ally robust chance-constrained model.

5.5. Profit Distribution

In section 5.2, we verify the positive economical perfor-
mance of introducing power to heat facilities to the integrated
energy system in terms of system cost. In this section, we dis-
cuss the profit distribution among various stakeholders in the
integrated energy system, i.e., wind power plant, CHP plant,
P2HH/EB investors. Through this analysis, we found that al-
though the system cost is reduced, the profit is distributed un-
evenly across the stakeholders. Thus, proper policies need to be
designed to incentivize investments in power to heat facilities.
Detailed analysis is expanded in the following.

We assume an electricity price of $55/MWh and a heating
price of $45/MWh. We further assume that the transmission
cost is deducted from the electricity revenue pool and the rest
is split between the wind plants and the CHP plant according
to their individual electricity production. Before introducing
power to heat facilities, the wind plant and the CHP plants split
electricity revenue while the CHP plant also takes revenue from
its heat production. After introducing P2HH and electric boiler
to the system, the P2HH/EB investors earn revenue from heat
and hydrogen selling, while investing these facilities and pur-
chasing electricity for self-use. The profits for each party are
shown in Figure 20. The wind power plants’ revenue increases
as a result of high wind power utilization and lower transmis-
sion cost. Unexpectedly, the CHP plant’s profit also increases
even though its power and heat production decreases, which
is compensated from the same reason as for the wind plant:
higher power utilization and lower transmission cost. The flex-
ibility service investor also makes profits from its investment,
but at a much lower level than the wind power plants, which

15



Table 4: Comparison between distributionally robust chance-constrained model with chance-constrained model with Gaussian distribution

Confidence levels 95% 99%
Models DRCC CC DRCC CC
EB(MW) 4.0 4.0 4.0 4.0
P2HH(MW) 3.5 3.5 3.5 3.5
Annualized cost($) -1.7×105 -3.1×105 -1.1 ×105 -2.7×105

Violation probability 0.026 0.999 0 0.94

implies that the majority of the reduced system cost falls on the
wind power plants. Therefore, additional incentive mechanism
needs to be invented to incentivize investments of these flexi-
bility resources from external investors. One possible option is
to negotiate a bilateral contract between the wind power plants
and the flexibility resource investors to transfer part of the in-
cremental profit from the wind power plants to the flexibility
resource investors.

On the other side, if the investment decision falls on exist-
ing participants, i.e., the wind power plants and the CHP plant,
the wind power plant is more incentivized to make such invest-
ments (forming a power, heat, hydrogen energy hub) as it can
increase its overall profit by 35%. The CHP plant is more re-
luctant to make such investment strategies. Even though it can
increase its profit by 28%, the majority of benefits from flexible
system operations fall on the wind power plants. Similarly, a
proper bilateral contract between the wind power plants and the
CHP plant can then be initiated to incentivize such investment
from the CHP plant.

To summarize, the wind power plants are most incentivized
to make investments in power to heat facilities. The CHP plant
and external investors rely on further incentives to make such
investments, e.g., bilateral contracts with the wind power plants
to claim part of the wind plants’ extra profit.

6. Conclusions

In this study, we investigate the use of power to heat fa-
cilities including electrolysers and electric boilers to provide
additional flexibility to an integrated energy system including
wind plants, combined heat and power plant as well as electric
and heating loads. A distributionally robust chance-constrained
model is developed to consider wind generation uncertainties,
while linear decision rules are applied to simulate recourse ac-
tions. The developed model is applied in a case study to opti-
mize electrolyser and electric boiler sizing and system opera-
tions.

By introducing the electrolyser and electric boiler into the
integrated energy system, decreased system cost, improved com-
bined heat and power plant flexibility and reduced inverse power
flow are identified. Comparing the distributionally robust opti-
mization models under different confidence levels, it is found
that models with higher confidence levels though have higher
costs, exhibit stronger robustness from the out-of-sample viola-
tion tests. Further comparing the developed distributionally ro-
bust optimization model with a benchmark chance-constrained

model which assumes wind power forecast errors follow Gaus-
sian distribution, we found that the distributionally robust opti-
mization model shows better effectiveness and robustness than
the chance-constrained model. Detailed profit analysis reveals
that although the system cost is enhanced for the integrated en-
ergy system, the profit is distributed unevenly across various
stakeholders, where the wind power plants take most of the ben-
efits from extra system flexibility, hence is most incentivized to
make such investments. The CHP plant and external investors
rely on bilateral contracts with the wind power plants to be mo-
tivated to invest in flexibility resources. The findings from this
study can motivate regulators to make proper policies to incen-
tivize investments in flexibility resources and establish a more
reliable power grid.

