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Current understanding of ceria surfaces for CO2 reduction in SOECs and 
future prospects – A review 
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A B S T R A C T   

Ceria-based materials form a very promising class of electrocatalysts for CO2 reduction in solid oxide electrolysis 
cells (SOECs). On the pathway towards the implementation of ceria into technological electrodes on a large scale, 
an in-depth atomistic understanding of the reaction mechanism over ceria surfaces is crucial in order to optimize 
its intrinsic electrocatalytic activity. In this review article, we offer a critical discussion of the phenomena 
governing the electrochemical reduction of CO2 over ceria surfaces. We focus on the steps that limit the reaction 
rate and on how these can be accelerated by appropriate tuning of ceria properties and defect chemistry, via the 
introduction of tensile or compressive isotropic strain in the lattice, the promotion of a specific surface orien
tation and the control of the amount of acceptor or donor dopants incorporated in the fluorite structure. Our 
review aims to gather and examine the evidence of the role that these levers play in altering the energy landscape 
of the reaction, along with their influence on the capability of ceria to suppress carbon deposition during cell 
operation. Ultimately, we identify the areas that need further investigation and propose new lines of work to
wards the performance optimization of ceria as highly efficient catalyst for CO2 reduction in SOECs.   

1. Introduction 

The utilization of fossil fuels for electricity and heat production, and 
for transport account today for the two biggest shares of anthropogenic 
CO2 emissions, with 13.94 and 8.26 Gt of CO2 emitted in the atmosphere 
in 2018, respectively [1]. Likewise responsible for a substantial fraction 
of CO2 emissions is the chemical industry (1.5 Gt CO2 in 2018 [2]), 
which is nowadays the largest industrial energy consumer and relies on 
fossil fuels as the major feedstock for the production of bulk chemicals. 
Of the total primary demand for oil and gas in 2017, approximately 14% 
of oil (13 million barrels per day [mb/d]) and 8% of gas (300 billion 
cubic meters [bcm]) were destined to the production of petrochemicals 
and their derivatives [2], through an array of very energy-intensive 
thermal and/or catalytic processes. More alarmingly, the demand for 
petrochemicals is expected to rise drastically in the next years: the 
chemical sector is foreseen to account for over a third of the growth in oil 
demand projected for 2030 and to consume an additional 56 bcm/y of 
natural gas by the same year [2]. 

In light of their catastrophic effect on climate, one of the biggest 
challenges of our era consists of defossilizing the energy infrastructure 

and the chemical industry. In this context, electrolysis and co- 
electrolysis of water/steam and carbon dioxide are considered a 
cornerstone for the future sustainable energy system, enabling the effi
cient conversion and long-term storage of electrical energy and the 
sustainable production of fuels and chemicals from renewable sources 
[3,4]. 

High temperature solid oxide electrolysis cells (SOECs) are of 
particular interest in this respect [3,5–13], as they have significant ad
vantages over the more established and mature low-temperature elec
trolysis technologies of proton exchange membrane electrolysis cells 
(PEMEC) and alkaline electrolysis cells (AEC). One of the main advan
tages of SOECs is their capability to combine high production rates (due 
to thermal activation) with a high conversion efficiency (low cell 
voltage). Their high conversion efficiency translates into an exception
ally low electrical energy consumption, with recently demonstrated 
values on a stack level of ca. 3.1 kWh/Nm3 H2 and 3.4 kWh/Nm3 CO for 
H2O and CO2 electrolysis, respectively [14]. In turn, this low electricity 
consumption results in a decrease of the levelized cost of product 
(LCOP), being dominated by the cost of electricity [15]. For SOECs 
operating at 750–850 ◦C, electrical efficiencies exceeding 95% are 
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reported relative to the lower heating value of hydrogen (LHV) [3], 
25–30% higher than the low temperature electrolysis technologies [16]. 
Furthermore, their high production rate capability favors a reduced 
capital expenditure, since it scales inversely proportionally to the size of 
the required electrolysis unit. Besides high efficiency and compactness, 
SOECs offer also the unique capability of directly producing synthesis 
gas, consisting of a mixture of H2 and CO, from co-electrolysis of H2O 
and CO2. Syngas is employed as feedstock for the large-scale production 
of a wide array of specialty and commodity chemicals, such as ethylene 
and ethanol, and can be further converted into a broad range of 
hydrocarbon-based fuels, such as methane, methanol, dimethyl ether, 
synthetic petrol/diesel, and even kerosene via the Fischer-Tropsch 
process. SOECs offer the additional advantage of adjusting the CO/H2 
ratio needed for a specific downstream catalytic process simply by 
varying the CO2/H2O feed. 

It should be emphasized, though, that SOECs operate with steam and 
in order to realize these low energy consumption values, steam or waste 
heat that can be used to raise steam must be freely available. Down
stream catalytic conversion of syngas to other hydrocarbons is typically 
exothermic, thereby offering an excellent match with SOECs [17]. 
Beneficial heat integration possibilities arise also in connection with 
biogas [18,19] and biomass [20] utilization. In a recent demonstration, 
SOECs were employed for the upgrading of biogas to pipeline quality 
methane [21]. Biogas produced from different environments contains 
from 30% to 45% of CO2 [22], which can be co-electrolyzed with steam 
to produce a CO-rich syngas, avoiding the cost of separating the CO2 
from biogas and converting it instead into a valuable product. Alterna
tively, SOECs can be coupled with biomass gasification for methane and 
methanol production, offering the external hydrogen source necessary 
to compensate the low hydrogen-to-carbon molar ratio of woody 
biomass [17,23]. Finally, the possibility to operate SOEC plants at var
iable production rate (with a large dynamic range) and with a suffi
ciently fast response time can help accommodate the variability of 
renewable electricity [24], and thus provide large scale grid balancing 
services [25]. 

Specifically for CO2 electroreduction, SOECs have been studied since 
the 1960s, when the technology was first investigated for CO2 removal 
from a spacecraft environment and later to produce O2 for both manned 
and unmanned space missions to Mars by leveraging its CO2-rich at
mosphere [26]. These efforts continue at present with MOXIE (Mars 
Oxygen In-Situ Resource Utilization Experiment), a test model that is 
aboard the Mars 2020 rover as a prototype to test O2 production from 
Martian atmospheric CO2 [27]. 

Nowadays, SOECs are the most mature amongst the CO2 electro
reduction technologies, approaching a technology readiness level (TRL) 
of 9 (competitive manufacturing in operational environment) [28] and being 
already commercially available for CO production with a capacity of 96 
Nm3/h CO [14]. The other two technologies for CO2 electroreduction 
that are under intense research and development are low-temperature 
electrolysis cells, in which CO2 reduction is carried out at tempera
tures lower than 100 ◦C using aqueous or polymer electrolytes, and 
molten carbonate electrolysis cells (MCECs), operating at intermediate 
temperatures (400–900 ◦C), where the electrolyte is a carbonate melt. 
Low-temperature electrolysis technologies have the capability to 
directly synthesise chemicals such as ethylene, ethanol and formic acid, 
which cannot be directly produced in a SOEC. However, they still 
require very large overpotentials at current densities relevant for 
commercialization (>200 mA/cm2) [29], and suffer from poor selec
tivity generating a plethora of products (at varying ratios depending on 
catalyst and operating conditions) [30–32], raising doubts on the scal
ability of this technology, currently lying at a TRL of 4 [33]. MCECs, on 
the other hand, hold the promise of very high current densities, low 
overpotentials and faradaic efficiencies (FE) close to 100% [34], with 
the additional advantage of enduring SO2-containing CO2 sources, such 
as flue gas streams from power stations [35]. However, the high cor
rosivity of molten carbonates is still the big challenge that MCECs have 

to face, limiting the stage of industrial development of this technology to 
a TRL of 5 [33]. 

Hence, SOECs are the only CO2 electroreduction technology envi
sioned for industrial-scale in the next decade, with the potential to alter 
the landscape of the chemical industry by dissociating the production of 
chemicals from fossil sources. As a stepping stone towards the applica
tion of SOECs for large-scale thermo-catalytic processes (where ca. 
10,000–100,000 Nm3/h of CO or 100–1000 kT CO/y are required), in
dustrial plants for the production of fine chemical precursors (ca. 2000 
Nm3/h of CO or 22 kT CO/y required) are envisioned to be developed 
and integrated with downstream catalytic processes in the coming 10 
years [28]. Alongside, the CO production could also be directed towards 
decentralized plants operating on-demand, drastically reducing the 
flammability and toxicity hazards associated with the transportation 
and storage of CO that the large centralized plants face today [33]. 

In order to make SOECs commercially viable on a large scale as part 
of a sustainable energy infrastructure and chemical industry, their life
time needs to be improved. In fact, one of the main challenges associated 
with the large-scale commercialization of SOECs lies in preventing cell 
degradation, which derives from the fuel electrode to a significant 
portion [36–38]. The state-of-the-art electrocatalyst employed in SOECs 
fuel electrodes is Ni, typically in the form of a porous cermet (ceramic- 
metal composite) with yttria-stabilized zirconia (YSZ). Ni-YSZ compos
ite cathodes show excellent activity towards CO2 reduction [39,40]. 
However, Ni catalyzes CO disproportionation via the Boudouard reac
tion (2CO(g) ⇌ C + CO2(g)) under SOECs operating conditions, resulting 
in carbon formation above a threshold CO/CO2 ratio [41]. The accu
mulation of carbon on the electrode surface results in Ni dusting, i.e. Ni 
removal from the cathode, leading to the fracture of the porous structure 
over time. Even if C deposition is limited to a degree that cell fracture is 
avoided, it causes a partial deactivation of the Ni catalyst, which in turn 
lowers the cell performance [42]. 

Carbon deposition can be effectively overcome by limiting operation 
within safe CO/CO2 ratios, albeit with the requirement for lower CO2 
conversion and increased gas circulation. Nevertheless, other degrada
tion mechanisms will still lower the electrochemical performance of the 
Ni-YSZ electrode. The two most substantial ones relate to the poisoning 
of the electrode surface by impurities such as sulphur [39] (present in 
the gas feed stream when the CO2 comes from a biomass process) 
lowering electrochemical activity, and the agglomeration and depletion 
of Ni from the electrode/electrolyte interface region [43,44]. The latter 
results in loss of percolation and associated increase in ohmic losses, as 
well as in loss of three phase boundary (3PB) length, i.e. the line where 
YSZ, Ni, and gas phase meet, which is where the electrochemical reac
tion occurs. 

All the above-mentioned challenges have been addressed in the last 
decade with the introduction of doped ceria (CeO2) as a component of 
the fuel electrode [45–48]. Ceria plays a beneficial role in different as
pects, related to enhancing both electrode performance and stability. 
Firstly, the mixed ionic electronic conducting (MIEC) nature of ceria, 
under the reducing conditions of the cathode, extends the reaction zone 
from a 3PB line to a two phase boundary (2PB) surface between the 
surface of ceria and the gas phase. Importantly, it has been already 
demonstrated for the water splitting reaction that the ceria-catalyzed 
(2PB) reaction area holds the predominant contribution on the overall 
electrode activity, with only minimal contribution of the metal- 
catalyzed reaction region (3PB), for 3PB/2PB ratios up to ~4 × 103 

cm− 1 [49]. Additionally, its improved ionic transport compared to YSZ 
[50] can help extend the utilization length of the cathode and thus 
improve performance. Indeed, metal-fluorite cathodes of Ni-CGO (Gd- 
doped ceria) have shown superior electrochemical performance than Ni- 
YSZ [51,52]. Finally, the electronic conductivity of ceria can compen
sate at least to some extent for the Ni depletion, thus reducing/delaying 
this degradation and improving the electrode stability [53]. In a very 
recent work from Nenning et al. [54], single-phase CGO anodes 
exhibited some of the lowest polarization resistances ever measured for 
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technological electrodes in SOFCs (see Fig. 1), showcasing the great 
potential of CGO as Ni-free high-performing electrode for SOCs. 

