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The state-space assessment model (SAM) is extended by allowing a functional relationship between observation variance and the corresponding
prediction. An estimated relationship between observation variance and predicted value for each individual observation allows the model to
assign smaller (or larger) variance to predicted larger log-observations. This relation is different from the usual assumption of constant variance of
log-observations within age groups. The prediction–variance link is implemented and compared to the usual constant variance assumption for
the official assessments of North East Arctic cod and haddock. For both of these stocks, the prediction–variance link is found to give a significant
improvement.

Keywords: mean–variance relationship, observation variance, SAM.

Introduction
The state-space assessment model (SAM; Nielsen and Berg, 2014) is
a frequently used assessment model for species being monitored by
the International Council for the Exploration of the Sea (ICES). The
model incorporates standard stock equations and includes year-
and age-specific fishing mortalities and abundances as latent vari-
ables. Several options are available in SAM to accommodate for ob-
servation variance structures in data. Variances can be estimated
to be independent, correlated in different ways (Berg and Nielsen,
2016), separate or combined across ages. In addition, externally es-
timated variance/covariance matrices can be assigned. Here, we fur-
ther expand SAM by allowing a functional relationship between ob-
servation variance and its associated prediction to be estimated. The
link is similar to the relation that Taylor (1961) found to typically
exist in survey data and to the link used in the assessment model
Aanes (2016). The main difference is, however, that here the rela-
tionship is estimated within the assessment model, rather than be-
ing based on external variance estimates.

Log-normal distributions have a quadratic mean-variance rela-
tion on natural scale, i.e. the variance is given by

v = αμβ, (1)

where β = 2, μ is the expectation, and α is a dispersion parame-
ter. The relation between prediction and variance Equation (1) is
included in several statistical models, e.g. the Tweedie distributions
(Jørgensen, 1987; Dunn and Smyth, 2008), are a family of exponen-
tial dispersion models with variable β . Also, Kemp (1987) included
the mean–variance relation within models for count data. Wood
and Fasiolo (2017) introduced a method for estimating Tweedie
distributions with spatial components in the power parameter in
Equation (1) and applied it in a case study for mackerel egg den-
sities. Observations in fish stock population models may be in-
cluded as log-normal distributed (Miller et al., 2016; Nielsen and
Berg, 2014). However, studies indicate that often is β �= 2 for sur-
vey index and catch estimates (Taylor, 1961; Brynjarsdóttir and Ste-
fánsson, 2004; Aanes, 2016). The contribution in our research is to
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estimate the power relation Equation (1) for log-normal observa-
tions within a population dynamic model.

Taylor (1961) illustrated that log-transformed survey indices
typically has prediction dependent variance. In this paper, we ex-
tend SAM to include the flexible relation between prediction and
variance Equation (1) applied in Taylor (1961). The usual assump-
tion of constant log-observation variance implies that the relative
uncertainty on natural scale is constant. By estimating a functional
relation between observation variance and its associated prediction
within SAM, we relax the assumption of constant variance and the
model has flexibility to assign a lower (or larger) relative uncertainty
to observations as a function of the predicted value. Note that con-
stant log-observation variance is a special case of the prediction–
variance link.

North East Arctic (NEA) cod and NEA haddock are com-
mercially important stocks assessed with SAM (ICES, 2020a). It
has been observed that occasional large catches have not been
predicted well by the model, so these stocks are interesting case
studies. The prediction–variance link is tested and compared to the
standard options in the assessments of these two stocks. Significant
relations between observation variance and associated predictions
are detected for both species. Note that prediction–variance link
has recently been adopted for the official assessment of NEA
haddock (ICES, 2020b).

SAM is open source, and the source code is available at
https://github.com/fishfollower/SAM. The prediction–variance
link is now implemented as a general option in the official version
of SAM. Code and data to reproduce all results in this manuscript
are available at https://github.com/OlavNikolaiBreivik/predVar
PaperSAM.