Future work can be conducted in the following areas. From
the model perspective, distribution network and district heat-
ing network topology could be incorporated into the model.
Electrical energy storage and heat storage could be considered.
From the methodology perspective, alternatives to construct the
ambiguity set such as Wasserstein distance are worth examin-
ing. Generalized decision rules could be adopted to simulate
recourse actions.

Appendix A. Linear Decision Rules

x̃r,t(ωr,t) = xr,t + (1>ωr,t)αr,t,∀r,∀t (A.1a)

p̃trans
r,t (ωr,t) = ptrans

r,t + βr,t(1>ωr,t),∀r,∀t (A.1b)

p̃EB
r,t (ωr,t) = pEB

r,t + ρr,t(1>ωr,t),∀r,∀t (A.1c)

q̃EB
r,t (ωr,t) = qEB

r,t + νr,t(1>ωr,t),∀r,∀t (A.1d)

ñH2
r,t (ωr,t) = nH2

r,t + γr,t(1>ωr,t),∀r,∀t (A.1e)

p̃P2HH
r,t (ωr,t) = pP2HH

r,t + ∆r,t(1>ωr,t),∀r,∀t (A.1f)

p̃p2hh
r,t (ωr,t) = pp2hh

r,t + δr,t(1>ωr,t),∀r,∀t (A.1g)

q̃EXC
r,t (ωr,t) = qEXC

r,t + Λr,t(1>ωr,t),∀r,∀t (A.1h)

q̃exc
r,t (ωr,t) = qexc

r,t + λr,t(1>ωr,t),∀r,∀t (A.1i)
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h̃P2HH
r,t (ωr,t) = hP2HH

r,t + Πr,t(1>ωr,t),∀r,∀t (A.1j)

h̃p2hh
r,t (ωr,t) = hp2hh

r,t + πr,t(1>ωr,t),∀r,∀t (A.1k)

q̃p2hh
r,t (ωr,t) = qp2hh

r,t + κr,t(1>ωr,t),∀r,∀t (A.1l)

ỹr,t(ωr,t) = yr,t + (1>ωr,t)ζr,t,∀r,∀t (A.1m)

T̃r,t(ωr,t) = Tr,t + µr,t(1>ωr,t),∀r, t ≥ 2 (A.1n)

m̃H2
r,t (ωr,t) = mH2

r,t + υr,t(1>ωr,t),∀r,∀t (A.1o)

Appendix B. Model Reformulation

Appendix B.1. Objective Function

The expectations in the objective function (3) are derived as
(B.1).

ED
[
C>x̃r,t
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) ]
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(B.1b)

Based on the above derivation (B.1), the max. term and un-
certainty terms in the objective function (3) disappear as the dis-
tributions in the ambiguity set share the same first- and second-
order moments (i.e., mean and covariance). The two min. terms
merge and the objective function (3) is hence reformulated as
(B.2), which is a single-level quadratic program.
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Appendix B.2. Reformulating Chance Constraints

Applying linear decision rules, the distributionally robust
chance constraints can be reformulated as second-order cone
constraints. Without loss of generality, we herein derive the re-
formulation of the following distributionally robust chance con-
straint (B.3) using Cantelli’s inequality (B.4), where P refers
to the ambiguity set grouping distributions D having the same

first- and second-order moment (i.e., µ,Σ). A refers to a vector
with a proper dimension and b is a scalar.

min
D∈P

P[A>γ ≤ b] ≥ 1 − ε (B.3)

P[X∗ − E(X∗) ≤ k] ≥ 1 −
σ2(X∗)

σ2(X∗) + k2 (k > 0) (B.4)

The Cantelli’s inequality (i.e., one-sided Chebyshev inequal-
ity) is stated as (B.4), where X∗ refers to a random variable
and k is a positive scalar. It has been shown in [37] that this
bound is tight which implies that there exist a distribution with
mean E(X∗) and covariance σ2(X∗) satisfying the equality, i.e.,
P[X∗−E(X∗) ≤ k] = 1− σ2(X∗)

σ2(X∗)+k2 (k > 0). In the following (B.5),
we establish the equivalence between the distributionally robust
chance constraint (B.3) and a second-order cone constraint, i.e.,∥∥∥Σ1/2A

