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Fast GRNN-Based Method for Distinguishing
Inrush Currents in Power Transformers

Shahabodin Afrasiabi, Mousa Afrasiabi, Benyamin Parang, Mohammad Mohammadi, Member, IEEE,
Haidar Samet, Member, IEEE, Tomislav Dragicevic, Senior Member, IEEE

Abstract—Differential protection, as the key protection element
in the power transformers, has always been threatened with
sending false trips subjected to external transient disturbances.
As a result, differential protection needs an additional block
to distinguish between internal faults and external transient
disturbances. The protection system should i) be able to perform
based on raw data, ii) be able to learn fully temporal features
and sudden changes in the transient signals, and iii) impose
no assumption on noise. To address these challenges, a fast
recurrent neural network, namely fast gated recurrent neural
network (FGRNN). By removing reset gate in the gated recurrent
unit (GRU), the proposed network is capable of learning abrupt
changes in addition to significantly reducing the computational
time. Furthermore, a loss function based on an information
theory concept is formulated in this paper to enhance the learning
ability as well as robustness against non-Gaussian/Gaussian
noises. A generalized form of mutual information is also adopted
to form a noise model-free loss function, then incorporated
with the designed deep network. Simulated and experimental
examinations engaging various external factors, in addition to
comparison between the proposed fast GRNN, GRU and seven
firmly-established methods indicates the faster and more reliable
performance of the proposed algorithm.

Index Terms—Differential protection, Power transformers, In-
rush current, Internal fault, Deep learning, Fast gated recurrent
neural network (FGRNN)

I. INTRODUCTION

A. Motivation

Power transformers are essential devices in power sys-
tem. Therefore, protection of power transformers is crucial
to prevent large energy outages as a catastrophic effect of
faults [1]. Differential protection has been the main protection
scheme in power transformers because of its simple principle
and efficiency . When a power transformer is energized
initially or experiences a sudden change in its terminals, a
typically non-sinusoidal transient current flows in transformer
windings which abruptly reaches a large value in the first
half cycle [2].Although differential protection has been widely
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studied in the previous investigations, there are several main
challenges that motivated us to present the current work,
including: i) performance in an extremely short-time period
(less than 10 ms); ii) capturing the fully temporal information
of the transient differential current signal without neglecting
the transient changes; iii) being able to perform in the real
conditions without imposing any assumption on measurement
noises; iv) can perform accurately considering eternal factors
such as current transformer (CT) saturation, series capacitor
compensation, and fault current limiter (FCL) [3].

B. Brief literature Review

Distinguishing internal faults from inrush currents have
been widely investigated in researches using various methods.
In term of the basic principles, we can classify them into
three categories: signal processing, model-based, and artificial
intelligence methods. A popular group is based on analyzing
measurement signals based on spectral analysis techniques
[1]. Model-based methods include establishing and accurate
estimation using least square [4] and extended Kalman filter
[5]. In spite of fast performance and easy implementation,
these two families have deficiencies such as sensitivity to
noises and threshold values and dependency on different
models in varying conditions.

The original idea of using intelligent classifiers to identify
transformer inrush and faults was published in 1994 [6]. Since
1994, several shallow-based structures have been presented
to distinguish between internal faults and inrush currents.
For instance, artificial intelligence neural network (ANN) [7],
relevance vector machine (RVM) [8], support vector machine
(SVM) [9], learning vector quantization (LVQ) [10], and k-
nearest neighbor (KNN) [11], are some of the previously
presented investigations. Their shallow structures cannot dis-
tinguish internal faults when data have a complex structure.
For instance, they will experience a decrease in accuracy when
the fault data is affected by external factors such as FCL
which limits the magnitude of fault current to a value close to
the magnitude of inrush current and may cause problems for
differential protection in detecting the fault. As the effect of
external factors is inevitable in practice, we need more reliable
methods. Machine learning methods with shallow architecture
are not able to extract features from raw data. Therefore, they
need to be attached to feature extractors like WT. Since there
are various types of feature extractors, these methods cannot
work with different kinds of data-sets generally.
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In conclusion, there are serious challenges for a practical
supplementary material in the in power transformers protection
that are neglected:

• Establishing a general tool to distinguish the internal
faults and other disturbances in a half-cycle time period
(less than 10ms).

• Capturing the fully temporal information of the transient
differential current signal without neglecting the transient
changes.

• Being able to perform in the real conditions without
imposing any assumption on measurement noises.

• General solution to perform accurately as well as fast
considering external factors CT saturation, FCL, and
series capacitor compensation.

To overcome these challenges and above-mentioned prob-
lem of the previous methods, using deep learning structures
can be a potential solution. Deep Learning is a fairly new
established area of machine learning that can serve in many
fields especially fault diagnosis and fault classification [12]–
[15]. Machine learning methods with deep architecture are
capable of capturing information from raw data by establishing
several information processing layers. Deep learning models
might potentially overcome the mentioned deficiencies by es-
tablishing lots of information processing layers which are able
to capture information from data without any preprocessing.
It is more powerful and efficient than shallow architecture
neural networks because it approximates complex problems
by learning the deep nonlinear structure. Generally, there are
four type of deep neural networks including deep auto-encoder
(DAE), deep Boltzmann machine (DBM), convolutional neural
network (CNN), and recurrent neural network (RNN) [16].
Although DAE and DBM improve the capability of learning
from raw data through a dimensional reduction procedure,
the main disadvantage of DAE and DBM is the disability in
understanding long sequences. CNN is a widely used deep
structure method in time series analysis. Despite the great
performance in capturing spatial features, CNN is unable to
fully realize the temporal feature, especially in long-tailed
time series associated with abrupt changes. Besides, CNN,
DAE, and DBM cannot detect the transient disturbances
in an extremely short-term period and perform in real-time
manner. To this end, in [17] an accelerated convolutional
neural network (ACNN) has been presented for the differential
protection of the power transformers. In [17], the quantization
process has been utilized to speed up CNN, however, the
quantization process is highly sensitive to noise. In presence
of Gaussian/non-Gaussian noises, ACNN has adverse effects
and poor performs. As in the real applications where noise
is an unavoidable phenomenon, the application of ACNN for
realistic power transformers is questionable. Recurrent neural
networks are a variation of deep neural networks in which
the recurrent connections allow the hidden units to see their
own previous outputs and shape their next output based on
them. That is what gives the RNNs memory [18]. Long short-
term memory (LSTM) neural networks are alternative forms
of RNNs which use gates. Gates enable the network to add,
remove, or send information through the hidden state layer.

