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87 Abstract

88 Understanding the critical soil moisture (SM) threshold (θcrit) of plant water stress and land 

89 surface energy partitioning is a basis to evaluate drought impacts and improve models for 

90 predicting future ecosystem condition and climate. Quantifying the θcrit across biomes and 

91 climates is challenging because observations of surface energy fluxes and SM remain sparse. 

92 Here, we used the latest database of eddy covariance measurements to estimate θcrit across 

93 Europe by evaluating evaporative fraction (EF)-SM relationships and investigating the 

94 covariance between vapor pressure deficit (VPD) and gross primary production (GPP) during 

95 SM dry-down periods. We found that the θcrit and soil matric potential threshold in Europe are 

96 16.5% and −0.7 MPa, respectively. Surface energy partitioning characteristics varied among 

97 different vegetation types; EF in savannas had the highest sensitivities to SM in water-limited 

98 stage, and the lowest in forests. The sign of the covariance between daily VPD and GPP 

99 consistently changed from positive to negative during dry-down across all sites when EF 

100 shifted from relatively high to low values. This sign of the covariance changed after longer 

101 period of SM decline in forests than in grasslands and savannas. Estimated θcrit from the VPD-

102 GPP covariance method match well with the EF-SM method, showing this covariance method 

103 can be used to detect the θcrit. We further found that soil texture dominates the spatial 

104 variability of θcrit while shortwave radiation and VPD are the major drivers in determining the 

105 spatial pattern of EF sensitivities. Our results highlight for the first time that the sign change 

106 of the covariance between daily VPD and GPP can be used as an indicator of how ecosystems 

107 transition from energy to SM limitation. We also characterized the corresponding θcrit and its 

108 drivers across diverse ecosystems in Europe, an essential variable to improve the 

109 representation of water stress in land surface models.

110

111 Keywords: critical soil moisture threshold, surface energy partitioning, vapor pressure deficit, 

112 evaporative fraction, gross primary production, drought, EuropeA
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113 1. Introduction

114 The critical soil moisture (SM) threshold of plant water stress is the point when 

115 evapotranspiration starts to decrease due to the SM deficit (Feldman et al., 2019, Seneviratne 

116 et al., 2010). Below this threshold, exhaustion of SM leads to reduced evapotranspiration and 

117 increased partitioning towards sensible heat flux due to higher surface temperatures that lead 

118 to drier air and an increase in the vapor pressure deficit (VPD), which impairs important 

119 ecosystem functions like carbon dioxide uptake (Betts, 2004, Gentine et al., 2019, Granier et 

120 al., 2007, Seneviratne et al., 2010). SM therefore plays a crucial role in partitioning of 

121 available between latent and sensible heat fluxes from the land surface (Schwingshackl et al., 

122 2017). This energy partitioning determines local climate and influences the terrestrial 

123 component of land‐atmosphere coupling (Santanello Jr et al., 2018). Thus, it is imperative to 

124 quantify the critical SM thresholds (θcrit) of plant water stress and surface energy partitioning 

125 characteristics for evaluating the drought impacts on ecosystem function and improving 

126 models to predict future climate accurately.

127 The evaporative fraction (EF) is the ratio of latent heat flux to the sum of latent and 

128 sensible heat fluxes, and EF-SM relationships are commonly used to quantify θcrit and surface 

129 energy partitioning characteristics (Budyko, 1974, Koster et al., 2009, Seneviratne et al., 

130 2010). SM directly limits evapotranspiration under SM‐limited conditions, which increase 

131 surface temperature at a given level of net radiation, driving a positive land‐atmosphere 

132 climate feedback (Betts, 2004, Gentine et al., 2019, Seneviratne et al., 2010). At higher SM 

133 availability, the system is considered energy limited as more moisture does not necessarily 

134 lead to greater evapotranspiration, and the strength of the water, carbon, and energy cycle 

135 coupling is subdued (Feldman et al., 2019, Pendergrass et al., 2020). Evapotranspiration is at 

136 or near its potential value where net radiation and atmospheric resistance are instead limiting. 

137 This EF-SM framework is well established (Fig. 1) but quantifying the θcrit that determines the 

138 transition from energy to water-limited regimes across biomes and climates is challenging 

139 because surface energy fluxes and SM observations remain sparse (Baldocchi et al., 2004, A
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140 Budyko, 1974, Feldman et al., 2019, Koster et al., 2009). The extreme drought events that 

141 help quantify θcrit are, by definition, rare, and often require long observational time series. 