Ceria has also attracted attention due to its remarkable carbon- 
deposition suppression capability [55–61]. A recent near ambient 
pressure X-ray photoelectron spectroscopy (NAP-XPS) study showed 
that the onset of carbon formation occurs on ceria-containing electrodes 
at much higher overpotentials than for Ni-YSZ electrodes, significantly 
beyond the operating window of a commercial SOEC stack [62]. Finally, 
addition of ceria to the Ni-YSZ cermet [63,64] or the application of Cu- 
CGO electrodes [65] has been shown to increase the sulphur tolerance of 
the fuel electrode in fuel cell mode. 

Increasing the 2PB area of ceria-based cathodes is an obvious 
approach for well performing technological electrodes, and can be 
achieved by nanostructuring of the ceria electrocatalysts [47,49,66–68]. 
Achieving unprecedented electrochemical performance requires that the 
intrinsic activity of the ceria surface is also optimized. To achieve this, 
fundamental studies are necessary in order to obtain an in-depth 
mechanistic understanding of the elementary processes behind the 
CO2 reduction mechanism. Evident levers to tailor the properties of ceria 
surfaces are: doping, strain, and surface orientation [69]. Understanding 
the influence of the above parameters requires the use of model-type 
electrodes with well-defined surface area, composition, and surface 
orientation. Pulsed laser deposition (PLD) has been the technique of 
choice in that respect for many studies on the (electro)catalytic and 
transport properties of doped ceria [49,66,70–78]. PLD enables also fine 
control of the electrode thickness, ensuring electrodes thin enough as to 
be surface-reaction limited, rather than bulk diffusion limited [79]. 

Pure and doped ceria have been extensively applied for many de
cades now, not only as electrode and electrolyte components in SOCs, 
but also in a variety of industrial processes [80], ranging from auto
motive three-way catalysts (TWCs) to biomedical applications [81,82] 
and organic synthesis [83]. Thus, the physical, mechanical, chemical 
and electrochemical properties of ceria have been thoroughly studied. 
Ceria has also been vastly investigated both as catalyst and as non- 
innocent support in the context of CO2 valorization processes such as 
CO2 methanation and dry-reforming of methane, offering an extensive 
literature covering the interaction of the CO2 molecule with ceria sur
faces in heterogeneous catalysis. A comprehensive and in-depth 
description of ceria structure, defect chemistry and transport proper
ties [69,81,84–92], as well as an overview of the knowledge gained from 
its application in CO2 conversion catalysis [93,94], can be found 

elsewhere and are beyond the scope of this review. The aim of this re
view is rather to outline the accomplishments realized up to date in the 
understanding of the CO2 reduction pathway over ceria surfaces, along 
with the challenges and the remaining questions to be answered for the 
development of better performing ceria-based electrocatalysts for CO2 
reduction in SOECs. 

2. Role of ceria defect chemistry and surface species in the CO2 
electroreduction pathway 

The electrochemical reduction of CO2 to CO is expressed, using 
Kröger-Vink notation [95], as: 

CO2(g) +V••
O + 2e’⇄CO(g) +Ox

O (1)  

where VO
•• denotes a doubly positive charged oxide ion vacancy, and 

OO
x a lattice oxygen. In the case of ceria, electrons are localized around 

Ce ions as small polarons [96], and Eq. (1) can be expressed as follows: 

CO2(g) +V••
O + 2Ce′

Ce⇄CO(g) +Ox
O + 2Cex

Ce (2)  

where CeCe
′ represents the Ce3+ cations (or localized electrons) and 

CeCe
x the Ce4+ cations. 

Chueh and co-workers [74] used NAP-XPS to analyze the CO2 
reduction reaction pathway on 20 at.% Sm-doped ceria (SDC) using a 
model electrochemical cell operating at conditions approximating 
technologically-relevant ones for SOECs. The authors split the overall 
reaction into 3 conceptual steps, consisting of the transport of charge 
carriers from the bulk to the surface, the adsorption/dissociation of the 
gaseous reactants and the charge transfer at the surface/gas interface. 
The reaction starts with the migration of polarons (Eq. 3) and oxygen 
vacancies (Eq. 4) from the bulk of ceria towards its surface. The sub
scripts “b” and “s” in the following equations refer to bulk and surface 
species, respectively. 

2
(

Ce’
Ce,b +Cex

Ce,s⇄Ce’
Ce,s +Cex

Ce,b

)
(3)  

V••
O,b +Ox

O,s⇄V••
O,s +Ox

O,b (4) 

Subsequently, the surface reaction has been represented via two 
single-electron transfer steps for the two electrons transferred from the 
ceria surface to the reaction intermediate (in contrast to water splitting, 
where only one electron is transferred to the hydroxyl ion, OHO, S

•, upon 
incorporation of the oxygen ion in an oxygen vacancy [73,97–101]). The 
first step consists in the activation of a physisorbed CO2 molecule on a 
surface oxygen site by a localized electron (Ce3+) (Eq. 5). The C atom of 
the CO2 molecule forms a chemical bond with the surface oxygen ion, 
generating a nonpolar [102] carbonate, (CO3)O, s

’, whose configuration 
and preferential adsorption site are discussed in Section 2.1. 

CO2(g) +Ce’
Ce,s +Ox

O,s⇄(CO3)
’
O,s +Cex

Ce,s (5) 

The second step consists of the second electron transfer and oxygen 
ion incorporation in an oxygen vacancy. The carbonate is decomposed 
and produces an adsorbed CO, which eventually desorbs from the ceria 
surface as gaseous product (Eq. 6). 

(CO3)
’
O,s +Ce’

Ce,s +V••
O,s⇄CO(g) +Cex

Ce,s + 2Ox
O,s (6) 

A schematic representation of the reaction pathway as described 
above is proposed in (Fig. 2a). 

With respect to the rate limiting steps of the process, some consid
erations need to be made depending on the system geometry and 
configuration. In the case of thin film studies, in which the current 
collection is optimized (to achieve homogeneous current distribution on 
the entire electrode surface, e.g. by sufficiently small mesh spacing of 
micro-patterned metal grids [103,104]), the charge transport reactions 
(Eq. 3–4) do not constitute the rate-limiting steps to the overall reaction. 

Fig. 1. Arrhenius plot of the polarization resistance of different anode materials 
combinations used in high power density SOFCs. Reproduced from ref. [54] 
with permission from the Royal Society of Chemistry. 
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This has been demonstrated experimentally for this type of model 
electrodes both by electrochemical impedance spectroscopy (EIS) [49] 
and by NAP-XPS [73] in the case of the water splitting reaction. 
Furthermore, by employing a counter electrode (CE) with substantially 
higher surface area than the working electrode (WE), it can be assumed 
that the overpotential at the WE-gas interface dominates the electrode 
response, with negligible overpotential at the CE. Thus, the surface re
action (Eq. 5–6) can be probed under polarization as the one kinetically 
limiting the entire process [74]. 

In order to identify the rate-determining amongst the two single- 
electron transfer steps, Chueh and co-workers [74] analyzed the corre
lation between the concentration of near surface Ce3+, denoted here
after as [Ce3+

s], the carbonate coverage and the cathodic overpotential. 
By increasing the cathodic polarization, the ratio of [Ce3+

s]/([Ce3+
s] +

[Ce4+
s]) grows linearly up to a value of 45% at the highest measured 

overpotential of − 0.35 V, reflecting a strong degree of reduction at the 
electrode surface. On the other hand, the carbonate coverage only in
creases slightly with increasing cathodic polarization and approaches 
saturation at an overpotential of − 0.1 V, at a value of approximately 
20% of a monolayer. The authors suggest that as the coverage increases, 
the adsorption enthalpy is expected to rise due to adsorbate–adsorbate 
interactions, as already suggested by DFT calculations for CO2 adsorp
tion over CeO2 surfaces [105]. The fact that the same phenomenon of 
saturation of the hydroxyl coverage was not observed experimentally for 

water splitting [73] is attributed to the larger molecular dimensions of 
carbonates with respect to the hydroxyl ions [74]. 

Turning to Eq. 5, one can observe that from one hand, the increasing 
cathodic overpotential translates into an increase of the chemical po
tential of the localized electrons, driving the reaction towards the for
ward direction. On the other hand, as soon as the coverage increases 
above the critical value for which the adsorbate-adsorbate interactions 
become prominent, there is an increase of the adsorbate’s chemical 
potential, which opposes the charge transfer from the localized electron. 
According to this reasoning, for large carbonate coverages at sufficiently 
high overpotential, the first electron transfer could become rate- 
limiting. 

The correlation between [Ce3+
s] and carbonate coverage has also 

been derived and discussed by Zhao et al. [106] for CO2 splitting on 
highly oxygen-deficient CeO2-δ and Ce0.5Zr0.5O2-δ (CZO) nanopowders, 
reduced by H2 dosing prior to introduction of CO2. The experimental 
design, promoting a surface-limited process, and the kinetic model 
employed to describe the reaction steps enable a comparison with the 
study of Chueh and co-workers [74], in which the ion-incorporation flux 
is controlled by the electrode overpotential. Zhao et al. [106] derived a 
“linear-flattened-decay pattern” for the concentration of carbonate with 
respect to [Ce3+

s]. They estimated a maximum value of 10–30% for the 
carbonate coverage at 500 ◦C, in line with the 20% deduced in ref. [74] 
at the same temperature. According to the analysis of Zhao et al. [106] 

Fig. 2. Schematic representation of the reaction mechanism for a) the CO2 electroreduction on 20 at.% Sm doped ceria proposed by Chueh and coworkers [74], b) 
the CO2 splitting pathway on ceria nanopowders proposed by Zhao et al. [106]. In Fig. 2b), two electrons appear to derive from the same Ce ion for the sake of 
drawing clarity, although in reality two Ce ions are expected to be involved. 
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though, the carbonate coverage decreases with increasing degree of 
surface reduction, instead of reaching the saturation value (plateau) 
proposed by Chueh and co-workers [74]. 