This gives LSTM a long-term memory. Removing one of the
three gates in LSTM structure, forms another structure called
gated recurrent unit (GRU) which is faster and more accurate
[19]. GRU generally consists of two main gates, i.e. update
and reset gate.

However, a standard GRU-based method has three major
deficiencies to apply in the real-time differential protection
system, i) performance time of GRU is still high for im-
plementation in the real-time differential protection system,
ii) reset gates can reset the network during the training
process and might neglect a set of sudden changes in transient
phenomena such as inrush current and internal faults in the
power transformers, iii) they are not able to perform efficiently
in highly noise conditions.

C. Contributions and Organization

In order to propose a diagnosis scheme to implement a
real-time differential protection, this paper develops a GRU-
based structure. To decrease the computational burden as well
as improving the accuracy and reliability of the differential
protection, in the proposed deep network, namely fast gated
recurrent unit (FGRNN), the reset gate has been removed.
By removing the reset gate, the computational complexity has
significantly reduced (almost 42% in the diagnosis process).
Furthermore, transient phenomena such as inrush current and
internal faults in the power transformers usually follow a set of
sudden changes that might be neglected in the training process
of the GRU networks by completely resetting the network. In
the designed FGRNN, the sudden changes due to transient
behavior of internal faults and other transient disturbances are
not neglected. Learning sudden changes in the power trans-
formers, that can be beneficial in the discrimination process,
is completely fulfilled in the designed FGRNN network, as
well as learning fully temporal features.

Noise is an unavoidable and undesirable phenomena in
power systems. Based on [20], the majority of noises during
voltage and currents in the power systems follow non-Gaussian
noises. As best of our knowledge, previously presented works
on the discrimination between internal faults and other dis-
turbances neglected the noise impact [21], or only considered
Gaussian noises [5]. Thus, it is the first paper that investigates
the non-Gaussian noise impact on the differential protection in
the power transformers. This paper develops a new probabilis-
tic loss function in which the proposed network can perform
without any assumption on the noise model. To this end, an
information theory concept based on mutual information is
utilized to enhance the robustness against noises as well as
improving the learning ability of the designed FGRNN.

Furthermore, the proposed differential protection scheme
preserves accuracy in case of CT saturation, series capacitor,
and the presence of superconducting fault current limiter
(SFCL). In the mentioned conditions, discrimination between
internal faults and other transient disturbances is a difficult
task due to decreasing the internal fault magnitude in presence
of SFCL, the error of CT saturation corrector, and higher
current magnitude of external disturbances in presence of
series compensators.
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Thus, we can summarize the contributions and novelties of
this work, as:

• A GRU-based deep network is designed for the real-time
differential protection. The standard (GRU) is modified
by removing the reset gate, that enhances the accuracy
and reliability of the proposed network by learning the
transient abrupt changes. The computational complexity
has been significantly reduced as well.

• Performance of the proposed deep network is very accu-
rate and fast using only half-cycle of raw data considering
external factors, e.g. SFCL, CT saturation, and series
compensators.

• A probabilistic loss function is formulated based on
information theory principles to improve the learning
ability as well as robustness without any assumption on
noise model (Gaussian or non-Gaussian).

The remainder of the paper is organized as follows. Section
II represents the principles of inrush current and differential
protection scheme. The FGRNN based method is described in
Section III. Section IV and V represents the simulation results
and comparison of methods. Finally, Section VI concludes the
paper.

II. FGRNN ARCHITECTURE

Different parts of the structure of the proposed FGRNN
technique in differential protection is presented in this section.

A. Standard GRU

The standard GRU consists of update and reset gate. The re-
set gate removes the unnecessary detected features by neglect-
ing abrupt and sudden changes in a time series. The update
gate makes each of the recurrent units capture dependencies of
different time scales and sequences adaptively. In particular,
the standard GRU architecture is defined by the following
equations:

u(m,L, t) = f{Wuy(m,L, t) +Ruh(L, t− 1) +Bu} (1)

r(m,L, t) = f{Wry(m,L, t) +Rrh(L, t− 1) +Br} (2)

h(L, t) = [1− u(m,L, t)]� h
′
(L, t) + ...

u(m,L, t).h(L, t− 1)
(3)

h
′
(L, t) = f{Why(m,L, t) + ...

Rh(h(L, t− 1)ṙ(m,L, t)) +Bh}
(4)

u(m,L, t) represents the update gate for mth output map at
the Lth layer in the t time interval, while h(L, t) and h′(L, t)
are the hidden state and the candidate state, respectively. W
and R show the weight matrices corresponding to the input
vectors and recurrent parameters. Subscript u, and h relate to
update gate and hidden state.

The utilized activation function in this paper is the rectified
linear unit (ReLU). ReLU is an activation function to resolve
vanishing gradient problems and prevent significant saturations
in pre-training [22] which is presented in [23].