142 Attempts have been made to characterize these different evapotranspiration regimes at 

143 sub-monthly scales using satellite greenness data and air temperature globally (Zscheischler et 

144 al., 2015), for North America (Short Gianotti et al., 2019), and on weekly scales for Africa 

145 using satellite remote sensing data of the diurnal amplitude of the land surface temperature 

146 and surface soil moisture (Feldman et al., 2019). These studies did not investigate the role of 

147 VPD, but recently, both observations and models showed that VPD increases tend to reduce 

148 gross primary production (GPP) across a large range of SM conditions, whereas the reduction 

149 of SM only reduces GPP below a critical SM threshold (Green et al., 2019, Grossiord et al., 

150 2020, Kimm et al., 2020). GPP and evapotranspiration are tightly coupled on short time 

151 scales (Gentine et al., 2019), and we argue that the sign of the covariance between daily VPD 

152 and GPP can be an indicator of the relative strength between the water and energy limitation 

153 on ecosystem function. This is because VPD combines the effects of both water and enthalpy 

154 (via temperature) on GPP (Grossiord et al., 2020, Kimm et al., 2020, Novick et al., 2016). 

155 GPP is positively related to radiation under energy-limited regimes (Fig. 1), and positively 

156 correlated with SM under water-limited regimes (Gentine et al., 2019, Seneviratne et al., 

157 2010). However, it is unknown if the sign change of covariance between daily VPD and GPP 

158 is also an effective metric to a describe surface energy partitioning characteristics between 

159 water- and energy-limited regimes, and vice versa. 

160 The dry-down periods following rainfall, i.e., long periods without rainfalls when soil 

161 moisture decreases (Akbar et al., 2018, Feldman et al., 2018, Feldman et al., 2019), provide a 

162 natural experiment for us to evaluate the EF-SM relationships and investigate how the sign of 

163 the covariance between daily VPD and GPP changes as SM declines and ecosystems shift 

164 from energy to water-limited states. During the course of a dry-down, an ecosystem with θcrit 

165 will transition from a regime during which higher VPD is driven by incoming radiation which 

166 increases GPP, to another regime where SM reductions increase VPD but reduce GPP. During 

167 a SM dry-down, there is generally an initial period of GPP increase due to available SM after A
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168 rainfall if the ecosystem is already water limited before the dry-down counting started, and is 

169 followed by a decline (Fig. 1); but VPD keeps increasing if the incoming solar radiation 

170 (RAD) remains stable, e.g., in the presence of anticyclonic conditions (Feldman et al., 2020). 

171 During the initial increasing GPP period, energy-limitation (e.g., photosynthetically active 

172 radiation or temperature) is the major driver of GPP while SM becomes a key limiting factor 

173 during the following GPP decreasing stage (Seneviratne et al., 2010). However, the 

174 relationships between VPD and GPP in these two different stages may be different. We 

175 hypothesize that the covariance between daily VPD and GPP can be used to detect these two 

176 regimes during dry-downs, i.e., one regime with energy limiting conditions (positive 

177 covariance) and one regime with water limiting conditions (negative covariance).

178 During a dry-down, EF first remains constant but then decreases when SM becomes 

179 lower than a given threshold (Fig. 1). The EF–SM relationship is characterized by a transition 

180 point in SM separating the water and energy‐limited regimes (Koster et al., 2009, Seneviratne 

181 et al., 2010). There is limited opportunity to test the appearance of SM limitations during dry 

182 episodes across a wide diversity of biomes and climates because EF–SM relationships are 

183 infrequently characterized due to the challenge of directly measuring surface energy fluxes 

184 and SM across sites (Baldocchi et al., 2004, Budyko, 1974, Feldman et al., 2019, Koster et al., 

185 2009). To our knowledge, there is no observation-based assessment of the transition point of 

186 SM between demand and soil water supply limitation across Europe. Even less is known 

187 about the controlling factors and mechanisms in determining the θcrit across diverse 

188 ecosystems. Climate models, on the other hand, rely on a parametric representation of SM–

189 evaporation relationships to describe associations between water and energy cycles and 

190 predict future climate. However, due to difficulty in observing EF at large scales to constrain 

191 model results, and the lack of model simulation output at daily or hourly time steps, these 

192 relationships take different forms across climate models which contribute to divergences and 

193 uncertainty in making climate projections (Dirmeyer et al., 2006, Feldman et al., 2019, 

194 Schwingshackl et al., 2017).A
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195 The recently released ICOS (Integrated Carbon Observation System network of eddy 

196 covariance observations)(Centre, 2019) dataset with continuously measured CO2, water vapor, 

197 and energy fluxes in Europe allows more direct observations of EF–SM relationships over 

198 various biomes and climates. Further, this dense network provides a unique opportunity to 

199 evaluate EF–SM relationships and change in the covariance between VPD and GPP during 

200 dry-downs. In recent years, Europe has experienced a series of extreme summer drought and 

201 heat events (e.g., 2003, 2010, 2015 and 2018), each characterized by record-breaking climate 

202 anomalies and extensive dry-down periods (Bastos et al., 2020a, Bastos et al., 2020b, Fu et 

203 al., 2020). We can thus investigate the surface energy partitioning-SM relationship during 

204 these dry-downs (episodes with no rain for several consecutive days (Fig. 1)) where SM 

205 shows a short term rise after rain and then decreases until the next rain event. There were 

206 many ‘dry-down’ periods with no rain in Europe in recent years that can be used to detect the 

207 critical moisture value at the onset of water stress. 