Methods
Model
The applied stock assessment model is an extension of the SAM
(Nielsen and Berg, 2014; Berg and Nielsen, 2016). SAM is based
on standard stock equations and includes key quantities of in-
terest (fishing mortality and abundance) as latent random effects.
Observations are included in SAM as realizations of random vari-
ables with densities defined by latent effects and model parameters.
An important aspect of SAM is that it automatically weights ob-
servations based on how well the corresponding time series fits the
assumed population dynamic structure. In this research, we expand
the functionality on how observations are weighted in SAM.

We will now define the applied SAM model mathematically. Let
Na, y be the abundance at age a in year y, and let Fa, y be the corre-
sponding fishing mortality rate. Both these parameters are included
as latent random variables, and as in Nielsen and Berg (2014) and
Berg and Nielsen (2016), we assume the population dynamic struc-
ture as follows:

log N1,y = log N1,y−1 + η1,y (2a)

log Na,y = log Na−1,y−1 − Fa−1,y−1 − Ma−1,y−1

+ ηa,y for 1 < a < A, (2b)

log NA,y = log
(
NA−1,y−1e−FA−1,y−1−MA−1,y−1

+ NA,y−1e−FA,y−1−MA,y−1
) + ηA,y. (2c)

Here, Ma, t is the assumed known natural mortality rate at age a
in year y, and age 1 is recruitment age. It is further assumed that
η1, y,..., ηA, y are independent mean zero Gaussian distributed, and
typically η2, y,..., ηA, y are assumed to share the same variance param-
eter, whereas a separate variance is estimated for η1, y (recruitment
process). Age group A is included as a plus age group, meaning that
it consists of all fish at age A or older.

The fishing mortality vector Fy = {F1,y, ..., FA,y} is assumed to
follow a random walk as in Nielsen and Berg (2014) and Berg and
Nielsen (2016) as follows:

log Fy = log Fy−1 + ξξξ F
y . (3)

Here,ξξξ F is mean zero Gaussian distributed with a first order autore-
gressive structure defined in Berg and Nielsen (2016).

The observations included are time series of commercial catch-
at-age and indices per age, which enter the model through familiar
catch equations. The indices are assumed to be proportional to the
true abundance (with noise), where the unknown proportionality
constants are unchanged across years. The two observation equa-
tions are

log Ca,y = log
( Fa,y

Fa,y + Ma,y
(1 − e−Fa,y−Ma,y )Na,y

)
+ ε (c)

a,y (4a)

log I(s)
a,y = log

(
Q(s)

a e−(Fa,y+Ma,y )day(s)/365Na,y
) + ε (s)

a,y. (4b)

Here, {Q(s)
a }a=1,...,A represents the proportionality factors for

survey s, and day(s) is the number of days into the year when
the survey is typically half done. Further are εεε (c)

y and εεε (s)
y mean

zero multivariate Gaussian distributed. The ordinary observation
correlation structure options available in SAM are elaborated in
(Berg and Nielsen, 2016). Note that there is also implemented func-
tionality for including external covariance structures if those are
known. Equation (4) defines how data informs the model, observed
values are given on the left side, and predicted observations (with
uncertainty structures) are provided on the right side. The contri-
bution in this research is an inclusion of a relation between the pre-
dicted observation and the corresponding uncertainty within the
assessment model.

The focus of this study is a functional relationship between pre-
dicted observations and corresponding observation variances. It is
only in this part of the model that differs from the model applied in
(Berg and Nielsen, 2016). The suggested flexible parametric struc-
ture, for each fleet is

σ 2
a,y = log

(
αaμ

βa−2
a,y + 1

)
. (5)

Here, σ 2
a,y is the variance of a log-observation, i.e. the variance of

either ε (c)
a,y or ε (s)

a,y in Equation (4). Further, μa, y is the correspond-
ing prediction on natural scale, and αa and βa are model parame-
ters to be estimated within the assessment model. Separate α- and
β-parameters may be configured for each age group within each
fleet but are assumed constant across years. Equation (5) is obtained
by assuming the mean–variance relation [Equation (1)] on natural
scale (see Appendix 1 for derivation). This relation was observed by
Taylor (1961) to typically exist in survey data. Note that the usual
assumption of constant variance is a special case of the prediction–
variance link when β = 2. Furthermore, β < 2 implies that the vari-
ance on log scale decreases with increasing μ, and β = 1 implies that
the variance on natural scale increases linearly with μ. We have cho-
sen to use the median as the predicted observation, and we have in-
vestigated that differences are minor if the mean is used in our case
studies by scaling the median with e

1
2 σ 2

a,y .
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Table 1. Applied configurations for observation variance.