B. Removing Reset Gate

As mentioned before, reset gate is a useful tool in a time
series with discontinuities. In a differential current signal,
the abrupt changes can determine the difference between
transient disturbances and internal faults. The rest gate might
ignore sudden changes and therefore reduce the accuracy and
reliability. By removing the reset gate, the candidate hidden
state is reformed as:

h
′
(L, t) = f{Why(m,L, t) +Rhh(L, t− 1) +Bh} (5)

Removing reset gate in the typical GRU leads to a sufficient
and compact model in the real-time classifier.

C. Batch Normalization

Distribution of activation function might change during the
training process due to the change in FGRNN parameters
known as the internal covariate shift. Batch normalization is
proposed to resolve this problem [18], [24]. Batch normal-
ization can be extended to FGRNN parameters and weight
matrices. In this paper, batch normalization is used in weight
matrixes [18].The batch normalization Bn(L) at the Lth layer
presented in [24] can be described as

Bn(L) = s� L− µb√
σb2 + ξ

+ β(L) (6)

where s , µb, σb, ξ and β(L) represent the scale parameter of
the training, minibatch mean and variance, stability enhance-
ment parameter, and shifting parameters, respectively. Scale
parameter s, and shifting parameters β(L) are used to restore
the network capacity and remove the bias matrices to reduce
computational complexity.

D. FGRNN

Consequently, by removing the reset gate and applying the
batch normalization, the proposed FGRNN is described as
follows:

u(m,L, t) = f{Bn[Wuy(m,L, t)] +Ruh(L, t− 1)} (7)

h(L, t) = [1− u(m,L, t)]� h
′
(L, t) + ...

u(m,L, t).h(L, t− 1)
(8)

h
′
(L, t) = f{Bn[Why(m,L, t) +Rhh(L, t− 1)]} (9)

E. Dense Layer

In the last layer of the proposed FGRNN technique, the
dense network is added to connect all hidden states in the
FGRNN and control the dimension of the FGRNN output.
The mth output map at the Lth layer passes through a dense
layer to construct the final output map as

y(m,L) = Wf .f [W.y(m,L)] (10)

where Wf represents the weight matrix of the dense layer.
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F. Loss Function

The basis of the proposed loss function is information
theory, where for each random variables R, the Shannon
entropy has defined as:

fShan (R) =
R∑

r=1

P [R = r]logP [R = r] (11)

where f (Shan) measures the uncertainty associated with ran-
dom variable R. Based on the Shannon entropy, the mutual
information (MI) has been defined, and for two random
variables R1 and R2 is:

fMI (R1, R2) =∑
r1,r2

P [R1 = r1, R2 = r2]log
P [R1 = r1, R2 = r2]

P [R1 = r1]P [R2 = r2]
(12)

Property 1: For three different random variables R1, R2,
and R3, where R3 is less informative than R1 and R2, thus:

fMI (R3, R2) ≤ fMI (R1, R2) (13)

Since R2 is the most informative variables for itself:

fMI (R1, R2) ≤ fMI (R2, R2)
∆
= Λ (R2) (14)

The data-driven network for internal fault detection in
the power transformers, Θ(X) can be constructed based on
fMI [Θ(X), Y ].

Property 2: Considering measurement and process noise
in power systems, Θ(X) should construct a set of Ŷ
(fault/non-fault) based on the noisy outputs Ỹ and X̃ in-
puts (measured data by CTs and process noises in the
power transformers). There is a possibility that ∀Θ,Θ′,
if fMI [Θ(X), Y ] > fMI [Θ′(X), Y ], might not lead to
fMI [Θ(X), Ŷ ] > fMI [Θ′(X), Ŷ ], hence, the general form
of MI cannot directly implement in the differential protection
of the power transformers.

To tackle this problem, a generalized form of MI has been
adopted from [25]. The general MI (GMI) is defined for two
different random variables, R1 and R2:

fGMI (R1, R2) = |det (Jr1,r2)| (15)

where Jr1,r2 shows the joint distribution of R1 and R2 in the
matrix form.

Property 3: GMI represents non-negative and symmetric
outputs, where for three different random variables, R1, R2,
and R3 (R3 is less informative than R2), then:

fGMI (R2, R3) =

fGMI (R2, R1)

∣∣∣∣det

[
P

(
R3 = r3|
R1 = R1

)]∣∣∣∣ (16)

Thus, GMI can be generalized for classification issues,
because:

fGMI [Θ (X) , Y ] > fGMI [Θ′ (X) , Y ]⇔

fGMI
[
Θ (X) , Ŷ

]
> fGMI

[
Θ′ (X) , Ŷ

] (17)

To this end, an informatics-theory based loss function is
defined as:

f loss
{
P J
[
h (X) , Ŷ

]}
= −log

{
fGMI

[
h (X) , Ŷ

]}
=

− log
[∣∣∣det

(
P J
[
h (X) , Ŷ

]) ∣∣∣]
(18)

The joint distribution function is shown by P J(•), whose
size depends on the class, if each class (fault/non-fault) is
shown by the c, the size of P J(•) is c × c. To resolve
the scaling problem due to the matrix form of P J(•), the
log function has been used. In each iteration of the training
process, raw data obtained by the CTs have been sampled
associated with noisy labels, (Xk, Ŷk) ∀k = 1, ..., N , where k
is the number of the samples and N shows the total number
of samples in one record that is dependent on the sampling
frequency of the CTs. Let be denote to the output of the
FGRNN classifier, fout(•), the output of the FGRNN is the
distribution probability based on the proposed probabilistic
loss function. By taking noisy labels a value between zero
and one, showing by Mn with the size of 1×N and defined
as:

Mn
i = C [yi = ĉ] (19)

where C [yi = ĉ] is one, when yi replaces in class ĉ; otherwise
is a zero.