The explanation given by Zhao et al. [106] is based on the different 
reaction rates of the adsorption/activation of CO2 and the charge 
transfer/desorption of CO. More specifically, they model the mechanism 
of CO2 splitting on the ceria surface as comprised of two steps, reported 
hereafter in Eq. 7 and 8, and illustrated in Fig. 2b: 

CO2(g) +V••
O,s +Ox

O,s⇄(CO3)
••

2O,s (7)  

(CO3)
••

2O,s + 2Ce’
Ce,s⇄CO(g) + 2Cex

Ce,s + 2Ox
O,s (8) 

Based on their kinetic model fitting results, the CO2 activation (Eq. 7) 
is deemed to be energetically favored and exothermic, whereas the 
charge transfer (Eq. 8) is endothermic and limiting the process, as shown 
in the energy diagram of Fig. 3. When the [Ce3+

s] is low, the charge 
transfer is slow, so that the carbonate concentration is only controlled by 
the CO2 activation, giving a linear increase of adsorbates with [Ce3+

s] 
due to the associated increase in the concentration of VO, s

••. When the 
surface is strongly reduced, the charge transfer reaction is sufficiently 
fast that the accumulation of carbonates resulting from CO2 activation is 
slowed down. When the [Ce3+

s] increases above ~50–60% (for CeO2-x), 
the charge transfer reaction becomes faster than Eq. 7 and the carbonate 
concentration decreases with further increase in [Ce3+

s]. 
A similar increasing-flattened-decay trend of carbonate coverage 

with cathodic polarization was also observed in one more study 
employing model electrodes to study the CO2 electroreduction mecha
nism operando on ceramic electrodes [107]. In this case, the focus was on 
the perovskites La0.6Sr0.4FeO3− δ (LSF) and La0.7Sr0.2Cr0.9Ni0.1O3− δ 
(LSCrNi), materials closely related to ceria within the broader family of 
MIEC. Given the similarities to ceria in terms of transport properties and 
point defects, it is worthwhile highlighting some of the findings obtained 
for perovskite materials that offer a valuable perspective on how to 
interpret the data available for ceria. Here, the reaction pathway is 
divided into 3 steps, described hereafter in Eqs. 9–11 and schematically 
represented in Fig. 4. 

CO2(g) +V••
O,s + e′⇄(CO2)

•

O,s (9)  

(CO2)
•

O,s +Ox
O,s⇄(CO3)

•

2O,s (10)  

(CO3)
•

2O,s + e′ ⇄CO(g) + 2Ox
O,s (11) 

According to Opitz et al. [107], two pathways are possible for the 

first step of CO2 adsorption and carbonate radical formation (Eq. 9): in 
one case, the CO2 adsorption and first electron transfer occur as one 
single step upon adsorption into a singly charged oxygen vacancy, i.e. an 
oxygen vacancy in which an electron is trapped; in the other, the CO2 
molecule is firstly adsorbed on an oxygen vacancy, followed by the 
charge transfer from a polaron or the conduction band. For the sake of 
simplicity, only the first pathway is depicted in Fig. 4. 

Turning to the correlation between carbonate intensity and applied 
overpotential, in this study the carbonate coverage saturation or 
maximum is shifted to much stronger polarization than the − 0.1 V 
observed for ceria-based electrodes, i.e. approx. − 0.5 V and  − 1.1 V for 
LSCrNi and LSF, respectively. However, it must be noted that in ref. 
[107] solely CO2 is used as feed gas, rather than a mixture of CO/CO2 as 
in the study of Chueh and co-workers [74]. Considering as a reference 
the chemical potential of 1 bar of oxygen, the corresponding calculated 
oxygen chemical potentials are approximately − 2.37 eV for SDC at − 0.1 
V and 500 ◦C, − 3.15 and  − 1.95 eV for LSCrNi at − 1.1 V and LSF at 
− 0.5 V at 720 ◦C, respectively. The corresponding equivalent oxygen 
partial pressures under these values of cathodic polarization are calcu
lated as 1.2⋅10− 30, 1.6⋅10− 32 and 2.1⋅10− 20 atm for SDC, LSCrNi and 
LSF, respectively. 

Opitz et al. [107] observe that the polarization dependence of the 
carbonate coverage cannot be associated solely with the concentration 
of oxygen vacancies, as there is negligible carbonate coverage at small- 
intermediate polarizations despite the fact that the introduction of the 
acceptor dopants in the analyzed compositions is already compensated 
by oxygen vacancies to a large extent. The observed behavior suggests 
that oxygen vacancies are the preferred adsorption site but that elec
trons are also necessary for the adsorption of CO2 on perovskites. Firstly, 
the observation of the carbonate coverage increase with increasing 
overpotential above a threshold value (despite the presence of surface 
oxygen vacancies already at zero polarization) suggests that an electron 
transfer is indeed necessary for the formation of the carbonate inter
mediate. Secondly, the presence of a saturation limit or maximum seems 
to indicate that the rate-limiting step is the one following the carbonate 
formation, i.e. the reduction of the carbonate to CO. Thirdly, the cor
relation of the saturation limit or maximum in carbonate coverage with 
acceptor doping (and associated oxygen vacancy concentration) sug
gests oxygen vacancies as the preferred adsorption site. Finally, the 
depletion of the carbonate at even stronger cathodic polarizations sug
gests that this rate-limiting step is also accelerated by the overpotential. 

The authors point out that this overpotential dependence of the rate- 
limiting step is consistent with the exponential polarization dependence 
of the electron concentration in MIECs, resulting in the exponential 
current− overpotential characteristics observed for all four perovskite 
compositions investigated (Fig. 5a). This exponential behavior cannot 
be attributed to a Butler-Volmer type electron transfer over an activation 
barrier since the carbonate intermediate is pinned to the Fermi level of 
the perovskite surface, as the − 1 eV/V shift of the binding energy of the 
carbonate intermediate vs. polarization suggests. An exponential trend 
is also found for the current density as a function of the applied over
potential by Chueh and co-workers [74] for 20 at.% Sm-doped ceria 
(Fig. 5b), and for the ion incorporation flux as a function of the [Ce3+

s] 
in Ce0.5Zr0.5O2-δ by Zhao et al. [106]. The − 1 eV/V shift of the binding 
energy of the carbonate intermediate vs. polarization, observed by 
Skafte et al. [62] for 20 at.% Sm-doped ceria, suggests again that it is the 
abundance of [Ce3+

s] that controls the rate of the second electron 
transfer step in Eq. 6 or Eq. 8. 

Another interesting inference can be drawn from this study in asso
ciation with the observed correlation of the carbonate intensity with the 
level of acceptor doping for the different compositions examined. The 
carbonate intensity started increasing at less reducing potential with 
increasing acceptor doping and reached a higher value at its maximum. 
This suggests that adsorbate-adsorbate interactions are not the sole 
factor potentially limiting carbonate coverage, at least for these perov
skite compositions. 

Fig. 3. Energy landscape (unit: kJ/mol) for the CO2 reduction and H2O split
ting pathways over ceria (black lines) and CZO (red lines) surfaces proposed by 
Zhao et al. [106]. Reproduced from ref. [106] with permission from the Royal 
Society of Chemistry. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Ultimately, one can conclude that some similarities exist in the 
behavior of the two families of oxides. Firstly, the crucial role of surface 
oxygen vacancies and electrons needed for the CO2 chemisorption and 
carbonate formation emerges. Secondly, in both systems there appears 
to be a second electron transfer step which is accelerated with increasing 
polarization (and associated electron concentration), shifting the bal
ance towards the CO2 chemisorption becoming the rate limiting step at 
high polarizations. However, further electrochemical studies on model 
electrodes are necessary in order to unequivocally elucidate the nature 
of the correlation between [Ce3+

s] and carbonates in ceria, particularly 
in conditions relevant for technologic applications. Firstly, an extension 
of the NAP-XPS direct spectroscopic determination of carbonate 
coverage at larger (more negative) polarizations than those covered by 
Chueh and co-workers [74] is needed to determine if a maximum is 
indeed reached in ceria, followed by a decrease with further increase of 
Ce3+

s. Keeping in mind that higher overpotentials at low operating 
temperatures may coincide with the onset of carbon formation (approx. 
-0.3 V at 550 ◦C in a mixture of 50/50 CO/CO2 [62], as explained more 
in detail in Section 2.4), higher temperatures would probably be more 
suitable for the purpose. An extension to higher temperatures would also 
be interesting to determine the trend of carbonate concentration with 
temperature: the kinetic model developed by Zhao et al. [106], indeed, 
predict that the coverage of carbonate is reversely dependent with 

temperature for both doped and undoped ceria, i.e. a higher carbonate 
concentration is found at lower temperature. At the very low surface 
carbonate coverage expected from the calculations (~3% at 700 ◦C and 
~ 0.03% at 900 ◦C for ceria) the adsorbate-adsorbate interactions will 
be less prominent, and their role vs. the role of [CeCe, s

3+] on the relative 
rate of the different charge transfer steps may be clarified. Finally, the 
spectroscopic investigation of ceria with different concentration of 
dopants, inducing different [VO, s

••]/[CeCe, s
3+] ratios at the surface, 

would allow to conclude on the importance of oxygen vacancies and/or 
[CeCe, s

3+] for the CO2 adsorption step. 
The polarization affects the absolute and relative rates through 

influencing the surface vacancy and polaron concentration. This can also 
be adjusted to some extent through surface termination, doping, and 
strain, such as to accelerate both steps and in particular step 3) which is 
rate limiting at low overpotentials (of ca. -0.1 V where technological 
SOECs typically operate).  

2.1. Influence of low-index surface orientations on the electrochemical 
activity of ceria towards CO2 reduction 

The three low-index orientations of CeO2, i.e. (100), (110), and 
(111), differ by the number of coordination vacancies around the 

Fig. 4. Schematic representation of the CO2 electroreduction pathway on a perovskite structure as proposed by Opitz et al. [107].  

Fig. 5. Current− voltage characteristics of: 
a) the four different composition of perov
skite model electrodes investigated by Opitz 
et al. [107]. Measurements were made at 
720 ◦C in 0.25 mbar CO2 Reprinted with 
permission from ACS Appl. Mater. Interfaces 
2017, 9, 41, 35,847–35,860 [107]. Copy
right © 2017 American Chemical Society. b) 
the 20 at.% Sm-doped ceria model electrode 
investigate by Chueh and co-workers [74] at 
500 ◦C in a 270 mTorr CO/CO2 mixture. 
Reproduced from ref. [74] with permission 
from the Royal Society of Chemistry.   
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exposed Ce cations and O anions, their surface site density and interionic 
distance [87]. Tasker first classified ionic crystal surfaces into three 
types [108], i.e. “type 1, neutral surfaces with stoichiometric pro
portions of anions and cations in each plane; type 2, charged surfaces, 
with no dipole moment in the repeat unit perpendicular to the surface; 
and type 3, charged surfaces that have a dipole moment in the repeat 
unit perpendicular to the surface”. CeO2 (110) is a type 1 surface, with 
each layer having zero charge. CeO2 (111) is a type 2 surface, having 
every plane charged but a repeating unit consisting of three planes in a 
symmetrical sequence (exposed oxygen plane above a plane of cerium 
ions, in turn above an oxygen plane), so that there is no net dipole 
moment perpendicular to the surface. CeO2 (100) is a type 3 surface, 
with alternatingly charged planes and a repeating unit of two planes, 
which results in a dipole moment perpendicular to the surface. This last 
type of surfaces have nearly infinite surface energy, with an electric field 
due to the charged surface, so that they can only exist upon recon
struction of the bulk truncation [87,109–112]. There is broad consensus 
that the stability of these three surfaces is ranked as (111) > (110) >
(100) [113–116], i.e. the (100) being the least stable. However, the 
stability of the surfaces does not reflect the trend of their oxygen va
cancy formation energy (reducibility). It is well established through DFT 
calculations, that less energy is required to form an oxygen vacancy on 
the (110) surface, compared to the (100) and lastly the (111) [117–121]. 
It is worthwhile mentioning though that a recent X-ray absorption near- 
edge structure (XANES) spectroscopy study employing ceria thin films 
with (100), (110), and (111) terminations showed that the surface 
concentration of Ce3+ (and inferred oxygen vacancy concentration) is 
equivalent on the three facets under the high temperature and low 

oxygen partial pressure conditions typical of SOEC [122]. A schematic 
representation of the three low-index surface terminations of ceria is 
depicted in Fig. 6. Characteristic properties of each termination and 
interionic distances are reported in Table 1 and 2, respectively. 