Species Model Observation variance configurations

Cod  Variance configurations applied in the official assessment (ICES, ).
Cod  Prediction variance relation proposed at the recent NEA cod benchmark (ICES, ).
Cod  Separate time constant variances for all fleets and ages.
Haddock  Same constant variance coupling as applied for α in [Equation ()] in current official

assessment.
Haddock  Prediction variance relation applied in the official assessment (ICES, a).
Haddock  Separate time constant variances for all fleets and ages.

Inference
Maximum likelihood techniques are applied to estimate key quan-
tities of interest (with uncertainty) and to provide knowledge about
the investigated population. The model is implemented by using
Template Model Builder (TMB) (Kristensen et al., 2016) combined
with the optimization function nlminb (Core-Team and contrib-
utors worldwide, 2019). TMB is a freely available R-package and is
well-suited for performing fast inference with latent Gaussian mod-
els when the likelihood can be written as a three times differentiable
function. TMB automatically differentiates the likelihood, and uti-
lizes Markov structures to efficiently integrate over latent variables
with the Laplace approximation. In our case, the latent variables are
log-abundance and log-fishing mortality. The gradient computed
by TMB is further utilized by nlminb to effectively optimize the
likelihood.

The only new parameters in our research compared to Berg and
Nielsen (2016) are the prediction–variance link parameters [Equa-
tion (5)]. In our implementation we have assumed that the variance
on natural scale increases at least linearly with the expectation, i.e.
that β > 1 in Equation (1). All presented uncertainty intervals are
based on standard Gaussian approximations of the log of the quan-
tity of interest.

Results
Case study
As a case study, we investigate how the current assessments of NEA
cod and haddock are affected by the prediction–variance link exten-
sion. Both of these stocks are currently assessed with SAM (ICES,
2020a, 2021), and the following three different model configura-
tions are compared:

(1) Standard variance configuration for log-observations (variance
of log-observation independent of observation prediction).

(2) As model 1, but with the prediction–variance link.
(3) As model 1, but with separate variance parameters for all fleets

and ages

Model 3 is included to compare the prediction–variance link
with a model which has as much flexibility in the constant variance
part as possible. Applied data and model configurations (except for
observation variance) are the same as in the corresponding official
assessments (ICES, 2020a, 2021).

When applying SAM, the user may specify separate observa-
tion variance parameters per age withing fleets [Equation (5)], but
these parameters are assumed constant across years. It is only the
configuration for the observation variance parameters that differs
between the three investigated models. The applied observation

Table 2. AIC comparison of the different models for NEA cod and
haddock.

Species Model Log-likelihood AIC Parameters

NEAcod  −    
NEAcod  −  2 584 
NEAcod  −1 203   
NEAhaddock  −    
NEAhaddock  −1 028 2 143 
NEAhaddock  −    

variance configurations are shortly elaborated in Table 1, and pro-
vided in detail in Supplementary Tables S1 and S2.

Table 2 shows the Akaike information criterion (AIC) values ob-
tained with the different models. The favoured AIC values are writ-
ten in bold. Note that obtained likelihood with model 3 is smaller
compared to model 2 for NEA haddock. Thus, no coupling of stan-
dard time constant variance parameters exists that would result in
a better likelihood compared to using model 2 for this species.