The output of the proposed FGRNN based on the proba-
bilistic loss function is defined as:

fout (c, ĉ) = P
1

N

N∑
j=1

foutFGRNNM
n
j =

1

N

N∑
j=1

Θ (Xi)C [yi = ĉ]

(20)

The proposed loss function is robust against non-
Gaussian/Gaussian noises due to:

Proof : For classifier Θ with proposed loss function:

arg min
c∈Θ

fGMI [Θ (X ′′) , Y ′′] = arg min
c∈Θ

fGMI [Θ (X) , Y ]

(21)
where X ′′ and Y ′′ is the noisy input and output, respectively.
Therefore, in the training process:

fGMI [Θ (X ′′) , Y ′′] = fGMI [Θ (X) , Y ] + κ (22)

where κ is the constant. Accordingly, the proposed loss
function cannot be influenced by the noises, regardless of
whether the noise is Gaussian or not.

G. Training Process

To find the optimal learning weight of the designed FGRNN
network based on the proposed loss function, an iterative based
process has been conducted:

1) Determining the epoch number, learning rate, and batch
size.

2) Pre train the FGRNN based on the generated dataset and
cross-entropy loss function.
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3) Randomly select a set of the batch normalized sample
from the training dataset

4) Evaluate the samples based on the proposed probabilistic
loss function based GMI

5) Update the learning weights
6) Check the batch numbers, if all of them has been

evaluated go to step 7; otherwise back to step 3
7) Sort the learning weights based on the proposed loss

function and select the minimum values

H. Overall Structure

As shown in Fig. 1, the proposed structure of FGRNN is
composed of different layers. The differential current sam-
ple dataset are revealed in different layers of the proposed
FGRNN. Different outputs are constructed for each layer.
Differential current sample is converted to s× 56 (number of
samples in a half cycle). Then, in terms of arranging samples
vectors are shaped to 4D tensors. Three FGRNN layers are
used to extract the temporal dependency in s × 64 vector.
The s × 64 vector passes through a dense layer with ReLU
activation function. Consequently, internal fault is identified in
the dense layer based on the zero or one outputs of sigmoid
activation function. A one means that the event is diagnosed
as fault by the network.

Input half cycle form differential current

CT saturation 

detect?

Compensation CT 

Saturation

NO

Yes

Anomaly Check?Consider next half cycle

NO

Calculate normalized differential current
D  norm

I
−

Inrush Current  OR

External Fault

Input data

S×56 

Internal Fault

Trip

D
I

FGRNN Layers

S×64

Dense Layer

S×64
ReLU Activation Function

Dropout: 20%

Dense Layer

S×64
Sigmoid Activation 

Function

FGRNN Classifier

 

Fig. 1. Structure of the proposed FGRNN for differential protection scheme

I. Proposed Differential Protection Scheme

The proposed differential protection scheme of the power
transformers have shown in Fig 1. To implement the proposed
differential protection scheme, the following steps should be
conducted:

Step1: A half-cycle of current signal is measured by CTs
(112 samples per cycle [4]).

Step 2: The measured current by the CTs are checked
for saturation. If the CT saturation is detected, the discorded
current are corrected by the presented method [17].

Step 3: Differential current is computed based on (3) to
detect the abnormality. If the abnormal condition recognize,
then the input data should send to the designed robust FGRNN
block; otherwise the next half-cycle back to Step 1.

Step 4: The robust FGRNN block detects internal fault rom
other transient disturbance; if the internal fault is diagnosed,
then a trip signal send; otherwise the next half-cycle have
considered and back to Step1.

III. NUMERICAL RESULTS

In this section, five case studies are discussed to investigate
the superiority of the proposed differential protection tech-
nique. The case studies are briefly as follows:

1) A simple case without external factors.
2) Differential protection in the presence of CT saturation.
3) Series capacitor compensation.
4) Transformer with SFCL on the neutral point.
5) Experimental prototype.
The following reliability metrics are defined to evaluate the

performance of the proposed protection technique [26].

ACC =
TP + TN

TP + TN + FP + FN
% (23)

DEP =
TN

TN + FP
% (24)

SEC =
TP

FN + TP
% (25)

SAF =
TP

TP + FP
% (26)

where TP, TN, FP, and FN show true positive, true negative,
false positive, and false negative, respectively. ACC, DEP,
SEC, and SAF stand for accuracy, dependability, security, and
safety which illustrate the correct detection percentage, diver-
sity of the proposed classifier, false trip ratio, and reliability
of the correct decisions in the proposed protection technique,
respectively.

Different fault types, fault locations, switching angles,
transformer winding types, and source impedances are used
to generate datasets for the mentioned case studies. The
datasets are generated in PSCAD/EMTDC software package
by simulating a 230 kV network, showed in Fig. 2. Sampling
frequency is 112 samples per second. The generated datasets
are processed in Keras package [27] on a computer with a 3.4
GHz processor, 32 GB memory, and a GeForce GTX 1080
TI graphical processing unit (GPU). Based on the procedure
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presented in [28] the samples are divided into random training
and testing sets with 70% to 30% ratio to train the network
sufficiently, avoid fitting problems, and yet have enough data
samples to evaluate the performance of the trained network.

To evaluate the performance of FGRNN-based protection
scheme, a half cycle from each sample are extracted and
normalized as follows

ID−norm =
IP − IS

max(|IP − IS |)
(27)

where ID−nom is the normalized differential current, which
is considered as the input of the FGRNN method. The time
duration for one cycle is 20 ms (nominal frequency is 50 Hz)
and sampling frequency is 112 samples per cycle.