The surface orientation, alongside with other parameters such as the 
active site, the dopant concentration, the degree of coverage and, ulti
mately, the reaction conditions, is well known for playing a role in the 
configuration of the adsorbates and reaction intermediates. For ceria 
surface, the configuration of the carbonate on its three low-index surface 
orientations is not well established, and sometimes contradicting find
ings are reported. Various experimental studies employing Fourier 
transform infrared spectroscopy (FTIR) on ceria and doped-ceria as 
catalyst [128–132] have shown that the carbonate can have different 
configurations, i.e. mono-, bi- and poly-dentate or bridged, whose 
structures can be visualized in Fig. 7. Albrecht et al. [133] revealed both 
experimentally and computationally that CO2 adsorbs as a flat-lying 
tridentate carbonate both on the oxidized and reduced CeO2 (100) 
surfaces. DFT calculations from Cheng et al. [134] showed that on the 
reduced CeO2-x (110) surface the carbonate adsorbs either as mono/ 
bidentate carbonate or bridged, depending on whether the oxygen va
cancy site is an in-plane vacancy or a split vacancy (i.e. an oxygen va
cancy where one of the nearest oxygen anions moves towards the 
vacancy, occupying a bridge site equidistant to the two adjacent cerium 
cations), respectively. Finally, on the fully oxidized CeO2 (111) surface 
the carbonate adsorbs as a monodentate up to a coverage of 1/3 
monolayer (ML), whereas for higher coverages mixed configurations 
(monodentate + linear in two different partial layers) are present 
[105,135]. DFT calculations from Skafte et al. [62] confirm the above 

KEY POINTS on the pathway of CO2 reduction on ceria surfaces in SOECs:  

▪ The overall reaction can be divided into 3 conceptual steps, consisting of the 1) transport of charge carriers from the bulk to the surface, 
2) the adsorption/chemisorption of CO2 and 3) the oxygen ion incorporation resulting in CO formation and desorption.  

▪ Steps 2) and 3) constitute the surface reaction, in which two electrons are transferred from the ceria surface to a physisorbed CO2 
molecule.  

▪ Under SOEC conditions, the reaction intermediate is a carbonate, CO3
2− , in which the C atom forms a chemical bond with 1–3 surface 

oxygen atoms (further discussed in Section 2.1). A saturation of the carbonate coverage has been observed with increasing cathodic 
polarization, attributed to adsorbate-adsorbate interactions or increase in the relative rate of step 3)/step 2). The carbonate coverage 
should pass through a maximum with overpotential according to the later explanation, offering a clear distinction from the adsorbate- 
adsorbate interaction hypothesis that future spectroscopic investigations could address.  

▪ There is consensus that the rate limiting step gradually shifts from step 3) to step 2) with increasing cathodic polarization.  

Fig. 6. Representation of the low-index ceria surfaces from top view and side view. Red spheres are O atoms and purple spheres are Ce atoms. In the top view, the left 
side of each figure represents the top outmost layer only, whereas full projections including subsurface ions are shown in the right side of each figure. The software 
VESTA [123] was used for creating this image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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mentioned findings, with the binding geometry for carbonate adsorbates 
being tridentate for (100), bidentate for (110) and monodentate for 
(111) ceria surfaces. The monodentate configuration for the (111) sur
face also agrees with the DFT calculations from Kildgaard et al. [136], 
suggesting a monodentate configuration on the (111) nanofacets 
resulting from the partial reconstruction of the (110) surface under 
reducing conditions (observed experimentally for ceria nanoparticles at 
500 ◦C [137]). In contrast to these results, recent DFT calculations from 
Parker and coworkers [124] indicate that the tridentate configuration is 
the most stable on all ceria surfaces. However, for the conditions of 
elevated temperatures and low partial pressures typical of SOECs, Vegge 
and coworkers [138] concluded that tridentate carbonates are unstable 
over the reduced (111) surface, and a more favorable reaction pathway 
through a bidentate CO2

− geometry is suggested. 
With respect to the adsorption site, the characteristics of the most 

favorable site for the carbonate formation are also not well known. A 
number of DFT studies suggest that the presence of an oxygen vacancy in 
the proximity of the CO2 adsorption site energetically favors CO2 acti
vation. In particular, Vayssilov et al. [128] determined that on a model 
non-stoichiometric ceria nanoparticle the presence of an oxygen va
cancy in the immediate vicinity of a carbonate increases the carbonate 
binding energy, i.e. its stability, in the case of both the monodentate and 
tridentate configuration. Cheng et al. [134] suggested that CO2 chemi
sorption is favored at an oxygen vacancy site on the reduced CeO2-x 
(110) surface. On the same surface, Kumari et al. [139] also predict that 
the CO2 molecule adsorbs in the vicinity of an oxygen vacancy. On the 

reconstructed CeO2-x (110) surface, Kildgaard et al. [136] calculated that 
the most favorable adsorption site under SOECs operation is on a surface 
oxygen site having a sub-surface vacancy as the nearest neighbor. These 
reports suggest a dependence of the CO2 chemisorption characteristics 
on the orientation and degree of reduction of the ceria surface. A sys
tematic experimental investigation of the most favorable site for CO2 
chemisorption on different ceria surfaces is nevertheless still lacking. 

To sum up, it is well established that the type of reaction interme
diate under the reaction conditions typical of SOECs is a carbonate 
(CO3)O, s

’. In fact, the presence of the carbonate intermediate in Chueh 
and co-workers’ study [74] is in agreement with what was already 
observed by Yu et al. [140] and, more recently, by Wang [141] and 
Skafte [62] for both pure and doped ceria-based electrochemical cells 
under SOEC conditions. However, none of the electrochemical studies 
mentioned above [62,74,140,141] unequivocally elucidated the 
configuration of carbonate adsorbed on the ceria (100) surface in the 
CO2 electroreduction, and similar experimental studies for the other 
orientations are still lacking, so that a precise description of the car
bonate configuration on the different ceria surface terminations (and its 
preferential adsorption site) under the operating conditions of SOECs 
remains an open question. What is clear though is that the carboxylate 
species Ce-CO2

δ- (consisting of a CO2 adsorbed on top of a Ce cation) 
typically observed in non-electrochemical low-intermediate tempera
ture catalysis studies [131,142], is detected only in negligible concen
trations under SOEC operating conditions up to cathodic overpotentials 
of ~ − 0.3 V [62,74], i.e. well beyond the typical polarization in tech
nological SOECs. However, the presence of carboxylate species is 
observed at very high overpotentials (− 0.3 to − 0.6 V) in relation to 
carbon formation [62], as discussed in more detail in Section 2.3. 

In the light of the above, it is evident that surface orientations have 
been extensively studied to understand the type of adsorbate that can 
form on ceria following CO2 adsorption, both computationally and 
experimentally. On the other hand, systematic studies on model systems, 
clearly correlating the effect of the surface orientation with the elec
trocatalytic activity of ceria, are lacking. The closest approximation to a 
model system available in the literature is shape-controlled nano
particles, such as nanorods, nanocubes and nanooctahedra, which 
expose different orientations in their facets, as reported in Table 3 and 
shown for nanocubes in Fig. 8: 

Nanoshapes have been vastly employed in the context of heteroge
neous catalysis to explore the structure-activity dependence of ceria 

Table 1 
Characteristic properties of the low-index ceria surfaces.  

Orientation Tasker classification [108] Termination Surface Energy (J/m2) [124,117,125–127] Reducibility ranking Surface site density 

Ce O 

111 Type-2 Ce and O 0.60–0.71 3rd 32
9

̅̅̅
3

√
a2  

32
9

̅̅̅
3

√
a2  

110 Type-1 Ce and O 1.0–1.06 1st 
̅̅̅
2

√

a2  
2

̅̅̅
2

√

a2  

100 Type-3 Ce or O 1.40–1.44 2nd 2
a2  

4
a2   

Table 2 
Inter-cationic and inter-anionic distances, up to the third neighbor, for the three 
low index surfaces of ceria. The numbers in parenthesis refer to the number of 
first, second or third neighbors. The interionic distances and number of neigh
bors refer to the surface ions only.  

Orientation Ce-Ce distance (and population) O-O distance (and population) 

1st 
neigh. 

2nd 3rd 1st 
neigh. 

2nd 3rd 

111 a̅
̅̅
2

√ (6)
̅̅̅
3

√
a
̅̅̅
2

√ (6)
̅̅̅
2

√
a (6) a̅

̅̅
2

√ (6)
̅̅̅
3

√
a
̅̅̅
2

√ (6)
̅̅̅
2

√
a (6)

110 a̅
̅̅
2

√ (2) a (2) 
̅̅̅
3

√
a
̅̅̅
2

√ (4)
a
2
(2)

a̅
̅̅
2

√ (2)
̅̅̅
3

√
a

2
(4)

100 a̅
̅̅
2

√ (4) a (4) a
̅̅̅
2

√
(4) a

2
(4)

a̅
̅̅
2

√ (4) a (4)  

Fig. 7. Schematic representation of the structure of surface carbonates and carboxylates as proposed by earlier studies.  
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towards different reactions, in both computational [144] and experi
mental studies [145,146]. The knowledge gained from those studies 
suggest that indeed the effect of the orientation is significant, and that 
the different formation energy, concentration and structure of defects 
resulting from different surface terminations translates into a marked 
difference in activity of the different nanoshapes. For a number of re
actions, including oxidation of CO [147,148] and the synthesis of 
dimethyl carbonate (DMC) from CO2 and methanol [149], nanorods 
were more catalytically active than nanocubes and nanooctahedra 
[150–155]. This was initially explained with the ranking of orientations 
with respect to reducibility mentioned earlier: nanocubes expose the 
(100) facets, nanooctahedra the (111), whereas nanorods were believed 
to be dominated by the (110) and (100) facets [156]. Thus, the higher 
activity of nanorods was related to the higher reducibility and lattice 
oxygen mobility of the (110) surface followed by the (100) and (111) 
surfaces [157–159]. At a later time, it has been unambiguously 
demonstrated that nanorods also expose a big portion of (111) surfaces 
[160], mainly in the form of nanofacets formed upon reconstruction of 
the reduced (110) surface [161,162]. Crozier et al. [163] showed that at 
temperatures as high as 730 ◦C in H2, such reconstructed (111) nano
facets transition back to a smooth bulk-terminated (110) facet: this 
allow the reduced surface to accommodate the high amount of oxygen 
vacancies formed upon reduction, without incurring in the formation of 
a strong perpendicular dipole moment. The presence of this stable and 
highly-reduced reconstructed (110) surface has been suggested as a 
possible reason for the observed combination of stability and reactivity 
observed in nanorods [164]. Other explanations of the superior catalytic 
activity of rods, instead, point towards a plethora of different special 
sites that this type of complex nanostructure possesses, such as edges 
and corners [161] or vacancy clusters [165]. For other catalytic re
actions such as hydrogen [166] and ethanol oxidation [167] and reverse 
water gas shift (RWGS) [168], however, ceria nanocubes showed a 
higher activity with respect to nanorods. The superior performance of 

nanocubes is ascribed to the higher inherent reactivity (resulting from 
their lowest inherent stability) of the (100) surfaces present in cubes 
compared to the (111) exposed by rods. 