208 Focusing on SM dry-downs, this study uses the latest eddy covariance measurements 

209 from ICOS to quantify θcrit across Europe and test the hypothesis that the sign change of 

210 covariance between daily VPD and GPP can be used to detect θcrit. By evaluating the EF-SM 

211 relationships, we first quantify θcrit values and the EF sensitivity to SM in the water-limited 

212 regime. Then, we investigate the changes of covariance between daily VPD and GPP during 

213 SM dry-downs and quantify θcrit values with this second approach, which are compared with 

214 the θcrit from the first approach. Last, we explore what factors drive the spatial variability of 

215 θcrit and EF sensitivity to SM. 

216

217 2. Materials and Methods 

218 2.1 Datasets

219 We used half-hourly SM, VPD, GPP, precipitation, latent heat flux, sensible heat flux and 

220 incoming shortwave radiation from the recently released ICOS (Integrated Carbon 

221 Observation System) dataset (Centre, 2019). ICOS includes 52 eddy covariance sites in 

222 Europe with energy, water, carbon fluxes and meteorological data, which were processed A
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223 following a consistent and uniform processing pipeline (Pastorello et al., 2020). We selected 

224 31 sites with measurements for all above variables, including 22 forests, 5 grasslands, 3 

225 savannas and 1 shrubland (Table S1). Savanna sites include both trees and grasses and in our 

226 case are found in Mediterranean climate zones (El-Madany et al., 2020, Luo et al., 2018, Luo 

227 et al., 2020). Croplands were excluded due to the effect of management on the seasonal 

228 timing of ecosystem fluxes, both from crop rotations and from the varying timing of planting 

229 and harvesting. Wetland sites were also removed because they have a high water table and 

230 infrequently show soil moisture limitations. 

231 SM was measured as volumetric soil water content (percentage) at different depths, 

232 varying across sites. Surface SM (SM_1: 0-5 cm) was measured at all sites and some sites 

233 also provided deeper SM measurements (e.g., SM_2: 5-20 cm; SM_3: 20-60 cm). We mainly 

234 used the surface SM observations but deeper SM measurements were also used when 

235 available. GPP estimates from the night-time partitioning method were used for the analysis 

236 (Reichstein et al., 2005). Data were quality controlled so that only measured and good-quality 

237 gap filled data (QC = 0 or 1) were used. Daytime half-hourly data (9 am to 16 pm local 

238 standard time) were averaged to daily values while SM values were averaged over the full day. 

239 Measured soil texture, mean annual precipitation, summer average of VPD, incoming 

240 shortwave radiation and wind speed data at each site were also used to understand the drivers 

241 in determining the spatial variability of θcrit and EF sensitivity to SM in water-limited stage.

242

243 2.2 Soil moisture dry-down identification

244 Dry-downs following rainfall are episodes with no rain for several consecutive days during 

245 which SM shows a short term ‘pulse’ rise after rain and then decays until the next rain event. 

246 A dry-down is retained for our analysis when SM decreases consecutively for at least 10 days 

247 after rainfall (Akbar et al., 2018, Feldman et al., 2018, McColl et al., 2017, Shellito et al., 

248 2018). Days with intermittent rainfall are excluded. We focused on the soil dry-downs during 

249 the summer (June−July−August) season for all available site-years. This resulted in 428 dry-

250 down events that form the basis of our study.A
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251

252 2.3 Critical SM threshold and evaporative fraction sensitivity to SM estimation

253 We calculated the daily evaporative fraction (EF) as the ratio of observed latent heat flux to 

254 the sum of latent and sensible heat fluxes during each soil dry-down. Then, we characterized 

255 the EF-SM relationship at each site using all available soil dry-downs, from a regression 

256 between these two variables with a linear-plus-plateau model:

257 𝐸𝐹 = {𝑎 + 𝑏(𝑆𝑀 ― 𝑐)     𝑖𝑓 𝑆𝑀 < 𝜃𝑐𝑟𝑖𝑡
𝑎                              𝑖𝑓 𝑆𝑀 ≥ 𝜃𝑐𝑟𝑖𝑡

258 where  is the maximum value of EF in absence of SM stress (energy‐limited stage),  𝑎 𝑏

259 represents the slope of the linear increase phase (water‐limited stage), and  is the critical SM 𝑐

260 threshold. These three parameters were simultaneously estimated by least squares fit with the 

261 R software package ‘nlstools’ (Baty et al., 2015) for each site, leading to site-specific 

262 estimated values of peak EF, slope and θcrit. θcrit is the breakpoint until which EF increases 