The number of samples in cases 1 ,3, 4, and 5 is 4488
samples. In case 2, overall, 2064 samples are generated. The
samples are divided into random training and testing sets with
70% to 30% ratio. The time duration for one cycle is 20 ms
(nominal frequency is 50 Hz) and sampling frequency is 112
samples per cycle. To train and test the proposed method and
other method, a half cycle from each sample are extracted
with size , therefore, each sample length is 56. Similar to each
multi-class classification problem, the output labels are binary
labels. In cases 1, 3, 4, and 5, LG fault, LL fault, LLL fault,
P-S fault, inrush phenomena, and external faults are assigned
by [0 0 1], [0 1 0], [0 1 1], [1 0 0], [1 0 1], [0 0 0], and
[1 1 0], respectively. In case 2, the output labels are zero and
one. Table I shows the parameters and labeling of the designed
robust FGRNN.

The comprehensive evaluation of each case is presented in
this section. To this end, the overall results obtained from the

TABLE I
PARAMETER OF THE DESIGNED ROBUST FGRNN

Case Case Description Output Labels

Case 1

4488 Samples
70%:30% Train:Test Ratio

1x56 Sample size
56 sample length

Inrush Current: [0 0 0]
LG Fault: [0 0 1]
LL Fault: [0 1 0]

LLL Fault: [0 1 1]
P-S Fault: [1 0 0]

External Fault: [1 0 1]

Case 2 2064 Samples
70%:30% Train:Test Ratio

1x56 Sample size
56 sample length

Internal Fault Saturated
0

Inrush Current and External
Fault Saturated

1

case 3

4488 Samples
70%:30% Train:Test Ratio

1x56 Sample size
56 sample length

Inrush Current: [0 0 0]
LG Fault: [0 0 1]
LL Fault: [0 1 0]

LLL Fault: [0 1 1]
P-S Fault: [1 0 0]

External Fault: [1 0 1]

Case 4

4488 Samples
70%:30% Train:Test Ratio

1x56 Sample size
56 sample length8

Inrush Current: [0 0 0]
LG Fault: [0 0 1]
LL Fault: [0 1 0]

LLL Fault: [0 1 1]
P-S Fault: [1 0 0]

External Fault: [1 0 1]

Case 5

4488 Samples
70%:30% Train:Test Ratio

1x56 Sample size
56 sample length8

Inrush Current: [0 0 0]
LG Fault: [0 0 1]
LL Fault: [0 1 0]

LLL Fault: [0 1 1]
P-S Fault: [1 0 0]

External Fault: [1 0 1]

simulation and experiments are presented in several metrics,
which are discussed individually in the following sub-sections.

A. Case 1

In the first case, the dataset contains 4488 samples for fault
current, inrush current and external fault excluding any exter-
nal factors. Fault currents are generated considering different
fault types (line to ground (LG), line to line (LL), three phase
(LLL), and primary to secondary (P-S)), winding connections,
source impedances, fault inception angles, and fault loca-
tions. different residual fluxes, winding connections, source
impedances, switching instant fault inception angles, and loads
are involved in fault simulation. External fault data set contains
8 fault types, 12 fault inception angles, 4 impedance values,
and 6 fault locations. The information on fault locations are
represented as the distance from the corresponding transformer
in form of percentage of corresponding line. The distances are
5%, 25%, 45%, 65%, 75%, and 90%.

The numerical results of detecting four internal faults, inrush
current and external faults using the proposed method is
represented in Table II. The results indicate the precision in
detecting LG faults, inrush current and, and external faults,
while for other internal faults the performance metrics are at
least 98.47%. As this case is a simple benchmark, the other
cases are designated for further evaluation of the proposed pro-
tection scheme. The proposed protection algorithm represent
100% performance in case of external faults which shows it
is immune against cross-country faults.

B. Case 2

When short circuit fault or inrush phenomena occur, the
measured currents experience a considerable distortion caused
by CT saturation. The protection systems operate based on the
secondary side current of CTs. Therefore it makes it difficult
for differential protection system to detect the internal fault
current or distinguish it from inrush current [29]. The effect
of CT saturation is simulated in this case to take the large
DC component of inrush current and decay DC component
of short-circuit fault [30] into account. A reliable differential
protection should be able to compensate the saturation effect
to minimize measurement errors. Therefore, A CT saturation
compensation stage is required prior to the abnormal condition
detection. The CT saturation compensation method used in our
paper is a least square (LS) based wave shape-independent
method comprised of two filters based on [30]. The first filter
reproduces the deformed saturated CT output while the second
one compensate DC offset.

TABLE II
PERFORMANCE OF PROPOSED FGRNN METHOD IN CASE 1

Cases ACC% DEP% SEC% SAF%
LG Fault 100 100 100 100
LL Fault 99.88 99.23 100 99.86
LLL Fault 99.88 100 99.86 100
P-S Fault 98.91 98.47 99.00 99.71
Inrush 100 100 100 100
External Fault 100 100 100 100
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Fig. 2. Single line diagram of a modified part of the 230 kV Iranian power network

Jiles-Atherton model for CT [31] is used to simulate short
circuit fault and inrush current occurrence in Transformer 2.
The effect of inrush current on CT saturation is survayed in
previous studies very rarely. 1200 fault current CT saturation
samples are generated in different conditions containing 4 dif-
ferent CT burdens, 5 fault types, 12 fault inception angles, and
5 different fault resistances including 0, 2, 4, 8, and 10 ohm
fault resistances. 864 samples are generated for inrush current
CT saturation considering 12 switching inception angles, 4
CT burdens, 3 different load levels, 2 winding types, and 3
different source impedance values.