∥∥∥
2 ≤

√
ε

1−ε
(
b − A>µ

)
using Cantelli’s inequality.

min
D∈P

P
[
A>γ ≤ b

]
= min

D∈P
P

[
A>γ − A>µ ≤ b − A>µ

]
= 1 −

σ2(A>γ)
σ2(A>γ) + k2 = 1 −

A>ΣA
A>ΣA + k2

(B.5a)

1 −
A>ΣA

A>ΣA + k2 ≥ 1 − ε =⇒
√

A>ΣA ≤
√

ε

1 − ε
(b

−A>µ) =⇒
∥∥∥Σ1/2A

∥∥∥
2 ≤

√
ε

1 − ε
(b − A>µ)

(B.5b)

Using the established equivalence between the distribution-
ally robust chance constraint (B.3) and (B.5b), we can refor-
mulate the afore-mentioned distributionally robust chance con-
straints, which are shown as below. The equality constraints
which contains affine recourse actions can also be reformulated
by grouping nominal terms and stochastic terms. As an ex-
ample, (5h) can be expressed as 1>xr,t + 1>αr,t(1>ωr,t) = ur,t

by substituting recourse actions with corresponding affine poli-
cies. By separating nominal and stochastic terms, this equality
can be expressed as (B.6a).

1>xr,t = ur,t, 1>αr,t = 0,∀r,∀t (B.6a)

∥∥∥αr,t,kΣ
1/2
r,t 1

∥∥∥
2 ≤

√
ε

1 − ε
xr,t,k,∀r,∀t,∀k (B.6b)

∥∥∥αr,t,kΣ
1/2
r,t 1

∥∥∥
2 ≤

√
ε

1 − ε
(1 − xr,t,k),∀r,∀t,∀k (B.6c)

∥∥∥P>αr,tΣ
1/2
r,t 1

∥∥∥
2 ≤

√
ε

1 − ε
(S U − P>xr,t),∀r, t = 1 (B.6d)

ptrans
r,t + P>xr,t + 1>mr,t = pP2HH

r,t /ηconv + nH2
r,t η

comp

+pEB
r,t + 1>dp

r,t,

βr,t + P>αr,t + 1 = ∆r,t/η
conv + γr,tη

comp + ρr,t,∀r,∀t

(B.6e)
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Q>xr,t + qEXC
r,t + qEB

r,t = 1>dq
r,t,

Q>αr,t + Λr,t + νr,t = 0,∀r,∀t
(B.6f)

∥∥∥ρr,tΣ
1/2
r,t 1

∥∥∥
2 ≤

√
ε

1 − ε
pEB

r,t ,∀r,∀t (B.6g)

∥∥∥ρr,tΣ
1/2
r,t 1

∥∥∥
2 ≤

√
ε

1 − ε

(
PEB − pEB

r,t

)
,∀r,∀t (B.6h)

qEB
r,t = pEB

r,t η
EB, νr,t = ρr,tη

EB,∀r,∀t (B.6i)

pP2HH
r,t = nel pp2hh

r,t , ∆r,t = nelδr,t,∀r,∀t (B.6j)

hP2HH
r,t = nelhp2hh

r,t , Πr,t = nelπr,t,∀r,∀t (B.6k)

qEXC
r,t = nelqexc

r,t , Λr,t = nelλr,t,∀r,∀t (B.6l)

∥∥∥λr,tΣ
1/2
r,t 1

∥∥∥
2 ≤

√
ε

1 − ε
qexc

r,t ,∀r,∀t (B.6m)

pp2hh
r,t = hp2hh

r,t + qp2hh
r,t , δr,t = πr,t + κr,t,∀r,∀t (B.6n)

nH2
r,t =

3.6 × 106

UtnF
hP2HH

r,t , γr,t =
3.6 × 106

UtnF
Πr,t,∀r,∀t (B.6o)

1>yr,t = 1, 1>ζr,t = 0,∀r,∀t (B.6p)

∥∥∥ζr,t,iΣ
1/2
r,t 1

∥∥∥
2 ≤

√
ε

1 − ε
yr,t,i,∀r,∀t,∀i (B.6q)

∥∥∥ζr,t,iΣ
1/2
r,t 1

∥∥∥
2 ≤

√
ε

1 − ε
(1 − yr,t,i),∀r,∀t,∀i (B.6r)

PH2
>yr,t = hp2hh

r,t ,PH2
>ζr,t = πr,t,∀r,∀t (B.6s)