Prediction–variance link parameter estimates with 95% confi-
dence intervals are provided in Table 3. These parameters defines
the estimated relation between prediction and variance through
Equation (5). Note that β = 2 implies no relation between predic-
tion and variance. For all data sources with a significant prediction–
variance relation, the β-parameters are estimated less than 2,
meaning that the corresponding relative uncertainties decrease
with respect to predicted values. Supplementary Figures S1 and S2
illustrate the estimated relations for all fleets for both species. Note
that the NEA cod prediction variance relation parameters for sur-
vey 1 and survey 2 are coupled. This is done because these two time-
series are in fact one survey, but the survey area was extended from
year 2014 and onwards (ICES, 2021), and it was decided to split the
survey time-series and assume same observation variance structure
before and after the area extension in the official assessment (ICES,
2021).

Figure 1 shows estimated spawning stock biomass (SSB) with
the three models. Confidence intervals are only provided for the
model favored by the AIC (model 2 in both cases). Figure 2 shows
estimated average fishing mortality. Note that the estimated SSBs
are not affected much by applying the prediction–variance relation
in both case studies. However, the estimated fishing mortality esti-
mates differ in the most recent years for NEA haddock.

Figure 3 shows aggregated catch predictions in tonnes obtained
with all three models. We see that the predicted and the observed
catches are typically more similar when applying model 2 com-
pared to model 1 or 3 for NEA haddock. A main reason for apply-
ing the prediction–variance relation in the current NEA haddock
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Table 3. Estimated prediction–variance link parameters with % confidence intervals. If no age is provided in the subscript it is the parameter
for all ages within the fleet. If no parameter is provided for a fleet, time constant observation variance is assumed.

NEA cod NEA haddock

α
(c)
5−15 . (.,.) α

(c)
3 . (., .)

α
(s1)
3 . (.,.) α

(c)
4 . (., .)

α
(s1)
4−12 . (.,.) α

(c)
5−13 . (., .)

α
(s2)
3 Coupled with α

(s1)
3 α(s) . (., .)

α
(s2)
4−12 Coupled with α

(s1)
4−12 –

α
(s3)
3 . (.,.) α(s) . (., .)

α
(s3)
4−12 . (.,.) α(s) . (., .)

α(s) . (., .) α(s) . (., .)
β

(c)
5−15 . (., .) β

(c)
3 . (., .)

β (s) . (., .) β
(c)
4 . (., .)

β (s) Coupled with β (s) β
(c)
5−13 . (., .)

β (s) . (.,.) β (s) . (., .)
β (s) . (.,.) β (s) . (., .)

β (s) . (., .)
β (s) . (., .)

Figure 1. Estimated SSB with the three models, shaded area represents % confidence intervals, (a) is for cod, and (b) is for haddock.

assessment is that the obtained historical catch predictions in
Figure 3b are believed to be more realistic (ICES, 2020b). Aggre-
gated catch plots are not provided for NEA cod because these are
rather similar for all the three models.

Validation
In this subsection, we validate the model including the prediction–
variance relation in our case study. The validation is divided into
the following three parts: (1) a visual inspection of one-step-ahead
(OSA) residuals, (2) a simulation study, and (3) a jitter analysis to
confirm that the optimization routine is not affected by starting
values.

Conditional independence assumptions are validated by inves-
tigating OSA residual patterns (Thygesen et al., 2017). OSA resid-
uals for all three models are illustrated in Supplementary Figures
S3 and S4. No clear systematic patterns are observed for haddock.
For cod, there are observed patterns within years for the catches
with use of all three models. Such patterns within years indicate that
there exist correlation structures within the fishing mortality incre-
ments [Equation (3)] that are not accommodated for. By allowing
our model to include (and estimate) an AR1 structure within the
fishing mortality increments these visible patterns are removed, see
Supplementary Figure S5.

Figure 4 shows OSA residuals plotted against predicted catch of
haddock. From Figure 4a, we observe that smaller predictions are
more often associated with larger residuals. When including the

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/78/10/3650/6412908 by D
TU

 Library user on 21 D
ecem

ber 2021



 O. N. Breivik et al.

(a) (b)

Figure 2. Estimated fishing mortality by the three models, Shaded area represents % confidence intervals, (a) shows average fishing mortality
for age – cod, and (b) shows average fishing mortality for age – haddock.