Table III illustrates the impacts of CT saturation compensa-
tion method on FGRNN-based protection scheme. Despite the
inevitable error in saturation compensation, the method oper-
ates with 99.19% accuracy in these two conditions. Compared
to Case 1, CT saturation does not have a significant effect
on the FGRNN-based protection scheme performance. DEP
values are higher than 99.17% which proves that the FGRNN-
based method is highly capable of isolating the internal fault in
conditions such as CT saturation by inrush current or internal
fault. The results show that the proposed protection algorithm
is able to cover the errors of saturation compensation errors
to prevent any malfunction in differential protection system.
Again, in this case it has been observed that the proposed
algorithm performs fairly well in presence of cross-country
faults.

TABLE III
PERFORMANCE OF PROPOSED FGRNN METHOD IN CASE 2

Internal Inrush Current
Cases Fault and External

saturated Fault Saturated
ACC% 99.19 99.19
DEP% 99.44 99.84
SEC% 99.84 99.44
SAF% 99.22 99.17

C. Case 3

Series capacitor compensation is a common way to improve
power transferring capacity, voltage regulation, stability, and
loss. Therefore, this case examined the differential protection
scheme in presence of series capacitor. Series capacitor com-
pensation can cause sudden changes in angle and sequence of
three phase currents and lead to an increase in the fault current.
The simulation results for Transformer 4 and Protection system
4 are presented for this case. The datasets for inrush current
and external faults are similar to Case 1 and for internal
faults four different distances to Transformer 4, three different
compensation rates, 12 fault inception angels, three different
impedances, and five fault types are taken into account.

Table IV shows the performance of the proposed FGRNN
method in presence of series capacitor compensation. The
results prove the reliable performance of the proposed method.
As can be seen, the lowest performance metric is 98.66%
which shows the great performance of the FGRNN method.
The minimum and maximum values of SAF are 100% and
99.71%, respectively. These values show the ability of the
FGRNN-based method in isolating hazardous short circuit
faults in presence of series capacitor compensation.

D. Case 4

A high impedance in neutral point of the power transformer
added by SFCL can limit fault current for less than a half
cycle. Accordingly, the differential relay cannot detect the
fault to send the trip signal. Therefore, in this case, a variable

TABLE IV
PERFORMANCE OF PROPOSED FGRNN METHOD IN CASE 3

Cases ACC% DEP% SEC% SAF%
LG Fault 99.28 98.51 99.43 99.71
LL Fault 99.04 98.62 99.13 99.76
LLL Fault 100 100 100 100
P-S Fault 99.71 98.92 99.46 99.00
Inrush 99.40 99.23 99.43 99.86
External Fault 99.52 100 99.14 100
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TABLE V
PERFORMANCE OF PROPOSED FGRNN METHOD IN CASE 4

Cases ACC% DEP% SEC% SAF%
LG Fault 99.52 99.23 99.57 99.86
LL Fault 98.68 96.97 99.00 99.43
LLL Fault 99.04 99.23 99.01 99.86
P-S Fault 98.93 97.63 99.29 99.57
Inrush 98.98 98.99 98.97 99.22
External Fault 99.96 98.39 99.98 99.98

Fig. 3. Experimental prototype

resistance is used to fix the problem. This problem can happen
during an inrush current, too. The SFCL model is added to
Transformer 3 in Fig. 2. Parameters of SFCL are set based on
the procedure presented in [21].

Similar dataset to Case 1 is used to evaluate the performance
of the proposed FGRNN-based classifier. As can be seen in
Table V, the lowest value of the accuracy is 99.04, which
shows the effectiveness and robustness of FGRNN in presence
of SFCL. The main concern about the implementation of
SFCL in differentioal protection is the false trip for non-fault
conditions. In this case, the fault current hs the least difference
with inrush current. This makes the SEC an important factor in
evaluating the protection scheme. SEC is between 98.97 and
99.98 which indicates the great performance of the proposed
protection method in presence of SFCL.

E. Case 5

In this case, the proposed method is evaluated by an
experimental prototype. The experimental data is gathered
using a 1 kVA, 50 Hz, and 380/380 V three-phase transformer
shown in Fig. 3. Several points inside the windings are
accessible through terminals which are used to create internal
faults. 0.6-3kV, 2.5VA CTs are used for current measurement
4488 case studies were implemented and measurements were
recorded by a digital storage oscilloscope with 112 samples
per second rate. The proposed approach uses normalized data,
so we can compare the simulated and experimental results
without concerning about the difference between rated values
of simulated and experimental prototype.

Table VI shows the performance of the proposed method us-
ing experimental results. As we can see, the proposed method
performs well using experimental data. For all disturbances
the reliability indices are at least 97.16% which show the
applicability of the FGRNN-based protection scheme. The
experimental tests represent a great performance in skipping

TABLE VI
PERFORMANCE OF PROPOSED FGRNN METHOD IN CASE 5

Cases ACC% DEP% SEC% SAF%
LG Fault 98.99 98.57 99.07 99.73
LL Fault 98.59 97.16 98.87 99.43
LLL Fault 99.15 99.23 99.71 99.86
P-S Fault 99.40 98.46 99.57 99.71
Inrush 99.18 98.31 99.08 99.48
External Fault 99.48 99.12 99.51 99.92

the external faults which shows the immunity of proposed
algorithm against cross-country faults.