Recently, Symington et al. [124] performed DFT calculations on ceria 
nanoparticles to study the interaction of the low index surface termi
nations with CO2 in the context of catalytic applications. Their results, 
reported in Fig. 9, show that for the entire coverage range investigated, 
the magnitude of the CO2 adsorption energy ranks as (100) > (110) >
(111), i.e. being (100) the most favorable surface for CO2 adsorption. 

Electrocatalytic reactions in SOECs are carried out at higher oper
ating temperatures, which influences the oxygen vacancy and polaron 
formation, the gas molecules’ adsorption/desorption on/from the sur
face and the stability of the reaction intermediates. DFT calculations by 
Wu et al. [169] for water splitting in SOECs showed that both the 
turnover frequency (TOF) and the reaction pathway are highly facet- 
dependent on ceria. The following trend of TOF on the different sur
face orientations is found for the temperature range between 650 and 
900 K: (111) > (110) > (100). For higher temperatures (up to 1200 K), 
the activity of the (110) and (111) surfaces becomes very similar, but 
still higher than the (100). The explanation given by the authors is that 
the formation of the hydroxyl reaction intermediate is more stable on 
the (100) facet, thus inhibiting the decomposition of the hydroxyl to H2. 
With respect to the reaction pathway, for the (100) and (111) facets the 
reaction always proceeds through an “excessively hydroxylated” surface 
(i.e. when the surface is fully covered in hydroxyls and the reaction thus 
proceeds through an alternative Ce-H intermediate), whereas for the 
(110) surface the reaction pathway varies from a fully hydroxylated 
surface up to 800 K to a partially hydroxylated one at higher 
temperature. 

Experimentally, the shape-dependent electro-catalytic activity of 
ceria nanoparticles has been investigated for hydrogen oxidation by 
Tong et al. [170]. The authors impregnated ceria nanocubes, nanorods 
and nanooctahedra into porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaf
folds and tested them as anode catalysts for intermediate temperature 
solid oxide fuel cells (IT-SOFCs). Their results showed the activity trend 
nanorods > nanocubes > nanooctahedra at temperatures below 450 ◦C. 

Fig. 8. CeO2 nanocubes in an environmental transmission electron microscope 
(ETEM) in ultra-high vacuum. The two images at the bottom are high-resolution 
transmission electron microscope (HRTEM) bright-field images in [110] and 
[001] zone axes. Reprinted with permission from Nano Lett. 2017, 17, 12, 
7652–7658 [143]. Copyright © 2017 American Chemical Society. 

Table 3 
Low-index surface orientations primarily exposed in different ceria nanoshapes 
under reducing conditions.  

Nanoshape Orientation primarily exposed 

Octahedron 111 
Cube 100 
Rod 100, 110, 111 (upon reconstruction of 110)  

Fig. 9. Adsorption energies for CO2 adsorbing in the form of a carbonate on the 
low-index ceria surfaces. Reprinted with permission from J. Phys. Chem. C 2020, 
124, 42, 23,210–23,220 [124]. Copyright © 2020 American Chemical Society. 
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However, by increasing temperature to 550 ◦C, they observed a switch 
of the highest electrochemical activity towards nanooctahedra, in line 
with the calculation from Wu et al. [169] suggesting the (111) surface 
(predominantly exposed in nanooctahedra) as the most energetically 
favored for water splitting at temperature higher than 650 K. However, 
in addition to direct experimental evidence for the proposed mechanism 
underlying the observed electrocatalytic behavior, it would be very 
useful to extend the experimental work to higher temperatures, relevant 
for HT-SOCs, for both water splitting and CO2 reduction in SOECs. 

An alternative route to study the effect of surface orientation on the 
electrochemical activity is by employing dense and epitaxial thin films, 
e.g. deposited by PLD onto single crystals with specific orientations. In 
this approach, the electrode exposes a single, well-defined surface 
orientation, whose electrocatalytic activity can be probed unequivocally 
[171]. This approach also offers a means to overcome the challenge of 
preserving the surface orientation of surface-controlled ceria nano
particles at high operating temperatures, which can lead to sintering of 
the nanoparticles and alteration of the exposed facets [137,166,172]. To 
the best of the authors’ knowledge, this type of experimental studies 
addressing the role of the different ceria low-index surface orientations 
towards H2O splitting or CO2 reduction under SOEC conditions still need 
to be conducted. 

2.2. Influence of dopants on the electrochemical activity of ceria towards 
CO2 reduction 

Cation substitution (doping) of ceria with oxides of metal ions with 
valences ranging from 2+ to 6+ has been extensively studied. Ceria is a 
very interesting system for doping, as it is able to maintain its fluorite 
structure up to ca. 2480 ◦C (its melting point) over a wide range of pO2, 
almost irrespective of the type of cation substitution [69]. The dissolu
tion of oxides of metal ions with lower valences (acceptor dopants) in
troduces oxygen vacancies in the system, while doping with oxides of 
metal ions with higher valences (donor dopants) annihilates existing 
oxygen vacancies. Importantly, doping alters the degree of reducibility 
of ceria, not only by modifying the oxygen vacancy and Ce3+ concen
trations, but also the partial molar enthalpy of reduction and the non- 
configurational entropy, associated with the vibrational frequency of 
the lattice ions. A comprehensive and detailed overview of the effect of 
different cation dopants on the defect chemistry, as well as the ionic and 
electronic conductivity of ceria is provided by Chatzichristodoulou et al. 
in ref. [69]. 

In ceria, the oxygen transport occurs via thermally activated hopping 
of an oxide ion to a neighboring oxide ion vacancy site. The energy 
barrier for this mechanism depends on the distance separating the two 
sites and on the strength of the bond between the oxygen ion and its 

neighboring cations in the two sites, where this last property is affected 
in turn by defect-defect and defect-host interactions. Such interactions 
exist between dopant ions and oxygen vacancies, dopant pairs, oxygen- 
vacancy pairs, and Ce3+-based defect pairs (Ce3+ − Ce3+, Ce3+ − dopant 
ions, or Ce3+ − oxygen vacancies) [75,96,173], and are the ultimate 
reason for the limit in ionic conductivity found for high concentrations 
of substituted cations [84,174,175]. This needs to be taken into 
consideration when optimizing the doping level of ceria employed as 
electrocatalyst, since fast ionic transport is needed to retain a constant 
supply of oxygen vacancies from the bulk to the surface during CO2 
electroreduction (Eq. 3 and 4). Although bulk to surface transport was 
shown not to be rate limiting for H2O splitting for an acceptor doped 
ceria (20 at.% Sm doped ceria) [49,73], the ionic transport could 
become limiting when ceria is doped with a donor or isovalent dopant. 

Doping with a variety of isovalent and aliovalent dopants has been 
shown by computational studies to reduce the oxygen vacancy formation 
enthalpy and alter the catalytic properties of the low-index surfaces of 
ceria. For isovalent dopants, non-redox-active [176] Ti, Zr and Hf have 
been predicted by Nolan [177] to reduce the oxygen vacancy formation 
energy on the (110) surface. This is ascribed to the smaller ionic radius of 
these dopants compared to Ce4+, which results in a distortion of the 
crystal lattice around the dopant site, weakening the Ce-O bond and 
making oxygen removal easier. The lower energy of vacancy formation for 
Zr doping confirms the findings of Mayernick and Janik [178], who 
calculated a reduced oxygen vacancy formation enthalpy and enhanced 
methane adsorption for all three low-index ceria surfaces upon Zr doping. 
The authors also predicted a change in the most favorable surface for 
oxygen vacancy formation: for a concentration of Zr doping of 3.1%, the 
trend is (100) > (111) > (110), in contrast with pure ceria where the trend 
has been shown to be (110) > (100) > (111). More recently, a high 
number of dopants with an ionic radius similar to that of cerium, at their 
tetravalent state, have been investigated by Vegge and coworkers [136] 
for CO2 reduction under SOEC conditions. Amongst those, Rh, Ir and Pt 
were found to bond CO noticeably stronger than the undoped ceria sur
face, a strategy that could potentially enhance the activity of ceria surfaces 
for CO2 electroreduction (see Fig. 3). However, Rh, Ir, and Pt doping was 
predicted to also lower the oxygen vacancy formation energy and thereby 
also the CO2 adsorption energy. Since all the relevant free energies were 
lowered by these dopants, their impact on the relative energy barriers in 
the reaction landscape was not found to be significant, as can be seen in 
Fig. 10. It must be noted here that under the high temperature and 
reducing conditions typical for SOECs, (semi-)noble elements have the 
tendency to be reduced to their 2+ oxidation state or metallic state 
[179,180]. This results in reduced solubility limits in the ceria matrix in 
the former case [181,182], and in the surface decoration of metallic 
(nano)particles in the latter [183]. 

KEY POINTS on the role of the surface orientation of ceria in CO2 reduction in SOECs:  

▪ The stability of the low-index surfaces of ceria is ranked as: (111) > (110) > (100), i.e. the (100) being the least stable.  
▪ The reducibility of the three surfaces is ranked instead as: (110) > (100) > (111), i.e. a lower energy for the formation of an oxygen 

vacancy is required on the (110) surface.  
▪ A structure-dependence of the catalytic activity of ceria has been shown for a broad array of reactions in heterogeneous catalysis.  
▪ The surface structure also affects the configuration of the reaction intermediates. For CO2 reduction in SOECs, the exact configuration of 

the carbonate CO3
2− (i.e. mono-, bi-, poly-dentate or bridged) has not been established experimentally yet.  

▪ The CO2 adsorption energy is also influenced by the surface orientation: DFT calculations suggest a ranking of (100) > (110) > (111), i. 
e. being (100) the most favorable surface for CO2 adsorption.  

▪ The influence of surface orientation on the electrochemical performance towards CO2 reduction under SOEC conditions has not been 
explored yet, neither experimentally nor theoretically.  

▪ Shape controlled nanoparticles with predominant surface orientations are often used to explore the structure-activity dependence in 
catalytic reactions. These are not well suited for SOEC studies though, due to possible sintering of the nanoparticles and surface 
reconstruction/alteration at high temperature and especially in reducing conditions.  

▪ Single crystal thin films offer an alternative approach. The deposition of epitaxial ceria thin films by pulsed laser deposition (PLD) is 
well established, and offers a means to obtain a well-defined orientation and surface area.  
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For trivalent dopants, Gd doping was investigated for water splitting 
in SOECs by Wu et al. [184], showing that the energy required to form 
oxygen vacancies and hydroxyls on the (111) surface is lower for doped 
ceria with respect to pure ceria. This has also been established experi
mentally, albeit it should be noted that although the enthalpy for oxygen 
vacancy formation is reduced, the entropy is also reduced. This results in 
reduced free energy for oxygen vacancy formation for Gd doped ceria at 
low to intermediate temperatures but higher at high temperatures [69]. 
The authors of ref. [184] also showed that incorporation of Gd into the 
ceria structure makes the surface oxygen vacancy diffusion faster under 
the conditions of the water splitting reaction. Most importantly though, 
Gd doping improves the electrocatalytic activity due to the more 
favorable formation of a Gd-H intermediate compared to the Ce-H one. 

