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Abstract. As the climate is changing and buildings are designed with a life expectancy of 50+ 
years, it is sensible to take climate change into account during the design phase. Data 
representing future weather are needed so that building performance simulations can predict 
the impact of climate change. Currently, this usually requires one year of weather data with a 
temporal resolution of one hour, which represents local climate conditions. However, both the 
temporal and spatial resolution of global climate models is generally too coarse. Two general 
approaches to increase the resolution of climate models - statistical and dynamical downscaling 
have been developed. They exist in many variants and modifications. The present paper aims 
to provide a comprehensive overview of future weather application as well as critical insights 
in the model and method selection. The results indicate a general trend to select the simplest 
methods, which often involves a compromise on selecting climate models.  

1.  Introduction and background 

Climate change is one of the greatest challenges of modern-day society. Based on observed data, the 
total increase in average temperature between periods 1850-1900 and 2003-2012 is 0.78 °C [1]. The 
building sector is one of the main greenhouse gas emitters, responsible for around 19% of the 
worldwide greenhouse gas emissions [1]. These trends call for evermore sustainable and energy 
efficient buildings. During a lifetime of more than 50 years, current buildings will be exposed to 
progressively warmer weather, increased frequency of heavy precipitation events, and other climate 
change phenomena [1], which can have a negative impact on their performance. Therefore, it is 
reasonable to account for future climate during building design.   

Building performance simulation (BPS) is an essential tool for predicting the building energy 
demand and indoor environmental quality. Various formats of weather data are used in building 
simulation, but they generally include air temperature, air humidity, solar radiation, as well as wind 
speed and direction at an hourly temporal resolution as a minimum. Traditionally, a meteorologist 
applies a set of ranking criteria to the individual months of a continuous 20-to-30-year historical 
observed data set and assembles a year of 12 typical months to create a weather file [2]. The number 
of years required to create a weather file is arbitrary, but mostly a period of 30 years is used, as it is 
equivalent to the climate standard normal period [3].  

Climate scientists worldwide use Global Climate Models (GCM) and Regional Climate Models 
(RCM) to predict the future climate. These are simulation models representing physical processes in 
the atmosphere, ocean, cryosphere, and on land. RCMs typically simulate a region over a large land 
area at higher spatial and temporal resolution compared to the global scale of GCMs. A RCM is 
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typically nested within a GCM, which provide an initial condition and time dependent boundary 
conditions for the RCM [4]. Each RCM can be used to downscale multiple GCMs. 

For each Coupled Model Intercomparison Project (CMIP), climate models use a standardized set of 
forcing scenarios released by the International Panel on Climate Change (IPCC) to simulate climate 
systems response to increasing greenhouse gas concentrations. CMIP3 (~2005 to 2010) uses Special 
Report on Emissions Scenarios (SRES) [5], CMIP5 (2010 to 2014) uses Representative Concentration 
Pathway (RCP) [1], and CMIP6 (2013 to ~2022) uses Shared Socioeconomic Pathway (SSP) [6]. 
The current spatial and temporal resolution of GCMs is too coarse for BPS. Therefore, studies on the 
subject use various methods to increase the spatial and temporal resolution to create suitable future 
weather files. These methods are commonly referred to as downscaling and there are two main 
approaches, dynamical downscaling, and statistical downscaling [7]. A third less commonly used 
approach, hybrid downscaling is a combination of the two main approaches [8]. 

The purpose of this study was to review studies using future weather data in building performance 
simulations. We present a large collection of studies, summarizing key attributes of each study to get 
an overview of the topic. 

2.  Methodology 

The literature search comprised the search engines DTU Findit, Web of Science, Elsevier search 
results, Mendeley, Google scholar, and DuckDuckGo. The most frequently used keywords were: 
climate, change, future, weather, data, building, performance, simulation, impact, study, heating, 

cooling, ventilation, and overheating. The criteria for considering a study in the results of the present 
paper were that it must present results from a BPS using predicted future weather data. Additionally, 
only fully dynamic BPS tools were considered, tools using quasi steady-state calculation approach 
were excluded.  

3.  Results 

We reviewed a total of 109 full articles of which 47 were identified as climate change related building 
performance simulation studies. The 37 studies are listed in Table 2 and have covered 164 locations. 
As the simulation studies dealing with predictions of building performance in the future are receiving 
increasing attention, a webpage was created, that allows an easy update of the current list of identified 
studies (www.futureweatherbps.com). The downscaling method column (Table 2) discloses how the 
climate data was downscaled and or converted into a weather file usable for BPS. Morphing was the 
most used downscaling method (33%) followed by CCWorldWeatherGen (CCWWG) (24%) or 
directly simulating an output from dynamically downscaled data from RCM(s) (24%). The 47 studies 
use a selection of 61 different GCMs. Each GCM is used by one to eight studies, except for HadCM3, 
which is used by 21 studies indicating that HadCM3 might be overrepresented in the literature. More 
than a half of the studies from 2015 or newer rely solely on outdated data from CMIP3. This is 
partially attributed to the continued use of the weather generator tool CCWorldWeatherGen. One 
reason why the CCWorldWeatherGen tool is still being used is that it is easy to use as it generates 
EnergyPlus or TMY2 weather files directly. Although many studies are aware of the uncertainties 
involved in climate modelling, only five studies have described their method for selecting climate 
models and they generally follow the IPCC criteria. Omitting climate model selection is problematic 
as climate models differ widely [9] and using a climate model in the extreme end of the entire 
ensemble can lead to misleading results. 