IV. COMPARATIVE STUDY

To evaluate the proposed FGRNN method, the results ob-
tained in each case are compared with eight other widely used
methods which are briefly described as follows.
• GRU: ReLU activation function, 256 epochs, and 128

hidden states.
• ACNN: ACNN is utilized with 20 feature maps, 128 filter,

256 epochs, and maximum pooling size of three, with
sigmoid activation function [17].

• CNN: 20 feature maps, 128 hidden states, 256 epochs,
maximum pooling size of 3, and sigmoid activation
function.

• LSTM: ReLU activation function, 256 epochs, and 128
hidden states.

• SVM: radial basis function (RBF) kernel and cross vali-
dation.

• KNN: 1 nearest neighbor based on Euclidean distance
and Baye’s discussion rule.

• LVQ: based on Euclidean distance, with 6 input and 6
hidden layers with corresponding rate of 1 and 2 neurons
in output layer.

• ANN: 86 neurons in input layer, two parallel hidden
layers with 25 and 13 neurons, and 1 neuron in the output
layer.

• Restricted second harmonic: based on [32].
• Gradient-vector method: based on [33]
For the sake of the comparison, and also to show the

robustness of the proposed method in noisy conditions, three
different types of noise are added to the raw data. Then, the
proposed method and other methods were tested on the noisy
dataset. As we mentioned before, a large share of noises in the
power system do not obey Gaussian probability distribution.
Therefore, three types of noises are considered in this section:
i)Gaussian noise with SNR =20, ii) Gaussian mixture noise
consists of three Gaussian noises, each of them with SNR =
30, and iii) Laplace probability distribution noise follows chi-
square distribution with degree of freedom 4. As an example,
Fig. 4 shows the raw signal, three types of noises, and the
noisy signals.

The difference between the performances of shallow archi-
tecture (SVM, KNN, LVQ, and ANN) methods and deep ones
(GRU, ACNN, CNN, and LSTM) can easily be noticed in
Table VI where the performances of the five deep architecture
methods are better. Among the shallow architecture methods,
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TABLE VII
COMPARISON BETWEEN RELIABILITY INDICES OF FGRNN AND SHALLOW AND DEEP STRUCTURE CLASSIFIERS

Case 2 Case 3 Case 4 Case 5
ACC

%
DEP

%
SAF
%

SEC
%

ACC
%

DEP
%

SAF
%

SEC
%

ACC
%

DEP
%

SAF
%

SEC
%

ACC
%

DEP
%

SAF
%

SEC
%

The Proposed 99.35 99.72 98.84 99.61 98.52 98.46 98.57 98.57 98.59 98.31 98.43 98.85 99.26 99.23 99.28 99.28
GRU 92.56 93.33 91.47 90.77 95.33 94.92 95.29 95.70 95.40 95.08 95.43 95.70 96.15 96.00 96.28 96.28
ACNN 89.71 98.84 89.53 86.19 94.81 94.47 94.99 95.13 94.32 93.91 94.43 94.70 94.81 94.62 94.99 94.99
CNN 91.59 93.06 89.53 90.23 95.55 95.38 95.70 95.70 95.54 95.08 95.56 95.96 95.85 95.88 96.25 95.70
LSTM 90.61 91.67 89.15 88.46 94.51 95.08 95.53 93.98 94.29 94.62 94.93 93.98 95.26 95.38 95.68 95.14
SVM 82.04 85.56 77.13 79.28 88.98 85.51 89.05 89.43 87.39 85.39 86.57 89.29 89.34 89.40 89.80 89.29
KNN 80.68 84.08 75.97 77.47 87.61 86.02 87.11 89.11 87.82 86.96 87.31 88.68 88.17 88.62 87.56 88.68
LVQ 79.77 83.06 75.19 76.08 87.90 86.46 88.20 89.16 87.09 85.85 87.01 88.25 88.58 87.38 88.42 89.68
ANN 75.86 74.44 65.12 64.62 76.39 75.38 77.62 77.30 79.37 78.28 79.91 80.38 78.93 78.62 79.91 79.23
Restricted
second
harmonic

80.10 85.00 73.51 78.49 88.91 88.46 89.32 89.32 53.00 47.21 54.39 58.36 89.31 88.77 89.56 89.81

Gradient
vector 81.33 84.17 77.34 77.65 90.24 90.15 90.83 90.31 77.12 75.85 78.16 78.27 87.19 81.61 82.61 93.13

TABLE VIII
COMPARISON OF AVERAGE PERFORMANCE TIME OF THE DEEP AND SHALLOW BASED METHODS

Methods FGRNN GRU ACNN CNN LSTM SVM KNN LVQ ANN
Test time (ms) 6.42 11.2 4.12 13.56 14.48 2.46 2.42 2.56 3.86
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Fig. 4. Raw signal, three type of noise, and noisy signals

ANN has the least reliable performance, while KNN, LVQ,
and SVM provides better performances. According to the
numbers presented in Table VII, the proposed FGRNN is
significantly more reliable than a restricted second harmonic
and gradient vector. In particular, in case 4 where the signals
are distorted by SFCL as an external factor, the restricted
second harmonic method experiences a severe decrease in
reliability. In this case, the reliability indexes are between
47.21% and 58.31%. in presence of non-Gaussian/Gaussian
noises. It is important to notice that the restricted second
harmonic method is used in most of the real differential
relays in power transformers. The proposed robust FGRNN
has a significantly better performance than the GRU in all
cases. Furthermore, the noise impact on other methods is
significant in terms of accuracy and reliability, the obtained

metrics proposed method is at least 98.31%, while the obtained
metrics by the GRU, ACNN, CNN, and LSTM are at least
92.56%, 89.71%, 89.53%, and 88.46%, respectively. It is also
can be noted that the performance of the ACNN is highly
influenced by the noises, in particular, non-Gaussian noises,
which is inferior to other deep networks in terms of accuracy
and reliability.