The divalent dopants Mg, Ca and Sr have been investigated by DFT 
calculations by Carey and Nolan [185] on the (111) surface, showing 
that all dopants promote the formation of additional oxygen vacancies. 
Amongst these three dopants the oxygen vacancy formation is more 
facile for Mg, due to its smaller ionic radius introducing a stronger 
distortion in the lattice. The authors of ref. [185] also found an effect of 
ionic radius on the activation of methane, where smaller dopants have a 
beneficial effect, whereas Sr (which has a larger radius over the host 
cation) worsens the kinetics of the reaction. Other divalent dopants, like 
Pd and Ni in their partially reduced state, [178,186] were also shown by 
DFT calculations to lower the energy of formation of additional oxygen 
vacancies on ceria surfaces, along with reducing the energy barrier for 
methane adsorption in the case of Pd [178]. A reduced oxygen vacancy 
formation energy was also calculated for noble metals like Au on all 
three low-index surfaces [187,188] and Pt on the (111) surface [189]. 
Recent DFT calculations from Wang et al. [190] addressing doping of the 
(111) surface with V, Cr and Mn also proved lower oxygen vacancy 
formation energy and lower energy barriers for CO oxidation for all the 
dopants with respect to undoped ceria. Here again, the low solubility 
limits of cations with significantly smaller ionic radius than Ce like V, Cr 
and Mn into the host matrix [182,191] must be taken into consideration. 

Besides surface oxygen vacancies, surface Ce3+ also play a crucial 
role in the electrochemical reduction of CO2 according to the reaction 
pathway reported in Eq. 3–6. Pentavalent dopants such as Ta and Nb 
have been proposed as a means to promote Ce3+ on the (110) surface 
[192]. However, the introduction of pentavalent cations in the ceria 
lattice will also tend to annihilate existing oxygen vacancies, having a 

detrimental effect to the ion incorporation step associated with or 
following the carbonate activation. In principle, one could consider co- 
doping as a potential strategy to couple the effect of different dopants in 
the electrocatalytic activity of ceria surfaces. In the case of a donor- 
acceptor-substituted ceria, it was shown experimentally that the two 
dopants annihilate each other to a large extent, thereby suppressing the 
formation of charge compensating polarons and oxygen vacancies 
[193,194]. However, a study combining DFT calculations with ther
mogravimetric analysis [195] recently introduced a similar dopant 
strategy for thermochemical H2O and CO2 splitting (where a compro
mise between reducing and oxidizing ability is needed), based on paired 
charge compensating doped (PCCD) ceria, e.g. co-doped with trivalent 
and pentavalent elements. The effect of the two dopants was demon
strated to be synergistic rather than counteractive for a number of 
trivalent and pentavalent combinations from the IIIA and VA groups. On 
the other hand, carefully designed acceptor-acceptor co-doping could 
offer a marked increase of the oxygen vacancy population, along with 
local lattice distortions that can promote the reducibility of ceria 
[69,196]. As an example from the very recent literature, AlKhoori et al. 
[197] found a strong enhancement of the catalytic activity of ceria to
wards CO oxidation by co-doping with divalent Cu and trivalent Sm. 

Experimental studies have been conducted to assess the role of 
doping in the catalytic activity of ceria towards CO2 reduction in the 
context of heterogeneous catalysis. Doping with Mg has been investi
gated over the (111) ceria surface, where the presence of Mg has been 
demonstrated to enhance the formation of surface carbonates at room 
temperature [142]. The reactivity of H2 pre-reduced 10 at.% Gd and 15 
at.% Sm doped-ceria has been tested for chemically driven CO2 reduc
tion [130], showing that both materials are able to reduce CO2 to CO, 
with a similar behavior in terms of both their surface chemistry and 
redox reactivity. The study of Zhao et al. [106], employing CeO2 and 
Ce0.5Zr0.5O2-δ (CZO) nanopowders in a button-cell fixed-bed reactor and 
H2 as a reducing agent, showed higher peak rates for CO2 splitting for 
CZO at temperatures between 600 and 900 ◦C, and specifically two-fold 
higher at 700 ◦C (61.2 μmole⋅g− 1⋅s− 1 for CZO vs. 28.9 μmole⋅g− 1⋅s− 1 for 
ceria). This was ascribed to the much lower oxygen vacancy formation 
enthalpy for the bulk of CZO (40% lower upon doping with 50 mol% Zr 
[198]) and the 4-fold higher surface area of CZO, resulting from its 
enhanced thermal stability. However, at temperatures close to 900 ◦C, 
the splitting kinetics are much closer despite the difference in surface 

Fig. 10. Energy landscape of CO2 reduction to CO for the Ir-doped ceria and undoped ceria (110) reconstructed surface. The individual steps are schematically shown 
in the box above. Gray spheres represent cerium atoms, blue iridium, and red oxygen. Oxygen atoms participating in the surface reactions are represented in arbitrary 
colors for visual guidance. Reprinted with permission from Mater. Today Adv. 2020, 8, 1,001,113 [136]. Copyright © 2020 The Author(s). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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area, and this is ascribed to the higher concentration of surface polarons 
and oxygen vacancies observed at high temperature for pure ceria 
compared to CZO (observation later substantiated by another study 
showing that under H2 at 800 ◦C the reducibility of the ceria surface is 
uninfluenced by increasing the Zr content, in marked contrast with the 
enhanced reducibility of the bulk [199]). The energy landscape resulting 
from the kinetic model developed by the authors shows a nearly two- 
fold higher CO2 adsorption activation barrier for CeO2 relative to CZO 
(starting from the oxidized surface), in line with the different oxygen 
vacancy formation thermodynamics for the doped and undoped mate
rials. The activation barrier for the charge transfer process (individuated 
as the rate determining step, Eq. 8) is also somewhat lower for CZO 
compared to CeO2 (175 and 216 kJ⋅mol− 1, respectively). This reflects in 
the carbonate coverage being more sensitive with the temperature on 
the ceria surface, in line with the higher concentration of carbonates 
found on ceria rather than on CZO at temperatures higher than 700 ◦C. 

Turning to electrochemical studies, Gd-doped ceria was preliminary 
investigated as a promising electrocatalyst for CO2 electrolysis in SOECs 
over a decade ago [45], and its excellent activity towards CO2 reduction, 
being even higher than towards H2O splitting in certain instances [200], 
was more recently confirmed. Amongst Gd-, Y-, La- and Sm-doped ceria 
in different dopant concentrations, Sm0.2Ce0.8O2-δ was shown by elec
trical conductivity relaxation (ECR) to have the highest chemical surface 
exchange kinetics under reducing conditions (in H2/Ar mixture) [201]. 
The effect of the dopant ionic radius on the reducibility of ceria was 
thoroughly investigated for La, Sm, Gd, and Yb by Yang et al. [202], 
showing an increase of the concentration of surface Ce3+ and an 
enhanced surface reactivity with the decrease of the ionic radius of the 
dopant cation. Trivalent Eu was also recently proposed as a promising 
dopant for ceria-based anodes in IT-SOFCs [203]. 

A number of studies on technological electrodes with different type 
and amount of dopants in ceria [48,204–209] have also revealed 
promising activity for CO2 electroreduction. However, the lack of well- 
controlled model systems makes it difficult to discern the role of the 
dopant from other effects, e.g. related to the increase of the electro
chemically active surface area resulting from nanoparticles loading or to 
the variability of the electrode microstructure influencing utilization 
length and gas diffusion contributions. Fundamental studies employing 
model electrodes with well-defined geometry and surface area, prefer
ably combined with spectroscopy and micro-kinetic modeling, are 
challenging and thus scarce. However, those type of studies, rather than 
the ones aiming at maximizing the current density in porous electrodes, 
are crucial to arrive at a deep atomistic understating of the role of 
dopants in the electrocatalytic activity of ceria towards CO2 reduction. 

2.3. Influence of strain on the electrochemical activity of ceria towards 
CO2 reduction 

The role of lattice strain in doped ceria has been extensively inves
tigated in the last decade as a means to overcome the limit in the ionic 
conductivity imposed by defect-defect interactions for high concentra
tions of substituted cations [210,211,212], both computationally 
[213–215] and experimentally by employing thin films and multilayer 
heterostructures [210,216]. The results of such studies have been sum
marized in a number of reviews [211,212,217]. 

Strain can also alter the energy landscape of electrochemical re
actions [218,219], according to what is called Mechano-Electro- 
Chemical (MEC) Coupling [212,220]. In relation to SOCs, extensive 
experimental work has been carried out on two members of the perov
skite family of oxides, namely La1– xSrxMnO3 (LSM) and La1– xSrxCoO3 
(LSC), on the basis of a forerunner DFT study on LaCoO3 (LCO). This last 
work showed how the energy of vacancy formation on both the bulk and 
the surface of LCO decreases with increasing tensile strain [221]. Sub
sequently, both LSM [222] and LSC [223] tensile strained thin films 
were shown to present a higher oxygen vacancy concentration and faster 
electron transfer for the oxygen reduction reaction (ORR) on their sur
faces, resulting in faster oxygen surface exchange and diffusion in the 
case of LSC [224]. Later on, reduced energy of oxygen vacancy forma
tion under tensile strain was predicted computationally for both uni
axially [215], biaxially and isotropically [225] strained bulk ceria and 
isotropically strained bulk CGO [226]. The same trend was also found by 
DFT calculations for the biaxially strained CeO2 (100) surface [225] and 
isotropically strained (111) surface [227]. Very recently, the near- 
surface of reduced CeO2 (111) was also investigated by DFT + U cal
culations to unravel the effect of in-plane strain on the relative stability 
of surface and subsurface oxygen vacancies [228]. The authors found 
that while under dilative strain isolated surface vacancies are energeti
cally favored, compressive strain favors isolated subsurface vacancies. 
For both isolated surface and subsurface oxygen vacancies of CeO2 
(111), Ce3+ polarons are next-nearest neighbors (NNN) rather than 
nearest-neighbors (NN), in line with earlier Scanning-tunneling micro
scopy (STM) studies and DFT calculations [229], following a lattice 
relaxation effect to counterbalance the strain introduced by the higher 
ionic radius of Ce3+ compared to Ce4+. The authors of ref. [228] also 
found that under compressive strain the formation of both surface and 
subsurface vacancy dimers is favored with respect to the isolated 
counterparts. The possibility of tuning the presence of vacancy clusters 
through compressive strain is intriguing, considering that it has been 
explained as one possible reason for the high catalytic activity of 
nanorods [165], as reported in section 2.1. Furthermore, the beneficial 
effect of divacancies has also been predicted for the reduced (110) 
surface [139], where a lower activation barrier for CO2 dissociation to 
CO is found on a divacancy site, with respect to the isolated one. Thus, 

KEY POINTS on the role of dopants in ceria for CO2 reduction in SOECs:  

▪ The oxygen vacancy formation energy on ceria surfaces is lowered by the introduction of smaller sized tetravalent dopants. Tri- and 
divalent dopants may also lower the enthalpy of formation of oxygen vacancies (beyond those introduced for charge compensation). 
The reducibility increases as the ionic radius of the dopant decreases.  