Figure 3. Estimated aggregated catch in tons of NEA haddock with model  (a), model  (b), and model  (c). Shaded area represents %
prediction intervals and points illustrate the observed values.

prediction–variance relation, such a structure is no longer visible,
see Figure 4b. Only residuals associated with age 5 and older are il-
lustrated in Figure 4 because the link is only found significant for
catches of those ages. Residuals vs. predictions are not illustrated
for NEA cod because no relation between prediction and variance
is visible for this species.

A simulation experiment is conducted to verify that the model
is identifiable and to investigate consequences of applying the
prediction–variance link. Model 2 is used to simulate 200 obser-
vation data sets given the estimated abundance and fishing mor-
tality. Supplementary Figures S6 and S7 illustrate estimated SSB
and predictions variance link parameters obtained by model 2,
and we observe that the model is able to reconstruct the assumed
truth.

Inclusion of the prediction–variance relation clearly improved
the AIC (see Table 2), which intuitively implies that key quanti-
ties are estimated more correctly. To verify our intuition we com-
pare the predicted log SSB and log F̄ with the known truth in
our simulation experiment. Here, F̄ is defined as the average fish-
ing mortality within ages 5–10 and 4–7 for cod and haddock, re-
spectively. Quota advice for these two species are constructed such
that F̄ attains a certain value dependent on SSB (ICES, 2020a), and
these quantities are, therefore, of particular importance to estimate
with high precision. Table 4 shows obtained mean absolute dif-
ferences from the assumed truth, and we observe that the small-
est values are obtained when including the prediction–variance
relation. Table 4 further provides mean standard deviation for es-
timated log SSB and log F̄ . We observe that the smallest average
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Figure 4. OSA residuals vs. predicted catch of age  or older haddock (a) and (b) show residuals obtained with model  and , respectively.

Table 4. Obtained mean absolute difference between estimated and true log SSB and log F̄ in the simulation experiment, and obtained mean
estimated standard deviation of log SSB and log F̄. Smallest values are written in bold. Numbers in parenthesis provide the proportion of assumed
true values within estimated % confidence intervals.

Species Model log SSB difference log F̄ difference Std. log SSB Std. log F̄

NEAcod  . . . (.%) . (.%)
NEAcod  0.041 0.038 0.048 (92.9%) 0.053 (96.9%)
NEAcod  . . . (.%) . (.%)
NEAhaddock  . . . (.%) . (.%)
NEAhaddock  0.045 0.060 0.065 (96.7%) 0.090(96.9%)
NEAhaddock  . . . (.%) . (.%)

standard deviations are obtained when utilizing the assumed true
prediction–variance relation, and the corresponding confidence in-
tervals have reasonable coverage. This result indicates that we ob-
tain reduced uncertainty in our stock assessments by utilizing the
prediction–variance relation introduced by Taylor (1961). For a few
simulation replicates it was not possible to compute standard er-
rors of all estimated quantities, which indicates that there is little
to no curvature in the likelihood function in some directions of
the parameter-space for these particular replicates. In our simula-
tion experiment, 96.5% and 97% of the runs were reported with
confidence intervals for cod and haddock, respectively. Replicates
were one or more models did not include confidence intervals
were not included in the computed performance metrics shown
in Table 4.

Sensitivity to initial values in the optimization routine was in-
vestigated by a jitter analysis, i.e. applying several different initial
values. Random initial values were constructed by adding an inde-
pendent N(0, 0.252) value to each default initial value. This proce-
dure was conducted 50 times, and the maximum difference between
obtained parameters, latent states or log likelihood was less than
10−4 for both species. Technically, we have not proven that a global

maximum is obtained, but confidence has been strengthen because
of the jitter analysis and the simulation study.