263 linearly as a function of SM (Figs. 1 and S1). The slope represents the EF sensitivity to SM in 

264 the water ‐ limited regime, indicating the magnitude of EF increase for each additional 1% 

265 change in SM when SM is below its breakpoint. The plateau is the maximum EF value 

266 reached when SM exceeds its threshold. The time spent in the water ‐ limited stage was 

267 computed as the ratio of the number of days with SM<threshold divided by the total duration 

268 of the dry down as in Feldman et al. (2019). SM threshold values were converted to soil 

269 matric potentials using soil retention curves and soil texture data (Table S1) (Gourlez de la 

270 Motte et al., 2020, Granier et al., 2007, Marthews et al., 2014). 

271 There were 23, 16 and 12 sites with the critical SM threshold estimates based on the first 

272 (SM_1), second (SM_2), and third (SM_3) soil water content measurement depth (Figs. S1-3), 

273 respectively. For the rest of sites, it was not possible to estimate a SM threshold using the EF-

274 SM relationship because samples were too infrequent, deep SM measurements were missing, 

275 or there were no thresholds. 

276

277 2. 4 Covariance between daily VPD and GPP during dry-down 

278 We also calculated the covariance between daily VPD and GPP across nine-day moving A
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279 windows during the dry-down (e.g., 1-9 days; 2-10 days; 3-11 days…). A positive covariance 

280 indicates that higher VPD is associated with increases of GPP (which we term ‘radiation 

281 effects’) while a negative covariance indicates that water stress limits GPP, i.e., with a higher 

282 VPD caused by dryer soils results in a lower GPP. Here, we excluded some short dry-downs 

283 because their covariances during the dry-down are all positive or negative, suggesting the 

284 entire dry-down period is under energy-limited or water-limited stage. We only chose the 

285 long soil dry-downs with at least 15 days (with at least 7 covariance values) and their 

286 covariances must include both positive and negative values to see if the change of covariance 

287 signs corresponds to the ecosystem transition from energy-limited into water-limited regime. 

288 The evolution of covariance with moving window days during the dry-down periods 

289 allowed us to evaluate the joint variability of daily VPD and GPP change. Across all soil dry-

290 downs, the median value of the VPD-GPP covariance was calculated for equal bins of 1 day 

291 change to identify the timing when the sign of covariance will change. Similar to the 

292 covariance, the average of SM during the moving window (e.g., 1-9 days; 2-10 days; 3-11 

293 days…) were also calculated to detect the critical SM threshold when the sign of covariance 

294 changes. The correlation of Pearson and Spearman and their associated test were performed to 

295 compare the θcrit values from this covariance method with the EF-SM method.

296

297 2.5 Drivers of the spatial variability of critical SM thresholds and EF slopes 

298 We evaluated the relative importance of soil texture, mean annual precipitation, summer 

299 average VPD, incoming shortwave radiation and wind speed in determining the spatial 

300 variability of θcrit and EF sensitivities to SM. We used a relative importance analysis approach 

301 to quantify the relative contributions of each factor to the SM thresholds or EF slopes, 

302 expressed as the Pearson correlation in a multiple linear regression (SM thresholds (or EF 

303 slopes)= b0 + b1 × MAP + b2 × Clay fraction + b3 × VPD + b4 × radiation + b5 × wind + ε). ε 

304 represented other drivers that were not considered but might contribute to the variability of 

305 SM thresholds or EF slopes. The algorithm was implemented with the ‘relaimpo’ package in 

306 R (Grömping, 2006), which is based on variance decomposition for multiple linear regression A
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307 models. The ‘relaimpo’ package provides six different methods for analyzing the relative 

308 importance of each regressor in linear regression. We used 'LMG' to quantify the contribution 

309 of different correlated regressors in a multiple linear regression (Huang et al., 2018). The 

310 LMG method estimates the relative importance (RI) of each variable by decomposing the sum 

311 of squares into non-negative contributions shared by each variable, and the LMG values were 

312 obtained by averaging the sequential sum of squares (r2) for all possible orders. Finally, all RI 

313 values were normalized (divided by r2) to sum to 1. We also repeated this analysis using the 

314 available energy (AE, the difference between net radiation and soil heat flux) instead of the 

315 incoming shortwave radiation to evaluate the relative role of AE.

316

317 3. Results

318 3.1 Surface energy partitioning characteristics and critical SM threshold of plant stress 

319 EF behavior during all dry-downs within each vegetation type is plotted together in Figure 2. 

320 The general behavior is in line with that shown in Figure 1. Temperate grasslands and 

321 Mediterranean savannas showed stronger EF–SM coupling (greater slope) at low soil 

322 moisture values than boreal and temperate forests. The available energy is increasingly 

323 partitioned towards sensible heat flux with decreasing SM during the water‐limited regime. 