▪ In particular for CO2 electroreduction under SOEC conditions, the introduction of tetravalent Pt, Rh and Ir has been predicted to lower 
the oxygen vacancy formation energy and to increase the CO adsorption energy at the same time. However, the CO2 adsorption energy 
increases as well, limiting the effect on the activation barrier associated with the final charge transfer step.  

▪ Non-redox active tetravalent Zr has been shown to boost the kinetics of chemically driven CO2 reduction with respect to pure ceria at 
temperatures lower than 600–700 ◦C, whereas their behavior is reversed at higher temperatures. The energy barrier for the charge 
transfer step is lowered for CZO compared to undoped ceria.  

▪ For CO2 reduction in SOECs, many dopants have shown promising enhancement of the electrochemical activity in technological 
electrodes. However, many micro-structural parameters can influence the observed performance in porous electrodes with complex 
morphology. Model electrodes with well-defined surface area and geometry, alleviating the influence of other parameters, are needed 
to arrive at an atomistic understanding of the role of dopants in the mechanisms governing CO2 reduction on ceria surfaces.  
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one could speculate that tensile strain, favoring the reducibility of ceria 
can enhance the electrocatalytic activity on the (111) surface of pure 
ceria towards reactions like CO2 reduction or water splitting. On the 
other hand, vacancy dimers favored under compressive strain on the 
(111) surface are possibly responsible for the high catalytic activity of 
nanorods, and could represent an intriguing method to modulate the 
electrocatalytic activity of ceria. Turning to the direct effect of strain on 
activity observed for specific reactions, atomistic simulations on the 
catalytic activity of ceria nanomaterials towards CO oxidation to CO2 
showed that ceria nanorods oriented along the [110] direction are 
chemically more reactive under tension than under compression, 
emphasizing the concrete possibility of tuning the oxide activity via 
lattice strain [230]. More recently, a DFT + U study of the electro
catalytic water splitting assessed that the lattice strain is responsible for 
the shift of the Ce 4f band center, affecting the energy of formation of 
oxygen vacancies and hydroxyl intermediates [231]. The authors 
showed how compressive strain (in excess of − 3.0%) on the CeO2 (111) 
surface reduces the total energy barrier, accelerating the reaction rate 
towards H2 evolution at 1200 K. On the same ceria surface, further work 
from the same group on the CO2 reduction reaction [138] has shown 
that the shift of the Ce 4f band center caused by the lattice strain is 
proportional to the shift in the oxygen vacancy formation energy, which 
increases under compressive strain and is reduced under dilative strain 
for all the configurations of Ce3+ and oxygen vacancies investigated. 
Under SOECs conditions, the authors predict that a compressive strain of 
− 4.0% enhances the TOF by 4 orders of magnitude at 800 K, due to the 
destabilization of the strained CeO2 (111) surface with respect to the 
relaxed surface. 

Chueh and coworkers [225] recently employed AP-XPS to investi
gate a set of three CeO2-δ thin films, one compressively strained on a 
(100) YSZ substrate (− 5.6%), one tensile strained on a (100) SrTiO3 
(STO) (2.1%) and one relaxed on a YSZ substrate in H2/H2O atmosphere 
under conditions relevant for SOCs. The authors observed a fourfold 
increase of the Ce3+ concentration on the surface of the strained films 
compared to the relaxed ones, irrespective of the type of biaxial strain 
applied. The enthalpy of surface oxygen vacancy formation per O for 
both compressive and dilative strain was reduced by ~0.4 eV, i.e. 15% 
less that the previously determined 2.9 eV for the surface of a relaxed 
Sm-doped CeO2-δ thin film [75]. The authors performed ab initio calcu
lations on the ceria bulk to investigate this non-monotonic behavior, and 
explained it as the combination of two aspects. At 550 ◦C, on the one 
hand the authors found that the energy of vacancy formation is lower for 
tensile strain, due to the larger lattice volume and lowered crystal 
symmetry, in line with previous computational studies. On the other 
hand, they found a lower vibrational free energy (i.e. higher vibrational 
entropy) under compressive strain, which along with the better capa
bility of Ce3+ to counterbalance the tetragonal distortion introduced by 
the strain, also favors the formation of oxygen vacancies. 

According to this picture, one could assume that the same non- 
monotonic behavior of strain in enhancing the Ce3+ and oxygen va
cancy concentrations on ceria surfaces will also apply upon CO2 
reduction under SOECs conditions. Nevertheless, an experimental proof 
to this assumption and its impact on the reaction rate are still lacking. 
Here, again, model electrodes produced with PLD offer a way to 
modulate the strain in the deposited film by choosing substrates of 
materials with different lattice parameter than ceria. However, it is 
worthwhile mentioning that ultrathin films of a few nanometers are 
required to sustain large strain levels [232] and the metal grids typically 
used as current collector in ceria thin film studies are likely insufficient 
to guarantee homogeneous polarization in such ultrathin layers [104]. 
Therefore, for this type of studies efforts must be directed towards new 
current collector approaches that can help realize homogeneous and 
well controlled polarization in ceria ultrathin electrodes. 

Aside from the case of the ultrathin layers used in fundamental 
studies, the question arises on the feasibility of sustaining such high 
levels of strain in real devices. For ceria in particular, critical strain 

levels of 0.1–0.3% have been predicted for membranes of thicknesses 
above 10 μm before mechanical failure [90,233,234]. As a reference 
from recent literature, tensile strain levels approaching 0.5% have been 
successfully realized in perovskite La0.2Sr0.7Ni0.1Ti0.9O3− δ (LSNT) thin 
films with a thickness of 1.3 μm [235]. As an alternative to strain en
gineering via epitaxial growth, vertically aligned nanostructures (VANs) 
hold promise to stabilize high levels of strain in technological applica
tions [236,237]. Core-shell particles have also been extensively 
employed to introduce and control strain in bimetallic catalysts 
[238–240] and, more recently, in oxides [241] and may represent a 
route to implement strain in SOCs e.g. by introduction of strained 
nanoparticles in the electrode scaffold. 

2.4. Surface orientations and dopants as levers to tune the carbon 
deposition suppression capability of ceria 

In the state-of-the-art Ni-YSZ cathodes operating under SOEC con
ditions, Ni is well known to catalyze the disproportionation of CO into 
CO2 and graphite via the Boudouard reaction (2CO(g) ⇌ C + CO2(g)). 
Graphitic carbon deposits on the electrode active sites reducing the cell 
performance, and resulting in Ni dusting, which, eventually, can cause 
the structural failure of the electrode. The effectiveness of ceria in 
suppressing carbon deposition has been demonstrated by various studies 
where ceria was introduced as component of the fuel electrode [242]. 
Amongst others, Duboviks et al. [56] showed the beneficial effect of a 
CGO interlayer on reducing carbon formation in porous Ni/CGO elec
trodes during CO2 electrolysis. The same group also proved the carbon 
deposition suppression capability of Cu-CGO electrodes in electrolysis 
mode in the context of biogas upgrading [57]. Ceria-coating on Ni 
structures has been revealed to inhibit carbon deposition in low tem
perature direct-methane fuel cells [60,243]. Graves and coworkers [61] 
showed that, for a variety of different compositions of CGO- 
Sr0.99Fe0.75Mo0.25O3-δ (SFM) electrodes infiltrated with CGO or Ni-CGO 
nanoparticles, coking was observable only on Ni-containing cells. By 
using operando vibrational Raman, Welander et al. [244] proved that the 
addition of CGO to a Ni-infiltrated Sr0.94Ti0.9Nb0.1O3 (STN) electrode 
scaffold decreases the amount of deposited carbon under various CO2/ 
CH4 mixtures. 

However, recent model electrodes studies have shown that only for 
strongly cathodic overpotentials at critical CO2/CO ratios, can carbon 
deposit on ceria surfaces [62,141,245]. Based on these studies, the 
mechanism governing the onset of carbon formation on ceria, along with 
possible strategies to mitigate it, have to a large extent been unraveled. 
By combination of NAP-XPS and Monte Carlo simulations, Yildiz and 
coworkers [141] revealed how the introduction of dopants in the ceria 
structure plays a role in its carbon deposition suppression ability at 
temperatures relevant for LT-SOEC (450 ◦C) [141]. Carbon deposition 
was further suppressed on Gd0.5Ce0.5O1.75 and Zr0.5Ce0.5O2 relative to 
pure or more mildly doped ceria (Gd0.2Ce0.8O1.9), with most of the 
carbon being deposited onto Ce sites rather than on the dopants. The 
authors individuate the neighboring Ce3+–Ce3+ pairs as the catalytic site 
for carbon deposition from CO (with oxygen sites, filled or vacant, only 
playing a minor role). Thus, they show that a threshold of [Ce3+] is 
required at the ceria surface for the onset of carbon formation; since 
Ce3+ and Ce4+ arrange alternatingly, Ce3+–Ce3+ pairs only become 
significant above 50% of [Ce3+]/([Ce3+] + [Ce4+] + [dopant]), at 
which point both pure ceria and Gd0.2Ce0.8O1.9 showed the onset of 
carbon formation. Gd0.5Ce0.5O1.75 showed a much lower carbon depo
sition intensity than the less doped counterpart even when reduced to 
higher [Ce3+], whereas Zr-doped ceria showed negligible amount of 
deposited carbon irrespective of the degree of reduction. The carbon 
suppression capability of the dopants is thus attributed to the fact that 
the non-redox-active dopant cations impede the formation of Ce3+–Ce3+

pairs by “isolating” the Ce3+ ions. Importantly, carbon growth satura
tion was also observed in this work (in agreement with a previous study 
showing a self-limiting behavior of graphene growth on Cu foils [246]), 
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with a carbon saturation thickness calculated at 4.2 Å, corresponding to 
1–2 monolayers of graphite. The authors also observed a decrease in the 
peak of the carbonate adsorbate when carbon has deposited. This is in 
line with what was seen by Skafte et al. [62] in their NAP-XPS study, 
when they pushed the cathodic overpotential beyond the onset of carbon 
deposition at 500 ◦C (between − 0.3 and − 0.6 V). The depletion of 
surface carbonates is attributed in both studies to the coverage of the 
surface by carbon, thus limiting the amount of adsorption sites available 
for carbonate formation. However, the authors of ref. [62] detected an 
increase of the peaks corresponding to other oxygenated carbon species 
(C-O, C=O and/or carboxylate) concomitant to the carbonate peak 
decrease. Their suggested explanation is that the carbonate coverage 
facilitates the removal of deposited carbonaceous species, as the car
bonates can react to produce carboxylate via a reverse Boudouard re
action (Eq. 12). 

2(CO3)
’
O,s + C − C + 2Ox

O,s→4CO2
δ− (12)  

where OO, s
x refers to an adsorbate-free surface oxygen site. If the re

action of Eq. 12 proceeds with sufficiently high rate, it could explain the 
simultaneous increase of both surface carboxylate species and carbon 
deposited on the surface of ceria, along with the depletion of carbonate 
species. 