PHeat
>yr,t = qp2hh

r,t ,PHeat
>ζr,t = κr,t,∀r,∀t (B.6t)

T>yr,t = Tr,t,T>ζr,t = 0,∀r, t = 1 (B.6u)

T>yr,t = Tr,t,T>ζr,t = µr,t,∀r, t ≥ 2 (B.6v)
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r,t +
1

Reqv Ta) − Tmin

)
,∀r, t = |t|

(B.6y)

∥∥∥∥∥∥
(
(1 −

1
ReqvC

)µr,t +
1
C
κr,t −

1
C
λr,t

)
Σ

1/2
r,t 1

∥∥∥∥∥∥
2

≤

√
ε

1 − ε

(
− (1 −

1
ReqvC

)Tr,t

−
1
C

(qp2hh
r,t − qexc

r,t +
1

Reqv Ta) + Tmax

)
,∀r, t = |t|

(B.6z)

mH2
r,t = nH2

r,t , υr,t = γr,t,∀r, t = 1 (B.7a)

∥∥∥υr,tΣ
1/2
r,t 1

∥∥∥
2 ≤

√
ε

1 − ε

(
mtank − mH2

r,t

)
,∀r, t = |t| (B.7b)

∥∥∥∆r,tΣ
1/2
r,t 1

∥∥∥
2 ≤

√
ε

1 − ε

(
Pconvηconv − pP2HH

r,t

)
,∀r,∀t (B.7c)

∥∥∥γr,tΣ
1/2
r,t 1

∥∥∥
2 ≤

√
ε

1 − ε

(
mcomp − nH2

r,t

)
,∀r,∀t (B.7d)

Appendix B.3. Inter-temporal Constraints

Constraints (5l) and (5m) are a set of inter-temporal con-
straints, which involves uncertainties in two consecutive hours.
Similar to [9], the uncertainty parameter vector is set to include

the two consecutive hours, i.e.,
[
ωr,t−1
ωr,t

]
∈ R2Z for these con-

straints. (5l) and (5m) are hence reformulated as (B.9a) and
(B.9b) respectively. In order to establish the corresponding
second-order cone constraints, a new covariance matrixΣr(t−1),rt ∈

R2Z×2Z is defined in (B.8) to model not only the spatial cor-
relation but also the inter-temporal correlation of forecast er-
rors. Using this new covariance matrix, (B.9a) and (B.9b) can
be equivalently reformulated as second order cone constraints
(B.9c) and (B.9d).

Σr(t−1),rt =

[
Σr(t−1) Υr(t−1),rt

Υr(t−1),rt Σrt

]
(B.8)

min
D∈Pr(t−1),rt

P
[
P>αr,t

[
0
1

]> [
ωr,t−1
ωr,t

]
− P>αr,t−1

[
1
0

]> [
ωr,t−1
ωr,t

]
≤ P>xr,t−1 − P>xr,t + S U(1 − ur,t−1) + RUur,t−1

]
≥ 1 − ε,∀r, t ≥ 2

(B.9a)
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min
D∈Pr(t−1),rt

P
[
P>αr,t−1

[
1
0

]> [
ωr,t−1
ωr,t

]
− P>αr,t

[
0
1

]> [
ωr,t−1
ωr,t

]
≤ −P>xr,t−1 + P>xr,t + S D(1 − ur,t) + RDur,t

]
≥ 1 − ε,∀r, t ≥ 2

(B.9b)

∥∥∥∥∥∥Σ1/2
r(t−1),rt

(
P>αr,t

[
0
1

]
− P>αr,t−1

[
1
0

] )∥∥∥∥∥∥
2
≤

√
ε

1 − ε(
P>xr,t−1 − P>xr,t + S U(1 − ur,t−1) + RUur,t−1

)
,∀r, t ≥ 2

(B.9c)

∥∥∥∥∥∥Σ1/2
r(t−1),rt

(
− P>αr,t

[
0
1

]
+ P>αr,t−1

[
1
0

] )∥∥∥∥∥∥
2
≤

√
ε

1 − ε(
− P>xr,t−1 + P>xr,t + S D(1 − ur,t) + RDur,t

)
,∀r, t ≥ 2

(B.9d)

The temperature evolution equality constraints (8p)-(8q) and
hydrogen content evolution constraint (9b) are also reformu-
lated by grouping nominal and stochastic terms. Due to exis-
tence of uncertainties for two consecutive hours in these con-
straints, an assumption is made that the aggregated forecast er-
ror in two consecutive hours are similar, i.e., 1>ωt−1 ≈ 1>ωt.
Using this assumption, the stochastic terms for two consecu-
tive hours can be eliminated simultaneously, shown as (B.9e)-
(B.9i).