324 The surface SM thresholds (using SM_1) is highly correlated with the SM thresholds 

325 observed in deeper soil layers (using SM_2 and SM_3) (Fig. S4). As surface SM 

326 measurements are available at all sites, we focused on surface SM thresholds. Across all sites, 

327 we found that the critical SM threshold in Europe is 16.5 ± 7.5% (median ± SD, Fig. 3a). 

328 Temperate grasslands (27.0 ± 10.6%) had higher SM thresholds than temperate forests (16.5 

329 ± 5.5%) and Mediterranean savannas (13.0 ± 1.6%, Fig. 3c). We also found that the soil 

330 matric potential threshold in savannas (−1.22 ± 0.21 MPa) is more negative than in forests 

331 (−0.64 ± 0.45 MPa) and grasslands (−0.37 ± 0.49 MPa, Fig. 3c). Overall, we estimated that 

332 the critical soil matric potential threshold across all sites in Europe is −0.71 ± 0.46 MPa (Fig. 

333 3b). A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

334 The sensitivities (slopes) of EF to SM, time spent in water-limited stage, and the peak 

335 EFs are different among vegetation types (Fig. 4). Across all sites, EF decreased by 0.03 per 1% 

336 SM decrease (Fig. 4a). Savannas showed a higher sensitivity of EF to SM (slope 0.05 ± 0.02) 

337 than forests (slope 0.03 ± 0.02). We further found that the time spent in water-limited stage in 

338 savannas (82.9 ± 9.7% of all dry-down durations) was nearly two times as long as in forests 

339 (44.0 ± 24.1%); across all European sites, it was about 48.3 ± 27.0% of the dry-down period 

340 duration (Fig. 4b). However, the peak EF in energy-limited stage in forests (0.5 ± 0.1) tended 

341 to be higher than in savannas (0.4 ± 0.1, Fig. 4c).

342

343 3.2 Covariance between daily VPD and GPP during SM dry-down

344 As an alternative to the EF-SM relationships, the change in the sign of the covariance 

345 between daily GPP and VPD during dry-down was used to detect the critical SM threshold. 

346 To explore the dynamics of the VPD-GPP relationships during dry-down, we first illustrated 

347 the changes in the covariance of daily GPP and VPD during a long soil moisture dry-down at 

348 CH-Cha (grassland, Figs.5a, b), as well as the coincident changes in surface energy 

349 partitioning–SM relationship (Fig. 5c). Both the original data and moving average data found 

350 that daily GPP first increases but then decreases during the dry-down while daily VPD 

351 increases steadily (Fig. 5a). The sign of covariance between daily VPD and GPP changed 

352 from positive into negative around a SM threshold of 35% for this example (Fig. 5b). The 

353 positive covariances suggested that positive radiation effects (VPD-radiation coupling) on 

354 GPP are stronger while negative covariances showed that SM limiting effects on GPP are 

355 stronger (VPD-SM coupling). The EF-SM relationship showed that the EF values remain 

356 relatively high (about 0.75) at high SM (35-55%); however, under low SM (<35%), EF and 

357 SM were positively related in the interval during which reduced SM lowers EF (Fig. 5c). 

358 These observations are consistent with the notion that the ecosystem shifted from an energy-

359 limited regime to a water-limited regime during this dry-down such that the sign of 

360 covariance between daily VPD and GPP was related to surface energy partitioning. Another 

361 example in a forest site, DE-Hzd, yielded similar results (Fig. S5).A
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362 We also examined the covariance between daily VPD and GPP for all soil dry-downs 

363 (Fig. 6). All covariances consistently changed their signs from positive to negative during the 

364 dry-down (Fig. 6a). We found that the median values of covariances across all dry-downs 

365 revealed that the breakpoint often occurs around the 4th moving window (the covariance is 

366 calculated using 9-day moving window, e.g., 1-9 days; 2-10 days; 3-11 days…). The changed 

367 covariance signs are also found in different vegetation types consistently (Figs. 6b-d). The 

368 timing of the breakpoint in forests (5th moving window, Fig. 6b) is larger than in grasslands 

369 (3rd moving window, Fig. 6c) and savannas (2nd moving window, Fig. 6d), suggesting that it 

370 takes longer for the VPD-GPP covariance sign to change from positive to negative in forests 

371 compared to grasslands and savannas. As the savanna sites have Mediterranean climate and 

372 the peak growing season is mainly in spring (El-Madany et al., 2020, Luo et al., 2018, Luo et 

373 al., 2020), we performed the same analysis using both spring and summer and obtained 

374 similar results that the breakpoint in savannas is reached in shorter time than in forests (Fig. 

375 S6). 

376 Combining the SM data for each dry-down (Figs. 6e-h), we then quantified the critical 

377 SM thresholds when the VPD-GPP covariance sign change at each site. We found that the θcrit 

378 estimated from the new covariance method match well with the EF-SM method (r=0.86, Figs. 