Some examples of methods include Liu et al. [10] creating a TMY weather file from historical data 
and using it together with averaged data from 24 GCMs to make six future weather files (three time 
periods and two RCP scenarios). Bravo Dias et al. [11] compare three downscaling methods: 
morphing, dynamical downscaling, and CCWorldWeatherGen. Generally, most studies compare the 
future weather with historic data from the same climate model, but Silvero et al. [12] compares the 
results of the future weather with results from the observed weather because historic data from 2009 
from the MOCH-HadGEM2-ES model was not available.  
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Four studies [8,11,13,14] have compared weather files obtained by different methods. Judging by 
the mean temperatures, the downscaling methods for creating future weather file ranked from lowest 
to highest temperature increase are: dynamical downscaling, morphing, Meteonorm, CCWorld-
WeatherGen, and WeatherShift. Fernández et al. [15] compared a large ensemble of climate models 
and found RCMs to be skewed towards lower temperatures compared to GCMs, which supports 
dynamical downscaling having smaller temperature increase than GCM based downscaling methods.  

Our review suggests (Table 2), there is a general trend to select the simplest methods. Thirty 
studies use output data from a single climate model. Twelve studies use multiple climate models, but 
only three of them [8,16,17] implemented at least four variables: dry bulb temperature, relative 
humidity, solar radiation, and wind speed with wind direction from the baseline weather file. Others 
excluded wind speed [10,18,19] or used dry bulb temperature only [20–22] which is not 
meteorologically consistent unless the other variables are adjusted.  

Many studies use BPS to compute the increase in cooling demand and decrease in heating demand 
caused by the climate change. Their results are illustrated in Table 1. The differences in predicted 
change in cooling demand, and heating demand (with respect to the particular baseline) cannot be 
directly compared. They vary according to the different climate models and downscaling methods 
applied as well as the different approaches to simulation of heating and cooling. However, Table 1 
indicates that there is a much larger spread in predicted cooling demand than in predicted heating 
demand. With respect to the cooling demand the predicted increase is in the range from 12 to 375 %. 

In addition to the many different methods used by different studies to create future weather files, 
there are particularly many ways to treat the solar radiation data. The root of the problem is that GCMs 
and RCMs only provide the global horizontal irradiance, while direct normal irradiance and diffuse 
horizontal irradiance is required for BPS. Clear sky models is a field of study in itself [23] and so far, 
no studies have investigated, which clear sky model is best suited for climate model outputs. Two 
examples of approach to using of solar radiation data are following. Jylhä et al. [17] apportion the 
global solar radiation between direct and diffuse radiation using an empirical approach and utilise an 
observed average partition between the radiation components. Cellura et al. [24] used the global solar 
radiation to calculate the direct and diffuse solar radiation based on the ASHRAE Handbook of 
Fundamentals from 2013. Other studies such as the study by Pouriya and Umberto [13] keep solar 
radiation from the baseline weather file. 

Table 1. A comparison of the change in cooling- and heating demand relative to their baselines. 

Ref. Scenario Cooling increase Heating decrease 
[25] RCP2.6 – RCP 8.5 12 - 35 % No heating demand 
[26] A1F1, A2 17 - 36 % 15 - 49 % 
[27] RCP 4.5 29 - 31 % 21 - 22 % 
[13] A2, RCP 8.5 14 - 55 % 18 - 27 % 
[28] A2 40 - 163 % 24 - 90 % 
[22] A2, A1B, B2 59 - 156 % 23 - 55 % 
[10] RCP2.6 – RCP 8.5 121 - 278 % No heating demand 
[24] RCP2.6 – RCP 8.5 81 - 375 % 25 - 82 % 

 
4.  Conclusion 

We presented an extensive review of literature focused on the use of future weather files in building 
performance simulations. The large number of available climate models brings a high difficulty in 
selecting the optimum one, which motivated this study. Various downscaling methods can increase the 
spatial and temporal resolution to create future weather files suitable for building performance 
simulation. Most use morphing or Climate Change World Weather file Generator, both classified as 
statistical downscaling while others use dynamically downscaled data from regional climate models. 
Most studies omit climate model selection and depending on the climate model the results can be 
misleading.  
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