Tr,t+1 = Tr,t +
1
C

(
qp2hh

r,t −qexc
r,t −

1
Reqv (Tr,t−Ta)

)
,∀r, t = 1 (B.9e)

µr,t+1 =
1
C

(
κr,t − λr,t

)
,∀r, t = 1 (B.9f)

Tr,t+1 = Tr,t +
1
C

(
qp2hh

r,t −qexc
r,t −

1
Reqv (Tr,t −Ta)

)
,∀r, 2 ≤ t ≤ |t| −1

(B.9g)

µr,t+1 = µr,t +
1
C

(
κr,t − λr,t −

1
Reqv µr,t

)
,∀r, 2 ≤ t ≤ |t| − 1 (B.9h)

mH2
r,t = mH2

r,t−1 + nH2
r,t , υr,t = υr,t−1 + γr,t,∀r, t ≥ 2 (B.9i)

Appendix B.4. Linearizing bilinear terms

Bilinear terms (e.g., nel pp2hh
r,t ) exist in (B.6j)-(B.6l), which

cannot be handled by optimization solvers directly. Using the
big M method, these bilinear terms can be linearized as (B.10),
where (B.10a) defines the integer variable nel using a set of bi-
nary variables. As an example, (B.10b) expressed (8a) using the

above binary variables, where er,t, j = z j p
p2hh
r,t which is further

linearized in (B.10c) and (B.10d) using the big M method.

nel =

N∑
j=1

2 j−1z j, z j ∈ {0, 1}, nel ≤ 2N − 1 (B.10a)

pP2HH
r,t =

N∑
j=1

2 j−1er,t, j,∀r,∀t (B.10b)

−Mz j ≤ er,t, j ≤ Mz j,∀r,∀t,∀ j (B.10c)

−M(1−z j)+pp2hh
r,t ≤ er,t, j ≤ M(1−z j)+pp2hh

r,t ,∀r,∀t,∀ j (B.10d)

In summary, the overall mathematical model aims to op-
timize the objective function (B.2) under the constraints {(4),
(5a)-(5g), (B.6a)-(B.6d), (B.9c)(B.9d), (B.6e)-(B.6i), (B.10a)-
(B.10d), (B.6m)-(B.6x), (B.9e)-(B.9h), (B.6y)(B.6z), (B.7a), (B.9i),
(B.7b)-(B.7d)}, which forms a mixed-integer second-order cone
constrained quadratic program (MISOCCQP). Solvers like Gurobi
can be applied to solve it.

Appendix C. Benchmark Model: Chance-Constrained Plan-
ning with Gaussian Distribution

As a general case, (C.1) represents a chance constraint where
the uncertainty parameter γ follows Gaussian distribution with
mean µ and covariance Σ. The derivation of the correspond-
ing second-order cone constraint is seen in (C.2), which estab-
lishes the equivalence between the chance constraint (C.1) and
the second-order cone constraint

∥∥∥Σ1/2A
∥∥∥

2 ≤
1

Φ−1(1−ε) (b − A>µ)
where Φ refers to the cumulative distribution function (CDF) of
the standard Gaussian distribution and Φ−1 refers to its inverse
function.

P
[
A>γ ≤ b

]
≥ 1 − ε (C.1)

P
[
A>γ ≤ b

]
= Φ

[
b − A>µ
√

A>ΣA

]
≥ 1 − ε =⇒

b − A>µ
√

A>ΣA
≥ Φ−1(1 − ε)

=⇒
∥∥∥Σ1/2A

∥∥∥
2 ≤

1
Φ−1(1 − ε)

(b − A>µ)

(C.2)

It is straightforward to identify that the second-order cone
reformulations of distributionally robust chance constraints and
chance constraints assuming Gaussian distribution take similar
forms, with the only difference lying on the right side of the

inequalities, being
√

ε
1−ε and 1

Φ−1(1−ε) for distributionally robust
chance constraints and chance constraints with Gaussian distri-
bution respectively. Obviously, distributionally robust chance

constraints form a much tighter reformulation, with
√

ε
1−ε be-

ing 2-5 times smaller compared to 1
Φ−1(1−ε) under different ε,

which implies distributionally robust chance-constrained plan-
ning would result in a more conservative planning result.
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