379 6i-j). Compared with the θcrit estimated from the EF-SM method, our results showed that the 

380 VPD-GPP covariance method has potential to detect the critical moisture thresholds, although 

381 the absolute magnitude of SM thresholds estimated from covariance method are a bit higher 

382 than that of EF-SM methods (Figs. 6i-j).

383

384 3.3 Drivers of the spatial variability of SM thresholds and EF slopes 

385 The multiple linear regression model showed that the five factors studied (mean annual 

386 precipitation, clay fraction, summer VPD, incoming shortwave radiation and wind speed) can 

387 explain 74% and 65% of the spatial variability of SM thresholds (Fig. 7a) and EF sensitivities 

388 (Fig. 7b), respectively. However, the dominant predictors of the spatial variability of SM 

389 thresholds and reduction rates of EF were different. For the spatial variability of SM A
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390 thresholds, soil texture was the most important factor, and its relative importance was 76% 

391 comparing with the other four factors (Fig. 7a), and clay fraction alone explained 65% of the 

392 variability across all sites. For the spatial variability of reduction rates of EF, climate factors, 

393 such as incoming shortwave radiation and VPD, were the major drivers, with relative 

394 importance up to 53% and 26%, respectively (Fig. 7b). The same analysis using the available 

395 energy (AE, the difference between net radiation and soil heat flux) instead of the incoming 

396 shortwave radiation obtained similar results (Fig. S7). AE played an important role in 

397 determining both the spatial variability of θcrit (17%) and EF sensitivities (52%, Fig. S7).

398

399 4. Discussion

400 Current water stress indicators typically hinge on the accuracy of evapotranspiration data, a 

401 flux that is very difficult to measure globally and is often estimated with assumptions, thus 

402 leading to high degrees of uncertainty (Wang & Dickinson, 2012). To our knowledge, we 

403 demonstrate for the first time that the covariance between daily VPD and GPP changes its 

404 sign from positive to negative during SM dry-downs as ecosystems transition from energy-

405 limited regimes to water-limited regimes. Our results suggest that the sign of covariance 

406 between daily VPD and GPP can capture shifts in the surface energy partitioning 

407 characteristics and therefore has potential to be a new indicator of ecosystem water stress. For 

408 global remote sensing data products, it becomes possible to have reasonable GPP products, 

409 e.g., based Near-Infrared Reflectance of vegetation (NIRV) (Badgley et al., 2017), normalized 

410 difference vegetation index (NDVI) (Myneni et al., 1997), enhanced vegetation index (EVI) 

411 (Huete et al., 2002) and daily FLUXCOM data (Jung et al., 2017, Tramontana et al., 2016), 

412 and VPD is computed from directly observed temperature and relative humidity, whereas 

413 global evapotranspiration products differ between datasets and are arguably more uncertain 

414 (Badgley et al., 2015, Bai &  Liu, 2018). Our covariance method provides a new option and 

415 an independent tool to quantify the critical SM threshold and detect surface energy 

416 partitioning characteristics over large regions, which we hope will be helpful to uncover the 

417 SM thresholds of plant water stress at regional and global scales. One advantage of the A
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418 covariance indicator is that, from a remote sensing perspective, spatially resolved VPD and 

419 GPP products have much lower levels of uncertainty than evapotranspiration products. 

420 Another is that the type of stress is directly related to GPP, i.e., carbon uptake, and not only 

421 indicative for stomatal conductance and transpiration.

422 Although the critical SM thresholds estimated from VPD-GPP covariance method match 

423 well with the EF-SM method, we found that the absolute magnitude of SM thresholds 

424 estimated from the VPD-GPP covariance method are a bit higher than the EF-SM method 

425 (Figs. 6i-j), which may result from two reasons. First, the covariance method calculated the 

426 covariance and mean SM values using nine-day moving windows. The average values of SM 

427 across the window could lead to the difference of SM thresholds between the VPD-GPP 

428 covariance method and EF-SM method. Second, the eddy covariance evapotranspiration 

429 analysis measures not only plant transpiration but also soil evaporation (though it is often 

430 small) (Stoy et al., 2019), which may also contribute to the differences found between 

431 approaches. To get a more plant-related estimate of the critical SM threshold, the response of 

432 plant functioning (GPP and transpiration) with atmospheric stress (VPD) under given soil 

433 moisture conditions needs to be taken into account.

434 The timing when the sign of the covariance between VPD and GPP changes from 

435 positive to negative varies across vegetation types. Forests need more time for the sign of this 

436 relationship to change after rain events than grasslands and savannas, showing that there is a 

437 longer time during which VPD-radiation coupling is stronger than VPD-SM coupling in 

438 forests compared to grasslands and savannas during SM dry-downs. The water storage in soil 

439 and plants after rainfall in forests can be larger than in grasslands because forests have deeper 

440 roots and access to moisture in deeper soils (Chapin III et al., 2011, Fan et al., 2017). Forests 

441 often have stronger resistance to drought than grasslands and savannas (Konings & Gentine, 

442 2017, Martínez-Vilalta & Garcia-Forner, 2017, Teuling et al., 2010), thus GPP rates are 

443 maintained for a longer time after rainfall in forests.

