3D printing of bioinspired super black microstructures

Wetzel, Alexandre Emmanuel; del Castillo Iniesta, Nuria; Engay, Einstom; Berg-Sørensen, Kirstine; Bunea, Ada-Ioana; Taboryski, Rafael

Publication date: 2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Structural antireflective (AR) coatings are efficient to reduce reflections and improve performances in optical systems. A recent study showed that some peacock spiders display very good AR properties due to structures in the form of a microlens array, on top of an absorbing melanin layer. [1] Due to their relatively simple shape and large size, these microlenses would be ideal for mass replication. More importantly, such microlenses can increase the mean light path in underlying layers, and could therefore greatly improve the efficiency in photovoltaics for example. [2]

Here, we print microlens arrays with different geometries based on the spider structures, we image them with SEM and study their AR properties.

The structures were 3D printed on a Nanoscribe Photonic Professional GT+ system (Karlsruhe, Germany). This system relies on two-photon polymerization (2PP) with a lateral resolution of around 200 nm, which is ideal to achieve high precision and accuracy.

The microstructures were designed based on the surface equation from [1]:

\[z(x, y) = R_0 h_0 \left[1 - \frac{x}{R_G} \right] \left[1 - \frac{y}{R_G} \right] - \frac{R_0 h_0}{2} \]

II

SEM was used to characterize the printed structures.

III

The structures reflectance and transmittance were measured at normal incidence with acceptance angles of 14.5° and 47.2°, respectively.

IV

Optimized AR sample

3. Results

Measured Reflectance/Transmittance

1. Hemispheres \(R_0 = 5 \mu m, n_0 = 1, N = 21 \)

| Radius increase: | Reflectance increase | ~ same Transmittance |
| Radius decrease: | More discretization errors (limited printer resolution) |

II

Chosen optimal Radius: \(R_0 = 5 \mu m \)

2. Varying parameters \((n_0, h_0, N) \) with \(K = 5 \mu m \)

<table>
<thead>
<tr>
<th>Parameters:</th>
<th>(n_0)</th>
<th>(h_0)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference hemispheres:</td>
<td>(n_0 = 1, h_0 = 5 \mu m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both the reflectance and transmittance:</td>
<td>increase with (K)</td>
<td>decrease with (h_0)</td>
<td></td>
</tr>
</tbody>
</table>

III

Influence of the structures geometry

1. Reflectance spectrum of a flat sample and optimized AR sample

2. Ratio (Flat/Optimized AR)

With this technique, we demonstrate the fabrication of AR structures based on peacock spiders.

We show that the created structures:

• Have very low specular reflectance

• Are tunable with the shape parameters

In addition, such structures show great potential for mass replication and applications involving solar cells.

References:

Contact:

email: awet@dtu.dk
LinkedIn: linkedin.com/in/alexandre-wetzel-61736021a