Discussion
The contribution in this research is the inclusion a functional rela-
tion between observation variance and its associated prediction in
a stock assessment model. Our case studies show that the usual as-
sumption of constant variance for the log-observations is violated,
and that the coefficient of variation (on natural scale) is likely to be
higher for small observations compared to large ones.

The intuition behind the prediction–variance link is fairly sim-
ple. If we predict to observe many fish, the variance of observa-
tions on natural scale will typically be large. However, with the com-
monly used assumption of constant log-observation variance, the
model may estimate this variance too large (or too small). In our
case studies, we showed that the model was significantly improved
when applying the prediction–variance link (Equation 5), which re-
sulted in downscaling of the variance of log-observations associ-
ated with larger predictions. We further illustrated that OSA resid-
uals are dependent on predictions when applying constant variance
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of log-observations (see Figure 4a). This assumption violation was
no longer visible when applying the prediction–variance link (see
Figure 4b).

The optimal observation variance configuration in our case
study for NEA cod is a mixture of both constant and prediction de-
pendent variances. For NEA haddock, the relation is included for all
ages within every fleet even though they are not significant for some
ages (see β not significantly different from 2 in Table 3). The infer-
ence procedure may become unstable when non-significant param-
eters are included, and we therefore recommend that the relation is
only included for ages where the associated β-parameter is signifi-
cantly different from 2.

It is possible to include external observation variances and yearly
covariance matrices in SAM. External variance estimates can ac-
commodate for time-varying variances unlike our fixed prediction–
variance link. However, these estimates are often not available, or
their reliability may be questionable. We leave for future research to
investigate if assessments are improved by including external vari-
ances. However, studies have indicated that accounting for time-
varying (co)-variances in survey data is of minor importance (Berg
and Nielsen, 2016).

The applied relation between observation variance and predic-
tion is similar to the relation applied in the assessment model Aanes
(2016), which is the official assessment model for Norwegian Spring
Spawning Herring (ICES, 2020c). A main difference in our appli-
cation is that we estimate the relationship within the assessment
model and not based on external variance estimates. An advantage
of estimating the relation within the assessment model is that the
uncertainty of the relation parameters are propagated into the un-
certainty of key quantities of interest. Another advantage is that data
on observation uncertainty is not needed, making the option to in-
clude the relation user friendly in practice. An advantage of esti-
mating the relation outside of the assessment model is to reduce
the number of parameters within the assessment model by utilizing
external variance estimates. We leave for future research to compare
results when estimating the prediction–variance relation within or
outside of an assessment model.

The prediction–variance relation was chosen to be included in
the official assessment om NEA haddock (ICES, 2020b), but not for
NEA cod (ICES, 2021). The decision not to include the prediction–
variance relation in the official NEA cod assessment was based on
that it only provided a small improvement, and the proposal was
made too late in the benchmark meeting due to time consuming
issues with data sources (ICES, 2021). It was, therefore, decided to
not include the relation even though the validation pointed towards
a minor improvement (ICES, 2021). Instead, it was recommended
to provide a publication of this structure in SAM as a research pro-
posal.

We recommend that all stock assessment models should include
a similar prediction–variance link option, and in particular that all
SAM assessments explore the consequences of applying this link. At
least the assumption of constant coefficient of variation should be
checked by plotting residuals vs. predicted values. This is especially
important for assessments where there has been large variations in
catches and/or indices over time.

Supplementary material
Supplementary material is available at the ICESJMS online version
of the manuscript.
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Appendix 1: Prediction-variance relation
The prediction-variance link [Equation (5)] is obtained by as-
suming a log–linear relation between variance and mean on nat-

ural scale. Let x ∼ N(ξ , σ 2) and y = ex, and denote μ and v
as the mean and variance of y, respectively. By using the identi-
ties μ = eξ+0.5σ 2 and v = (eσ 2 − 1)e2ξ+σ 2 = (eσ 2 − 1)μ2, we obtain
that

σ 2 = log
(

v
μ2 + 1

)
= log(αμβ−2 + 1), (6)

where the last step includes the relation v = αμβ .
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