444 The surface energy partitioning-SM relationship showed that grasslands and savannas 

445 had stronger EF–SM coupling (slope) at low soil moisture values than that of forests (Figs. 2 A
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446 and 4a). Grasslands have shallow roots and are more sensitive to SM decrease, leading to 

447 abrupt drought, while forests have deep roots, access to deep soil water, and less sensitive to 

448 surface soil moisture changes. The high sensitivity of EF to SM in water-limited periods in 

449 grasslands and savannas will accelerate soil moisture depletion and quickly lead to large 

450 water constraints on photosynthesis (El-Madany et al., 2020, Luo et al., 2018, Luo et al., 

451 2020). The low sensitivity of EF to SM in forests is in line with our findings from covariance 

452 analysis that showed it takes longer for the VPD-GPP covariance sign to change from positive 

453 to negative in forests compared to grasslands and savannas, further supported the strong 

454 resistance of forests to drought (Konings & Gentine, 2017, Teuling et al., 2010). We also 

455 found that incoming shortwave radiation and VPD are the major drivers in determining the 

456 spatial variability of EF sensitivity to SM, indicating that high radiation and VPD will 

457 increase the sensitivity of EF to SM in water-limited stage. This will likely cause EF 

458 sensitivity to increase in the future because increased exposure of plants to higher VPD from 

459 warming and drier continental relative humidity is inevitable and widespread in future (Byrne 

460 &  O’Gorman, 2018, Novick et al., 2016).

461 Consistent with previous findings from satellite observations in Africa (Feldman et al., 

462 2019), our results showed that savannas spend more time in the water‐limited regime, but we 

463 found that forests also spend almost 50% of the time in the water‐limited regime, suggesting 

464 that European forest ecosystems are exposed to drought. This time fraction spent in the water‐

465 limited regime may further increase in future with anthropogenic warming (Naumann et al., 

466 2021), leading to greater drought damages in Europe. We also found that grasslands spend 

467 more than 70% of the time in the energy ‐ limited regime because these grassland sites are 

468 mainly located in the northern Europe, which are limited by energy due to the high latitudes 

469 or altitudes. Under energy-limited stage, the peak EF in grasslands was up to 0.79 (Fig. 4c), 

470 indicating that grasslands allocate more energy for evaporative cooling, which suppresses 

471 surface heating (Teuling et al., 2010). 

472 Across all sites in Europe, our results showed that the critical SM threshold is 16.5% (Fig. 

473 5), which is slightly higher than the value found in Africa (14%) using a different method A
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474 (Feldman et al., 2019) and an oak–grass savanna (15%) and an annual grassland (15%) in US 

475 (Baldocchi et al., 2004). At the European sites, we found that soil texture is the most 

476 important determining factor in controlling the spatial variability of SM thresholds (Fig. 7a), 

477 which is in line with previous findings in Africa (Feldman et al., 2019) and the US (Akbar et 

478 al., 2018), based on satellite data. We also converted the SM thresholds into soil matric 

479 potentials, and found that the soil matric potential threshold in Europe is about −0.71 MPa. 

480 The soil matric potential threshold in savannas is more negative than in forests and grasslands. 

481 When we focused on the forest sites in Europe, we found that the soil matric potential 

482 threshold is −0.64 MPa, which is very close from the -0.66 MPa value found by Granier et al. 

483 (2007) across six forest ecosystems. We noted that the EF-SM relationship can be affected by 

484 other factors, such as radiation and albedo (Haghighi et al., 2018). While several other factors 

485 limit evapotranspiration besides soil moisture and the linear dependency is a simple 

486 approximation, recent studies have highlighted that this EF-SM framework provides a good 

487 first-order representation of regimes of land–atmosphere coupling, both in models and 

488 observations (e.g., Koster et al. (2004a); Koster et al. (2004b); Seneviratne et al. (2006); 

489 Teuling et al. (2006)). Here we provided a comprehensive analysis across representative 

490 European ecosystems.

491

492 5. Conclusions 

493 Using a new database of flux tower observations across Europe, this study uncovered the 

494 critical SM threshold and surface energy partitioning characteristics by evaluating EF-SM 

495 relationships and examining the joint variability of daily VPD and GPP during SM dry-downs. 

496 We carefully studied SM dry-downs to understand how ecosystems transition from energy-

497 limited regimes to water-limited regimes. EF-SM relationships quantified the critical SM and 

498 soil matric potential thresholds in Europe are 16.5% and −0.7 MPa, respectively. Surface 

499 energy partitioning characteristics varied among different vegetation types; EF in savannas 

500 had the highest sensitivities to SM in water-limited stage while it was the lowest in forests. 