A. Computation Time

Table VIII compares the average performance time of all
data-driven methods with deep and shallow structures. As can
be seen in Table VIII, the methods with shallow architec-
ture provide faster performance than the proposed method.
However, the proposed FGRNN method is more reliable and
performs significantly better in terms of accuracy, which
verifies that its computational complexity is perfectly fit for
real-time application. The ACNN method is slightly faster than
the proposed FGRNN; however, the FGRNN performs much
more robustly in noisy conditions, while ACNN is sensitive
to noise.

Considering some conditions can help to verify the gener-
ality of the proposed. For instance, power electronic devices
by frequently changing of switching angles can strength the
amplitude of harmonics. Thus, considering different switching
angles in data generation shows that the proposed differential
protection scheme can also perform properly in presence of
power electronic infrastructure.

B. Role of Hyper-Parameters

To investigate the hyperparameter setting on the perfor-
mance of the designed network, four different conditions
have been considered: i) the proposed network with 3 dense
layers, where a dense layer is added between the first and
second dense layer in the proposed network and has the same
parameters as the first dense layer (C1), ii) the proposed

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on December 16,2021 at 14:22:58 UTC from IEEE Xplore.  Restrictions apply. 



0278-0046 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2021.3109535, IEEE
Transactions on Industrial Electronics

10

TABLE IX
PERFORMANCE OF PROPOSED ROBUST FGRNN METHOD WITH

DIFFERENT STRUCTURE BASED ON EXPERIMENTAL CASE (CASE5)

Cases ACC% DEP% SEC% SAF%
The Proposed 99.26 99.23 99.28 99.28
C1 98.52 98.46 98.58 98.58
C2 97.92 97.85 97.99 97.99
C3 97.16 97.08 97.24 97.24
C4 96.84 96.77 96.97 96.97

TABLE X
PERFORMANCE OF PROPOSED ROBUST FGRNN METHOD WITH

DIFFERENT LOSS FUNCTIONS IN THE EXPERIMENTAL CASE (CASE5)

Cases ACC% DEP% SEC% SAF%
The Proposed 99.26 99.23 99.28 99.28
Robust loss function from [34] 97.40 96.62 98.14 96.89
Cross-entropy loss function 95.77 97.69 97.85 97.98

TABLE XI
PERFORMANCE OF PROPOSED METHOD WITH RESET GATE AND

WITHOUT RESET GATE

Cases ACC% DEP% SEC% SAF%
Without Reset Gate 99.26 99.23 99.28 99.28
With Reset Gate 97.77 96.84 97.45 97.45

network with 2 FGRNN layers, where the second FGRNN has
the same parameters as the first FGRNN layer (C2), iii) the
proposed network without dropout technique (C3), and iv) the
proposed network by using sigmoid activation function instead
of ReLU activation function (C4). The results are discussed
considering data generated in case 5. The results are given
in Table IX. As can be seen, the proposed method is slightly
better in comparison with other conditions (C1-4).

C. Role of the Proposed Loss Function

In order to show the role of the proposed loss function, the
proposed method is compared with two different conditions,
i) cross-entropy loss function, and ii) the robust loss function
presented in [34], where they are formulated for the noises
with Gaussian distribution function. The comparison in Table
X verify the role of the proposed loss function in robustness
against noise and learning ability improvement of the deigned
robust deep network. The major reason for the superiority
of the proposed method is its robustness in noisy conditions
without any assumption on noise model and improving the
training process based on the formulated informative loss
function.

D. Role of removing reset gate

To address the role of the removing the reset gate, two
comparison results should be shown: 1) with reset gate; 2)
without reset gate. In both conditions, the proposed loss
function is integrated with the deep networks. The comparison
in Table XI demonstrates the superiority of the proposed
network FGRNN with GRU network with same loss function,
batch normalization, and activation function.

V. CONCLUSION AND FUTURE WORK

Conventional machine learning methods have deficiencies
such as computational burden, sensitivity to noises, and depen-
dency on a model. These deficiencies decrease the reliability
of these methods in the differential protection scheme of
power transformers to discriminate between inrush current
and internal faults. Using the GRU method which is a deep
architecture method is a proper solution to overcome these
deficiencies. Furthermore, we proposed a robust and fast
GRU to speed up the performance as well as improve the
accuracy and robustness against non-Gaussian/Gaussian noises
of the differential protection scheme. To this end, the update
gate in the conventional GRU has been removed to enhance
the computational efficiency and capture sudden changes in
transient disturbances such as inrush current and internal fault
in the power transformers. Besides, an informatics theory-
based loss function is developed in this paper to handle non-
Gaussian/Gaussian noises. The proposed method was applied
to a real system in both simulated and experimental cases.
External factors i.e. series capacitor compensation, SFCL,
and CT saturation were taken into account to evaluate the
proposed method as a practical solution. The results of the
robust FGRNN method shows that the proposed method has an
average computational time less than 6.5 ms. The results of the
robust FGRNN method were compared to 10 other methods.
The comparisons proved that the FGRNN method improved
the diagnosis accuracy by at least 3.34% compared with the
deep networks and 10.72% compared with shallow networks.
Thus, the comparisons proved that the FGRNN method makes
a differential protection scheme more reliable and faster.

The investigations on the proposed FGRNN-based differen-
tial protection reveal that it would be worthwhile to evaluate
the FGRNN-based differential protection method using real
time digital simulator (RTDS) or embed the proposed scheme
in a hardware for a real power transformers. We can also
involve different factors and events such as sympathetic and
inrush condition to generalize it to real systems.
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