The carbon deposition suppression capability of doped ceria is thus 
attributed to two different mechanisms according to the two groups of 
ref. [141] and [62], resulting in different predictions of the effect of 
surface orientation on carbon deposition. On the one hand, the NAP- 
XPS-supported DFT calculations by Skafte et al. [62] point out that 
low-index surface orientation play a role in the activity towards carbon 
deposition. Two main effects connected to surface orientation are sug
gested to play a role in kinetically preventing C deposition. Firstly, 
carbon atoms need to be energetically trapped by surface oxygen va
cancies as oxidized carbonate intermediates, so that gaseous CO2 and CO 
cannot be easily reduced to C. In this sense, a higher oxygen deficiency 
at the surface is beneficial, and the lower vacancy formation energy for a 
specific orientation described in Section 2.1 can have a positive effect. 
Secondly, a high carbonate coverage can facilitate the removal of 
deposited carbonaceous species according to Eq. 12. Here again, the 
configuration and concentration of carbonates is connected to the sur
face orientation. The authors concluded that, based on these re
quirements, highly oxygen deficient (100) and (110) surface 
terminations are the best candidates as carbon formation suppressors. 
On the other end, the authors of ref. [141] claim that the dopant-related 
carbon deposition inhibition behavior observed for the (100) surface 
should be in principle similar for the other low-index surface termina
tions, since the distance between the nearest Ce–Ce pairs (deemed as the 
catalytic sites for carbon deposition) is the same. However, one could 
argue that the nearest pair density is different for the three orientations, 
and this may be playing a role. 

In essence, there is now consensus that, even if very high 

overpotentials are required for the onset of carbon formation, carbon 
deposition can occur on the surface of ceria [62,141,245]. However, the 
role of ceria surface orientation with respect to carbon deposition re
mains unknown as experimental evidence of the electrochemical activ
ity of the different surface orientations towards carbon formation is 
currently missing. 

3. Concluding remarks and future perspective 

Electrolysis and co-electrolysis of CO2 and H2O in SOECs is envi
sioned to be the next generation technology for the conversion and 
storage of electrical energy coming from renewable sources and the 
production of sustainable fuels and chemicals. One of the main chal
lenges of incorporating SOECs in the energy infrastructure and chemical 
industry relies in scaling up to the size required by chemical synthesis 
plants. Alongside, the cell lifetime needs to be improved, especially at 
high production rates/current densities. Particularly in relation to the 
fuel electrode, ceria-based materials are considered very promising 
candidates to address some of the challenges related to the state-of-the- 
art Ni-YSZ cathode. In order to optimize ceria-based materials for 
implementation in well-performing and durable electrodes in real de
vices, the mechanism governing the CO2 reduction reaction on ceria 
surfaces needs to be fully understood from a mechanistic point of view. 
The current status of our understanding of the intrinsic catalytic activity 
of ceria towards CO2 reduction has been presented here on the basis of a 
thorough investigation of related literature, highlighting some impor
tant findings that have emerged. 

The fundamental role of surface localized electrons and oxygen va
cancies for CO2 reduction has been recognized in a variety of studies, 
showing that both these species are essential for the charge transfer of 
the two electrons involved in the reaction [74]. Localized electrons 
activate the CO2 molecule during or after adsorption on the ceria sur
face, with the first electron transfer resulting in the formation of a car
bonate as reaction intermediate. Oxygen vacancies play a key role in 
incorporating one oxygen ion along with the second electron transfer, 
decomposing the carbonate that subsequently desorbs in the form of 
gaseous CO. These charge transfer reactions are kinetically limiting the 
process, each with a relative importance depending on the window of 
cathodic bias applied. At cathodic overpotentials of − 0.1 V, the con
centration of adsorbed carbonate intermediates approaches saturation 
on Sm-doped ceria at 500 ◦C, a behavior deriving either from strong 
adsorbate-adsorbate interactions or from the increase of the relative rate 
of the electron transfer process relative to the formation of the carbonate 
intermediate. In either case, the final electron transfer process and 
associated CO desorption appears to be rate limiting for cathodic over
potentials relevant to technological SOEC electrodes. 

With respect to carbon deposition, major advancements have been 
made in understanding the mechanism behind the carbon-tolerance of 
ceria surfaces. Recent findings have shown that for a ceria-based 

KEY POINTS on the role of strain in ceria for CO2 electroreduction:  

▪ Strain can alter the transport properties of metal oxides like ceria, as well as the energy landscape of electrochemical reactions.  
▪ DFT calculations predict a lower energy of formation of oxygen vacancies for tensile strained ceria, both in the bulk and on the surface.  
▪ Strain is also predicted to modify the relative stability of surface and subsurface vacancies and to influence their aggregation in dimers 

and clusters.  
▪ For CO2 reduction in SOECs, compressive strain in excess of − 4.0% is predicted to enhance the turnover frequency (TOF) by 4 orders of 

magnitude at 800 K. 
▪ Experimentally, under a H2O/H2 atmosphere relevant for SOECs, both dilative and compressive strain were found to enhance sub

stantially the surface concentration of localized electrons, as well as to lower the surface oxygen vacancy formation energy, compared 
to the surface of a relaxed sample.  

▪ Experimental studies investigating the effect of strain (and associated enhancement of charge carriers) on the electrochemical activity 
towards H2O splitting or CO2 reduction are still lacking.  
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electrode the operating conditions in SOECs can be pushed to incredibly 
high yields of CO products (~95% CO at the outlet, far beyond the limit 
of the cell stacks used nowadays [247]) before incurring carbon depo
sition [62]. In the light of this, the persisting uncertainty on the effect of 
different surface orientations in regards to their capability to influence 
the inhibition of carbon deposition is perhaps less urgent to address. 
However, these questions are still very relevant for low temperature 
SOECs (LT-SOECs), operating in the temperature range between 400 and 
650 ◦C, where the thermodynamic threshold for carbon deposition is 
shifted to lower CO concentrations. For this operating window, further 
refinement of our understanding of the mechanism underlying the 
observed self-limiting behavior of carbon deposition [141] and how this 
effect can be exploited to tune the carbon–tolerance of ceria, also be
comes important. 

On the basis of our analysis of the literature available on CO2 elec
troreduction in SOEC, accelerating the final electron transfer process 
and associated CO desorption, is key in improving fuel electrode per
formance in technological SOEC devices. Promoting the concentration 
of surface Ce3+ while maintaining a sufficiently high concentration of 
oxygen vacancies is likely to result in improved CO2 reduction activity. 
An alternative strategy already proposed [136] is that of weakening the 
relative adsorption strength of CO2 to CO on the ceria surface. 

Tuning the surface orientation of ceria, the extent and type of 
doping, and its strain can help tailor the surface of ceria in the direction 
of accelerating the rate limiting step for CO2 electroreduction, while 
maintaining its carbon-deposition suppression capabilities. This requires 
nevertheless a deeper understanding of the impact of these levers on e.g. 
the surface concentration of defects and adsorbates, and the relative 
adsorption strength of the latter. Although doping has been investigated 
in many electrochemical studies employing porous electrodes, the 
complexity of such systems does not allow for definitive conclusions. In 
order to understand the role of dopants in the electrochemical reaction, 
fundamental studies employing model electrodes with well-defined 
surface area, in which the dopant concentration is systematically 
modified maintaining unaltered all the other parameters, are crucial. 
The investigation of strain likewise requires a well-controlled experi
mental design. Once the effect of strain on the surface electrochemistry 
of ceria is unraveled, surface engineering through controlled exsolution 
[248,249], vertically aligned nanostructures (VANs) [236] and core- 
shell particles [241] may provide methods for controlling and sustain
ing strain in real SOECs. The effect of the different surface terminations 
on the electrocatalytic activity of ceria towards CO2 reduction is another 
important lever that needs to be further explored, offering also a means 
of experimentally assessing how well the current understanding of the 
CO2 reduction mechanism is portrayed in the measured performance. 
The variation of surface orientation has the valuable feature that other 
important parameters, such as doping and strain, are kept constant, 
while influencing the surface reducibility and oxygen vacancy 

formation. 
Electrochemical kinetic studies making use of model nanostructured 

electrodes in the form of thin films, combined with operando spectro
scopic techniques [250], are well-suited for the above discussed pur
poses. Physical vapor deposition (PVD) techniques such as pulsed laser 
deposition (PLD) offer a means to vary the parameters in a controlled 
and systematic manner. Amongst the spectroscopic techniques, near 
ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is one of 
the most valuable, since it combines the advantage of surface sensitivity 
(with tunable information depth) with information about type and 
configuration of adsorbates, surface composition, and electronic states, 
which are all very critical for these studies [251–255]. In the context of 
fundamental studies employing thin films, efforts must also be directed 
towards new current collector approaches that can help realize homo
geneous and well controlled polarization in the case of ultrathin strained 
films or less conductive doped ceria, without the disadvantages of the 
metal grids typically used. 

There is no doubt that ceria has great potential as a component in 
SOEC fuel electrodes, both for H2O and CO2 electroreduction. Existing 
literature has showcased its exceptional electrochemical activity and 
ability to suppress carbon-deposition. Besides these critical surface 
functionalities, ceria is also one of the best known MIECs under SOEC 
fuel electrode conditions, very important in terms of achieving a large 
utilization thickness in technological electrodes and extending the 
electrochemically active surface area to the entire two dimensional 
ceria-gas interface. Furthermore, ceria offers a very flexible platform for 
tuning its bulk and surface functional properties by means of doping, 
straining, and nanoshaping. Navigating this immense phase space of 
possibilities requires a rational approach based on a solid understanding 
of the mechanistic aspects of the electrochemical reaction of interest and 
of the role of these tunable parameters. We hope that this review, 
extracting established understanding gained after decades of research 
efforts, will provide a useful springboard for further progress in this 
direction. 
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KEY POINTS on the role of ceria surface orientations and dopants in suppressing carbon deposition:  

▪ It is well established that ceria offers exceptional carbon suppression capabilities under conditions relevant for SOECs application. 
However, at sufficiently high overpotentials, carbon does deposit on ceria surface.  

▪ Non-redox active dopants, like Zr and Gd, enhance the carbon suppression capability of ceria, attributed to the fact that their presence 
isolates the Ce3+ ions and impedes the formation of Ce3+–Ce3+ pairs, which are deemed as the catalytic sites for carbon deposition.  

▪ Once carbon deposition initiates, the carbonate coverage is suggested to facilitate the removal of deposited carbonaceous species, as the 
carbonates react with the deposited carbon and surface oxygen ions to produce carboxylate via a reverse Boudouard reaction.  

▪ The role of ceria low index surface orientation with respect to carbon deposition prevention remains unexplored; if the mechanism for 
carbon deposition relies on Ce3+–Ce3+ pairs as catalytic sites, the orientation of the surface should not have a substantial effect, since 
the distance between the nearest Ce–Ce pairs is the same. On the other hand, if the mechanism of carbon deposition is more strongly 
related to the carbonate formation and coverage, both the different configuration of the adsorbate and oxygen vacancy concentration 
expected from different orientations would result in a different behavior for the three low index surface terminations, with the 100 and 
110 being the best in preventing C-deposition.  
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[169] T. Wu, N. López, T. Vegge, H.A. Hansen, Facet-dependent electrocatalytic water 
splitting reaction on CeO2: A DFT + U study, J. Catal. 388 (2020) 1–10. 

[170] X. Tong, et al., Shape-dependent activity of ceria for hydrogen electro-oxidation 
in reduced-temperature solid oxide fuel cells, Small 11 (2015) 5581–5588. 

[171] R. Sinclair, S.C. Lee, Y. Shi, W.C. Chueh, Structure and chemistry of epitaxial ceria 
thin films on yttria-stabilized zirconia substrates, studied by high resolution 
electron microscopy, Ultramicroscopy 176 (2017) 200–211. 
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