501 We found the sign of covariance between daily VPD and GPP changed after a longer period A
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502 in forests than in grasslands and savannas. The critical SM thresholds estimated from the 

503 VPD-GPP covariance method match well with that of EF-SM method, suggesting that this 

504 sign of VPD-GPP covariance can be used to detect the SM threshold. We further found that 

505 soil texture dominates the spatial variability of SM thresholds while incoming shortwave 

506 radiation and VPD are the major drivers in determining the spatial pattern of EF sensitivities. 

507 The revealed critical SM threshold and its drivers across diverse biomes and climates in 

508 Europe will be beneficial to improve climate models with parametric representations of 

509 drought stress. Our results highlighted, for the first time, the important role of the sign change 

510 of covariance between daily VPD and GPP in monitoring the surface energy partitioning 

511 characteristics and quantifying the critical SM threshold, which opens its generalized 

512 application using daily GPP estimates and VPD, e.g., from remote sensing data. The new 

513 covariance method demonstrated here provides a new option and an independent tool to 

514 quantify critical SM threshold and surface energy partitioning, which can help solve the 

515 current challenge in uncovering the SM threshold of plant water stress at regional and global 

516 scales. 
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685 Figure legends

686 Fig. 1 Schematic of the typical relationship between evaporative fraction (EF) and soil moisture (SM), 

687 as well as the changes in daily SM, gross primary production (GPP) and vapor pressure deficit (VPD) 

688 during soil moisture dry-down. We hypothesize that the covariance between daily VPD and GPP can 

689 be used to detect two regimes during dry-downs, i.e., one regime with energy limiting conditions 

690 (positive covariance) and one regime with water limiting conditions (negative covariance). “+” and “-” 

691 represent the positive and negative correlation, respectively. RAD: incoming shortwave radiation. 

692 During a SM dry-down, there is generally an initial period of GPP increase due to available SM after 

693 rainfall if the ecosystem is already water limited before the dry-down counting started.

694
695 Fig. 2 EF-SM relationships for different vegetation types. Bold lines indicate binned median values 

696 calculated in equal SM bins of 1% increments, while shading bounds the 25th and 75th percentiles of 

697 EF values within soil moisture bins. EF: evaporative fraction; SM: soil moisture.

698
699 Fig. 3 Probability density function of estimated critical soil moisture (SM) threshold (a) and soil 

700 matric potential threshold (b). Estimated SM threshold and soil matric potential threshold among 

701 different vegetation types (c). For each box plot, the middle line indicates the median; the box 

702 indicates the upper and lower quartiles and the whiskers indicate the 5th and 95th percentiles of the 

703 data. The numbers in brackets indicate the number of sites.

704
705 Fig. 4 The evaporative fraction (EF) sensitivity to soil moisture (SM) (a), time fraction spent in water-

706 limited stage (b) and the peak EF (c) among different vegetation types in Europe. For each box plot, 

707 the middle line indicates the median; the box indicates the upper and lower quartiles and the whiskers 

708 indicate the 5th and 95th percentiles of the data. The numbers in brackets indicate the number of sites.

709
710 Fig. 5 Daily soil moisture (SM), gross primary production (GPP) and vapor pressure deficit (VPD) 

711 during a soil dry-down at CH-Cha (grassland, a). Covariance between daily VPD and GPP changes 

712 with moving windows (b), and evaporative fraction (EF) changes with SM during the dry-down (c). 

713 The unit of covariance is μmol CO2 m-2 s-1 hPa. The color coding in panel (c) indicate the soil 

714 moisture values. Please note that the soil moisture scale is from high to low.

715
716 Fig. 6 Covariance between daily vapor pressure deficit (VPD) and gross primary production (GPP) 

717 across nine-day moving window changes with moving windows after rainfall during the dry-down (a-

718 d). Mean soil moisture (SM) during moving window for each dry-down (e-h). Comparison between 

719 the critical SM thresholds estimated from the VPD-GPP covariance method and evaporative fraction 

720 (EF) method (i-j). Covariance and mean soil moisture were calculated using 9-day moving window 

721 (e.g., 1-9 days; 2-10 days; 3-11 days…). Each black line represents the covariance change at each dry-
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722 down while the red line means the median value in equal bins of 1 day change (a-d). The shading 

723 bounds the 25th and 75th percentile of the distribution of covariance within the bin (a-d). The units of 

724 covariance is μmol CO2 m-2 s-1 hPa.

725
726 Fig. 7 Relative importance of mean annual precipitation (MAP), clay fraction, summer average vapor 

727 pressure deficit (VPD), incoming shortwave radiation (RAD) and wind speed to the spatial variability 

728 of soil moisture (SM) thresholds (a) and evaporative fraction (EF) slopes (b). 
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